Sample records for fleet deployment topic

  1. activity federal fleet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to dictate the time at which they are replaced. This additional information 110 2003 REPORT TO THE FLEET OCTOBER 2003 PAGE 37 Annual Report: IFQ Fee (Cost Recovery) Program...

  2. Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    McAulay, Jeffrey L. (Jeffrey Lewis)

    2009-01-01T23:59:59.000Z

    Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

  3. analysis technology deployment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 61 Technology assessment and market analysis of solid state ultracapacitors . Open Access...

  4. Fleet DNA Project (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    The Fleet DNA Project - designed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in partnership with Oak Ridge National Laboratory - aims to accelerate the evolution of advanced vehicle development and support the strategic deployment of market-ready technologies that reduce costs, fuel consumption, and emissions. At the heart of the Fleet DNA Project is a clearinghouse of medium- and heavy-duty commercial fleet transportation data for optimizing the design of advanced vehicle technologies or for selecting a given technology to invest in. An easy-to-access online database will help vehicle manufacturers and fleets understand the broad operational range for many of today's commercial vehicle vocations.

  5. Best available practices for lng fueling of fleet vehicles. Topical report, March-November 1995, tasks 85 and 86

    SciTech Connect (OSTI)

    Midgett, D.E.

    1996-02-01T23:59:59.000Z

    The report provides essential information on the design and operation of liquefied natural gas (LNG) fueling stations for fleet vehicles. The report serves to evaluate current practices in LNG fleet vehicle fueling station designs, and provide fleet operators with a tool for use in discussions with permitting agencies, engineering firms, fabricators, and contractors who permit, design, or construct LNG fueling stations. Representative sites (i.e., LNG fueling stations) were evaluated for technical feasibility, customer satisfaction, economics, operating and maintenance history, problems encountered/overcome, and regulatory environment. The compiled information in this report reveals that LNG fueling stations have advanced to the point where LNG is a viable alternative to gasoline and/or diesel fuel.

  6. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29T23:59:59.000Z

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  7. Plug-In Electric Vehicle Handbook for Fleet Managers

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires at www.cleancities.energy.gov. #12;Plug-In Electric Vehicle Handbook for Fleets 3 You've heard the buzz

  8. Fleet Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fleet management includes commercial and agency owned motor vehicles such as cars, vans, trucks, and buses. Fleet (vehicle) management at the headquarters level includes a range of...

  9. Fleet Management | Department of Energy

    Energy Savers [EERE]

    DOE Fleet Management Contact your Fleet manager for access to these systems Federal Automotive Statistical Tool (FAST): Supports EPAct of 1992 requirements , the Energy...

  10. Executive Fleet Vehicles Report

    Broader source: Energy.gov [DOE]

    On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance.  In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management...

  11. Resources for Fleet Managers

    Broader source: Energy.gov [DOE]

    Fleet managers will benefit from the lower fuel costs, more reliable fuel prices, and lower emissions that come from using alternative fuels and advanced technologies made possible through the work...

  12. Fleet DNA (Presentation)

    SciTech Connect (OSTI)

    Walkokwicz, K.; Duran, A.

    2014-06-01T23:59:59.000Z

    The Fleet DNA project objectives include capturing and quantifying drive cycle and technology variation for the multitude of medium- and heavy-duty vocations; providing a common data storage warehouse for medium- and heavy-duty vehicle fleet data across DOE activities and laboratories; and integrating existing DOE tools, models, and analyses to provide data-driven decision making capabilities. Fleet DNA advantages include: for Government - providing in-use data for standard drive cycle development, R&D, tech targets, and rule making; for OEMs - real-world usage datasets provide concrete examples of customer use profiles; for fleets - vocational datasets help illustrate how to maximize return on technology investments; for Funding Agencies - ways are revealed to optimize the impact of financial incentive offers; and for researchers -a data source is provided for modeling and simulation.

  13. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  14. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Environmental Management (EM)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  15. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01T23:59:59.000Z

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  16. Progress and Challenges for PEM Transit Fleet Applications

    E-Print Network [OSTI]

    Voltage(V) Time (Hrs) Golden Gate Transit Cycle Avg_CellVoltage CP_KWDC Failed field diagnostic for fuel air. #12;· Brief company history in area of fuel cell buses · Current fuel cell bus deployments commercialization of fuel cell buses · Fuel cell bus R&D needs · Future plans Agenda 2 #12;UTC Fleet history · 14

  17. National Federal Fleet Loaner Program, Interim Status Report

    SciTech Connect (OSTI)

    Francfort, James Edward

    2000-10-01T23:59:59.000Z

    The goal of the U.S. Department of Energy's (DOE) Loaner Program is to increase the awareness, deployment, and use of electric vehicles (EVs) in Federal fleets. The Loaner Program accomplishes this by providing free EVs to Federal fleets on a loaner basis, generally for 1 or 2 months. The Program partners DOE with six electric utilities, with DOE providing financial support and some leads on Federal fleets interested in obtaining EVs. The utilities obtain the vehicles, identify candidate loaner fleets, loan the vehicles, provide temporary charging infrastructure, provide overall support to participating Federal fleets, and support fleets with their leasing decisions. While the utilities have not had the success initially envisioned by themselves, DOE, the Edison Electric Institute, and the Electric Vehicle Association of the Americas, the utilities can not be faulted for their efforts, as they are not the entity that makes the ultimate lease or no-lease decision. Some external groups have suggested to DOE that they direct other federal agencies to change their processes to make loaning vehicles easier; this is simply not within the power of DOE. By law, a certain percentage of all new vehicle acquisitions are supposed to be alternative fuel vehicles (AFV); however, with no enforcement, the federal agencies are not compelled to lease AFVs such as electric vehicles.

  18. Cell fleet planning : an industry case study

    E-Print Network [OSTI]

    Silva, Armando C.

    1984-01-01T23:59:59.000Z

    The objective of this thesis is to demonstrate the practical use of the Cell Fleet Planning Model in planning the fleet for the U.S. airline industry. The Cell Model is a cell theory, linear programming approach to fleet ...

  19. What is the GREET Fleet Footprint Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on...

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08T23:59:59.000Z

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  1. Cask fleet operations study

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system.

  2. HEV Fleet Testing - 2010 Ford Fusion VIN:4699 - Fleet Testing...

    Broader source: Energy.gov (indexed) [DOE]

    699 Fleet Testing Results To Date Operating Statistics Distance Driven: 73,490 Average Trip Distance: 10.8 mi Stop Time with Engine Idling: 13% Trip Type CityHighway: 86%...

  3. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-06-10T23:59:59.000Z

    This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

  4. CleanFleet. Final report: Volume 8, fleet economics

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The costs that face a fleet operator in implementing alternative motor fuels into fleet operations are examined. Five alternatives studied in the CleanFleet project are considered for choice of fuel: compressed natural gas, propane gas, California Phase 2 reformulated gasoline, M-85, and electricity. The cost assessment is built upon a list of thirteen cost factors grouped into the three categories: infrastructure costs, vehicle owning costs, and operating costs. Applicable taxes are included. A commonly used spreadsheet was adapted as a cost assessment tool. This tool was used in a case study to estimate potential costs to a typical fleet operator in package delivery service in the 1996 time frame. In addition, because electric cargo vans are unlikely to be available for the 1996 model year from original equipment manufacturers, the case study was extended to the 1998 time frame for the electric vans. Results of the case study are presented in cents per mile of vehicle travel for the fleet. Several options available to the fleet for implementing the fuels are examined.

  5. Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration

    E-Print Network [OSTI]

    Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration Policy Contact, and established campus vehicle fleet service under Facilities Management operations. The purpose of the fleet vehicles. This policy is applicable to the entire Mines fleet, which includes department vehicles. 2

  6. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  7. Deployable structures

    E-Print Network [OSTI]

    Hernández Merchan, Carlos Henrique

    1987-01-01T23:59:59.000Z

    This thesis has the purpose of describing the meaning and applications of deployable structures (making emphasis in the scissor-hinged and sliding mechanisms.) and the development of new geometries, details, and mechanisms ...

  8. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    Conservation Cooperative, consisting of factory trawlers, a group of seven catcher vessels with history cooperative and the inshore sector formed a total of seven. Quotas are distributed to coops by the NMFS as per-1997 as set in the AFA. The Unalaska Fleet Cooperative is one of seven inshore cooperatives formed in December

  9. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    trawlers, a group of seven catcher vessels with history of delivering offshore to factory trawlers of seven. Quotas are distributed to coops by the NMFS as per a formula based on the catch percentages by vessels in the qualifying years as set in the AFA. The Unalaska Fleet Cooperative is one of seven inshore

  10. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    formed the Pollock Conservation Cooperative, consisting of factory trawlers, a group of seven catcher Sector formed one cooperative and the inshore sector formed a total of seven. Quotas are distributed qualifying years, 1995-1997 as set in the AFA. The Unalaska Fleet Cooperative is one of seven inshore

  11. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  12. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  13. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01T23:59:59.000Z

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  14. A cask fleet operations study

    SciTech Connect (OSTI)

    Not Available

    1988-03-01T23:59:59.000Z

    This document describes the cask fleet currently available to transport spent nuclear fuels. The report describes the proposed operational procedures for these casks and the vehicles intended to transport them. Included are techniques for loading the cask, lifting it onto the transport vehicle, preparing the invoices, and unloading the cask at the destination. The document concludes with a discussion on the maintenance and repair of the casks. (tem) 29 figs.

  15. Federal Fleet Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Fact sheet overview of FEMP services and assistance available to Federal fleet managers to implement alternative fuel and advanced vehicle strategies in compliance with Federal goals and requirements.

  16. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.

    2007-05-17T23:59:59.000Z

    This presentation by Keith Wipke at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

  17. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers

    SciTech Connect (OSTI)

    Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

    2013-09-30T23:59:59.000Z

    The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 – Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 – Conduct a fleet evaluation with selected device combination. Phase 3 – Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 – 7.8% fuel economy with the devices (This does not include tire contribution).

  18. Clean Cities Helps Fleets Go Green (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    Green fleet programs, like those in Ohio and Illinois, certify vehicle fleets based on environmental and fuel-use requirements. The programs encourage the use of alternative fuels and provide a way to recognize fleets for participating.

  19. GREET Fleet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXA Corp. (New Jersey) JumpGREET Fleet Jump to:

  20. Merit Review: EPAct State and Alternative Fuel Provider Fleets...

    Energy Savers [EERE]

    State and Alternative Fuel Provider Fleets Merit Review: EPAct State and Alternative Fuel Provider Fleets Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit...

  1. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation 2011 DOE...

  2. Business Case for CNG in Municipal Fleets (Presentation)

    SciTech Connect (OSTI)

    Johnson, C.

    2010-07-27T23:59:59.000Z

    Presentation about compressed natural gas in municipal fleets, assessing investment profitability, the VICE model, base-case scenarios, and pressing questions for fleet owners.

  3. Hoover Police Fleet Reaches Alternative Fuel Milestone

    Broader source: Energy.gov [DOE]

    When Tony Petelos became the mayor of Hoover in 2004, the police fleet was run down. Within the next year, Petelos, with support from the community, called for a big change: switch out the old police fleet with new, flexible-fueled vehicles.

  4. Vehicle Technologies and Bus Fleet Replacement Optimization

    E-Print Network [OSTI]

    Bertini, Robert L.

    1 Vehicle Technologies and Bus Fleet Replacement Optimization: problem properties and sensitivity: R41 #12;2 Abstract This research presents a bus fleet replacement optimization model to analyze hybrid and conventional diesel vehicles, are studied. Key variables affecting optimal bus type

  5. Nuclear power fleets and uranium resources recovered from phosphates

    SciTech Connect (OSTI)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

    2013-07-01T23:59:59.000Z

    Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

  6. Stochastic ship fleet routing with inventory limits 

    E-Print Network [OSTI]

    Yu, Yu

    2010-01-01T23:59:59.000Z

    This thesis describes a stochastic ship routing problem with inventory management. The problem involves finding a set of least costs routes for a fleet of ships transporting a single commodity when the demand for ...

  7. EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG

    E-Print Network [OSTI]

    Kockelman, Kara M.

    EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG evolution, vehicle ownership, plug-in hybrid electric vehicles (PHEVs), climate change policy, stated preference, opinion survey, microsimulation ABSTRACT In todays world of volatile fuel prices and climate

  8. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  9. Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet

    SciTech Connect (OSTI)

    Roberta Brayer; Donald Karner; Kevin Morrow; James Francfort

    2006-06-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests neighborhood electric vehicles (NEVs) in both track and fleet testing environments. NEVs, which are also known as low speed vehicles, are light-duty vehicles with top speeds of between 20 and 25 mph, and total gross vehicle weights of approximately 2,000 pounds or less. NEVs have been found to be very viable alternatives to internal combustion engine vehicles based on their low operating costs. However, special charging infrastructure is usually necessary for successful NEV fleet deployment. Maintenance requirements are also unique to NEVs, especially if flooded lead acid batteries are used as they have watering requirements that require training, personnel protection equipment, and adherence to maintenance schedules. This report provides guidelines for fleet managers to follow in order to successfully introduce and operate NEVs in fleet environments. This report is based on the NEV testing and operational experience of personnel from the Advanced Vehicle Testing Activity, Electric Transportation Applications, and the Idaho National Laboratory.

  10. Contributing Data to the Fleet DNA Project (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    The Fleet DNA clearinghouse of commercial fleet transportation data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool - available at www.nrel.gov/fleetdna - provides data summaries and visualizations similar to real-world 'genetics' for medium- and heavy-duty commercial fleet vehicles operating within a variety of vocations. To contribute your fleet data, please contact Adam Duran of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) at adam.duran@nrel.gov or 303-275-4586.

  11. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect (OSTI)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01T23:59:59.000Z

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

  12. Frequently Asked Questions: About Federal Fleet Management (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Answers to frequently asked questions about Federal fleet management, Federal requirements, reporting, advanced vehicles, and alternative fuels.

  13. Chronological History of Federal Fleet Actions and Mandates (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    This chronological history of Federal fleet actions and mandates provides a year-by-year timeline of the acts, amendments, executive orders, and other regulations that affect Federal fleets. The fleet actions and mandates included in the timeline span from 1988 to 2009.

  14. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect (OSTI)

    Gallo, Jean-Baptiste

    2014-03-31T23:59:59.000Z

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: ? Performance, ? Fleet deployment, ? Maintenance, ? Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the trucking industry. By providing unbiased, third-party assessment of this “hybrid without batteries” technology, this report offers relevant, timely and valuable information to the industry.

  15. Fleet DNA Project Data Summary Report (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.; Duran, A.; Burton, E.

    2014-04-01T23:59:59.000Z

    This presentation includes graphical data summaries that highlight statistical trends for medium- and heavy-duty commercial fleet vehicles operating in a variety of vocations. It offers insight for the development of vehicle technologies that reduce costs, fuel consumption, and emission.

  16. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

    2001-01-25T23:59:59.000Z

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  17. CleanFleet. Volume 2, Project Design and Implementation

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

  18. Deployment of Emerging Technologies

    Broader source: Energy.gov [DOE]

    Presentation covers the FUPWG Deployment of Emerging Technologies. Presented by Brad Gustafson, Department of Energy, held on November 1, 2006.

  19. ALIGNMENT, LEVELING AND DEPLOYMENT CONSTRAINTS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Thermoelectric Generator (RTG) Crew Deployment Description Passive Seismic Experiment (PSE) Crew Deployment and Alignment Central Station Antenna Crew Deployment Description Leveling, Alignment, and Pointing Radioisotope

  20. Technology Deployment List | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Technology Deployment Technology Deployment List Technology Deployment List The Federal Energy Management Program's (FEMP) Technology Deployment List features...

  1. advanced reactors part: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 41 NC Smart Fleet Initiative is supported in part through the Clean Fuels Advanced Technology...

  2. NREL: Transportation Research - Fleet Test and Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearch Cutaway image ofFleet

  3. LNG fleet increases in size and capabilities

    SciTech Connect (OSTI)

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A. [Mobil Shipping and Transportation, Fairfax, VA (United States)

    1997-06-02T23:59:59.000Z

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  4. Integrated Technology Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

  5. Size and transportation capabilities of the existing US cask fleet

    SciTech Connect (OSTI)

    Danese, F.L. (Science Applications International Corp., Oak Ridge, TN (USA)); Johnson, P.E.; Joy, D.S. (Oak Ridge National Lab., TN (USA))

    1990-01-01T23:59:59.000Z

    This study investigates the current spent nuclear fuel cask fleet capability in the United States. In addition, it assesses the degree to which the current fleet would be available, as a contingency, until proposed Office of Civilian Radioactive Waste Management casks become operational. A limited fleet of ten spent fuel transportation casks is found to be readily available for use in Federal waste management efforts over the next decade.

  6. A nautical archaeological study of Kublai Khan's fleets 

    E-Print Network [OSTI]

    Inoue, Takahiko

    1991-01-01T23:59:59.000Z

    , and Korea, as well as secondary sources, have been consulted. Chinese ships were the most advanced seagoing vessels in the world at the end of 13th century. However, little is known about Kublai Khan's fleets. Although many general works on the history... of Kublai's invasions of Japan are available in the literature, there are no detailed studies of Kublai's fleets that combine data from both historical and artistic representations. Discovery and excavation of one or more ships from Kublai Khan's fleets...

  7. actual car fleet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ns-2). We have developed it to verify CarRing II's basic concepts, and to explore Zachmann, Gabriel 58 NUFinancials Actuals Journals Materials Science Websites Summary:...

  8. RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

  9. Fleet DNA Project - Data Dictionary for Public Download Files

    SciTech Connect (OSTI)

    Duran, A.; Burton, E.; Kelly, K.; Walkowicz, K.

    2014-09-01T23:59:59.000Z

    Reference document for the Fleet DNA results data shared on the NREL public website. The document includes variable definitions and descriptions to assist users in understanding data.

  10. Strategies for Decreasing Petroleum Consumption in the Federal Fleet (Presentation)

    SciTech Connect (OSTI)

    Putsche, V.

    2006-06-01T23:59:59.000Z

    Presentation offers strategies federal agency fleets can use to reduce petroleum consumption and build or gain access to alternative fuel infrastructure.

  11. Controlled Hydrogen Fleet and Infrastructure Analysis (2008 Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.

    2008-06-10T23:59:59.000Z

    This presentation by Keith Wipke at the 2008 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

  12. Merit Review: EPAct State and Alternative Fuel Provider Fleets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications 2012 Merit Review: EPAct State and Alternative Fuel Provider Fleets Vehicle Technologies Office Merit Review 2014: EPAct State and...

  13. Clean Cities Launches Improved Tool to Help Fleets Evaluate CNG...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model helps fleet managers evaluate the financial soundness of investments in compressed natural gas (CNG) vehicles andor fueling infrastructure. The new version is applicable to...

  14. Vehicle Technologies Office Merit Review 2014: California Fleets...

    Broader source: Energy.gov (indexed) [DOE]

    Fleets and Workplace Alternative Fuels Project Presentation given by Bay Area Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  15. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    arravt068vssmiyasato2011o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid...

  16. Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency of Legacy Fleet Vehicles Reviews recent studies on potential for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and...

  17. Building a Business Case for Compressed Natural Gas in Fleet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory developed the Vehicle Infrastructure and Cash-Flow Evaluation (VICE) model to help businesses and fleets evaluate the financial soundness of CNG...

  18. State and Alternative Fuel Provider Fleet Compliance Methods (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01T23:59:59.000Z

    Fact sheet describes the difference between Standard and Alternative Compliance requirements for state and alternative fuel provider fleets covered under the Energy Policy Acts of 1992 and 2005.

  19. State and Alternative Fuel Provider Fleet Compliance Methods (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01T23:59:59.000Z

    This fact sheet describes the difference between Standard and Alternative Compliance requirements for state and alternative fuel provider fleets covered by the Energy Policy Act.

  20. Large Fleets Lead in Petroleum Reduction (Fact Sheet)

    SciTech Connect (OSTI)

    Proc, H.

    2011-03-01T23:59:59.000Z

    Fact sheet describes Clean Cities' National Petroleum Reduction Partnership, an initiative through which large private fleets can receive support from Clean Cities to reduce petroleum consumption.

  1. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  2. The origin of the lost fleet of the mongol empire

    E-Print Network [OSTI]

    Sasaki, Randall James

    2009-05-15T23:59:59.000Z

    In 1281 C.E., under the rule of Kublai Khan, the Mongols sent a fleet of more than 4000 vessels to subjugate the island nation of Japan. A powerful typhoon, called kamikaze, dashed the invading fleet into pieces on the shores of Japan and thus saved...

  3. Biofuels, Climate Policy, and the European Vehicle Fleet

    E-Print Network [OSTI]

    Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

  4. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    SciTech Connect (OSTI)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.] [GENCO Infrastructure Solutions, Inc.

    2014-05-06T23:59:59.000Z

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  5. CleanFleet. Final report: Volume 1, summary

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the control fuel, unleaded gasoline. The alternative fuels were propane gas, compressed natural gas, California Phase 2 reformulated gasoline (RFG), methanol with 15 percent RFG (called M-85), and electricity. This volume of the eight volume CleanFleet final report is a summary of the project design and results of the analysis of data collected during the demonstration on vehicle maintenance and durability, fuel economy, employee attitudes, safety and occupational hygiene, emissions, and fleet economics.

  6. Clean Cities Offers Fleets New Tool to Evaluate Benefits of Alternative Fuel Vehicles

    Broader source: Energy.gov [DOE]

    The AFLEET Tool allows fleets to calculate payback periods and emissions benefits of alternative fuel vehicles.

  7. Modeling EERE Deployment Programs

    SciTech Connect (OSTI)

    Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.

    2007-11-08T23:59:59.000Z

    The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

  8. Remote Systems Design & Deployment

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  9. Electrifying the BC Vehicle Fleet Opportunities and Challenges for

    E-Print Network [OSTI]

    Pedersen, Tom

    Electrifying the BC Vehicle Fleet Opportunities and Challenges for Plug-in Hybrid, Extended Range & Pure Electric Vehicles Liam Kelly, Trevor Williams, Brett Kerrigan and Curran Crawford Institute ................................................................................. 13 3.1 BC Hydro and Vehicle

  10. Fleet Testing Advanced Vehicle Testing Activities - 2010 Honda...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Testing Activity Maintenance Sheet for 2010 Honda Insight LX VIN JHMZE2H59AS011748 HEV Fleet Testing Date Mileage Description Cost 842009 5,752 Changed oil and filter...

  11. HEV Fleet Testing - 2010 Ford Fusion vin#4757

    Broader source: Energy.gov (indexed) [DOE]

    757 Fleet Testing Results To Date Operating Statistics Distance Driven: 145,595 Average Trip Distance: 11.3 mi Stop Time with Engine Idling: 11% Trip Type CityHighway:...

  12. New National Clean Fleets Partners Build New Roads to Sustainability...

    Broader source: Energy.gov (indexed) [DOE]

    of E85 (a blend of up to 85% ethanol with gasoline) in the country. It is also a major propane wholesaler, providing propane to stations and fleets. With about 1,400 retail fueling...

  13. Merit Review: EPAct State and Alternative Fuel Provider Fleets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ti13ohara.pdf More Documents & Publications Merit Review: EPAct State and Alternative Fuel Provider Fleets 2012 Merit Review: EPAct State and Alternative Fuel Provider...

  14. Business Case for Compressed Natural Gas in Municipal Fleets

    SciTech Connect (OSTI)

    Johnson, C.

    2010-06-01T23:59:59.000Z

    This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

  15. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. vssarravt068miyasato2010p.pdf More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In...

  16. Vehicle Technologies Office Merit Review 2013: Fleet DNA

    Broader source: Energy.gov [DOE]

    Presentation given by the National Renewable Energy Laboratory (NREL) at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a tool for analyzing fleet characteristics.

  17. Alternative Fuels Data Center: Los Angeles Public Works Fleet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mixer Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet Sept. 28, 2013 Photo of an ice resurfacer Electric Ice Resurfacers Improve Air Quality in Minnesota Sept. 14, 2013...

  18. Biofuels, Climate Policy and the European Vehicle Fleet

    E-Print Network [OSTI]

    Rausch, Sebastian

    We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

  19. Dynamic incentive scheme for rental vehicle fleet management

    E-Print Network [OSTI]

    Zhou, SiZhi

    2012-01-01T23:59:59.000Z

    Mobility on Demand is a new transportation paradigm aimed to provide sustainable transportation in urban settings with a fleet of electric vehicles. Usage scenarios prpopsed by Mobility on Demand systems must allow one-way ...

  20. Your Role as a Jefferson Lab Fleet Vehicle Driver | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your Role as a Jefferson Lab Fleet Vehicle Driver Responsibility Number One - Safe Driving As a vehicle operator, it is up to you to drive safely and sensibly to avoid crashes. The...

  1. Fleet Compliance Results for MY 2011/FY 2012 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-02-01T23:59:59.000Z

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2011/fiscal year 2012.

  2. Network design and fleet allocation model for vessel operation

    E-Print Network [OSTI]

    Li, Xiaojing, S.M. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Containership operators in the U.S. are confronted with a number of problems in the way they make critical fleet allocation decisions to meet the increase of shippers' demands. Instead of the empirical approach, this ...

  3. Vehicle Technologies Office Merit Review 2014: Fleet DNA

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fleet DNA.

  4. A guide to surveys of motor vehicle fleets

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    In response to directives in Section 407 of the Energy Policy Act of 1992 (EPACT), the Energy Information Administration (EIA) developed a data collection program designed to provide information useful to persons interested in the alternative fuels market. The target audience includes those seeking to manufacture, convert, sell, own, or operate alternative-fuel vehicles (AFVs) or alternative fueling facilities. Among the various projects EIA conducted as part of this data collection program were two fleet surveys conducted in Department of Energy-designated Clean Cities. The Clean Cities program is a locally-based government/industry partnership coordinated by the Department of Energy to expand the use of alternative transportation fuels. These surveys were designed to collect a broad range of information regarding the fleets and fleet vehicles in operation in the Atlanta, Georgia and Denver, Colorado areas. One of the objectives of these surveys was to attempt to identify and describe the market for AFVs. Due to inherent limitations associated with AFVs and limited alternative-fuel infrastructure, it`s believed that the first practical applications for AFVs will be within private and government fleets. Another objective in conducting the Clean Cities Fleet surveys was to develop a useful methodology for accessing and surveying private and municipal fleets that would aid other interested parties in conducting similar surveys. This report is intended to provide a description of how EIA gathered information on private and municipal fleets, but the basic survey design could be used to design surveys of other difficult-to-access populations. There are 3 basic steps to any survey: define the target population, constructing the survey frame, and implementing the survey. The procedures outlined in this report are, for the most part, the procedures used for the fleet survey conducted in Denver. The major changes between the two surveys are described in Appendix A.

  5. Fusion Power Deployment

    SciTech Connect (OSTI)

    J.A. Schmidt; J.M. Ogden

    2002-02-06T23:59:59.000Z

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

  6. Deployment & Market Transformation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

  7. NREL: Technology Deployment - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCostBuildingModels andProjectDeployment

  8. Technology Deployment List | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technology Deployment List Technology Deployment List Spreadsheet details new and underutilized technologies ranked for Federal deployment by the Federal Energy Management Program....

  9. WINDExchange: Deployment Activities

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout Printable Version BookmarkDeployment

  10. BurbankBus' clean fuel fleet now includes a zero-emission hydrogen-fueled bus. BurbankBus, which provides transit

    E-Print Network [OSTI]

    Bus fixed-route fleet consists of 17 compressed natural gas (CNG) buses. This fleet has been running on 100

  11. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet) Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell...

  12. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean...

  13. Clean Cities Coordinators and Stakeholders Awarded at the Green Fleet Conference and Expo

    Broader source: Energy.gov [DOE]

    At the 2013 Green Fleet Conference and Expo, a number of Clean Cities coordinators and stakeholders received awards for their dedication to increasing the environmental sustainability of vehicle fleets.

  14. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 This report is the sixth in an annual series of reports that...

  15. Jefferson Lab Vehicle Fleet Do's and Don'ts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Vehicle Fleet Do's and Don'ts In addition to safe driving, Jefferson Lab Fleet vehicle drivers are responsible for the proper use, maintenance and protection of their...

  16. Economics of ALMR deployment

    SciTech Connect (OSTI)

    Delene, J.G.; Fuller, L.C.; Hudson, C.R.

    1994-12-31T23:59:59.000Z

    The Advanced Liquid Metal Reactor (ALMR) has the potential to extend the economic life of the nuclear option and of reducing the number of high level waste repositories which will eventually be needed in an expanding nuclear economy. This paper reports on an analysis which models and evaluates the economics of the use of ALMRs as a component of this country`s future electricity generation mix. The ALMR concept has the ability to utilize as fuel the fissile material contained in previously irradiated nuclear fuel (i.e., spent fuel) or from surplus weapons grade material. While not a requirement for the successful deployment of ALMR power plant technology, the reprocessing of spent fuel from light water reactors (LWR) is necessary for any rapid introduction of ALMR power plants. In addition, the reprocessing of LWR spent fuel may reduce the number of high level waste repositories needed in the future by burning the long-lived actinides produced in the fission process. With this study, the relative economics of a number of potential scenarios related to these issues are evaluated. While not encompassing the full range of all possibilities, the cases reported here provide an indication of the potential costs, timings, and relative economic attractiveness of ALMR deployment.

  17. EPAct Requirements and Clean Cities Resources for Fleets (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This fact sheet explains resources provided by the Clean Cities program to help fleet managers meet EPAct requirements.

  18. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2008

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2008-10-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2008.

  19. Department of Biological Engineering Fall 2012 Solar Innovations Inc. Biodiesel Fleet Fuel

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Biological Engineering Fall 2012 Solar Innovations Inc. Biodiesel Fleet work. The goal was to research and implement biodiesel into their fleet by finding the best biodiesel for the implementation of biodiesel into their fleet. This will include: · Prospective suppliers of biodiesel fuel

  20. CONFIDENTIAL Wits University RFI -Fleet Management 1 November 2012

    E-Print Network [OSTI]

    Wagner, Stephan

    played a major role in founding industries in South Africa, including sectors such as mining, financial a comprehensive fleet management service. This essentially includes vehicle purchasing, maintenance and licensing. In order to understand what types of services are available in the marketplace, the University is releasing

  1. Major Corporate Fleets Align to Reduce Oil Consumption

    Broader source: Energy.gov [DOE]

    President Obama launches the National Clean Fleets Partnership, an initiative that helps large companies reduce with fuel usage by incorporating electric vehicles, alternative fuels and conservation techniques into their operations. Charter partners include AT&T, FedEx, Pepsi-Co, UPS and Verizon.

  2. Cartesian k-means Mohammad Norouzi David J. Fleet

    E-Print Network [OSTI]

    Jepson, Allan D.

    Cartesian k-means Mohammad Norouzi David J. Fleet Department of Computer Science University the k-means clustering algorithm is the storage and run- time cost associated with the large numbers of centers. We formulate two such models, Orthogonal k-means and Cartesian k-means. They are closely related

  3. Hybrid Electric Vehicle Fleet and Baseline Performance Testing

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

  4. FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE

    E-Print Network [OSTI]

    DRAFT FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE DEMONSTRATION that complements FreedomCAR to develop both a low-cost hydrogen infrastructure and advanced hydrogen fuel cell a strategy to develop a hydrogen economy that emphasizes co-developing hydrogen infrastructure in parallel

  5. Accelerating Combined Heat & Power Deployment

    Broader source: Energy.gov (indexed) [DOE]

    Reduced electric grid congestion Pollution reduction Most institutionalregulatorybusiness models do not incentivize CHP deployment in a manner that helps optimize energy...

  6. Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices

    SciTech Connect (OSTI)

    Miaou, S.P.; Hu, P.S. (Oak Ridge National Lab., TN (United States)); Young, J.R. (Tennessee Univ., Knoxville, TN (United States))

    1992-05-01T23:59:59.000Z

    As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated (2) Where are they located and (3) What are their usual fueling practices Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

  7. Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices

    SciTech Connect (OSTI)

    Miaou, S.P.; Hu, P.S. [Oak Ridge National Lab., TN (United States); Young, J.R. [Tennessee Univ., Knoxville, TN (United States)

    1992-05-01T23:59:59.000Z

    As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated? (2) Where are they located? and (3) What are their usual fueling practices? Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

  8. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook (Book)

    SciTech Connect (OSTI)

    Daley, R.; Ahdieh, N.; Bentley, J.

    2014-01-01T23:59:59.000Z

    A comprehensive Federal Fleet Management Handbook that builds upon the "Guidance for Federal Agencies on E.O. 13514 Section 12-Federal Fleet Management" and provides information to help fleet managers select optimal greenhouse gas and petroleum reduction strategies for each location, meeting or exceeding related fleet requirements, acquiring vehicles to support these strategies while minimizing fleet size and vehicle miles traveled, and refining strategies based on agency performance.

  9. CleanFleet. Final report: Volume 5, employee attitude assessment

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The experiences of couriers, operations managers, vehicle handlers (refuelers), and mechanics who drove and/or worked with alternative fuel vehicles, and the attitudes and perceptions of people with these experiences, are examined. Five alternative fuels studied in the CleanFleet project are considers& compressed natural gas, propane gas, California Phase 2 reformulated gasoline, M-85, and electricity. The three major areas of interest include comparative analysis of issues such as health, safety and vehicle performance, business issues encompassing several facets of station operations, and personal commentary and opinions about the CleanFleet project and the alterative fuels. Results of the employee attitude assessment are presented as both statistical and qualitative analysis.

  10. To learn more about AT&T Fleet Management Solutions, visit www.att.com/fleet-management or have us contact you.

    E-Print Network [OSTI]

    Fisher, Kathleen

    understand how a location-based application can help companies with remote workers, remote assets or fleets that manage a remote workforce or fleet of vehicles face today. To meet those challenges, successful companies.Largeenterprise or small business, manufacturer or plumbing and heating contractor, finding ways to beat the competition

  11. Perspectives on AFVs: 1996 Federal Fleet Manager Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalmsthePersonnel Management Federal Fleet

  12. First interim report of the Federal Fleet Conversion Task Force

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    The Federal Fleet Conversion Task Force was created by Executive Order 12844, signed by President Clinton on April 21, 1993. In the Order, the President directed that purchases of alternative fueled vehicles by the Federal Government be substantially increased beyond the levels required by current law. The President charged the Task Force with developing recommendations for carrying out the Executive Order, with special emphasis on setting a course that will lead to the widespread use of alternative fueled vehicles by Federal, State, and local government fleets, by private fleets and, ultimately, by individuals. The chief recommendation of the Task Force is the establishment of a Presidential Clean Cities Initiative. To support creation of the Presidential Initiative, the Task Force identified 38 cities and regions, prioritized into three tiers, for concentrating the Initiative`s efforts in Fiscal Years 1994 through 1996. This concentration of effort is key to the effectiveness of the Initiative. The 38 cities and regions would receive priority funding for Federal vehicle purchases and for infrastructure development. In addition, the Task Force has made specific recommendations for overcoming numerous regulatory, economic, and technical barriers that have slowed the introduction of alternative fueled vehicles into general use.

  13. Intelligent Transportation Systems Deployment Statistics Database

    E-Print Network [OSTI]

    Intelligent Transportation Systems Deployment Statistics Database Oak Ridge National Laboratory direction. In addition, through the ITS Deployment Tracking web site, the database supports other users in 2010. Users can also download the entire 2010 deployment tracking database through the website

  14. Deploying Emerging Technologies in ESPC

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses emerging technologies and how to deploy them using an energy savings performance contract (ESPC).

  15. Community Renewable Energy Deployment Webinars | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Watch these previously recorded webinars to learn about successful community renewable...

  16. Community Renewable Energy Deployment Provides Replicable Examples...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy Projects Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy...

  17. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United...

  18. Federal Fleet Files, FEMP, Vol. 2, No. 11 - October 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01T23:59:59.000Z

    October 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  19. Federal Fleet Files, FEMP, Vol. 1, No. 4 - September 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    September 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  20. Federal Fleet Files, FEMP, Vol. 2, No. 12 - November 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    November 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  1. Federal Fleet Files, FEMP, Vol. 2, No. 8 - June 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    June 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  2. Federal Fleet Files, FEMP, Vol. 2, No. 7 - May 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    May 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  3. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Leslie Eudy National Renewable Energy Laboratory Kevin Chandler Battelle Christina Gikakis Federal Transit...

  4. Federal Fleet Files, FEMP, Vol. 2, No. 4 - January 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01T23:59:59.000Z

    January 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  5. Federal Fleet Files, FEMP, Vol. 1, No. 3 - July 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    July 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  6. U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008. doefleetreport2008.pdf More Documents & Publications Audit Report: IG-0896 The...

  7. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Questions and Answers

    Broader source: Energy.gov [DOE]

    Questions and answers from the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003, in Southfield, Michigan.

  8. Vehicle Technologies Office Merit Review 2015: Fleet DNA Phase 1 Refinement & Phase 2 Implementation

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Fleet...

  9. Federal Fleet Files, FEMP, Vol. 1, No. 1 - May 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-05-01T23:59:59.000Z

    Monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  10. Federal Fleet Files, FEMP, Vol. 2, No. 2 - November 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01T23:59:59.000Z

    November 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  11. Federal Fleet Files, FEMP, Vol. 2, No. 10 - September 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    September 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  12. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Supporting Information

    Broader source: Energy.gov [DOE]

    Supporting information and objectives for the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003 in Southfield, Michigan.

  13. Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics

    E-Print Network [OSTI]

    Heiser, Gernot

    Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics in logistics and supply chain management. · We are seeking customers and financial partners to scale a stand

  14. Federal Fleet Files, FEMP, Vol. 2, No. 13 - December 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    December 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to federal agencies.

  15. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleets: Frequently Asked Questions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    This brochure provides answers to frequently asked questions about the EPAct Alternative Fuel Transportation Program's State and Alternative Fuel Provider Fleets.

  16. AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

  17. Federal Fleet Files, FEMP, Vol. 2, No. 9 - July 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    July 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  18. Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  19. Fleet Compliance Results for MY 2010/FY 2011, EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2010/fiscal year 2011. The U.S. Department of Energy (DOE) regulates covered state and alternative fuel provider (SFP) fleets under the Energy Policy Act of 1992 (EPAct), as amended. For model year (MY) 2010, the compliance rate for the 2911 covered SFP fleets was 100%. Fleets used either Standard Compliance or Alternative Compliance. The 279 fleets that used Standard Compliance exceeded their aggregate MY 2010 acquisition requirements by 61%. The 12 covered fleets that complied using Alternative Compliance exceeded their aggregate MY 2010 petroleum-use-reduction requirements by 89%. Overall, DOE saw modest decreases from MY 2009 in biodiesel fuel use credits earned and in the number of light-duty vehicles (LDVs) acquired. Compared to years before MY 2009, these rates were far lower. Because covered fleets acquired fewer new vehicles overall in MY 2010, the requirement for alternative fuel vehicles (AFVs), which is proportional to new acquisitions, also dropped.

  20. Newberry Seismic Deployment Fieldwork Report

    SciTech Connect (OSTI)

    Wang, J; Templeton, D C

    2012-03-21T23:59:59.000Z

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.

  1. Applying the Energy Service Company Model to Advance Deployment of Fleet Natural Gas Vehicles and Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3ApplianceApplying the Energy Service Company

  2. Fleet DNA Project Data Summary Report for Bucket Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet

  3. Fleet DNA Project Data Summary Report for City Transit Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet25 18 17

  4. Fleet DNA Project Data Summary Report for Class 8 Tractors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet25 18 1726

  5. Fleet DNA Project Data Summary Report for Delivery Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet25 18

  6. Fleet DNA Project Data Summary Report for Delivery Vans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet25

  7. Fleet DNA Project Data Summary Report for Refuse Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562 16 30

  8. Fleet DNA Project Data Summary Report for School Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562 16

  9. Sustainable Federal Fleets Catalog of Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergy State andBuildingsSustainable Federal Fleets

  10. Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructureFuels in Its FleetCNG

  11. Alternative Fuels Data Center: Maine Fleets Make Progress with Propane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduce Operating CostsElectricMaine Fleets

  12. Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro Fleet Runs on Natural GasSuccess

  13. Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro Fleet RunsTexas

  14. Fleet DNA Project Data Summary Report for Service Vans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562 1635

  15. Fleet DNA Project Â… Data Dictionary for Public Download Files

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562

  16. Fleet Tools (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562and

  17. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report, Fleet Compliance Results for MY 2009/FY 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2009/fiscal year 2010.

  18. Incrementally Deployable Source Address Validity

    E-Print Network [OSTI]

    Li, Jun

    ID-SAVE: Incrementally Deployable Source Address Validity Enforcement Toby Ehrenkranz ://netsec.cs.uoregon.edu #12;Ehrenkranz WiP ID-SAVE What's The Problem? While routers know which direction a packet should are unreliable ID-SAVE attacks this root cause! 1 #12;Ehrenkranz WiP ID-SAVE ID-SAVE Basics Create and maintain

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2009; Composite Data Products, Final Version March 19, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-03-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2009.

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-09-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

  1. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-05-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

  2. NREL: Technology Deployment - Solar Deployment and Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCostBuildingModels andProjectDeployment and

  3. Deploying

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavid Turner David3

  4. CleanFleet. Final report: Volume 7, vehicle emissions

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

  5. Request for Information: Demonstration and Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    regarding bioenergy technology validation to accelerate the deployment of advanced biofuel, bioproducts, and biopower technologies. BETO is specifically interested in...

  6. Nuclear Power - Deployment, Operation and Sustainability

    E-Print Network [OSTI]

    . Tsvetkov p. cm. ISBN 978-953-307-474-0 free online editions of InTech Books and Journals can be found at www.intechopen.com Contents Preface IX Part 1 Nuclear Power Deployment 1 Chapter 1 Nuclear Naval Propulsion 3 Magdi... to successful development, deployment and operation of nuclear power systems worldwide: Nuclear Power Deployment 1. Nuclear Naval Propulsion 2. Deployment Scenarios for New Technologies 3. The Investment Evaluation of Third-Generation Nuclear Power - from...

  7. Accelerating the deployment of cleaner coal plants

    SciTech Connect (OSTI)

    Parkes, J.; Holt, N.; Phillips, J.

    2008-02-15T23:59:59.000Z

    The dearth of commercial operating experience for advanced coal-fired facilities is forcing their early adopters and builders to use long development cycles and pay high costs for unique engineering design studies. A broad-based industry collaborative effort fostered by EPRI to address this issue (CoalFleet for Tomorrow) is beginning to show results. 3 figs.

  8. Optimal Deployment of Impromptu Wireless Sensor Networks

    E-Print Network [OSTI]

    Kumar, Anurag

    Optimal Deployment of Impromptu Wireless Sensor Networks Prasenjit Mondal, K. P. Naveen and Anurag to deploy sensors (such as motion sensors, or even imaging sensors) and a wireless interconnection network an impromptu deploy- ment of a wireless sensor network in a building. Fig. 2. Problem studied in this paper

  9. area networks deployment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    networks of such autonomous solar robots is provided. Index Terms Mobile Robot, Solar Power, Antarctica. I. Laura Ray; Er Price; Er Streeter; Daniel Denton; James H. Lever 138...

  10. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook, June 2010, Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Comprehensive Federal fleet management guide offered as a companion to Executive Order 13514 Section 12 guidance.

  11. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook, July 2011, Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    Comprehensive Federal fleet management guide offered as a companion to Executive Order 13514 Section 12 guidance.

  12. Disposable telemetry cable deployment system

    DOE Patents [OSTI]

    Holcomb, David Joseph (Sandia Park, NM)

    2000-01-01T23:59:59.000Z

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  13. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  14. Interactive dynamic aircraft scheduling and fleet routing with the out-of-kilter algorithm

    E-Print Network [OSTI]

    Van Cotthem, Jan

    1986-01-01T23:59:59.000Z

    A decision support system is introduced that automates dynamic aircraft scheduling and fleet routing. Interactive graphics-based schedule construction and modification tools automate the dynamic scheduling of aircraft of ...

  15. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2008/fiscal year 2009.

  16. List of Attendees at the Controlled Hydrogen Fleet and Infrastructure Demonstation and Pre-Solicitation Meeting

    Broader source: Energy.gov [DOE]

    This list of attendees represents those that attended the Controlled Hydrogen Fleet and Infrastructure Demonstation and Pre-Solicitation Meeting pre-solicitation meeting in Detroit, Michigan, on March 19, 2003.

  17. Pre-solicitation Meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    This presentation was given to attendees of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project pre-solicitation meeting held in Detroit, Michigan, on March 19, 2003.

  18. Information Analysis Methodology for Border Security Deployment Prioritization and Post Deployment Evaluation

    SciTech Connect (OSTI)

    Booker, Paul M.; Maple, Scott A.

    2010-06-08T23:59:59.000Z

    Due to international commerce, cross-border conflicts, and corruption, a holistic, information driven, approach to border security is required to best understand how resources should be applied to affect sustainable improvements in border security. The ability to transport goods and people by land, sea, and air across international borders with relative ease for legitimate commercial purposes creates a challenging environment to detect illicit smuggling activities that destabilize national level border security. Smuggling activities operated for profit or smuggling operations driven by cross border conflicts where militant or terrorist organizations facilitate the transport of materials and or extremists to advance a cause add complexity to smuggling interdiction efforts. Border security efforts are further hampered when corruption thwarts interdiction efforts or reduces the effectiveness of technology deployed to enhance border security. These issues necessitate the implementation of a holistic approach to border security that leverages all available data. Large amounts of information found in hundreds of thousands of documents can be compiled to assess national or regional borders to identify variables that influence border security. Location data associated with border topics of interest may be extracted and plotted to better characterize the current border security environment for a given country or region. This baseline assessment enables further analysis, but also documents the initial state of border security that can be used to evaluate progress after border security improvements are made. Then, border security threats are prioritized via a systems analysis approach. Mitigation factors to address risks can be developed and evaluated against inhibiting factor such as corruption. This holistic approach to border security helps address the dynamic smuggling interdiction environment where illicit activities divert to a new location that provides less resistance to smuggling activities after training or technology is deployed at a given location. This paper will present an approach to holistic border security information analysis.

  19. Gras Dowr joins world`s FPSO fleet

    SciTech Connect (OSTI)

    NONE

    1997-05-05T23:59:59.000Z

    The Gras Dowr, a floating production, storage, and offloading vessel (FPSD) for Amerada Hess Ltd.`s North Sea Durward and Dauntless fields, is one of the latest additions to the world`s growing FPSO fleet. The Gras Dowr, anchored in about 90 m of water, lies between the Durward (U.K. Block 21/16) and Dauntless (U.K. Block 21/11) fields, about 3.5 km from the subsea wellhead locations. The Gras Dowr`s main functions, according to Bluewater Offshore Production Systems Ltd., are to: receive fluids from well risers; process incoming fluids to separate the fluid into crude, water, and gas; store dry crude oil and maintain the required temperature; treat effluent to allow for water discharge to the sea; compress gas for gas lift as a future option; provide chemical injection skid for process chemical injection; use a part of the produced gas for fuel gas, and flare excess gas; inject treated seawater into the injection wells; house power generation for process and offloading operation and utilities; offload to a tandem moored shuttle tanker including receiving liquid fuel from the same tanker; provide accommodations for operating and maintenance crews; allow helicopters landings and takeoffs; allow handling and storage of goods transported by supply vessels; moor a shuttle tanker; and control the subsea wells.

  20. Commercial Building Demonstration and Deployment Overview - 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Commercial Building Demonstration and Deployment activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs....

  1. Featured Publications on Integrated Technology Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information on the analysis and technical assistance conducted through the integrated deployment effort to help various locations around the world address specific energy challenges. Includes case...

  2. Electric Vehicle Charging Infrastructure Deployment Guidelines...

    Open Energy Info (EERE)

    to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia AgencyCompany Organization: Natural...

  3. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  4. Sandia National Laboratories: increase PV deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV deployment ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  5. Sandia National Laboratories: high PV deployment level

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deployment level ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  6. Buildings Technologies Deployment | Clean energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use...

  7. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  8. PMU Deployment for Optimal State Estimation Performance

    E-Print Network [OSTI]

    Roy, Sumit

    the observability of candidate deployments at each step and improves the convergence speed of the search. In [5PMU Deployment for Optimal State Estimation Performance Yue Yang, Student Member IEEE, and Sumit electronic devices (IED), that sense the grid state variables so as to support enhanced, real-time monitoring

  9. Pollution prevention opportunity assessment for Sandia National Laboratories/New Mexico's fleet services department.

    SciTech Connect (OSTI)

    Richardson, Anastasia Dawn

    2003-06-01T23:59:59.000Z

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the Sandia National Laboratories/New Mexico's (SNL/NM) Fleet Services Department between December 2001 and August 2002. This is the third PPOA conducted at Fleet in the last decade. The primary purpose of this PPOA was to review progress of past initiatives and to provide recommendations for future waste reduction measures of hazardous and solid waste streams and increasing the purchase of environmentally friendly products. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The Sandia National Laboratories/New Mexico Pollution Prevention Group will work with SNL/NM's Fleet Services to implement these options.

  10. Conventional vs Electric Commercial Vehicle Fleets 1 Paper published in the Proceedings of "The Seventh International Conference on City Logistics"

    E-Print Network [OSTI]

    Bertini, Robert L.

    Conventional vs Electric Commercial Vehicle Fleets 1 Paper published in the Proceedings of "The ­ 9th June 2011 CONVENTIONAL VS ELECTRIC COMMERCIAL VEHICLE FLEETS A CASE STUDY OF ECONOMIC AND TECHNOLOGICAL FACTORS AFFECTING THE COMPETITIVENESS OF ELECTRIC COMMERCIAL VEHICLES IN THE USA Wei Feng, Ph

  11. DYNAMIC RIDE-SHARING AND OPTIMAL FLEET SIZING FOR A SYSTEM OF1 SHARED AUTONOMOUS VEHICLES2

    E-Print Network [OSTI]

    Kockelman, Kara M.

    DYNAMIC RIDE-SHARING AND OPTIMAL FLEET SIZING FOR A SYSTEM OF1 SHARED AUTONOMOUS VEHICLES2 3 4 and for publication in Transportation21 22 23 ABSTRACT24 25 Shared autonomous (fully-automated) vehicles (SAVs, destinations and departure times in the same vehicle), optimizing fleet sizing, and32 anticipating

  12. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for National Institute of Health

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-11-01T23:59:59.000Z

    This report focuses on the National Institute of Health (NIH) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  13. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  14. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01T23:59:59.000Z

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  15. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Glenn Research Center

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report focuses on the NASA Glenn Research Center (GRC) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  16. Demonstration and Deployment Strategy Workshop: Summary

    Broader source: Energy.gov [DOE]

    This report is based on the proceedings of the U.S. DOE’s Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12–13, 2014, at Argonne National Laboratory.

  17. Analysis of deployable strut roof structures

    E-Print Network [OSTI]

    Wolfe, Maxwell H. (Maxwell Henry)

    2013-01-01T23:59:59.000Z

    Deployable structures are structures that can change shape from a compact to an expanded form. Thus, their advantage over conventional structures is adaptability, whether in the sense of adapting to changing environmental ...

  18. State perspectives on clean coal technology deployment

    SciTech Connect (OSTI)

    Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

    1997-12-31T23:59:59.000Z

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  19. Good Practice Guide on Firewall Deployment for SCADA and Process...

    Energy Savers [EERE]

    Good Practice Guide on Firewall Deployment for SCADA and Process Control Networks Good Practice Guide on Firewall Deployment for SCADA and Process Control Networks In recent years,...

  20. Deployment Barriers to Distributed Wind Energy: Workshop Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment Barriers to Distributed Wind Energy: Workshop Report, October 28, 2010 Deployment Barriers to Distributed Wind Energy: Workshop Report, October 28, 2010 This report...

  1. Synchrophasor Technologies and their Deployment in the Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

  2. A Buildings Module for the Stochastic Energy Deployment System

    E-Print Network [OSTI]

    Marnay, Chris

    2008-01-01T23:59:59.000Z

    Stochastic Energy Deployment System Chris Marnay a , Michael Stadler a, b , SamStochastic Energy Deployment System 1 Chris Marnay a) , Michael Stadler a),b) , Sam

  3. Electric Vehicle Deployment: Policy Questions and Impacts to...

    Office of Environmental Management (EM)

    Vehicle Deployment: Policy Questions and Impacts to the U.S. Electric Grid - EAC Recommendations (November 2011) Electric Vehicle Deployment: Policy Questions and Impacts to the...

  4. Energy Department Selects 11 Tribal Communities to Deploy Energy...

    Energy Savers [EERE]

    Selects 11 Tribal Communities to Deploy Energy Efficiency and Renewable Energy Technologies Energy Department Selects 11 Tribal Communities to Deploy Energy Efficiency and...

  5. Renewable Energy Deployment Projects for Forest County Potawatomi...

    Office of Environmental Management (EM)

    Energy Deployment Projects for Forest County Potawatomi Community Renewable Energy Deployment Projects for Forest County Potawatomi Community Rooftop PV installation on the Forest...

  6. New DOE-NASCAR Partnership Revs Deployment of Pollution Reducing...

    Office of Environmental Management (EM)

    New DOE-NASCAR Partnership Revs Deployment of Pollution Reducing Technologies New DOE-NASCAR Partnership Revs Deployment of Pollution Reducing Technologies September 11, 2013 -...

  7. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by...

  8. Solar Photovoltaic Financing: Deployment on Public Property by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments Solar Photovoltaic Financing: Deployment on Public Property by State and Local...

  9. Federal Technology Deployment Pilot: Exterior Solid State Lighting...

    Energy Savers [EERE]

    Federal Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal...

  10. A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS

    E-Print Network [OSTI]

    Dessouky, Maged

    A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS Marco a demand responsive transit service with a predetermined quality for the user in terms of waiting time models; Continuous approximation models; Paratransit services; Demand responsive transit systems. #12;3 1

  11. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect (OSTI)

    Brennan, A.

    2011-04-01T23:59:59.000Z

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  12. Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines 

    E-Print Network [OSTI]

    Wang, T.; Braquet, L.

    2008-01-01T23:59:59.000Z

    An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

  13. FLEET SERVICES -FACILTIES MANAGEMENT -UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY VEHICLE USE AUTHORIZATION FORM

    E-Print Network [OSTI]

    Russell, Lynn

    FLEET SERVICES - FACILTIES MANAGEMENT - UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY VEHICLE USE/destination________________________________________________________ ____________________________________________________________________________ Undersigned fully understands and acknowledges that the vehicle released pursuant to this authorization shall driver states that he/she has a valid driver's license for the vehicle being operated. Damage related

  14. Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines

    E-Print Network [OSTI]

    Wang, T.; Braquet, L.

    2008-01-01T23:59:59.000Z

    An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

  15. Contraction Control of a Fleet Circular Formation of AUVs under Limited Communication Range

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    including cooperative control of underwater and unmanned air vehicles (AUVs and UAVs) [3], [4], consensus [1 at http://www.lag.ensieg.inpg.fr/connect/ In the context of the source seeking for underwater vehi- cles be more adequate to produce efficient search motions. Another difficulty in the underwater fleet formation

  16. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect (OSTI)

    Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Lab., Golden, CO (US); Clark, N.

    2000-11-07T23:59:59.000Z

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  17. The Design of an FAA Campus Motor Fleet Decision Support System

    E-Print Network [OSTI]

    goals. The Federal Aviation Administration (FAA) has over 4300 registered vehicles in its fleet. As per billion; nearly a quarter of total costs. B. FAA The Federal Aviation Administration (FAA) is a part. II. STAKEHOLDER ANALYSIS A. Federal Aviation Administration (FAA) The FAA is responsible

  18. Airline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches

    E-Print Network [OSTI]

    -based. The preventative alternative involves the transmission of maintenance data to maintenance personnel whenAirline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches Mike Dupuy, Dan Wesely, Cody Jenkins Abstract ­ Airline maintenance is a significant contributor

  19. fishing fleets were allegedly hampering their mackerel-fishing operations. Pa-

    E-Print Network [OSTI]

    Exclusive Economic Zone (EEZ)'. The Presidential mes- sages requested the amendment of Arti- cle 27 of a species exceeds the capacity of the national fishing fleet, the Mexican Gov- ernment will permit foreign Olicia/ de /a Fedemcion . At a joint press conference following the signing of the Presidential message

  20. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); November 2011 Composite Data Products - Deployment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-06-01T23:59:59.000Z

    This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). November 2011 Composite Data Products - Deployment November 30, 2011.

  1. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 1 2012 Composite Data Products - Deployment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-06-01T23:59:59.000Z

    This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). Quarter 1 2012 Composite Data Products - Deployment March 8, 2012.

  2. paper topics

    E-Print Network [OSTI]

    2013-03-10T23:59:59.000Z

    The final paper must be about 10 pages long, written in Latex, and on a topic ... The topic must be chosen by March 21st, a first draft (which must be complete) is.

  3. Environmental issues affecting clean coal technology deployment

    SciTech Connect (OSTI)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31T23:59:59.000Z

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  4. Deploying Darter A Cray XC30 System

    SciTech Connect (OSTI)

    Fahey, Mark R [ORNL] [ORNL; Budiardja, Reuben D [ORNL] [ORNL; Crosby, Lonnie D [ORNL] [ORNL; McNally, Stephen T [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    TheUniversityofTennessee,KnoxvilleacquiredaCrayXC30 supercomputer, called Darter, with a peak performance of 248.9 Ter- aflops. Darter was deployed in late March of 2013 with a very aggressive production timeline - the system was deployed, accepted, and placed into production in only 2 weeks. The Spring Experiment for the Center for Analysis and Prediction of Storms (CAPS) largely drove the accelerated timeline, as the experiment was scheduled to start in mid-April. The Consortium for Advanced Simulation of Light Water Reactors (CASL) project also needed access and was able to meet their tight deadlines on the newly acquired XC30. Darter s accelerated deployment and op- erations schedule resulted in substantial scientific impacts within the re- search community as well as immediate real-world impacts such as early severe tornado warnings

  5. Reliable Process for Security Policy Deployment

    E-Print Network [OSTI]

    Preda, Stere; Cuppens, Frederic; Garcia-Alfaro, Joaquin; Toutain, Laurent

    2009-01-01T23:59:59.000Z

    We focus in this paper on the problem of configuring and managing network security devices, such as Firewalls, Virtual Private Network (VPN) tunnels, and Intrusion Detection Systems (IDSs). Our proposal is the following. First, we formally specify the security requirements of a given system by using an expressive access control model. As a result, we obtain an abstract security policy, which is free of ambiguities, redundancies or unnecessary details. Second, we deploy such an abstract policy through a set of automatic compilations into the security devices of the system. This proposed deployment process not only simplifies the security administrator's job, but also guarantees a resulting configuration free of anomalies and/or inconsistencies.

  6. Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project

    SciTech Connect (OSTI)

    McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

    2002-02-26T23:59:59.000Z

    This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

  7. Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet

    E-Print Network [OSTI]

    Bandivadekar, Anup P

    2008-01-01T23:59:59.000Z

    The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

  8. Optimal Deployment of Large Wireless Sensor Networks

    E-Print Network [OSTI]

    Toumpis, Stavros

    1 Optimal Deployment of Large Wireless Sensor Networks S. Toumpis, Member, IEEE, and Leandros, Sensor networks. I. INTRODUCTION A. Wireless Sensor Networks Wireless sensor networks are comprised of sensors that are equipped with wireless transceivers and so are able to form a wireless network [3

  9. Programming, Composing, Deploying for the Grid

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Programming, Composing, Deploying for the Grid Laurent Baduel, Fran¸coise Baude, Denis Caromel FirstName.LastName@sophia.inria.fr Abstract. Grids raise new challenges in the following way: heterogene objects and components. We especially target Grid computing, but our approach also applies to application

  10. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Grand Canyon National Park

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort; Ian Nienhueser

    2014-08-01T23:59:59.000Z

    This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

  11. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2015-01-01T23:59:59.000Z

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  12. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  13. Relationship between Heavy Vehicle Speed Limit and Fleet Fuel Consumption on Minor Roads

    E-Print Network [OSTI]

    Wilson, G.; Morrison, G.; Midgley, W.; Cebon, D.

    2015-03-12T23:59:59.000Z

    e s/M in ) Link Data Calibrated Model 13 3. Fuel Consumption Model Figure 7 outlines the basic structure of the fuel consumption model. Figure 7: General flow diagram of the fuel consumption model. Energy Consumption Model The energy... flow rates tend to be low. As traffic approaches bound flow (at the top of the chart), vehicle interactions increase and faster fleet vehicles begin to platoon behind the slowest vehicles. The extent to which traffic is slowed depends on the speeds...

  14. Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments

    SciTech Connect (OSTI)

    Not Available

    1982-02-01T23:59:59.000Z

    The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

  15. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  16. CleanFleet. Final report: Volume 3, vehicle maintenance and durability

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    CleanFleet is a demonstration of panel vans operating on five alternative motorfuels in commercial package delivery operations in the South Coast Air Basin of California. The five alternative fuels are propane gas, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), methanol (M-85 with 15 percent RFG), and electricity. Data were gathered on in-use emissions, operations, and fleet economics. This volume of the final report summarizes the maintenance required on these vans from the time they were introduced into the demonstration (April through early November 1992) until the end of the demonstration in September 1994. The vans were used successfully in FedEx operations; but, to varying degrees, the alternative fuel vehicles required more maintenance than the unleaded gasoline control vehicles. The maintenance required was generally associated with the development state of the fuel-related systems. During the demonstration, no non-preventive maintenance was required on the highly developed fuel-related systems in any of the unleaded gasoline production vehicles used either as controls or as RFG test vehicles. The maintenance problems encountered with the less developed systems used in this demonstration may persist in the short term with vehicles featuring the same or similar systems. This means that fleet operators planning near-term acquisitions of vehicles incorporating such systems should consider the potential for similar problems when (1) selecting vendors and warranty provisions and (2) planning maintenance programs.

  17. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    SciTech Connect (OSTI)

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01T23:59:59.000Z

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  18. accelerated action project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects in Action (WEPA) Full Breeze 24 The Fleet DNA Project aims to accelerate the evolution of advanced vehicle development and Renewable Energy Websites Summary: The Fleet...

  19. Metals Production Requirements for Rapid Photovoltaics Deployment

    E-Print Network [OSTI]

    Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

    2015-01-01T23:59:59.000Z

    If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

  20. Deployment Effects of Marin Renewable Energy Technologies

    SciTech Connect (OSTI)

    Brian Polagye; Mirko Previsic

    2010-06-17T23:59:59.000Z

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

  1. ARM - News From the Azores Deployement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat fluxChinaNews : AMF Deployment,

  2. Regional Effort to Deploy Clean Coal Technologies

    SciTech Connect (OSTI)

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31T23:59:59.000Z

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  3. Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research www Photovoltaics Environmental Research Center Brookhaven National Laboratory #12;2 Source: PV Market Outlook

  4. Growth in metals production for rapid photovoltaics deployment

    E-Print Network [OSTI]

    Kavlak, Goksin

    If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. We quantify the effect of PV deployment levels on the scale of annual metals production. If a ...

  5. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...

    Energy Savers [EERE]

    Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the...

  6. World's First Fuel Cell Cargo Trucks Deployed at Memphis International...

    Energy Savers [EERE]

    World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport June 25, 2015 - 1:57pm...

  7. Dynamic instabilities imparted by CubeSat deployable solar panels

    E-Print Network [OSTI]

    Peters, Eric David

    2014-01-01T23:59:59.000Z

    In this work, multibody dynamics simulation was used to investigate the effects of solar panel deployment on CubeSat attitude dynamics. Nominal and partial/asymmetric deployments were simulated for four different solar ...

  8. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...

    Office of Environmental Management (EM)

    Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

  9. DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09: Industry Deployed Fuel Cell Backup Power (BuP) DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP) This program record from the U.S....

  10. DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

  11. Energy Department Invests Over $7 Million to Deploy Tribal Clean...

    Energy Savers [EERE]

    Invests Over 7 Million to Deploy Tribal Clean Energy Projects Energy Department Invests Over 7 Million to Deploy Tribal Clean Energy Projects November 14, 2013 - 10:00am Addthis...

  12. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  13. Mobile Applications and Algorithms to Facilitate Electric Vehicle Deployment

    E-Print Network [OSTI]

    de Veciana, Gustavo

    side management, to make better use of volatile renewable generation, makes them an attractive that of traditional vehicles, but the possibility of integrating an electric fleet with the smart grid, using demand component in building an efficient smart grid. Various companies have introduced hybrid electric vehi- cles

  14. Renewables and CHP Deployment in the UK January 2002

    E-Print Network [OSTI]

    Watson, Andrew

    Renewables and CHP Deployment in the UK to 2020 Jim Watson January 2002 Tyndall Centre for Climate Change Research Working Paper 21 #12;Renewables and CHP Deployment in the UK to 2020 Jim Watson Energy....................................................................................................6 3. The Deployment of Renewables and CHP to 2020

  15. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    SciTech Connect (OSTI)

    Blau, P.J.

    2003-02-03T23:59:59.000Z

    The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the TMC meeting. Twenty-one responses were received, spanning fleet sizes between 12 and 170,000 vehicles. Responses are summarized in a series of tables separated into responses from small (100 or fewer powered vehicles), medium (101-1000 vehicles), and large fleets (>1000 vehicles). The vast majority of fleets do their own brake maintenance, relying primarily on experience and lining manufactures to select aftermarket linings. At least half of the responders are familiar to some extent with TMC Recommended Practice 628 on brake linings, but most do not use this source of test data as the sole criterion to select linings. Significant shortfalls in the applicability of TMC RP 628 to certain types of brake systems were noted.

  16. Reduce truck fuel bills by $353,000+ with private fleet

    SciTech Connect (OSTI)

    Neumerski, M.J. (Rohm and Haas Co., Philadelphia, PA); Powers, T.

    1983-05-01T23:59:59.000Z

    Rohm and Haas Company accomplished well over $353,000 savings in fuel costs due to vehicle engineering and driver training in 1982. It utilized the leaser's nationwide network of company-owned fuel stops resulting in more savings. An emergency response capability has reduced the average downtime per vehicle failure. Rohm and Haas leases 61 tandem axle tractors which are used in four private carriage fleets. Also included are 90 vans and 45 haultrailers that log nearly 10 million road-miles annually.

  17. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  18. DOE Railcar Fleet Asset Planning & Lessons Learned | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOEDepartment| DepartmentRailcar Fleet

  19. Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNew Hampshire Fleet Revs up With Natural

  20. Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro Fleet Runs on Natural Gas to someone

  1. ARM - News : AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat fluxChinaNews : AMF Deployment, Shouxian, China

  2. ARM - News from the Cape Cod Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat fluxChinaNews : AMF Deployment,Media ContactNews

  3. ARM - News from the Gan Island Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat fluxChinaNews : AMF Deployment,Media

  4. Property:DeploymentSector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolve Jump to:DeploymentSector Jump to: navigation,

  5. Integrated assessment of dispersed energy resources deployment

    SciTech Connect (OSTI)

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01T23:59:59.000Z

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  6. Regional Energy Deployment System (ReEDS)

    SciTech Connect (OSTI)

    Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A.

    2011-12-01T23:59:59.000Z

    The Regional Energy Deployment System (ReEDS) is a deterministic optimization model of the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States into the future. The model, developed by the National Renewable Energy Laboratory's Strategic Energy Analysis Center, is designed to analyze the critical energy issues in the electric sector, especially with respect to potential energy policies, such as clean energy and renewable energy standards or carbon restrictions. ReEDS provides a detailed treatment of electricity-generating and electrical storage technologies and specifically addresses a variety of issues related to renewable energy technologies, including accessibility and cost of transmission, regional quality of renewable resources, seasonal and diurnal generation profiles, variability of wind and solar power, and the influence of variability on the reliability of the electrical grid. ReEDS addresses these issues through a highly discretized regional structure, explicit statistical treatment of the variability in wind and solar output over time, and consideration of ancillary services' requirements and costs.

  7. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Sleeping Bear Dunes National Lakeshore

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-11-01T23:59:59.000Z

    This report focuses on the Sleeping Bear Dunes National Lakeshore (SLBE) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  8. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Veterans Affairs – VA Manhattan Campus

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report focuses on the Department of Veterans Affairs, VA Manhattan Campus (VA- Manhattan) fleet to identify the daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support successful introduction of plug-in electric vehicles (PEVs) into the agency’s fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively called PEVs) can fulfill the mission requirements.

  9. Alternative fuel vehicles for the state fleets: Results of the 5-year planning process

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

  10. Assessment of institutional barriers to the use of natural gas in automotive vehicle fleets

    SciTech Connect (OSTI)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-08-01T23:59:59.000Z

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified and assessed. Recommendations for barrier removal were then developed. The research technique was a combination of literature review and interviews of knowledgeable persons in government and industry, including fleet operators and marketers of natural gas vehicles and systems. Eight types of institutional barriers were identified and assessed. The most important were two safety-related barriers: (1) lack of a national standard for the safety design and certification of natural gas vehicles and refueling stations; and (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements. Other barriers addressed include: (3) need for clarification of EPA's tampering enforcement policy; (4) the US hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale-for-resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufacturers warranties; and (8) need for a natural gas to gasoline-equivalent-units conversion factor for use in calculation of state road use taxes. Insurance on natural gas vehicles, and state emissions and anti-tampering regulations were also investigated as part of the research but were not found to be barriers.

  11. Preliminary investigation Area 12 fleet operations steam cleaning discharge area Nevada Test Site

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This report documents the characterization activities and findings of a former steam cleaning discharge area at the Nevada Test Site. The former steam cleaning site is located in Area 12 east of Fleet Operations Building 12-16. The characterization project was completed as a required condition of the ``Temporary Water Pollution Control Permit for the Discharge From Fleet Operations Steam Cleaning Facility`` issued by the Nevada Division of Environmental Protection. The project objective was to collect shallow soil samples in eight locations in the former surface discharge area. Based upon field observations, twelve locations were sampled on September 6, 1995 to better define the area of potential impact. Samples were collected from the surface to a depth of approximately 0.3 meters (one foot) below land surface. Discoloration of the surface soil was observed in the area of the discharge pipe and in localized areas in the natural drainage channel. The discoloration appeared to be consistent with the topographically low areas of the site. Hydrocarbon odors were noted in the areas of discoloration only. Samples collected were analyzed for bulk asbestos, Toxicity Characteristic Leaching Procedure (TCLP) metals, total petroleum hydrocarbons (TPHs), volatile organic compounds (VOCs), semi-volatile organic compounds (Semi-VOCs), and gamma scan.

  12. Building Diagnostic Market Deployment - Final Report

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Gayeski, N.

    2012-04-01T23:59:59.000Z

    The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of automated fault de4tection and diagnostic (AFDD) tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction, and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: 1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, 2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and 3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations.

  13. PHASE II CHARACTERIZATION SURVEY OF THE USNS BRIDGE (T AOE 10), MILITARY SEALIFT FLEET SUPPORT COMMAND, NAVAL STATION, NORFOLK, VIRGINIA DCN 5180-SR-01-0

    SciTech Connect (OSTI)

    NICK A. ALTIC

    2012-08-30T23:59:59.000Z

    In March 2011, the USNS Bridge was deployed off northeastern Honshu, Japan with the carrier USS Ronald Reagan to assist with relief efforts after the 2011 T?hoku earthquake and tsunami. During that time, the Bridge was exposed to air-borne radioactive materials leaking from the damaged Fukushima I Nuclear Power Plant. The proximity of the Bridge to the air-borne impacted area resulted in the contamination of the ship’s air-handling systems and the associated components, as well as potential contamination of other ship surfaces due to either direct intake/deposition or inadvertent spread from crew/operational activities. Preliminary surveys in the weeks after the event confirmed low-level contamination within the heating, ventilation, and air conditioning (HVAC) ductwork and systems, and engine and other auxiliary air intake systems. Some partial decontamination was performed at that time. In response to the airborne contamination event, Military Sealift Fleet Support Command (MSFSC) contracted Oak Ridge Associated Universities (ORAU), under provisions of the Oak Ridge Institute for Science and Education (ORISE) contract, to assess the radiological condition of the Bridge. Phase I identified contamination within the CPS filters, ventilation systems, miscellaneous equipment, and other suspect locations that could not accessed at that time (ORAU 2011b). Because the Bridge was underway during the characterization, all the potentially impacted systems/spaces could not be investigated. As a result, MSFSC contracted with ORAU to perform Phase II of the characterization, specifically to survey systems/spaces previously inaccessible. During Phase II of the characterization, the ship was in port to perform routine maintenance operations, allowing access to the previously inaccessible systems/spaces.

  14. Fleet Services Fleet Services Facility

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    · 287 rental vehicles: economy, hybrid, standard and large cars, mini and 12 passenger and cargo vans, pickup trucks, buses, and police cars. · 2 buses with drivers: 20 passenger and 44passenger · 10

  15. Strategies to Finance Large-Scale Deployment of Renewable Energy...

    Open Energy Info (EERE)

    Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL...

  16. Development and Deployment of a Short Rotation Woody Crops Harvesting...

    Office of Scientific and Technical Information (OSTI)

    SRC Woody Crop Header Re-direct Destination: Demand for bioenergy sourced from woody biomass is projected to increase; however, the expansion and rapid deployment of short...

  17. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

  18. ARM - AMF Deployment, Los Angeles, California, to Honolulu, Hawaii

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Deployment Operations Baseline Instruments and Data Plots at the Archive Science Plan (PDF, 1.7MB) Horizon Spirit: Tracking the Transit Experiment Planning MAGIC Full...

  19. Evaluation of Imagers in a Biological Sensing Deployment

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    monitoring sensors, and solar panel. Main componentsTherefore, we have utilized solar panels to power the entiresensors - Battery - Solar panel Node Deployment Wireless/

  20. An Analytical Framework for Long Term Policy for Commercial Deployment...

    Open Energy Info (EERE)

    An Analytical Framework for Long Term Policy for Commercial Deployment and Innovation in Carbon Capture and Sequestration Technology in the United States Jump to: navigation,...

  1. Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes...

    Broader source: Energy.gov (indexed) [DOE]

    Slashing Red Tape To Speed Solar Deployment for Homes and Businesses While solar panels, inverters and other hardware are more affordable than ever before (the average cost of...

  2. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01T23:59:59.000Z

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  3. DOE Report Describes Progress in the Deployment of Synchrophasor...

    Open Energy Info (EERE)

    Report Describes Progress in the Deployment of Synchrophasor Technologies for Improved Grid Operations Home > Blogs > Graham7781's blog Graham7781's picture Submitted by...

  4. Energy Department Actions to Deploy Combined Heat and Power,...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative U.S. Department of Energy...

  5. Economic Impact of Fuel Cell Deployment in Forklifts and for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANL-1309 Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act Energy Systems Division About Argonne National...

  6. Analysis & Tools to Spur Increased Deployment of " Waste Heat...

    Open Energy Info (EERE)

    Analysis & Tools to Spur Increased Deployment of " Waste Heat" RejectionRecycling Hybrid GHP Systems in Hot, Arid or Semiarid Climates Like Texas Geothermal Project Jump to:...

  7. Polynomial continuation in the design of deployable structures

    E-Print Network [OSTI]

    Viquerat, Andrew David

    2012-01-10T23:59:59.000Z

    (De Focatiis & Guest, 2002). Some of the most interesting applications are to be found in satellite design, in which deployable booms, masts, antennae, radars and solar arrays are commonplace. These deployable structures are launched in the stowed... -Gru??bler-Kutzbach criterion. An example of the deployment of such an overconstrained mechanism is given in Figure 1.7. De- ployable frames have been proposed for use in space applications (Chen & You, 2006a,b) (in particular panel and antenna deployment (Pellegrino et al...

  8. Evaluation of Imagers in a Biological Sensing Deployment

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Therefore, we have utilized solar panels to power the entiremonitoring sensors, and solar panel. Main componentssensors - Battery - Solar panel Node Deployment Wireless/

  9. Credit Enhancements and Capital Markets to Fund Solar Deployment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit Enhancements and Capital Markets to Fund Solar Deployment: Leveraging Public Funds to Open Private Sector Investment Michael Mendelsohn and Marley Urdanick National...

  10. Fuel Cell Technologies Office Record 14010 ? Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

  11. Economic and Environmental Optimization of Vehicle Fleets: A Case Study of the Impacts of Policy, Market, Utilization, and

    E-Print Network [OSTI]

    Bertini, Robert L.

    of utilization (mileage per year per vehicle) and gasoline prices on fleet management decisions estimating energy in scenarios with high gasoline prices and/or utilization, (b) current European CO2 cap and trade emissions with high gasoline prices and vehicle utilization. This research indicates that the proposed model can

  12. Impacts of Economic, Technological and Operational Factors on the1 Economic Competitiveness of Electric Commercial Vehicles in Fleet2

    E-Print Network [OSTI]

    Bertini, Robert L.

    of Electric Commercial Vehicles in Fleet2 Replacement Decisions3 4 5 6 7 Wei Feng8 Ph.D. Student9 Department)10 emissions [2].11 12 Electric commercial vehicles (ECVs) are seen by many governments figures * 250 + 5 Tables * 250 = 5681 words)49 #12;Feng and Figliozzi 1 ABSTRACT1 2 Electric commercial

  13. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01T23:59:59.000Z

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.

  14. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    This fact sheet reports on the City of Burbank, California's fuel cell bus demonstration project and the U.S. Department of Energy's (DOE) involvement. Included are specifications for the fuel cell bus and information about its operation. BurbankBus, the city's mass transit entity, received a grant from the California Air Resources Board to fund its zero-emission bus demonstration and is collaborating with DOE's Fuel Cell Technologies Program to evaluate the bus performance. DOE's National Renewable Energy Laboratory will collect and analyze performance and operations data for at least one year. Researchers will use the data to better understand the technology and determine future development work. In addition, demonstration information will help fleets make informed purchase decisions.

  15. Technology Deployment Annual Report 2014 December

    SciTech Connect (OSTI)

    George K. Arterburn

    2014-12-01T23:59:59.000Z

    This report is a summary of key Technology Deployment activities and achievements for 2014, including intellectual property, granted copyrights, royalties, license agreements, CRADAs, WFOs and Technology-Based Economic Development. Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In our multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational instiutitons throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Deployment. However, the accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.

  16. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    SciTech Connect (OSTI)

    NONE

    2007-01-15T23:59:59.000Z

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

  17. Robustness improvement of polyhedral mesh method for airbag deployment simulations.

    E-Print Network [OSTI]

    Vuik, Kees

    Robustness improvement of polyhedral mesh method for airbag deployment simulations. TU Delft to simulate the deployment of airbags. The solution is approximated using Euler's equations d dt qd + S (q the boundary of the object immersed in the flow, the airbag. The geometry of the airbag is preserved

  18. Strictly Localized Sensor Self-Deployment for Optimal Focused Coverage

    E-Print Network [OSTI]

    Stojmenovic, Ivan

    resume. We prove that they both yield a connected network with maximized hole-free area coverage. To our on convergence time, energy consumption, and node collision. Index Terms--Coverage, self-deployment, localized-deployment decision independently, using k-hop neighborhood information for a constant k. In the case of k ¼ 1, we

  19. ZIGBEE WIRELESS SENSOR NETWORK NODES DEPLOYMENT STRATEGY FOR

    E-Print Network [OSTI]

    ZIGBEE WIRELESS SENSOR NETWORK NODES DEPLOYMENT STRATEGY FOR DIGITAL AGRICULTURAL DATA ACQUISITIONBee-based wireless sensor network for digital agricultural data acquisition is one of the best ways to build the system. In this paper, based on ZigBee wireless sensor network deployment planning principles

  20. Dynamic Cooperative Coevolutionary Sensor Deployment via Localized Fitness Evaluation

    E-Print Network [OSTI]

    Chen, Yuanzhu Peter

    Dynamic Cooperative Coevolutionary Sensor Deployment via Localized Fitness Evaluation Xingyan Jiang used to evaluate the quality of sensor placement. The first one is sensing coverage, which is the area interest in autonomous sensor deployment, where a sensor can only communicate with those within a limited

  1. Deployment and coverage maintenance in mobile sensor networks 

    E-Print Network [OSTI]

    Lee, Jaeyong

    2009-05-15T23:59:59.000Z

    Deployment of mobile nodes in a region of interest is a critical issue in building a mobile sensor network because it affects cost and detection capabilities of the system. The deployment of mobile sensors in essence is the movement of sensors from...

  2. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01T23:59:59.000Z

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

  3. Technology Deployment Annual Report 2013 December

    SciTech Connect (OSTI)

    N /A

    2014-01-01T23:59:59.000Z

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In a multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Deployment. However, the accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.

  4. Building a business case for corporate fleets to adopt vehicle-to-grid technology (V2G) and participate in the regulation service market

    E-Print Network [OSTI]

    De los Ríos Vergara, Andrés

    2011-01-01T23:59:59.000Z

    Electric (EV) and Plug-in Hybrid Electric vehicles (PHEV) continue to gain attention and market share, not only as options for consumers but also for corporate fleets. EVs and PHEVs can contribute to lower operating costs ...

  5. Interactive Topic Modeling

    E-Print Network [OSTI]

    Pleple, Quentin

    26 Interactive LDA . . . . . . . . . . . . . . . .and B. Satinoff (2011). Interactive topic modeling. InOF CALIFORNIA, SAN DIEGO Interactive Topic Modeling A thesis

  6. analysis 1993-1994 annual: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences Websites Summary: ;2011 - 2012 Annual Report 8 FLEET OFFERS ALTERNATIVE FUELS With an eye to the future, fleet com- pleted Zipcar members. Alternative T BUS...

  7. analysis 1991-1992 annual: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences Websites Summary: ;2011 - 2012 Annual Report 8 FLEET OFFERS ALTERNATIVE FUELS With an eye to the future, fleet com- pleted Zipcar members. Alternative T BUS...

  8. Demonstrating and Deploying Private Sector Technologies at DOE Sites - Issues to be Overcome

    SciTech Connect (OSTI)

    Bedick, R. C.

    2002-02-27T23:59:59.000Z

    The Department of Energy (DOE), Office of Environmental Management (EM) continues to pursue cost-effective, environmental cleanup of the weapons complex sites with a concomitant emphasis on deployment of innovative technologies as a means to this end. The EM Office of Science and Technology (OST) pursues a strategy that entails identification of technologies that have potential applications throughout the DOE complex: at multiple DOE sites and at multiple facilities on those sites. It further encourages a competitive procurement process for the various applications entailed in the remediation of a given facility. These strategies require a competitive private-sector supplier base to help meet EM needs. OST supports technology development and deployment through investments in partnerships with private industry to enhance the acceptance of their technology products within the DOE market. Since 1992, OST and the National Energy Technology Laboratory (NETL) have supported the re search and development of technology products and services offered by the private sector. During this time, NETL has managed over 140 research and development projects involving industrial and university partners. These projects involve research in a broad range of EM related topics, including deactivation and decommissioning, characterization, monitoring, sensors, waste separation, groundwater remediation, robotics, and mixed waste treatment. Successful partnerships between DOE and Industry have resulted in viable options for EM's cleanup needs, and require continued marketing efforts to ensure that these technology solutions are used at multiple DOE sites and facilities.

  9. Analysis of Open Automated Demand Response Deployments in California

    E-Print Network [OSTI]

    LBNL-6560E Analysis of Open Automated Demand Response Deployments in California and Guidelines The work described in this report was coordinated by the Demand Response Research. #12; #12;Abstract This report reviews the Open Automated Demand Response

  10. Robustness improvement of polyhedral mesh method for airbag deployment simulations.

    E-Print Network [OSTI]

    Vuik, Kees

    Robustness improvement of polyhedral mesh method for airbag deployment simulations. TU Delft Description Airbag flexible membrane. Modeled by equations of elasticity, solved numerically using FEM Flow and Problem Description Airbag triangulation intersects in arbitrary way the Cartesian Mesh. Cartesian cells

  11. Deploying Server-side File System Monitoring at NERSC

    E-Print Network [OSTI]

    Uselton, Andrew

    2009-01-01T23:59:59.000Z

    Deploying Server-side File System Monitoring at NERSC Andrewcenter was equipped with the server-side I/O monitoringfor observing and recording server-side per- formance

  12. Creating a Comprehensive Solar Water Heating Deployment Strategy

    SciTech Connect (OSTI)

    Focus Marketing Services

    1999-08-18T23:59:59.000Z

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  13. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Arunas Chesonis, Chief Executive Officer and Chairman of the Board, Sweetwater Energy

  14. Deployment algorithms for multi-agent exploration and patrolling

    E-Print Network [OSTI]

    Volkov, Mikhail, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Exploration and patrolling are central themes in distributed robotics. These deployment scenarios have deep fundamental importance in robotics, beyond the most obvious direct applications, as they can be used to model a ...

  15. Game Theory and Femtocell Communications: Making Network Deployment Feasible

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    deployed and controlled by end-users who desire better indoor signal transmission and reception' homes without the need of additional expensive cellular towers. At the same time, FBSs offload traffic

  16. Fuel Cell Technologies Office Record 14009 ? Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Backup Power (BuP) Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

  17. Regulatory Instruments for Deployment of Clean Energy Technologies

    E-Print Network [OSTI]

    Pérez-Arriaga, Ignacio J.

    Answering to the formidable challenge of climate change calls for a quick transition to a future economy with a drastic reduction in GHG emissions. And this in turn requires the development and massive deployment of new ...

  18. Strictly Localized Sensor Self-Deployment for Optimal Focused Coverage

    E-Print Network [OSTI]

    Santoro, Nicola

    on convergence time, energy consumption, and node collision. Index Terms--Coverage, Self-deployment, Localized and Telecommunications, FTN, University of Novi Sad, Serbia. Email: stojmenovic@gmail.com their degree of danger. Another

  19. Energy Results of ISO 50001 Deployment by Program Administrators

    E-Print Network [OSTI]

    Brown, K.; Gilless, C.; Milward, R.

    2013-01-01T23:59:59.000Z

    Early Results of ISO 50001 Deployment by Utility Programs CHAD GILLESS PRACTICE LEAD, STRATEGIC ENERGY MANAGEMENT ENERNOC PORTLAND, OREGON KIM BROWN ASSOCIATE ENERNOC PORTLAND, OREGON DRESDEN SKEES- GREGORY SUSTAINABLE... Solutions Portland, OR Portland, OR Walnut Creek, CA ESL-IE-13-05-12 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 2 Presentation Objectives ? Overview of current status ISO deployments...

  20. LET THE SUN SHINE: OPTIMAL DEPLOYMENT OF PHOTOVOLTAICS IN GERMANY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    /kWh, depending on its location as well as on the size and type of PV system used (EPIA Report, 2011). InvestmentLET THE SUN SHINE: OPTIMAL DEPLOYMENT OF PHOTOVOLTAICS IN GERMANY Anna CRETI Jérôme JOAUG Cahier n:chantal.poujouly@polytechnique.edu hal-00751743,version1-14Nov2012 #12;Let the sun shine: optimal deployment of photovoltaics in Germany

  1. Analysis of volatile contaminants in US Navy fleet soda lime. Technical report, August 1992-May 1995

    SciTech Connect (OSTI)

    Lillo, R.S.; Ruby, R.; Gummin, D.D.; Porter, W.R.; Caldwell, J.M.

    1995-06-01T23:59:59.000Z

    Contamination was suspected of U.S. Navy Fleet soda lime (High Performance Sodasorb(R)) when an ammonia-like odor was reported during its use in August 1992. This material contained indicator dye and was used for carbon dioxide absorption during diving. This incident had a major impact on the U.S Navy diving program when the Navy temporarily banned use of Sodasorb(R) and authorized Sofnolime(R) as an interim replacement. The Naval Medical Research Institute was immediately assigned to investigate. Testing involved sampling from the headspace (gas space) inside closed buckets and from an apparatus simulating conditions during operational diving. Volatile organic compounds were analyzed by gas chromatography and mass spectrometry; ammonia and amines were measured by infrared spectroscopy. Significant amounts of ammonia (up to 30 ppm), ethyl and diethyl amines (up to several ppm), and various aliphatic hydrocarbons (up to 60 ppm) were detected during testing of both Sodasorb(R) and Sofnolime(R). Contaminants were slowly removed by gas flow and did not return. The source(s) of the ammonia and amines are unknown, although they may result from the breakdown of the indicator dye. Hydrocarbon contamination appeared to result from the materials of which the bucket is constructed. Based on these findings, the U.S. Navy is expected to phase in non-indicating soda lime that will be required to meet defined contaminant limits.

  2. A fleet leader experience with dry low emissions aeroderivative gas turbines (LM6000PB and PD)

    SciTech Connect (OSTI)

    Vandesteene, J.L.; De Witte, M.

    1998-07-01T23:59:59.000Z

    In January 1995, the world's first LM6000 dry low emissions (DLE) aeroderivative gas turbine supplied by GE M and I was successfully started up at Gent power plant. In November 1997, the world's first uprated LM6000, also equipped with the DLE combustion system, began commercial operation at Geel cogeneration facility. TEE handled the engineering, procurement, construction and commissioning of these projects as well as for several other repowering and cogeneration facilities based on high efficiency DLE aeroderivative gas turbines. By mid 1998, seven LM6000 DLE and one LM2500 DLE will be in commercial operation at several cogeneration and power plants in Belgium. The results of three years of experience with the LM engines are presented: the reasons why the LM engines were selected, the history of the different units, the maintenance organization, the fleet fired hours and availability, and the main technical issues like DLE combustor, LPT5 failures. The conclusion is that after having experienced several serious problems, the LM6000 and the DLE combustion system have matured and now seem sufficiently reliable. The actual performance data of the uprated engine are significantly better than initially expected.

  3. Building Diagnostic Market Deployment - Final Report

    SciTech Connect (OSTI)

    Katipamula, S.; Gayeski, N.

    2012-04-30T23:59:59.000Z

    Operational faults are pervasive across the commercial buildings sector, wasting energy and increasing energy costs by up to about 30% (Mills 2009, Liu et al. 2003, Claridge et al. 2000, Katipamula and Brambley 2008, and Brambley and Katipamula 2009). Automated fault detection and diagnostic (AFDD) tools provide capabilities essential for detecting and correcting these problems and eliminating the associated energy waste and costs. The U.S. Department of Energy's (DOE) Building Technology Program (BTP) has previously invested in developing and testing of such diagnostic tools for whole-building (and major system) energy use, air handlers, chillers, cooling towers, chilled-water distribution systems, and boilers. These diagnostic processes can be used to make the commercial buildings more energy efficient. The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of AFDD tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: (1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, (2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and (3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations. PNNL has previously developed two diagnostic tools: (1) whole building energy (WBE) diagnostician and (2) outdoor air/economizer (OAE) diagnostician. WBE diagnostician is currently licensed non-exclusively to one company. As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite, Clockworks. PNNL also provided validation data sets and the WBE software tool to validate the KGS implementation. OAE diagnostician automatically detects and diagnoses problems with outdoor air ventilation and economizer operation for air handling units (AHUs) in commercial buildings using data available from building automation systems (BASs). As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite. PNNL also provided validation data sets and the OAE software tool to validate the KGS implementation. Finally, as part of this CRADA project, PNNL developed new processes to automate parts of the re-tuning process and transfer those process to KGS for integration into their software product. The transfer of DOE-funded technologies will transform the commercial buildings sector by making buildings more energy efficient and also reducing the carbon footprint from the buildings. As part of the CRADA with PNNL, KGS implemented the whole building energy diagnostician, a portion of outdoor air economizer diagnostician and a number of measures that automate the identification of re-tuning measures.

  4. accelerated retrieval project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A; Cetiner, M A; Sultansoy, S 2012-01-01 20 The Fleet DNA Project aims to accelerate the evolution of advanced vehicle development and Renewable Energy Websites Summary: The Fleet...

  5. Scaling up and deployment of FGD in the US (1960s-2009)

    E-Print Network [OSTI]

    .3 DEPLOYMENT UNDER EMISSIONS TRADING: THE 1990S AND 2000S ..................18 4 INTERACTION WITH OTHER

  6. Hydrogen Deployment System Modeling Environment (HyDS ME) Documentation: Milestone Report FY 2006

    SciTech Connect (OSTI)

    Parks. K.

    2006-11-01T23:59:59.000Z

    This report introduces the Hydrogen Deployment System Modeling Environment model, assumptions, and basic operations.

  7. Guidance: Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246: Federal Fleet Program, Federal Energy Management Program, U.S. Department of Energy, March 2011

    SciTech Connect (OSTI)

    Not Available

    2011-03-01T23:59:59.000Z

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  8. Equipment compatibility and logistics assessment for containment foam deployment.

    SciTech Connect (OSTI)

    McRoberts, Vincent M.; Martell, Mary-Alena; Jones, Joseph A.

    2005-09-01T23:59:59.000Z

    The deployment of the Joint Technical Operations Team (JTOT) is evolving toward a lean and mobile response team. As a result, opportunities to support more rapid mobilization are being investigated. This study investigates three specific opportunities including: (1) the potential of using standard firefighting equipment to support deployment of the aqueous foam concentrate (AFC-380); (2) determining the feasibility and needs for regional staging of equipment to reduce the inventory currently mobilized during a JTOT response; and (3) determining the feasibility and needs for development of the next generation AFC-380 to reduce the volume of foam concentrate required for a response. This study supports the need to ensure that requirements for alternative deployment schemes are understood and in place to support improved response activities.

  9. Leading the Nation in Clean Energy Deployment (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01T23:59:59.000Z

    This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agencies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions.

  10. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01T23:59:59.000Z

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  11. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect (OSTI)

    Provenzano, J.J.

    1997-04-01T23:59:59.000Z

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  12. Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan

    SciTech Connect (OSTI)

    Robert Youngblood

    2011-01-01T23:59:59.000Z

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse gas emitting domestic electricity production. Extending the operating lifetimes of current plants beyond 60 years and, where possible, making further improvements in their productivity will generate early benefits from research, development, and demonstration investments in nuclear power. DOE’s role in Objective 1 is to partner with industry and the Nuclear Regulatory Commission in appropriate ways to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The DOE research, development, and demonstration role will focus on aging phenomena and issues that require long-term research and are generic to reactor type. Cost-shared demonstration activities will be conducted when appropriate.

  13. Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan

    SciTech Connect (OSTI)

    Robert Youngblood

    2011-02-01T23:59:59.000Z

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse gas emitting domestic electricity production. Extending the operating lifetimes of current plants beyond 60 years and, where possible, making further improvements in their productivity will generate early benefits from research, development, and demonstration investments in nuclear power. DOE’s role in Objective 1 is to partner with industry and the Nuclear Regulatory Commission in appropriate ways to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The DOE research, development, and demonstration role will focus on aging phenomena and issues that require long-term research and are generic to reactor type. Cost-shared demonstration activities will be conducted when appropriate.

  14. FROGi: Fractal components deployment over OSGi Mikael Desertot1 3

    E-Print Network [OSTI]

    Donsez, Didier

    FROGi: Fractal components deployment over OSGi Mikael Desertot1 3 , Humberto Cervantes2 and Didier, a proposal to support continuous de- ployment activities inside Fractal, a hierarchical component model of Fractal components. With FROGi, it is possible to automate the assembly of a Fractal component application

  15. Development and Deployment at Facebook Dror G. Feitelson

    E-Print Network [OSTI]

    Feitelson, Dror

    Development and Deployment at Facebook Dror G. Feitelson Hebrew University Eitan Frachtenberg Facebook Kent L. Beck Facebook Abstract More than one billion users log in to Facebook at least once-end. Information on Facebook's architecture and other software components is available elsewhere. Keywords D.2.10.i

  16. Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Werner, M.; Spikes, A.; Komomua, C.

    2013-01-01T23:59:59.000Z

    This report summarizes the workshop entitled: Integrated Deployment and the Energy Systems Integration Facility. In anticipation of the opening of the ESIF, NREL held the workshop August 21-23, 2012 and invited participants from utilities, government, industry, and academia to discuss renewable integration challenges and discover new ways to meet them by taking advantage of the ESIF's capabilities.

  17. Optimization of Hydroacoustic Equipment Deployment at Foster Dam, 2013

    SciTech Connect (OSTI)

    Hughes, James S.; Johnson, Gary E.; Ploskey, Gene R.; Hennen, Matthew J.; Fischer, Eric S.; Zimmerman, Shon A.

    2013-03-01T23:59:59.000Z

    The goal of the study was to optimize performance of the fixed-location hydroacoustic systems at Foster Dam (FOS) by determining deployment and data acquisition methods that minimized structural, electrical, and acoustic interference. Optimization of the hydroacoustic systems will establish methodology for sampling by active acoustic methods during this year-long evaluation of juvenile salmonid passage at FOS.

  18. Model-driven Security Policy Deployment: Property Oriented Approach

    E-Print Network [OSTI]

    Garcia-Alfaro, Joaquin

    and managing the access control rules of an information system are some of the major concerns of security systems. We formally prove the process of de- ploying a security policy related to an information system the deployment of access control security policies. We show how the use of a formal ex- pression of the security

  19. Deployment of Broadband Infrastructure in the Region of Western Greece

    E-Print Network [OSTI]

    Bouras, Christos

    Deployment of Broadband Infrastructure in the Region of Western Greece Antonios Alexiou1, Patras, Greece 3 University of Ioannina, Greece 4 University of Aegean, Greece {alexiua, bouras, igglesis that is taking place in the Region of Western Greece in order to develop state-of-the- art broadband

  20. Enforcing Architecture and Deployment Constraints of Distributed Component-based

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .kadri@alkante.com In the component-based software development process, the formalisation of architectural choices makes possible Introduction Architectural choices should be preserved throughout the software lifecycle soEnforcing Architecture and Deployment Constraints of Distributed Component-based Software Chouki

  1. Design Considerations for Deploying Underwater Sensor Networks Raja Jurdak

    E-Print Network [OSTI]

    Lopes, Cristina Videira

    integration have yielded smaller and more powerful processors that are capable of efficiently running acoustic for specialized com- munication hardware and reduces system cost, facili- tating the dense deployment of motes to form under- water acoustic sensor networks. The use of low power generic acoustic hardware and software

  2. China's rapid deployment of SO2 scrubbers Robert H. Williamsb

    E-Print Network [OSTI]

    at coal power plants in 2006 and 2007. Scrubbers were installed in each of these years at plants with more emissions control at coal power plants. This paper describes and seeks to understand China's recent rapid deployment of SO2 scrubbers at coal power plants. For perspective this activity in China is compared

  3. Visual Design of Service Deployment in Complex Physical Environments

    E-Print Network [OSTI]

    Celentano, Augusto

    Visual Design of Service Deployment in Complex Physical Environments Augusto Celentano and Fabio for in- teractive services in complex physical environments using a knowl- edge based approach to define the relations between the environ- ment and the services, and a visual interface to check the associated

  4. A Model-driven Environment for Component Deployment* Petr Hntynka

    E-Print Network [OSTI]

    , the paper also shows that a plain MDA approach (the one used in the OMG Deployment and Configuration interconnections of their interfaces. 1.1. MDA Model-Driven Architecture (MDA) [19] is the latest approach of OMG these systems, rather it is an approach to software development using models. According to MDA concepts, systems

  5. Space Systems Finland 1 Deployment in the Space Sector

    E-Print Network [OSTI]

    Southampton, University of

    © Space Systems Finland 1 Deployment in the Space Sector #12;© Space Systems Finland 2 SW Constraints Design Requirements User Requirements SW Requirements #12;© Space Systems Finland 3 The space, but there is no viable alternative · Many requirements are not testable #12;© Space Systems Finland 4 SSF OBJECTIVES

  6. DEPLOYMENT OF JAVA-BASED COMPONENTS IN EMBEDDED ENVIRONMENT*

    E-Print Network [OSTI]

    , which have to be adapted, are the deployment process and the runtime environment. The rest different capabilities like different user input and output methods, different provided API, etc of the paper is as follows. The rest of this Section briefly describes the SOFA 2.0 (for short, SOFA in further

  7. Scenarios for a Worldwide Deployment of Nuclear Energy Production

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the transition to sustainable 4th generation nuclear reactors. We show that at least one comprehensive of sustainable, intensive nuclear power generation. Introduction The worldwide demand for primary energy, F-38026 Grenoble Cedex, FRANCE Intensive worldwide deployment of nuclear power could prove necessary

  8. Poster Abstract: Community Sensor Grids Deployment and Usage

    E-Print Network [OSTI]

    Bhattacharya, Amiya

    and Informatics Arizona State University Tempe, AZ 85287 partha@asu.edu Amiya Bhattacharya Department of Computer Science New Mexico State University Las Cruces, NM 88003 amiya@nmsu.edu Meddage S. Fernando Department is that individuals or small community agencies may deploy sensors to cover their own property, but also make them

  9. Evaluation of Future Energy Technology Deployment Scenarios for

    E-Print Network [OSTI]

    Subtask 2.1 Report By the University of Hawaii Hawaii Natural Energy Institute School of Ocean and EarthEvaluation of Future Energy Technology Deployment Scenarios for the Big Island Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847

  10. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Veterans Affairs. James J. Peters VA Medical Center, Bronx, NY

    SciTech Connect (OSTI)

    Schey, Stephen [Intertek Testing Services, North America, Phoenix, AZ (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01T23:59:59.000Z

    This report focuses on the Department of Veterans Affairs, James J. Peters VA Medical Center (VA - Bronx) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  11. Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet

    SciTech Connect (OSTI)

    Rich, Bechtold [Alliance Technical Services; Thomas, John F [ORNL; Huff, Shean P [ORNL; Szybist, James P [ORNL; West, Brian H [ORNL; Theiss, Timothy J [ORNL; Timbario, Tom [Alliance Technical Services; Goodman, Marc [Alliance Technical Services

    2007-08-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.

  12. Sustainability of Very Large Photovoltaic DeploymentSustainability of Very Large Photovoltaic Deployment email: vmf5@columbia.edu

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 Sustainability of Very Large Photovoltaic DeploymentSustainability of Very Large Photovoltaic for Life Cycle Analysis Columbia University and National Photovoltaics Environmental Research Center, 2006 - Fthenakis & Alsema, Progress in Photovoltaics, 14, 275, 2006 #12;9 0 200 400 600 800 1000 1200

  13. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17T23:59:59.000Z

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

  14. Implementing Geological Disposal of Radioactive Waste Technology Platform From the Strategic Research Agenda to its Deployment - 12015

    SciTech Connect (OSTI)

    Ouzounian, P. [ANDRA, Chatenay-Malabry (France); Palmu, Marjatta [Posiva Oy, Eurajoki (Finland); Eng, Torsten [SKB, Stockholm (Sweden)

    2012-07-01T23:59:59.000Z

    Several European waste management organizations (WMOs) have initiated a technology platform for accelerating the implementation of deep geological disposal of radioactive waste in Europe. The most advanced waste management programmes in Europe (i.e. Finland, Sweden, and France) have already started or are prepared to start the licensing process of deep geological disposal facilities within the next decade. A technology platform called Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009. A shared vision report for the platform was published stating that: 'Our vision is that by 2025, the first geological disposal facilities for spent fuel, high-level waste, and other long-lived radioactive waste will be operating safely in Europe'. In 2011, the IGD-TP had eleven WMO members and about 70 participants from academia, research, and the industry committed to its vision. The IGD-TP has started to become a tool for reducing overlapping work, to produce savings in total costs of research and implementation and to make better use of existing competence and research infrastructures. The main contributor to this is the deployment of the IGD-TP's newly published Strategic Research Agenda (SRA). The work undertaken for the SRA defined the pending research, development and demonstration (RD and D) issues and needs. The SRA document describing the identified issues that could be worked on collaboratively was published in July 2011. It is available on the project's public web site (www.igdtp.eu). The SRA was organized around 7 Key Topics covering the Safety Case, Waste forms and their behaviour, Technical feasibility and long-term performance of repository components, Development strategy of the repository, Safety of construction and operations, Monitoring, and Governance and stakeholder involvement. Individual Topics were prioritized within the Key Topics. Cross-cutting activities like Education and Training or Knowledge Management as well as activities remaining specific for the WMOs were as well identified in the document. For example, each WMO has to develop their own waste acceptance rules, and plan for the economics and the funding of their waste management programmes. The challenge at hand for the IGD-TP is to deploy the SRA. This is carried out by agreeing on a Deployment Plan (DP) that guides organizing the concrete joint activities between the WMOs and the other participants of the IGD-TP. The first DP points out the coordinated RD and D projects and other activities that need to be launched to produce these results over the next four to five years (by the end of 2016). The DP also describes general principles for how the joint work can be organised and funded. (authors)

  15. Clean coal technology deployment: From today into the next millennium

    SciTech Connect (OSTI)

    Papay, L.T.; Trocki, L.K.; McKinsey, R.R. [Bechtel Technology and Consulting, San Francisco, CA (United States)

    1997-12-31T23:59:59.000Z

    The Department of Energy`s clean coal technology (CCT) program succeeded in developing more efficient, cleaner, coal-fired electricity options. The Department and its private partners succeeded in the demonstration of CCT -- a major feat that required more than a decade of commitment between them. As with many large-scale capital developments and changes, the market can shift dramatically over the course of the development process. The CCT program was undertaken in an era of unstable oil and gas prices, concern over acid rain, and guaranteed markets for power suppliers. Regulations, fuel prices, emergency of competing technologies, and institutional factors are all affecting the outlook for CCT deployment. The authors identify the major barriers to CCT deployment and then introduce some possible means to surmount the barriers.

  16. Solar Photovoltaic Financing: Deployment by Federal Government Agencies

    SciTech Connect (OSTI)

    Cory, K.; Coggeshall, C.; Coughlin, J.; Kreycik, C.

    2009-07-01T23:59:59.000Z

    The goal of this report is to examine how federal agencies can finance on-site PV projects. It explains state-level cash incentives available, the importance of solar renewable energy certificate revenues (in certain markets), existing financing structures, as well as innovative financing structures being used by federal agencies to deploy on-site PV. Specific examples from the DOD, DOE, and other federal agencies are highlighted to explain federal project financing in detail.

  17. Cost and Performance Report Accelerated Site Technology Deployment Program

    SciTech Connect (OSTI)

    P. S. Morris

    2002-05-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Environmental Restoration Division (ERD) Industrial Sites Project Deactivation and Decommissioning (D and D) source group has limited budget and is constantly searching for new technologies to reduce programmatic costs. Partnering with the DOE Office of Science and Technology Deactivation and Decommissioning Focus Area (DDFA) reduces NNSA/NV programmatic risk and encourages accelerated deployment of potentially beneficial technologies to the Nevada Test Site (NTS).

  18. NREL: Energy Systems Integration Facility - Integrated Deployment Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL is spearheadingIntegrated Deployment Workshop

  19. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the United States Forest Service: Caribou-Targhee National Forest

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort; Ian Nienhueser

    2014-06-01T23:59:59.000Z

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Caribou-Targhee National Forest (CTNF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements. ITSNA acknowledges the support of Idaho National Laboratory and CTNF for participation in the study. ITSNA is pleased to provide this report and is encouraged by enthusiasm and support from the Forest Service and CTNF personnel.

  20. ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel vehicles (FFV). A FFV is capable of operating on

    E-Print Network [OSTI]

    Kirschner, Denise

    ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel of both. FFV's are equipped with an engine and fuel system designed specifically to be compatible with ethanol's chemical properties. FFV's qualify as alternative fuel vehicles under the Energy Policy Act

  1. MOTOR VEHICLE RECORD AUTHORIZATION This form authorizes Parking and Transportation (PTS) Fleet Services to conduct a motor vehicle record check to

    E-Print Network [OSTI]

    Kirschner, Denise

    MOTOR VEHICLE RECORD AUTHORIZATION This form authorizes Parking and Transportation (PTS) ­ Fleet Services to conduct a motor vehicle record check to verify eligibility to operate University of Michigan (U-M) vehicles. Form Instructions: · Complete each section of the form · Print and fax

  2. Progress Towards Deployable Antineutrino Detectors for Reactor Safeguards

    SciTech Connect (OSTI)

    Bowden, N; Bernstein, A; Dazeley, S; Keefer, G; Reyna, D; Cabrera-Palmer, B; Kiff, S

    2010-04-05T23:59:59.000Z

    Fission reactors emit large numbers of antineutrinos and this flux may be useful for the measurement of two quantities of interest for reactor safeguards: the reactor's power and plutonium inventory throughout its cycle. The high antineutrino flux and relatively low background rates means that simple cubic meter scale detectors at tens of meters standoff can record hundreds or thousands of antineutrino events per day. Such antineutrino detectors would add online, quasi-real-time bulk material accountancy to the set of reactor monitoring tools available to the IAEA and other safeguards agencies with minimal impact on reactor operations. Between 2003 and 2008, our LLNL/SNL collaboration successfully deployed several prototype safeguards detectors at a commercial reactor in order to test both the method and the practicality of its implementation in the field. Partially on the strength of the results obtained from these deployments, an Experts Meeting was convened by the IAEA Novel Technologies Group in 2008 to assess current antineutrino detection technology and examine how it might be incorporated into the safeguards regime. Here we present a summary of our previous deployments and discuss current work that seeks to provide expanded capabilities suggested by the Experts Panel, in particular aboveground detector operation.

  3. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...

    Office of Environmental Management (EM)

    Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong...

  4. A Roadmap to Deploy New Nuclear Power Plants in the United States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume...

  5. Rice University WARPnet: A Platform for Clean-Slate Deployed Wireless

    E-Print Network [OSTI]

    Rice University WARPnet: A Platform for Clean-Slate Deployed Wireless Networks by Siddharth Gupta: A Platform for Clean-Slate Deployed Wireless Networks by Siddharth Gupta There has been a recent paradigm

  6. Designing and testing the neutron source deployment system and calibration plan for a dark matter detector

    E-Print Network [OSTI]

    Westerdale, Shawn (Shawn S.)

    2011-01-01T23:59:59.000Z

    In this thesis, we designed and tested a calibration and deployment system for the MiniCLEAN dark matter detector. The deployment system uses a computer controlled winch to lower a canister containing a neutron source into ...

  7. U.S. Fuel Cell Market Production and Deployment Continues Strong...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Fuel Cell Market Production and Deployment Continues Strong Growth U.S. Fuel Cell Market Production and Deployment Continues Strong Growth January 8, 2014 - 12:00am Addthis...

  8. Commercialization and Deployment at NREL: Advancing Renewable Energy and Energy Efficiency at Speed and Scale

    SciTech Connect (OSTI)

    Not Available

    2011-05-11T23:59:59.000Z

    A White Paper overview of NREL's commercialization and deployment activities, requested by the chair of the State Energy Advisory Board.

  9. DOE Building Energy Asset Score: Overview and Deployment Webinar-- Text Version

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar DOE Building Energy Asset Score: Overview and Deployment, presented in March 2015.

  10. A Small Secure Transportable Autonomous Lead-Cooled Fast Reactor for Deployment at Remote Sites

    SciTech Connect (OSTI)

    Sienicki, J .J.; Smith, M.A.; Mosseytsev, A.V.; Yang, W.S.; Wade, D.C.

    2004-10-06T23:59:59.000Z

    This presentation discusses a small secure transportable autonomous lead-cooled fast reactor for deployment at remote sites.

  11. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01T23:59:59.000Z

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  12. Rigid Deployable Solar Array A.M. Watt and S. Pellegrino

    E-Print Network [OSTI]

    Pellegrino, Sergio

    with the design of low-cost rigid-panel deployable solar arrays with self- locking tape-spring hinges. The reportRigid Deployable Solar Array A.M. Watt and S. Pellegrino CUED/D-STRUCT/TR214 Department on the deployment of a solar array wing are evaluated experimentally. #12;#12;Contents 1 Introduction 1 1.1 Layout

  13. Random vs. Deterministic Deployment of Sensors in the Presence of Failures and Placement Errors

    E-Print Network [OSTI]

    Kumar, Santosh

    Random vs. Deterministic Deployment of Sensors in the Presence of Failures and Placement Errors, and evaluation of various algorithms (e.g., sleep-wakeup), it has often been considered too expensive as compared to optimal deterministic deployment patterns when deploying sensors in real-life. Roughly speaking, a factor

  14. Selected Topics in Column Generation

    E-Print Network [OSTI]

    2002-12-02T23:59:59.000Z

    Dec 2, 2002 ... Page 1. Selected Topics in Column Generation. Marco E. Lübbecke ... is an ever recurring concept in our “selected topics.” OR/MS Subject ...

  15. Pascua Yaqui Tribe Renewable Energy Development and Deployment Feasibility Study

    SciTech Connect (OSTI)

    Arvayo, Maria

    2014-05-30T23:59:59.000Z

    In 2012, PYT was awarded a grant from the Department of Energy Tribal Energy Program to conduct a Renewable Energy Development and Deployment Feasibility Study that would define the technical and economic viability of renewable energy on tribal lands. Red Mountain Energy Partners (RMEP) was hired by PYT to complete the study. Through this study, Red Mountain concluded that there are viable opportunities for solar at Tortuga Ranch, the Casino del Sol and a third site near the Justice Center on Camino de Oeste.

  16. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01T23:59:59.000Z

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  17. Bio-Oil Deployment in the Home Heating Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-Oil Deployment in the Home Heating

  18. SRNL Deploys Innovative Radiation Mapping Device | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913|| DepartmentPro FormaSRNL Deploys

  19. PNNL Technology Planning and Deployment Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesourceOvertonPEPCOPERIPNNL)Deployment

  20. Deployment of a New Shortwave Spectroradiometer (SWS) at the SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo helpUniversitiesofDepartmentalDeployment of a

  1. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Ronald Grasman

    2011-12-31T23:59:59.000Z

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan ranging from governmental organizations, for-profit to and non-profit entities. All vehicles were equipped with a data acquisition system that automatically collected statistically relevant data for submission to National Renewable Energy Laboratory (NREL), which monitored the progress of the fuel cell vehicles against the DOE technology validation milestones. The Mercedes Team also provided data from Gen-II vehicles under the similar operations as Gen I vehicles to compare technology maturity during program duration.

  2. CX-000612: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fuel Cell-Powered Lift Truck Fleet Deployment (Topic 7B) - WegmansCX(s) Applied: B5.1Date: 01/14/2010Location(s): Pottsville, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. CX-000611: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fuel Cell-Powered Lift Truck Fleet Deployment (Topic 7B) - Coca ColaCX(s) Applied: B5.1Date: 01/14/2010Location(s): Charlotte, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  4. airline operating costs: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    airline strategies I. INTRODUCTION The Air Transportation 11 Assessing the Role of Operating, Passenger, and Infrastructure Costs in Fleet Planning under Fuel Price...

  5. atrs world conference: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trends in aircraft characteristics and fleet mix and the implications operating environment. In response to these challenges, airlines are introducing aircraft into their...

  6. airlines crm training: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches Mike to maintain aircraft is needed to reverse this trend. Currently, aircraft operators...

  7. acute oral administration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager Logistic Management Division NASA Headquarters 300 E fuels. NASA Fleet inventory assets are provided for administrative infrastructure or to funded mission Waliser,...

  8. administration counteracts retina: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager Logistic Management Division NASA Headquarters 300 E fuels. NASA Fleet inventory assets are provided for administrative infrastructure or to funded mission Waliser,...

  9. administrative control chauffage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager Logistic Management Division NASA Headquarters 300 E fuels. NASA Fleet inventory assets are provided for administrative infrastructure or to funded mission Waliser,...

  10. administration investigational device: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager Logistic Management Division NASA Headquarters 300 E fuels. NASA Fleet inventory assets are provided for administrative infrastructure or to funded mission Waliser,...

  11. administrative personnel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA Agency Transportation Manager Logistic Management Division NASA Headquarters 300 E fuels. NASA Fleet inventory assets are provided for administrative infrastructure or to...

  12. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    SciTech Connect (OSTI)

    Roy C. Herndon

    2001-02-28T23:59:59.000Z

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  13. Economics of ALMR deployment in the United States

    SciTech Connect (OSTI)

    Delene, J.G.; Fuller, L.C.; Hudson, C.R.

    1995-02-01T23:59:59.000Z

    The Advanced Liquid Metal Reactor (ALMR) has the potential to extend the economic life of the nuclear option and of reducing the number of high-level waste repositories which will eventually be needed in an expanding nuclear economy. This paper reports on an analysis which models and evaluates the economics of the use of ALMRs as a component of this country`s future electricity generation mix. The ALMR concept has the ability to utilize as fuel the fissile material contained in previously irradiated nuclear fuel (i.e., spent fuel) or from surplus weapons-grade material. While not a requirement for the successful deployment of ALMR power plant technology, the reprocessing of spent fuel from light water reactors (LWR) is necessary for any rapid introduction of ALMR power plants. In addition, the reprocessing of LWR spent fuel may reduce the number of high-level waste repositories needed in the future by burning the long-lived actinides produced in the fission process. With this study, the relative economics of a number of potential scenarios related to these issues are evaluated. While not encompassing the full range of all possibilities, the cases reported here provide an indication of the potential costs, timings, and relative economic attractiveness of ALMR deployment.

  14. Motor Vehicle Fleet Emissions by K I M B E R L Y S . B R A D L E Y ,

    E-Print Network [OSTI]

    Denver, University of

    Motor Vehicle Fleet Emissions by OP-FTIR K I M B E R L Y S . B R A D L E Y , K E V I N B . B R O O concentrations of carbon monoxide (CO), carbon dioxide (CO2), and nitrous oxide (N2O) caused by emissions from to average emissions results obtained from on-road exhaust analysis using individual vehicle remote sensing

  15. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes. [Public fleet groups--information needs

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available practical''. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  16. Exam # 2 Topics 9.

    E-Print Network [OSTI]

    1910-61-10T23:59:59.000Z

    Page 1. MA 341 - Fall 2006. Exam # 2 Topics. 1. Convergence of a sequence; Squeeze Theorem (Exercise 2.3.3.); Zipper Theorem (Exercise. 2.3.5.); Algebraic

  17. Light duty utility arm deployment in Hanford tank T-106

    SciTech Connect (OSTI)

    Kiebel, G.R.

    1997-07-01T23:59:59.000Z

    An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges.

  18. Deployment of a dispatchable photovoltaic system: Technical and economic results

    SciTech Connect (OSTI)

    Byrne, J.; Wang, Y.D.; Letendre, S.; Govindarajalu, C. [Univ. of Delaware, Newark, DE (United States). Center for Energy and Environmental Policy; Nigro, R. [Delmarva Power and Light Co., Wilmington, DE (United States); Bottenberg, W. [Delaware Solar Electric Power, Newark, DE (United States)

    1994-12-31T23:59:59.000Z

    This paper discusses the incorporation of PV as a demand-side management (DSM) tool. The valuation of the benefits provided by PV in a DSM role indicates that it is much closer to commercial viability than was thought from economic analyses focusing exclusively on this technology as a supply-side option. However, in order to realize PV`s potential, this technology must be deployed in high-value DSM applications; in particular, applications that promise dispatchable peak-shaving capability. This analysis of the performance of a prototype system installed by Delmarva Power, indicates that small-scale, commercial customer-sited DSM systems incorporating this technology are approaching competitive cost levels.

  19. Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites

    SciTech Connect (OSTI)

    Dennis Castonguay

    2012-06-29T23:59:59.000Z

    Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

  20. Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy

    SciTech Connect (OSTI)

    Werner, M.

    2010-11-01T23:59:59.000Z

    This paper describes the Integrated Deployment model to accelerate market adoption of alternative energy solutions to power homes, businesses, and vehicles through a comprehensive and aggressive approach.

  1. DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks

    Broader source: Energy.gov [DOE]

    This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

  2. DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP)

    Broader source: Energy.gov [DOE]

    This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell backup power deployed by industry.

  3. Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    Describes the DOE Community Renewable Energy Deployment program, which used funding from the American Recovery and Reinvestment Act of 2009 to promote investment in clean energy solutions and...

  4. Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions

    E-Print Network [OSTI]

    DeForest, Nicolas

    2014-01-01T23:59:59.000Z

    Deployment  of  Thermal  Energy   Storage  under  Diverse  Dincer I. On thermal energy storage systems and applicationsin research on cold thermal energy storage, International

  5. President Obama Announces Commitments and Executive Actions to Advance Solar Deployment

    Broader source: Energy.gov [DOE]

    Today, President Obama announced more than 300 private and public sector commitments to create jobs and cut carbon pollution by advancing solar deployment and energy efficiency. The commitments...

  6. Networked Robotic Sensor Platform Deployments for use in Coastal Environmental Assessment in Southern California

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Sensing Networked Robotic Sensor Platform Deployments forGaurav S. Sukhatme 1 Robotic Embedded Systems Laboratory,~4 wks) Collaborative robotic sensing Slow moving (<1km/hr)

  7. SunShot Catalyst Innovators Take on Software Challenges to Deploy...

    Open Energy Info (EERE)

    SunShot Catalyst Innovators Take on Software Challenges to Deploy Solar Technology Across America Home > Groups > OpenEI Community Central Dc's picture Submitted by Dc(266)...

  8. Deployment Barriers to Distributed Wind Energy: Workshop Report -- October 28, 2010

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado.

  9. AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

  10. Non-Economic Obstacles to Wind Deployment: Issues and Regional Differences (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2014-05-01T23:59:59.000Z

    This presentation provides an overview of national obstacles to wind deployment, with regional assessments. A special mention of offshore projects and distributed wind projects is provided. Detailed maps examine baseline capacity, military and flight radar, golden and bald eagle habitat, bat habitat, whooping crane habitat, and public lands. Regional deployment challenges are also discussed.

  11. Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

    E-Print Network [OSTI]

    Zilic, Zeljko

    . Replacing wired units with wireless sensor network (WSN) nodes offers more flexibility, and ultimately coverage during its deployment. Wireless networking devices are inherently power-limited, which limits1 Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks Rong

  12. Harvesting Clean Energy How California Can Deploy Large-Scale Renewable

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Harvesting Clean Energy How California Can Deploy Large-Scale Renewable Energy Projects Harvesting Clean Energy: How California Can Deploy Large-Scale Renewable Energy Projects on Appropriate acres of impaired lands in the Westlands Water District in the Central Valley may soon have

  13. Outage Detection in Power Distribution Networks with Optimally-Deployed Power Flow Sensors

    E-Print Network [OSTI]

    Zhao, Yue

    Outage Detection in Power Distribution Networks with Optimally-Deployed Power Flow Sensors Yue Zhao deployed real-time power flow sensors and that of load estimates via Advanced Metering Infrastructure (AMI of Naval Research, under Grant N00014-12-1-0767. where supervisory control and data acquisition (SCADA

  14. Deployment Mechanism Design with Behavioral Modeling Based on Pro/Engineer Motion Skeleton

    E-Print Network [OSTI]

    kind of motion mechanisms, is often used to stretch out solar panels or antennas in spacecraftDeployment Mechanism Design with Behavioral Modeling Based on Pro/Engineer Motion Skeleton Chao.com.cn Keywords: Deployment mechanism, Motion skeleton, Behavioral modeling, Feasibility analysis Abstract

  15. The deployment of urban logistics solutions from research, development and pilot results

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The deployment of urban logistics solutions from research, development and pilot results Lessons logistics solutions is one of the main pending questions in the field of urban goods transport research demonstration project, this paper presents the main issues related to the deployment of urban logistics

  16. Evaluating the Potential for Large-Scale Biodiesel Deployments in a Global Context

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Evaluating the Potential for Large-Scale Biodiesel Deployments in a Global Context by Matthew Johnston. All rights reserved. #12;#12;Evaluating the Potential for Large-Scale Biodiesel Deployments on the subject of biodiesel, but I can only hope she takes comfort knowing now much I appreciate everything she

  17. architecture as topic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    architecture as topic First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Topic 1: Internet Architecture &...

  18. Quality Control, Testing, and Deployment Results in the NIF ICCS

    SciTech Connect (OSTI)

    Woodruff, J P; Casavant, D; Cline, B D; Gorvad, M R

    2001-10-11T23:59:59.000Z

    The strategy used to develop the NIF Integrated Computer Control System (ICCS) calls for incremental cycles of construction and formal test to deliver a total of 1 million lines of code. Each incremental release takes four to six months to implement specific functionality and culminates when offline tests conducted in the ICCS Integration and Test Facility verify functional, performance, and interface requirements. Tests are then repeated on line to confirm integrated operation in dedicated laser laboratories or ultimately in the NIF. Test incidents along with other change requests are recorded and tracked to closure by the software change control board (SCCB). Annual independent audits advise management on software process improvements. Extensive experience has been gained by integrating controls in the prototype laser preamplifier laboratory. The control system installed in the preamplifier lab contains five of the ten planned supervisory subsystems and seven of sixteen planned front-end processors (FEPs). Beam alignment, timing, diagnosis and laser pulse amplification up to 20 joules was tested through an automated series of shots. Other laboratories have provided integrated testing of six additional FEPs. Process measurements including earned-value, product size, and defect densities provide software project controls and generate confidence that the control system will be successfully deployed.

  19. Deployment Scenario of Heavy Water Cooled Thorium Breeder Reactor

    SciTech Connect (OSTI)

    Mardiansah, Deby; Takaki, Naoyuki [Course of Applied Science, School of Engineering, Tokai University (Japan)

    2010-06-22T23:59:59.000Z

    Deployment scenario of heavy water cooled thorium breeder reactor has been studied. We have assumed to use plutonium and thorium oxide fuel in water cooled reactor to produce {sup 233}U which will be used in thorium breeder reactor. The objective is to analysis the potential of water cooled Th-Pu reactor for replacing all of current LWRs especially in Japan. In this paper, the standard Pressurize Water Reactor (PWR) has been designed to produce 3423 MWt; (i) Th-Pu PWR, (ii) Th-Pu HWR (MFR = 1.0) and (iii) Th-Pu HWR (MFR 1.2). The properties and performance of the core were investigated by using cell and core calculation code. Th-Pu PWR or HWR produces {sup 233}U to introduce thorium breeder reactor. The result showed that to replace all (60 GWe) LWR by thorium breeder reactor within a period of one century, Th-Pu oxide fueled PWR has insufficient capability to produce necessary amount of {sup 233}U and Th-Pu oxide fueled HWR has almost enough potential to produce {sup 233}U but shows positive void reactivity coefficient.

  20. A feasibility study for a manufacturing technology deployment center

    SciTech Connect (OSTI)

    Not Available

    1994-10-31T23:59:59.000Z

    The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

  1. A Buildings Module for the Stochastic Energy Deployment System

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

    2008-05-15T23:59:59.000Z

    The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

  2. Collaboration Topics - Visualization | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Simulation and Computing and Institutional R&D Programs NNSACEA Cooperation in Computer Science Collaboration Topics - Visualization Collaboration Topics - Visualization...

  3. Deployment of an Autonomous Sensor Network for Remote Sensing Applications Topic Area: Sensor Network Applications in Environmental Monitoring

    E-Print Network [OSTI]

    Salvaggio, Carl

    effort currently underway funded by the US Department of Energy's (DOE) Savannah River National Lab Imaging and Remote Sensing Lab (DIRS) at the Rochester Institute of Technology (RIT) have designed

  4. TECHNICAL STANDARDS PROGRAM TOPICAL COMMITTEES

    Broader source: Energy.gov [DOE]

    PurposeThis procedure describes how topical committees are organized and recognized under the Technical Standards Program. 

  5. Impacts from Deployment Barriers on the United States Wind Power Industry: Overview & Preliminary Findings (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.; Hand, M.; Heimiller, D.

    2012-09-01T23:59:59.000Z

    Regardless of cost and performance some wind projects are unable to proceed to commissioning as a result of deployment barriers. Principal deployment barriers in the industry today include: wildlife, public acceptance, access to transmission, and radar. To date, methods for understanding these non-technical barriers have failed to accurately characterize the costs imposed by deployment barriers and the degree of impact to the industry. Analytical challenges include limited data and modeling capabilities. Changes in policy and regulation, among other factors, also add complexity to analysis of impacts from deployment barriers. This presentation details preliminary results from new NREL analysis focused on quantifying the impact of deployment barriers on the wind resource of the United States, the installed cost of wind projects, and the total electric power system cost of a 20% wind energy future. In terms of impacts to wind project costs and developable land, preliminary findings suggest that deployment barriers are secondary to market drivers such as demand. Nevertheless, impacts to wind project costs are on the order of $100/kW and a substantial share of the potentially developable windy land in the United States is indeed affected by deployment barriers.

  6. Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro Fleet Runs on NaturalRun on

  7. Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.

    SciTech Connect (OSTI)

    Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T. (Chemical Sciences and Engineering Division); ( ES)

    2012-08-27T23:59:59.000Z

    Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The products recovered from both the ALD and other processes were water-white (even those from the low temperature, low residence time (high space velocity), low conversion runs). These results indicate that highly upgraded recycle lube oils can be produced using ALD-deposited active metal catalysts. The use of H{sup 1} and C{sup 13} NMR for the characterization of the treated lube oils has been shown to be effective.

  8. Fourth IEEE Workshop on Applications of Computer Vision, October 1998, Princeton, New Jersey, USA Video Occupant Detection for Airbag Deployment

    E-Print Network [OSTI]

    Krumm, John

    Video Occupant Detection for Airbag Deployment John Krumm and Greg Kirk Intelligent Systems & Robotics Center Sandia National Laboratories Albuquerque, NM 87185 Abstract When an airbag deploys on a rear-facing infant seat, it can injure or kill the infant. When an airbag deploys on an empty seat, the airbag

  9. Legacy Fleet Improvements

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Julie Crenshaw Van Fleet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in any of the emitted pollutants, harm to health, or a nuisance that causes people to cough? During December of 2006 the PRGS did operate at full capacity due to a PEPCO repair....

  11. Management of Fleet Inventory

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-27T23:59:59.000Z

    In fulfillment of Executive Order 13514, DOE began a 3-year, 3-phase strategy to reduce greenhouse gas emissions and decrease petroleum use.

  12. MOTOR FLEET MANAGEMENT REGULATIONS

    E-Print Network [OSTI]

    Howitt, Ivan

    ............................................................12 D. PREVENTIVE MAINTENANCE...........................................12 E. REPAIRS AND MAINTENANCE......................................10 D. TRANSPORTATION TO AND FROM MFM FACILITIES.11 VI. MAINTENANCE AND CARE OF VEHICLES. ROUTINE MAINTENANCE..................................................12 C. VEHICLE WASHING

  13. Julie Crenshaw Van Fleet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |Julian Wong About Us JulianJulie

  14. Clean Fleet Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S. Competitiveness2 P r o j e c t D

  15. Clean Fleet Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S. Competitiveness2 P r o j e c t D3

  16. Clean Fleet Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S. Competitiveness2 P r o j e c t

  17. President Obama Announces Commitments and Executive Actions to Advance Solar Deployment and Energy Efficiency

    Broader source: Energy.gov [DOE]

    On May 9, 2014, President Obama announced more than 300 private and public sector commitments to create jobs and cut carbon pollution by advancing solar deployment and energy efficiency.

  18. Sensor-Aided Overlay Deployment and Relocation for Vast-Scale Sensor Networks

    E-Print Network [OSTI]

    Qiao, Daji

    a wireless sensor network is to monitor a target field and, upon occurrence of events of interest, to deliver are deployed to monitor a huge target area. Moreover, due to the funneling effect, it becomes more difficult

  19. Deployment summary: Fiscal years 1995-2000 [USDOE Office of International Programs

    SciTech Connect (OSTI)

    None

    2000-07-01T23:59:59.000Z

    This publication summarizes the progress made by the Office of International Programs (IP) in deploying innovative technologies for the environmental remediation of the DOE complex and for sites of its international collaborators for fiscal years 1995 through 2000.

  20. Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks q

    E-Print Network [OSTI]

    Pompili, Dario

    Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks q Accepted 23 July 2008 Available online 7 August 2008 Keywords: Underwater acoustic sensor networks data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation

  1. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and...

  2. Automatic deployment of autonomous cars in a robotic urban-like environment (RULE)

    E-Print Network [OSTI]

    Itani, Sara T.

    We present a computational framework and experimental setup for deployment of autonomous cars in a miniature Robotic Urban-Like Environment (RULE). The specifications are given in rich, human-like language as temporal logic ...

  3. Effects of trailing edge flap dynamic deployment on blade-vortex interactions

    E-Print Network [OSTI]

    Nelson, Carter T.

    1997-01-01T23:59:59.000Z

    code based on potential flow theory with provisions for deformable geometry to incorporate a trailing edge flap. Experimental tests were conducted using a 2-D wind tunnel setup incorporating a pressure instrumented airfoil section with a deployable 20...

  4. High-temperature superconductors as electromagnetic deployment and support structures in spacecraft

    E-Print Network [OSTI]

    Gettliffe, Gwendolyn Vines

    2013-01-01T23:59:59.000Z

    In this thesis, we investigate a new structural and mechanical technique aimed at reducing the mass and increasing the stowed-to-deployed ratio of spacecraft systems. This technique uses the magnetic fields generated by ...

  5. An assessment of the economic, regulatory and technical implications of large-scale solar power deployment

    E-Print Network [OSTI]

    Merrick, James Hubert

    2010-01-01T23:59:59.000Z

    Electricity from solar energy has many favorable attributes. Despite its current high cost relative to other technology options, a combination of cost reductions and policy support measures could lead to increasing deployment ...

  6. The potential impact of renewable energy deployment on natural gas prices in New England

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark

    2004-01-01T23:59:59.000Z

    Energy Deployment on Natural Gas Prices in New England Datethe price and supply of natural gas have deepened in recentcan directly hedge natural gas price risk by reducing the

  7. Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2011-05-23T23:59:59.000Z

    This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

  8. Cloud Computing, REST and Mashups to Simplify RFID Application Development and Deployment

    E-Print Network [OSTI]

    Guinard, Dominique

    While of increasing importance for the real-time enterprise, deployments of Internet of Things infrastructures such as RFID remain complex and expensive. In this paper, we illustrate these challenges by studying the ...

  9. Optimization of Hydroacoustic Equipment Deployments at Lookout Point and Cougar Dams, Willamette Valley Project, 2010

    SciTech Connect (OSTI)

    Johnson, Gary E.; Khan, Fenton; Ploskey, Gene R.; Hughes, James S.; Fischer, Eric S.

    2010-08-18T23:59:59.000Z

    The goal of the study was to optimize performance of the fixed-location hydroacoustic systems at Lookout Point Dam (LOP) and the acoustic imaging system at Cougar Dam (CGR) by determining deployment and data acquisition methods that minimized structural, electrical, and acoustic interference. The general approach was a multi-step process from mount design to final system configuration. The optimization effort resulted in successful deployments of hydroacoustic equipment at LOP and CGR.

  10. assessment topics thermal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    they are meaningful. We Pratt, Vaughan 2 ENVE 569 ENVIRONMENTAL RISK ASSESSMENT TOPIC SYLLABUS Environmental Sciences and Ecology Websites Summary: ENVE 569 - ENVIRONMENTAL RISK...

  11. adaptation research topics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RoomMEMORANDUM Current Topics in Accounting Research Students January 19, 2011 The syllabus. This is a course offering primarily designed for Accounting and Accounting...

  12. ans topical meeting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automated (comput... Sandip Sen 1996-01-01 12 International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13) N13P1395 Kanazawa City, Ishikawa Prefecture, Japan,...

  13. administration topical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    presented on topics as diverse as materials degredation in low Earth orbit, the Martian environment and several aspects of the still commercially dominant geostationary orbit. A...

  14. automatic topic indexing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subject headings in libraries, as keywords in academic publications and as tags on the web. Knowing a documents topics helps people judge its relevance quickly. However,...

  15. Topics for letter "s" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Lab Quiet Wing RadEMSL Virtual Tour Topics for letter "s" samples scale scanning scanning electron microscope scanning probe scanning tunneling microscopy...

  16. Topics for letter "c" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wing RadEMSL Virtual Tour Topics for letter "c" carbon carbon cycling carbon dioxide carbon sequestration Cascade catalysis catalytic reaction cation migration chemical...

  17. Topics for letter "W" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Tour Topics for letter "W" W-band pulsed EPR spectrometer Washington State Academy of Sciences Washington State University waste storage water water cycling Wiley Wiley...

  18. Topics for letter "p" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wing RadEMSL Virtual Tour Topics for letter "p" particles patents physics plants pollution polymers pore scale postdoc postdocs postdoctoral Postdoctoral Opportunities...

  19. accident management procedures: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    insurance for North Carolina Motor Fleet Howitt, Ivan 50 25.07.03.M3.01 Energy Risk Management Program Page 1 of 5 STANDARD ADMINISTRATIVE PROCEDURE Geosciences Websites Summary:...

  20. absorption system topical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption system topical First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 INFORMATION SYSTEMS UNIT...

  1. UNIRIB: Physics Topics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummer gasoline price0 -Physics Topics

  2. Collaboration Topics - Acceleration Hardware and APIs | National...

    National Nuclear Security Administration (NNSA)

    Simulation and Computing and Institutional R&D Programs NNSACEA Cooperation in Computer Science Collaboration Topics - Acceleration Hardware and APIs Collaboration Topics...

  3. Collaboration Topics - Meshing | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    Simulation and Computing and Institutional R&D Programs NNSACEA Cooperation in Computer Science Collaboration Topics - Meshing Collaboration Topics - Meshing This work...

  4. Markov Topic Models Chong Wang

    E-Print Network [OSTI]

    Blei, David M.

    . For example, papers from different scien- tific conferences and journals can be viewed as a collection the correlations of different cor- pora. MTMs capture both the internal topic structure within each corpus collection. Probabilistic topic models Part of this work was done when Chong Wang was an intern at Microsoft

  5. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    SciTech Connect (OSTI)

    Ghatikar, Girish; Riess, David; Piette, Mary Ann

    2014-01-02T23:59:59.000Z

    This report reviews the Open Automated Demand Response (OpenADR) deployments within the territories serviced by California?s investor-owned utilities (IOUs) and the transition from the OpenADR 1.0 specification to the formal standard?OpenADR 2.0. As demand response service providers and customers start adopting OpenADR 2.0, it is necessary to ensure that the existing Automated Demand Response (AutoDR) infrastructure investment continues to be useful and takes advantage of the formal standard and its many benefits. This study focused on OpenADR deployments and systems used by the California IOUs and included a summary of the OpenADR deployment from the U.S. Department of Energy-funded demonstration conducted by the Sacramento Municipal Utility District (SMUD). Lawrence Berkeley National Laboratory collected and analyzed data about OpenADR 1.0 deployments, categorized architectures, developed a data model mapping to understand the technical compatibility of each version, and compared the capabilities and features of the two specifications. The findings, for the first time, provided evidence of the total enabled load shed and average first cost for system enablement in the IOU and SMUD service territories. The OpenADR 2.0a profile specification semantically supports AutoDR system architectures and data propagation with a testing and certification program that promotes interoperability, scaled deployments by multiple vendors, and provides additional features that support future services.

  6. Ashland oil, Inc. v. Sonford Products Corp., Kelley v. Tiscornia, and United States v. Fleet Factors Corp.: Upholding EPA`s lender liability rule

    SciTech Connect (OSTI)

    Evans, W.D. Jr. [San Francisco`s Graham & James, Washington, DC (United States)

    1993-12-31T23:59:59.000Z

    John Grisham`s novel The Firm relates the story of Mitchell McDeere, a young law school graduate who believes that he is joining a {open_quotes}white shoe{close_quotes} Memphis, Tennessee, firm but discovers that the firm is controlled by the Mob. A similar, but different, {open_quotes}surprise{close_quotes} has befallen banks as a result of toxic waste cleanup cost claims. When the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) was passed in 1980, banks had no cause for alarm because the Act provided an exemption from its ownership-based liability for any lender holding {open_quotes}indicia of ownership primarily to protect his security interest{close_quotes} in a hazardous waste facility. Based on the statutory language, it seemed reasonably clear that Congress did not intend to impose liability on secured creditors merely for securing a debt with a deed of trust or mortgage. Unfortunately, lender liability for CERCLA claims arose in the mid-1980s out of two lower federal court decisions and the Eleventh Circuit`s controversial, to say the least, 1990 decision in United States v. Fleet Factors Corp (Fleet Factors II). The major issues currently confronting lenders under CERCLA are (1) the extent to which a secured creditor may involve itself in the debtor`s operations, especially during a loan workout program, without becoming liable for cleanup costs as a CERCLA {open_quotes}owner or operator{close_quotes} and (2) whether a lender who forecloses on collateral and takes title is liable under CERCLA. 94 refs.

  7. Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Effluent Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-09-01T23:59:59.000Z

    The Area 12 Fleet Operations Steam Cleaning Effluent site is located in the southeastern portion of the Area 12 Camp at the Nevada Test Site. This site is identified in the Federal Facility Agreement and Consent Order (1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 27, 2002. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Effluent, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOEN], 1997). A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report (DOE/NV, 1999), samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in total petroleum hydrocarbon (TPH) concentrations at the site. Sampling results from 2000 (DOE/NV, 2000) and 2001 (DOE/NV, 2001) revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, data results from 2000 and later were not directly correlated with previous results. Post-closure monitoring activities for 2002 consisted of the following: (1) Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2). (2) Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]). (3) Site inspection to evaluate the condition of the fencing and signs. (4) Preparation and submittal of the Post-Closure Monitoring Report.

  8. Puget Sound Clean Cities Petroleum Reduction Project

    Broader source: Energy.gov (indexed) [DOE]

    million people per year. Relevance Vehicle Deployment: * 223 alternative fuel and advance technology vehicles deployed in local government fleets. * 220 compressed natural gas...

  9. Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems

    SciTech Connect (OSTI)

    Rocheleau, Richard E.

    2008-09-30T23:59:59.000Z

    Hydrogen power park experiments in Hawai‘i produced real-world data on the performance of commercialized electrochemical components and power systems integrating renewable and hydrogen technologies. By analyzing the different losses associated with the various equipment items involved, this work identifies the different improvements necessary to increase the viability of these technologies for commercial deployment. The stand-alone power system installed at Kahua Ranch on the Big Island of Hawaii required the development of the necessary tools to connect, manage and monitor such a system. It also helped the electrolyzer supplier to adapt its unit to the stand-alone power system application. Hydrogen fuel purity assessments conducted at the Hawai‘i Natural Energy Institute (HNEI) fuel cell test facility yielded additional knowledge regarding fuel cell performance degradation due to exposure to several different fuel contaminants. In addition, a novel fitting strategy was developed to permit accurate separation of the degradation of fuel cell performance due to fuel impurities from other losses. A specific standard MEA and a standard flow field were selected for use in future small-scale fuel cell experiments. Renewable hydrogen production research was conducted using photoelectrochemical (PEC) devices, hydrogen production from biomass, and biohydrogen analysis. PEC device activities explored novel configurations of ‘traditional’ photovoltaic materials for application in high-efficiency photoelectrolysis for solar hydrogen production. The model systems investigated involved combinations of copper-indium-gallium-diselenide (CIGS) and hydrogenated amorphous silicon (a-Si:H). A key result of this work was the establishment of a robust “three-stage” fabrication process at HNEI for high-efficiency CIGS thin film solar cells. The other key accomplishment was the development of models, designs and prototypes of novel ‘four-terminal’ devices integrating high-efficiency CIGS and a-Si:H with operating features compatible with high-efficiency photoelectrochemical (PEC) water-splitting. The objective of one activity under the hydrogen production from biomass task was to conduct parametric testing of the Pearson gasifier and to determine the effects of gasifier operating conditions on the gas yields and quality. The hydrogen yield from this gasifier was evaluated in a parametric test series over a range of residence times from 0.8 to 2.2 seconds. H2 concentrations as high as 55% (volume) were measured in the product gas at the longer residence times and this corresponds to a hydrogen yield of 90 kg per tonne of bagasse without gas upgrading. The objective of another activity was to develop hot gas clean-up capabilities for the HNEI gasifier test facility to support hydrogen-from-biomass research. The product gas stream at the outlet of the hot gas filter was characterized for concentrations of permanent gas species and contaminants. Biomass feedstock processing activity included a preliminary investigation into methods for processing sugar cane trash at the Puunene Sugar Factory on the island of Maui, Hawaii. The objective of the investigation was to explore treatment methods that would enable the successful use of cane trash as fuel for the production of hydrogen via gasification. Analyses were completed for the technical and economic feasibility of producing biofuel from photosynthetic marine microbes on a commercial scale. Results included estimates for total costs, energy efficiency, and return on investment. The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world applications. The extra revenues hydrogen can provide to these multi-product systems can

  10. NUCLEAR NON-PROLIFERATION-TASK 1: Deployable Plume and Aerosol Release Prediction and Tracking System

    SciTech Connect (OSTI)

    John Kleppe, Ph.D., William Norris, Ph.D., Mehdi Etezada, Ph.D., P.E.

    2006-07-19T23:59:59.000Z

    This contract was awarded in response to a proposal in which a deployable plume and aerosol release prediction and tracking system would be designed, fabricated, and tested. The system would gather real time atmospheric data and input it into a real time atmospheric model that could be used for plume predition and tracking. The system would be able to be quickly deployed by aircraft to points of interest or positioned for deployment by vehicles. The system would provide three dimensional (u, v, and w) wind vector data, inversion height measurements, surface wind information, classical weather station data, and solar radiation. The on-board real time computer model would provide the prediction of the behavior of plumes and released aerosols.

  11. Scalable and fail-safe deployment of the ATLAS Distributed Data Management system Rucio

    E-Print Network [OSTI]

    Lassnig, Mario; The ATLAS collaboration; Barisits, Martin-Stefan; Beermann, Thomas Alfons; Serfon, Cedric; Garonne, Vincent

    2015-01-01T23:59:59.000Z

    This contribution details the deployment of Rucio, the ATLAS Distributed Data Management system. The main complication is that Rucio interacts with a wide variety of external services, and connects globally distributed data centres under different technological and administrative control, at an unprecedented data volume. It is therefore not possibly to create a duplicate instance of Rucio for testing or integration. Every software upgrade or configuration change is thus potentially disruptive and requires fail-safe software and automatic error recovery. Rucio uses a three-layer scaling and mitigation strategy based on quasi-realtime monitoring. This strategy mainly employs independent stateless services, automatic failover, and service migration. The technologies used for deployment and mitigation include OpenStack, Puppet, Graphite, HAProxy, Apache, and nginx. In this contribution, the reasons and design decisions for the deployment, the actual implementation, and an evaluation of all involved services and c...

  12. Scalable and fail-safe deployment of the ATLAS Distributed Data Management system Rucio

    E-Print Network [OSTI]

    Lassnig, Mario; The ATLAS collaboration; Beermann, Thomas Alfons; Barisits, Martin-Stefan; Garonne, Vincent; Serfon, Cedric

    2015-01-01T23:59:59.000Z

    This contribution details the deployment of Rucio, the ATLAS Distributed Data Management system. The main complication is that Rucio interacts with a wide variety of external services, and connects globally distributed data centres under different technological and administrative control, at an unprecedented data volume. It is therefore not possibly to create a duplicate instance of Rucio for testing or integration. Every software upgrade or configuration change is thus potentially disruptive and requires fail-safe software and automatic error recovery. Rucio uses a three-layer scaling and mitigation strategy based on quasi-realtime monitoring. This strategy mainly employs independent stateless services, automatic failover, and service migration. The technologies used for deployment and mitigation include OpenStack, Puppet, Graphite, HAProxy and Apache. In this contribution, the interplay between these component, their deployment, software mitigation, and the monitoring strategy are discussed.

  13. Coiled tubing deployed ESP works well for Shell in North Sea field

    SciTech Connect (OSTI)

    Watkins, P. [Centrilift, Aberdeen (United Kingdom); Stewart, D.

    1996-06-01T23:59:59.000Z

    What is believed to be the world`s first offshore coiled tubing deployed ESP system was installed by Centrilift, a Division of Baker Hughes Ltd., on Shell Expro`s Auk field Alpha platform in March 1995. After one year, the system is working well and is now viewed as a major step forward in alternative deployment methods for ESPs. Basic features of the system and project background are overviewed here. Shell U.K. Exploration and Production (Expro) operates in the UK Sector of the North Sea on behalf of Shell and Esso. Centrilift worked closely with Shell on this high-profile project and is active on several others, all aimed at reducing the operator`s cost for installing ESPs by using alternative deployment methods.

  14. Examining CCS deployment potential in China via application of an integrated CCS cost curve

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Davidson, Casie L.; Li, Xiaochun; Wei, Ning

    2013-06-01T23:59:59.000Z

    Cost curves focusing on CO2 transport and storage have been previously published and used to help establish the large potential for CCS technologies to deploy in China. This paper examines the results from recent work to incorporate the costs of CO2 capture and compression within integrated cost curves that better reflect the complete costs and therefore possible value of CCS. Results show that significant potential exists for large-scale deployment of CCS at costs less than $70/tCO2. Mapping of the cost curve results confirms that the majority of existing CO2 point sources may be able to utilize CCS technologies, and that - except for many sources in southern China - onshore storage capacity appears accessible and sufficient for decades of large-scale deployment.

  15. Deployment of ITS: A Summary of the 2010 National Survey Results

    SciTech Connect (OSTI)

    Gordon, Stephen Reed [ORNL; Trombly, Jeff [Science Applications International Corporation (SAIC), Oak Ridge, TN

    2011-08-01T23:59:59.000Z

    This report presents summary results of the 2010 ITS Deployment Tracking survey, the most recent survey conducted by the ITS Deployment Tracking Project. The U.S. Department of Transportation and its member agencies, including the Research and Innovative Technology Administration, have pursued a research and development agenda, the Intelligent Transportation System (ITS) Program, designed to integrate the latest in information technologies to improve the safety, mobility, and reliability of surface transportation modes. Within metropolitan areas, implementation of these advanced technologies has been accomplished by a variety of state and local transportation and emergency management agencies as well as the private sector. In order to measure the rate of ITS deployment within the nation s largest metropolitan areas, the ITS Deployment Tracking Project has conducted a nationwide survey of state and local transportation and emergency management agencies nearly every year since 1997. The results presented in this report are intended to be a summary of the entire database from the 2010 survey. Access to the complete survey results and previous national surveys are available on-line at http://www.itsdeployment.its.dot.gov. The website also provides access to survey results in the form of downloadable reports, including a survey summary for each survey type and fact sheets. Nearly 1,600 surveys were distributed to state and local transportation agencies in 2010. A total of seven (7) survey types were distributed including: Freeway Management, Arterial Management, Transit Management, Transportation Management Center (TMC), Electronic Toll Collection (ETC), Public Safety Law Enforcement, and Public Safety Fire/Rescue. Among other things, the data collection results indicate that ITS has moved from being experimental to mainstream and interest in continuing investments in ITS continues to be very strong. When asked about future deployment plans, one-third to three-fourths of the different agency types report they will expand current deployments and about half are planning to invest in new technologies over the next three years.

  16. Entrapment of the StarClose Vascular Closure System After Attempted Common Femoral Artery Deployment

    SciTech Connect (OSTI)

    Durack, Jeremy C., E-mail: jeremy.durack@ucsf.edu; Thor Johnson, D.; Fidelman, Nicholas; Kerlan, Robert K.; LaBerge, Jeanne M. [University of California, Department of Radiology and Biomedical Imaging (United States)

    2012-08-15T23:59:59.000Z

    A complication of the StarClose Vascular Closure System (Abbott, Des Plaines, IL) after a transarterial hepatic chemoembolization is described. After attempted clip deployment, the entire device became lodged in the tissues overlying the common femoral artery and could not be removed percutaneously. Successful removal of the device required surgical cutdown for removal and arterial repair. Entrapment of the StarClose vascular closure deployment system is a potentially serious complication that has been reported in the Manufacturer and User Facility Device Experience database, but has not been recognized in the literature.

  17. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect (OSTI)

    Habte, A.; Wilcox, S.; Stoffel, T.

    2014-02-01T23:59:59.000Z

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  18. VisPortal: Deploying grid-enabled visualization tools through a web-portal interface

    SciTech Connect (OSTI)

    Bethel, Wes; Siegerist, Cristina; Shalf, John; Shetty, Praveenkumar; Jankun-Kelly, T.J.; Kreylos, Oliver; Ma, Kwan-Liu

    2003-06-09T23:59:59.000Z

    The LBNL/NERSC Visportal effort explores ways to deliver advanced Remote/Distributed Visualization (RDV) capabilities through a Grid-enabled web-portal interface. The effort focuses on latency tolerant distributed visualization algorithms, GUI designs that are more appropriate for the capabilities of web interfaces, and refactoring parallel-distributed applications to work in a N-tiered component deployment strategy. Most importantly, our aim is to leverage commercially-supported technology as much as possible in order to create a deployable, supportable, and hence viable platform for delivering grid-based visualization services to collaboratory users.

  19. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect (OSTI)

    Jonkman, J.; Musial, W.

    2010-12-01T23:59:59.000Z

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  20. EPA/ITRC-RTDF permeable reactive barrier short course. Permeable reactive barriers: Application and deployment

    SciTech Connect (OSTI)

    Not Available

    1999-01-01T23:59:59.000Z

    This report focuses on the following: Permeable Reactive Barriers: Application and Deployment; Introduction to Permeable Reactive Barriers (PRBs) for Remediating and Managing Contaminated Groundwater in Situ; Collection and Interpretation of Design Data 1: Site Characterization for PRBs; Reactive Materials: Zero-Valent Iron; Collection and Interpretation of Design Data 2: Laboratory and Pilot Scale Tests; Design Calculations; Compliance Monitoring, Performance Monitoring and Long-Term Maintenance for PRBs; PRB Emplacement Techniques; PRB Permitting and Implementation; Treatment of Metals; Non-Metallic Reactive Materials; Economic Considerations for PRB Deployment; and Bibliography.