Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Measuring impact of CONWIP control on production rate and inventory distribution for a flexible production system through simulation  

E-Print Network (OSTI)

This research investigates the production output and inventory distribution of a manufacturing system that produces multiple part types on flexible machines while incorporating CONWIP inventory controls. The production ...

Lampe, Erik Joseph

2007-01-01T23:59:59.000Z

2

A neuro-fuzzy monitoring system application to flexible production systems  

Science Conference Proceedings (OSTI)

The multiple reconfiguration and the complexity of the modern production system lead to design intelligent monitoring aid systems. Accordingly, the use of neuro-fuzzy technics seems very promising. In this paper, we propose a new monitoring aid system ... Keywords: CMMS, FMECA, SCADA, UML, diagnosis, fault tree, maintenance, monitoring, neural network, neuro-fuzzy

N. Palluat; D. Racoceanu; N. Zerhouni

2006-08-01T23:59:59.000Z

3

Fuel-Flexible Combustion System for Co-production Plant Applications  

Science Conference Proceedings (OSTI)

Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did not have the diluent requirements of Prototype-1 and was demonstrated at targeted gas turbine conditions. The TVC combustor, Prototype-2, premixes the syngas with air for low emission performance. The combustor was designed for operation with syngas and no additional diluents. The combustor was successfully operated at targeted gas turbine conditions. Another goal of the program was to advance the status of development tools for syngas systems. In Task 3 a syngas flame evaluation facility was developed. Fundamental data on syngas flame speeds and flame strain were obtained at pressure for a wide range of syngas fuels with preheated air. Several promising reduced order kinetic mechanisms were compared with the results from the evaluation facility. The mechanism with the best agreement was selected for application to syngas combustor modeling studies in Task 6. Prototype-1 was modeled using an advanced LES combustion code. The tools and combustor technology development culminate in a full-scale demonstration of the most promising technology in Task 8. The combustor was operated at engine conditions and evaluated against the various engine performance requirements.

Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

2008-12-31T23:59:59.000Z

4

A flexible assembly system for low volume and high diversity production  

E-Print Network (OSTI)

This thesis project seeks to optimize floor layouts for semiconductor equipment assembly operations. The assembly of semiconductor equipment is characterized by low volume and high product diversity and complexity. Demand ...

Schwenke, Richard Clemens

2009-01-01T23:59:59.000Z

5

A flexible system for Olympic villages  

E-Print Network (OSTI)

This thesis suggests a flexible system and its systems approach in constructing Olympic Villages which are used both during and after the Games. A historical overview of ancient Olympia and modern Olympia, as well as a ...

Chung, Se-Hack

1985-01-01T23:59:59.000Z

6

NREL: Energy Analysis: Electric System Flexibility and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric System Flexibility and Storage Electric System Flexibility and Storage Options for Increasing Electric System Flexibility to Accommodate Higher Levels of Variable Renewable Electricity Increased electric system flexibility, needed to enable electricity supply-demand balance with high levels of renewable generation, can come from a portfolio of supply- and demand-side options, including flexible conventional generation, grid storage, curtailment of some renewable generation, new transmission, and more responsive loads. NREL's electric system flexibility studies investigate the role of various electric system flexibility options on large-scale deployment of renewable energy. NREL's electric system flexibility analyses show that: Key factors in improving grid flexibility include (1) increasing the

7

Flexible Medical Radioisotope Production | U.S. DOE Office of...  

Office of Science (SC) Website

Flexible Medical Radioisotope Production Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory...

8

Flexible shaft and roof drilling system  

DOE Patents (OSTI)

A system for drilling holes in the roof of a mine has a flexible shaft with a pair of oppositely wound, coaxial flat bands. One of the flat bands defines an inner spring that is wound right handed into a helical configuration, adjacent convolutions being in nesting relationship to one another. The other flat band defines an outer spring that is wound left handed into a helical configuration about the inner band, adjacent convolutions being nesting relationship with one another. A transition member that is configured to hold a rock bit is mounted to one end of the flexible shaft. When torque and thrust are applied to the flexible shaft by a driver, the inner spring expands outwardly and the outer spring contracts inwardly to form a relatively rigid shaft.

Blanz, John H. (Carlisle, MA)

1981-01-01T23:59:59.000Z

9

Towards Flexible Exascale Stream Processing System Simulation  

Science Conference Proceedings (OSTI)

Stream processing is an important emerging computational model for performing complex operations on and across multi-source, high-volume, unpredictable dataflows. We present Flow, a platform for parallel and distributed stream processing system simulation that provides a flexible modeling environment for analyzing stream processing applications. The Flow stream processing system simulator is a high-performance, scalable simulator that automatically parallelizes chunks of the model space and incurs near-zero synchronization overhead for acyclic stream application graphs. We show promising parallel and distributed event rates exceeding 149 million events per second on a cluster with 512 processor cores.

Li, Cheng-Hong [IBM T. J. Watson Research Center; Nair, Ravi [IBM T. J. Watson Research Center; Ohba, Noboyuki [IBM Research, Japan; Shvadron, Uzi [IBM Corporation, Haifa Research Center; Zaks, Ayal [IBM Corporation, Haifa Research Center; Schenfeld, Eugen [IBM T. J. Watson Research Center

2012-01-01T23:59:59.000Z

10

Nuclear hydrogen : an assessment of product flexibility and market viability.  

DOE Green Energy (OSTI)

Nuclear energy has the potential to play an important role in the future energy system as a large-scale source of hydrogen without greenhouse gas emissions. Thus far, economic studies of nuclear hydrogen tend to focus on the levelized cost of hydrogen without accounting for the risks and uncertainties that potential investors would face. We present a financial model based on real options theory to assess the profitability of different nuclear hydrogen production technologies in evolving electricity and hydrogen markets. The model uses Monte Carlo simulations to represent uncertainty in future hydrogen and electricity prices. It computes the expected value and the distribution of discounted profits from nuclear hydrogen production plants. Moreover, the model quantifies the value of the option to switch between hydrogen and electricity production, depending on what is more profitable to sell. We use the model to analyze the market viability of four potential nuclear hydrogen technologies and conclude that flexibility in output product is likely to add significant economic value for an investor in nuclear hydrogen. This should be taken into account in the development phase of nuclear hydrogen technologies.

Botterud, A.; Yildiz, B.; Conzelmann, G.; Petri, M.; Massachusetts Inst. of Tech.

2008-01-01T23:59:59.000Z

11

Empowering Variable Renewables: Options for Flexible Electricity Systems |  

Open Energy Info (EERE)

Empowering Variable Renewables: Options for Flexible Electricity Systems Empowering Variable Renewables: Options for Flexible Electricity Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Empowering Variable Renewables: Options for Flexible Electricity Systems Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy Topics: Market analysis, Technology characterizations Resource Type: Publications Website: www.iea.org/g8/2008/Empowering_Variable_Renewables.pdf Empowering Variable Renewables: Options for Flexible Electricity Systems Screenshot References: Empowering Variable Renewables: Options for Flexible Electricity Systems[1] Summary "Increasing the share of renewables in energy portfolios is a key tool in the drive to reduce anthropogenic carbon dioxide emissions, as well as

12

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

Science Conference Proceedings (OSTI)

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

13

Fuel Flexible Turbine System (FFTS) Program  

SciTech Connect

In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was tested in a C65 engine operating on 100% hydrogen and with the redesigned combustion liner - Combustion Liner Design A - installed. The results were promising for the FFTS program as the system was able to burn 100% hydrogen fuel without flashback while maintaining good combustion performance. While initial results have been demonstrated the feasibility of this program, further research is needed to determine whether these results will be repeated with FFTS-4 injectors installed in all injector ports and over a wide range of operating conditions and fuel variations.

None

2012-12-31T23:59:59.000Z

14

Electricity for road transport, flexible power systems and wind power  

Open Energy Info (EERE)

road transport, flexible power systems and wind power road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power systems and wind power Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Development of an ontology-based flexible clinical pathway system  

Science Conference Proceedings (OSTI)

The efficient storage of medical knowledge is critical for the advancement of medicine; a flexible platform for the storage of knowledge is the need of the hour. Therefore, this work focuses on clinical pathways--tools that effectively maintain the quality ... Keywords: clinical pathways, domain ontology, ontology, ontology-based system, task ontology

Y. C. Lin

2009-12-01T23:59:59.000Z

16

System of fabricating a flexible electrode array  

DOE Patents (OSTI)

An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

Krulevitch, Peter (Pleasanton, CA); Polla, Dennis L. (Roseville, MN); Maghribi, Mariam N. (Davis, CA); Hamilton, Julie (Tracy, CA); Humayun, Mark S. (La Canada, CA); Weiland, James D. (Valencia, CA)

2012-01-28T23:59:59.000Z

17

System of fabricating a flexible electrode array  

DOE Patents (OSTI)

An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

Krulevitch, Peter (Pleasanton, CA); Polla, Dennis L. (Roseville, MN); Maghribi, Mariam N. (Davis, CA); Hamilton, Julie (Tracy, CA); Humayun, Mark S. (La Canada, CA); Weiland, James D. (Valencia, CA)

2010-10-12T23:59:59.000Z

18

Operational Flexibility Guidelines for Gas Turbine Low NOx Combustion Systems  

Science Conference Proceedings (OSTI)

Gas turbine low-NOx combustion systems can differ in hardware from manufacturer to manufacturer, but the principle is the same. Low-NOx combustors reduce peak flame temperatures by mixing fuel and air before combustion and by keeping the fuel-to-air ratio as low (lean) as possible, while still maintaining combustion stability over the broadest possible operating range. Low-NOx combustion systems are inherently more complex than diffusion combustion systems, a fact that impacts operational flexibility, re...

2011-12-14T23:59:59.000Z

19

Optimally Controlled Flexible Fuel Powertrain System  

DOE Green Energy (OSTI)

The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

2010-12-31T23:59:59.000Z

20

Optimally Controlled Flexible Fuel Powertrain System  

SciTech Connect

A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

2011-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings  

Science Conference Proceedings (OSTI)

It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance. Architects, professional engineers, and commercial real estate developers will benefit from the availability of information that quantifies energy savings, first cost construction differences, and additional operating costs created when office space must be reconfigured to accommodate new tenants.

Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

2002-06-01T23:59:59.000Z

22

Flexible Alternating Current Transmission System Application Guidelines and Operating Strategies  

Science Conference Proceedings (OSTI)

The goals of this project are twofold: to develop flexible alternating current transmission system (FACTS) application guidelines and operating strategies and to provide a technology roadmap for the renewed value proposition of FACTS devices with increased penetration of renewable energy resources, the need for power flow control over existing transmission lines, and tighter voltage regulation at transmission buses. This project focuses on developing technical and economic guidelines for ...

2012-12-17T23:59:59.000Z

23

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

choice model for forecasting demand for alternative-fuel7511, Urban Travel Demand Forecasting Project, Institute of89 (1999) 109129 Forecasting new product penetration with ?

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

24

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

7511, Urban Travel Demand Forecasting Project, Institute ofchoice model for forecasting demand for alternative-fuel89 (1999) 109129 Forecasting new product penetration with

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

25

Research Commentary: Increasing the Flexibility of Legacy Systems  

Science Conference Proceedings (OSTI)

Flexibility is what people seek when striving to increase or expand economic and social choices, equity, and technological innovations. Flexibility provides the robustness needed to adjust to changes such as those arising from a warmer/colder world, ...

Barry Wellar; William L. Garrison; Ross MacKinnon; William R. Black; Arthur Getis

2011-04-01T23:59:59.000Z

26

ARAC: A flexible real-time dose consequence assessment system  

Science Conference Proceedings (OSTI)

Since its beginning, the Atmospheric Release Advisory Capability (ARAC), an emergency radiological dose assessment service of the US Government, has been called on to do consequence assessments for releases into the atmosphere of radionuclides and a variety of other substances. Some of the more noteworthy emergency responses have been for the Three Mile Island and Chernobyl nuclear power reactor accidents, and more recently, for a cloud of gases from a rail-car spill into the Sacramento river of the herbicide metam sodium, smoke from hundreds of burning oil wells in Kuwait, and ash clouds from the eruption of Mt. Pinatubo. The spatial scales of these responses range from local, to regional, to global, and the response periods from hours, to weeks, to months. Because of the variety of requirements of each unique assessment, ARAC has developed and maintains a flexible system of people, computer software and hardware.

Ellis, J.S.; Sullivan, T.J.

1993-10-07T23:59:59.000Z

27

Safety of Human-Robot Systems in Flexible Factory ...  

Science Conference Proceedings (OSTI)

... designs to ensure they can observe and touch their environment safely, but ... want to implement robotics in flexible factory environments in which the ...

2013-01-11T23:59:59.000Z

28

Flexible Bioelectronics in the Central and Peripheral Nervous Systems  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Polydimethylsiloxane (PDMS) is used to fill the regions between the microelectrodes in the UEA and serves as a flexible electrical insulation...

29

ABSIM. Simulation of Absorption Systems in Flexible and Modular Form  

Science Conference Proceedings (OSTI)

The computer code has been developed for simulation of absorption systems at steady-state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system`s components. When all the equations have been established, a mathematical solver routine is employed to solve them simultaneously. Property subroutines contained in a separate data base serve to provide thermodynamic properties of the working fluids. The code is user-oriented and requires a relatively simple input containing the given operating conditions and the working fluid at each state point. the user conveys to the computer an image of the cycle by specifying the different components and their interconnections. Based on this information, the program calculates the temperature, flowrate, concentration, pressure and vapor fraction at each state point in the system and the heat duty at each unit, from which the coefficient of performance may be determined. A graphical user-interface is provided to facilitate interactive input and study of the output.

Grossman, G. [Israel Institute of Thechnology, Haifa, (Israel)

1994-06-01T23:59:59.000Z

30

A Flexible Online Metadata Editing and Management System  

SciTech Connect

A metadata editing and management system is being developed employing state of the art XML technologies. A modular and distributed design was chosen for scalability, flexibility, options for customizations, and the possibility to add more functionality at a later stage. The system consists of a desktop design tool or schema walker used to generate code for the actual online editor, a native XML database, and an online user access management application. The design tool is a Java Swing application that reads an XML schema, provides the designer with options to combine input fields into online forms and give the fields user friendly tags. Based on design decisions, the tool generates code for the online metadata editor. The code generated is an implementation of the XForms standard using the Orbeon Framework. The design tool fulfills two requirements: First, data entry forms based on one schema may be customized at design time and second data entry applications may be generated for any valid XML schema without relying on custom information in the schema. However, the customized information generated at design time is saved in a configuration file which may be re-used and changed again in the design tool. Future developments will add functionality to the design tool to integrate help text, tool tips, project specific keyword lists, and thesaurus services. Additional styling of the finished editor is accomplished via cascading style sheets which may be further customized and different look-and-feels may be accumulated through the community process. The customized editor produces XML files in compliance with the original schema, however, data from the current page is saved into a native XML database whenever the user moves to the next screen or pushes the save button independently of validity. Currently the system uses the open source XML database eXist for storage and management, which comes with third party online and desktop management tools. However, access to metadata files in the application introduced here is managed in a custom online module, using a MySQL backend accessed by a simple Java Server Faces front end. A flexible system with three grouping options, organization, group and single editing access is provided. Three levels were chosen to distribute administrative responsibilities and handle the common situation of an information manager entering the bulk of the metadata but leave specifics to the actual data provider.

Aguilar, Raul [Arizona State University; Pan, Jerry Yun [ORNL; Gries, Corinna [Arizona State University; Inigo, Gil San [University of New Mexico, Albuquerque; Palanisamy, Giri [ORNL

2010-01-01T23:59:59.000Z

31

ABSIM. Simulation of Absorption Systems in Flexible and Modular Form  

Science Conference Proceedings (OSTI)

The computer code has been developed for simulation of absorption systems at steady-state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components. When all the equations have been established, a mathematical solver routine is employed to solve them simultaneously. Property subroutines contained in a separate data base serve to provide thermodynamic properties of the working fluids. The code is user-oriented and requires a relatively simple input containing the given operating conditions and the working fluid at each state point. the user conveys to the computer an imagev of the cycle by specifying the different components and their interconnections. Based on this information, the program calculates the temperature, flowrate, concentration, pressure and vapor fraction at each state point in the system and the heat duty at each unit, from which the coefficient of performance may be determined. A graphical user-interface is provided to fcilitate interactive input and study of the output.

Grossman, G. (Israel Institute of Thechnology, Haifa, (Israel))

1994-06-01T23:59:59.000Z

32

A Multi-Objective Production Inventory Model with Backorder for Fuzzy Random Demand Under Flexibility and Reliability  

Science Conference Proceedings (OSTI)

In this paper, an Economic Production Quantity (EPQ) model is developed with flexibility and reliability consideration of production process in an imprecise and uncertain mixed environment. The model has incorporated fuzzy random demand, an imprecise ... Keywords: Flexibility, Fuzzy random variable, Imprecise preparation time, Interval arithmetic, Reliability

Nita H. Shah; Hardik Soni

2011-12-01T23:59:59.000Z

33

Agent Tcl: A flexible and secure mobile-agent system  

E-Print Network (OSTI)

An information agent manages all or a portion of a user's information space. The electronic resources in this space are often distributed across a network and can contain tremendous quantities of data. Mobile agents provide efficient access to such resources and are a powerful tool for implementing information agents. A mobile agent is an autonomous program that can migrate from machine to machine in a heterogeneous network. By migrating to the location of a resource, the agent can access the resource efficiently even if network conditions are poor or the resource has a low-level interface. Telescript is the best-known mobile-agent system. Telescript, however, requires the programmer to learn and work with a complex object-oriented language and a complex security model. Agent Tcl, on the other hand, is a simple, flexible, and secure system that is based on the Tcl scripting language and the Safe Tcl extension. In this paper we describe the architecture of Agent Tcl and its current implementation.

Robert S. Gray

1996-01-01T23:59:59.000Z

34

Metrics and Methods for Consideration of Flexibility in Power System Planning  

Science Conference Proceedings (OSTI)

This report describes work done in 2012 as part of the Grid Planning Strategic and Flexible Planning project. This project is concerned with methods and metrics to assess power system flexibility to manage variability and uncertainty. In 2011, a two-tiered approach to this issue was proposed, and aspects of system flexibility were demonstrated. This years work continued the development of both high-level screening and detailed, simulation-based metrics and methods for assessing ...

2012-12-31T23:59:59.000Z

35

Mining of flexible manufacturing system using work event logs and petri nets  

Science Conference Proceedings (OSTI)

One of buzzwords for modern manufacturing industry are flexible manufacturing systems (FMS), in which several machines are interlinked by an automated information and material flow system. Description and control upon these systems are of prominent significance. ...

Hesuan Hu; Zhiwu Li; Anrong Wang

2006-08-01T23:59:59.000Z

36

Functional design criteria 241-AP-102 Flexible Receiver System  

SciTech Connect

A mixer pump was installed in the 1.07 m (42-in.) riser of the central pump pit of tank 241-AP-102 to mitigate potential fluid separation particle sedimentation by mixing the tank`s contents. The mixer pump performed this function until failure. Its removal is now necessary to meet possible tank content removal commitments or other corrective actions. The proposed removal procedure requires a flexible receiver that will provide a barrier to contamination during removal and transfer of the pump to the mixer pump storage container. This document describes the functional design criteria of the flexible receiver. These criteria include the functional and performance requirements of the flexible receiver as a barrier to contamination during normal conditions and contingencies and the instrumentation requirements.

Roblyer, S.P.

1995-02-16T23:59:59.000Z

37

A robust motion design technique for flexible-jointed manipulation systems  

Science Conference Proceedings (OSTI)

This paper presents a robust input shaping technique that significantly reduces (almost eliminates) the residual vibration of manipulation systems typified by a flexible-jointed robot manipulator. The technique consists of two stages. In the first stage, ... Keywords: Flexible-jointed robots, Motion design/input shaping, Residual vibration elimination, Robustness

Grsel Alici; Sadettin Kapucu; Sedat Bayse

2006-01-01T23:59:59.000Z

38

Weaving time into system architecture : new perspectives on flexibility, spacecraft design lifetime, and on-orbit servicing  

E-Print Network (OSTI)

A roadmap for a comprehensive treatment of issues of flexibility in system design is developed that addresses the following questions: 1) What are the characteristic features of flexibility in system design? Can one clearly ...

Saleh, Joseph Homer, 1971-

2002-01-01T23:59:59.000Z

39

Incorporating operational flexibility into electric generation planning : impacts and methods for system design and policy analysis  

E-Print Network (OSTI)

This dissertation demonstrates how flexibility in hourly electricity operations can impact long-term planning and analysis for future power systems, particularly those with substantial variable renewables (e.g., wind) or ...

Palmintier, Bryan S. (Bryan Stephen)

2013-01-01T23:59:59.000Z

40

Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe  

DOE Patents (OSTI)

An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

Majewski, Stanislaw (Grafton, VA); Kross, Brian J. (Yorktown, VA); Zorn, Carl J. (Yorktown, VA); Majewski, Lukasz A. (Grafton, VA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe  

DOE Patents (OSTI)

An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

1996-10-22T23:59:59.000Z

42

Guide for Economic Evaluation of Flexible AC Transmission Systems (FACTS) in Open Access Environments  

Science Conference Proceedings (OSTI)

The onset of deregulation in the electric power industry may have a chilling effect on a utility's willingness to upgrade its power delivery system because of perceived economic or environmental risks. This report provides a guide for utilities when undertaking evaluation and planning for the use of Flexible AC Transmission System (FACTS) technology as cost-effective devices for power delivery system enhancements.

1997-08-27T23:59:59.000Z

43

Combustor nozzle for a fuel-flexible combustion system  

DOE Patents (OSTI)

A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

2011-03-22T23:59:59.000Z

44

Lightweight flexible isolation for language-based extensible systems  

Science Conference Proceedings (OSTI)

Safe programming languages encourage the development of dynamically extensible systems, such as extensible Web servers and mobile agent platforms. Although protection is of utmost importance in these settings, current solutions do not adequately address ...

Laurent Dayns; Grzegorz Czajkowski

2002-08-01T23:59:59.000Z

45

Measuring space systems flexibility : a comprehensive six-element framework  

E-Print Network (OSTI)

Space systems are extremely delicate and costly engineering artifacts that take a long time to design, manufacture, and launch into space and after they are launched, there is limited access to them. Millions of dollars ...

Nilchiani, Roshanak

2005-01-01T23:59:59.000Z

46

A Flexible Software Architecture for Tokamak Discharge Control Systems  

E-Print Network (OSTI)

The software structure of the plasma control system in use on the DIII--D tokamak experiment is described. This system implements control functions through software executing in real time on one or more digital computers. The software is organized into a hierarchy that allows new control functions needed to support the DIII--D experimental program to be added easily without affecting previously implemented functions. This also allows the software to be portable in order to create control systems for other applications. The tokamak operator uses an X-windows based interface to specify the time evolution of a tokamak discharge. The interface provides a high level view for the operator that reduces the need for detailed knowledge of the control system operation. There is provision for an asynchronous change to an alternate discharge time evolution in response to an event that is detected in real time. Quality control is enhanced through off-line testing that can make use of software-based...

Ferron Penaflor Walker

1995-01-01T23:59:59.000Z

47

Building flexible manufacturing systems based on peer-its  

Science Conference Proceedings (OSTI)

Peer-to-peer computing principles have started to pervade into mechanical control systems, inducing a paradigm shift from centralized to autonomic control. We have developed a self-contained, miniaturized, universal and scalable peer-to-peer based hardware-software ...

A. Ferscha; M. Hechinger; M. dos Santos Rocha; R. Mayrhofer; A. Zeidler; A. Riener; M. Franz

2008-04-01T23:59:59.000Z

48

Flexibility and economics of combustion turbine-based cogeneration systems  

SciTech Connect

The major objective of this paper is to discuss various options that affect the efficiency of combustion turbine cogeneration plants and the commensurate net worth impact to the firm. Topics considered include technical evaluation parameters, an efficiency definition, a cogeneration heat rate definition, the qualitative value of efficiency and the cogeneration heat rate, economic evaluation techniques, industrial processes suitable for cogeneration, equipment requirements, the combustion turbine package, the heat recovery steam generator package, balance of plant equipment, engineering and construction, the total cost of incorporating the cogeneration plant, cogeneration with the basic combustion turbine/heat recovery steam generator (CT/HRSG) cycle, cogeneration-steam production increase by ductburning, dual-pressure HRSG, the backpressure steam turbine, supercharging, separating electrical power generation from steam demand, and incorporating a backup source of steam generation.

Wohlschlegel, M.V.; Marcellino, A.; Myers, G.

1983-01-01T23:59:59.000Z

49

Repowering flexibility of coal-based advanced power systems  

Science Conference Proceedings (OSTI)

The Department of Energy`s (DOE`s) Morgantown Energy Technology Center (METC) helps enhance the economic competitiveness, environmental quality, and national well-being of the U.S. by developing advanced power-generation systems. The potential market for advanced power-generation systems is large. In the U.S., electric demand is estimated to grow at about 1 percent per year through the year 2010. The total power generation market also includes new-capacity as well as replacement of existing power plants as they age. Thus, the market for power systems over the next 15 years is estimated to be about 279,000 megawatts (MW), but could range from as much as 484,000 MW to as little as 153,000 MW. These predictions are summarized. Over the next 15 years, the replacement market is potentially much larger than the expansion market because of the large base of aging power plants in the U.S.

Bajura, R.A.; Bechtel, T.F.; Schmidt, D.K.; Wimer, J.G.

1995-03-01T23:59:59.000Z

50

Design of discrete control system of flexible spacecraft maintaining robust stability of elastic oscillations  

Science Conference Proceedings (OSTI)

For the flexible spacecraft with a nonlinear orientation control system using flywheel engines, an approach to making its elastic oscillations robust stable was considered. It relies on a purposeful variation of the boundaries of the stability domains ... Keywords: 07.05.Dz

I. N. Krutova; V. M. Sukhanov

2009-07-01T23:59:59.000Z

51

kMemvisor: flexible system wide memory mirroring in virtual environments  

Science Conference Proceedings (OSTI)

Today's commercial cloud service providers require the availability with an annual uptime percentage at least 99.95\\%. While memory errors become norms instead of exceptions with the increasing memory's density and capacity in cloud applications. Thus, ... Keywords: flexible memory mirroring, system-wide high availability

Bin Wang; Zhengwei Qi; Haibing Guan; Haoliang Dong; Wei Sun; Yaozu Dong

2013-06-01T23:59:59.000Z

52

Conceptual study on Flexible Guidance and Docking system for ITER Remote Handling  

E-Print Network (OSTI)

1 Conceptual study on Flexible Guidance and Docking system for ITER Remote Handling Transport Cask divertors and blanket modules from the Tokamak Building to the Hot Cell Building o Addressed topics for ITER Remote Handling Transport Cask o Publications from IST team: · Isabel Ribeiro, Pedro Lima, Pedro

Ribeiro,Isabel

53

Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide  

DOE Green Energy (OSTI)

Electricity produced from hydrogen in fuel cells can be highly efficient relative to competing technologies and has the potential to be virtually pollution free. Thus, fuel cells may become an ideal solution to this nation's energy needs if one has a satisfactory process for producing hydrogen from available energy resources such as coal, and low-cost alternative feedstocks such as biomass. GE EER is developing an innovative fuel-flexible advanced gasification-combustion (AGC) technology for production of hydrogen for fuel cells or combustion turbines, and a separate stream of sequestration-ready CO2. The AGC module can be integrated into a number of Vision- 21 power systems. It offers increased energy efficiency relative to conventional gasification and combustion systems and near-zero pollution. The R&D on the AGC technology is being conducted under a Vision-21 award from the U.S. DOE NETL with co-funding from GE EER, Southern Illinois University at Carbondale (SIU-C), and the California Energy Commission (CEC). The AGC technology converts coal and air into three separate streams of pure hydrogen, sequestration-ready CO2, and high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The three-year program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. Process and kinetic modeling studies as well as an economic assessment will also be performed. This paper provides an overview of the program and its objectives, and discusses first-year R&D activities, including design of experimental facilities and results from initial tests and modeling studies. In particular, the paper describes the design of the bench-scale facility and initial process modeling data. In addition, a process flow diagram is shown for a complete plant incorporating the AGC module with other Vision-21 plant components to maximize hydrogen production and process efficiency.

Rizeq, George; West, Janice; Frydman, Arnaldo; Subia, Raul; Kumar, Ravi; Zamansky, Vladimir (GE Energy and Environmental Research Corporation); Das, Kamalendu (U.S. DOE National Energy Technology Laboratory)

2001-11-06T23:59:59.000Z

54

Proceedings: EPRI 2009 HVDC and Flexible AC Transmission Systems (FACTS) Conference  

Science Conference Proceedings (OSTI)

The 2009 EPRI HVDC and FACTS Conference was held November 5-6, 2009, at the headquarters of Tri-State Generation and Transmission Association, Inc. in Westminster, Colorado. The conference brought together utilities, researchers, and equipment suppliers to discuss the current state of research and development in high-voltage direct current (HVDC) and flexible AC transmission systems (FACTS) technologies. The presentations and session discussions covered a broad range of initiatives under way in North Ame...

2009-12-17T23:59:59.000Z

55

Valuing the Flexibility of Providing System Services for Coal Plants with Carbon Capture Capability  

Science Conference Proceedings (OSTI)

This technical update describes a preliminary study of the potential value associated with using the operating flexibility available from advanced coal plant designs with carbon capture and storage (CCS) systems, as well as from existing coal plants with CCS retrofits, to participate in ancillary service markets. New analytical approaches are introduced that offer the ability to examine plant outputs and operating modes in the context of varying power market conditions151for real power and for reserve a...

2010-12-31T23:59:59.000Z

56

Exploring flexible strategies in engineering systems using screening models : applications to offshore petroleum projects  

E-Print Network (OSTI)

Engineering Systems, such as offshore petroleum exploration and production systems, generally require a significant amount of capital investment under various technical and market uncertainties. Choosing appropriate designs ...

Lin, Jijun, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

57

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

58

Reliability analysis of a passive cooling system using a response surface with an application to the Flexible Conversion Ratio Reactor  

E-Print Network (OSTI)

A comprehensive risk-informed methodology for passive safety system design and performance assessment is presented and demonstrated on the Flexible Conversion Ratio Reactor (FCRR). First, the methodology provides a framework ...

Fong, Christopher J. (Christopher Joseph)

2008-01-01T23:59:59.000Z

59

Toyota production system.  

E-Print Network (OSTI)

??Background: There are various manufacturing methods and systems in automobile industries throughout the world. Of these, many practice lean manufacturing methods. The most effective and (more)

Vyas, Kewalkumar Chandrakant

2011-01-01T23:59:59.000Z

60

Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 3 testing  

DOE Green Energy (OSTI)

This document summarizes the results of the phase 3 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). The purpose of this acceptance test is to verify the sealing integrity of the FRS to ensure that the release of waste and aerosols will be minimized during the removal of the test mixer pump from Tank 241-SY-101. The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the mixer pump. This acceptance test was performed at the 306E Facility in the 300 area from January 10, 1995 to January 17, 1995. The Phase 3 test consisted of two parts. Part one was a water leak test of the seal between the blast shield and mock load distribution frame (LDF) to ensure that significant contamination of the pump pit and waste interaction with the aluminum impact-limiting material under the LDF are prevented during the pump removal operation. The second part of this acceptance test was an air leak test of the assembled flexible receiver system. The purpose of this test was to verify that the release of hazardous aerosols will be minimized if the tank dome pressure becomes slightly positive during the decontamination of the mixer pump.

Ritter, G.A.

1995-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE-EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE-EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE-EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R and D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the 1st quarterly progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2000 and ending December 31, 2000. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of initial program activities covering program management and preliminary progress in first year tasks including lab- and bench-scale design, facilities preparation, and process/kinetic modeling. More over, the report presents and discusses preliminary results particularly form the bench-scale design and process modeling efforts including a process flow diagram that incorporates the AGC module with other vision-21 plant components with the objective of maximizing H{sub 2} production and process efficiency.

George Rizeq; Ravi Kumar; Janice West; Vitali Lissianski; Neil Widmer; Vladimir Zamansky

2001-01-01T23:59:59.000Z

62

Particulate Waste Product Combustion System  

E-Print Network (OSTI)

The disposal of low value by-products from the processing of agricultural food crops presents many energy consuming problems to the food producing industry. Consequently, industry has the continuous problem of utilization or disposal of the by-products within the frame work of its economic structure. The system presented here is an approach to an economical way of utilizing waste by-products for an energy source there-by reducing dependency on traditional fuel sources.

King, D. R.; Chastain, C. E.

1984-01-01T23:59:59.000Z

63

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-10-01T23:59:59.000Z

64

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

DOE Green Energy (OSTI)

In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No.

Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

2008-03-31T23:59:59.000Z

65

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

Science Conference Proceedings (OSTI)

In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No.

Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

2008-03-31T23:59:59.000Z

66

WindoWorks: A flexible program for computerized testing of accelerator control system electronic circuit boards  

SciTech Connect

Since most accelerator control system circuit boards reside in a commercial bus architecture, such as CAMAC or VMEbus, a computerized test station is needed for exercising the boards. This test station is needed for the development of newly designed prototypes, for commissioning newly manufactured boards, for diagnosing boards which have failed in service, and for long term testing of boards with intermittent failure problems. WindoWorks was created to address these needs. It is a flexible program which runs on a PC compatible computer and uses a PC to bus crate interface. WindoWorks was designed to give the user a flexible way to test circuit boards. Each test is incapsulated into a window. By bringing up several different windows the user can run several different tests simultaneously. The windows are sizable, and moveable. They have data entry boxes so that the test can be customized to the users preference. The windows can be used in conjunction with each other in order to create supertests. There are several windows which are generic. They can be used to test basic functions on any VME (or CAMAC) board. There are other windows which have been created to test specific boards. New windows for testing specific boards can be easily created by a Pascal programmer using the WindoWorks framework.

Utterback, J.

1993-09-01T23:59:59.000Z

67

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-07-01T23:59:59.000Z

68

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; K. Mondal; L. Stonawski; Krzysztof Piotrowski; T. Szymanski; Tomasz Wiltowski; Edwin Hippo

2004-11-01T23:59:59.000Z

69

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Krzysztof Piotrowski; Tomasz Wiltowski; Edwin Hippo

2004-04-01T23:59:59.000Z

70

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Krzysztof Piotrowski; Tomasz Wiltowski; Edwin Hippo

2004-01-01T23:59:59.000Z

71

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-01-01T23:59:59.000Z

72

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.

George Rizeq; Janice West; Arnaldo Frydman; Vladimir Zamansky; Linda Denton; Hana Loreth; Tomasz Wiltowski

2001-07-01T23:59:59.000Z

73

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2002-10-01T23:59:59.000Z

74

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2002 and ending June 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab-/bench-scale experimental testing and pilot-scale design.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Edwin Hippo; Tomasz Wiltowski

2002-07-01T23:59:59.000Z

75

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

2002-01-01T23:59:59.000Z

76

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

DOE Green Energy (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.

George Rizeq; Parag Kulkarni; Wei Wei; Arnaldo Frydman; Thomas McNulty; Roger Shisler

2005-11-01T23:59:59.000Z

77

Development of a flexible optical fiber based high resolution integrated PET/MRI system  

SciTech Connect

Purpose: The simultaneous measurement of PET and magnetic resonance imaging (MRI) is an emerging field for molecular imaging research. Although optical fiber based PET/MRI systems have advantages on less interference between PET and MRI, there is a drawback in reducing the scintillation light due to the fiber. To reduce the problem, the authors newly developed flexible optical fiber bundle based block detectors and employed them for a high resolution integrated PET/MRI system. Methods: The flexible optical fiber bundle used 0.5 mm diameter, 80 cm long double clad fibers which have dual 12 mm Multiplication-Sign 24 mm rectangular inputs and a single 24 mm Multiplication-Sign 24 mm rectangular output. In the input surface, LGSO scintillators of 0.025 mol.% (decay time: {approx}31 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 5 mm) and 0.75 mol.% (decay time: {approx}46 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 6 mm) were optically coupled in depth direction to form depth-of-interaction detector, arranged in 11 Multiplication-Sign 13 matrix and optically coupled to the fiber bundle. The two inputs of the bundle are bent for 90 Degree-Sign , bound to one, and are optically coupled to a Hamamatsu 1-in. square position sensitive photomultiplier tube. Results: Light loss due to the fiber bundle could be reduced and the performance of the block detectors was improved. Eight optical fiber based block detectors (16 LGSO blocks) were arranged in a 56 mm diameter ring to form a PET system. Spatial resolution and sensitivity were 1.2 mm full-width at half-maximum and 1.2% at the central field-of-view, respectively. Sensitivity change was less than 1% for 2 Degree-Sign C temperature changes. This PET system was integrated with a 0.3 T permanent magnet MRI system which has 17 cm diameter hole at the yoke area for insertion of the PET detector ring. There was no observable interference between PET and MRI. Simultaneous imaging of PET and MRI was successfully performed for small animal studies. Conclusions: The authors confirmed that the developed high resolution PET/MRI system is promising for molecular imaging research.

Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Aoki, Masaaki; Sugiyama, Eiji; Kato, Katsuhiko; Hatazawa, Jun [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461-8673 (Japan); Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871 (Japan); Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 565-0871 Osaka (Japan); Neomax Engineering, Takasaki 370-2115 (Japan); Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka 565-0871 (Japan) and Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871 (Japan)

2012-11-15T23:59:59.000Z

78

TOYOTA PRODUCTION SYSTEMTOYOTA PRODUCTION SYSTEM ( TPS ) 1930( TPS ) 1930s  

E-Print Network (OSTI)

Why Leany #12;// ? ? ?? ?? #12;#12;TOYOTA PRODUCTION SYSTEMTOYOTA PRODUCTION SYSTEM. 80 : (Standard Work- CPG) 2 Toyota2. Toyota // waste value 3. (time, human effort

Laksanacharoen, Sathaporn

79

Enhanced Renewable Methane Production System | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

80

To Cope with the Uncertainity in Smart Energy Systems: Office Buildings as a Source for Energy Flexibility  

E-Print Network (OSTI)

Electricity energy generation and its supply through electricity networks is mainly organized in a top-down, centralized manner. Energy consumption can be predicted quite accurately at a high level, and this forms the basis for pre-scheduling the production by large power plants. Only few actors are involved in the generation, trade, and transportation of electricity, but this is changing rapidly. Renewable energy conversion (such as wind and solar energy, geothermal energy or as supplied by biomass systems at farms) will lead to a large amount of distributed and fluctuating (small) renewable energy sources throughout the grid, at homes, farms, and companies. The need of centralized electricity generation thus becomes more difficult to plan. This can lead to large problems and unstable electricity grids and therefore we have to develop approaches to deal with this increasing uncertainty. The use of Information and Communication Technology (ICT) and Control Technology (CT) will provide us many options for stabilizing electricity networks. Besides this also on the demand side new consumers such as electric vehicles and heat pumps (with large demand but also high flexibility or storage capacity) appear. The increasing share of decentralized renewable energy conservation in combination with the new types of consumers will drastically alter the operation of electricity systems. Smart Grids are developed by all major electricity distribution companies together with industry to cope with the dispersed electricity production by matching of supply and demand by smart ICT and CT. The future stricter sustainability demands will lead to offices with their own renewable energy sources and energy storage capacity. Office buildings will become a potential source of energy flexibility which can be offered to the grid as a Virtual Power Plant (VPP). In order to minimize uncertainty in the balance between energy supply and demand it is necessary to develop realistic user behavior, installations behavior and Smart Grid interaction. Monitoring the needs and preferences of users is necessary to predict future states of the demand for the SES (e.g. based on weather forecasts and user behavior). Automated prosumer support is needed to optimize interaction between offices and Smart grid.

Zieler, W.; Aduda, K.; Boxem, G.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Value Operating Flexibility in Advanced Coal Plants  

Science Conference Proceedings (OSTI)

This report describes a preliminary study of the potential value of the operating flexibility available from advanced coal plant designs and carbon capture and storage (CCS) systems. Assessing value requires new analytical approaches capable of examining plant outputs (e.g., syngas, air products, electricity, emissions) in the context of varying power market conditions and significant climate policy and fuel price uncertainties. Accounting for flexibility options in capacity planning may create opportuni...

2009-12-22T23:59:59.000Z

82

Analysis of operations and cyber security policies for a system of cooperating Flexible Alternating Current Transmission System (FACTS) devices.  

SciTech Connect

Flexible Alternating Current Transmission Systems (FACTS) devices are installed on electric power transmission lines to stabilize and regulate power flow. Power lines protected by FACTS devices can increase power flow and better respond to contingencies. The University of Missouri Rolla (UMR) is currently working on a multi-year project to examine the potential use of multiple FACTS devices distributed over a large power system region in a cooperative arrangement in which the FACTS devices work together to optimize and stabilize the regional power system. The report describes operational and security challenges that need to be addressed to employ FACTS devices in this way and recommends references, processes, technologies, and policies to address these challenges.

Phillips, Laurence R.; Tejani, Bankim; Margulies, Jonathan; Hills, Jason L.; Richardson, Bryan T.; Baca, Micheal J.; Weiland, Laura

2005-12-01T23:59:59.000Z

83

Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 1 testing  

DOE Green Energy (OSTI)

This document summarizes the results of the Phase 1 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). This acceptance test consisted of a pressure-decay/leak test of the containment bag to verify that the seams along the length of the bag had been adequately sealed. The sealing integrity of the FRS must be verified to ensure that the release of waste and aerosols will be minimized during the removal of the test mixer pump from Tank 241-SY-101. The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the mixer pump. This acceptance test was performed at Lancs Industries in Kirkland, Washington on January 17, 1995. The bag temperature-compensated pressure loss of 575 Pa was below the acceptance criteria of 625 Pa and the test results were therefore found to be acceptable. The bag manufacturer estimates that 80--90% of the pressure loss is attributed to leakage around the bag inflation valve where the pressure gage was connected. A leak detector was applied over the entire bag during the pre-tests and no leakage was found. Furthermore, the leak rate corresponding to this pressure loss is very small when compared to the acceptable leak rate of the completely assembled FRS. The sealing integrity of the assembled FRS is verified in Phase 3 testing.

Ritter, G.A.

1995-02-06T23:59:59.000Z

84

Enhancing the systems decision process with flexibility analysis for optimal unmanned aircraft system selection  

E-Print Network (OSTI)

Systems Engineers often conduct decision analysis in order to provide decision makers with a quantifiable means to make decisions. However, the field of Systems Engineering is often criticized for focusing on processes and ...

Bachmann, Chris H., III (Christopher Henry)

2008-01-01T23:59:59.000Z

85

Flexible design : an innovative approach for planning water infrastructure systems under uncertainty  

E-Print Network (OSTI)

This thesis develops a framework for a flexible design approach to support decision-making in water supply infrastructure planning. It contrasts with a conventional, deterministic planning approach that uses past data or ...

Wong, Melanie Kathleen

2013-01-01T23:59:59.000Z

86

Design of passive decay heat removal system for the lead cooled flexible conversion ratio fast reactor  

E-Print Network (OSTI)

The lead-cooled flexible conversion ratio fast reactor shows many benefits over other fast-reactor designs; however, the higher power rating and denser primary coolant present difficulties for the design of a passive decay ...

Whitman, Joshua (Joshua J.)

2007-01-01T23:59:59.000Z

87

HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM  

Science Conference Proceedings (OSTI)

The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and construct a pre-prototype of the nozzle, blast head with wind curtain, sensors, and dust separator and test this system to assess the performance of the new design under controlled conditions at the contractor's facility. In phase III, the Contractor shall design and construct a prototype of the High Productivity Vacuum Blasting System, based on the results of the pre-prototype design and testing performed. This unit will be a full-scale prototype and will be tested at a designated Department of Energy (DOE) facility. Based on the results, the system performance, the productivity, and the economy of the improved vacuum blasting system will be evaluated.

William S. McPhee

1999-05-31T23:59:59.000Z

88

A flexible high-rate USB2 data acquisition system for PET and SPECT imaging  

SciTech Connect

A new flexible data acquisition system has been developed to instrument gamma-ray imaging detectors designed by the Jefferson Lab Detector and Imaging Group. Hardware consists of 16-channel data acquisition modules installed on USB2 carrier boards. Carriers have been designed to accept one, two, and four modules. Application trigger rate and channel density determines the number of acquisition boards and readout computers used. Each channel has an independent trigger, gated integrator and a 2.5 MHz 12-bit ADC. Each module has an FPGA for analog control and signal processing. Processing includes a 5 ns 40-bit trigger time stamp and programmable triggering, gating, ADC timing, offset and gain correction, charge and pulse-width discrimination, sparsification, event counting, and event assembly. The carrier manages global triggering and transfers module data to a USB buffer. High-granularity time-stamped triggering is suitable for modular detectors. Time stamped events permit dynamic studies, complex offline event assembly, and high-rate distributed data acquisition. A sustained USB data rate of 20 Mbytes/s, a sustained trigger rate of 300 kHz for 32 channels, and a peak trigger rate of 2.5 MHz to FIFO memory were achieved. Different trigger, gating, processing, and event assembly techniques were explored. Target applications include >100 kHz coincidence rate PET detectors, dynamic SPECT detectors, miniature and portable gamma detectors for small-animal and clinical use.

J. Proffitt, W. Hammond, S. Majewski, V. Popov, R.R. Raylman, A.G. Weisenberger, R. Wojcik

2006-02-01T23:59:59.000Z

89

State space representation of routing flexibility  

Science Conference Proceedings (OSTI)

This paper describes a state space representation for sequencing and routing flexibility in manufacturing systems. Routing flexibility is represented using five different stages as follows: (i) Precedence Graph of Operations; (ii) State Transition Graph ... Keywords: Flexible manufacturing systems, Routing flexibility, Sequencing flexibility, State space representation

Leonardo Rosa Rohde; Denis Borenstein

2005-12-01T23:59:59.000Z

90

Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 2 testing  

DOE Green Energy (OSTI)

This document summarizes the results of the Phase 2 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the test mixer pump currently installed in Tank 241-SY-101. The purpose of this acceptance test is to verify the strength of the containment bag and bag bottom cinching mechanism. It is postulated that 68 gallons of waste could be trapped inside the pump internals. The bag must be capable of supporting this waste if it shakes loose and drains to the bottom of the bag after the bag bottom has been cinched closed. This acceptance test was performed at the Maintenance and Storage Facility (MASF) Facility in the 400 area on January 23, 1995. The bag assembly supported the weight of 920 kg (2,020 lbs) of water with no leakage or damage to the bag. This value meets the acceptance criteria of 910 kg of water and therefore the results were found to be acceptable. The maximum volume of liquid expected to be held up in the pump internals is 258 L (68 gallons), which corresponds to 410 kg. This test weight gives just over a safety factor of 2. The bag also supported a small shock load while it was filled with water when the crane hoisted the bag assembly up and down. Based on the strength rating of the bag components, the bag assembly should support 2--3 times the test weight of 910 kg.

Ritter, G.A.

1995-02-06T23:59:59.000Z

91

Ultra-Deepwater Production Systems  

SciTech Connect

The report herein is a summary of the work performed on three projects to demonstrate hydrocarbon drilling and production methods applicable to deep and ultra deepwater field developments in the Gulf of Mexico and other like applications around the world. This work advances technology that could lead to more economic development and exploitation of reserves in ultra-deep water or remote areas. The first project is Subsea Processing. Its scope includes a review of the ''state of the art'' in subsea components to enable primary production process functions such as first stage liquids and gas separation, flow boosting, chemical treatment, flow metering, etc. These components are then combined to allow for the elimination of costly surface production facilities at the well site. A number of studies were then performed on proposed field development projects to validate the economic potential of this technology. The second project involved the design and testing of a light weight production riser made of composite material. The proposed design was to meet an actual Gulf of Mexico deepwater development project. The various engineering and testing work is reviewed, including test results. The third project described in this report encompasses the development and testing of a close tolerance liner drilling system, a new technology aimed at reducing deepwater drilling costs. The design and prototype testing in a test well are described in detail.

Ken L. Smith; Marc E. Leveque

2005-05-31T23:59:59.000Z

92

Ultra-Deepwater Production Systems  

Science Conference Proceedings (OSTI)

This report includes technical progress made during the period October, 2003 through September, 2004. At the end of the last technical progress report, the subsea processing aspects of the work program had been dropped due to the lack of commercial opportunity within ConocoPhillips, and the program had been redirected towards two other promising deepwater technologies: the development and demonstration of a composite production riser, and the development and testing of a close-tolerance liner drilling system. This report focuses on these two technologies.

K. L. Smith; M. E. Leveque

2004-09-30T23:59:59.000Z

93

Design of product development systems  

E-Print Network (OSTI)

The development of successful new products in less time and using fewer resources is key to the financial success of most consumer product companies. In this thesis we have studied the development of new products and how ...

Aguirre Granados, Adrian

2008-01-01T23:59:59.000Z

94

Software and Systems Division Products  

Science Conference Proceedings (OSTI)

... Other Products. DADS - Dictionary of Algorithms; ADLF parser (ADL activity diagrams to text form); SCRIBA; Metadata Conformance Analyzer.

2011-10-06T23:59:59.000Z

95

A life-cycle flexibility framework for designing, evaluating and managing "complex" real options : case studies in urban transportation and aircraft systems  

E-Print Network (OSTI)

Designing a flexible system with real options is a method for managing uncertainty. This research introduces the concept of "complex" real options, which are composed of interconnected echnological, organizational and ...

McConnell, Joshua B. (Joshua Bryan), 1974-

2007-01-01T23:59:59.000Z

96

FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS  

DOE Green Energy (OSTI)

The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were found to have lower activities under S-free conditions, but did show less effect of S on performance, in this study. Imidazolium-based ILs, choline chloride compounds and low-melting eutectics of metal nitrates were evaluated, and it was found that, ILs have some capacity to dissolve cellulose and show thermal stability to temperatures where pyrolysis begins, have no vapor pressure, (simplifying product recoveries), and can dissolve ionic metal salts, allowing for the potential of catalytic reactions on breakdown intermediates. Clear evidence of photoactive commercial TiO2 was obtained, but in-house synthesis of photoactive TiO2 proved difficult, as did fixed-bed gasification, primarily due to the challenge of removing the condensable products from the reaction zone quickly enough to prevent additional reaction. Further investigation into additional non-PGM catalysts and ILs is recommended as a follow-up to this work.

Kelly Jezierski; Andrew Tadd; Johannes Schwank; Roland Kibler; David McLean; Mahesh Samineni; Ryan Smith; Sameer Parvathikar; Joe Mayne; Tom Westrich; Jerry Mader; F. Michael Faubert

2010-07-30T23:59:59.000Z

97

Monitoring system-of-systems requirements in multi product lines  

Science Conference Proceedings (OSTI)

[Context and motivation] Large-scale software-intensive systems are often considered as systems of systems comprising several interrelated product lines from which system variants are derived to meet the overall requirements. [Question/problem] ...

Thomas Klambauer, Gerald Holl, Paul Grnbacher

2013-04-01T23:59:59.000Z

98

Air Products Hydrogen Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Products Hydrogen Energy Systems Air Products Hydrogen Energy Systems Hydrogen Infrastructure Air Products Hydrogen Energy Systems More Documents & Publications Quadrennial...

99

Design of highly distributed biofuel production systems .  

E-Print Network (OSTI)

??This thesis develops quantitative methods for evaluation and design of large-scale biofuel production systems with a particular focus on bioreactor-based fuel systems. In Chapter 2, (more)

Luo, Dexin

2011-01-01T23:59:59.000Z

100

Enhanced Renewable Methane Production System  

treatment that enhances the heating value of biogas, delivering a gas that is close to pipeline quality. This system offers

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ethanol production method and system  

DOE Patents (OSTI)

Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

Chen, M.J.; Rathke, J.W.

1983-05-26T23:59:59.000Z

102

Methanol production method and system  

DOE Patents (OSTI)

Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

Chen, Michael J. (Darien, IL); Rathke, Jerome W. (Bolingbrook, IL)

1984-01-01T23:59:59.000Z

103

Associative computer: a hybrid connectionistic production system  

Science Conference Proceedings (OSTI)

In this paper, we introduce a connectionistic hybrid production system, which relies on the distributed representation and the usage of associative memories. Benefits of the distributed representation include heuristics resulting from pictogram representation. ... Keywords: Connectionism, Distributed representation, Learning, Problem solving, Production system

Andreas Wichert

2005-06-01T23:59:59.000Z

104

HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM  

SciTech Connect

The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process.

Dr. M.A. Ebadian

2000-01-13T23:59:59.000Z

105

HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites.

William S. McPhee

2001-08-31T23:59:59.000Z

106

System for thermochemical hydrogen production  

DOE Patents (OSTI)

Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

1981-05-22T23:59:59.000Z

107

FERRARI: A Flexible Software-Based Fault and Error Injection System  

Science Conference Proceedings (OSTI)

AbstractA major step toward the development offault-tolerant computer systems is the validation of the dependability properties of these systems. Fault/error injection has been recognized as a powerful approach to validate the fault tolerance mechanisms ...

Ghani A. Kanawati; Nasser A. Kanawati; Jacob A. Abraham

1995-02-01T23:59:59.000Z

108

Incorporating flexibility into system design : a novel framework and illustrated developments  

E-Print Network (OSTI)

Many complex engineering systems in general, and aerospace systems in particular, are highly ''optimized" designs, fielded to provide mission superiority or market competitive advantage. Two noticeable trends over the last ...

Mark, Gregory T

2005-01-01T23:59:59.000Z

109

Air Products Hydrogen Energy Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kiczek,Edward F. [KICZEKEF@airproducts.com] Kiczek,Edward F. [KICZEKEF@airproducts.com] Sent: Monday, April 18, 2011 7:40 PM To: Gopstein, Avi (S4) Subject: Hydrogen Infrastructure Latest Advancements Attachments: Air Products Written Comments to 2011 2012 AB118 Investment Plan.pdf Follow Up Flag: Follow up Flag Status: Flagged Categories: QTR Transparency Avi, You may recall we met in DC when the McKinsey team from Germany came to discuss the EU study on hydrogen infrastructure. At that time I mention a significant advance in infrastructure that would be announced soon. Attached is our testimony to the California Energy Commission on deploying that technology. We were awarded the project to build 9 stations in southern California with the backing of

110

The NOAA Products Validation System (NPROVS)  

Science Conference Proceedings (OSTI)

The following report summarizes the NOAA Products Validation System (NPROVS), operated at the NOAA National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR). NPROVS provides ...

Tony Reale; Bomin Sun; Franklin H. Tilley; Michael Pettey

2012-05-01T23:59:59.000Z

111

A flexible topology selection program as part of an analog synthesis system  

Science Conference Proceedings (OSTI)

The task of a topology selector within an analog synthesis system is to find the best available analog circuit topology out of a library for a given set of input specification. The proposed selection method consists of a combination of two approaches: ... Keywords: CAD, IC design, analog circuit topology, analog synthesis system, analogue integrated circuits, boundary checking, cell library, circuit layout CAD, design knowledge, integrated circuit layout, interval analysis, knowledge based systems, network topology, procedural filtering, rule-based filtering, topology selection program

P. Veselinovic; D. Leenaerts; W. van Bokhoven; F. Leyn; F. Proesmans; G. Gielen; W. Sansen

1995-03-01T23:59:59.000Z

112

Building a Flexible Energy Management System with LonWorks Control Network  

Science Conference Proceedings (OSTI)

To effectively improve the efficiency of energy supply, quantification is required to determine its significance in our daily lives. Building an energy management system to monitor and acquire information such as energy supply and environmental factors ... Keywords: LonWorks, Control network, Energy management system, Database

Ching-Biau Tzeng; Tzuu-Shaang Wey; Sheng-Hsiung Ma

2008-11-01T23:59:59.000Z

113

High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*  

E-Print Network (OSTI)

(G2ELab) 38402 Saint-Martin d'Heres, France Abstract-- High altitude wind energy (HAWE) is a new interest in sustainable development, renewable energy systems, such as solar photo-voltaic, wind and tidal systems, are heavily explored. One ideal source of renewable energy is the wind. Tradi- tionally, wind

114

Entanglement production in Quantized Chaotic Systems  

E-Print Network (OSTI)

Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, presence of chaos in the system produces more entanglement. However, coupling strength between two subsystems is also very important parameter for the entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed state entanglement production in chaotic systems.

Jayendra N. Bandyopadhyay; Arul Lakshminarayan

2005-01-20T23:59:59.000Z

115

Flexible hybrid membrane treatment systems for tailored nutrient management: A new paradigm in urban wastewater treatment  

E-Print Network (OSTI)

the clay and glaze waste that previously was washed down the drain, reclaiming 15 gallons of glaze and 300 with a student team. Over 90% of irrigation systems are automated and connected to a weather station

116

Designing flexible EMR systems for recording and summarizing doctor-patient interactions  

Science Conference Proceedings (OSTI)

Electronic Medical Records (EMR) are increasingly transitioning from desktop systems to mobile devices. This innovation presents challenges to medical practitioners in terms of doctor-patient interaction, patient record integrity and continuing reliance ... Keywords: electronic medical record, health information technology, interface, usability

Kyle Larkin; Aisling Kelliher

2011-05-01T23:59:59.000Z

117

Flexible on-chip power delivery for energy efficient heterogeneous systems  

Science Conference Proceedings (OSTI)

Heterogeneous systems-on-chip pose a challenge for power delivery given the variety of needs for different components. In this paper, we describe recent work that leverages power switches and conventional EDA toolflows to implement a set of power delivery ... Keywords: PDVS, dynamic voltage scaling, leakage, low power design, variable weighted headers

Benton H. Calhoun, Kyle Craig

2013-05-01T23:59:59.000Z

118

Flexible DER Utility Interface System: Final Report, September 2004--May 2006  

DOE Green Energy (OSTI)

In an effort to accelerate deployment of Distributed Energy Resources (DER) such as wind, solar, and conventional backup generators to our nation's electrical grid, Northern Power Systems (NPS), the California Energy Commission (CEC), and the National Renewable Energy Laboratory (NREL) collaborated to create a prototype universal interconnect device called the DER Switch.

Lynch, J.; John, V.; Danial, S. M.; Benedict, E.; Vihinen, I.; Kroposki, B.; Pink, C.

2006-08-01T23:59:59.000Z

119

Energy-efficiency and storage flexibility in the blue file system  

E-Print Network (OSTI)

A fundamental vision driving pervasive computing research is access to personal and shared data anywhere at anytime. In many ways, this vision is close to being realized. Wireless networks such as 802.11 offer connectivity to small, mobile devices. Portable storage, such as mobile disks and USB keychains, let users carry several gigabytes of data in their pockets. Yet, at least three substantial barriers to pervasive data access remain. First, power-hungry network and storage devices tax the limited battery capacity of mobile computers. Second, the danger of viewing stale data or making inconsistent updates grows as objects are replicated across more computers and portable storage devices. Third, mobile data access performance can suffer due to variable storage access times caused by dynamic power management, mobility, and use of heterogeneous storage devices. To overcome these barriers, we have built a new distributed file system called BlueFS. Compared to the Coda file system, BlueFS reduces file system energy usage by up to 55% and provides up to 3 times faster access to data replicated on portable storage. 1

Edmund B. Nightingale; Jason Flinn

2004-01-01T23:59:59.000Z

120

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

Feder, Harold M. (Darien, IL); Chen, Michael J. (Darien, IL)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by-product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

Feder, H.M.; Chen, M.J.

1980-05-21T23:59:59.000Z

122

Identification of rotordynamic forces in a flexible rotor system using magnetic bearings  

E-Print Network (OSTI)

Methods are presented for parameter identification of an annular gas seal on a flexiblerotor test rig. Dynamic loads are applied by magnetic bearings (MBs) that support the rotor. MB forces are measured using fiber-optic strain gauges that are bonded to the poles of the MBs. In addition to force and position measurements, a finite element (FE) rotor model is required for the identification algorithms. The FE rotor model matches free-free characteristics of the test rotor. The addition of smooth air seals to the system introduces stiffness and damping terms for identification that are representative of reaction forces in turbomachines. Tests are performed to experimentally determine seal stiffness and damping coefficients for different running speeds and preswirl conditions. Stiffness and damping coefficients are determined using a frequency domain identification method. This method uses an iterative approach to minimize error between theoretical and experimental transfer functions. Several time domain approaches are also considered; however, these approaches do not produce valid identification results. Stiffness coefficients are measured using static test results and an MB current and position based model. Test results produce seal coefficients with low uncertainties for the frequency domain identification method. Static test uncertainties are an order of magnitude larger, and time domain attempts fail to produce sealIn addition to the primary identification research, an investigation of the relationships between MB force, strain, and magnetic field is conducted. The magnetic field of an MB is modeled using commercial FE software. The magnetic field model is used to predict strain measurements for quasi-static test conditions. The strain predictions are compared with experimental strain measurements. Strain predictions agree with experimental measurements, although strain is typically over-predicted. coefficient measurements.

Zutavern, Zachary Scott

2006-08-01T23:59:59.000Z

123

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Performance Data For Anaerobic Digestion of Various Types ofMARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OFMARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF

Haven, Kendall F.

2011-01-01T23:59:59.000Z

124

A Systems Framework for Assessing Plumbing Products-Related Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Systems Framework for Assessing Plumbing Products-Related Water Conservation Title A Systems Framework for Assessing Plumbing Products-Related Water Conservation Publication Type...

125

Flexible MIPS soft processor architecture  

E-Print Network (OSTI)

The flexible MIPS soft processor architecture borrows selected technologies from high-performance computing to deliver a modular, highly customizable CPU targeted towards FPGA implementations for embedded systems; the ...

Carli, Roberto

2008-01-01T23:59:59.000Z

126

Flexible MIPS Soft Processor Architecture  

E-Print Network (OSTI)

The flexible MIPS soft processor architecture borrows selected technologies from high-performance computing to deliver a modular, highly customizable CPU targeted towards FPGA implementations for embedded systems; the ...

Carli, Roberto

2008-06-16T23:59:59.000Z

127

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

Feder, Harold M. (Darien, IL); Chen, Michael J. (Darien, IL)

1983-01-01T23:59:59.000Z

128

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium, ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

Feder, H.M.; Chen, M.J.

1981-09-24T23:59:59.000Z

129

FUEL CELLS IN SHIPPING: HIGHER CAPITAL COSTS AND REDUCED FLEXIBILITY  

E-Print Network (OSTI)

Abstract: The paper discusses some main economic characteristics of fuel cell power production technology applied to shipping. Whenever competitive fuel cell systems enter the market, they are likely to have higher capital costs and lower operating costs than systems based on traditional combustion technology. Implications of the difference are investigated with respect to investment flexibility by the use of a real options model of ship investment, lay-up and scrapping decisions under freight rate uncertainty. A higher capital share of total expected costs can represent a significant opportunity cost in uncertain markets. The paper highlights the significance of accounting properly for value of flexibility prior to investment in new technology.

Sigbjrn Sdal

2003-01-01T23:59:59.000Z

130

Flexible riser monitoring using hybrid magnetic/optical strain gage techniques through RLS adaptive filtering  

Science Conference Proceedings (OSTI)

Flexible riser is a class of flexible pipes which is used to connect subsea pipelines to floating offshore installations, such as FPSOs (floating production/storage/off-loading unit) and SS (semisubmersible) platforms, in oil and gas production. Flexible ...

Daniel Pipa; Srgio Morikawa; Gustavo Pires; Claudio Camerini; Joo Mrcio Santos

2010-02-01T23:59:59.000Z

131

Parallel machine architecture for production rule systems  

DOE Patents (OSTI)

A parallel processing system for production rule programs utilizes a host processor for storing production rule right hand sides (RHS) and a plurality of rule processors for storing left hand sides (LHS). The rule processors operate in parallel in the recognize phase of the system recognize -Act Cycle to match their respective LHS's against a stored list of working memory elements (WME) in order to find a self consistent set of WME's. The list of WME is dynamically varied during the Act phase of the system in which the host executes or fires rule RHS's for those rules for which a self-consistent set has been found by the rule processors. The host transmits instructions for creating or deleting working memory elements as dictated by the rule firings until the rule processors are unable to find any further self-consistent working memory element sets at which time the production rule system is halted.

Allen, Jr., John D. (Knoxville, TN); Butler, Philip L. (Knoxville, TN)

1989-01-01T23:59:59.000Z

132

Production system improvement : floor area reduction and inventory optimization  

E-Print Network (OSTI)

This thesis shows improvements of a medical device production system. The demand at the Medical Device Manufacturing Company (MDMC) is low for the occlusion system product and there is a need to introduce other production ...

Yang, Tianying, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

133

Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost  

SciTech Connect

Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e.g., natural gas, coal, nuclear), preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation.

Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

2013-04-01T23:59:59.000Z

134

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

DOE Green Energy (OSTI)

Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applications and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

2002-04-30T23:59:59.000Z

135

An assessment of subsea production systems  

E-Print Network (OSTI)

The decreasing gap between technology and the it?s applicability in the oil industry has led to a rapid development of deepwater resources. Beginning with larger fields where the chances of economic success are high, to marginal fields where project economics becomes a more critical parameter, the petroleum industry has come a long way. However, the ever growing water depths and harsher environments being encountered are presently posing challenges to subsea production. Being able to develop a field and then proceeding to ensure flow for the life of the field comprises many situations where the production equipment can fail and falter or through external factors, be deemed unavailable. Some of the areas where most of the current developments in subsea production are being seen are in subsea processing, flow assurance, long term well monitoring and intervention technologies ? areas that pose some of the biggest challenges to smooth operation in the deepwater environment. This research highlights the challenges to overcome in subsea production and well systems and details the advances in technology to mitigate those problems. The emphasis for this part of the research is on multiphase pumping, subsea processing, flow assurance, sustained casing pressure problems and well intervention. Furthermore, most operators realize a reduced ultimate recovery from subsea reservoirs owing to the higher backpressure imposed by longer flowlines and taller risers. This study investigates the reasons for this by developing a global energy balance and detailing measures to improve production rates and ultimate recoveries. The conclusions from this energy balance are validated by simulating a deepwater field under various subsea production scenarios.

Devegowda, Deepak

2003-12-01T23:59:59.000Z

136

Design of Flexible-Duct Junction Boxes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design of Flexible-duct Design of Flexible-duct Junction Boxes Robert Beach, IBACOS Duncan Prahl, IBACOS Design of Flexible-duct Junction Boxes Presentation Outline * Current Standards and Practice * Analysis Methods * Recommendations Design of Flexible-duct Junction Boxes * Detailed report is in peer review anticipated to be published T3 this year. - http://www1.eere.energy.gov/library/default.aspx?page=2&spi d=2. * Measure guide to be part of Building America Solutions Center - http://basc.pnnl.gov/ Design of Flexible-duct Junction Boxes Typical Installations As Plenum As Monster Design of Flexible-duct Junction Boxes Current Standards * ASHRAE 2012 HVAC Systems and Equipment, Box Plenum Systems Using Flexible Duct - Constrains Box Width to 2-3x Entrance Width - Constrains Box Length to 2 x Box Width

137

Advanced turbine systems program conceptual design and product development. Task 3 -- System selection; Topical report  

Science Conference Proceedings (OSTI)

Solar Turbines Incorporated has elected to pursue an intercooled and recuperated (ICR) gas turbine system to exceed the goals of the DOE Advanced Turbine Systems (ATS) program, which are to develop and commercialize an industrial gas turbine system that operates at thermal efficiencies at least 15% higher than 1991 products, and with emissions not exceeding eight ppmv NOx and 20 ppmv CO and UHC. Solar`s goal is to develop a commercially viable industrial system (3--20 MW) driven by a gas turbine engine with a thermal efficiency of 50% (ATS50), with the flexibility to meet the differing operational requirements of various markets. Dispersed power generation is currently considered to be the primary future target market for the ICR in the 5--15 MW size class. The ICR integrated system approach provides an ideal candidate for the assumed dispersed power market, with its small footprint, easy transportability, and environmental friendliness. In comparison with other systems that use water or toxic chemicals such as ammonia for NOx control, the ICR has no consumables other than fuel and air. The low pressure ratio of the gas turbine engine also is favorable in that less parasitic power is needed to pump the natural gas into the combustor than for simple-cycle machines. Solar has narrowed the ICR configuration to two basic approaches, a 1-spool, and a 2-spool version of the ATS50. The 1-spool engine will have a lower first-cost but lower part-power efficiencies. The 2-spool ATS may not only have better part-power efficiency, its efficiency will also be less sensitive to reduced turbine rotor inlet temperature levels. Thus hot-end parts life can be increased with only small sacrifices in efficiency. The flexibility of the 2-spool arrangement in meeting customer needs is its major advantage over the 1-spool. This Task 3 Topical Report is intended to present Solar`s preliminary system selection based upon the initial trade-off studies performed to date.

White, D.J.

1994-07-01T23:59:59.000Z

138

System for the production of plasma  

DOE Patents (OSTI)

The present invention provides a system for the production of a plasma by concentrating and focusing a laser beam on the plasma-forming material with a lightfocusing member which comprises a parabolic axicon in conjunction with a coaxial conical mirror. The apex of the conical mirror faces away from the focus of the parabolic axicon such that the conical mirror serves to produce a virtual line source along the axis of the cone. Consequently, irradiation from a laser parallel to the axis toward the apex of the conical mirror will be concentrated at the focus of the parabolic axicon, impinging upon the plasma-forming material there introduced to produce a plasma. The system is adaptable to irradiation of a target pellet introduced at the focus of the parabolic axicon and offers an advantage in that the target pellet can be irradiated with a high degree of radial and spherical symmetry.

Bakken, George S. (Ann Arbor, MI)

1978-01-01T23:59:59.000Z

139

Integrated Hydrogen Production, Purification and Compression System  

DOE Green Energy (OSTI)

The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

2011-06-30T23:59:59.000Z

140

Assessing systems adaptability to a product family  

Science Conference Proceedings (OSTI)

In many cases, product families are established on top of a successful pilot product. While this approach provides an option to measure many concrete attributes like performance and memory footprint, adequateness and adaptability of the architecture ... Keywords: adaptability, assessment, product line architecture, software product lines

Mika Korhonen; Tommi Mikkonen

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS  

SciTech Connect

This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

2009-11-30T23:59:59.000Z

142

Dynamic simulation of nuclear hydrogen production systems  

E-Print Network (OSTI)

Nuclear hydrogen production processes have been proposed as a solution to rising CO 2 emissions and low fuel yields in the production of liquid transportation fuels. In these processes, the heat of a nuclear reactor is ...

Ramrez Muoz, Patricio D. (Patricio Dario)

2011-01-01T23:59:59.000Z

143

Quantum discord in matrix product systems  

SciTech Connect

We consider a class of quantum systems with spin-flip symmetry and derive the quantum correlation measured by the quantum discord (QD). As an illustration, we investigate the QD in a three-body interaction model and an XYZ interaction model, whose ground states can be expressed as matrix product states, and the QD is exactly soluble. We show that the QD behaves differently than the quantum entanglement (QE) in many ways; for example, they may show opposite monotonicity and completely different finite-size effects. Furthermore, we compare the capability of the QD and the QE to detect quantum phase transitions (QPTs) and find that the QD is more reliable than the QE for signaling QPTs in these models: In the three-body interaction model, the QE is singular at the quantum critical point, however, it exhibits an additional singularity in the noncritical region, while the analyticity of the QD can be used to identify the quantum critical point perfectly; and in the XYZ interaction model, the QE vanishes in the thermodynamic limit, thus losing its ability to detect QPTs, while the QD still functions very well.

Sun Zhaoyu; Li Liang; Du Guihuan [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao Kailun; Liu Jiwei; Luo Bo; Li Neng; Li Haina [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

2010-09-15T23:59:59.000Z

144

Flexible ultrasonic pipe inspection apparatus  

DOE Patents (OSTI)

Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

Jenkins, C.F.; Howard, B.D.

1994-01-01T23:59:59.000Z

145

Flexible packet filtering: providing a rich toolbox  

Science Conference Proceedings (OSTI)

The BSD/OS IPFW packet filtering system is a well engineered, flexible kernel framework for filtering (accepting, rejecting, logging, or modifying) IP packets. IPFW uses the well understood, widely available Berkeley Packet Filter (BPF) system as the ...

Kurt J. Lidl; Deborah G. Lidl; Paul R. Borman

2002-02-01T23:59:59.000Z

146

A study in product-service systems strategies  

E-Print Network (OSTI)

What are examples of successful companies innovating in services to create Product- Service Systems that can command a price that exceeds the cost of capital and enhance, protect, or replace the core products? After a brief ...

Moran, Mark D

2011-01-01T23:59:59.000Z

147

Biogas production from a systems analytical perspective.  

E-Print Network (OSTI)

??Anaerobic digestion and the production of biogas can provide an efficient means of meeting several objectives concerning energy, environmental and waste management policy. Interest in (more)

Berglund, Maria

2006-01-01T23:59:59.000Z

148

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

from soils amended with biogas waste compared to otherCrutzen et al. 2008). Biogas production from organicamounts of fermentation effluent (biogas waste) remain after

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

149

Integratedenergy storage system for optimal energy production.  

E-Print Network (OSTI)

?? This project served to analyze the effects that energy storage can have on energy production. The study was aimed at Johannes CHP bio fuel. (more)

Stevens, Kristoffer

2013-01-01T23:59:59.000Z

150

Design and Analysis of Flexible Biodiesel Processes with Multiple Feedstocks  

E-Print Network (OSTI)

With the growing interest in converting a wide variety of biomass-based feedstocks to biofuels, there is a need to develop effective procedures for the design and optimization of multi-feedstock biorefineries. The unifying goal of this work is the development of systematic methodologies and procedures for designing flexible multifeedstock biorefineries. This work addresses four problems that constitute building blocks towards achieving the unifying goal of the dissertation. The first problem addresses the design and techno-economic analysis of an integrated system for the production of biodiesel from algal oil. With the sequestration of carbon dioxide from power plant flue gases, algae growth and processing has the potential to reduce greenhouse gas emissions. Algae are a non-food oil feedstock source and various pathways and technologies for obtaining algal oil were investigated. Detailed economic and sensitivity analysis reveal specific scenarios that lead to profitability of algal oil as an alternative feedstock. In the second problem, a new safety metric is introduced and utilized in process design and selection. A case study was solved to assess the potential of producing biodiesel from sewage sludge. The entire process was evaluated based on multiple criteria including cost, technology and safety. The third problem is concerned with incorporating flexibility in the design phase of the development of multi-feedstock biofuel production processes. A mathematical formulation is developed for determining the optimal flexible design for a biorefinery that is to accommodate the use of multiple feedstocks. Various objective functions may be utilized for the flexible plant depending on the purpose of the flexibility analysis and a case study is presented to demonstrate one such objective function. Finally, the development of a systematic procedure for incorporating flexibility and heat integration in the design phase of a flexible feedstock production process is introduced for the fourth problem. A mathematical formulation is developed for use in determining the heat exchange network design. By incorporating the feedstock scenarios under investigation, a mixed integer linear program is generated and a flexible heat exchange network scheme can be developed. The solution provides for a network that can accommodate the heating and cooling demands of the various scenarios while meeting minimum utility targets.

Pokoo-Aikins, Grace Amarachukwu

2010-08-01T23:59:59.000Z

151

Methods and systems for chemoautotrophic production of organic compounds  

SciTech Connect

The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

2013-01-08T23:59:59.000Z

152

Flexible Composite Radiation Detector  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible Composite Radiation Detector Flexible Composite Radiation Detector Flexible Composite Radiation Detector A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. Available for thumbnail of Feynman Center (505) 665-9090 Email Flexible Composite Radiation Detector A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum

153

Providing Grid Flexibility in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Providing Grid Flexibility in Wyoming and Montana Introduction Powder River Energy Corporation (PRECorp) is an electric cooperative serving approximately 11,900 customers in a...

154

Recruiting Suppliers for Reverse Production Systems: an MDP ...  

E-Print Network (OSTI)

Key words Recruiting, Reverse Production System, MDP Heuristics. 1. ...... It is very important to select an action wisely as this is the exploration part of the RL.

155

A New System at NERSC: Carver Goes into Production  

NLE Websites -- All DOE Office Websites (Extended Search)

InfiniBand technology. The image above shows Carver from the front. A new system is in production at the Department of Energy's National Energy Research Scientific Computing...

156

BIOGAS PRODUCTION SYSTEM DESIGN FOR CONDOMINIUM AND ITS FEASIBILITY.  

E-Print Network (OSTI)

??The research is concerned with designing of Biogas Production System for Condominium and studying its Feasibility by crosschecking field survey and information from literatures. The (more)

Bekele, Gaddisa

2011-01-01T23:59:59.000Z

157

Photoelectrochemical Water Systems for H2 Production (Presentation)  

DOE Green Energy (OSTI)

This Photoelectrochemical Water Systems for Hydrogen Production presentation by the National Renewable Energy Laboratory's John Turner was given at the DOE Hydrogen Program's 2007 Annual Merit Review.

Turner, J. A.; Deutsch, T.; Head, J.; Vallett, P.

2007-05-17T23:59:59.000Z

158

INTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE  

E-Print Network (OSTI)

of Large Commercial HVAC Systems Led by Erik Kolderup, Eley Associates, Inc. Advanced VAV System Design will modify their rating system for tubular daylighting devices; and 2) U-factor results will affect how NFRC) E3 10/03 Advanced VAV System Design Guideline (Eley) E4 5/03 Integrated Design of Small Commercial

159

Flexible Fuel Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one.

160

Formalizing production systems with rule-based ontologies  

Science Conference Proceedings (OSTI)

In this paper we proposed a new semantics for the combination of production systems with arbitraryDL ontologies. Unlike previous approaches, the semantics presented here allow looping rules and can handle inconsistencies produced by the ... Keywords: knowledge representation, ontologies, production systems, transaction logic, well-founded semantics

Martn Rezk; Michael Kifer

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Flexible implementation of rigid solar cell technologies.  

Science Conference Proceedings (OSTI)

As a source of clean, remote energy, photovoltaic (PV) systems are an important area of research. The majority of solar cells are rigid materials with negligible flexibility. Flexible PV systems possess many advantages, such as being transportable and incorporable on diverse structures. Amorphous silicon and organic PV systems are flexible; however, they lack the efficiency and lifetime of rigid cells. There is also a need for PV systems that are light weight, especially in space and flight applications. We propose a solution to this problem by arranging rigid cells onto a flexible substrate creating efficient, light weight, and flexible devices. To date, we have created a working prototype of our design using the 1.1cm x 1cm Emcore cells. We have achieved a better power to weight ratio than commercially available PowerFilm{reg_sign}, which uses thin film silicon yielding .034W/gram. We have also tested our concept with other types of cells and verified that our methods are able to be adapted to any rigid solar cell technology. This allows us to use the highest efficiency devices despite their physical characteristics. Depending on the cell size we use, we can rival the curvature of most available flexible PV devices. We have shown how the benefits of rigid solar cells can be integrated into flexible applications, allowing performance that surpasses alternative technologies.

Hollowell, Andrew E.

2010-08-01T23:59:59.000Z

162

Multi-Area Power System Reliability and Production Costing  

Science Conference Proceedings (OSTI)

Multi-area power system operation can reduce costs without jeopardizing service reliability, but the interconnection of systems requires new means for estimating costs and reliability. This report describes methods for evaluating production costs and power system reliability in multi-area power systems.

1990-08-28T23:59:59.000Z

163

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

164

Covered Product Category: Centrifugal Pumping System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centrifugal Pumping System Centrifugal Pumping System Covered Product Category: Centrifugal Pumping System October 7, 2013 - 11:25am Addthis FEMP provides acquisition guidance across a variety of product categories, including centrifugal pumping systems. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Buying Energy-Efficient Centrifugal Pumping Systems The most common applications for pumps at Federal facilities are for fresh water supply, hydronic heating and cooling systems, wastewater treatment, and drainage. For these applications, the most common type of pump is the centrifugal pump. Proper pump selection should consider both constant and variable flow and

165

Importance of systems biology in engineering microbes for biofuel production  

SciTech Connect

Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

2009-12-02T23:59:59.000Z

166

Methods for comparative assessment of active and passive safety systems with respect to reliability, uncertainty, economy, and flexibility  

E-Print Network (OSTI)

Passive cooling systems sometimes use natural circulation, and they are not dependent on emergency AC power or offsite power, which can make designs simpler through the reduction of emergency power supplying infrastructure. ...

Oh, Jiyong

2008-01-01T23:59:59.000Z

167

System for analyzing coal liquefaction products  

SciTech Connect

A system for analyzing constituents of coal-derived materials comprises three adsorption columns and a flow-control arrangement which permits separation of both aromatic and polar hydrocarbons by use of two eluent streams.

Dinsmore, Stanley R. (Norris, TN); Mrochek, John E. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

168

System for analyzing coal-liquefaction products  

DOE Patents (OSTI)

A system for analyzing constituents of coal-derived materials comprises three adsorption columns and a flow-control arrangement which permits separation of both aromatic and polar hydrocarbons by use of two eluent streams. 4 figures.

Dinsmore, S.R.; Mrochek, J.E.

1982-10-29T23:59:59.000Z

169

Method for redesign of microbial production systems  

DOE Patents (OSTI)

A computer-assisted method for identifying functionalities to add to an organism-specific metabolic network to enable a desired biotransformation in a host includes accessing reactions from a universal database to provide stoichiometric balance, identifying at least one stoichiometrically balanced pathway at least partially based on the reactions and a substrate to minimize a number of non-native functionalities in the production host, and incorporating the at least one stoichiometrically balanced pathway into the host to provide the desired biotransformation. A representation of the metabolic network as modified can be stored.

Maranas, Costas D. (Port Matilda, PA); Burgard, Anthony P. (State College, PA); Pharkya, Priti (State College, PA)

2010-11-02T23:59:59.000Z

170

Method for redesign of microbial production systems  

Science Conference Proceedings (OSTI)

A computer-assisted method for identifying functionalities to add to an organism-specific metabolic network to enable a desired biotransformation in a host includes accessing reactions from a universal database to provide stoichiometric balance, identifying at least one stoichiometrically balanced pathway at least partially based on the reactions and a substrate to minimize a number of non-native functionalities in the production host, and incorporating the at least one stoichiometrically balanced pathway into the host to provide the desired biotransformation. A representation of the metabolic network as modified can be stored.

Maranas, Costas D. (State College, PA); Burgard, Anthony P. (San Diego, CA); Pharkya, Priti (San Diego, CA)

2012-01-31T23:59:59.000Z

171

What is flexible electronics?  

Science Conference Proceedings (OSTI)

Flexible electronics has recently attracted much attention because of their potential in providing cost-efficient solutions to large-area applications such as rollable displays and TVs, e-paper, smart sensors and transparent RFIDs. The key advantages ...

Kwang-Ting (Tim) Cheng; Tsung-Ching Huang

2009-04-01T23:59:59.000Z

172

Characteristics of backup workloads in production systems  

Science Conference Proceedings (OSTI)

Data-protection class workloads, including backup and long-term retention of data, have seen a strong industry shift from tape-based platforms to disk-based systems. But the latter are traditionally designed to serve as primary storage and there has ...

Grant Wallace; Fred Douglis; Hangwei Qian; Philip Shilane; Stephen Smaldone; Mark Chamness; Windsor Hsu

2012-02-01T23:59:59.000Z

173

Flexible armored blanket development  

SciTech Connect

An exploratory development contract was undertaken on December 23, 1977 which had as its purpose the development and demonstration of a flexible armored blanket design suitable for providing ballistic protection to nuclear weapons during shipment. Objectives were to design and fabricate a prototype blanket which will conform to the weapon shape, is troop-handleable in the field, and which, singly or in multiple layers, can defeat a range of kinetic energy armor piercing (AP) ammunition potentially capable of damaging the critical portion of the nuclear weapon. Following empirical testing, including the firing of threat ammunition under controlled laboratory and field test conditions, materials were selected and assembled into two blanket designs, each weighing approximately 54 kg/m{sup 2} (11 lbs/ft{sup 2}) and estimated to cost from $111 to $180 per ft{sup 2} in production. A firing demonstration to evidence blanket performance against terrorist/light infantry weapons, heavy infantry weapons, and aircraft cannon was conducted for representatives of the DOD and interested Sandia employees on April 12, 1978. The blankets performed better than anticipated defeating bullets up to 7.62 mm x 51 mm AP with one layer and projectiles up to 23 mm HEI with two layers. Based on these preliminary tests it is recommended that development work be continued with the following objectives: (1) the selection by the DOD of priority applications, (2) the specific design and fabrication of sufficient quantities of armored blankets for field testing, (3) the evaluation of the blankets by DOD operational units, with reports to Sandia Laboratories to enable final design.

Roth, E.S.

1978-05-01T23:59:59.000Z

174

Journey to Flexible, Reliable, Laboratory Platform for Simultaneous Control of Multiple Reactive Power Producing Devices  

SciTech Connect

Herein is discussed the instrumentation and control requirements for achieving the goal of operating multiple Distributed Energy (DE) devices in parallel to regulate local voltage. The process for establishing the flexible laboratory control and data acquisition system that allows for the integration of multiple Distributed Energy (DE) devices in XXXX Laboratory's Distributed Energy - Communications and Controls Laboratory (DECC) is discussed. The DE devices control local distribution system voltage through dynamic reactive power production. Although original efforts were made to control the reactive power (RP) output using information from commercially available meters specifically designed for monitoring and analyzing electric power values, these "intelligent" meters did not provide the flexibility needed. A very flexible and capable real-time monitoring and control system was selected after the evaluation of various methods of data acquisition (DAQ) and control. The purpose of this paper is to describe the DAQ and controls system development. The chosen controller is a commercially available real-time controller from dSPACE. This controller has many excellent features including a very easy programming platform through Simulink and Matlab's Real Time Workshop. The dSPACE system proved to provide both the flexibility and expandability needed to integrate and control the RP producing devices under consideration. The desire was to develop controls with this flexible laboratory instrumentation and controls setup that could be eventually be included in an embedded controller on a DE device. Some experimental results are included that clearly show that some functional control strategies are currently being tested.

Foster, Jason [ORNL; Rizy, D Tom [ORNL; Kueck, John D [ORNL

2007-01-01T23:59:59.000Z

175

A New System at NERSC: Carver Goes into Production  

NLE Websites -- All DOE Office Websites (Extended Search)

New Carver System New Carver System Goes into Production A New System at NERSC: Carver Goes into Production May 28, 2010 carverracks.jpg Built on IBM iDataPlex technology, Carver is comprised of 400 compute nodes interconnected by the latest 4X QDR InfiniBand technology. The image above shows Carver from the front. A new system is in production at the Department of Energy's National Energy Research Scientific Computing Center (NERSC). Built on IBM iDataPlex technology, the new system is called "Carver" in honor of American scientist and inventor George Washington Carver. Carver replaces NERSC's Opteron "Jacquard" cluster and IBM Power5 "Bassi" system, which were both decommissioned at the end of April. NERSC is a world leader in providing high-performance computing resources for science,

176

SunShot Initiative: Flexible Assembly Solar Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible Assembly Solar Flexible Assembly Solar Technology to someone by E-mail Share SunShot Initiative: Flexible Assembly Solar Technology on Facebook Tweet about SunShot Initiative: Flexible Assembly Solar Technology on Twitter Bookmark SunShot Initiative: Flexible Assembly Solar Technology on Google Bookmark SunShot Initiative: Flexible Assembly Solar Technology on Delicious Rank SunShot Initiative: Flexible Assembly Solar Technology on Digg Find More places to share SunShot Initiative: Flexible Assembly Solar Technology on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

177

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

NLE Websites -- All DOE Office Websites (Extended Search)

LLC. Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL...

178

Production system improvement : floor area reduction and cycle time analysis  

E-Print Network (OSTI)

A medical device company challenged a research team to reduce the manufacturing floor space required for an occlusion system product by one third. The team first cataloged equipment location and size, detailed the processes ...

Peterson, Jennifer J. (Jennifer Jeanne)

2012-01-01T23:59:59.000Z

179

A system-wide productivity figure of merit  

Science Conference Proceedings (OSTI)

The goal of this note is to combine productivity and performance benchmark measurement and subjective evaluations into a single system-wide figure of merit that could, for example, be used for budget justifications and procurements. With simplifying ...

Declan Murphy; Thomas Nash; Lawrence Votta

2006-01-01T23:59:59.000Z

180

A Hybrid Forming System: Electrical-Assisted Double Side Incremental Forming (EADSIF) Process for Enhanced Formability and Geometrical Flexibility  

Science Conference Proceedings (OSTI)

The objectives of this project are to establish the scientific bases, engineering technologies and energy/emission impact of a novel dieless forming process, Double side Incremental Forming (DSIF), and to explore the effectiveness of its hybrid variation, Electrical-Assisted Double Side Incremental Forming (EADSIF), on increasing the formability of metallic sheets. The scope of this project includes: (1) the analysis of environmental performance of the proposed new process as compared to conventional sheet metal forming processes; (2) the experimental investigation of the process capabilities of DSIF and EADSIF via the self-designed and newly established lab-scale EADSIF equipment; (3) the development of the essential software in executing the new proposed process, i.e., the toolpath generation algorithms; and finally (4) the exploration of the electricity effect on material deformation. The major accomplishments, findings and conclusions obtained through this one and a half years exploratory project are: (1) The first industrial medium-size-scale DSIF machine using two hexapods, capable of handling a sheet area up to 675 mm x 675 mm, was successfully completed at Ford. (2) The lab-scale of the DSIF machine was designed, fabricated and assembled to form a workpiece up to 250 mm x 250 mm. (3) Parts with arbitrary freeform double-curvatures using the genetic, not geometric-specific tooling were successfully formed using both machines. (4) The methodology of the life cycle analysis of DSIF was developed and energy consumption was measured and compared to conventional forming processes. It was found that the DSIF process can achieve 40% to 90% saving when the number of parts produced is less than 50. Sensitivity analysis was performed and showed that even at very large number of produced parts (greater than 2000), incremental forming saves at least 5% of the energy used in conventional forming. (5) It was proposed to use the offset between the two universal tools in DSIF to actively create a squeezing effect on sheet metal and therefore, increase the geometric accuracy. The idea was confirmed through both experimental and numerical validations. (6) A novel toolpath strategy, i.e., the so-called In-to-out toolpath or accumulative toolpath, was proposed to further increase formability and geometric accuracy compared to the SPIF configuration. A dimensional form accuracy of 1 mm can be achieved using the new strategy. (7) The effect of electricity on magnesium alloy was experimentally investigated. It was found that the formability has a ridge with respect to the applied current density and pulse duration. This finding implies that there are multiple choices of process parameters that are workable depending on the desired microstructure. The above results demonstrated that DSIF/EADSIF is a promising forming technology that can create impacts in revolutionizing how the prototyping and small volume production of sheet metals will be fabricated, i.e., it can (1) eliminate the need of casting and machining of drawing dies; (2) tailor material utilization to function requirement therefore achieving a light weight product; (3) reduce the amount of sheet metal scraps; and (4) shorten the engineering and manufacturing time for sheet metal parts from the current 8 {approx} 25 weeks to less than 1 week after the technology is fully developed. DSIF/EADSIF can be implemented in aerospace, automotive and appliance industries, or be used for producing personalized and point-of-use products in medical industry. Our analysis has shown that once developed, verified and demonstrated, the implementation and growth of DSIF will increase U.S. manufacturing competitiveness, advance machine tool and software industries, and create opportunities for emerging clean energy and low-carbon economy with estimated energy savings of 11 TBtu and CO2 reduction of 1 million tons per year. The work has been disseminated into three (3) journal articles and two (2) provisional patent submissions. A new company has been spun off from this research group aiming to c

Jian Cao; Z. Cedric Xia; Timothy G. Gutowski; John Roth

2012-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Flexible Coal: Evolution from Baseload to Peaking Plant (Brochure...  

NLE Websites -- All DOE Office Websites (Extended Search)

the transformation of power systems Flexible Coal Evolution from Baseload to Peaking Plant The experience cited in this paper is from a generating station with multiple units...

182

Predicting Ignition Delay for Gas Turbine Fuel Flexibility  

NLE Websites -- All DOE Office Websites (Extended Search)

Predicting Ignition Delay for Gas Turbine Fuel Flexibility 15 m * Low emission combustion systems have been carefully optimized for natural gas * Future fuel diversity (including...

183

Enhanced Schwinger's pair production in many-center systems  

E-Print Network (OSTI)

Electron-positron pair production is considered for many-center systems with multiple bare nuclei immersed in a constant electric field. It is shown that there are two distinct regimes where the pair production rate is enhanced. At small interatomic distance, the effective charge of the nuclei approaches the critical charge where the ground state dives into the negative continuum. This facilitates the transition from the negative to the positive energy states, which in turns, increases the pair production rate. At larger atomic distance, the enhancement is due to the crossing of resonances and the pair production proceeds by the Resonantly Enhanced Pair Production (REPP) mechanism. These processes are studied within a simple one-dimensional model. A numerical method is developed to evaluate the transmission coefficient in relativistic quantum mechanics, which is required in the calculation of the pair production rate. The latter is evaluated for systems with many (up to five) nuclei. It is shown that the production rate for many-center systems can reach a few orders of magnitude above Schwinger's tunnelling result in a static field.

Franois Fillion-Gourdeau; Emmanuel Lorin; Andr D. Bandrauk

2013-05-24T23:59:59.000Z

184

Research, development, and demonstration of algal production raceway (APR) systems for the production of hydrocarbon resources  

DOE Green Energy (OSTI)

A fractional factorial experimental design was used to determine the maximum production and photosynthetic efficiency that could be achieved in shallow algal mass culture systems (SAMCS) of the marine diatom Phaeodactylum tricornutum. Dilution rate and CO/sub 2/ supply were found to be the most important system parameters. Maximum production was found to be about 25 g dry wt m/sup -2/d/sup -1/. This production corresponded to a photosynthetic efficiency of 5.6%. These figures are 50 to 100% better than the production rates achieved in earlier P. tricornutum cultures using conventional culture techniques. The results are consistent with a theoretical model of the impact of the flashing light effect on algal mass culture production. This model predicts that at the typical irradiances in Hawaii, full utilization of the flashing light effect should enhance production by 70% to over 200%. It was concluded that the use of foil arrays in the experimental flume creates systematic vertical mixing on a time scale suitable for utilizing the flashing light effect. Production of P. tricornutum culture is probably limited by temperature. P. tricornutum cannot survive at temperatures in excess of 25/sup 0/C in outdoor mass cultures. Growth of mesophilic species in the temperature range 30 to 35/sup 0/C may well result in even higher production than that achieved with P. tricornutum.

Laws, E.A.

1984-02-01T23:59:59.000Z

185

An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems  

Science Conference Proceedings (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

2010-09-08T23:59:59.000Z

186

An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems  

Science Conference Proceedings (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

2010-10-01T23:59:59.000Z

187

Innovative production system goes in off Ivory Coast  

Science Conference Proceedings (OSTI)

The phased field development of the Lion and Panthere fields, offshore the Ivory Coast, includes a small floating production, storage, and offloading (FPSO) tanker with minimal processing capability as an early oil production system (EPS). For the long-term production scheme, the FPSO will be replaced by a converted jack up mobile offshore production system (MOPS) with full process equipment. The development also includes guyed-caisson well platforms, pipeline export for natural gas to fuel an onshore power plant, and a floating storage and offloading (FSO) tanker for oil export. Pipeline export for oil is a future possibility. This array of innovative strategies and techniques seldom has been brought together in a single project. The paper describes the development plan, early oil, jack up MOPS, and transport and installation.

Childers, M. [Oceaneering Production Systems, Houston, TX (United States); Barnes, J. [Paragon Engineering Services Inc., Houston, TX (United States)]|[UMC Petroleum Corp., Houston, TX (United States)

1995-07-17T23:59:59.000Z

188

Flexible optical panel  

DOE Patents (OSTI)

A flexible optical panel includes laminated optical waveguides, each including a ribbon core laminated between cladding, with the core being resilient in the plane of the core for elastically accommodating differential movement thereof to permit winding of the panel in a coil.

Veligdan, James T. (Manorville, NY)

2001-01-01T23:59:59.000Z

189

Methods and systems for the production of hydrogen  

DOE Patents (OSTI)

Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

Oh, Chang H. (Idaho Falls, ID); Kim, Eung S. (Ammon, ID); Sherman, Steven R. (Augusta, GA)

2012-03-13T23:59:59.000Z

190

Shale oil production system reference case study. Final report  

DOE Green Energy (OSTI)

Material balances, utility balances, and overall processing schemes were developed for two reference shale oil production systems. For both cases, crushed and sized oil shale is fed into a mix of surface retorts specified for this study, which handle both coarse and fine ore. Case 1A produces an upgraded crude product suitable for refinery feedstock, and Case 1B produces a crude shale oil. The reference system uses room-and-pillar mining, three different types of retorts not unlike those proposed for the White River Shale Project on Federal Lease Tracts U-a and U-b, a straightforward upgrading of the raw shale oil to a refinery feedstock syncrude, and pipeline transportation of that product. In addition to the production of an upgraded product, there is also a modified system for producing raw shale oil that is minimally upgraded for pipeline transportation purposes. The capital cost estimate for the two reference cases has 26 cost elements, excluding, for example, any land or finance costs. A more complete list of excluded cost elements is provided in Section VII. The two distinct cases, production of raw and upgraded shale oil, were included to avoid foreclosing the issue of on- or off-site upgrading. The difference in estimated capital cost ($795M vs. $875M) amounts to about 10 percent.

Not Available

1979-06-01T23:59:59.000Z

191

Production process for advanced space satellite system cables/interconnects.  

SciTech Connect

This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

Mendoza, Luis A.

2007-12-01T23:59:59.000Z

192

On the production behavior of enhanced geothermal systems with CO2 as working fluid  

E-Print Network (OSTI)

temperature pressure Production/Injection pattern area (Fig.injection pressure (downhole) production pressure (downhole)On the Production Behavior of Enhanced Geothermal Systems

Pruess, K.

2008-01-01T23:59:59.000Z

193

Flexible-Fuel Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one. Unlike natural gas vehicles and propane bi-fuel vehicles, flexible fuel vehicles contain one fueling system, which is made up of ethanol-compatible components and is set to accommodate the higher oxygen content of E85. E85 should only be used in ethanol-capable FFVs. For more information, read Flexible Fuel Vehicles: Powered by a Renewable American Fuel. Download Adobe Reader.

194

Comparision of methods and software tools for availability assessment of production systems.  

E-Print Network (OSTI)

?? This thesis presents and considers several different methods for computation of availability and production availability for production system. It is assumed that the system (more)

Vesteraas, Astrid Hetland

2008-01-01T23:59:59.000Z

195

Advanced Turbine Systems Program: Conceptual design and product development  

SciTech Connect

Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

1996-12-31T23:59:59.000Z

196

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Flexible Fuel Vehicles Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85%...

197

Optimal Control and Equilibrium Behavior of Production-Inventory Systems  

Science Conference Proceedings (OSTI)

The relationship between commodity inventory and short-term price variations has received considerable attention, but the understanding has been limited to single-stage cross-sectional relation. In this paper, we aim to deepen our understanding of the ... Keywords: optimal control, petroleum industry, production-inventory system, rational expectations equilibrium

Owen Q. Wu; Hong Chen

2010-08-01T23:59:59.000Z

198

Soy Protein ProductsChapter 6 Uses in Food Systems  

Science Conference Proceedings (OSTI)

Soy Protein Products Chapter 6 Uses in Food Systems Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 92B3B17CCACD0D1166530AEA8D994D92 AOCS Press Downloadable pdf of Chapter 6 Uses in

199

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents (OSTI)

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

200

Non-parametric modelling of a rectangular flexible plate structure  

Science Conference Proceedings (OSTI)

This research investigates the performance of dynamic modelling using non-parametric techniques for identification of a flexible structure system for development of active vibration control. In this paper, the implementation details are described and ... Keywords: ANFIS, Active vibration control, Flexible plate, Neural network, System identification

Intan Z. M. Darus; Ali A. M. Al-Khafaji

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Architectures of flexible symmetric key crypto enginesa survey: From hardware coprocessor to multi-crypto-processor system on chip  

Science Conference Proceedings (OSTI)

Throughput, flexibility, and security form the design trilogy of reconfigurable crypto engines; they must be carefully considered without reducing the major role of classical design constraints, such as surface, power consumption, dependability, and ... Keywords: Cryptosystems, crypto MPSoC, crypto array, crypto coprocessor, crypto processor, reconfigurable architecture

Lilian Bossuet, Michael Grand, Lubos Gaspar, Viktor Fischer, Guy Gogniat

2013-08-01T23:59:59.000Z

202

The AmeriFlux Data Activity and Data System: An Evolving Collection of Data Management Techniques, Tools, Products and Services  

SciTech Connect

The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the U.S. Department of Energy and international climate change science since 1982. Over this period, climate change science has expanded from research focusing on basic understanding of geochemical cycles, particularly the carbon cycle, to integrated research addressing climate change impacts, vulnerability, adaptation, and mitigation. Interests in climate change data and information worldwide have grown remarkably and, as a result, so have demands and expectations for CDIAC s data systems. To meet the growing demands, CDIAC s strategy has been to design flexible data systems using proven technologies blended with new, evolving technologies and standards. CDIAC development teams are multidisciplinary and include computer science and information technology expertise, but also scientific expertise necessary to address data quality and documentation issues and to identify data products and system capabilities needed by climate change scientists. CDIAC has learned there is rarely a single commercial tool or product readily available to satisfy long-term scientific data system requirements (i.e., one size does not fit all and the breadth and diversity of environmental data are often too complex for easy use with commercial products) and typically deploys a variety of tools and data products in an effort to provide credible data freely to users worldwide. Like many scientific data management applications, CDIAC s data systems are highly customized to satisfy specific scientific usage requirements (e.g., developing data products specific for model use) but are also designed to be flexible and interoperable to take advantage of new software engineering techniques, standards (e.g., metadata standards) and tools and to support future Earth system data efforts (e.g., ocean acidification). CDIAC has provided data management support for numerous long-term measurement projects crucial to climate change science. One current example is the AmeriFlux measurement network. AmeriFlux provides continuous measurements from forests, grasslands, wetlands, and croplands in North, Central, and South America and offers important insight about carbon cycling in terrestrial ecosystems. We share our approaches in satisfying the challenges of delivering AmeriFlux data worldwide to benefit others with similar challenges handling climate change data, further heighten awareness and use of an outstanding ecological data resource, and highlight expanded software engineering applications being used for climate change measurement data.

Boden, Thomas A [ORNL; Krassovski, Misha B [ORNL; Yang, Bai [ORNL

2013-01-01T23:59:59.000Z

203

Ceramic Systems - Environmental Design to Robotic Production Workflow  

NLE Websites -- All DOE Office Websites (Extended Search)

Ceramic Systems - Environmental Design to Robotic Production Workflow Ceramic Systems - Environmental Design to Robotic Production Workflow Speaker(s): Martin Bechthold Date: February 1, 2013 - 1:00pm Location: 90-4133 Seminar Host/Point of Contact: Dane Lay The current design practice for high performance, custom facade systems easily disconnects the initial façade design from the fabrication phase. The early design phases typically involve a series of iterative tests during which the environmental performance of different design variants is verified through simulations or physical measurements. After completing the environmental design, construction and fabrication constraints are incorporated. Time, budget constraints, and workflow incompatibilities are common obstacles that prevent design teams from verifying, through

204

Advanced Turbine Systems (ATS) program conceptual design and product development  

SciTech Connect

Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

1996-08-31T23:59:59.000Z

205

Engineering Design of a Continuous Duty $\\gamma$ -Production Proton Target for the Contraband Detection System  

E-Print Network (OSTI)

Engineering Design of a Continuous Duty $\\gamma$ -Production Proton Target for the Contraband Detection System

Rathke, J; Klein, J

1999-01-01T23:59:59.000Z

206

Bounding errors introduced by clustering of customers in closed product-form queuing networks  

Science Conference Proceedings (OSTI)

Product-form queuing network models have been widely used to model systems with shared resources such as computer systems (both centralized and distributed), communication networks, and flexible manufacturing systems. Closed multichain product-form networks ... Keywords: balance equation, closed network, clustering, error bound, product-form, quasi-reversibility, queuing network

William C. Cheng; Richard R. Muntz

1996-07-01T23:59:59.000Z

207

System issues and tradeoffs associated with syngas production and combustion  

DOE Green Energy (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed/moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Casleton, K.H.; Richards, G.A.; Breault, R.W.

2008-06-01T23:59:59.000Z

208

Multiple-part-type systems in high volume manufacturing : Kanban System design for automatic production scheduling  

E-Print Network (OSTI)

A Kanban Production System is designed to help a factory line meet fluctuating demands for multiple part types. Based on the parameter settings of the Control-Point Policy, the optimum Kanban levels are obtained. The ...

Lee, Kaizhao

2008-01-01T23:59:59.000Z

209

Flexible network wireless transceiver and flexible network telemetry transceiver  

DOE Patents (OSTI)

A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

Brown, Kenneth D. (Grain Valley, MO)

2008-08-05T23:59:59.000Z

210

Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System  

SciTech Connect

The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

Thompson, J. R.; McConnell, R. D.; Mosleh, M.

2005-08-01T23:59:59.000Z

211

C: Applying the Toyota Production System to a Hospital Pharmacy  

E-Print Network (OSTI)

This paper presents the early results of an action research project to apply the principles of the Toyota Production System to a hospital pharmacy. We demonstrate that work systems can be improved through Bowen and Spears [3] Rules-in-Use: defining activities better, making simpler and more direct connections, and/or smoothing pathways. We also extend this work by introducing a problem-solving tool to facilitate process improvement. The paper will describe the interventions attempted, the results, and implications for applying the Rules-in-Use to health care environments.

Durward K. Sobek; Cindy Jimmerson

2003-01-01T23:59:59.000Z

212

Flexible loads in future energy networks  

Science Conference Proceedings (OSTI)

We develop a vignette of an information-rich energy network with flexible and responsive electrical loads in the form of a domestic refrigerator augmented with a thermal storage system and a supply-following controller that responds to the availability ... Keywords: renewable, supply-following

Jay Taneja, Ken Lutz, David Culler

2013-01-01T23:59:59.000Z

213

Nuclear-Renewables Energy System for Hydrogen and Electricity Production  

Science Conference Proceedings (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Nuclear Hydrogen Production

Geoffrey Haratyk; Charles W. Forsberg

214

Flexible ocean upwelling pipe  

DOE Patents (OSTI)

In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

Person, Abraham (Los Alamitos, CA)

1980-01-01T23:59:59.000Z

215

Flexpad: highly flexible bending interactions for projected handheld displays  

Science Conference Proceedings (OSTI)

Flexpad is an interactive system that combines a depth camera and a projector to transform sheets of plain paper or foam into flexible, highly deformable, and spatially aware handheld displays. We present a novel approach for tracking deformed surfaces ... Keywords: bending, deformation, depth camera, flexible display, handheld display, projection, tracking, volumetric data

Jrgen Steimle; Andreas Jordt; Pattie Maes

2013-04-01T23:59:59.000Z

216

Balancing performance and flexibility with hardware support for network architectures  

Science Conference Proceedings (OSTI)

The goals of performance and flexibility are often at odds in the design of network systems. The tension is common enough to justify an architectural solution, rather than a set of context-specific solutions. The Programmable Protocol Processing Pipeline ... Keywords: FPGA, P4, computer networking, flexibility, hardware, performance, programmable logic devices, programmable networks, protocol processing

Ilija Hadi?; Jonathan M. Smith

2003-11-01T23:59:59.000Z

217

Adaptive fuzzy sliding mode control for flexible satellite  

Science Conference Proceedings (OSTI)

The adaptive fuzzy sliding mode control is applied to the attitude stabilization of flexible satellite. The detailed design procedure of the fuzzy sliding mode control system is presented. The adaptive fuzzy control is utilized to approach the equivalent ... Keywords: Adaptive fuzzy control, Attitude control, Flexible satellite, Sliding mode control

Ping Guan; Xiang-Jie Liu; Ji-Zhen Liu

2005-06-01T23:59:59.000Z

218

SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL  

DOE Green Energy (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2008-09-01T23:59:59.000Z

219

System Analysis of Nuclear-Assisted Syngas Production from Coal  

SciTech Connect

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via hightemperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2009-07-01T23:59:59.000Z

220

Applying the Toyota Production System to a Hospital Pharmacy Durward K. Sobek, II  

E-Print Network (OSTI)

Applying the Toyota Production System to a Hospital Pharmacy Durward K. Sobek, II Dept research project to apply the principles of the Toyota Production System to a hospital pharmacy. We. Keywords: Toyota Production System, health care, lean manufacturing 1. Introduction The Toyota Production

Sobek II, Durward K.

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Flexible retinal electrode array  

DOE Patents (OSTI)

An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

Okandan, Murat (Albuquerque, NM); Wessendorf, Kurt O. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

2006-10-24T23:59:59.000Z

222

Flexible swivel connection  

DOE Patents (OSTI)

A flexible swivel boot connector for connecting a first boot shield section to a second boot shield section, both first and second boot sections having openings therethrough, the second boot section having at least two adjacent accordian folds at the end having the opening, the second boot section being positioned through the opening of the first boot section such that a first of the accordian folds is within the first boot section and a second of the accordian folds is outside of the first boot, includes first and second annular discs, the first disc being positioned within and across the first accordian fold, the second disc being positioned within and across the second accordian fold, such that the first boot section is moveably and rigidly connected between the first and second accordian folds of the second boot section.

Hoh, J.C.

1985-02-19T23:59:59.000Z

223

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

224

An agent-based approach for coordinating product design workflows  

Science Conference Proceedings (OSTI)

New product development processes in manufacturing organizations are distributed and knowledge-intensive. Such product development processes interleave complex manual and software-enabled design decision-making activities. In current approaches to product ... Keywords: Coordination, Design process plans, Flexible workflow systems, Process integration

Therani Madhusudan

2005-04-01T23:59:59.000Z

225

Long-term affected energy production of waste to energy technologies identified by use of energy system analysis  

Science Conference Proceedings (OSTI)

Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

Muenster, M., E-mail: maem@risoe.dtu.d [Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Meibom, P. [Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark)

2010-12-15T23:59:59.000Z

226

Low-Cost Hydrogen Distributed Production System Development  

DOE Green Energy (OSTI)

H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

2011-03-10T23:59:59.000Z

227

Joint production and economic retention quantity decisions in capacitated production systems serving multiple market segments  

E-Print Network (OSTI)

In this research, we consider production/inventory management decisions of a rmthat sells its product in two market segments during a nite planning horizon. In thebeginning of each period, the rm makes a decision on how much to produce basedon the production capacity and the current on-hand inventory available. After theproduction is made at the beginning of the period, the rm rst satises the stochasticdemand from customers in its primary market. Any primary market demand thatcannot be satised is lost. After satisfying the demand from the primary market, ifthere is still inventory on hand, all or part of the remaining products can be sold ina secondary market with ample demand at a lower price. Hence, the second decisionthat the rm makes in each period is how much to sell in the secondary market, orequivalently, how much inventory to carry to the next period.The objective is to maximize the expected net revenue during a nite planninghorizon by determining the optimal production quantity in each period, and theoptimal inventory amount to carry to the next period after the sales in primary andsecondary markets. We term the optimal inventory amount to be carried to the nextperiod as \\economic retention quantity". We model this problem as a nite horizonstochastic dynamic program. Our focus is to characterize the structure of the optimalpolicy and to analyze the system under dierent parameter settings. Conditioning on given parameter set, we establish lower and upper bounds on the optimal policyparameters. Furthermore, we provide computational tools to determine the optimalpolicy parameters. Results of the numerical analysis are used to provide furtherinsights into the problem from a managerial perspective.

Katariya, Abhilasha Prakash

2008-08-01T23:59:59.000Z

228

Resource evaluation and site selection for microalgae production systems  

DOE Green Energy (OSTI)

Climate, land, and water resource requirements of microalgae production systems (MPS) were examined relative to construction costs, operating costs, and biomass productivity. The objective was the stratification of the southwestern United States into zones of relative suitability for MPS. Maps of climate (insolation, freeze-free period, precipitation, evaporation, thunderstorm days), land (use/cover, ownership, slope), and water (saline groundwater) resource parameters were obtained. These maps were transformed into digital overlays permitting the cell-by-cell compositing of selected resource parameters to form maps representing relative productivity, make-up water, climate suitability, land suitability, water suitability, and overall suitability. The Southwest was selected for this study because of its high levels of insolation, saline water resources, and large areas of relatively low valued land. The stratification maps cannot be used for the selection of specific sites because of their low resolution (12,455-acre cells). They can be used to guide future resource studies and site selection efforts, however, by limiting these efforts to the most suitable regions. Future efforts should concentrate on saline water resources, for which only limited data are currently available. 13 refs., 44 figs., 5 tabs.

Maxwell, E.L.; Folger, A.G.; Hogg, S.E.

1985-05-01T23:59:59.000Z

229

Marine biomass system: anaerobic digestion and production of methane  

DOE Green Energy (OSTI)

Two approaches to kelp conversion to methane are described. First, a large (10.56 mi/sup 2/) oceanic farm using an artificial substrate and an upwelling system to deliver nutrient-rich deep ocean water to the kelp bed is described. This system can yield as much as 50 tons of kelp (dry ash free - DAF) per acre-year. Kelp are harvested by a specially designed 30,000 DWT ship and delivered to an onshore processing plant as a ground kelp slurry. The second system involves the use of a natrual coastal kelp bed. Growth rates in this bed are stimulated by a nutrient rich sewer outfall. A conceptual model is presented for calculation of the growth rate of kelp in this natural bed which can reach 15 tons (DAF) per acre-year. The harvest activity and processing plant are similar to those for oceanic farm system. In the next section of this report, the overall concept of kelp production and conversion to methane is discussed. In Section III the general design of the ocean farm system is presented and discussed while Section IV contains a similar description for the natural bed system. Section V presents the capital requirements and operational labor, resources and material requirements. Section VI describes the environmental residuals created by the operation of either system and, to the extent possible, quantifies the rate at which these residuals are generated. In addition to the technical data reported herein, cost data have been generated for the various processes and components utilized in each solar technology. The requirements for costing information basically arise from the need to compute parameters such as investment demands, employment patterns, material demands and residual levels associated with each technology for each of several national and regional scenarios.

Haven, K.F.; Henriquez, M.; Ritschard, R.L.

1979-04-01T23:59:59.000Z

230

ORNL MAXLAB Flexible Research Platforms  

SciTech Connect

Oak Ridge National Laboratory (ORNL) was competitively awarded the Maximum Energy Efficiency Building Research Laboratory (MAXLAB) project under the American Recovery and Reinvestment Act (ARRA). As part of that project, the design and construction of two flexible research platforms (FRP) was included to provide new building test apparatus at ORNL. The two FRPs are designed to be capable of being outfitted as test buildings that are representative of typical construction methods, materials, and geometry used in the light commercial market. These test buildings will be heavily instrumented and will provide ORNL s industry partners a means of assessing new HVAC, control, and envelope solutions under realistic conditions, in a low financial risk environment. The long-term data collected at the facility can be used to validate analytic models which can then be used by developers to refine their potential products and reduce delivery time to market. This paper outlines the FRP concept, long term research plan and the challenges in the design and construction of the base research apparatus and test buildings.

Bhandari, Mahabir S [ORNL; Buckberry, Heather L [ORNL

2012-01-01T23:59:59.000Z

231

Soap Manufacturing TechnologyChapter 9 Semi-Boiled Soap Production Systems  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 9 Semi-Boiled Soap Production Systems Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 9 Semi-Boiled Soap Production Systems fr

232

Smart Domestic Appliances Provide Flexibility for Sustainable Energy  

Open Energy Info (EERE)

Smart Domestic Appliances Provide Flexibility for Sustainable Energy Smart Domestic Appliances Provide Flexibility for Sustainable Energy Systems (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Smart Domestic Appliances Provide Flexibility for Sustainable Energy Systems (Webinar) Focus Area: Crosscutting Topics: Training Material Website: www.leonardo-energy.org/webinar-smart-domestic-appliances-provide-flex Equivalent URI: cleanenergysolutions.org/content/smart-domestic-appliances-provide-fle Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Net Metering & Interconnection In this video, the viewer learns about the benefits and difficulties

233

Conservation tillage production systems compared in San Joaquin Valley cotton  

E-Print Network (OSTI)

of overall cotton production costs. These operations reduce48% to 62%, and overall production costs by 14% to ince themore of overall cotton-production costs (Carter 1996). These

Mitchell, Jeffrey; Munk, Dan; Prys, Bob; Klonsky, Karen; Wroble, Jon; De Moura, Rich

2006-01-01T23:59:59.000Z

234

Flexpad: highly flexible bending interactions for projected handheld displays  

E-Print Network (OSTI)

Flexpad is an interactive system that combines a depth camera and a projector to transform sheets of plain paper or foam into flexible, highly deformable, and spatially aware handheld displays. We present a novel approach ...

Jordt, Andreas

235

Low flammability cap-sensitive flexible explosive composition  

DOE Patents (OSTI)

A cap-sensitive flexible explosive composition of reduced flammability is provided by incorporating a finely divided, cap-sensitive explosive in a flame resistant polymeric binder system which contains a compatible flame retardant material.

Wagner, Martin G. (Wilmington, DE)

1992-01-14T23:59:59.000Z

236

EVermont Renewable Hydrogen Production and Transportation Fueling System  

DOE Green Energy (OSTI)

A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

Garabedian, Harold T.

2008-03-30T23:59:59.000Z

237

Increase Productivity - Implement Energy Management Systems with Project Management Techniques  

E-Print Network (OSTI)

The Glass Division is the second smallest of Ford Motor Company's 20 odd major divisions. It employs four percent of Ford's people, uses but one and one-half percent of the manufacturing space yet it consumes 20 percent of the energy. As Plant Engineering Manager of this small but active division, I devote a big part of my time on justifying energy expenditures and the means to reduce these costs. Ten years ago energy costs were one tenth of today's costs and just about three percent of the division's operating costs. Now they are approaching twelve percent. We believe that energy management systems would contribute to improved productivity in the manufacturing and fabricating facilities. But instinctiveness is not enough to get the funds approved to install the system. We are planning to conduct a major undertaking to prove feasibility. It will be a methodical plan of action. We have prepared a graphic plan of action of the major work items that have to be done to prepare the feasibility report. This presentation highlights the work associated with completing the feasibility report. From this report we develop the documents required for management approval. And we feel comfortable that this approach will result in having energy management systems installed in our division plants.

Spinner, M. P.

1984-01-01T23:59:59.000Z

238

Products of an Artificially Induced Hydrothermal System at Yucca Mountain  

DOE Green Energy (OSTI)

Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than during the deposition of natural calcite-opal deposits.

S. Levy

2000-08-07T23:59:59.000Z

239

System size dependence of particle production at the SPS  

SciTech Connect

Recent results on the system size dependence of net-baryon and hyperon production as measured at the CERN SPS are discussed. The observed N{sub part} dependences of yields, but also of dynamical properties, such as average transverse momenta, can be described in the context of the core corona approach. Other observables, such as antiproton yields and net-protons at forward rapidities, do not follow the predictions of this model. Possible implications for a search for a critical point in the QCD phase diagram are discussed. Event-by-event fluctuations of the relative core to corona source contributions might influence fluctuation observables (e.g., multiplicity fluctuations). The magnitude of this effect is investigated.

Blume, C., E-mail: blume@ikf.uni-frankfurt.de [J.W. Goethe-Universitaet, Institut fuer Kernphysik (Germany)

2012-05-15T23:59:59.000Z

240

Production and Transfer of Energy and Information in Hamiltonian Systems  

E-Print Network (OSTI)

We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multidimensional Hamiltonian systems. We show the relation among Kolmogorov - Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov - Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Finally, a relation between our results and important quantities of Thermodynamics is presented.

Ch. G. Antonopoulos; E. Bianco-Martinez; M. S. Baptista

2013-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems  

DOE Green Energy (OSTI)

This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

2009-07-31T23:59:59.000Z

242

Flexible Network Attached Storage using Remote DMA  

E-Print Network (OSTI)

We propose to make nodes in a cluster double as compute nodes and network attached storage (NAS) nodes. This allows for a flexible and customizable storage system as the NAS control software is handled by regular workstations. The nodes can still be efficient compute nodes if networks with remote DMA capabilities are used, as such networks remove the processor from the data forwarding loop. We demonstrate this through measurements of a prototype implementation.

Jrgen S. Hansen

2001-01-01T23:59:59.000Z

243

Grazing Strategies for Beef Production Escalating energy costs and alternative cropping systems for biofuels production have  

E-Print Network (OSTI)

for biofuels production have dramatically increased costs of fertilizer, seed, and feed grains. These increased

244

Apparatus and method for detecting tampering in flexible structures  

DOE Patents (OSTI)

A system for monitoring or detecting tampering in a flexible structure includes taking electrical measurements on a sensing cable coupled to the structure, performing spectral analysis on the measured data, and comparing the spectral characteristics of the event to those of known benign and/or known suspicious events. A threshold or trigger value may used to identify an event of interest and initiate data collection. Alternatively, the system may be triggered at preset intervals, triggered manually, or triggered by a signal from another sensing device such as a motion detector. The system may be used to monitor electrical cables and conduits, hoses and flexible ducts, fences and other perimeter control devices, structural cables, flexible fabrics, and other flexible structures.

Maxey, Lonnie C. (Knoxville, TN); Haynes, Howard D. (Knoxville, TN)

2011-02-01T23:59:59.000Z

245

Argonne CNM Highlight: Flexible Hydrogen Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

sheets reduces their overall weight and increases their mechanical flexibility and shock resistance. Flexible hydrogen sensors show a change of 75% in their resistance when...

246

Lean engineering for planning systems redesign: staff participation by simulation  

Science Conference Proceedings (OSTI)

Lean manufacturing aims at flexible and efficient manufacturing systems by reducing waste in all forms, such as, production of defective parts, excess inventory, unnecessary processing steps, and unnecessary movements of people or materials. Recent research ...

Durk-Jouke van der Zee; Arnout Pool; Jakob Wijngaard

2008-12-01T23:59:59.000Z

247

Optimal production and rationing policies of a make-to-stock production system with batch demand and backordering  

Science Conference Proceedings (OSTI)

In this paper, we consider the stock rationing problem of a single-item make-to-stock production/inventory system with multiple demand classes. Demand arrives as a Poisson process with a randomly distributed batch size. It is assumed that the batch demand ... Keywords: Batch demand, Inventory, Markov decision process, Production, Rationing

Jianjun Xu; Shaoxiang Chen; Bing Lin; Rohit Bhatnagar

2010-05-01T23:59:59.000Z

248

Knowledge representation and case-based reasoning in a knowledge management system for ambient intelligence products  

Science Conference Proceedings (OSTI)

The paper presents the theoretical background and realization of a KM system for the technically advanced customer and product support in the Ambient Intelligence (AmI) domain. Current products include more and more elements of AmI. AmI area is still ... Keywords: ambient intelligence, case-based reasoning, customer support system, diagnostics system, knowledge management system, knowledge representation

Ljubisa Urosevic; Sandor Kopacsi; Dragan Stokic; Ana Rita Campos; Geza Bognar

2006-02-01T23:59:59.000Z

249

Production system improvement : floor area reduction and visual management  

E-Print Network (OSTI)

This thesis suggests on the development process of a new layout design and visual management tools to improve the efficiency of a production line in a medical device company. Lean production philosophy and common lean ...

Chen, Zhuling, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

250

Importance of systems biology in engineering microbes for biofuel production  

E-Print Network (OSTI)

TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

Mukhopadhyay, Aindrila

2011-01-01T23:59:59.000Z

251

Challenges in Flexible Aggregation of Pervasive Data  

E-Print Network (OSTI)

The vision of billions of users connected to millions of services using trillions of devices is fast becoming a reality. The result will be a vast network of mobile communication devices and data sources, including sensors, newsfeeds, web services, and databases. Potential uses of this data span a wide range of application domains, including medical monitoring, traffic routing, proximity detection, electricity management, and service-fleet dispatching. Applications require flexible mechanisms for constructing condensed and refined views of the raw data, possibly in ways unanticipated by the data providers. Aggregation comprises collection of high volumes of raw data from data sources, composition of the raw data into less voluminous refined data, and timely delivery of the refined data to applications. There are difficult challenges inherent in creating an aggregation system that is sufficiently flexible, scalable, and reliable to address the needs of applications. 1 The aggregation...

Norman H. Cohen; Norman H. Cohen; Apratim Purakayastha; Apratim Purakayastha; John Turek; John Turek; Luke Wong; Luke Wong; Danny Yeh; Danny Yeh

2001-01-01T23:59:59.000Z

252

Supply chain product visibility: Methods, systems and impacts  

Science Conference Proceedings (OSTI)

Supply chain product visibility may be defined to mean the capacity of the supply chain to have a view of a product's lifecycle, from its conception, manufacturing, distribution, delivery to the end customer, customer's experience of the product, and ... Keywords: Architecture design, RFID, Sensor networks, Tracking and tracing

Ahmed Musa, Angappa Gunasekaran, Yahaya Yusuf

2014-01-01T23:59:59.000Z

253

ME EET Seminar: Nanomanufacturing of Flexible Electronics and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

ME EET Seminar: Nanomanufacturing of Flexible Electronics and Energy ME EET Seminar: Nanomanufacturing of Flexible Electronics and Energy Systems Speaker(s): Costas Grigoropoulos Date: October 28, 2009 - 12:00pm Location: 90-3122 This talk presents an overview of recent work conducted on the nanomanufacturing of flexible electronics and energy systems. Pulsed lasers have been coupled to near-field-scanning optical microscopes (NSOMs) for nanoprocessing, nanomachining, nanolithography and nanodeposition. Interactions of pulsed laser radiation with nanostructures are investigated and shown to substantially improve contact resistance and device performance compared to furnace annealing. New concepts have been demonstrated for the high throughput, directed growth and assembly of nanostructures. Maskless fabrication of functional devices on flexible

254

The Role of Visualization Systems in Managing the Energy of Production Systems  

E-Print Network (OSTI)

The convergence of sustainability pressures, rising energy prices, and insatiable demand all will have a profound impact on our relationship with energy and its effect on the macro economy. There's no shortage of industrial users eager to turn crisis into future profits by taking the steps to gain control over energy costs and consumption. All this promise has led to the expansion of the presence of energy visualization products, or energy management dashboards, which all claim to offer unique features and attributes that enable the superior management of energy resources. Many of these systems are designed to optimize the energy of building systems and utilities: HVAC, water distribution, pneumatics, boilers, etc. In a typical industrial process facility, however, these systems account for only 16 percent of the energy demand. This paper highlights the potential of energy optimization of production systems, and defines five proven techniques, called process demand functions, that can be leveraged to mitigate process energy. For each process demand function, the role of the visualization system will be highlighted

Dussault, R.

2013-01-01T23:59:59.000Z

255

Development of I&C Strategies for Plant Flexible Operations  

Science Conference Proceedings (OSTI)

Flexible operation of power plants to meet the needs of the power market will become an increasing need with deregulation and competition. Additional revenue streams are available to plants that can provide ancillary services -- and not just traditional power -- for the power system. This report provides a review of instrumentation and control (I&C) strategies for the flexible operation of power plants as applied in the United Kingdom market and documents the lessons learned.

2004-03-12T23:59:59.000Z

256

Production system improvement at a medical devices company : floor layout reduction and manpower analysis  

E-Print Network (OSTI)

Due to the low demand and the need to introduce other production lines in the floor, the medical devices company wants to optimize the utilization of space and manpower for the occlusion system product. This thesis shows ...

AlEisa, Abdulaziz A. (Abdulaziz Asaad)

2012-01-01T23:59:59.000Z

257

Forest Products: Long Wavelength Catalytic Infrared Drying System for Wood Fiber  

DOE Green Energy (OSTI)

Order this fact sheet to read about the innovative new system, which can be used in a variety of industries in addition to forest products, including agriculture, chemical processing, brewing and distilling, animal products, and horticulture.

Blazek, S.

1999-01-29T23:59:59.000Z

258

Environmental systems analysis of arable, meat and milk production.  

E-Print Network (OSTI)

??Emissions to air and water are related to both soil and plant processes and production-related choices regarding fertilisation, feeding strategy, etc. made by farmers. The (more)

Elmquist, Helena

2005-01-01T23:59:59.000Z

259

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

synthetic natural gas (SNG) via anaerobic decomposition byof algal substrate for an SNG process involves increasingof characteristics for SNG production. Limiting factors in

Haven, Kendall F.

2011-01-01T23:59:59.000Z

260

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Synergistic Hydrogen Production in a Biorefinery via Bioelectrochemical Systems  

Science Conference Proceedings (OSTI)

Microbial electrolysis cells are devices that use biocatalysis and electrolysis for production of hydrogen from organic matter. Biorefinery process streams contain fermentation by products and inhibitors which accumulate in the process stream if the water is recycled. These molecules also affect biomass to biofuel yields if not removed from the recycle water. The presence of sugar- and lignin- degradation products such as furfural, vanillic acid and 4-hydroxybenzaldehyde has been shown to reduce fermentation yields. In this work, we calculate the potential for hydrogen production using microbial electrolysis cells from these molecules as substrates. Conversion of these substrates to electricity is demonstrated in microbial fuel cells and will also be presented.

Borole, A. P.; Hamilton, C. Y.; Schell, D. J.

2012-01-01T23:59:59.000Z

262

Lamb and wool production in an organic farming system.  

E-Print Network (OSTI)

??A study to evaluate lamb production under organic management was carried out in 2003 and 2004 at the West Virginia University Organic Research Farm. About (more)

Ruto, Christopher Kiptanui.

2005-01-01T23:59:59.000Z

263

Flexible, Thin, and Rechargeable Li-ion Battery Based on Semi ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium. Presentation Title, Flexible, Thin, and Rechargeable Li-ion Battery Based on...

264

Flexible hydrogen plant utilizing multiple refinery hydrocarbon streams  

Science Conference Proceedings (OSTI)

Numerous processes are available to produce hydrogen, however, steam reforming is still the dominant and currently preferred process because it can economically process a variety of refinery feedstocks into hydrogen. This paper discusses the Air Products 88 MMSCFD hydrogen plant built by KTI, adjacent to Shell`s Martinez refinery, which utilizes up to eight separate refinery hydrocarbon streams as feed and fuel for the production of hydrogen in the steam reforming unit. The integration of refinery hydrocarbon purge streams, normally sent to fuel, allows greater flexibility in refinery operations and increases the overall refinery fuel efficiencies. The hydrogen plant also incorporates a number of process control design features to enhance reliability, such as two out of three voting systems, in-line sparing, and reduced bed PSA operation. The final section of the paper describes the environmental features of the plant required for operation in the Bay Area Air Quality Management District (BAAQMD). Air Products and KTI designed BACT features into the hydrogen plant to minimize emissions from the facility.

Kramer, K.A.; Patel, N.M. [Air Products and Chemicals Inc., Allentown, PA (United States); Sekhri, S. [Kinetics Technology International Corp., San Dimas, CA (United States); Brown, M.G. [Shell Oil Products Co., Martinez, CA (United States)

1996-12-01T23:59:59.000Z

265

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

The basic energy conversion system being considered in thisEnergy Fixation and Conversion with Algal Bacterial Systems/energy producer based on current methane prices. bility of a kelp to methane conversion system

Haven, Kendall F.

2011-01-01T23:59:59.000Z

266

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update September 30, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski...

267

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

has not been included in this study. In general, our system designs do not change with production rate, but material costs, manufacturing methods, and business-operational...

268

The Effects of the Toyota Production System on Student Academic Performance.  

E-Print Network (OSTI)

??Can schools use relevant data to enhance student test scores and teacher efficacy by using the Toyota Production System model? Components of this study evaluated (more)

Webb, Danny Ray

2008-01-01T23:59:59.000Z

269

From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems  

E-Print Network (OSTI)

At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of ( often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems ( also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commer cial workflow products cannot support the highly dynamic activities found both in the design stages of product developmen...

Le Goff, J M; Bityukov, S; Estrella, F; Kovcs, Z; Le Flour, T; Lieunard, S; McClatchey, R; Murray, S; Organtini, G; Vialle, J P; Bazan, A; Chevenier, G

1997-01-01T23:59:59.000Z

270

Economical analysis of SOFC system for power production  

Science Conference Proceedings (OSTI)

A comprehensive economic analysis of solid oxide fuel cell (SOFC) systems is presented in this paper. The analyzed system consists of a desulphurization system, a pre-reforming reactor, a fuel cell stack, an afterburner, heat exchangers, a power converter, ... Keywords: SOFC system, biofuels, biomasses, renewable energy

Andrea Colantoni; Menghini Giuseppina; Marco Buccarella; Sirio Cividino; Michela Vello

2007-06-01T23:59:59.000Z

271

Flexible management of smart homes  

Science Conference Proceedings (OSTI)

An approach is presented for flexible management of smart homes, covering both home automation and telecare. The aim is to allow end users to manage their homes without requiring detailed technical knowledge or programming ability. This is achieved at ... Keywords: Component framework, goal refinement, home automation, open services gateway initiative, policy-based management, sensor network, telecare

Kenneth J. Turner

2011-04-01T23:59:59.000Z

272

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

273

Continuous production of tritium in an isotope-production reactor with a separate circulation system  

DOE Patents (OSTI)

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

274

Dynamic resource allocation in a multi-product make-to-stock production system  

Science Conference Proceedings (OSTI)

We consider optimal policies for a production facility in which several (K) products are made to stock in order to satisfy exogenous demand for each. The single machine version of this problem in which the facility manufactures at most ... Keywords: 68M20, 90B30, 90C39, Backordering, Dynamic programming, Dynamic resource allocation, Index heuristic, Lagrangian relaxation, Make-to-stock policy, Queueing control

D. J. Hodge; K. D. Glazebrook

2011-04-01T23:59:59.000Z

275

Simulating holographic correspondence in flexible graphene  

E-Print Network (OSTI)

In the spirit of the generalized holographic conjecture, we explore a relationship between the bulk and boundary properties of non-interacting massive Dirac fermions living on a flexible surface, such as a sheet of graphene. We demonstrate that the boundary correlations can mimic those normally found in the system of one-dimensional interacting fermions, a specific form of such phantom interaction being determined by the bulk geometry. This geometrical interpretation of the boundary interaction effects offers a new insight into the possible origin of the more sophisticated types of holographic correspondence and suggests potential ways of visualizing 'analogue holography' in the experimentally viable environments.

D. V. Khveshchenko

2013-05-28T23:59:59.000Z

276

Toward a Combined Seasonal Weather and Crop Productivity Forecasting System: Determination of the Working Spatial Scale  

Science Conference Proceedings (OSTI)

A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this ...

A. J. Challinor; J. M. Slingo; T. R. Wheeler; P. Q. Craufurd; D. I. F. Grimes

2003-02-01T23:59:59.000Z

277

Fuel Flexibility in Gasification  

DOE Green Energy (OSTI)

In order to increase efficiencies of carbonizers, operation at high pressures is needed. In addition, waste biomass fuels of opportunity can be used to offset fossil fuel use. The National Energy Technology Laboratory (NETL) Fluidized Bed Gasifier/Combustor (FBG/C) was used to gasify coal and mixtures of coal and biomass (sawdust) at 425 psig. The purpose of the testing program was to generate steady state operating data for modeling efforts of carbonizers. A test program was completed with a matrix of parameters varied one at a time in order to avoid second order interactions. Variables were: coal feed rate, pressure, and varying mixtures of sawdust and coal types. Coal types were Montana Rosebud subbituminous and Pittsburgh No. 8 bituminous. The sawdust was sanding waste from a furniture manufacturer in upstate New York. Coal was sieved from -14 to +60 mesh and sawdust was sieved to -14 mesh. The FBG/C operates at a nominal 425 psig, but pressures can be lowered. For the tests reported it was operated as a jetting, fluidized bed, ash-agglomerating gasifier. Preheated air and steam are injected into the center of the bottom along with the solid feed that is conveyed with cool air. Fairly stable reactor internal flow patterns develop and temperatures stabilize (with some fluctuations) when steady state is reached. At nominal conditions the solids residence time in the reactor is on the order of 1.5 to 2 hours, so changes in feed types can require on the order of hours to equilibrate. Changes in operating conditions (e.g. feed rate) usually require much less time. The operating periods of interest for these tests were only the steady state periods, so transient conditions were not monitored as closely. The test matrix first established a base case of operations to which single parameter changes in conditions could be compared. The base case used Montana Rosebud at a coal feed rate of 70 lbm/hr at 425 psig. The coal sawdust mixtures are reported as percent by weight coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the coal sawdust mixtures. The coal sawdust mixtures segregate quickly when transported. This is visi

McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K. (U.S. DOE National Energy Technology Laboratory); Lui, Alain P.; Batton, William A. (Parsons Infrastructure and Technology Group, Inc.)

2001-11-06T23:59:59.000Z

278

From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems  

E-Print Network (OSTI)

At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of (often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems (also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commercial workflow products cannot support the highly dynamic activities found both in the design stages of product development and in rapidly evolving workflow definitions. The integration of Product Data Management with Workflow Management can provide support for product development from initial CAD/CAM collaborative design through to the support and optimisation of production workflow activities. This paper investigates this integration and proposes a philosophy for the support of product data throughout the full development and production lifecycle and demonstrates its usefulness in the construction of CMS detectors.

J-M. Le Goff; G. Chevenier; A. Bazan; T. Le Flour; S. Lieunard; S. Murray; J-P. Vialle; N. Baker; F. Estrella; Z. Kovacs; R. McClatchey; G. Organtini; S. Bityukov

1998-02-06T23:59:59.000Z

279

Design and implementation of an agent-based collaborative product design system  

Science Conference Proceedings (OSTI)

The evolution of computer science and technology has brought new opportunities for multidisciplinary designers and engineers to collaborate with each other in a concurrent and coordinated manner. The development of computational agents with unified data ... Keywords: Collaborative design, Mutlit-agent system, Product data modelling, Product design management, Product design process modelling, Solid modelling

Jian Xun Wang; Ming Xi Tang; Lin Nan Song; Shou Qiang Jiang

2009-09-01T23:59:59.000Z

280

Dynamic data sharing and security in a collaborative product definition management system  

Science Conference Proceedings (OSTI)

Product definition management (PDM) is a system that supports management of both engineering data and the product development process during the total product life cycle. The formation of a virtual enterprise is becoming a growing trend, and vendors ... Keywords: CPDM, Common workspace, Concurrent engineering, PDM, Parameter-based collaboration, Virtual engineering community, Web-based application

Kamel Rouibah; Samia Ould-Ali

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

System for the co-production of electricity and hydrogen  

DOE Patents (OSTI)

Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

2007-10-02T23:59:59.000Z

282

A robust genetic algorithm for scheduling realistic hybrid flexible flow line problems  

Science Conference Proceedings (OSTI)

This article addresses the problem of hybrid flexible flow line where some constraints are considered to alleviate the chasm between the real-world industries scheduling and the production scheduling theories. Sequence-dependent setup times, machine ... Keywords: Hybrid flexible flow shop, Realistic scheduling, Response surface methodology, Sequence-dependent setup times, Time lags

M. Zandieh; E. Mozaffari; M. Gholami

2010-12-01T23:59:59.000Z

283

Cost estimating method of industrial product implemented in WinCOST software system  

Science Conference Proceedings (OSTI)

The paper presents a method for estimating the cost of industrial products and its implementation into a software system named WinCOST. The software is used for calculating the manufacturing time and cost evaluation of industrial products with high level ... Keywords: chip removing process, cold forming processes, cost estimation, cost per hour, software system

Gheorghe Oancea; Lucia Antoneta Chicos; Camil Lancea

2010-07-01T23:59:59.000Z

284

Positive and negative entropy production in thermodynamic systems  

E-Print Network (OSTI)

This article presents a heuristic combination of the local and global formulations of the second law of thermodynamics that suggests the possibility of theoretical existence of thermodynamic processes with positive and negative entropy production.Such processes may exhibit entropy couplings that reveal an unusual behavior from the point of view of conventional thermodynamics.

Belandria, Jose Iraides

2009-01-01T23:59:59.000Z

285

A modelling framework to support farmers in designing agricultural production systems  

Science Conference Proceedings (OSTI)

Given the new challenges confronting world agriculture, innovative production systems need to be designed at the farm level. As experiments are not easy to conduct at this level, modelling is required to evaluate ex-ante the multiple impacts of proposed ... Keywords: Biophysical system, Conceptual model, Decision system, Farm, Simulation tool, Technical system

P. -Y. Le Gal; A. Merot; C. -H. Moulin; M. Navarrete; J. Wery

2010-02-01T23:59:59.000Z

286

Importance of systems biology in engineering microbes for biofuel production  

E-Print Network (OSTI)

of knowledge from sys-tems biology approaches in metabolicand by the Synthetic Biology Engineering Research Center (Current Opinion in Chemical Biology 8. Blanch HW, Adams PD,

Mukhopadhyay, Aindrila

2011-01-01T23:59:59.000Z

287

Evaluating flexibility in railroad construction projects  

E-Print Network (OSTI)

This thesis aims to valuate flexibilities in a large-scale railroad construction project. In general, a railroad construction project involves a large amount of flexibilities due to its long construction period and conflicts ...

Oh, Choong Ryun, 1972-

2005-01-01T23:59:59.000Z

288

Flexible and Strategic Transmission Planning  

Science Conference Proceedings (OSTI)

This update describes two separate but related planning frameworks developed for this project: 1) balancing of reliability and economics in transmission planning and 2) consideration of the need for operational flexibility in planning. Projects that improve reliability can also improve economics, and vice versa. The challenge is in achieving the reliability goals with as much economic benefit as possible, in other words, balancing the reliability and economic goals without compromising either. A method o...

2011-12-22T23:59:59.000Z

289

System Issues and Tradeoffs Associated with Syngas Production and Combustion  

DOE Green Energy (OSTI)

future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Kent H. Casleton; Ronald W. Breault; George A. Richards

2008-06-01T23:59:59.000Z

290

Isomorphs in flexible Lennard-Jones chains  

E-Print Network (OSTI)

This paper shows that the model of short, flexible Lennard-Jones chains (LJC) has curves (isomorphs) in its phase diagram along which structure and dynamics are invariant in the appropriate units. The isomorphs are identified by a density-dependent scaling exponent which can be obtained from fluctuations in the configurational parts of the energy and pressure. The isomorph invariance of the dynamics is seen both in segmental and center of mass dynamics, as well as in the relaxation of the Rouse modes. Jumps between different state points on the same isomorph happen instantaneously without any slow relaxation. Our findings show that the isomorph theory not only applies to atomic and small molecular liquids as previously shown, but also to flexible, anisotropic molecules. Since the LJC is a simple model system for alkanes and polymers, our results provide a possible explanation for why power-law density scaling is observed experimentally in alkanes and many polymeric systems. The theory provides an independent mean of determining the scaling exponent, which is usually treated as a empirical scaling parameter.

Arno A. Veldhorst; Jeppe C. Dyre; Thomas B. Schrder

2013-07-19T23:59:59.000Z

291

Exercising flexible load contracts: Two simple strategies  

Science Conference Proceedings (OSTI)

A flexible load contract is a type of swing option where the holder has the right to receive a given quantity of electricity within a specified period, at a fixed maximum effect (delivery rate). The contract is flexible, in the sense that delivery (the ... Keywords: energy, exercise strategy, flexibility, swing option, uncertainty

Petter Bjerksund; Bjarte Myksvoll; Gunnar Stensland

2008-03-01T23:59:59.000Z

292

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

flow from an on-site steam turbine to raise the kelp to 45Ca 1200 Kw electric steam turbine/generator system. CapitalFinally, the waste steam stream from the turbine is used to

Haven, Kendall F.

2011-01-01T23:59:59.000Z

293

EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho Summary DOE's Bonneville Power Administration and the U.S. Army Corps of Engineers, as co-lead Federal agencies, prepared this EA to evaluate the potential environmental impacts of a proposal to operate Albeni Falls dam during the winter months (approximately December 15th to March 31st) and determine whether the existing Columbia River System Operation Review EIS (DOE/EIS-0170) is adequate or a supplemental or new EIS is required. For more information about this project, see: http://efw.bpa.gov/environmental_services/Document_Library/AFD-FWPO/ http://efw.bpa.gov/environmental_services/Document_Library/System_Operation/ (Link

294

Advancing Energy Systems through Integration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Energy Systems Advancing Energy Systems through Integration Presented in partnership with the United States Department of Energy November 20, 2012 Webinar Community Renewable Energy Success Stories: District Heating with Renewable Energy Saint Paul's Community Energy System * Underground network of pipes aggregate heating and cooling needs * Aggregated thermal loads allows application of technologies and fuels not feasible for individual buildings * Increases fuel flexibility, rate stability, and reliability Community Scale Heating and Cooling 4 ever-greenenergy.com Ever-Green Energy Integrated Energy System flexible & renewable fuel sources reliable and effective production & storage hot & chilled water loops maximize energy conservation & reliability

295

Hiring Flexibilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Hiring Flexibilities | National Nuclear Security Administration Hiring Flexibilities | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Hiring Flexibilities Home > Federal Employment > Our Jobs > Hiring Flexibilities Hiring Flexibilities NNSA supports hiring veterans and persons with disabilities for positions throughout our complex. Veterans Job Seekers with Disabilities

296

Flexible Spending Accounts | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Flexible Spending Accounts | National Nuclear Security Administration Flexible Spending Accounts | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Flexible Spending Accounts Home > Federal Employment > Working at NNSA > Benefits > Flexible Spending Accounts Flexible Spending Accounts The great jobs we have at NNSA also come with comprehensive benefits

297

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

298

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

299

N Reactor filter system fission-product retention assessment  

Science Conference Proceedings (OSTI)

Data for the N Reactor High-Efficiency Particulate Air (HEPA) filter and charcoal filter systems have been evaluated to determine appropriate filter efficiencies for elemental iodine, methyl iodide, hydrogen iodide, and particulates. The data supports the following filter efficiencies: particulates - 99.95%, elemental iodine - 99%, methyl iodide - 70%, and hydrogen iodide - 99%. The HEPA filter and charcoal filter system, loading capacities have been determined for both radionuclide and non-radioactive aerosols. The results demonstrated that the capacity of the N Reactor confinement filtration system is more than adequate to retain both radionuclide and non-radioactive aerosols postulated to be released during accident situations without overloading. In addition, potential filter failure due to unacceptable heat loads from collected radionuclides was evaluated. The results show that with an acceptable air flow through the filter system (greater than 850 ft/sup 3//min), the heat load on the filters from deposited radionuclides will not lead to filter failure. 30 refs., 8 figs., 13 tabs.

Muhlstein, L.D.; Jeppson, D.W.; McCormack, J.D.

1988-06-01T23:59:59.000Z

300

Computerized data acquisition system for production, injection and interference tests  

DOE Green Energy (OSTI)

A computer-based system for collecting, processing, and analyzing pressure transient data has been developed. Primary components include downhole pressure sensors, linedrivers, a micro-computer, data storage disk, scanner, frequency counter, digital voltmeter, power supply, graphics plotter, and printer. In-field data processing and analysis greatly aid in handling the large volume of data that are collected during pressure transients tests, particularly the multiwell interference tests that are so important for characterizing and assessing geothermal reservoirs. In-field data processing provides the field engineer, on a real-time basis, with the information needed to make decisions regarding test parameters and duration. The system has been used on numerous occasions and has proved itself to be reliable under the harsh operating conditions that are usually encountered in the field. This paper describes the advantages of using this type of system for collecting data, the components and configuration of the system, and the software programs used to collect and process the data. Finally, two field applications are presented.

Benson, S.M.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Phosphor Systems for Illumination Quality Solid State Lighting Products  

Science Conference Proceedings (OSTI)

The objective of this program is to develop phosphor systems that will enable LED lamps with 96 lm/W efficacy at correlated color temperatures, (CCTs) ~3000 K, and color rendering indices (CRIs) >80 and 71 lm/W efficacy at CCTinvention and development of new phosphor materials that have improved efficiency and better match the eye sensitivity curves.

Setlur, Anant; Briel, Linda; Cleaver, Robert; Clothier, Brent; Gao, Yan; Harlow, Richard; Henderson, Claire; Heward, William; Hill, M Christine; Lyons, Robert; Murphy, James; Siclovan, Oltea; Stoklosa, Stan; Happek, Uwe; Aanegola, Srinath; Aesram, Danny; Deshpande, Anirudha; Jacob, Cherian; Kolodin, Boris; Stoklosa, Emil; Beers, Williams

2010-03-31T23:59:59.000Z

302

Flexible Spending Accounts (FSA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Spending Accounts (FSA) Flexible Spending Accounts (FSA) Flexible Spending Accounts (FSA) FSAFEDS offers three different flexible spending accounts (FSAs): A health care flexible spending account A limited expense health care flexible spending account A dependent care flexible spending account. Eligible employees can enroll in FSAFEDS each year during the Federal Benefits Open Season (the November/December timeframe). Open Season enrollments are effective January 1 of the following year. Current enrollees must remember to enroll each year to continue participating in FSAFEDS. Enrollment does NOT carry forward year to year. New and newly eligible employees who wish to enroll in this program must do so within 60 days after they become eligible, but before October 1 of the calendar year.

303

CZT vs FFT: Flexibility vs Speed  

Science Conference Proceedings (OSTI)

Bluestein's Fast Fourier Transform (FFT), commonly called the Chirp-Z Transform (CZT), is a little-known algorithm that offers engineers a high-resolution FFT combined with the ability to specify bandwidth. In the field of digital signal processing, engineers are always challenged to detect tones, frequencies, signatures, or some telltale sign that signifies a condition that must be indicated, ignored, or controlled. One of these challenges is to detect specific frequencies, for instance when looking for tones from telephones or detecting 60-Hz noise on power lines. The Goertzel algorithm described in Embedded Systems Programming, September 2002, offered a powerful tool toward finding specific frequencies faster than the FFT.Another challenge involves analyzing a range of frequencies, such as recording frequency response measurements, matching voice patterns, or displaying spectrum information on the face of an amateur radio. To meet this challenge most engineers use the well-known FFT. The CZT gives the engineer the flexibility to specify bandwidth and outputs real and imaginary frequency components from which the magnitude and phase can be computed. A description of the CZT and a discussion of the advantages and disadvantages of CZT versus the FFT and Goertzel algorithms will be followed by situations in which the CZT would shine. The reader will find that the CZT is very useful but that flexibility has a price.

S. Sirin

2003-10-01T23:59:59.000Z

304

Bacterial systems for selective plugging in secondary oil production  

SciTech Connect

In order to improve the secondary recovery of petroleum from Lower Cretaceous bitumen and heavy oil deposits in Alberta, Canada, plugging studies of anaerobic bacteria, capable of the controlled production of slime, in situ were undertaken. Known cultures of L. mesenteroides (NRRL B512, B512F, B742 and B523) and 75 wild strains were tested in a model core flooding apparatus for their ability to produce stable, water insoluble polysaccharide slimes. Slime was not formed using glucose/fructose nutrient but was formed by the known cultures and four wild strains when sucrose nutrient media was used. However, wherein the polysaccharides slime produced by the wild strains was found to be water soluble dextran polymers and thus unstable, that produced by the known L. mesenteroides strains was water insoluble and stable. It is thus possible to produce a water stable core plug by injecting an appropriate strain of L. mesenteroides followed by an injection of sucrose solution.

Jack, T.R.; Diblasio, E.; Thompson, B.G.; Ward, V.

1983-03-01T23:59:59.000Z

305

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable  

E-Print Network (OSTI)

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable fuels be used annually by 2022, which allows continued

306

A geochemical expert system prototype using object-oriented knowledge representation and a production rule system  

Science Conference Proceedings (OSTI)

Keywords: MINEQL, artificial intelligence, expert systems, geochemical expert system, geochemical modeling, geochemistry

Forrest M. Hoffman; Vijay S. Tripathi

1993-01-01T23:59:59.000Z

307

Thermodynamics of tubelike flexible polymers  

E-Print Network (OSTI)

In this work we present the general phase behavior of short tubelike flexible polymers. The geometric thickness constraint is implemented through the concept of the global radius of curvature. We use sophisticated Monte Carlo sampling methods to simulate small bead-stick polymer models with Lennard-Jones interaction among non-bonded monomers. We analyze energetic fluctuations and structural quantities to classify conformational pseudophases. We find that the tube thickness influences the thermodynamic behavior of simple tubelike polymers significantly, i.e., for given temperature, the formation of secondary structures strongly depends on the tube thickness.

Thomas Vogel; Thomas Neuhaus; Michael Bachmann; Wolfhard Janke

2009-07-17T23:59:59.000Z

308

Management of Leaks in Hydrogen Production, Delivery, and Storage Systems  

DOE Green Energy (OSTI)

A systematic approach to manage hydrogen leakage from components is presented. Methods to evaluate the quantity of hydrogen leakage and permeation from a system are provided by calculation and testing sensitivities. The following technology components of a leak management program are described: (1) Methods to evaluate hydrogen gas loss through leaks; (2) Methods to calculate opening areas of crack like defects; (3) Permeation of hydrogen through metallic piping; (4) Code requirements for acceptable flammability limits; (5) Methods to detect flammable gas; (6) Requirements for adequate ventilation in the vicinity of the hydrogen system; (7) Methods to calculate dilution air requirements for flammable gas mixtures; and (8) Concepts for reduced leakage component selection and permeation barriers.

Rawls, G

2006-04-27T23:59:59.000Z

309

Phosphor Systems for Illumination Quality Solid State Lighting Products  

SciTech Connect

The objective of this program is to develop phosphor systems that will enable LED lamps with 96 lm/W efficacy at correlated color temperatures, (CCTs) ~3000 K, and color rendering indices (CRIs) >80 and 71 lm/W efficacy at CCT<3100 K and CRI~95 using phosphor downconversion of LEDs. This primarily involves the invention and development of new phosphor materials that have improved efficiency and better match the eye sensitivity curves.

Setlur, Anant; Briel, Linda; Cleaver, Robert; Clothier, Brent; Gao, Yan; Harlow, Richard; Henderson, Claire; Heward, William; Hill, M Christine; Lyons, Robert; Murphy, James; Siclovan, Oltea; Stoklosa, Stan; Happek, Uwe; Aanegola, Srinath; Aesram, Danny; Deshpande, Anirudha; Jacob, Cherian; Kolodin, Boris; Stoklosa, Emil; Beers, Williams

2010-03-31T23:59:59.000Z

310

Use case-driven component specification: a medical applications perspective to product line development  

Science Conference Proceedings (OSTI)

Modular and flexible software components can be useful for reuse across a class of domain-specific applications or product lines. By varying the composition of components suited to a particular product line, an assortment of applications can be developed ... Keywords: component specifications, generation of component-based systems, medical domain, software lifecycle

M. Brian Blake; Kevin Cleary; Sohan R. Ranjan; Luis Ibanez; Kevin Gary

2005-03-01T23:59:59.000Z

311

System dynamics modelling of product carbon footprint life cycles for collaborative green supply chains  

Science Conference Proceedings (OSTI)

Governments, environmental groups and industry associations are reducing greenhouse gas emissions to insure environmental sustainability. Manufacturing plays an important role in economic development but is a main cause of global warming since production ... Keywords: economic inputoutput life cycle assessment, mass customisation, product carbon footprint, system dynamics

AmyJ. C. Trappey; CharlesV. Trappey; Chih-Tung Hsiao; JerryJ. R. Ou; Chin-Tsung Chang

2012-10-01T23:59:59.000Z

312

The Food and Fiber System and Production Agriculture's Contributions to the Texas Economy  

E-Print Network (OSTI)

In 2001, Texas agriculture generated $14 billion in cash receipts. The production, processing, distribution and consumption of food and fiber products contributes substantially to the economy of Texas. This publication reports the contributions of the food and fiber system and individual commodities.

Nelson, Gene

2004-12-01T23:59:59.000Z

313

The evolution, challenges, and future of knowledge representation in product design systems  

Science Conference Proceedings (OSTI)

Product design is a highly involved, often ill-defined, complex and iterative process, and the needs and specifications of the required artifact get more refined only as the design process moves toward its goal. An effective computer support tool that ... Keywords: Collaborative engineering, Computational tools, Design rationale, Knowledge capture, Knowledge management, Knowledge representation, Multidisciplinary modeling, Ontology, Product design, Simulation, Systems engineering, Virtual reality

Senthil K. Chandrasegaran; Karthik Ramani; Ram D. Sriram; Imr HorvTh; Alain Bernard; Ramy F. Harik; Wei Gao

2013-02-01T23:59:59.000Z

314

Construction of a Systemic Quality Model for Evaluating a Software Product  

Science Conference Proceedings (OSTI)

Quality is currently considered one of the main assets with which a firm can enhance its competitive global position. This is one reason why quality has become essential for ensuring that a company's products and processes meet customers' needs. A recent ... Keywords: Dromey's model, ISO 9126, metrics, quality model, software product quality, systemic quality

Maryoly Ortega; Mara Prez; Teresita Rojas

2003-07-01T23:59:59.000Z

315

The evolution, challenges, and future of knowledge representation in product design systems  

Science Conference Proceedings (OSTI)

Product design is a highly involved, often ill-defined, complex and iterative process, and the needs and specifications of the required artifact get more refined only as the design process moves toward its goal. An effective computer support tool that ... Keywords: Collaborative engineering, Computational tools, Design rationale, Knowledge capture, Knowledge management, Knowledge representation, Multidisciplinary modeling, Ontology, Product design, Simulation, Systems engineering, Virtual reality

Senthil K. Chandrasegaran; Karthik Ramani; Ram D. Sriram; Imr HorvTh; Alain Bernard; Ramy F. Harik; Wei Gao

316

Energy production control of an experimental kite system in presence of wind gusts.  

E-Print Network (OSTI)

Energy production control of an experimental kite system in presence of wind gusts. Rogelio Lozano for the production of wind energy, using a kite's traction force. The aim of this paper is to control the amount of energy produced by the kite, and to be able to fly it safely in the presence of strong wind gusts. Our

Recanati, Catherine

317

Stationary Fuel Cell System Composite Data Products: Data Through Quarter 4 of 2012  

DOE Green Energy (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes stationary fuel cell system composite data products for data through the fourth quarter of 2012.

Ainscough, C.; Kurtz, J.; Saur, G.

2013-05-01T23:59:59.000Z

318

Investigation of Adaptive Control Techniques for Improved Fuel Flexibility  

Science Conference Proceedings (OSTI)

In recent years, EPRI has been studying the role of enhanced instrumentation and control (I&C) systems in improving operational flexibility for fossil-fueled power plants. One method of improving operational flexibility is by reducing plant operating costs. For coal-fired plants, the cost of fuel represents about 75% of the total operating costs, so obtaining lower priced fuel is often a major objective. Unlike many fuels, all coals are not the same and their differences can have significant impacts on a...

2007-03-21T23:59:59.000Z

319

Pervasive flexibility in living technologies through degeneracy-based design  

Science Conference Proceedings (OSTI)

The capacity to adapt can greatly influence the success of systems that need to compensate for damaged parts, learn how to achieve robust performance in new environments, or exploit novel opportunities that originate from new technological interfaces ... Keywords: Pervasive flexibility, adaptation, degeneracy, distributed robustness, living technologies

James Whitacre; Axel Bender

2013-10-01T23:59:59.000Z

320

Life Prediction of Composite Armor in an Unbonded Flexible Pipe  

E-Print Network (OSTI)

Composite materials are under consideration for the replacement of steel helical tendons in unbonded flexible pipes utilized by the offshore oil industry. Higher strength to weight ratios and increased corrosion resistance are the primary advantages of a composite material for this application. The current study focuses on the life prediction of a PPS/AS-4 carbon fiber composite proposed for the above employment. In order to accomplish this task, the properties of the material were experimentally characterized at varying temperatures, aging times and loadings. An analytic technique was developed to predict tensile rupture behavior from bend-compression rupture data. In comparison to tensile rupture tests, bend-compression rupture data collection are uncomplicated and efficient; thus, this technique effectively simplifies and accelerates the material characterization process. The service life model for the flexible pipe composite armor was constructed with MRLife, a well established performance simulation code for material systems developed by the Materials Response Group at Virginia Tech. In order to validate MRLife for the current material, experimental data are compared to life prediction results produced by the code. MRLife was then applied to predict the life of the flexible pipe composite armor in an ocean environment. This analysis takes into account the flexible pipe structure and the environmental and mechanical loading history of an ocean service location. Several parameter studies of a flexible pipe in a hypothetical environment were conducted. These analyses highlight certain loadings and conditions which are particularly detrimental to the life of the material.

Kenneth L. Reifsnider; Michael W. Hyer; Scott L. Hendricks; James S. Loverich; James S. Loverich

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Improving the Water Efficiency of Cooling Production System  

E-Print Network (OSTI)

For most of the time, cooling towers (CTs) of cooling systems operate under partial load conditions and by regulating the air circulation with a variable frequency drive (VFD), significant reduction in the fan power can be achieved. In Kuwait and other counties of Arabian Peninsula, reduced airflow can lead to reduction in water consumption as well, since during the summer season, the dry bulb temperature of the ambient air is higher than the incoming hot water temperature, and the air undergoes sensible cooling. This paper presents the findings of a study conducted in the Avenues mall, Kuwait. Initially, the CTs operated only at high speed, and on a typical summer day nearly one fourth of the make-up water was used for self cooling of air. The study based on measured data revealed that the use of VFD can reduce the water wastage for self-cooling of air by as much as 75% and overall water consumption by 18.6% while keeping the cooling system performance at design level.

Maheshwari, G.; Al-Hadban, Y.; Al-Taqi, H. H.; Alasseri, R.

2010-01-01T23:59:59.000Z

322

Unit Commitment Considering Generation Flexibility and Environmental Constraints  

Science Conference Proceedings (OSTI)

This paper proposes a new framework for power system unit commitment process, which incorporates the generation flexibility requirements and environmental constraints into the existing unit commitment algorithm. The generation flexibility requirements are to address the uncertainties with large amount of intermittent resources as well as with load and traditional generators, which causes real-time balancing requirements to be variable and less predictable. The proposed flexibility requirements include capacity, ramp and ramp duration for both upward and downward balancing reserves. The environmental constraints include emission allowance for fossil fuel-based generators and ecological regulations for hydro power plants. Calculation of emission rates is formulated. Unit commitment under this new framework will be critical to the economic and reliable operation of the power grid and the minimization of its negative environmental impacts, especially when high penetration levels of intermittent resources are being approached, as required by the renewable portfolio standards in many states.

Lu, Shuai; Makarov, Yuri V.; Zhu, Yunhua; Lu, Ning; Prakash Kumar, Nirupama; Chakrabarti, Bhujanga B.

2010-07-31T23:59:59.000Z

323

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1994  

SciTech Connect

This is a quarterly report on the Westinghouse Electric Corporation Advanced Turbine Systems Program--conceptual design and product development. The topics of the report include the management plan, National Energy Policy Act, selection of natural gas-fired advanced turbine systems, selection of coal-fired advanced turbine systems, market study, systems definition and analysis, design and test of critical components, and plans for the next reporting period.

1994-12-01T23:59:59.000Z

324

Review and evaluation of design analysis methods for calculating flexibility of nozzles and branch connections  

SciTech Connect

Modern piping system design generally includes an analytical determination of displacements, rotations, moments, and reaction forces at various postions along the piping system by means of a flexibility analysis. The analytical model is normally based on a strength-of-materials description of the piping system as an interconnected set of straight and curved beams, along with ''flexibility factors'' that are used to compensate for inaccuracies in the model behavior. This report gives an in-depth evaluation of the various analytical descriptions of the flexibility factors associated with piping system branch connection and nozzles. Recommendations are given for developing needed improvements. 59 refs., 29 figs., 26 tabs.

Moore, S.E.; Rodabaugh, E.C.; Mokhtarian, K.; Gwaltney, R.C.

1987-12-01T23:59:59.000Z

325

Estimating Flexibility Requirements in a Demand-Driven Lean/JIT Environment  

Science Conference Proceedings (OSTI)

Demand-driven JIT manufacturing is based on the assumption of a level stable demand rate. This is however not the reality experienced by most companies. To handle fluctuations from a level stable demand rate, the manufacturing system needs flexibility. ... Keywords: JIT, capacity matching, flexibility

Peter Nielsen; Kenn Steger-Jensen

2008-06-01T23:59:59.000Z

326

Flexible pipe crawling device having articulated two axis coupling  

DOE Patents (OSTI)

An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.

Zollinger, William T. (Martinez, GA)

1994-01-01T23:59:59.000Z

327

Flexible pipe crawling device having articulated two axis coupling  

DOE Patents (OSTI)

An apparatus is described for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in inchworm' fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend. 4 figures.

Zollinger, W.T.

1994-05-10T23:59:59.000Z

328

A Systems Framework for Assessing Plumbing Products-Related Water Conservation  

Science Conference Proceedings (OSTI)

Reducing the water use of plumbing productstoilets, urinals, faucets, and showerheads has been a popular conservation measure. Improved technologies have created opportunities for additional conservation in this area. However, plumbing products do not operate in a vacuum. This paper reviews the literature related to plumbing products to determine a systems framework for evaluating future conservation measures using these products. The main framework comprises the following categories: water use efficiency, product components, product performance, source water, energy, and plumbing/sewer infrastructure. This framework for analysis provides a starting point for professionals considering future water conservation measures to evaluate the need for additional research, collaboration with other standards or codes committees, and attachment of additional metrics to water use efficiency (such as performance).

Williams, Alison; Dunham Whitehead, Camilla; Lutz, James

2011-12-02T23:59:59.000Z

329

Flexible barrier film, method of forming same, and organic electronic device including same  

DOE Patents (OSTI)

A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

2013-03-26T23:59:59.000Z

330

Optimization Online - Flexible Solutions to Maritime Inventory ...  

E-Print Network (OSTI)

Aug 12, 2013 ... Flexible Solutions to Maritime Inventory Routing Problems with Delivery Time Windows. Chengliang Zhang(czhang85 ***at*** gatech.edu)

331

Stretchable Power Sources for Flexible Electronics  

Science Conference Proceedings (OSTI)

In order to accommodate these needs, power source devices must be flexible and .... Theoretical Investigation of Cathode Catalysts for Alternative Li Batteries.

332

IVIP --- A Scientific Workflow System to Support Experts in Spatial Planning of Crop Production  

Science Conference Proceedings (OSTI)

Decision making for crop production planning is essentially driven by location-based or more precisely by space-oriented information. Therefore, farmers and regional experts in the field mostly rely on new spatial-data-oriented decision making tools. ... Keywords: Agriculture, Forecast, GIS, Kepler, Scientific data integration, Scientific workflow models, Spatial Decision Support System (SDSS), WSDL, Web Service, Workflow Management System (WMS)

Christopher J. Tuot; Michael Sintek; Andreas R. Dengel

2008-07-01T23:59:59.000Z

333

An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.  

SciTech Connect

References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

Litzenberger, Wayne; Lava, Val

1994-08-01T23:59:59.000Z

334

Production Cost Modeling of Cogenerators in an Interconnected Electric Supply System  

E-Print Network (OSTI)

The Optimal State Electricity Supply System in Texas (OSEST) research project is part of the continuing Public Utility Commission of Texas (PUCT) effort to identify possible improvements in the production, transmission, and use of electricity in the state. The OSEST project is designed to identify the general configuration of the optimal electric supply system resulting from coordinated system planning and operation from a statewide perspective. The Optimized Generation Planning Program (OGP) and Multi-Area Production Simulation Program with Megawatt Flow (MAPS/MWFLOW) are two computer programs developed by General Electric that are being used in the study. Both of these programs perform production costing calculations to evaluate the performance of various electric supply system configurations necessary to appropriately model the present and future cogeneration activity in the service areas of the electric utilities that compose the Electric Reliability Council of Texas (ERCOT).

Ragsdale, K.

1989-09-01T23:59:59.000Z

335

System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

2010-10-01T23:59:59.000Z

336

A flexible location management scheme for mobile computing  

E-Print Network (OSTI)

Location management for mobile users is an important issue in distributed, mobile computing environments. In this thesis, I propose a flexible location management scheme on the Internet to support mobile users. The proposed scheme supports location search and update operations based on a data replication technique. I implemented the proposed scheme as an experimental prototype using ORACLE Distributed Database Management System (DDBMS), where two clients access independent database objects on one server to simulate the behavior of a distributed system.

Zhang, Ying

1996-01-01T23:59:59.000Z

337

Hydrogen Fueling Systems and Infrastructure  

E-Print Network (OSTI)

Hydrogen Fueling Systems and Infrastructure Storage & Delivery Production Conversion & Application emissions: renewable based feedstock · Flexibility #12;Targets and Status Hydrogen Delivery 858280%Energyk1.2M1.4M$/mileTrunk lines Hydrogen Gas Pipelines 877065%Energy efficiency 0.531.011.11$/kg H2Cost

338

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

DOE Green Energy (OSTI)

The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

Not Available

1991-10-01T23:59:59.000Z

339

Levelized life-cycle costs for four residue-collection systems and four gas-production systems  

DOE Green Energy (OSTI)

Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

1983-01-01T23:59:59.000Z

340

By-product disposal from MSW incinerator flue gas cleaning systems  

Science Conference Proceedings (OSTI)

Waste incineration has been found to be an effective method of achieving significant volume reduction of Municipal Solid Waste (MSW) while at the same time allowing for energy recovery in the form of steam or electricity. Concern over potential air pollution from incinerators in the form of acid gases, heavy metals and dioxins has led to the application of Spray Dryer Absorption (SDA) flue gas cleaning systems to control these emissions. SDA has demonstrated high efficiencies in converting these air pollutants into a dry by-product for disposal. This has, in turn, led to concerns over potential secondary pollution from the disposal of these by-products. This paper presents a description of the SDA process and reviews disposal options for the SDA product. Product characteristics are given and results of leaching studies are presented. Comparisons between EPA's and TEP and TCLP procedures are presented. Results of dioxin measurements from the by-product are given.

Donnelly, J.R. (Joy Manufacturing Co., Los Angeles, CA (US)); Jons, E. (A/S Niro Atomizer, Copenhagen (DK))

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Demonstration Development Project: Plant Operational Flexibility  

Science Conference Proceedings (OSTI)

This report provides a summary of the EPRI Generation Sector initiative on flexible plant operations through 2012. The initiative objectives are to identify industry research needs related to increased flexible operation, to coordinate the sector research, and to communicate with stakeholders within the Electric Power Research Institute (EPRI) and the advisory structure. A detailed review of the Generation Sector ...

2012-12-12T23:59:59.000Z

342

Route planning with flexible edge restrictions  

Science Conference Proceedings (OSTI)

In this work, we explore a new type of flexible shortest-path query, in which the query can be dynamically parameterized to constrain the type of edges that may be included in the resulting shortest path (e.g., find the shortest path in a road network ... Keywords: Contraction Hierarchies, edge restrictions, flexible scenario, route planning, shortest paths

Robert Geisberger; Michael N. Rice; Peter Sanders; Vassilis J. Tsotras

2012-07-01T23:59:59.000Z

343

Flexible piezoelectric cantilevers fabricated on polyimide substrate  

Science Conference Proceedings (OSTI)

In this work we present for the first time the fabrication and the characterization of flexible micro cantilevers based on Aluminum Nitride (AlN) as piezoelectric active layer and polyimide as elastic substrate. The AlN thin film, embedded into two layers ... Keywords: AlN, Cantilevers, Flexible, Piezoelectric transduction, Polyimide

S. Petroni; G. Maruccio; F. Guido; M. Amato; A. Campa; A. Passaseo; M. T. Todaro; M. De Vittorio

2012-10-01T23:59:59.000Z

344

Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy...

345

Optimal fuel cell system design considering functional performance and production costs  

E-Print Network (OSTI)

In this work the optimization-based, integrated concurrent design method is applied to the modelling, analysis, and design of a transportation fuel cell system. A general optimal design model considering both functional performance and production costs is first introduced. Using the Ballard Mark V Transit Bus fuel cell system as an example, the study explores the intrinsic relations among various fuel cell system performance and cost aspects to provide insights for new cost-effective designs. A joint performance and cost optimization is carried out to demonstrate this new approach. This approach breaks the traditional barrier between design concerning functional performance. and manufacturing concerning production costs., allowing both functional performance and production costs to

D. Xue A; Z. Dong B

1998-01-01T23:59:59.000Z

346

Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability.  

SciTech Connect

Abstract. Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive. Keywords. Short rotation woody crop, forest hydrology, water quality, hardwood plantation.

Trettin, Carl,C.; Amatya, Devendra; Coleman, Mark.

2008-07-01T23:59:59.000Z

347

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

348

Design and development of a mobile EPC-RFID-based self-validation system (MESS) for product authentication  

Science Conference Proceedings (OSTI)

The increase in the number of counterfeits penetrating into the open market has created the need for a product authentication approach in tracing and tracking the product anytime, anywhere. Owing to the vague concepts frequently represented in flow of ... Keywords: Anti-counterfeit system, Counterfeiting, Electronic product code (EPC), Product authentication, Radio frequency identification (RFID)

S. K. Kwok; Jacky S. L. Ting; Albert H. C. Tsang; W. B. Lee; Benny C. F. Cheung

2010-09-01T23:59:59.000Z

349

Optimization of an Oil Production System using Neural Networks and Genetic Algorithms Guillermo Jimenez de la C 1,2  

E-Print Network (OSTI)

Abstract This paper proposes an optimization strategy which is based on neural networks and genetic algorithms to calculate the optimal values of gas injection rate and oil rate for oil production system. Two cases are analyzed: a) A single well production system and b) A production system composed by two gaslifted wells. For both cases an objective function is maximized to reduce production cost. The proposed strategy shows the ability of the neural networks to approximate the behavior of an oil production system and the genetic algorithms to solve optimization problems when a mathematical model is not available.

Jose A. Ruz-hernandez; Ruben Salazar M; Evgen Shelomov

2009-01-01T23:59:59.000Z

350

Exploration and exploitation alliances in biotechnology: A system of new product development  

E-Print Network (OSTI)

We link the explorationexploitation framework of organizational learning to a technology ventures strategic alliances and argue that the causal relationship between the ventures alliances and its new product development depends on the type of the alliance. In particular, we propose a product development path beginning with exploration alliances predicting products in development, which in turn predict exploitation alliances, and that concludes with exploitation alliances leading to products on the market. Moreover, we argue that this integrated product development path is moderated negatively by firm size. As a technology venture grows, it tends to withdraw from this product development path to discover, develop, and commercialize promising projects through vertical integration. We test our model on a sample of 325 biotechnology firms that entered 2565 alliances over a 25-year period. We find broad support for the hypothesized product development system and the moderating effect of firm size. Copyright 2004 John Wiley & Sons, Ltd. Strategic alliances are a ubiquitous phenomenon, especially in high-technology industries (Hagedoorn, 1993). Parallel to the rise in interfirm cooperation, research on strategic alliances has burgeoned, with one strand focusing on the performance impact of alliances on the focal firm (Gulati, 1998). In this line of inquiry, several scholars have studied the relationship between a firms strategic alliances and its innovative performance or new product development (Shan, Walker, and

Frank T. Rothaermel; David L. Deeds

2004-01-01T23:59:59.000Z

351

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

352

A Pion Production and Capture System for a 4 MW Target Station  

Science Conference Proceedings (OSTI)

A study of a pion production and capture system for a 4 MW target station for a neutrino factory or muon collider is presented. Using the MARS code, we simulate the pion production produced by the interaction of a free liquid mercury jet with an intense proton beam. We study the variation of meson production with the direction of the proton beam relative to the target. We also examine the influence on the meson production by the focusing of the proton beam. The energy deposition in the capture system is determined and the shielding required in order to avoid radiation damage is discussed. The exploration for the multiple proton beam entry directions relative to mercury jet in the 8GeV proton beam case demonstrates that an asymmetric layout is required in order to achieve the same beam/jet crossing angle at the jet axis. We find a correlation between the distance of beam relative to the jet and the meson production. The peak meson production is 8% higher than for the lowest case. The examination of the influence on the meson production by the focusing of the proton beam shows the meson production loss is negligible (<1%) for a beta function to be 0.3m or higher for the proton beam. By investigating the energy deposition in the target/capture system, we see that the bulk of 4-MW proton beam power is deposited in the water cooled tungsten-carbide (WC) shielding, the mercury jet and the capture beam pipe. In addition, high power deposition in the first superconducting coil causes an issue for its operation and life time. Enhanced shielding is necessary to lower the radiation damage.

Ding, X.; Kirk, H.; Berg, J.S.

2010-06-01T23:59:59.000Z

353

Stable Encoding of Task Structure Coexists with Flexible Coding of Task Sensorimotor Striatum  

E-Print Network (OSTI)

The sensorimotor striatum, as part of the brain's habit circuitry, has been suggested to store fixed action values as a result of stimulus-response learning and has been contrasted with a more flexible system that conditionally ...

Kubota, Yasuo

354

Implementation of RFID in a low volume high flexibility assembly plant : item-level tagging  

E-Print Network (OSTI)

The implementation of an RFID checkpoint system in a low volume high flexibility assembly plant, aimed at tracking the flow of parts within the facility, was studied. A pilot revealed the suitability of the technology to ...

Koniski, Cyril (Cyril A.)

2010-01-01T23:59:59.000Z

355

Thermal hydraulic design and analysis of a large lead-cooled reactor with flexible conversion ratio  

E-Print Network (OSTI)

This thesis contributes to the Flexible Conversion Ratio Fast Reactor Systems Evaluation Project, a part of the Nuclear Cycle Technology and Policy Program funded by the Department of Energy through the Nuclear Energy ...

Nikiforova, Anna S., S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

356

Flexibility in building design : a real options approach and valuation methodology to address risk  

E-Print Network (OSTI)

This research develops an approach to designing and valuing flexible systems subject to identified future uncertainties. The approach addresses two shortcomings of current design and decision-making practices that are ...

Greden, Lara V. (Lara Virginia), 1977-

2005-01-01T23:59:59.000Z

357

A prototype on-line work procedure system for radioisotope thermoelectric generator production  

DOE Green Energy (OSTI)

An on-line system to manage work procedures is being developed to support radioisotope thermoelectric generator (RTG) assembly and testing in a new production facility. This system implements production work procedures as interactive electronic documents executed at the work site with no intermediate printed form. It provides good control of the creation and application of work procedures and provides active assistance to the worker in performing them and in documenting the results. An extensive prototype of this system is being evaluated to ensure that it will have all the necessary features and that it will fit the user's needs and expectations. This effort has involved the Radioisotope Power Systems Facility (RPSF) operations organization and technology transfer between Westinghouse Hanford Company (Westinghouse Hanford) and EG G Mound Applied Technologies Inc. (Mound) at the US Department of Energy (DOE) Mound Site. 1 ref.

Kiebel, G.R.

1991-09-01T23:59:59.000Z

358

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01T23:59:59.000Z

359

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01T23:59:59.000Z

360

Sampling Considerations for Monitoring Corrosion Products in the Reactor Coolant System in Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

Chemistry sampling of the reactor coolant system (RCS) of pressurized water reactors (PWRs) can provide significant information regarding the health of the primary system. Timely detection of increased corrosion product concentrations will aid in evaluating any risks associated with the onset of an axial offset anomaly, increased shutdown releases, increased out-of-core dose rates, or increased personnel doses. This report provides recommendations for improved RCS sampling.

2006-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Control and supervision of a complex production process using hybrid systems techniques  

Science Conference Proceedings (OSTI)

New processing activities for the decommissioning of the Experimental Breeder Reactor II are being carried out at Argonne National Laboratory. The task addressed in this paper is a process to convert metallic sodium to sodium carbonate. The main idea ... Keywords: Argonne National Laboratory, Experimental Breeder Reactor II, complex production process supervision, fission reactor core control, fission research reactors, hybrid control solution, hybrid system techniques, hybrid systems techniques, metallic sodium, nuclear engineering computing, sodium carbonate

H. E. Garcia

1995-11-01T23:59:59.000Z

362

Catalytic reactive separation system for energy-efficient production of cumene  

DOE Patents (OSTI)

The present invention relates to an atmospheric pressure, reactive separation column packed with a solid acid zeolite catalyst for producing cumene from the reaction of benzene with propylene. Use of this un-pressurized column, where simultaneous reaction and partial separation occur during cumene production, allow separation of un-reacted, excess benzene from other products as they form. This high-yielding, energy-efficient system allows for one-step processing of cumene, with reduced need for product purification. Reacting propylene and benzene in the presence of beta zeolite catalysts generated a selectivity greater than 85% for catalytic separation reactions at a reaction temperature of 115 degrees C and at ambient pressure. Simultaneously, up to 76% of un-reacted benzene was separated from the product; which could be recycled back to the reactor for re-use.

Buelna, Genoveva (Nuevo Laredo, MX); Nenoff, Tina M. (Albuquerque, NM)

2009-07-28T23:59:59.000Z

363

Using model checking to analyze the system behavior of the LHC production grid  

Science Conference Proceedings (OSTI)

DIRAC (Distributed Infrastructure with Remote Agent Control) is the grid solution designed to support production activities as well as user data analysis for the Large Hadron Collider ''beauty'' experiment. It consists of cooperating distributed services ... Keywords: Distributed system, Grid, LHC, Model checking, Process algebra, Workflow

Daniela Remenska, Tim A. C. Willemse, Kees Verstoep, Jeff Templon, Henri Bal

2013-10-01T23:59:59.000Z

364

A PRODUCTION SIMULATION TOOL FOR SYSTEMS WITH INTEGRATED WIND ENERGY RESOURCES  

E-Print Network (OSTI)

A PRODUCTION SIMULATION TOOL FOR SYSTEMS WITH INTEGRATED WIND ENERGY RESOURCES BY NICOLAS BENOIT the energy output of a wind farm in a single location and of those in multiple locations. In this way, we for such planning tools. The incorporation of the wind energy model requires the extension of the widely used

Gross, George

365

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-01-01T23:59:59.000Z

366

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01T23:59:59.000Z

367

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01T23:59:59.000Z

368

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-01-01T23:59:59.000Z

369

On the Value of Input-Efficiency, Capacity-Efficiency, and the Flexibility to Rebalance Them  

E-Print Network (OSTI)

Abstract: A common characteristic of basic material manufacturers (which account for 85 % of all industrial energy use) and of cleantech manufacturers is that they are price-takers in their input and output markets. Variability in those prices has implications for how much a manufacturer should invest in three fundamental types of process improvement. Input price variability reduces the value of improving input-efficiency (output produced per unit input) but increases that of capacityefficiency (the rate at which a production facility can convert input into output). Output price variability increases the value of capacity-efficiency, but it increases the value of input-efficiency if and only if the expected margin is small. Moreover, as the expected input cost rises, the value of input-efficiency decreases. A third type of process improvement is to develop flexibility in inputefficiency versus capacity-efficiency (the ability to respond to a rise in input cost or fall in output price by increasing input-efficiency at the expense of capacity-efficiency). The value of this flexibility decreases with variability in input and output prices, if and only if the expected margin is thin. Together, these results suggest that a carbon tax or cap-and-trade system may reduce investment by basic material manufacturers in improving energy-efficiency.

Erica L. Plambeck; Terry A. Taylor

2013-01-01T23:59:59.000Z

370

The feasibility assessment of a U.S. natural gas production reporting system uniform production reporting model. Final report, July 1993--June 1994  

SciTech Connect

The Uniform Production Reporting Model (UPRM) project was charged with identifying the best practices and procedures of the natural gas producing states related to the gathering, management, and dissemination of production data. It is recommended that the producing states begin the process of upgrading state systems using the concepts embodied in the UPRM model.

NONE

1994-06-01T23:59:59.000Z

371

Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell  

SciTech Connect

This report summarizes the work performed for the program entitled High Performance Flexible Reversible Solid Oxide Fuel Cell under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

Guan, Jie; Minh, Nguyen

2007-02-21T23:59:59.000Z

372

MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION  

SciTech Connect

Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

2013-08-01T23:59:59.000Z

373

Flexible Capital Fund (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Capital Fund (Vermont) Flexible Capital Fund (Vermont) Flexible Capital Fund (Vermont) < Back Eligibility Commercial Agricultural Construction Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Loan Program Provider Vermont Sustainable Jobs Fund The Vermont Sustainable Jobs Fund's Flexible Capital Fund (the "Flex Fund") is designed for companies in Vermont's rural areas that are smaller and work on a less-than global scale, offering a return on investment that does not always meet venture capital levels. These rural companies may need a form of "equity" to fuel growth but need it in lesser amounts and perhaps at lower returns than traditional venture

374

Biaxially Oriented Film on Flexible Polymeric Substrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Biaxially Oriented Film on Flexible Polymeric Substrate Biaxially Oriented Film on Flexible Polymeric Substrate Biaxially Oriented Film on Flexible Polymeric Substrate A semiconducting structure having a glass substrate. Available for thumbnail of Feynman Center (505) 665-9090 Email Biaxially Oriented Film on Flexible Polymeric Substrate LANL's Aligned-Crystalline Silicon (ACSi) technology provides highly crystalline silicon films on inexpensive substrates, such as metal sheets and glass plates. ACSi films exhibit good electrical and optical properties and have the potential to make an impact on the solar cell industry. The current ACSi prototype, designed under subpar tooling conditions in a non-optimal environment, already demonstrates 2% conversion efficiency. U.S. Patent No.: 7,601.430 (DOE S-104,959) Patent Application Filing Date: January 31, 2006

375

A flexible design framework for autonomous mowing  

E-Print Network (OSTI)

This work outlines the creation of a flexible design framework for autonomous mowing to meet changing customer needs and functionality across a spectrum of applications from residential areas to sport complexes. The thesis ...

Kraft, Justin (Justin A.)

2011-01-01T23:59:59.000Z

376

HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation  

SciTech Connect

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements.

Makowitz, H.; Powell, J.R.; Wiswall, R.

1980-01-01T23:59:59.000Z

377

Skills, human resource management and the Toyota production system (TPS): the case of Toyota Motor Thailand (TMT).  

E-Print Network (OSTI)

??This study investigates the implementation of the Toyota Production System (TPS) at Toyota Motor Thailand (TMT). Rather than being uniquely ?best practice?, the TPS is (more)

Weerasombat, Thunyalak

2011-01-01T23:59:59.000Z

378

Combustion Instability and Blowout Characteristics of Fuel Flexible...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Blowout Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Characteristics of Fuel Flexible Gas Turbine Combustors Combustors Georgia...

379

INL's Move to Google Apps Enables Flexibility, Scalability |...  

NLE Websites -- All DOE Office Websites (Extended Search)

INL's Move to Google Apps Enables Flexibility, Scalability INL's Move to Google Apps Enables Flexibility, Scalability December 7, 2011 - 1:42pm Addthis Brent Stacey, Chief...

380

HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation  

Science Conference Proceedings (OSTI)

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm/sup 3/ are required for a practical fusion-based fission product transmutation system.

Makowitz, H.; Powell, J.R.; Wiswall, R.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

RELIABLE RADIOGRAPHIC INSPECTION OF FLEXIBLE RISERS FOR THE OIL INDUSTRY  

Science Conference Proceedings (OSTI)

Flexible risers are composite tubular structures manufactured by the concentric assemblage of cylindrical polymeric and helically wound metallic layers employed to convey pressurized fluids such as oil, gas and water in the ocean environment. The metallic layers account for the flexible risers' structural strength and are dimensioned according to the static and dynamic loads. They are usually installed in a free hanging catenary configuration and are subjected to the direct action of waves and marine currents and wave induced motions from the oil production platform. The fatigue rupture of wire armours in the end fitting or within the riser segment protected by the bend stiffener is an object of major concern. Integrity models have been developed, however inspection techniques are mandatory to ensure that failure is detected. Gammagraphy has been used as a common inspection technique in all regions of the flexible riser, mainly with the single wall-single view method. On the other side, there is not any qualified radiographic procedure to this kind of structure. Radiographic simulation was adopted and its validation with actual gammagraphies and establishment of radiographic parameters to complex radiation geometries were done. Results show the viability of the radiographic inspection analyzing the armour wires' rupture and the displacement between wires.

Almeida, Romulo M.; Rebello, Joao Marcos A. [Department of Metallurgical and Materials Engineering COPPE/UFRJ-Federal University of Rio de Janeiro P.O. Box 68505 CEP 21941-972, Rio de Janeiro RJ (Brazil); Vaz, Murilo A. [Department of Ocean Engineering-COPPE/UFRJ (Brazil)

2010-02-22T23:59:59.000Z

382

Advanced Turbine Systems Program, Conceptual Design and Product Development. Task 6, System definition and analysis  

DOE Green Energy (OSTI)

The strategy of the ATS program is to develop a new baseline for industrial gas turbine systems for the 21st century, meeting the buying criteria of industrial gas turbine end users, and having growth potential. These criteria guided the Solar ATS Team in selecting the system definition described in this Topical Report. The key to selecting the ATS system definition was meeting or exceeding each technical goal without negatively impacting other commercial goals. Among the most crucial goals are the buying criteria of the industrial gas turbine market. Solar started by preliminarily considering several cycles with the potential to meet ATS program goals. These candidates were initially narrowed based on a qualitative assessment of several factors such as the potential for meeting program goals and for future growth; the probability of successful demonstration within the program`s schedule and expected level of funding; and the appropriateness of the cycle in light of end users` buying criteria. A first level Quality Function Deployment (QFD) analysis then translated customer needs into functional requirements, and ensured favorable interaction between concept features. Based on this analysis, Solar selected a recuperated cycle as the best approach to fulfilling both D.O.E. and Solar marketing goals. This report details the design and analysis of the selected engine concept, and explains how advanced features of system components achieve program goals. Estimates of cost, performance, emissions and RAMD (reliability, availability, maintainability, durability) are also documented in this report.

NONE

1995-04-01T23:59:59.000Z

383

Process characterization of a novel cross-regulation system for cloned protein production in escherichia coli  

SciTech Connect

A novel cross-regulation expression system has been shown previously to be very effective for regulated recombinant protein production. Earlier studies established that this system offers better control of basal expression and higher maximal induced expression than more traditional vectors. Using production of cloned chloramphenicol acetyltransferase (CAT) as a model system, several factors determining the performance of this system were examined. Specifically, the effects of varying induction times and inducer (IPTG) concentrations on cell growth and the rate of CAT production were examined. The CAT expression was maximally induced with at least 0.5 mM IPTG added at the midexponential growth phase. Specific CAT content (on a total protein basis) was correlated with the CAT mRNA level. CAT message levels were minimal preinduction and far above background postinduction, consistent with prior simulation results. Cessation of CAT accumulation as the culture entered the stationary phase coincided with a corresponding 10-fold decrease in the level of CAT mRNA which was likely caused by an increased mRNA degradation rate. Maintenance of significant CAT message levels with a concomitant 2-fold increase in CAT accumulation was achieved by extending cell growth in a fed-batch process. 26 refs., 8 figs., 1 tab.

Chen, W.; Kallio, P.T.; Bailey, J.E. [California Institute of Technology, Pasadena, CA (United States)

1995-07-01T23:59:59.000Z

384

The Flexible Display Center and Universal Display Corporation Produce Flexible, Full-Color AMOLED Prototype Displays  

E-Print Network (OSTI)

successfully fabricated the first full-color, flexible active matrix organic light emitting diode (AMOLED) display prototypes using the Center's bond/de-bond manufacturing

Rhoads, James

385

Comparison of Marine Microalgae Culture Systems for Fuels Production and Carbon Sequestration  

DOE Green Energy (OSTI)

The dual problems of global fossil fuels supplies and global warming focus attention on the need to develop technologies that can provide large amounts of renewable fuels without contributing to global warming. The capture of power plant flue gas CO2 using microalgae cultures is one potential technology that could meet this objective. The central R&D issues are the design and operation of low-cost algal mass culture systems and the development of algal strains and cultivation techniques that can achieve very high biomass productivities. The major objective of this project was to develop mass culture techniques that could result in greatly increased biomass productivities, well above the about 50 metric tons per hectare per year (mt/ha/y) currently achievable. In this project, two marine microalgae species, the diatom Cyclotella sp.. and the green alga Tetraselmis sp., were cultivated on seawater in both open ponds and closed photo bioreactors, under a variety of different cultivation conditions. Simultaneous operation of the closed photo bioreactors and open ponds demonstrated similar productivities, under the same operating conditions. Thus the very expensive closed systems do not provide any major or inherent advantages in microalgae production over open ponds. Mutants of Cyclotella sp. were developed that exhibited reduced pigment content, which theoretically would result in greatly increased productivities when grown under full sunlight. However, in open ponds, these mutant strains exhibited similar productivities as the parental strains. The mutant strains all grew relatively slowly, suggesting that additional mutations masked whatever inherent potential for increased productivities may have resulted from the reduced pigment content. Research is still required to develop improved low pigment strains. When open pond cultures were exposed to intermittent sunlight, by partially covering the ponds with slats, solar conversion efficiencies increased dramatically, by over 50%. Although such techniques are not directly applicable to practical processes, the experiments demonstrated the inherent potential of algal mass cultures to achieve very high productivities. Nitrogen limited pond cultures demonstrated that it is possible to produce biomass with a potentially high content of carbohydrates or oils (although these were not directly measured in these experiments), without reducing achievable productivities. This suggested that microalgae biomass suitable for conversion to biofuels (ethanol or biodiesel) could be produced without compromising productivity. Experiments combining both light modulation and nitrogen limitation indicated possibly synergistic effects. The goal of developing practical and economic processes for the sustainable production of renewable fuels with microalgae pond cultures using power plant flue gases as sources of CO2 was advanced by these studies, but requires more work. Most important is the research, development and demonstration in outdoor pond cultures of algal strains with low pigment content. Such strains are the most likely approach to achieve, in combination with the other mass culture techniques investigated in this study, the very high productivities, above 100 mt/ha/y (45 t/acre/y), that are the goal in this field. The projected economics for such a process suggests that, as for higher plant biofuel production, microalgae biofuels production should be developed as a multiproduct process providing additional higher value co-products.

Weissman, Joseph C; Polle, Juergen

2006-05-30T23:59:59.000Z

386

Flexible Coal: Evolution from Baseload to Peaking Plant (Brochure)  

Science Conference Proceedings (OSTI)

Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

Cochran, J.; Lew, D.; Kumar, N.

2013-12-01T23:59:59.000Z

387

Information and Knowledge Perspectives in Systems Engineering and Management for Innovation and Productivity Through Enterprise Resource Planning  

Science Conference Proceedings (OSTI)

This article provides an overview of perspectives associated with information and knowledge resource management in systems engineering and systems management in accomplishing enterprise resource planning for enhanced innovation and productivity. Accordingly, ...

Stephen V. Stephenson; Andrew P. Sage

2007-04-01T23:59:59.000Z

388

A two-stage intelligent optimization system for the raw slurry preparing process of alumina sintering production  

Science Conference Proceedings (OSTI)

The raw slurry preparing is a key process to guarantee product for alumina sintering production. To obtain the qualified raw slurry in the presence of uncertainty, a two-stage intelligent optimization system, which weakens uncertainty effects through ... Keywords: Alumina sintering production, Expert reasoning, Integrated modeling, Intelligent optimization, Raw slurry preparing, Uncertainty

Chunhua Yang; Weihua Gui; Lingshuang Kong; Yalin Wang

2009-06-01T23:59:59.000Z

389

FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev Heinemann*, Hashini Wickramarathne*, Hans Georg Beyer +  

E-Print Network (OSTI)

FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev Heinemann will highly benefit from forecast information on the expected power production. This forecast information and evaluate an approach to forecast regional PV power production. The forecast quality was investigated

Heinemann, Detlev

390

Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington  

SciTech Connect

A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coverage in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.

Greenfield, Bryce A.

2009-12-20T23:59:59.000Z

391

Advanced turbine systems program conceptual design and product development: Quarterly report, November 1993--January 1994  

SciTech Connect

This report describes progress made in the advanced turbine systems program conceptual design and product development. The topics of the report include selection of the Allison GFATS, castcool technology development for industrial engines test plan and schedule, code development and background gathering phase for the ultra low NOx combustion technology task, active turbine clearance task, and water vapor/air mixture cooling of turbine vanes task.

1995-01-01T23:59:59.000Z

392

A new method for stochastic production simulation in generation system with multiple hydro units  

SciTech Connect

This paper describes a new method of calculating loss of load probability, expected energy generation and production cost for units in a generating system with multiple hydro units. The method uses the equivalent load duration curve (ELDC) obtained by convolving the distributions of the original load and the forced outage power loss of all generators. Hydro units are scheduled on the ELDC according to their assigned energy and available capacity. Then the deconvolution procedure is performed to obtain a load duration curve for an equivalent system without hydro units. The expected energy of the thermal units is achieved by convolving the generating units in an economic merit order of loading.

Chen, S.J.

1988-06-01T23:59:59.000Z

393

Advanced Turbine Systems Program conceptual design and product development. Quarterly report, November 1994--January 1995  

SciTech Connect

Objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for anultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. Technical progress covered in this report is confined to Task 4 (conversion to coal) and the nine subtasks under Task 8 (design and test of critical components). These nine subtasks address six ATS technologies: catalytic combustion, recuperator, autothermal fuel reformer, high temperature turbine disc, advanced control system, and ceramic materials.

1995-02-01T23:59:59.000Z

394

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October, 1994  

SciTech Connect

The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. During this report period, the following tasks were completed: Market study; System definition and analysis; and Integrated program plans. Progress on Task 8, Design and Test of Critical Components, is also discussed. This particular task includes expanded materials and component research covering recuperators, combustion, autothermal fuel reformation, ceramics application and advanced gas turbine system controls.

1995-01-01T23:59:59.000Z

395

Typical Boiler Tube Damage from Flexible Operation or Cycling  

Science Conference Proceedings (OSTI)

Power generation plants are under increasing pressure to cycle the boiler system to meet demand at the exact time it occurs. To survive in the new commercial sphere, it is essential that we adjust to a dynamic, flexible operating paradigm. The ability to adjust the overall system response to load demand is paramount; cycling is a fact in todays power-for-profit business dynamic.The challenge is that for most fossil power plants in operation todaywhich were designed and ...

2013-12-19T23:59:59.000Z

396

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

among gas, electric, methanol, and CNG vehicles with variouschoices among gas, methanol, CNG, and electric vehicles. 2.compressed natural gas (CNG) vehicles, the cost of refueling

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

397

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

the introduction of electric cars, as examined, e.g. , bygas cars. However, if the electric car is similar in size toone might expect the electric car to draw disproportionately

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

398

Forecasting new product penetration with flexible substitution patterns  

E-Print Network (OSTI)

fuel types (gasoline, compressed natural gas, methanol, andfor electric and compressed natural gas (CNG) vehicles, thezero otherwise 1 for compressed natural gas vehicle, zero

Brownstone, David; Train, Kenneth

1999-01-01T23:59:59.000Z

399

Valuing flexibility in product platforms : an analytical framework  

E-Print Network (OSTI)

"The intuitive mind is a sacred gift and the rational mind is a faithful servant. We have created a society that honours the servant and has forgotten the gift." - Einstein. "Whatever you can do, or dream you can, begin ...

Harper, Matthew A. M. (Matthew Albert MacLennan)

2011-01-01T23:59:59.000Z

400

Flexible access control for javascript  

Science Conference Proceedings (OSTI)

Providing security guarantees for systems built out of untrusted components requires the ability to define and enforce access control policies over untrusted code. In Web 2.0 applications, JavaScript code from different origins is often combined on a ... Keywords: delimited histories, javascript, same-origin policy, security

Gregor Richards, Christian Hammer, Francesco Zappa Nardelli, Suresh Jagannathan, Jan Vitek

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Stochastic programming approach to process flexibility design  

E-Print Network (OSTI)

of the marginal production costs. We observe that theassume that all production costs are 0, but the investmenti.e. , increased production cost) due to cross production.

Mak, Ho-Yin; Shen, Zuo-Jun Max

2009-01-01T23:59:59.000Z

402

System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities  

DOE Green Energy (OSTI)

This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2012-05-01T23:59:59.000Z

403

Technology flexibility as enabler of robust application development in community source: The case of Kuali and Sakai  

Science Conference Proceedings (OSTI)

Technology flexibility has been an important topic in software engineering since the start of computerized business applications, which require frequent changes to system specifications due to ever changing business requirements. Achieving a higher degree ... Keywords: Agile enterprise, Community source, Open source, Service oriented architecture, Technology flexibility, Workflow technology

Manlu Liu; Harry Jiannan Wang; J. Leon Zhao

2012-12-01T23:59:59.000Z

404

Method and System for the Production of Hydrogen at Reduced VHTR Outlet Temperatures  

DOE Green Energy (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility dedicated to hydrogen production, early designs are expected to be dual purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor with electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. The integrated system of a Very High Temperature Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) hydrogen production plant is being investigated and this system, as it is currently envisioned, will produce hydrogen by utilizing a highly efficient VHTR with a VHTR outlet temperature of 900C to supply the necessary energy and electricity to the HTSE unit. Though the combined system may produce hydrogen and electricity with high efficiency, the choices of materials that are suitable for use at 900C are limited due to high-temperature strength, corrosion, and durability (creep) considerations. The lack of materials that are ASME (American Society of Mechanical Engineers) code-certified at these temperatures is also a problem, and is a barrier to commercial deployment. If the current system concept can be modified to produce hydrogen with comparable efficiency at lower temperatures, then the technical barriers related to materials selection and use might be eliminated, and the integrated system may have a much greater probability of succeeding at the commercial scale. This paper describes a means to reduce the outlet temperature of the VHTR to approximately 700C while still maintaining plant high efficiency.

Chang H. Oh; Eung S. Kim

2009-10-01T23:59:59.000Z

405

Developing IEC61499 in industrial processes, measurement and control systems (IPMCS)  

Science Conference Proceedings (OSTI)

Increasing marketing competition with globalization force companies to expand diversity of the production lines which in turn improve the ability of choosing customizable products, improve the flexibility of system design and maintenance costs lead to ... Keywords: DCS, FBDK, FBRT, IEC 61499, IPMCS, JVM, PLC, SIFB, function block, netmaster

Maryam Sadeghi

2010-04-01T23:59:59.000Z

406

Alternative Fuels Data Center: Flexible Fuel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Flexible Fuel Vehicle Flexible Fuel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicle Availability Flexible fuel vehicles (FFVs)-which can run on E85 (a gasoline-ethanol

407

Development of a robot control method for curved seal extrusion for high productivity in an advanced Toyota production system  

Science Conference Proceedings (OSTI)

Recent Japanese enterprises have been promoting global production to realize uniform quality worldwide and production at optimal locations for survival amid severe competition. The authors considered the necessity of including the above method in the ... Keywords: Advanced TPS, Automobile-window mole, Curved seal extrusion (CSE), Robot

H. Sakai; K. Amasaka

2007-07-01T23:59:59.000Z

408

Agent Tcl: A flexible and secure mobileagent Submitted to the Faculty  

E-Print Network (OSTI)

Agent Tcl: A flexible and secure mobile­agent system A Thesis Submitted to the Faculty in partial malicious machines), and insulating the agent against network and machine failures. Agent Tcl is a mobile­agent system under development at Dartmouth College that has evolved from a Tcl­only system into a multiple

409

System analysis of nuclear-assisted syngas production from coal - article no. 042901  

Science Conference Proceedings (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. The results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

Harvego, E.A.; McKellar, M.G.; O'Brien, J.E. [Idaho National Laboratory, Idaho Falls, ID (United States)

2009-07-15T23:59:59.000Z

410

On the production behavior of enhanced geothermal systems with CO2as working fluid  

Science Conference Proceedings (OSTI)

Numerical simulation is used to evaluate mass flow and heatextraction rates from enhanced geothermal injection-production systemsthat are operated using either CO2 or water as heat transmission fluid.For a model system patterned after the European hot dry rock experimentat Soultz, we find significantly greater heat extraction rates for CO2 ascompared to water. The strong dependence of CO2 mobility (=density/viscosity) upon temperature and pressure may lead to unusualproduction behavior, where heat extraction rates can actually increasefor a time, even as the reservoir is subject to thermal depletion. Wepresent the first-ever three-dimensional simulations of CO2injection-production systems. These show strong effects of gravity onmass flow and heat extraction, due to the large contrast of CO2 densitybetween cold injection and hot production conditions. The tendency forpreferential flow of cold, dense CO2 along the reservoir bottom can leadto premature thermal breakthrough. The problem can be avoided byproducing from only a limited depth interval at the top of thereservoir.

Pruess, K.

2007-05-31T23:59:59.000Z

411

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-from- Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday, November 6, 2007 H 2 Gen Innovations, Inc. Alexandria, Virginia www.h2gen.com 2 Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics - Summary unique H2A inputs * Ethanol Reformer - Key performance metrics - Summary unique H2A inputs * Questions from 2007 Merit Review 3 H 2 Gen Innovations' Commercial SMR * Compact, low-cost 115 kg/day natural gas reformer proven in commercial practice [13 US Patents granted] * Built-in, unique, low-cost PSA system * Unique sulfur-tolerant catalyst developed with Süd Chemie 4 DOE Program Results * Task 1- Natural Gas Reformer Scaling:

412

Method, system and computer program product for monitoring and optimizing fluid extraction from geologic strata  

DOE Patents (OSTI)

An arrangement which utilizes an inexpensive flap valve/flow transducer combination and a simple local supervisory control system to monitor and/or control the operation of a positive displacement pump used to extract petroleum from geologic strata. The local supervisory control system controls the operation of an electric motor which drives a reciprocating positive displacement pump so as to maximize the volume of petroleum extracted from the well per pump stroke while minimizing electricity usage and pump-off situations. By reducing the electrical demand and pump-off (i.e., "pounding" or "fluid pound") occurrences, operating and maintenance costs should be reduced sufficiently to allow petroleum recovery from marginally productive petroleum fields. The local supervisory control system includes one or more applications to at least collect flow signal data generated during operation of the positive displacement pump. No flow, low flow and flow duration are easily evaluated using the flap valve/flow transducer arrangement.

Medizade, Masoud (San Luis Obispo, CA); Ridgely, John Robert (Los Osos, CA)

2009-12-15T23:59:59.000Z

413

Use of Plant Toom Logbook Data to Establish Performance of a Cooling Production System  

E-Print Network (OSTI)

In medium and large size air-conditioning (A/C) systems maintaining a logbook that has hourly data on operation of chillers and pumps is mandatory. The paper presents a methodology for establishing performance of a chilled water A/C system and applies the same for an office building in Kuwait. Data collected between March and October 2004 were analyzed. Inadequate control of supply water temperature and low chiller loading were identified as the key parameters leading to inefficiency of cooling production. This simple and low cost approach can be extremely valuable for medium size plants in capacity range of 100-250 RT, which are often without any other mechanism for performance data gathering such as plant room manager or building automation system.

Hajiah, A. E.; Maheshwari, G. P.; ElSherbini, A. I.

2006-01-01T23:59:59.000Z

414

Advanced Turbine Systems Program -- Conceptual design and product development. Quarterly report, August 1--October 31, 1995  

SciTech Connect

The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. This quarterly report, addresses only Task 4, conversion of a gas turbine to a coal-fired gas turbine, which was completed during the quarter and the nine subtasks included in Task 8, design and test of critical components. These nine subtasks address six ATS technologies as follows: catalytic combustion; recuperator; autothermal fuel reformer; high temperature turbine disc; advanced control system (MMI); and ceramic materials.

1995-12-31T23:59:59.000Z

415

Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995  

SciTech Connect

This report summarizes the tasks completed under this project during the period from August 1, 1994 through July 31, 1994. The objective of the study is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized by the year 2000. The tasks completed include a market study for the advanced turbine system; definition of an optimized recuperated gas turbine as the prime mover meeting the requirements of the market study and whose characteristics were, in turn, used for forecasting the total advanced turbine system (ATS) future demand; development of a program plan for bringing the ATS to a state of readiness for field test; and demonstration of the primary surface recuperator ability to provide the high thermal effectiveness and low pressure loss required to support the proposed ATS cycle.

1995-11-01T23:59:59.000Z

416

Evaluation of a solar intermittent refrigeration system for ice production operating with ammonia/lithium nitrate  

SciTech Connect

A novel solar intermittent refrigeration system for ice production developed in the Centro de Investigacion en Energia of the Universidad Nacional Autonoma de Mexico is presented. The system operates with the ammonia/lithium nitrate mixture. The system developed has a nominal capacity of 8 kg of ice/day. It consists of a cylindrical parabolic collector acting as generator-absorber. Evaporator temperatures as low as -11 C were obtained for several hours with solar coefficients of performance up to 0.08. It was found that the coefficient of performance increases with the increment of solar radiation and the solution concentration. A dependency of the coefficient of performance was not founded against the cooling water temperature. Also it was found that the maximum operating pressure increases meanwhile the generation temperature decreases with an increase of the solution concentration. (author)

Rivera, W.; Moreno-Quintanar, G.; Best, R. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, A.P. 34, 62580 Temixco, Mor. (Mexico); Rivera, C.O.; Martinez, F. [Facultad de Ingenieria Campus Coatzacoalcos, Universidad Veracruzana, Av. Universidad Km 7.5, 96530 Coatzacoalcos, Ver. (Mexico)

2011-01-15T23:59:59.000Z

417

Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli  

E-Print Network (OSTI)

remodeling and biofuel production in Escherichia coli.JD: Advanced biofuel production in microbes. Biotechnol JJM, Gonzalez R: Biofuel production in Escherichia coli: the

2012-01-01T23:59:59.000Z

418

On-line alert systems for production plants: A conflict based approach  

Science Conference Proceedings (OSTI)

We present a new methodology for detecting faults and abnormal behavior in production plants. The methodology stems from a joint project with a Danish energy consortium. During the course of the project we encountered several problems that we believe are common for projects of this type. Most notably there was a lack of both knowledge and data concerning possible faults, and it therefore turned out to be infeasible to learn/construct a standard classification model for doing fault detection. As an alternative we propose a method for doing on-line fault detection using only a model of normal system operation. Faults are detected by measuring the conflict between the model and the sensor readings, and knowledge about the possible faults is therefore not required. We illustrate the proposed method using real-world data from a coal driven power plant as well as simulated data from an oil production facility.

Nielsen, T.D.; Jensen, F.V. [University of Aalborg, Aalborg (Denmark)

2007-07-15T23:59:59.000Z

419

Advanced turbine systems program conceptual design and product development. Annual report, August 1993--July 1994  

SciTech Connect

This Yearly Technical Progress Report covers the period August 3, 1993 through July 31, 1994 for Phase 2 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. As allowed by the Contract (Part 3, Section J, Attachment B) this report is also intended to fulfill the requirements for a fourth quarterly report. The objective of Phase 2 of the ATS Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized in the year 2000. During the period covered by this report, Solar has completed three of eight program tasks and has submitted topical reports. These three tasks included a Project Plan submission of information required by NEPA, and the selection of a Gas-Fueled Advanced Turbine System (GFATS). In the latest of the three tasks, Solar`s Engineering team identified an intercooled and recuperated (ICR) gas turbine as the eventual outcome of DOE`s ATS program coupled with Solar`s internal New Product Introduction (NPI) program. This machine, designated ``ATS50`` will operate at a thermal efficiency (turbine shaft power/fuel LHV) of 50 percent, will emit less than 10 parts per million of NOx and will reduce the cost of electricity by 10 percent. It will also demonstrate levels of reliability, availability, maintainability, and durability (RAMD) equal to or better than those of today`s gas turbine systems. Current activity is concentrated in three of the remaining five tasks a Market Study, GFATS System Definition and Analysis, and the Design and Test of Critical Components.

1994-11-01T23:59:59.000Z

420

Upper Campanian and lower Maestrichtian depositional systems and gas production, southern Sacramento basin, California  

SciTech Connect

Upper Campanian and lower Maestrichtian strata of the southern Sacramento basin include four west- and southwest-prograding submarine-fan/slope/delta systems. The Winters, Lathrop, Tracy, and Blewett formations consist of submarine-fan and related slope/basin-plain deposits that were fed by various deltaic complexes of the Starkey Formation. Four major basinwide transgressive shale units (Sacramento Shale, Sawtooth Shale, Ragged Valley Shale, and H and T Shale) help intrasystem correlations. The Winters, Tracy, and Blewett fans are small, radial, coalescing sand-rich systems that contain the following principal facies: (1) sandstone-filled inner fan channel deposits, (2) mudstone-dominated inner fan interchannel deposits, (3) middle-fan amalgamated suprafan-type sandstone-rich channel deposits, and (4) mudstone-dominated outer fan deposits. The Lathrop fans are larger, elongate, mixed-sediment systems that contain basin-plain, outer fan lobe, middle fan-channel, levee, interchannel, and inner fan channel facies. The Sierran-derived fluvio-deltaic Starkey Formation can be divided into six sand-rich deltaic cycles that can be subdivided on the basis of log signaturres and spatial distribution into prodelta, delta-front, lower delta-plain, and upper delta-plain/fluvial facies. More than 50 gas fields produce from these systems. Stratigraphic traps include updip pinchouts of submarine canyon/gullies and inner fan channels into slope shale, especially in the many overlapping and coalescing sand-rich systems. Lateral pinchouts of outer fan lobes and middle-fan suprafan-type bodies are also productive. Structural traps generally characterize production from deltaic deposits because of the more continuous nature of these bodies.

Moore, D.W.; Nilsen, T.H. (Applied Earth Technology, Inc., Redwood City, CA (USA))

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A novel framework for information technology based agricultural information dissemination system to improve crop productivity  

E-Print Network (OSTI)

Indian farming community is facing a multitude of problems to maximize crop productivity. In spite of successful research on new agricultural practices concerning crop cultivation, the majority of farmers is not getting upper-bound yield due to several reasons. One of the reasons is that expert/scientific advice regarding crop cultivation is not reaching farming community in a timely manner. It is true that India possesses a valuable agricultural knowledge and expertise. However, a wide information gap exists between the research level and practice. Indian farmers need timely expert advice to make them more productive and competitive. In this paper, we made an effort to present a solution to bridge the information gap by exploiting advances in Information Technology (IT). We propose a framework of a cost-effective agricultural information dissemination system (AgrIDS) to disseminate expert agriculture knowledge to the farming community to improve the crop productivity. Some of the crucial benefits of AgrIDS are as follows. It is a scalable system which can be incrementally developed and extended to cover all the farmers (crops) of India in a cost effective manner. It enables the farmer to cultivate a crop with expertise, as that of an agricultural expert, by disseminating both crop and location specific expert advice in a personalized and timely manner. With AgrIDS, the lag period between research effort to practice can be reduced significantly. Finally, the proposed system assumes a great importance due to the trend of globalization, as it aims to provide expert advice which is crucial to for the Indian farmer to harvest different kinds of crop varieties based on the demand in the world market. 1

P. Krishna Reddy

2002-01-01T23:59:59.000Z

422

Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems  

SciTech Connect

The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve co-production of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production is accomplished with either an indirectly heated biomass gasifier, or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO{sub 2} equivalent (CO{sub 2}e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. However, some additional value must be placed on energy peaking or sinking for these plants to be economically viable. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive in the near future. High electrolyzer costs and wind power requirements make the hybridization difficult to justify economically without downsizing the system. Based on a direct replacement of the ASU with electrolyzers, hydrogen can be produced for $0.27 premium per kilogram. Additionally, if a non-renewable, grid-mix electricity is used, the hybrid system is found to be a net CO{sub 2}e emitter.

Dean, J.; Braun, R.; Penev, M.; Kinchin, C.; Munoz, D.

2010-01-01T23:59:59.000Z

423

Well production system to prevent cave-in and sloughing in unconsolidated formations  

SciTech Connect

A well production system is disclosed for controlling ingress and egress of high pressure fluid through the annuli formed between the well and a screen support tube internally thereof. The screen support tube and an internal high pressure wash pipe with valves maintain constant high fluid pressure against the overburden during work in the well, as during drilling of an enlarged cavity therein for preventing cave-in and sloughing of the unconsolidated formation well walls until a sand pack is formed and the well producing.

Widmyer, R.H.

1982-09-21T23:59:59.000Z

424

Evaluation of power production from the solar electric generating systems at Kramer Junction: 1988 to 1993  

DOE Green Energy (OSTI)

The five Solar Electric Generating Systems (SEGS) at Kramer Junction, California, now have nearly 30 years of cumulative operating experience. These 30 MW plants employ parabolic trough technology originally deployed by LUZ International in the late 1980`s and are now managed, operated and maintained by the Kramer Junction Company. In this paper, Sandia National Laboratories performed an analysis of the annual energy production from the five plants. Annual solar-to-electric conversion efficiencies are calculated and the major factors that influenced the results are presented. The generally good efficiencies are primarily attributed to the excellent equipment availabilities achieved at all plants.

Kolb, G.J.

1994-12-31T23:59:59.000Z

425

Highly efficient photochemical HCOOH production from CO{sub 2} and water using an inorganic system  

SciTech Connect

We have constructed a system that uses solar energy to react CO{sub 2} with water to generate formic acid (HCOOH) at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In) cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH) can be used as a renewable energy source.

Yotsuhashi, Satoshi; Hashiba, Hiroshi; Deguchi, Masahiro; Zenitani, Yuji; Hinogami, Reiko; Yamada, Yuka [Advanced Technology Research Laboratory, Panasonic Corporation, Soraku-gun, Kyoto 619-0237 (Japan); Deura, Momoko; Ohkawa, Kazuhiro [Department of Applied Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601 (Japan)

2012-12-15T23:59:59.000Z

426

Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system  

DOE Patents (OSTI)

A method is disclosed improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation. The method comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound ..pi..-..pi.. complexes which can develop.

Shelnutt, J.A.

1984-11-29T23:59:59.000Z

427

Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system  

DOE Patents (OSTI)

A method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation which comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a gas hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound .pi.--.pi. complexes which can develop.

Shelnutt, John A. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

428

Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture  

DOE Green Energy (OSTI)

A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Joergensen, 1994) in which systems are modeled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

Danuso, Francesco (University of Udine)

2008-06-18T23:59:59.000Z

429

EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Infrastructure Charging Infrastructure Enabling Flexible EV Design July 30, 2012 Lee Slezak Technology Manager, Vehicle Systems Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue Washington DC 20585 eere.energy.gov Outline * Purpose - Establish Vision for Achieving EV Everywhere * Enable Strong Demand for EVs * Supply of Vehicles and Infrastructure * Current Status of Infrastructure and Vehicles * Desired Workshop Outputs * Approach - Design Candidate Infrastructure Strategies for 2022 10/12/2012 2 eere.energy.gov Achieving EV Everywhere - Enable Strong Demand for EVs 10/12/2012 3 EV Everywhere Consumer Acceptance EV Everywhere Consumer Acceptance Electric Vehicles * Safe * Cost Competitive * Utility meets consumer needs * Range

430

Bell-CHSH function approach to quantum phase transitions in matrix product systems  

E-Print Network (OSTI)

Recently, nonlocality and Bell inequalities have been used to investigate quantum phase transitions (QPTs) in low-dimensional quantum systems. Nonlocality can be detected by the Bell-CHSH function (BCF). In this work, we extend the study of BCF to the QPTs in matrix product systems (MPSs). In this kind of QPTs, the ground-state energy keeps analytical in the vicinity of the QPT points, and is usually called the MPS-QPTs. For several typical models, our results show that BCF can signal the MPS-QPTs very well. In addition, we find BCF can capture signal of QPTs in unentangled states and classical states, for which other measures of quantum correlation (quantum entanglement and quantum discord) fail. Furthermore, we find that in these MPSs, there exists some kind of quantum correlation which cannot be characterized by entanglement, or by nonlocality.

Zhao-Yu Sun; Hai-Lin Huang; Bo Wang

2013-04-13T23:59:59.000Z

431

Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock  

Science Conference Proceedings (OSTI)

For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ags ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.

Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

2007-04-01T23:59:59.000Z

432

arcControlTower: the System for Atlas Production and Analysis on ARC  

E-Print Network (OSTI)

PanDA, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the job resources known in advance. All the pilot communication with the PanDA server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with the arcControl...

Filipcic, A; The ATLAS collaboration

2011-01-01T23:59:59.000Z

433

arcControlTower, the System for Atlas Production and Analysis on ARC  

E-Print Network (OSTI)

Abstract content Panda, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the resources known in advance. All the pilot communication with the panda server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with t...

Filipcic, A; The ATLAS collaboration

2010-01-01T23:59:59.000Z

434

Model and solution for the multilevel production-inventory system before ironmaking in shanghai baoshan iron and steel complex  

Science Conference Proceedings (OSTI)

This research deals with the production-inventory problem originating from the ironmaking production system in Shanghai Baoshan Iron and Steel Complex (Baosteel). To solve this multilevel, multi-item, multi-period, capacitated lot-sizing problem, a deterministic ... Keywords: combinatorial optimization, lagrangian relaxation, lot-sizing

Guoli Liu; Lixin Tang

2006-05-01T23:59:59.000Z

435

Direct irradiation of long-lived fission products in an ATW system  

SciTech Connect

The feasibility of directly irradiating five long-lived fission products (LLFPs: {sup 79}Se, {sup 93}Zr, {sup 107}Pd, {sup 126}Sn, and {sup 135}Cs, each with a half-life greater than 10,000 years), by incorporating them into the target of an Accelerator Transmutation of Waste (ATW) system is discussed. The important parameters used to judge the feasibility of a direct irradiation system were the target's neutron spallation yield (given in neutrons produced per incident proton), and the removal rate of the LLFP, with the baseline incineration rate set at two light water reactors (LWRs) worth of the LLFP waste per year. A target was constructed which consisted of a LLFP cylindrical ''plug'' inserted into the top (where the proton beam strikes) of a 30 cm radius, 100 cm length lead target. {sup 126}Sn and {sup 79}Se were each found to have high enough removal rates to support two LWR's production of the LLFP per year of ATW operation. For the baseline plug geometry (5 cm radius, 30 cm length) containing {sup 126}Sn, 3.5 LWRs could be supported per year (at 75% beam availability). Furthermore, the addition of a {sup 126}Sn plug had a slightly positive effect on the target's neutron yield. The neutron production was 36.83{+-}.0039 neutrons per proton with a pure lead target having a yield of 36.29{+-}.0038. It was also found that a plug composed of a tin-selenide compound (SnSe) had high enough removal rates to burn two or more reactor years of both LLFPs simultaneously.

Carter, Thomas F.; Henderson, Douglass; Sailor, William C. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37919 (United States); Departmemt of Nuclear Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

1995-09-15T23:59:59.000Z

436

Fuels from solar energy: photosynthetic systems--state of the art and potential for energy production  

DOE Green Energy (OSTI)

Research on the mass culturing of microalgae has been carried out over the past 30 years in many parts of the world. Today there are numerous potential applications for algal mass cultures including protein production, wastewater treatment, water renovation, closed life-support systems, production of commercial chemicals, aquaculture, and bioconversion of energy. Photosynthetic yields over 30 gr dry wt m/sup -2/ day/sup -1/ have been attained on occasion in many locations for short periods and yields between 15 to 25 gr dry wt m/sup -2/ day/sup -1/ for longer periods are now common. This apparent upper limit in productivity is not coincidental. Under outdoor conditions peak yields are possible only under conditions of light limitation. Photosynthetic algae absorb light energy and convert it to stored chemical energy under rigid adherence to the laws of thermodynamics. By examining the basic physics of photosynthesis, it is possible to clearly demonstrate that under conditions of full sunlight in the most ideal locations maximum yields of 30 to 40 gr m/sup -2/ day/sup -1/ can be expected. For long-term operation of large-scale outdoor cultures, many bioengineering factors are involved and realistic yields considerably less than the maximum potential can be anticipated. Manipulation of the two independent variables, flow rate and depth, is the key to maximizing yields for varying outdoor sunlight intensities. Future applications for algal mass cultures will probably be restricted to small well-managed systems for solving specific environmental problems in individual communities and not on the grand scale envisaged in the past.

Goldman, J.C.

1978-07-01T23:59:59.000Z

437

Integrated dynamic and simulation model on coupled closed-loop workstation capacity controls in a multi-workstation production system  

Science Conference Proceedings (OSTI)

In this paper, a dynamic model coupled with a simulation model is introduced to control a multi-workstation production system such that a given performance measure is achieved. In particular, we consider closed loop capacity controls for regulating WIP ...

Tao Wu; Leyuan Shi; Benjamin Quirt; N. A. Duffie

2008-12-01T23:59:59.000Z

438

Applying decision-oriented accounting principles for the simulation-based design of logistics systems in production  

Science Conference Proceedings (OSTI)

In this contribution, we focus on the configuration of logistics systems embedded into production processes. To evaluate the dynamic behavior of alternative configurations, Discrete-Event Simulation (DES) proofs helpful. Emphasis is typically put on ...

Niklas Labitzke; Thomas S. Spengler; Thomas Volling

2009-12-01T23:59:59.000Z

439

Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics  

Science Conference Proceedings (OSTI)

The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 {epsilon}/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10{sup -3} {Omega}{sup -1} on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

Park, Yong-Seok; Kim, Han-Ki [Department of Display Materials Engineering, Kyung Hee University, 1 Seochoen-dong, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

2010-01-15T23:59:59.000Z

440

A real-time warehouse operations planning system for small batch replenishment problems in production environment  

Science Conference Proceedings (OSTI)

A factory consists of numerous production workstations, multiple production lines and many production floors. Due to the characteristics of just-in-time and make-to-order mode manufacturing, small batches of production materials are required for production ... Keywords: Genetic algorithm (GA), Radio frequency identification (RFID) technology, Small batch replenishment problem

T. C. Poon; K. L. Choy; F. T. S. Chan; G. T. S. Ho; A. Gunasekaran; H. C. W. Lau; H. K. H. Chow

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "flexible production system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


First Page Previous Page 1 2 3 4 5 6 7 8