Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.
POLYMER END-GROUP ANALYSIS: THE DETERMINATION OF AVERAGE MOLECULAR WEIGHT
Weston, Ken
POLYMER END-GROUP ANALYSIS: THE DETERMINATION OF AVERAGE MOLECULAR WEIGHT Background reading. 11. Skoog, West, Holler and Crouch, 7th ed., Chap. 14. Introduction Polymers Polymers are a special in this experiment, or may be of different types. Polymers are very important in biological systems. For example
Michael Murray; for the BRAHMS Collaboration
2007-10-24T23:59:59.000Z
The purpose of BRAHMS is to survey the dynamics of relativistic heavy ion (as well as pp and d-A) collisions over a very wide range of rapidity and transverse momentum. The sum of these data may give us a glimpse of the initial state of the system, its transverse and longitudinal evolution and how the nature of the system changes with time. Here I will concentrate on the origin and dynamics of the light flavors, i.e. the creation and transport of the up, down and strange quarks. The results presented here are certainly not the end of the story. It is my hope that in a few years new detectors will reveal the rapidity dependence of the charm and bottom quarks.
Lepton Flavor Violation in Flavored Gauge Mediation
Lorenzo Calibbi; Paride Paradisi; Robert Ziegler
2014-08-04T23:59:59.000Z
We study the anatomy and phenomenology of Lepton Flavor Violation (LFV) in the context of Flavored Gauge Mediation (FGM). Within FGM, the messenger sector couples directly to the MSSM matter fields with couplings controlled by the same dynamics that explains the hierarchies in the SM Yukawas. Although the pattern of flavor violation depends on the particular underlying flavor model, FGM provides a built-in flavor suppression similar to wave function renormalization or SUSY Partial Compositeness. Moreover, in contrast to these models, there is an additional suppression of left-right (LR) flavor transitions by third-generation Yukawas that in particular provides an extra protection against flavor-blind phases. We exploit the consequences of this setup for lepton flavor phenomenology, assuming that the new couplings are controlled by simple U(1) flavor models that have been proposed to accommodate large neutrino mixing angles. Remarkably, it turns out that in the context of FGM these models can pass the impressive constraints from LFV processes and leptonic EDMs even for light superpartners, therefore offering the possibility of resolving the longstanding muon g-2 anomaly.
The Color-Flavor Transformation and Lattice QCD
B. Schlittgen; T. Wettig
2002-09-09T23:59:59.000Z
We present the color-flavor transformation for gauge group SU(N_c) and discuss its application to lattice QCD.
Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012
Amhis, Y.; et al.
2012-07-01T23:59:59.000Z
This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.
Appelquist, Thomas; Piai, Maurizio
2015-01-01T23:59:59.000Z
We explore predictive flavor models based on subgroups of the standard-model $SU(3)^5$ flavor symmetry. Restricting to products of $SU(3)$, we find that a global $SU(3)^3$ flavor symmetry, broken only by two Yukawa spurions, leads to a relation among down-type quark, up-type quark and charged-lepton Yukawa matrices: $Y_d \\propto Y_u Y_e^\\dagger$. As a result, the charged-lepton mass ratios are expressed in terms of quark mass ratios and mixing angles. Large leptonic mixing angles appear to be natural and lead to contributions to flavor-changing neutral currents in the charged-lepton sector, which can be tested in future precision experiments.
Matthew Baumgart; Daniel Stolarski; Thomas Zorawski
2014-09-19T23:59:59.000Z
Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.
Charmonium with three flavors of synamical quarks
Massimo Di Pierro et al.
2003-12-23T23:59:59.000Z
We present a calculation of the charmonium spectrum with three flavors of dynamical staggered quarks from gauge configurations that were generated by the MILC collaboration. We use the Fermilab action for the valence charm quarks. Our calculation of the spin-averaged 1P-1S and 2S-1S splittings yields a determination of the strong coupling, with {alpha}{sub {ovr MS}}(M{sub Z}) = 0.119(4).
The Frame Potential, on Average
Ingemar Bengtsson; Helena Granstrom
2008-10-24T23:59:59.000Z
A SIC consists of N^2 equiangular unit vectors in an N dimensional Hilbert space. The frame potential is a function of N^2 unit vectors. It has a unique global minimum if the vectors form a SIC, and this property has been made use of in numerical searches for SICs. When the vectors form an orbit of the Heisenberg group the frame potential becomes a function of a single fiducial vector. We analytically compute the average of this function over Hilbert space. We also compute averages when the fiducial vector is placed in certain special subspaces defined by the Clifford group.
Neutrino Masses and Flavor Oscillations
Yifang Wang; Zhi-zhong Xing
2015-04-23T23:59:59.000Z
This essay is intended to provide a brief description of the peculiar properties of neutrinos within and beyond the standard theory of weak interactions. The focus is on the flavor oscillations of massive neutrinos, from which one has achieved some striking knowledge about their mass spectrum and flavor mixing pattern. The experimental prospects towards probing the absolute neutrino mass scale, possible Majorana nature and CP-violating effects will also be addressed.
Neutrino Masses and Flavor Oscillations
Wang, Yifang
2015-01-01T23:59:59.000Z
This essay is intended to provide a brief description of the peculiar properties of neutrinos within and beyond the standard theory of weak interactions. The focus is on the flavor oscillations of massive neutrinos, from which one has achieved some striking knowledge about their mass spectrum and flavor mixing pattern. The experimental prospects towards probing the absolute neutrino mass scale, possible Majorana nature and CP-violating effects will also be addressed.
Flavor Superconductivity & Superfluidity
Matthias Kaminski
2010-02-25T23:59:59.000Z
In these lecture notes we derive a generic holographic string theory realization of a p-wave superconductor and superfluid. For this purpose we also review basic D-brane physics, gauge/gravity methods at finite temperature, key concepts of superconductivity and recent progress in distinct realizations of holographic superconductors and superfluids. Then we focus on a D3/D7-brane construction yielding a superconducting or superfluid vector-condensate. The corresponding gauge theory is 3+1-dimensional N=2 supersymmetric Yang-Mills theory with SU(N) color and SU(2) flavor symmetry. It shows a second order phase transition to a phase in which a U(1) subgroup of the SU(2) symmetry is spontaneously broken and typical superconductivity signatures emerge, such as a conductivity (pseudo-)gap and the Meissner-Ochsenfeld effect. Condensates of this nature are comparable to those recently found experimentally in p-wave superconductors such as a ruthenate compound. A string picture of the pairing mechanism and condensation is given using the exact knowledge of the corresponding field theory degrees of freedom.
Excited-Nucleon Spectroscopy with 2+1 Fermion Flavors
Cohen, Saul; Foley, Justin; Morningstar, Colin; Wong, Ricky; Edwards, Robert G; Joo, Balint; Richards, David G; Juge, Jimmy; Lin, Huey-Lin; Mathur, Nilmani; Peardon, Micheal J
2010-01-01T23:59:59.000Z
We present progress made by the Hadron Spectrum Collaboration (HSC) in determining the tower of excited nucleon states using 2+1-flavor anisotropic clover lattices. The HSC has been investigating interpolating operators projected into irreducible representations of the cubic group in order to better calculate two-point correlators for nucleon spectroscopy; results are published for quenched and 2-flavor anisotropic Wilson lattices. In this work, we present the latest results using a new technique, distillation, which allows us to reach higher statistics than before. Future directions will be outlined at the end.
Effects of flavor-symmetry violation from staggered fermion lattice simulations of graphene
Joel Giedt; Andrew Skinner; Saroj Nayak
2010-12-21T23:59:59.000Z
We analyze the effects of flavor splitting from staggered fermion lattice simulations of graphene. Both the unimproved action, and the tadpole improved action with a Naik term show significant flavor symmetry breaking in the spectrum of the Dirac operator. We also measure the average plaquette term and describe how it calls for a reinterpretation of previous lattice Monte Carlo simulation results, due to tadpole improvement. From this we infer that the simulations are indicative of a semi-metal phase for suspended graphene.
Heermann, Dieter W.
superconductivitysuperconductivity MetalMetal--insulator transitioninsulator transition FerromagnetismFerromagnetism #12
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kile, Jennifer; Kobach, Andrew; Soni, Amarjit
2015-05-01T23:59:59.000Z
In this work, we address two paradoxes. The first is that the measured dark-matter relic density can be satisfied with new physics at O(100 GeV–1 TeV), while the null results from direct-detection experiments place lower bounds of O(10 TeV) on a new-physics scale. The second puzzle is that the severe suppression of lepton-flavor-violating processes involving electrons, e.g. ? ? 3e, ? ? e??, etc., implies that generic new-physics contributions to lepton interactions cannot exist below O(10–100 TeV), whereas the 3.6? deviation of the muon g – 2 from the standard model can be explained by a new physics scale
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kile, Jennifer; Kobach, Andrew; Soni, Amarjit
2015-05-01T23:59:59.000Z
In this work, we address two paradoxes. The first is that the measured dark-matter relic density can be satisfied with new physics at O(100 GeV–1 TeV), while the null results from direct-detection experiments place lower bounds of O(10 TeV) on a new-physics scale. The second puzzle is that the severe suppression of lepton-flavor-violating processes involving electrons, e.g. ? ? 3e, ? ? e??, etc., implies that generic new-physics contributions to lepton interactions cannot exist below O(10–100 TeV), whereas the 3.6? deviation of the muon g – 2 from the standard model can be explained by a new physics scale more »TeV). Here, we suggest that it may not be a coincidence that both the muon g – 2 and the relic density can be satisfied by a new-physics scale ?1 TeV. We consider the possibility of a gauged lepton-flavor interaction that couples at tree level only to ?- and ?-flavored leptons and the dark sector. Dark matter thus interacts appreciably only with particles of ? and ? flavor at tree level and has loop-suppressed couplings to quarks and electrons. Remarkably, if such a gauged flavor interaction exists at a scale O(100 GeV–1 TeV), it allows for a consistent phenomenological framework, compatible with the muon g – 2, the relic density, direct detection, indirect detection, charged-lepton decays, neutrino trident production, and results from hadron and e?e? colliders. We suggest experimental tests for these ideas at colliders and for low-energy observables. (author)« less
A minimal and predictive $T_7$ lepton flavor 331 model
Hernández, A E Cárcamo
2015-01-01T23:59:59.000Z
We present a model based on the $SU(3)_{C}\\otimes SU(3)_{L}\\otimes U(1)_{X}$ gauge group having an extra $T_{7}\\otimes Z_{3}\\otimes Z_{14}$ flavor group, where the light active neutrino masses arise via double seesaw mechanism and the observed charged lepton mass hierarchy is a consequence of the $Z_{14}$ symmetry breaking at very high energy. In our minimal and predictive $T_7$ lepton flavor 331 model, the spectrum of neutrinos includes very light active neutrinos and heavy and very heavy sterile neutrinos. The obtained neutrino mixing parameters and neutrino mass squared splittings are compatible with the neutrino oscillation experimental data, for both normal and inverted hierarchies. The model predicts CP conservation in neutrino oscillations.
MFR PAPER 1278 Flavors in Fish From Petroleum Pickup
MFR PAPER 1278 Flavors in Fish From Petroleum Pickup MAURICE E. STANSBY ABSTRACT - All flavors noted in fish resembling petroleum oil are not derived from oil in water. Origins of various flavors to understand the differentiation between baseline flavor of fish in the absence of petroleum from flavors di
Updated Constraints on General Squark Flavor Mixing
Arana-Catania, M; Herrero, M J
2014-01-01T23:59:59.000Z
We explore the phenomenological implications on non-minimal flavor violating (NMFV) processes from squark flavor mixing within the Minimal Supersymmetric Standard Model. We work under the model-independent hypothesis of general flavor mixing in the squark sector, being parametrized by a complete set of dimensionless delta^AB_ij (A,B = L, R; i,j = u, c, t or d, s, b) parameters. The present upper bounds on the most relevant NMFV processes, together with the requirement of compatibility in the choice of the MSSM parameters with the recent LHC and g-2 data, lead to updated constraints on all squark flavor mixing parameters.
Bc Meson Formfactors and Bc-->PV Decays Involving Flavor Dependence of Transverse Quark Momentum
Rohit Dhir; R. C. Verma
2009-01-08T23:59:59.000Z
We present a detailed analysis of the Bc form factors in the BSW framework, by investigating the effects of the flavor dependence on the average transverse quark momentum inside a meson. Branching ratios of two body decays of Bc meson to pseudoscalar and vector mesons are predicted.
TASI Lectures on Flavor Physics
Zoltan Ligeti
2015-05-19T23:59:59.000Z
These notes overlap with lectures given at the TASI summer schools in 2014 and 2011, as well as at the European School of High Energy Physics in 2013. This is primarily an attempt at transcribing my hand-written notes, with emphasis on topics and ideas discussed in the lectures. It is not a comprehensive introduction or review of the field, nor does it include a complete list of references. I hope, however, that some may find it useful to better understand the reasons for excitement about recent progress and future opportunities in flavor physics.
Electroweak constraints on flavorful effective theories
Efrati, Aielet; Soreq, Yotam
2015-01-01T23:59:59.000Z
We derive model-independent constraints arising from the Z and W boson observables on dimension six operators in the effective theory beyond the Standard Model. In particular, we discuss the generic flavor structure for these operators as well as several flavor patterns motivated by simple new physics scenarios.
Model building for flavor changing Higgs couplings
Avital Dery; Aielet Efrati; Yosef Nir; Yotam Soreq; Vasja Susi?
2014-09-21T23:59:59.000Z
If $t\\rightarrow hq$ ($q=c,u$) or $h\\rightarrow\\tau\\ell$ ($\\ell=\\mu,e$) decays are observed, it will be a clear signal of new physics. We investigate whether natural and viable flavor models can saturate the present direct upper bounds without violating the indirect constraints from low energy loop processes. We carry out our analysis in two theoretical frameworks: minimal flavor violation (MFV) and Froggatt-Nielsen symmetry (FN). The simplest models in either framework predict flavor changing couplings that are too small to be directly observed. Yet, in the MFV framework, it is possible to have lepton flavor changing Higgs couplings close to the bound if spurions related to heavy singlet neutrinos play a role. In the FN framework, it is possible to have large flavor changing couplings in both the up and the charged lepton sectors if supersymmetry plays a role.
Supernova Neutrino Spectra and Applications to Flavor Oscillations
Mathias Th. Keil
2003-08-13T23:59:59.000Z
We study the flavor-dependent neutrino spectra formation in the core of a supernova (SN) by means of Monte Carlo simulations. A high-statistics neutrino signal from a galactic SN may contain information that severely constrains the parameter space for neutrino oscillations. Therefore, reliable predictions for flavor-dependent fluxes and spectra are urgently needed. In all traditional hydrodynamic simulations the nu_mu,tau and nu_mu,tau-bar interactions commonly included are rather schematic. With our Monte Carlo simulations we find that the most relevant sources for nu_mu,tau and nu_mu,tau-bar are traditionally not included. In comparing our numerical results for all flavors we find the standard hierarchy of mean energies nu_e < nu_e-bar < nu_mu,tau, with, however, very similar values for nu_mu,tau and nu_e-bar. The luminosities of nu_mu,tau and nu_mu,tau-bar can differ by up to a factor of 2 from L_nue-bar and L_nue, the latter two are very similar. The Garching Group obtains similar results from their self-consistent simulation with the full set of interactions. These results are almost orthogonal to the previous standard picture of exactly equal luminosities of all flavors and differences in mean energies of up to a factor of 2. Existing concepts for identifying oscillation effects in a SN neutrino signal need to be revised. We present two methods for detecting the earth-matter effect that are rather independent of predictions from SN simulations.
Heavy flavor production in the STAR experiment
Barbara Trzeciak; for the STAR Collaboration
2014-09-11T23:59:59.000Z
In this paper, recent STAR heavy flavor measurements in proton-proton and heavy-ion collisions are highlighted. We report studies of open charm mesons, reconstructed directly from hadronic decay products, and studies of electrons from semi-leptonic decays of heavy flavor hadrons. We also present J/$\\psi$ measurements via the di-electron decay channel at various collision systems and energies. In Au+Au collisions the energy dependence of J/$\\psi$ production measured at $\\sqrt{s_{NN}}$ = 39, 62.4 and 200 GeV is shown. Finally, prospects of heavy flavor measurements with the STAR detector upgrades are discussed.
New Constraints on General Slepton Flavor Mixing
Arana-Catania, M; Herrero, M J
2013-01-01T23:59:59.000Z
We explore the phenomenological implications on charged lepton flavor violating (LFV) processes from slepton flavor mixing within the Minimal Supersymmetric Standard Model. We work under the model-independent hypothesis of general flavor mixing in the slepton sector, being parametrized by a complete set of dimensionless delta^AB_ij (A,B = L,R; i,j = 1, 2, 3) parameters. The present upper bounds on the most relevant LFV processes, together with the requirement of compatibility in the choice of the MSSM parameters with the recent LHC and (g-2) data, lead to updated constraints on all slepton flavor mixing parameters. A comparative discussion of the most effective LFV processes to constrain the various generation mixings is included.
Analytical evaluation of onion flavor and pungency
Fitzgerald, James Wallace
1980-01-01T23:59:59.000Z
Major Subject: Food Science and Technology ANALYTICAL EVALUATION OF ONION FLAVOR AND PUNGENCY A Thesis by James Wallace Fitzgerald Approved as to st le and content by: Chairman of Committee He d of Departmen Member Member December 1980..., and love. It is to these special people that this manuscr1pt 1s dedicated. TABLE OF CONTENTS Abstract . Acknowledgements Table of Contents List of Tables . List of Figures Introduction . Objectives Literature Review History . Food Value Flavor...
Supersymmetric Dark Matter and Lepton Flavor Violation
Soleimani, Ali
2010-05-07T23:59:59.000Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.5 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.6 Flavor violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.6.1 Quark sector flavor....3) LHiggs = |Dµ?|2 +µ2?†???(?†?)2, (1.4) and LYukawa = summationdisplay generations bracketleftBig ?fe¯L·?eR ?fd ¯Q·?dR ?fuepsilon1ab ¯Qa?†buR + h.c. bracketrightBig . (1.5) Here, Gµ?A , Wµ?A , Bµ? are the color, weak isospin and hypercharge field tensors...
Tenderness, flavor, and yield assessments of dry-aged beef
Laster, Megan Ann
2009-05-15T23:59:59.000Z
, vacuum packaged, and imediately frozen. These steaks served as the baseline for tendernes and flavor asesments. The remaining subprimals (n=288) (6 replications x 2 grade groups x 3 subprimals x 4 aging periods x 2 aging treatments) were randomly 7... and reweighed (out of bag weight). In order for a purge loss value to be calculated, vacuum package bags then were washed, dried, and weighed. Using the band saw, ribeye rolls were cut into 2.54 cm-thick Bef Ribeye Steaks Lip-On BI (U.P.C. #1197) (refered...
Flavor $\\S_{4}$ [circle times operator] $\\Z_{2}$ symmetry and neutrino mixing
Zhang, H
2007-01-01T23:59:59.000Z
We present a model of the lepton masses and flavor mixing based on the discrete group $S^{}_4\\otimes Z^{}_2$. In this model, all the charged leptons and neutrinos are assigned to the ${\\bf \\underline{3}}_\\alpha$ representation of $S^{}_4$ in the Yamanouchi bases. The charged lepton and neutrino masses are mainly determined by the vacuum expectation value structures of the Higgs fields. Our model predicts a nearly tri-bimaximal lepton flavor mixing pattern, which is fully in agreement with the current experimental results. The neutrino mass spectrum takes the nearly degenerate pattern, which may be well tested in the future precise experiments.
A Heavy Flavor Tracker for STAR
Chasman, C.; Beavis, D.; Debbe, R.; Lee, J.H.; Levine, M.J.; Videbaek, F.; Xu, Z.; Kleinfelder, S.; Li, S.; Cendejas, R.; Huang, H.; Sakai, S.; Whitten, C.; Joseph, J.; Keane, D.; Margetis, S.; Rykov, V.; Zhang, W.M.; Bystersky, M.; Kapitan, J.; Kushpil, V.; Sumbera, M.; Baudot, J.; Hu-Guo, C.; Shabetai, A.; Szelezniak, M.; Winter, M.; Kelsey, J.; Milner, R.; Plesko, M.; Redwine, R.; Simon, F.; Surrow, B.; Van Nieuwenhuizen, G.; Anderssen, E.; Dong, X.; Greiner, L.; Matis, H.S.; Morgan, S.; Ritter, H.G.; Rose, A.; Sichtermann, E.; Singh, R.P.; Stezelberger, T.; Sun, X.; Thomas, J.H.; Tram, V.; Vu, C.; Wieman, H.H.; Xu, N.; Hirsch, A.; Srivastava, B.; Wang, F.; Xie, W.; Bichsel, H.
2008-02-25T23:59:59.000Z
The STAR Collaboration proposes to construct a state-of-the-art microvertex detector,the Heavy Flavor Tracker (HFT), utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precision measurement of the yields and spectra of particles containing heavy quarks. This will be accomplished through topological identification of D mesons by reconstruction of their displaced decay vertices with a precision of approximately 50 mu m in p+p, d+A, and A+A collisions. The HFT consists of 4 layers of silicon detectors grouped into two sub-systems with different technologies, guaranteeing increasing resolution when tracking from the TPC and the Silicon Strip Detector (SSD) towards the vertex of the collision. The Intermediate Silicon Tracker (IST), consisting of two layers of single-sided strips, is located inside the SSD. Two layers of Silicon Pixel Detector (PIXEL) are inside the IST. The PIXEL detectors have the resolution necessary for a precision measurement of the displaced vertex. The PIXEL detector will use CMOS Active Pixel Sensors (APS), an innovative technology never used before in a collider experiment. The APSsensors are only 50 mu m thick and at a distance of only 2.5 cm from the interaction point. This opens up a new realm of possibilities for physics measurements. In particular, a thin detector (0.28percent radiation length per layer) in STAR makes it possible to do the direct topological reconstruction of open charm hadrons down to very low pT by the identification of the charged daughters of the hadronic decay.
Averaging Hypotheses in Newtonian Cosmology
T. Buchert
1995-12-20T23:59:59.000Z
Average properties of general inhomogeneous cosmological models are discussed in the Newtonian framework. It is shown under which circumstances the average flow reduces to a member of the standard Friedmann--Lema\\^\\i tre cosmologies. Possible choices of global boundary conditions of inhomogeneous cosmologies as well as consequences for the interpretation of cosmological parameters are put into perspective.
On Flavor Symmetry in Lattice Quantum Chromodynamics
El Hassan Saidi
2012-03-27T23:59:59.000Z
Using a well established method to engineer non abelian symmetries in superstring compactifications, we study the link between the point splitting method of Creutz et al of refs [1,2] for implementing flavor symmetry in lattice QCD; and singularity theory in complex algebraic geometry. We show amongst others that Creutz flavors for naive fermions are intimately related with toric singularities of a class of complex Kahler manifolds that are explicitly built here. In the case of naive fermions of QCD$_{2N}$, Creutz flavors are shown to live at the poles of real 2-spheres and carry quantum charges of the fundamental of $[SU(2)]^{2N}$. We show moreover that the two Creutz flavors in Karsten-Wilczek model, with Dirac operator in reciprocal space of the form $i\\gamma_1 F_1+i\\gamma_2 F_2 + i\\gamma_3 F_3+\\frac{i}{\\sin \\alpha}\\gamma_4 F_4$, are related with the small resolution of conifold singularity that live at $\\sin \\alpha =0$. Other related features are also studied.
Hot topics in flavor physics at CDF
Jun, Soon Yung; /Carnegie Mellon U.
2005-01-01T23:59:59.000Z
Hot topics in flavor physics at CDF are reviewed. Selected results of top, beauty, charm physics and exotic states in about 200 pb{sup -1} data collected by the CDF II detector in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron are presented.
Does anyone have access to 2012 average residential rates by...
Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...
Evaluations of average level spacings
Liou, H.I.
1980-01-01T23:59:59.000Z
The average level spacing for highly excited nuclei is a key parameter in cross section formulas based on statistical nuclear models, and also plays an important role in determining many physics quantities. Various methods to evaluate average level spacings are reviewed. Because of the finite experimental resolution, to detect a complete sequence of levels without mixing other parities is extremely difficult, if not totally impossible. Most methods derive the average level spacings by applying a fit, with different degrees of generality, to the truncated Porter-Thomas distribution for reduced neutron widths. A method that tests both distributions of level widths and positions is discussed extensivey with an example of /sup 168/Er data. 19 figures, 2 tables.
Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube
IceCube Collaboration; M. G. Aartsen; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; M. Ahrens; D. Altmann; T. Anderson; C. Arguelles; T. C. Arlen; J. Auffenberg; X. Bai; S. W. Barwick; V. Baum; R. Bay; J. J. Beatty; J. Becker Tjus; K. -H. Becker; S. BenZvi; P. Berghaus; D. Berley; E. Bernardini; A. Bernhard; D. Z. Besson; G. Binder; D. Bindig; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; F. Bos; D. Bose; S. Böser; O. Botner; L. Brayeur; H. -P. Bretz; A. M. Brown; N. Buzinsky; J. Casey; M. Casier; E. Cheung; D. Chirkin; A. Christov; B. Christy; K. Clark; L. Classen; F. Clevermann; S. Coenders; D. F. Cowen; A. H. Cruz Silva; J. Daughhetee; J. C. Davis; M. Day; J. P. A. M. de André; C. De Clercq; H. Dembinski; S. De Ridder; P. Desiati; K. D. de Vries; M. de With; T. DeYoung; J. C. Díaz-Vélez; J. P. Dumm; M. Dunkman; R. Eagan; B. Eberhardt; T. Ehrhardt; B. Eichmann; J. Eisch; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; J. Feintzeig; J. Felde; K. Filimonov; C. Finley; T. Fischer-Wasels; S. Flis; K. Frantzen; T. Fuchs; T. K. Gaisser; R. Gaior; J. Gallagher; L. Gerhardt; D. Gier; L. Gladstone; T. Glüsenkamp; A. Goldschmidt; G. Golup; J. G. Gonzalez; J. A. Goodman; D. Góra; D. Grant; P. Gretskov; J. C. Groh; A. Groß; C. Ha; C. Haack; A. Haj Ismail; P. Hallen; A. Hallgren; F. Halzen; K. Hanson; D. Hebecker; D. Heereman; D. Heinen; K. Helbing; R. Hellauer; D. Hellwig; S. Hickford; G. C. Hill; K. D. Hoffman; R. Hoffmann; A. Homeier; K. Hoshina; F. Huang; W. Huelsnitz; P. O. Hulth; K. Hultqvist; A. Ishihara; E. Jacobi; J. Jacobsen; G. S. Japaridze; K. Jero; M. Jurkovic; B. Kaminsky; A. Kappes; T. Karg; A. Karle; M. Kauer; A. Keivani; J. L. Kelley; A. Kheirandish; J. Kiryluk; J. Kläs; S. R. Klein; J. -H. Köhne; G. Kohnen; H. Kolanoski; A. Koob; L. Köpke; C. Kopper; S. Kopper; D. J. Koskinen; M. Kowalski; A. Kriesten; K. Krings; G. Kroll; M. Kroll; J. Kunnen; N. Kurahashi; T. Kuwabara; M. Labare; J. L. Lanfranchi; D. T. Larsen; M. J. Larson; M. Lesiak-Bzdak; M. Leuermann; J. Lünemann; J. Madsen; G. Maggi; R. Maruyama; K. Mase; H. S. Matis; R. Maunu; F. McNally; K. Meagher; M. Medici; A. Meli; T. Meures; S. Miarecki; E. Middell; E. Middlemas; N. Milke; J. Miller; L. Mohrmann; T. Montaruli; R. Morse; R. Nahnhauer; U. Naumann; H. Niederhausen; S. C. Nowicki; D. R. Nygren; A. Obertacke; A. Olivas; A. Omairat; A. O'Murchadha; T. Palczewski; L. Paul; Ö. Penek; J. A. Pepper; C. Pérez de los Heros; C. Pfendner; D. Pieloth; E. Pinat; J. Posselt; P. B. Price; G. T. Przybylski; J. Pütz; M. Quinnan; L. Rädel; M. Rameez; K. Rawlins; P. Redl; I. Rees; R. Reimann; M. Relich; E. Resconi; W. Rhode; M. Richman; B. Riedel; S. Robertson; J. P. Rodrigues; M. Rongen; C. Rott; T. Ruhe; B. Ruzybayev; D. Ryckbosch; S. M. Saba; H. -G. Sander; J. Sandroos; M. Santander; S. Sarkar; K. Schatto; F. Scheriau; T. Schmidt; M. Schmitz; S. Schoenen; S. Schöneberg; A. Schönwald; A. Schukraft; L. Schulte; O. Schulz; D. Seckel; Y. Sestayo; S. Seunarine; R. Shanidze; M. W. E. Smith; D. Soldin; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; N. A. Stanisha; A. Stasik; T. Stezelberger; R. G. Stokstad; A. Stößl; E. A. Strahler; R. Ström; N. L. Strotjohann; G. W. Sullivan; M. Sutherland; H. Taavola; I. Taboada; A. Tamburro; S. Ter-Antonyan; A. Terliuk; G. Teši?; S. Tilav; P. A. Toale; M. N. Tobin; D. Tosi; M. Tselengidou; E. Unger; M. Usner; S. Vallecorsa; N. van Eijndhoven; J. Vandenbroucke; J. van Santen; S. Vanheule; M. Vehring; M. Voge; M. Vraeghe; C. Walck; M. Wallraff; Ch. Weaver; M. Wellons; C. Wendt; S. Westerhoff; B. J. Whelan; N. Whitehorn; C. Wichary; K. Wiebe; C. H. Wiebusch; D. R. Williams; H. Wissing; M. Wolf; T. R. Wood; K. Woschnagg; D. L. Xu; X. W. Xu; Y. Xu; J. P. Yanez; G. Yodh; S. Yoshida; P. Zarzhitsky; J. Ziemann; M. Zoll
2015-02-11T23:59:59.000Z
A diffuse flux of astrophysical neutrinos above $100\\,\\mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35\\,\\mathrm{TeV}$ and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the $(f_e:f_{\\mu}:f_\\tau)_\\oplus\\approx(1:1:1)_\\oplus$ flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on non-standard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally track-like composition of $(0:1:0)_\\oplus$ is excluded at $3.3\\sigma$, and a purely shower-like composition of $(1:0:0)_\\oplus$ is excluded at $2.3\\sigma$.
4, 22832300, 2004 Hemispheric average
Paris-Sud XI, Université de
ACPD 4, 22832300, 2004 Hemispheric average Cl atom concentration U. Platt et al. Title Page U. Platt1 , W. Allen2 , and D. Lowe2 1 Institut f¨ur Umweltphysik, University of Heidelberg, INF 229 February 2004 Accepted: 9 March 2004 Published: 4 May 2004 Correspondence to: U. Platt (ulrich.platt
Light-flavor squark reconstruction at CLIC
Simon, Frank
2015-01-01T23:59:59.000Z
We present a simulation study of the prospects for the mass measurement of TeV-scale light-flavored right-handed squark at a 3 TeV e+e- collider based on CLIC technology. The analysis is based on full GEANT4 simulations of the CLIC_ILD detector concept, including Standard Model physics backgrounds and beam-induced hadronic backgrounds from two-photon processes. The analysis serves as a generic benchmark for the reconstruction of highly energetic jets in events with substantial missing energy. Several jet finding algorithms were evaluated, with the longitudinally invariant kt algorithm showing a high degree of robustness towards beam-induced background while preserving the features typically found in algorithms developed for e+e- collisions. The presented study of the reconstruction of light-flavored squarks shows that for TeV-scale squark masses, sub-percent accuracy on the mass measurement can be achieved at CLIC.
Light-flavor squark reconstruction at CLIC
Simon, Frank Richard
2015-01-01T23:59:59.000Z
We present a simulation study of the prospects for the mass measurement of TeV-scale light- flavored right-handed squark at a 3 TeV e+e collider based on CLIC technology. The analysis is based on full GEANT4 simulations of the CLIC_ILD detector concept, including Standard Model physics backgrounds and beam-induced hadronic backgrounds from two- photon processes. The analysis serves as a generic benchmark for the reconstruction of highly energetic jets in events with substantial missing energy. Several jet finding algorithms were evaluated, with the longitudinally invariant kt algorithm showing a high degree of robustness towards beam-induced background while preserving the features typically found in algorithms developed for e+e- collisions. The presented study of the reconstruction of light-flavored squarks shows that for TeV-scale squark masses, sub-percent accuracy on the mass measurement can be achieved at CLIC.
Flavor instabilities in the neutrino line model
Huaiyu Duan; Shashank Shalgar
2015-05-28T23:59:59.000Z
A dense neutrino medium can experience collective flavor oscillations through nonlinear neutrino-neutrino refraction. To make this multi-dimensional flavor transport problem more tractable, all existing studies have assumed certain symmetries (e.g., the spatial homogeneity and directional isotropy in the early universe) to reduce the dimensionality of the problem. In this work we show that, if both the directional and spatial symmetries are not enforced in the neutrino line model, collective oscillations can develop in the physical regimes where the symmetry-preserving oscillation modes are stable. Our results suggest that collective neutrino oscillations in real astrophysical environments (such as core-collapse supernovae and black-hole accretion discs) can be qualitatively different from the predictions based on existing models in which spatial and directional symmetries are artificially imposed.
Viable axion from gauged flavor symmetries
Berenstein, David; Perkins, Erik [Department of Physics, University of California, Santa Barbara, California 93106 (United States)
2010-11-15T23:59:59.000Z
We consider a string-inspired nonsupersymmetric extension of the standard model with gauged anomalous U(1) flavor symmetries. Consistency requires the Green-Schwarz (GS) mechanism to cancel mixed anomalies. The additional required scalars provide Stueckelberg masses for the Z{sup '} particles associated to the gauged flavor symmetry, so they decouple at low energies. Our models also include a complex scalar field {phi} to generate Froggatt-Nielsen mass terms for light particles, giving a partial solution to the fermion mass problem. A residual approximate (anomalous) global symmetry survives at low energies. The associated pseudo-Goldstone mode is the phase of the {phi} scalar field, and it becomes the dominant contribution to the physical axion. An effective field theory analysis that includes neutrino masses gives a prediction for the axion decay constant. We find a simple model where the axion decay constant is in the center of the allowed window.
Flavor Dependence of T-odd PDFs
Leonard P. Gamberg; Gary R. Goldstein; Marc Schlegel
2007-04-20T23:59:59.000Z
The flavor dependence of the naive time reversal odd ("T-odd'') parton distributions for $u$- and $d$-quarks are explored in the spectator model. The flavor dependence of $h_{1}^{\\perp}$ is of significance for the analysis of the azimuthal $\\cos(2\\phi)$ asymmetries in unpolarized SIDIS and DY-processes, as well as for the overall physical understanding of the distribution of transversely polarized quarks in unpolarized nucleons. As a by-product of the formalism, we calculate the chiral-odd but ``T-even'' function $h_{1L}^{\\perp}$ which enables us to present a prediction for the single spin asymmetry $A_{UL}^{\\sin(2\\phi)}$ for a longitudinally polarized target in SIDIS.
The QCD spectrum with three quark flavors
Claude Bernard; Tom Burch; Thomas A. DeGrand; Saumen Datta; Carleton DeTar; Steven Gottlieb; Urs M. Heller; Kostas Orginos; Robert Sugar; Doug Toussaint
2001-05-29T23:59:59.000Z
We present results from a lattice hadron spectrum calculation using three flavors of dynamical quarks - two light and one strange, and quenched simulations for comparison. These simulations were done using a one-loop Symanzik improved gauge action and an improved Kogut-Susskind quark action. The lattice spacings, and hence also the physical volumes, were tuned to be the same in all the runs to better expose differences due to flavor number. Lattice spacings were tuned using the static quark potential, so as a byproduct we obtain updated results for the effect of sea quarks on the static quark potential. We find indications that the full QCD meson spectrum is in better agreement with experiment than the quenched spectrum. For the 0++ (a0) meson we see a coupling to two pseudoscalar mesons, or a meson decay on the lattice.
Thermodynamics of (2+1)-flavor QCD
C. Schmidt; T. Umeda
2006-09-21T23:59:59.000Z
We report on the status of our QCD thermodynamics project. It is performed on the QCDOC machine at Brookhaven National Laboratory and the APEnext machine at Bielefeld University. Using a 2+1 flavor formulation of QCD at almost realistic quark masses we calculated several thermodynamical quantities. In this proceeding we show the susceptibilites of the chiral condensate and the Polyakov loop, the static quark potential and the spatial string tension.
Flavor Physics in the Quark Sector
Antonelli, Mario; /Frascati; Asner, David Mark; /Carleton U.; Bauer, Daniel Adams; /Imperial Coll., London; Becher, Thomas G.; /Fermilab; Beneke, M.; /Aachen, Tech. Hochsch.; Bevan, Adrian John; /Queen Mary, U. of London; Blanke, Monika; /Munich, Tech. U. /Munich, Max Planck Inst.; Bloise, C.; /Frascati; Bona, Marcella; /CERN; Bondar, Alexander E.; /Novosibirsk, IYF; Bozzi, Concezio; /INFN, Ferrara; Brod, Joachim; /Karlsruhe U.; Buras, Andrzej J.; /Munich, Tech. U.; Cabibbo, N.; /INFN, Rome /Rome U.; Carbone, A.; /INFN, Bologna; Cavoto, Gianluca; /INFN, Rome; Cirigliano, Vincenzo; /Los Alamos; Ciuchini, Marco; /INFN, Rome; Coleman, Jonathon P.; /SLAC; Cronin-Hennessy, Daniel P.; /Minnesota U.; Dalseno, J.P.; /KEK, Tsukuba /Glasgow U. /Queen Mary, U. of London /Freiburg U. /Charles U. /Pisa U. /Vienna, OAW /Imperial Coll., London /Bergen U. /INFN, Rome /Rome U. /Munich, Tech. U. /INFN, Rome /Rome U. /Southampton U. /INFN, Rome /Nara Women's U. /Florida U. /INFN, Turin /Turin U. /Edinburgh U. /Warwick U. /INFN, Rome /Rome U. /Massachusetts U., Amherst /KEK, Tsukuba /Bern U. /CERN /Munich, Tech. U. /Mainz U., Inst. Phys. /Wayne State U. /Munich, Max Planck Inst. /CERN /Frascati /Brookhaven /Mainz U., Inst. Kernphys. /Munich, Tech. U. /Siegen U. /Imperial Coll., London /Victoria U. /KEK, Tsukuba /Fermilab /Washington U., St. Louis /Frascati /Warwick U. /Indian Inst. Tech., Madras /Melbourne U. /Princeton U. /Beijing, Inst. High Energy Phys. /INFN, Rome /INFN, Rome3 /Fermilab /SLAC /York U., Canada /Brookhaven /UC, Irvine /INFN, Rome /Rome U. /Valencia U., IFIC /INFN, Padua /Padua U. /Munich, Max Planck Inst. /Barcelona U. /Warwick U. /Tata Inst. /Frascati /Mainz U., Inst. Phys. /Vienna U. /KEK, Tsukuba /Orsay, LPT /Frascati /Munich, Tech. U. /Brookhaven /Bern U. /CERN /Mainz U., Inst. Phys. /Wayne State U. /Valencia U., IFIC /CERN /Kentucky U. /Oxford U. /Iowa State U. /Bristol U. /INFN, Rome /Rutherford /CERN /Orsay, LAL /Glasgow U. /INFN, Padua /Queen Mary, U. of London /Texas U. /LPHE, Lausanne /Fermilab /UC, Santa Cruz /Vienna, OAW /Cincinnati U. /Frascati /Orsay, LAL /Ohio State U. /Purdue U. /Novosibirsk, IYF /Frascati /INFN, Rome /Padua U. /INFN, Rome /Bern U. /Karlsruhe U. /Brookhaven /CERN /Paris U., VI-VII /Zurich, ETH /Pisa U. /Frascati /Oxford U. /Orsay, LAL /INFN, Rome2 /INFN, Rome /INFN, Rome3 /Princeton U. /Fermilab /Queen's U., Kingston /KEK, Tsukuba /Melbourne U. /Brookhaven /Indiana U. /INFN, Rome /Rome U. /Pisa U. /Mainz U., Inst. Phys. /Karlsruhe U. /Oxford U. /Cambridge U., DAMTP /Edinburgh U. /CERN
2010-08-26T23:59:59.000Z
In the past decade, one of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor. In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously. A much broader understanding of flavor particles has been achieved, apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. In the past, observations of CP violation were confined to neutral K mesons, but since the early 1990s, a large number of CP-violating processes have been studied in detail in neutral B mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of K,D, and B mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments, thus a review of the status of quark flavor physics is timely. This report is the result of the work of the physicists attending the 5th CKM workshop, hosted by the University of Rome 'La Sapienza', September 9-13, 2008. It summarizes the results of the current generation of experiments that is about to be completed and it confronts these results with the theoretical understanding of the field which has greatly improved in the past decade.
Flavor Physics in the Quark Sector
Antonelli, M; Bauer, D; Becher, T; Beneke, M; Bevan, A J; Blanke, M; Bloise, C; Bóna, M; Bondar, A; Bozzi, C; Brod, J; Cabibbo, N; Carbone, A; Cavoto, G; Cirigliano, V; Ciuchini, M; Coleman, J P; Cronin-Hennessy, D P; Dalseno, J P; Davies, C H; Di Lodovico, F; Dingfelder, J; Dolezal, Z; Donati, S; Dungel, W; Egede, U; Faccini, R; Feldmann, T; Ferroni, F; Flynn, J M; Franco, E; Fujikawa, M; Furic, I K; Gambino, P; Gardi, E; Gershon, T J; Giagu, S; Golowich, E; Goto, T; Greub, C; Grojean, C; Guadagnoli, D; Haisch, U A; Harr, R F; Hoang, A H; Isidori, G; Jaffe, D E; Jüttner, A; Jäger, S; Khodjamirian, A; Koppenburg, P; Kowalewski, R V; Krokovny, P; Kronfeld, A S; Laiho, J; Lanfranchi, G; Latham, T E; Libby, J; Limosani, A; Pegna, D Lopes; Lü, C D; Lubicz, V; Lunghi, E; Lüth, V G; Maltman, K; Marciano, W J; Martin, E C; Martinelli, G; Martínez-Vidal, F; Masiero, A; Mateu, V; Mescia, F; Mohanty, G; Moulson, M; Neubert, M; Neufeld, H; Nishida, S; Offen, N; Palutan, M; Paradisi, P; Parsa, Z; Passemar, E; Patel, M; Pecjak, B D; Petrov, A A; Pich, A; Pierini, M; Plaster, B; Powell, A; Prell, S; Rademaker, J; Rescigno, M; Ricciardi, S; Robbe, P; Rodrigues, E; Rotondo, M; Sacco, R; Schilling, C J; Schneider, O; Scholz, E E; Schumm, B A; Schwanda, C; Schwartz, A J; Sciascia, B; Serrano, J; Shigemitsu, J; Shipsey, I J; Sibidanov, A; Silvestrini, L; Simonetto, F; Simula, S; Smith, C; Soni, A; Sonnenschein, L; Sordini, V; Sozzi, M; Spadaro, T; Spradlin, P; Stocchi, A; Tantalo, N; Tarantino, C; Telnov, A V; Tonelli, D; Towner, I S; Trabelsi, K; Urquijo, P; Van de Water, R S; Van Kooten, R J; Virto, J; Volpi, G; Wanke, R; Westhoff, S; Wilkinson, G; Wingate, M; Xie, Y; Zupan, J
2010-01-01T23:59:59.000Z
One of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor and measurements and theoretical interpretations of their results have advanced tremendously: apart from masses and quantum numbers of flavor particles, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. Till early 1990s observations of CP violation were confined to neutral $K$ mesons, but since then a large number of CP-violating processes have been studied in detail in neutral $B$ mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of $K, D$, and $B$ mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near...
Seasonal Average Temperature - Hanford Site
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign In About | CareersAverage Temperature
Probing flavor-dependent EMC effect with W boson production
Wen-Chen Chang; Ian Cloet; Dipangkar Dutta; Jen-Chieh Peng
2013-03-03T23:59:59.000Z
A recent theoretical model predicts that the modification of quark distributions in the nuclear medium (EMC effect) depends on the flavor of the quarks. We investigate $W$-boson production in proton-nucleus collision as a possible tool to test this theoretical prediction. Several experimental observables in $W$ production sensitive to the flavor-dependent EMC effect are identified. Calculations for these experimental observables at the RHIC and LHC energies are presented using the recent flavor-dependent EMC model.
Probing flavor-dependent EMC effect with W boson production
Chang, Wen-Chen; Dutta, Dipangkar; Peng, Jen-Chieh
2011-01-01T23:59:59.000Z
A recent theoretical model predicts that the modification of quark distributions in the nuclear medium (EMC effect) depends on the flavor of the quarks. We investigate $W$-boson production in proton-nucleus collision as a possible tool to test this theoretical prediction. Several experimental observables in $W$ production sensitive to the flavor-dependent EMC effect are identified. Calculations for these experimental observables at the RHIC and LHC energies are presented using the recent flavor-dependent EMC model.
Goldstone bosons in the color-flavor locked phase
Verena Werth; Michael Buballa; Micaela Oertel
2006-11-30T23:59:59.000Z
We study pseudoscalar meson excitations in the color-flavor locked phase within a Nambu-Jona-Lasinio-type model by calculating diquark loops.
Goldstone bosons in the color-flavor locked phase
Werth, V; örtel, M; Werth, Verena; Buballa, Michael; Oertel, Micaela
2006-01-01T23:59:59.000Z
We study pseudoscalar meson excitations in the color-flavor locked phase within a Nambu-Jona-Lasinio-type model by calculating diquark loops.
Neutrino Flavor Ratios Modified by Cosmic Ray Re-acceleration
Kawanaka, Norita
2015-01-01T23:59:59.000Z
Re-acceleration of $\\pi$'s and $\\mu$'s modifies the flavor ratio at Earth (at astrophysical sources) of neutrinos produced by $\\pi$ decay, $\
Flavor Tagging at Tevatron incl. calibration and control
Moulik, T.; /Kansas U.
2007-01-01T23:59:59.000Z
This report summarizes the flavor tagging techniques developed at the CDF and D0 experiments. Flavor tagging involves identification of the B meson flavor at production, whether its constituent is a quark or an anti-quark. It is crucial for measuring the oscillation frequency of neutral B mesons, both in the B{sup 0} and B{sub S} system. The two experiments have developed their unique approaches to flavor tagging, using neural networks, and likelihood methods to disentangle tracks from b decays from other tracks. This report discusses these techniques and the measurement of B{sup 0} mixing, as a means to calibrate the taggers.
Analysis of Bs flavor oscillations at CDF
Leonardo, Nuno T
2006-09-01T23:59:59.000Z
The search for and study of flavor oscillations in the neutral B{sub s}B{sub s} meson system is an experimentally challenging task. It constitutes a flagship analysis of the Tevatron physics program. In this dissertation, they develop an analysis of the time-dependent B{sub s} flavor oscillations using data collected with the CDF detector. The data samples are formed of both fully and partially reconstructed B meson decays: B{sub s} {yields} D{sub s}{pi}({pi}{pi}) and B{sub s} {yields} D{sub s}lv. A likelihood fitting framework is implemented and appropriate models and techniques developed for describing the mass, proper decay time, and flavor tagging characteristics of the data samples. The analysis is extended to samples of B{sup +} and B{sup 0} mesons, which are further used for algorithm calibration and method validation. The B mesons lifetimes are extracted. The measurement of the B{sup 0} oscillation frequency yields {Delta}m{sub d} = 0.522 {+-} 0.017 ps{sup -1}. The search for B{sub s} oscillations is performed using an amplitude method based on a frequency scanning procedure. Applying a combination of lepton and jet charge flavor tagging algorithms, with a total tagging power {epsilon}'D{sup 2} of 1.6%, to a data sample of 355 pb{sup -1}, a sensitivity of 13.0 ps{sup -1} is achieved. They develop a preliminary same side kaon tagging algorithm, which is found to provide a superior tagging power of about 4.0% for the B{sub s} meson species. A study of the dilution systematic uncertainties is not reported. From its application as is to the B{sub s} samples the sensitivity is significantly increased to about 18 ps{sup -1} and a hint of a signal is seen at about 175. ps{sup -1}. They demonstrate that the extension of the analysis to the increasing data samples with the inclusion of the same side tagging algorithm is capable of providing an observation of B{sub s} mixing beyond the standard model expectation. They show also that the improved knowledge of {Delta}m{sub s} has a considerable impact on constraining the CKM matrix elements.
Fermion masses and mixings from dihedral flavor symmetries with preserved subgroups
Blum, A.; Hagedorn, C.; Lindner, M. [Max-Planck-Institut fuer Kernphysik, Postfach 10 39 80, 69029 Heidelberg (Germany)
2008-04-01T23:59:59.000Z
We perform a systematic study of dihedral groups used as flavor symmetry. The key feature here is the fact that we do not allow the dihedral groups to be broken in an arbitrary way, but in all cases some (nontrivial) subgroup has to be preserved. In this way we arrive at only five possible (Dirac) mass matrix structures which can arise, if we require that the matrix has to have a nonvanishing determinant and that at least two of the three generations of left-handed (conjugate) fermions are placed into an irreducible two-dimensional representation of the flavor group. We show that there is no difference between the mass matrix structures for single- and double-valued dihedral groups. Furthermore, we comment on possible forms of Majorana mass matrices. As a first application we find a way to express the Cabibbo angle, i.e. the Cabibbo-Kobayashi-Maskawa matrix element |V{sub us}|, in terms of group theory quantities only, the group index n, the representation index j and the index m{sub u,d} of the different preserved subgroups in the up and down quark sector: |V{sub us}|=|cos(({pi}(m{sub u}-m{sub d})j/n))| which is |cos((3{pi}/7))|{approx_equal}0.2225 for n=7, j=1, m{sub u}=3 and m{sub d}=0. We prove that two successful models which lead to maximal atmospheric mixing and vanishing {theta}{sub 13} in the lepton sector are based on the fact that the flavor symmetry is broken in the charged lepton, Dirac neutrino and Majorana neutrino sector down to different preserved subgroups whose mismatch results in the prediction of these mixing angles. This also demonstrates the power of preserved subgroups in connection with the prediction of mixing angles in the quark as well as in the lepton sector.
Dowell, David H.; /SLAC; Power, John G.; /Argonne
2012-09-05T23:59:59.000Z
There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.
The running coupling of QCD with four flavors
Fatih Tekin; Rainer Sommer; Ulli Wolff
2010-06-03T23:59:59.000Z
We have calculated the step scaling function and the running coupling of QCD in the Schroedinger functional scheme with four flavors of O(a) improved Wilson quarks. Comparisons of our non-perturbative results with 2-loop and 3-loop perturbation theory as well as with non-perturbative data for only two flavors are made.
Neutrino Magnetic Moment, CP Violation and Flavor Oscillations in Matter
Pehlivan, Y; Kajino, Toshitaka
2014-01-01T23:59:59.000Z
We consider collective oscillations of neutrinos, which are emergent nonlinear flavor evolution phenomena instigated by neutrino-neutrino interactions in astrophysical environments with sufficiently high neutrino densities. We investigate the symmetries of the problem in the full three flavor mixing scheme and in the exact many-body formulation by including the effects of CP violation and neutrino magnetic moment. We show that, similar to the two flavor scheme, several dynamical symmetries exist for three flavors in the single-angle approximation if the net electron background in the environment and the effects of the neutrino magnetic moment are negligible. Moreover, we show that these dynamical symmetries are present even when the CP symmetry is violated in neutrino oscillations. We explicitly write down the constants of motion through which these dynamical symmetries manifest themselves in terms of the generators of the SU(3) flavor transformations. We also show that the effects due to the CP-violating Dir...
Recent heavy flavor results from the Tevatron
Dorigo, Mirco; /Trieste U. /INFN, Trieste
2012-05-01T23:59:59.000Z
The CDF and D0 experiments at the Tevatron p{bar p} collider have pioneered and established the role of flavor physics in hadron collisions. A broad program is now at its full maturity. We report on three new results sensitive to physics beyond the standard model, obtained using the whole CDF dataset: a measurement of the difference of CP asymmetries in K{sup +}K{sup -} and {pi}{sup +}{pi}{sup -} decays of D{sup 0} mesons, new bounds on the B{sub s}{sup 0} mixing phase and on the decay width difference of B{sub s}{sup 0} mass-eigenstates, and an update of the summer 2011 search for B{sub (s)}{sup 0} mesons decaying into pairs of muons. Finally, the D0 confirmation of the observation of a new hadron, the {chi}{sub b}(3P) state, is briefly mentioned.
Anomalous Flavor U(1)_X for Everything
Dreiner, Herbi K.; Murayama, Hitoshi; Thormeier, Marc
2003-12-01T23:59:59.000Z
We present an ambitious model of flavor, based on an anomalous U(1)_X gauge symmetry with one flavon, only two right-handed neutrinos and only two mass scales: M_{grav} and m_{3/2}. In particular, there are no new scales introduced for right-handed neutrino masses. The X-charges of the matter fields are such that R-parity is conserved exactly, higher-dimensional operators are sufficiently suppressed to guarantee a proton lifetime in agreement with experiment, and the phenomenology is viable for quarks, charged leptons, as well as neutrinos. In our model one of the three light neutrinos automatically is massless. The price we have to pay for this very successful model are highly fractional X-charges which can likely be improved with less restrictive phenomenological ansatze for mass matrices.
Combustion Group Group members
Wang, Wei
Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization
Little Flavor: Heavy Leptons, Z' and Higgs Phenomenology
Sichun Sun
2014-12-01T23:59:59.000Z
The Little Flavor model is a close cousin of the Little Higgs theory which aims to generate flavor structure around TeV scale. While the original Little Flavor only included the quark sector, here we build the lepton part of the Little Flavor model and explore its phenomenology. The model produces the neutrino mixing matrix and Majorana masses of the Standard Model neutrinos through coupling to heavy lepton partners and Little Higgses. We combine the usual right-handed seesaw mechanism with global symmetry protection to suppress the Standard Model neutrino masses, and identify the TeV partners of leptons as right-handed Majorana neutrinos. The lepton masses and mixing matrix are calculated perturbatively in the theory. The TeV new gauge bosons have suppressed decay width in dilepton channels. Even assuming the Standard Model couplings, the branching ratios to normal dilepton channels are largely reduced in the model, to evade the bound from current $Z'$ search. It also opens up the new search channels for exotic gauge bosons, especially Z' -> E_{t missing} + multi L. The multiple lepton partners will create new chain decay signals in flavor related processes in colliders, which also give rise to flavor anomalies. The lepton flavor violation process can be highly suppressed in charged lepton sector and happens only through neutrinos.
Analysis of B [sigma] flavor oscillations at CDF
Leonardo, Nuno Teotónio Viegas Guerreiro
2007-01-01T23:59:59.000Z
The search for and the study of flavor oscillations in the neutral B,B, meson system is an experimentally challenging endeavor. This constitutes a flagship analysis of the Tevatron proton-antiproton collider physics program. ...
Lepton flavor violation decays with the fourth generation neutrino
Wu-Jun Huo; Tai-Fu Feng
2002-03-22T23:59:59.000Z
We investigate the lepton flavor violation decays, $\\tau \\to \\mu\\gamma$, $\\tau \\to e\\gamma$ and $\\mu \\to e\\gamma$, in the framwork of a squential fourth generation model with a heavy fourth neutrino, $\
Influence of flavor oscillations on neutrino beam instabilities
Mendonça, J. T., E-mail: titomend@ist.utl.pt [Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo SP (Brazil); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre RS (Brazil); Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)
2014-09-15T23:59:59.000Z
We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.
Influence of flavor oscillations on neutrino beam instabilities
Mendonça, José Tito; Bret, Antoine
2014-01-01T23:59:59.000Z
We consider the collective neutrino plasma interactions, and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual influence of neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves, but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.
Flavor structure in D-brane models: Majorana neutrino masses
Yuta Hamada; Tatsuo Kobayashi; Shohei Uemura
2014-06-11T23:59:59.000Z
We study the flavor structure in intersecting D-brane models. We study anomalies of the discrete flavor symmetries. We analyze the Majorana neutrino masses, which can be generated by D-brane instanton effects. It is found that a certain pattern of mass matrix is obtained and the cyclic permutation symmetry remains unbroken. As a result, trimaximal mixing matrix can be realized if Dirac neutrino mass and charged lepton mass matrices are diagonal.
Flavor Oscillation from the Two-Point Function
Mario Martone; Dean J. Robinson
2011-10-25T23:59:59.000Z
We present a formalism for the flavor oscillation of unstable particles that relies only upon the structure of the time Fourier-transformed two-point Green's function. We derive exact oscillation probability and integrated oscillation probability formulae, and verify that our results reproduce the known results for both neutrino and neutral meson oscillation in the expected regimes of parameter space. The generality of our approach permits us to investigate flavor oscillation in exotic parameter regimes, and present the corresponding oscillation formulae.
Neutrino Magnetic Moment, CP Violation and Flavor Oscillations in Matter
Y. Pehlivan; A. B. Balantekin; Toshitaka Kajino
2014-06-19T23:59:59.000Z
We consider collective oscillations of neutrinos, which are emergent nonlinear flavor evolution phenomena instigated by neutrino-neutrino interactions in astrophysical environments with sufficiently high neutrino densities. We investigate the symmetries of the problem in the full three flavor mixing scheme and in the exact many-body formulation by including the effects of CP violation and neutrino magnetic moment. We show that, similar to the two flavor scheme, several dynamical symmetries exist for three flavors in the single-angle approximation if the net electron background in the environment and the effects of the neutrino magnetic moment are negligible. Moreover, we show that these dynamical symmetries are present even when the CP symmetry is violated in neutrino oscillations. We explicitly write down the constants of motion through which these dynamical symmetries manifest themselves in terms of the generators of the SU(3) flavor transformations. We also show that the effects due to the CP-violating Dirac phase factor out of the many-body evolution operator and evolve independently of nonlinear flavor transformations if neutrino electromagnetic interactions are ignored. In the presence of a strong magnetic field, CP-violating effects can still be considered independently provided that an effective definition for neutrino magnetic moment is used.
Combustion Group Group members
Wang, Wei
Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy § New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives § Obtain fundamental understanding of combustion
Fermion EDMs with Minimal Flavor Violation
Xiao-Gang He; Chao-Jung Lee; Siao-Fong Li; Jusak Tandean
2014-06-27T23:59:59.000Z
We study the electric dipole moments (EDMs) of fermions in the standard model supplemented with right-handed neutrinos and its extension including neutrino seesaw mechanism under the framework of minimal flavor violation (MFV). In the quark sector, we find that the current experimental bound on the neutron EDM does not yield a significant restriction on the scale of MFV. In addition, we consider how MFV may affect the contribution of the strong theta-term to the neutron EDM. For the leptons, the existing EDM data also do not lead to strict limits if neutrinos are Dirac particles. On the other hand, if neutrinos are Majorana in nature, we find that the constraints become substantially stronger. Moreover, the results of the latest search for the electron EDM by the ACME Collaboration are sensitive to the MFV scale of order a few hundred GeV or higher. We also look at constraints from $CP$-violating electron-nucleon interactions that have been probed in atomic and molecular EDM searches.
The rigidity of three flavor quark matter
Sharma, Rishi [Los Alamos National Laboratory; Mannarelli, Massimo [IEEC/CSIC
2008-01-01T23:59:59.000Z
Cold three flavor quark matter at large (but not asymptotically large) densities may exist in a crystalline color superconducting phase. These phases are characterized by a gap parameter {Delta} that varies periodieally in space, forming a crystal structure. A Ginzburg-Landau expansion in {Delta} shows that two crystal structures based on cubic symetry are particularly favorable, and may be the ground state of matter at densities present in neutron star cores. We derive the effective action for the phonon fields that describe space-and time-dependent fluctuations of the crystal structure formed by {Delta}, and obtain the shear modulus from the coefficients of the spatial derivative terms. Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger than those of neutron star crusts. This phase ofmatter is thus more rigid than any known material in the universe, but at the same time the crystalline color superconducting phase is also superftuid. These properties raise the possibility that the presence of this phase within neutron stars may have distinct implications for their phenomenology. For example, (some) pulsar glitches may originate in crystalline superconducting neutron star cores.
Optimization Online - Dual Averaging Methods for Regularized ...
Lin Xiao
2010-04-15T23:59:59.000Z
Apr 15, 2010 ... ... simple minimization problem that involves the running average of all past subgradients of the loss function and the whole regularization term, ...
Averages in vector spaces over finite fields
Wright J.; Carbery A.; Stones B.
2008-01-01T23:59:59.000Z
We study the analogues of the problems of averages and maximal averages over a surface in R-n when the euclidean structure is replaced by that of a vector space over a finite field, and obtain optimal results in a number ...
MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS
Burger, Martin
MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS MARTIN BURGER , VINCENZO CAPASSO , AND LIVIO-Kolmogorov relations for the degree of crystallinity. By relating the computation of expected values to mesoscale averaging, we obtain a suitable description of the process at the mesoscale. We show how the variance
Better than Average? - Green Building Certification in International Projects
Baumann, O.
2008-01-01T23:59:59.000Z
. An Enterprise of the Ebert-Consulting Group 1004 Pennsylvania Avenue, SE Washington, D.C. 20003, USA 00 12 02/ 6 08 - 13 34 o.baumann@eb-engineers.com Better than Average? - Green Building Certification in International Projects Green Building..., green building rating systems focus on sustainability for the entire life-cycle of buildings and therefore offer great opportunities for enhancing building operation, when applied and used appropriately. This presentation gives an overview...
Spacetime Reduction of Large N Flavor Models: A Fundamental Theory of Emergent Local Geometry?
Shyamoli Chaudhuri
2005-06-06T23:59:59.000Z
We introduce a novel spacetime reduction procedure for the fields of a supergravity-Yang-Mills theory in generic curved spacetime background, and with large N flavor group, to linearized forms on an infinitesimal patch of local tangent space at a point in the spacetime manifold. Our new prescription for spacetime reduction preserves all of the local symmetries of the continuum field theory Lagrangian in the resulting zero-dimensional matrix Lagrangian, thereby obviating difficulties encountered in previous matrix proposals for emergent spacetime in recovering the full nonlinear symmetries of Einstein gravity. We conjecture that the zero-dimensional matrix model obtained by this prescription for spacetime reduction of the circle-compactified type I-I'-mIIA-IIB-heterotic supergravity-Yang-Mills theory with sixteen supercharges and large N flavor group, and inclusive of the full spectrum of Dpbrane charges, offers a potentially complete framework for nonperturbative string/M theory. We explain the relationship of our conjecture for a fundamental theory of emergent local spacetime geometry to recent investigations of the hidden symmetry algebra of M theory, stressing insights that are to be gained from the algebraic perspective. We conclude with a list of open questions and directions for future work.
Targeting the conformal window with 4+8 flavors
Rich Brower; Anna Hasenfratz; Claudio Rebbi; Evan Weinberg; Oliver Witzel
2014-11-12T23:59:59.000Z
We study the transition between spontaneous chiral symmetry breaking and conformal behavior in the SU(3) theory with multiple fermion flavors. Instead of the traditional approach of changing the number of flavors, we keep the number of fermions fixed but lift the mass of a subset, keeping the remaining fermions near to the massless chiral limit. This way we can interpolate continuously between the conformal and chirally broken dynamics. In particular, we consider four light and eight heavy flavors and investigate the running/walking gauge coupling and the low energy meson spectrum, including the 0++ iso-singlet scalar state in this system. Our preliminary data reveal an iso-singlet scalar that is considerably lighter than the pion at large fermion mass but becomes heavier at smaller masses. This behavior is of particular phenomenological interest.
Flavor Mixing and CP Violation of Massive Neutrinos
Zhi-zhong Xing
2004-11-26T23:59:59.000Z
We present an overview of recent progress in the phenomenological study of neutrino masses, lepton flavor mixing and CP violation. We concentrate on the model-independent properties of massive neutrinos, both in vacuum and in matter. Current experimental constraints on the neutrino mass spectrum and the lepton flavor mixing parameters are summarized. The Dirac- and Majorana-like phases of CP violation, which are associated respectively with the long-baseline neutrino oscillations and the neutrinoless double beta decay, are discussed in detail. The seesaw mechanism, the leptogenesis scenario and the strategies to construct lepton mass matrices are briefly described. The features of flavor mixing between one sterile neutrino and three active neutrinos are also explored.
Paris-Sud XI, Université de
weaned like those of Group A. Skim milk was acidified by adding 0.15 p. 100 acetic acid. Live weight of feeding acidified skim milk from 5 to 10 weeks of age (group 11) was compared to weaning with fermented rate. Key words : Teat feeding, kid, wenning, milk replacer, fermented ntilk. The use of starch
Thermal ghost imaging with averaged speckle patterns
Shapiro, Jeffrey H.
We present theoretical and experimental results showing that a thermal ghost imaging system can produce images of high quality even when it uses detectors so slow that they respond only to intensity-averaged (that is, ...
STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES
CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director
Selling Geothermal Systems The "Average" Contractor
Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should
Distributed Averaging Via Lifted Markov Chains
Jung, Kyomin
Motivated by applications of distributed linear estimation, distributed control, and distributed optimization, we consider the question of designing linear iterative algorithms for computing the average of numbers in a ...
The Glueball sector of two-flavor Color Superconductivity
R. Ouyed; F. Sannino
2001-03-15T23:59:59.000Z
We construct the effective Lagrangian describing the light glueballs associated with the unbroken and confining SU(2) color subgroup for the 2 flavor superconductive phase of QCD. This Lagrangian constitutes a key ingredient for understanding the non perturbative physics of 2 flavor color superconductivity. We estimate the two photon decay process of the light glueballs using the saturation of the electromagnetic trace anomaly at the effective Lagrangian level. The present results are particularly relevant to our model of Gamma Ray Bursts based on color superconductivity in Quark Stars (R. Ouyed and F. Sannino astro-ph/0103022).
Dynamics of heavy flavor quarks in high energy nuclear collisions
Andrea Beraudo
2014-07-22T23:59:59.000Z
A general overview on the role of heavy quarks as probes of the medium formed in high energy nuclear collisions is presented. Experimental data compared to model calculations at low and moderate pT are exploited to extract information on the transport coefficients of the medium, on possible modifications of heavy flavor hadronization in a hot environment and to provide quantitative answers to the issue of kinetic (and chemical, at conceivable future experimental facilities) thermalization of charm. Finally, the role of heavy flavor at high pT as a tool to study the mass and color-charge dependence the jet quenching is also analyzed.
Self-averaging characteristics of spectral fluctuations
Petr Braun; Fritz Haake
2014-10-20T23:59:59.000Z
The spectral form factor as well as the two-point correlator of the density of (quasi-)energy levels of individual quantum dynamics are not self-averaging. Only suitable smoothing turns them into useful characteristics of spectra. We present numerical data for a fully chaotic kicked top, employing two types of smoothing: one involves primitives of the spectral correlator, the second a small imaginary part of the quasi-energy. Self-averaging universal (like the CUE average) behavior is found for the smoothed correlator, apart from noise which shrinks like $1\\over\\sqrt N$ as the dimension $N$ of the quantum Hilbert space grows. There are periodically repeated quasi-energy windows of correlation decay and revival wherein the smoothed correlation remains finite as $N\\to\\infty$ such that the noise is negligible. In between those windows (where the CUE averaged correlator takes on values of the order ${1\\over N^2}$) the noise becomes dominant and self-averaging is lost. We conclude that the noise forbids distinction of CUE and GUE type behavior. Surprisingly, the underlying smoothed generating function does not enjoy any self-averaging outside the range of its variables relevant for determining the two-point correlator (and certain higher-order ones). --- We corroborate our numerical findings for the noise by analytically determining the CUE variance of the smoothed single-matrix correlator.
Stabilization of the Flavor of Frozen Minced Whiting I. Effect of Various Antioxidants
, August, 1982,44(8) painty, cold storage flavor, etc., and are generally distinct from rancid vege- table
SFSU Food TrUck SchedUle Schedule subject to change, follow SFSU Gator Group on Facebook-Thur; 11am-2pm Adam's Grubtruck Asian flavors w/ a twist of good ol' American comfort food Hiyaaa a fine balance of Chinese, Korean, and Vietnamese flavors No Truck Service J-Shack fresh and organic Japanese
Neutrino Masses, Lepton Flavor Mixing and Leptogenesis in the Minimal Seesaw Model
Wan-lei Guo; Zhi-zhong Xing; Shun Zhou
2006-12-05T23:59:59.000Z
We present a review of neutrino phenomenology in the minimal seesaw model (MSM), an economical and intriguing extension of the Standard Model with only two heavy right-handed Majorana neutrinos. Given current neutrino oscillation data, the MSM can predict the neutrino mass spectrum and constrain the effective masses of the tritium beta decay and the neutrinoless double-beta decay. We outline five distinct schemes to parameterize the neutrino Yukawa-coupling matrix of the MSM. The lepton flavor mixing and baryogenesis via leptogenesis are investigated in some detail by taking account of possible texture zeros of the Dirac neutrino mass matrix. We derive an upper bound on the CP-violating asymmetry in the decay of the lighter right-handed Majorana neutrino. The effects of the renormalization-group evolution on the neutrino mixing parameters are analyzed, and the correlation between the CP-violating phenomena at low and high energies is highlighted. We show that the observed matter-antimatter asymmetry of the Universe can naturally be interpreted through the resonant leptogenesis mechanism at the TeV scale. The lepton-flavor-violating rare decays, such as $\\mu \\to e + \\gamma$, are also discussed in the supersymmetric extension of the MSM.
Testing the Standard Model under the weight of heavy flavors
C. M. Bouchard
2015-01-13T23:59:59.000Z
I review recently completed (since Lattice 2013) and ongoing lattice calculations in charm and bottom flavor physics. A comparison of the precision of lattice and experiment is made using both current experimental results and projected experimental precision in 2020. The combination of experiment and theory reveals several tensions between nature and the Standard Model. These tensions are reviewed in light of recent lattice results.
Testing the Standard Model under the weight of heavy flavors
Bouchard, C M
2015-01-01T23:59:59.000Z
I review recently completed (since Lattice 2013) and ongoing lattice calculations in charm and bottom flavor physics. A comparison of the precision of lattice and experiment is made using both current experimental results and projected experimental precision in 2020. The combination of experiment and theory reveals several tensions between nature and the Standard Model. These tensions are reviewed in light of recent lattice results.
Clues for flavor from rare lepton and quark decays
Varzielas, Ivo de Medeiros
2015-01-01T23:59:59.000Z
Flavor symmetries successfully explain lepton and quark masses and mixings yet it is usually hard to distinguish different models that predict the same mixing angles. Further experimental input could be available, if the agents of flavor breaking are sufficiently low in mass and detectable or if new physics with non-trivial flavor charges is sufficiently low in mass and detectable. The recent hint for lepton-nonuniversality in the ratio of branching fractions $B \\to K \\mu \\mu$ over $B \\to K e e$, $R_K$, suggests the latter, at least for indirect detection via rare decays. We demonstrate the discriminating power of the rare decay data on flavor model building taking into account viable leptonic mixings and show how correlations with other observables exist in leptoquark models. We give expectations for branching ratios $B \\to K \\ell \\ell^\\prime, B_{(s)} \\to \\ell \\ell^\\prime$ and $\\ell \\to \\ell^\\prime \\gamma$, and Higgs decays $h \\to \\ell \\ell^\\prime$.
Review of physics results from the Tevatron: Heavy flavor physics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lewis, Jonathan [Fermi National Accelerator Lab., Batavia, IL (United States); Van Kooten, Rick [Indiana Univ., Blomington, IN (United States)
2015-02-28T23:59:59.000Z
We present a review of heavy flavor physics results from the CDF and D0 Collaborations operating at the Fermilab Tevatron Collider. A summary of results from Run 1 is included, but we concentrate on legacy results of charm and b physics from Run 2, including results up to Summer 2014.
Vacuum condensates, flavor mixing and spontaneous supersymmetry breaking
Antonio Capolupo; Marco Di Mauro
2013-01-05T23:59:59.000Z
Spontaneous supersymmetry (SUSY) breaking is revealed in all phenomena in which vacuum condensates are physically relevant. The dynamical breakdown of SUSY is generated by the condensates themselves, which lift the zero point energy. Evidence is presented in the case of the Wess-Zuimino model, and the flavor mixing case is treated in detail.
Polarized electron beams at milliampere average current
Poelker, Matthew [JLAB
2013-11-01T23:59:59.000Z
This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.
Extracting gluon condensate from the average plaquette
Lee, Taekoon
2015-01-01T23:59:59.000Z
The perturbative contribution in the average plaquette is subtracted using Borel summation and the remnant of the plaquette is shown to scale as a dim-4 condensate. A critical review is presented of the renormalon subtraction scheme that claimed a dim-2 condensate. The extracted gluon condensate is compared with the latest result employing high order (35-loop) calculation in the stochastic perturbation theory.
Polarized electron beams at milliampere average current
Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)
2013-11-07T23:59:59.000Z
This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today’s CEBAF polarized source operating at ? 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.
Staggered fermions, zero modes, and flavor-singlet mesons
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Donald, Gordon C.; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.
2011-09-12T23:59:59.000Z
We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the t Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold on realistic lattice gauge fields. We find that the needed structure does indeed emerge.
Staggered fermions, zero modes, and flavor-singlet mesons
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.
2011-09-01T23:59:59.000Z
We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore »realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less
The role of top in heavy flavor physics
Hewett, J.L. [Stanford Linear Accelerator Center, Stanford, CA (United States)
1997-01-01T23:59:59.000Z
The implications of the massive top quark on heavy flavor transitions are explored. We review the generation of quark masses and mixings and the determination techniques, and present the status of the elements of the weak mixing matrix. Purely leptonic decays of heavy mesons are briefly summarized. We present a general introduction to flavor changing neutral currents and an extensive summary of radiative and other rare decay modes. The physics of neutral meson mixing is reviewed and applied to each meson system. We describe the phenomenology of CP violation and how it may be measured in meson decays. Standard Model predictions are given in each case and the effects of physics beyond the Standard Model are also discussed. Throughout, we contrast these transitions in the K and B meson systems to those in the D meson and top-quark sectors.
Emission angle distribution and flavor transformation of supernova neutrinos
Wei Liao
2009-06-28T23:59:59.000Z
Using moment equations we analyze collective flavor transformation of supernova neutrinos. We study the convergence of moment equations and find that numerical results using a few moment converge quite fast. We study effects of emission angle distribution of neutrinos on neutrino sphere. We study scaling law of the amplitude of neutrino self-interaction Hamiltonian and find that it depends on model of emission angle distribution of neutrinos. Dependence of neutrino oscillation on different models of emission angle distribution is studied.
The one-flavor quark condensate and related problems
Thomas DeGrand
2006-09-20T23:59:59.000Z
I describe a recent calculation (by me, Hoffmann, Liu, and Schaefer) of the chiral condensate in one-flavor QCD using numerical simulations with overlap fermions. The condensate is extracted by fitting the distribution of low lying eigenmodes of the Dirac operator in sectors of fixed topological charge to the predictions of Random Matrix Theory. Our results are in excellent agreement with estimates from the orientifold large-N expansion. Much interesting physics surrounds this calculation, which I will highlight.
Improving flavor symmetry in the Kogut-Susskind hadron spectrum
Tom Blum; Carleton DeTar; Steven Gottlieb; Urs M. Heller; James E. Hetrick; Kari Rummukainen; R. L. Sugar; Doug Toussaint; Matthew Wingate
1996-09-19T23:59:59.000Z
We study the effect of modifying the coupling of Kogut-Susskind quarks to the gauge field by replacing the link matrix in the quark action by a "fat link", or sum of link plus three-link paths. Flavor symmetry breaking, determined by the mass difference between the Goldstone and non-Goldstone local pions, is reduced by approximately a factor of two by this modification.
Lepton flavor violation two-body decays of quarkoniums
W. J. Huo; T. F. Feng; Y. C. Xing
2002-12-15T23:59:59.000Z
In this paper we firstly study various model-independent bounds on lepton flavor violation (LFV) in processes of $J/\\Psi$, $\\Psi'$ and $\\Upsilon$ two-body decays, then calculate their branch ratios % By using the constraints from other ways, we obtain %the indirect bounds of ${\\rm Br} (J/\\Psi,\\Psi',\\Upsilon \\to ll')$ in models of the leptoquark, $R$ violating MSSM and topcolor assisted technicolor(TC2) models.
Charmonium at high temperature in two-flavor QCD
Aarts, Gert; Allton, Chris [Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, Wales (United Kingdom); Oktay, Mehmet Bugrahan; Peardon, Mike; Skullerud, Jon-Ivar [School of Mathematics, Trinity College, Dublin 2 (Ireland)
2007-11-01T23:59:59.000Z
We compute charmonium spectral functions in 2-flavor QCD on anisotropic lattices using the maximum entropy method. Our results suggest that the S-waves (J/{psi} and {eta}{sub c}) survive up to temperatures close to 2T{sub c}, while the P-waves ({chi}{sub c0} and {chi}{sub c1}) melt away below 1.2T{sub c}.
Lepton flavor violating Higgs boson decays from massive seesaw neutrinos
Arganda, Ernesto; Curiel, Ana M.; Herrero, Maria J.; Temes, David [Departamento de Fisica Teorica, Universidad Autonoma de Madrid (Spain); Laboratoire de Physique Theorique, LAPTH (France)
2005-02-01T23:59:59.000Z
Lepton flavor violating Higgs boson decays are studied within the context of seesaw models with Majorana massive neutrinos. Two models are considered: the SM-seesaw, with the standard model particle content plus three right-handed neutrinos, and the MSSM-seesaw, with the minimal supersymmetric standard model particle content plus three right-handed neutrinos and their supersymmetric partners. The widths for these decays are derived from a full one-loop diagrammatic computation in both models, and they are analyzed numerically in terms of the seesaw parameters, namely, the Dirac and Majorana mass matrices. Several possible scenarios for these mass matrices that are compatible with neutrino data are considered. In the SM-seesaw case, very small branching ratios are found for all studied scenarios. These ratios are explained as a consequence of the decoupling behavior of the heavy right-handed neutrinos. In contrast, in the MSSM-seesaw case, sizable branching ratios are found for some of the leptonic flavor violating decays of the MSSM neutral Higgs bosons and for some choices of the seesaw matrices and MSSM parameters. The relevance of the two competing sources of lepton flavor changing interactions in the MSSM-seesaw case is also discussed. The nondecoupling behavior of the supersymmetric particles contributing in the loop diagrams is finally shown.
Is dark energy an effect of averaging?
Nan Li; Marina Seikel; Dominik J. Schwarz
2008-01-22T23:59:59.000Z
The present standard model of cosmology states that the known particles carry only a tiny fraction of total mass and energy of the Universe. Rather, unknown dark matter and dark energy are the dominant contributions to the cosmic energy budget. We review the logic that leads to the postulated dark energy and present an alternative point of view, in which the puzzle may be solved by properly taking into account the influence of cosmic structures on global observables. We illustrate the effect of averaging on the measurement of the Hubble constant.
Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...
Office of Environmental Management (EM)
Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel...
Average transverse momentum quantities approaching the lightfront
Daniel Boer
2014-09-29T23:59:59.000Z
In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the $p_T$ broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large transverse momenta, which conveys little information about the transverse momentum distributions of quarks and gluons inside hadrons. TMD factorization naturally suggests alternative definitions of such integrated quantities, using Bessel-weighting and rapidity cut-offs, with the conventional definitions as limiting cases. The regularized quantities are given in terms of integrals over the TMDs of interest that are well-defined and moreover have the advantage of being amenable to lattice evaluations.
Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...
and the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The...
average atom model: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(chemical potential, average ionic charge, free electron density, bound and continuum wave-functions and occupation numbers) are obtained from the average-atom model. The...
E. M. Lipmanov
2008-10-01T23:59:59.000Z
The absolute neutrino masses and type of neutrino mass hierarchy are among the main problems in neutrino physics. Top-quark mass is another topical problem in particle physics. These problems extend the old puzzle of electron-muon mass ratio close to the fine structure constant, which is still not solved by known theory. Here I continue the search for a general flavor pattern that may incorporate these problems. Relations between neutrino/electron and electron/top-quark pole mass ratios are obtained from supposition that realistic elementary particle dimensionless bare flavor quantities are small deviated (measured by universal parameter e) from the values of a stated flavor pattern (at e=0) and experimental data hints. With the world average t-quark mass data the sum of QD-neutrino masses is estimated (0.50 +- 0.003)eV in agreement with cosmological constraints and known QD-neutrino mass estimations from experimental data on neutrino oscillation mass-squared differences.
REVISITING THE SOLAR TACHOCLINE: AVERAGE PROPERTIES AND TEMPORAL VARIATIONS
Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, Sarbani, E-mail: antia@tifr.res.in, E-mail: sarbani.basu@yale.edu [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)
2011-07-10T23:59:59.000Z
The tachocline is believed to be the region where the solar dynamo operates. With over a solar cycle's worth of data available from the Michelson Doppler Imager and Global Oscillation Network Group instruments, we are in a position to investigate not merely the average structure of the solar tachocline, but also its time variations. We determine the properties of the tachocline as a function of time by fitting a two-dimensional model that takes latitudinal variations of the tachocline properties into account. We confirm that if we consider the central position of the tachocline, it is prolate. Our results show that the tachocline is thicker at latitudes higher than the equator, making the overall shape of the tachocline more complex. Of the tachocline properties examined, the transition of the rotation rate across the tachocline, and to some extent the position of the tachocline, show some temporal variations.
Fields, Susannah
2007-08-16T23:59:59.000Z
This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.
An explicit SU(12) family and flavor unification model
Albright, Carl H. [Department of Physics, Northern Illinois University, DeKalb, IL 60115 and Theoretical Physics, Fermilab, Batavia, IL 60510 (United States); Feger, Robert P.; Kephart, Thomas W. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)
2013-05-23T23:59:59.000Z
An explicit SUSY SU(12) unification model with three light chiral families is presented which avoids any external flavor symmetries. The hierarchy of quark and lepton masses and mixings is explained by higher dimensional Yukawa interactions involving Higgs bosons containing SU(5) singlet fields with VEVs appearing at or below the SUSY GUT scale of 2 Multiplication-Sign 10{sup 16} GeV, approximately 50 times smaller than the SU(12) unification scale. The model has been found to be in good agreement with the observed quark and lepton masses and mixings, with nearly all prefactors of {beta}(1) in the four Dirac and one Majorana fermion mass matrices.
An Explicit SU(12) Family and Flavor Unification Model
Albright, Carl H; Kephart, Thomas W
2012-01-01T23:59:59.000Z
An explicit SUSY SU(12) unification model with three light chiral families is presented which avoids any external flavor symmetries. The hierarchy of quark and lepton masses and mixings is explained by higher dimensional Yukawa interactions involving Higgs bosons containing SU(5) singlet fields with VEVs appearing at or below the SUSY GUT scale of 2 \\times 10^{16} GeV, approximately 50 times smaller than the SU(12) unification scale. The model has been found to be in good agreement with the observed quark and lepton masses and mixings, with nearly all prefactors of O(1) in the four Dirac and one Majorana fermion mass matrices.
The running coupling of 8 flavors and 3 colors
Zoltan Fodor; Kieran Holland; Julius Kuti; Santanu Mondal; Daniel Nogradi; Chik Him Wong
2015-03-03T23:59:59.000Z
We compute the renormalized running coupling of SU(3) gauge theory coupled to N_f = 8 flavors of massless fundamental Dirac fermions. The recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings allowing for a controlled continuum extrapolation. The results for the discrete beta-function show that it is monotonic without any sign of a fixed point in the range of couplings we cover. As a cross check the continuum results are compared with the well-known perturbative continuum beta-function for small values of the renormalized coupling and perfect agreement is found.
Flavor singlet physics in lattice QCD with background fields
Detmold, W. [Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195 (United States)
2005-03-01T23:59:59.000Z
We show that hadronic matrix elements can be extracted from lattice simulations with background fields that arise from operator exponentiation. Importantly, flavor-singlet matrix elements can be evaluated without requiring the computation of disconnected diagrams, thus facilitating a calculation of the quark contribution to the spin of the proton and the singlet axial coupling, g{sub A}{sup 0}. In the two-nucleon sector, a background field approach will allow calculation of the magnetic and quadrupole moments of the deuteron and an investigation of the EMC effect directly from lattice QCD. Matrix elements between states of differing momenta are also analyzed in the presence of background fields.
Neutrinoless Double Beta Decay and Lepton Flavor Violation
V. Cirigliano; A. Kurylov; M. J. Ramsey-Musolf; P. Vogel
2004-06-17T23:59:59.000Z
We point out that extensions of the Standard Model with low scale (~TeV) lepton number violation (LNV) generally lead to a pattern of lepton flavor violation (LFV) experimentally distinguishable from the one implied by models with GUT scale LNV. As a consequence, muon LFV processes provide a powerful diagnostic tool to determine whether or not the effective neutrino mass can be deduced from the rate of neutrinoless double beta decay. We discuss the role of \\mu -> e \\gamma and \\mu -> e conversion in nuclei, which will be studied with high sensitivity in forthcoming experiments.
APPENDIX A: MONTHLY AVERAGED DATA In many instances monthly averaged data are
Oregon, University of
for solar energy and climatic applications. Click on the buttons on the left to find out more about the lab for preliminary estimates of solar system performance. This section provides a summary of monthly averaged data for all sites in watt hours/meter2 per hour or day. For each site and each solar measurement the data
Searching for New Physics at SuperB - The Super Flavor Factory
David Hitlin
2010-01-08T23:59:59.000Z
SuperB ? a Super Flavor Factory, an electron-positron collider with a luminosity of 1036 cm-2 s-1, can conduct conduct unique sensitive searches for New Physics effects such as lepton flavor violation and new sources of CP violation in the quark and lepton sectors.
Three Flavor Oscillation Analysis of Atmospheric Neutrinos in Super-Kamiokande
Tokyo, University of
Three Flavor Oscillation Analysis of Atmospheric Neutrinos in Super-Kamiokande by Roger Alexandre Wendell: Three Flavor Oscillation Analysis of Atmospheric Neutrinos in Super-Kamiokande (Under-Cherenkov detector, Super-Kamiokande, are studied in the context of neutrino oscillations. Data presented here
Heavy flavor puzzle at RHIC: analysis of the underlying effects
Magdalena Djordjevic; Marko Djordjevic
2014-07-14T23:59:59.000Z
Suppressions of light and heavy flavor observables are considered to be excellent probes of QCD matter created in ultra-relativistic heavy ion collisions. Suppression predictions of quark and gluon jets appear to suggest a clear hierarchy according to which neutral pions should be more suppressed than D mesons, which in turn should be more suppressed than single electrons. However, joint comparison of neutral pion (light probe) and non-photonic single electron (heavy probe) suppression data at RHIC unexpectedly showed similar jet suppression for these two probes, which presents the well-known heavy flavor puzzle at RHIC. We here analyze which effects are responsible for this unexpected result, by using the dynamical energy loss formalism. We find that the main effect is a surprising reversal in the suppression hierarchy between neutral pions and D mesons, which is due to the deformation of the suppression patterns of light partons by fragmentation functions. Furthermore, we find that, due to the decay functions, the single electron suppression approaches the D meson suppression. Consequently, we propose that these two effects, taken together, provide a clear intuitive explanation of this longstanding puzzle.
Magnetic Phases in Three-Flavor Color Superconductivity
Ferrer, E J; Ferrer, Efrain J.; Incera, Vivian de la
2007-01-01T23:59:59.000Z
The best natural candidates for the realization of color superconductivity are quark stars -not yet confirmed by observation- and the extremely dense cores of compact stars, many of which have very large magnetic fields. To reliably predict astrophysical signatures of color superconductivity, a better understanding of the role of the star's magnetic field in the color superconducting phase that realizes in the core is required. This paper is an initial step in that direction. The field scales at which the different magnetic phases of a color superconductor with three quark flavors can be realized are investigated. Coming from weak to strong fields, the system undergoes first a symmetry transmutation from a Color-Flavor-Locked (CFL) phase to a Magnetic-CFL (MCFL) phase, and then a phase transition from the MCFL phase to the Paramagnetic-CFL (PCFL) phase. The low-energy effective theory for the excitations of the diquark condensate in the presence of a magnetic field is derived using a covariant representation ...
Low energy properties of color-flavor locked superconductors
Cristina Manuel
2005-12-05T23:59:59.000Z
We discuss some low energy properties of color-flavor locked (CFL) superconductors. First, we study how an external magnetic field affects their Goldstone physics in the chiral limit, stressing that there is a long-range component of the field that penetrates the superconductor. We note that the most remarkable effect of the applied field is giving a mass to the charged pions and kaons. By estimating this effect, we see that for values $e B \\sim 2 f_\\pi \\Delta$, where $\\Delta$ is the quark gap, and $f_\\pi$ the pion decay constant, the charged Goldstone bosons become so heavy, that they turn out to be unstable. The symmetry breaking pattern is then changed, agreeing with that of the magnetic color-flavor locked (MCFL) phase, recently proposed in hep-ph/0503162. Finally, we discuss the physics of the superfluid phonon of the CFL phase, compare it with that of the phonon of a Bose-Einstein condensate, and discuss transport phenomena at low temperature. Astrophysical implications of all the above low energy properties are also commented.
Flavor independence and the dual superconducting model of QCD
Fulcher, L.P. [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, Ohio 43403 (United States)] [Department of Physics and Astronomy, Bowling Green State University, Bowling Green, Ohio 43403 (United States)
1998-01-01T23:59:59.000Z
Baker, Ball, and Zachariasen (BBZ) have developed an elegant formulation of the dual superconducting model of quantum chromodynamics (QCD), which allows one to use the field equations to eliminate the gluon and Higgs degrees of freedom and thus to express the interaction between quarks as an effective potential. Carrying out an expansion in inverse powers of the constituent quark masses, these authors succeeded in identifying the central part, the spin-dependent part, and the leading relativistic corrections to the central potential. The potential offers a good account of the energies and splittings of charmonium and the upsilon system. Since all of the flavor dependence of the interaction is presumed to enter through the constituent masses, it is possible to test the potential in other systems. Logical candidates are the heavy B-flavor charmed system and the heavy-light systems, which should be more sensitive to the relativistic corrections. Lattice gauge calculations furnish an additional point of contact for the components of the BBZ potential. Some preliminary calculations of the energies of B and D mesons are presented and the challenge of agreement with experiment is discussed. The spinless Salpeter equation is used to account for the effects of relativistic kinematics. {copyright} {ital 1997} {ital The American Physical Society}
Azimuthal jet flavor tomography with CUJET2.0 of nuclear collisions at RHIC and LHC
Jiechen Xu; Alessandro Buzzatti; Miklos Gyulassy
2014-08-08T23:59:59.000Z
A perturbative QCD based jet tomographic Monte Carlo model, CUJET2.0, is presented to predict jet quenching observables in relativistic heavy ion collisions at RHIC/BNL and LHC/CERN energies. This model generalizes the DGLV theory of flavor dependent radiative energy loss by including multi-scale running strong coupling effects. It generalizes CUJET1.0 by computing jet path integrations though more realistic 2+1D transverse and longitudinally expanding viscous hydrodynamical fields contrained by fits to low $p_T$ flow data. The CUJET2.0 output depends on three control parameters, $(\\alpha_{max},f_E,f_M)$, corresponding to an assumed upper bound on the vacuum running coupling in the infrared and two chromo-electric and magnetic QGP screening mass scales $(f_E \\mu(T), f_M \\mu(T))$ where $\\mu(T)$ is the 1-loop Debye mass. We compare numerical results as a function of $\\alpha_{max}$ for pure and deformed HTL dynamically enhanced scattering cases corresponding to $(f_E=1,2, f_M=0)$ to data of the nuclear modification factor, $R^f_{AA}(p_T,\\phi; \\sqrt{s}, b)$ for jet fragment flavors $f=\\pi,D, B, e$ at $\\sqrt{s}=0.2-2.76$ ATeV c.m. energies per nucleon pair and with impact parameter $b=2.4, 7.5$ fm. A $\\chi^2$ analysis is presented and shows that $R^\\pi_{AA}$ data from RHIC and LHC are consistent with CUJET2.0 at the $\\chi^2/d.o.f< 2$ level for $\\alpha_{max}=0.23-0.30$. The corresponding $\\hat{q}(E_{jet}, T)/T^3$ effective jet transport coefficient field of this model is computed to facilitate comparison to other jet tomographic models in the literature. The predicted elliptic asymmetry, $v_2(p_T;\\sqrt{s},b)$ is, however, found to significantly underestimated relative to RHIC and LHC data. We find the $\\chi^2_{v_2}$ analysis shows that $v_2$ is very sensitive to allowing even as little as 10\\% variations of the path averaged $\\alpha_{max}$ along in and out of reaction plane paths.
Asymptotic scaling corrections in QCD with Wilson fermions from the 3-loop average plaquette
B. Alles; A. Feo; H. Panagopoulos
1998-01-23T23:59:59.000Z
We calculate the 3-loop perturbative expansion of the average plaquette in lattice QCD with N_f massive Wilson fermions and gauge group SU(N). The corrections to asymptotic scaling in the corresponding energy scheme are also evaluated. We have also improved the accuracy of the already known pure gluonic results at 2 and 3 loops.
Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...
4: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 Fact 624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 The final...
Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...
70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Excel file...
Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51%...
Broader source: Energy.gov (indexed) [DOE]
For the 2014 model year, midsize hybrid cars averaged 43.4 miles per gallon (mpg) while midsize non-hybrid cars averaged 28.7 mpg; the difference between the two has narrowed due...
No Collective Neutrino Flavor Conversions during the Supernova Accretion Phase
Chakraborty, Sovan; Mirizzi, Alessandro; Saviano, Ninetta; Tomas, Ricard [II Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Fischer, Tobias [GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universitaet Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)
2011-10-07T23:59:59.000Z
We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle {theta}{sub 13} is not very small.
Spin-Flavor van der Waals Forces and NN interaction
Alvaro Calle Cordon, Enrique Ruiz Arriola
2011-12-01T23:59:59.000Z
A major goal in Nuclear Physics is the derivation of the Nucleon-Nucleon (NN) interaction from Quantum Chromodynamics (QCD). In QCD the fundamental degrees of freedom are colored quarks and gluons which are confined to form colorless strongly interacting hadrons. Because of this the resulting nuclear forces at sufficiently large distances correspond to spin-flavor excitations, very much like the dipole excitations generating the van der Waals (vdW) forces acting between atoms. We study the Nucleon-Nucleon interaction in the Born-Oppenheimer approximation at second order in perturbation theory including the Delta resonance as an intermediate state. The potential resembles strongly chiral potentials computed either via soliton models or chiral perturbation theory and has a van der Waals like singularity at short distances which is handled by means of renormalization techniques. Results for the deuteron are discussed.
U(2)? flavor symmetry and lepton universality violation in W?????
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Filipuzzi, Alberto; Portolés, Jorge; González-Alonso, Martín
2012-06-01T23:59:59.000Z
The seeming violation of universality in the ? lepton coupling to the W boson suggested by LEP-II data is studied using an effective field theory (EFT) approach. Within this framework we explore how this feature fits into the current constraints from electroweak precision observables using different assumptions about the flavor structure of New Physics, namely [U(2)×U(1)]? and U(2)?. We show the importance of leptonic and semileptonic tau decay measurements, giving 3–4 TeV bounds on the New Physics effective scale at 90% C.L. We conclude under very general assumptions that it is not possible to accommodate this deviation from universality inmore »the EFT framework, and thus such a signal could only be explained by the introduction of light degrees of freedom or New Physics strongly coupled at the electroweak scale.« less
Color synchrotron off heavy flavor jet deluges the "dead cone"
Bhattacharyya, Trambak; Abir, Raktim
2013-01-01T23:59:59.000Z
It is known that gluon bremsstrahlung emission off heavy flavor jet is suppressed in the forward direction compared to that of light quark due to the mass effect ($`$dead cone effect'). Most of the models that address jet quenching generally assume that a jet always travels in straight eikonal path. However, once the eikonal approximation of propagation is called off and jet is allowed to bend, additional gluons pop-up within the so called `depopulated' region deluging the dead cone. This color synchrotron by color charge, once wound in an ambiance of color field, seems to be very apt for better understanding of jet quenching in hot and dense deconfined quark-gluon medium.
U(2)? flavor symmetry and lepton universality violation in W?????
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Filipuzzi, Alberto; Portolés, Jorge; González-Alonso, Martín
2012-06-01T23:59:59.000Z
The seeming violation of universality in the ? lepton coupling to the W boson suggested by LEP-II data is studied using an effective field theory (EFT) approach. Within this framework we explore how this feature fits into the current constraints from electroweak precision observables using different assumptions about the flavor structure of New Physics, namely [U(2)×U(1)]? and U(2)?. We show the importance of leptonic and semileptonic tau decay measurements, giving 3–4 TeV bounds on the New Physics effective scale at 90% C.L. We conclude under very general assumptions that it is not possible to accommodate this deviation from universality in the EFT framework, and thus such a signal could only be explained by the introduction of light degrees of freedom or New Physics strongly coupled at the electroweak scale.
Flavor decomposition of the elastic nucleon electromagnetic form factors
C.D. Cates, C.W. Jager, S. Riordan, B. Wojtsekhowski
2011-06-01T23:59:59.000Z
The u- and d-quark contributions to the elastic nucleon electromagnetic form factors have been determined using experimental data on GEn , GMn , GpE , and GpM . Such a flavor separation of the form factors became possible up to 3.4 GeV2 with recent data on GEn from Hall A at JLab. At a negative four-momentum transfer squared Q2 above 1 GeV2, for both the u- and d-quark components, the ratio of the Pauli form factor to the Dirac form factor, F2/F1, was found to be almost constant, and for each of F2 and F1 individually, the d-quark component drops continuously with increasing Q2.
CPV Phenomenology of Flavor Conserving Two Higgs Doublet Models
Satoru Inoue; Michael J. Ramsey-Musolf; Yue Zhang
2014-07-31T23:59:59.000Z
We analyze the constraints on CP-violating, flavor conserving Two Higgs Doublet Models (2HDMs) implied by measurements of Higgs boson properties at the Large Hadron Collider (LHC) and by the non-observation of permanent electric dipole moments (EDMs) of molecules, atoms and the neutron. We find that the LHC and EDM constraints are largely complementary, with the LHC studies constraining the mixing between the neutral CP-even states and EDMs probing the effect of mixing between the CP-even and CP-odd scalars. The presently most stringent constraints are implied by the non-observation of the ThO molecule EDM signal. Future improvements in the sensitivity of neutron and diamagnetic atom EDM searches could yield competitive or even more severe constraints. We analyze the quantitative impact of hadronic and nuclear theory uncertainties on the interpretation of the latter systems and conclude that these uncertainties cloud the impact of projected improvements in the corresponding experimental sensitivities.
Search for Lepton Flavor Violation in Upsilon Decays
Love, W.; Savinov, V. [University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J. [University of Puerto Rico, Mayaguez, Puerto Rico 00681 (Puerto Rico); Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B. [Purdue University, West Lafayette, Indiana 47907 (United States); Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J. [Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); He, Q. [University of Rochester, Rochester, New York 14627 (United States)] (and others)
2008-11-14T23:59:59.000Z
In this Letter, we describe a search for lepton flavor violation (LFV) in the bottomonium system. We search for leptonic decays {upsilon}(nS){yields}{mu}{tau} (n=1, 2, and 3) using the data collected with the CLEO III detector. We identify the {tau} lepton using its leptonic decay {nu}{sub {tau}}{nu}{sub e}e and utilize multidimensional likelihood fitting with probability density function shapes measured from independent data samples. We report our estimates of 95% C.L. upper limits on LFV branching fractions of {upsilon} mesons. We interpret our results in terms of the exclusion plot for the energy scale of a hypothetical new interaction versus its effective LFV coupling in the framework of effective field theory.
Pion physics in two flavor strong coupling lattice QED
D. J. Cecile
2006-11-21T23:59:59.000Z
We consider the lattice field theory involving two flavors of staggered quarks which interact with $U_A(1)$ gauge fields in the strong coupling limit. For massless quarks, this theory has an $SU_L(2)\\times SU_R(2) \\times U_A(1)$ symmetry. We show explicitly how pions emerge through the phenomena of confinement in this theory. We also show how one can incorporate the physics of the anomaly in this theory. Thus, our approach is a good pedagogical tool to explain how pions arise in real QCD. Another advantage of our approach is that we can easily design efficient cluster algorithms to compute a variety of quantities close to the chiral limit, thus allowing us to understand the low energy physics in a QCD-like setting from first principles.
Higgs Flavor Violation as a Signal to Discriminate Models
de Lima, Leonardo; Matheus, Ricardo D; Prado, Leônidas A F do
2015-01-01T23:59:59.000Z
We consider the Higgs Lepton Flavor Violating process $h \\rightarrow \\tau \\mu$, in which CMS found a $2.5 \\sigma$ excess of events, from a model independent perspective, and find that it is difficult to generate this operator without also obtaining a sizeable Wilson coefficient for the dipole operators responsible for tau radiative decay, constrained by BABAR to ${BR}(\\tau \\rightarrow \\mu \\gamma)survey a set of representative models for new physics, to determine which ones are capable of evading this problem. We conclude that, should this measurement persist as a signal, type-III Two Higgs Doublet Models and Higgs portal-like models are favored, while SUSY and Composite Higgs models are unlikely to explain it.
$??$ interaction from 2+1 flavor lattice QCD
Masanori Yamada; Kenji Sasaki; Sinya Aoki; Takumi Doi; Tetsuo Hatsuda; Yoichi Ikeda; Takashi Inoue; Noriyoshi Ishii; Keiko Murano; Hidekatsu Nemura
2015-03-11T23:59:59.000Z
We investigate the interaction between $\\Omega$ baryons in the $^1S_0$ channel from 2+1 flavor lattice QCD simulations. On the basis of the HAL QCD method, the $\\Omega\\Omega$ potential is extracted from the Nambu-Bethe-Salpeter wave function calculated on the lattice by using the PACS-CS gauge configurations with the lattice spacing $a\\simeq 0.09$ fm, the lattice volume $L\\simeq 2.9$ fm and the quark masses corresponding to $m_\\pi \\simeq 700$ MeV and $m_\\Omega \\simeq 1970$ MeV. The $\\Omega\\Omega$ potential has a repulsive core at short distance and an attractive well at intermediate distance. Accordingly, the phase shift obtained from the potential shows moderate attraction at low energies. Our data indicate that the $\\Omega\\Omega$ system with the present quark masses may appear close to the unitary limit where the scattering length diverges.
Higgs Flavor Violation as a Signal to Discriminate Models
Leonardo de Lima; Camila S. Machado; Ricardo D. Matheus; Leônidas A. F. do Prado
2015-04-28T23:59:59.000Z
We consider the Higgs Lepton Flavor Violating process $h \\rightarrow \\tau \\mu$, in which CMS found a $2.5 \\sigma$ excess of events, from a model independent perspective, and find that it is difficult to generate this operator without also obtaining a sizeable Wilson coefficient for the dipole operators responsible for tau radiative decay, constrained by BABAR to ${BR}(\\tau \\rightarrow \\mu \\gamma)survey a set of representative models for new physics, to determine which ones are capable of evading this problem. We conclude that, should this measurement persist as a signal, type-III Two Higgs Doublet Models and Higgs portal-like models are favored, while SUSY and Composite Higgs models are unlikely to explain it.
Flavor evolution of supernova neutrinos in turbulent matter
Lund, Tina; Kneller, James P. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Raleigh, NC 27695 (United States)
2014-01-01T23:59:59.000Z
The neutrino signal from the next galactic supernova carries with it an enormous amount of information on the explosion mechanism of a core-collapse supernova, as well as on the stellar progenitor and on the neutrinos themselves. In order to extract this information we need to know how the neutrino flavor evolves over time due to the interplay of neutrino self-interactions and matter effects. Additional turbulence in the supernova matter may impart its own signatures on the neutrino spectrum, and could partly obscure the imprints of collective and matter effects. We investigate the neutrino flavor evolution due to neutrino self-interactions, matter effects due to the shock wave propagation, and turbulence in three progenitors with masses of 8.8 M?, 10.8 M? and 18.0 M?. In the lightest progenitor we find that the impact of moderate turbulence of the order 10% is limited and occurs only briefly early on. This makes the signatures of collective and matter interactions relatively straightforward to interpret. Similarly, with moderate turbulence the two heavier progenitors exhibit only minor changes in the neutrino spectrum, and collective and matter signatures persists. However, when the turbulence is increased to 30% and 50% the high density matter resonance features in the neutrino spectrum get obscured, while new features arise in the low density resonance channel and in the non-resonant channels. We conclude that with moderate amounts of turbulence spectral features of collective and matter interactions survive in all three progenitors. For the larger amounts of turbulence in the 10.8 M? and 18.0 M? progenitor new features arise, as others disappear.
Top-flavored dark matter and the forward-backward asymmetry
Abhishek Kumar; Sean Tulin
2013-03-02T23:59:59.000Z
We propose a simple model where dark matter (DM) carries top flavor and couples to the Standard Model through the top quark within a framework of minimal flavor violation (MFV). Top-flavored DM can explain the anomalous top forward-backward asymmetry observed at the Tevatron, while remaining consistent with other top observables at colliders. By virtue of its large coupling to top, DM acquires a sizable loop coupling to the Z boson, and the relic density is set by annihilation through the Z. We also discuss contraints from current direct detection searches, emphasizing the role of spin-dependent searches to probe this scenario.
Y. Maezawa; S. Aoki; S. Ejiri; T. Hatsuda; N. Ishii; K. Kanaya; N. Ukita; T. Umeda
2007-10-04T23:59:59.000Z
Thermodynamics of two-flavor QCD at finite temperature and density is studied on a $16^3 \\times 4$ lattice, using a renormalization group improved gauge action and the clover improved Wilson quark action. In the simulations along lines of constant $m_{\\rm PS}/m_{\\rm V}$, we calculate the Taylor expansion coefficients of the heavy-quark free energy with respect to the quark chemical potential ($\\mu_q$) up to the second order. By comparing the expansion coefficients of the free energies between quark($Q$)and antiquark($\\bar{Q}$), and between $Q$ and $Q$, we find a characteristic difference at finite $\\mu_q$ due to the first order coefficient of the Taylor expansion. We also calculate the quark number and isospin susceptibilities, and find that the second order coefficient of the quark number susceptibility shows enhancement around the pseudo-critical temperature.
CP violation in flavor-tagged Bs? --> J/[psi][phi] decays
Makhoul, Khaldoun
2009-01-01T23:59:59.000Z
In this dissertation, we present the results of a time-dependent angular analysis of Bs -+ J/,0 decays performed with the use of initial-state flavor tagging. CP violation is observed in this mode through the interference ...
Limits on flavor changing neutral currents in D-0 meson Decays
Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Copty, N.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan
1996-04-01T23:59:59.000Z
Using the CLEO II detector at the Cornell Electron Storage Ring, we have searched for flavor changing neutral currents and lepton family number violations in D-0 meson decays. The upper limits on the branching fractions ...
Pion-induced Drell-Yan processes and the flavor-dependent EMC effect
D. Dutta; J. -C. Peng; I. C. Cloet; D. Gaskell
2010-07-22T23:59:59.000Z
Pion-induced Drell-Yan processes are proposed as a potential tool to measure the flavor dependence of the EMC effect, that is, the flavor-dependent modification of quark distributions in the nuclear medium. Existing pionic Drell-Yan data are compared with calculations using a recent model for nuclear quark distributions that incorporates flavor-dependent nuclear effects. While no firm conclusions can yet be drawn, we demonstrate that existing Drell-Yan data seem to imply a flavor dependence of the EMC effect. We highlight how pion-induced Drell-Yan experiments on nuclear targets can access important new aspects of the EMC effect, not probed in deep inelastic scattering, and will therefore provide very stringent constrains for models of nuclear quark distributions. Predictions for possible future pion-induced Drell-Yan experiments are also presented.
Pion-induced Drell-Yan processes and the flavor-dependent EMC effect
D. Dutta, J.-C. Peng, I. C. Cloet, D. Gaskell
2011-04-01T23:59:59.000Z
Pion-induced Drell-Yan processes are proposed as a potential tool to measure the flavor dependence of the EMC effect, that is, the flavor-dependent modification of quark distributions in the nuclear medium. Existing pionic Drell-Yan data are compared with calculations using a recent model for nuclear quark distributions that incorporates flavor-dependent nuclear effects. While no firm conclusions can yet be drawn, we demonstrate that existing Drell-Yan data seem to imply a flavor dependence of the EMC effect. We highlight how pion-induced Drell-Yan experiments on nuclear targets can access important new aspects of the EMC effect, not probed in deep inelastic scattering, and will therefore provide very stringent constrains for models of nuclear quark distributions. Predictions for possible future pion-induced Drell-Yan experiments are also presented.
Pion-induced Drell-Yan processes and the flavor-dependent EMC effect
Dutta, D. [Department of Physics, Mississippi State University, Mississippi State, Mississippi 39762 (United States); Peng, J. C. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cloeet, I. C. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Gaskell, D. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23608 (United States)
2011-04-15T23:59:59.000Z
Pion-induced Drell-Yan processes are proposed as a promising tool with which to measure the flavor dependence of the European Muon Collaboration (EMC) effect, that is, the flavor-dependent modification of quark distributions in the nuclear medium. Existing pionic Drell-Yan data are compared with calculations using a recent model for nuclear quark distributions that incorporates flavor-dependent nuclear effects. While no firm conclusions can yet be drawn, we find that existing Drell-Yan data likely imply a flavor dependence of the EMC effect. We demonstrate that pion-induced Drell-Yan experiments on nuclear targets can access new aspects of the EMC effect not probed in deep inelastic scattering and can therefore provide important new constrains on the nuclear quark distributions. Predictions for possible future pion-induced Drell-Yan experiments are also presented.
Differentiating neutrino models on the basis of $\\theta_{13}$ and lepton flavor violation
Albright, Carl H.; /Northern Illinois U. /Fermilab
2008-03-01T23:59:59.000Z
The authors show how models of neutrino masses and mixings can be differentiated on the basis of their predictions for {theta}{sub 13} and lepton flavor violation in radiative charged lepton decays and {mu} - e conversion. They illustrate the lepton flavor violation results for five predictive SO(10) SUSY GUT models and point out the relative importance of their heavy right-handed neutrino mass spectra and {theta}{sub 13} predictions.
Hyperspherical harmonic study of identical-flavor four-quark systems
J. Vijande; N. Barnea; A. Valcarce
2006-10-23T23:59:59.000Z
We present an exact method based on a hyperspherical harmonic expansion to study systems made of quarks and antiquarks of the same flavor. Our formalism reproduces and improves the results obtained with variational approaches. This analysis shows that identical-flavor four-quark systems with non-exotic $2^{++}$ quantum numbers may be bound independently of the quark mass. $0^{+-}$ and $1^{+-}$ states become attractive only for larger quarks masses.
K. V. Stepanyantz
2014-06-08T23:59:59.000Z
The effective diagram technique based on the Schwinger-Dyson equations is constructed for N=1 SQED with N_f flavors, regularized by higher derivatives. Using these effective diagrams, it is possible to derive the exact NSVZ relation between the beta-function and the anomalous dimension of the matter superfields exactly in all loops, if the renormalization group functions are defined in terms of the bare coupling constant. In particular, we verify that all integrals which give the beta-function defined in terms of the bare coupling constant are integrals of double total derivatives and prove some identities relating Green functions.
average power femtosecond: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Stirling refrigerator1 that abrupt changes in geometry are ubiquitous in Stirling engines, thermoacoustics, and res- piratory flows Smith, Barton L. 52 On the Peak-to-Average...
average power ratio: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Stirling refrigerator1 that abrupt changes in geometry are ubiquitous in Stirling engines, thermoacoustics, and res- piratory flows Smith, Barton L. 60 High average power,...
average power semiconductor: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Stirling refrigerator1 that abrupt changes in geometry are ubiquitous in Stirling engines, thermoacoustics, and res- piratory flows Smith, Barton L. 56 High average power,...
average resonance neutron: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Nader Haghighipour 1999-02-03 4 Average over energy effect of parity nonconservation in neutron scattering on heavy nuclei Nuclear Theory (arXiv) Summary: Using semiclassical...
LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION...
Gasoline and Diesel Fuel Update (EIA)
ENERGY INFORMATION ADMINISTRATION LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION BARRELS) FILE UPDATED April 2004 Line Month Low High Number Product Name Geography...
average daily traffic: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Next Page Last Page Topic Index 1 April 2014 Annual Average DailyTraffic (AADT) is a key input in operations and transportation planning Environmental Sciences and Ecology...
average wind shear: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
by uncompensated voids. Maria Mattsson; Teppo Mattsson 2010-07-17 7 Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging Mathematics Websites Summary:...
average state iq: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
6 STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL Energy Storage, Conversion and Utilization Websites Summary: STATE OF CALIFORNIA AREA...
average high energy: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
averaged null (ANEC) energy conditions, and quantum inequality restrictions on negative energy for free massless scalar fields. In a two-dimensional compactified Minkowski...
average kinetic energy: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
energy by kinetic averaging Pierre-Emmanuel Jabin Ecole Normale Sup-Landau energy for two dimensional divergence free fields ap- pearing in the gradient theory of...
average beta energy: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
averaged null (ANEC) energy conditions, and quantum inequality restrictions on negative energy for free massless scalar fields. In a two-dimensional compactified Minkowski...
average power high: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioral Synthesis Computer Technologies and Information Sciences Websites Summary: conversion 6....
High temperature QCD with three flavors of improved staggered quarks
The MILC Collaboration; C. Bernard; T. Burch; C. E. DeTar; Steven Gottlieb; Eric Gregory; U. M. Heller; J. Osborn; R. L. Sugar; D. Toussaint
2002-09-05T23:59:59.000Z
We present an update of our study of high temperature QCD with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad staggered quark action. Simulations are being carried out on lattices with Nt=4, 6 and 8 for the case of three degenerate quarks with masses less than or equal to the strange quark mass, $m_s$, and on lattices with Nt=6 and 8 for degenerate up and down quarks with masses in the range 0.2 m_s \\leq m_{u,d} \\leq 0.6 m_s, and the strange quark fixed near its physical value. We also report on first computations of quark number susceptibilities with the Asqtad action. These susceptibilities are of interest because they can be related to event-by-event fluctuations in heavy ion collision experiments. Use of the improved quark action leads to a substantial reduction in lattice artifacts. This can be seen already for free fermions and carries over into our results for QCD.
High temperature QCD with three flavors of improved staggered quarks
Bernard, C; DeTar, C E; Gottlieb, S; Gregory, E; Heller, U M; Osborn, J; Sugar, R L; Toussaint, D; Gottlieb, Steven; Gregory, Eric
2002-01-01T23:59:59.000Z
We present an update of our study of high temperature QCD with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad staggered quark action. Simulations are being carried out on lattices with Nt=4, 6 and 8 for the case of three degenerate quarks with masses less than or equal to the strange quark mass, $m_s$, and on lattices with Nt=6 and 8 for degenerate up and down quarks with masses in the range 0.2 m_s \\leq m_{u,d} \\leq 0.6 m_s, and the strange quark fixed near its physical value. We also report on first computations of quark number susceptibilities with the Asqtad action. These susceptibilities are of interest because they can be related to event-by-event fluctuations in heavy ion collision experiments. Use of the improved quark action leads to a substantial reduction in lattice artifacts. This can be seen already for free fermions and carries over into our results for QCD.
Kalman filter based tracker study for lepton flavor violation experiments
Rashid M. Djilkibaev; Rostislav V. Konoplich
2009-08-19T23:59:59.000Z
A tracking detector is proposed for lepton flavor violation experiments ($\\mu \\to e$ conversion, $\\mu \\to e + \\gamma$, $\\mu \\to 3e $) consisting of identical chambers which can be reconfigured to meet the requirements for all three experiments. A pattern recognition and track reconstruction procedure based on the Kalman filter technique is presented for this detector. The pattern recognition proceeds in two stages. At the first stage only hit straw tube center coordinates, without drift time information, are used to reduce the background to a manageable level. At the second stage the drift time information is incorporated and a deterministic annealing filter is applied to reach the final level of background suppression. The final track momentum reconstruction is provided by a combinatorial drop filter which is effective in hit-to-track assignment. The momentum resolution of the tracker in measuring monochromatic leptons is found to be $\\sigma_{p}$ = 0.17 and 0.26 MeV for the $\\mu \\to e$ conversion and $\\mu^+ \\to e^+ + \\gamma$ processes, respectively. The tracker reconstruction resolution for the total scalar lepton momentum is $\\sigma_{p} = $ 0.33 MeV for the $\\mu \\to 3e$ process. The obtained tracker resolutions allow an increase in sensitivity to the branching ratios for these processes by a few orders of magnitude over current experimental limits.
Neutrality of a magnetized two-flavor quark superconductor
Tanumoy Mandal; Prashanth Jaikumar
2012-09-11T23:59:59.000Z
We investigate the effect of electric and color charge neutrality on the two-flavor color superconducting (2SC) phase of cold and dense quark matter in presence of constant external magnetic fields and at moderate baryon densities. Within the framework of the Nambu-Jona-Lasinio (NJL) model, we study the inter-dependent evolution of the quark's BCS gap and constituent mass with increasing density and magnetic field. While confirming previous results derived for the highly magnetized 2SC phase with color neutrality alone, we obtain new results as a consequence of imposing charge neutrality. In the charge neutral gapless 2SC phase (g2SC), a large magnetic field drives the color superconducting phase transition to a crossover, while the chiral phase transition is first order. Assuming that LOFF phases do not arise, we also obtain the Clogston-Chandrasekhar limit at a very large value of the magnetic field (B ~ 10^{19}G) in the g2SC phase. At larger diquark-to-scalar coupling ratio G_D/G_S, where the 2SC phase is preferred, this limit is strongly affected by Shubnikov de Haas-van Alphen oscillations of the gap, indicating the transition to a domain-like state.
Lepton Flavor Violation in Predictive SUSY-GUT Models
Albright, Carl H.; /Northern Illinois U. /Fermilab; Chen, Mu-Chun; /UC, Irvine
2008-02-01T23:59:59.000Z
There have been many theoretical models constructed which aim to explain the neutrino masses and mixing patterns. While many of the models will be eliminated once more accurate determinations of the mixing parameters, especially sin{sup 2} 2{theta}{sub 13}, are obtained, charged lepton flavor violation (LFV) experiments are able to differentiate even further among the models. In this paper, they investigate various rare LFV processes, such as {ell}{sub i} {yields} {ell}{sub j} + {gamma} and {mu} - e conversion, in five predictive SUSY SO(10) models and their allowed soft SUSY breaking parameter space in the constrained minimal SUSY standard model (CMSSM). Utilizing the WMAP dark matter constraints, they obtain lower bounds on the branching ratios of these rare processes and find that at least three of the five models they consider give rise to predictions for {mu} {yields} e + {gamma} that will be tested by the MEG collaboration at PSI. in addition, the next generation {mu} - e conversion experiment has sensitivity to the predictions of all five models, making it an even more robust way to test these models. While generic studies have emphasized the dependence of the branching ratios of these rare processes on the reactor neutrino angle, {theta}{sub 13}, and the mass of the heaviest right-handed neutrino, M{sub 3}, they find very massive M{sub 3} is more significant than large {theta}{sub 13} in leading to branching ratios near to the present upper limits.
Heavy flavor production at RHIC and LHC energy
A. K. Chaudhuri
2005-09-19T23:59:59.000Z
In a leading order pQCD model, we have studied the heavy flavor production in p+p collisions at RHIC and LHC energy. Leading order pQCD models require a K-factor. At RHIC energy, $\\sqrt{s}$=200 GeV, we fix K such that the model reproduces the integrated charm yield, $dN^{c\\bar{c}}/dy$, estimated by the STAR and the PHENIX collaboration in p+p collisions. The model then explains the STAR data on the transverse momentum distribution of open charm mesons $(D^0)$ and decay electrons in p+p collisions. The p+p predictions, scaled by the number of binary collisions, also explain the electron spectra in STAR p+d collisions and PHENIX Au+Au collisions in different centrality bins. Assuming that at LHC energy K-factor is of the order of unity, we have used the model to predict the transverse momentum distribution of $D$ and $B$ mesons and also of electrons from semileptonic decay of $D\\to e$ and $B\\to e$, in p+p collisions at LHC energy, $\\sqrt{s}$=14 TeV.
Muntyan, Yevgen
2010-01-16T23:59:59.000Z
automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic...
Nonlocal effective-average-action approach to crystalline phantom membranes
Hasselmann, N. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Braghin, F. L. [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Instituto de Fisica, Universidade Federal de Goias, P. B. 131, Campus II, 74001-970, Goiania, GO (Brazil)
2011-03-15T23:59:59.000Z
We investigate the properties of crystalline phantom membranes, at the crumpling transition and in the flat phase, using a nonperturbative renormalization group approach. We avoid a derivative expansion of the effective average action and instead analyze the full momentum dependence of the elastic coupling functions. This leads to a more accurate determination of the critical exponents and further yields the full momentum dependence of the correlation functions of the in-plane and out-of-plane fluctuation. The flow equations are solved numerically for D=2 dimensional membranes embedded in a d=3 dimensional space. Within our approach we find a crumpling transition of second order which is characterized by an anomalous exponent {eta}{sub c}{approx_equal}0.63(8) and the thermal exponent {nu}{approx_equal}0.69. Near the crumpling transition the order parameter of the flat phase vanishes with a critical exponent {beta}{approx_equal}0.22. The flat phase anomalous dimension is {eta}{sub f}{approx_equal}0.85 and the Poisson's ratio inside the flat phase is found to be {sigma}{sub f}{approx_equal}-1/3. At the crumpling transition we find a much larger negative value of the Poisson's ratio {sigma}{sub c}{approx_equal}-0.71(5). We discuss further in detail the different regimes of the momentum dependent fluctuations, both in the flat phase and in the vicinity of the crumpling transition, and extract the crossover momentum scales which separate them.
On average sampling restoration of Piranashvilitype harmonizable processes
Paris-Sud XI, Université de
; time shifted sam- pling; Piranashvili, Lo`eve, Karhunen harmonizable stochastic process; weakly.olenko@latrobe.edu.au, poganj@pfri.hr Abstract: The harmonizable Piranashvili type stochastic pro- cesses are approximated stationary stochastic process; local averages; average sampling reconstruction. 1. Introduction
averaged energy minimization: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
averaged energy minimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Averaged Energy...
THE AVERAGED CONTROL SYSTEM OF FAST OSCILLATING CONTROL SYSTEMS
Paris-Sud XI, Université de
, control systems, small control, optimal control, Finsler geometry. AMS subject classifications. 34C29, 34H used for design. The use of averaging in optimal control of oscillating systems [10, 13, 14, 7THE AVERAGED CONTROL SYSTEM OF FAST OSCILLATING CONTROL SYSTEMS ALEX BOMBRUN AND JEAN
Distributed Average Consensus in Sensor Networks with Random Link Failures
Moura, José
Distributed Average Consensus in Sensor Networks with Random Link Failures Soummya Kar Department: soummyakgandrew.cmu.edu Abstract We study the impact of the topology of a sensor network on distributed average in terms of a moment of the distribution of the norm of a function of the network graph Laplacian matrix L
The global warming signal is the average of
Jones, Peter JS
, uncertainty in the isopycnal diffusivity causes uncertainty of up to 50% in the global warming signalThe global warming signal is the average of years 70-80 in the increasing CO2 run minus the average represent significant uncertainty in the global warming signal (Fig. 5). The differences at high latitudes
Flavor SU(3) symmetry and QCD factorization in $B \\to PP$ and $PV$ decays
Hai-Yang Cheng; Sechul Oh
2011-04-21T23:59:59.000Z
Using flavor SU(3) symmetry, we perform a model-independent analysis of charmless $\\bar B_{u,d} (\\bar B_s) \\to PP, ~PV$ decays. All the relevant topological diagrams, including the presumably subleading diagrams, such as the QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be important in understanding the data for penguin-dominated decay modes. In this work we make efforts to bridge the (model-independent but less quantitative) topological diagram or flavor SU(3) approach and the (quantitative but somewhat model-dependent) QCD factorization (QCDF) approach in these decays, by explicitly showing how to translate each flavor SU(3) amplitude into the corresponding terms in the QCDF framework. After estimating each flavor SU(3) amplitude numerically using QCDF, we discuss various physical consequences, including SU(3) breaking effects and some useful SU(3) relations among decay amplitudes of $\\bar B_s \\to PV$ and $\\bar B_d \\to PV$.
The Effect of Quark Sector Minimal Flavor Violation on Neutrinoless Double Beta Decay
Brian Dudley; Christopher Kolda
2008-10-16T23:59:59.000Z
The question of whether neutrino masses are Dirac or Majorana is one of the most important, and most difficult, questions remaining in the neutrino sector. Searches for neutrinoless double beta-decay may help to resolve this question, but are also sensitive to new, higher dimension Delta L=2 operators. In this paper we place two phenomenological constraints on these operators at dimension d<=11. First, we require that the operators obey the quark flavor symmetries of the Standard Model, with any violation of the symmetries being due to Yukawa interactions, a scheme known as Minimal Flavor Violation (MFV). Second, we require that the operators which generate neutrinoless double beta-decay, and any operators related by the flavor symmetries, do not induce neutrino masses above 0.05 eV, the limit implied by the atmospheric neutrino data. We find that these requirements severely constrain the operators which can violate lepton number, such that most can no longer contribute to neutrinoless double beta-decay at observable rates. It is noteworthy that quark flavor symmetries can play such a strong role in constraining new leptonic physics, even when that physics is not quark flavor changing. Those few operators that can mimic a Majorana neutrino mass then appear with cutoffs below a TeV, and represent new physics which could be directly probed at the LHC or a future linear collider.
Effect of quark sector minimal flavor violation on neutrinoless double beta decay
Dudley, Brian; Kolda, Christopher [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States)
2009-01-01T23:59:59.000Z
The question of whether neutrino masses are Dirac or Majorana is one of the most important, and most difficult, questions remaining in the neutrino sector. Searches for neutrinoless double {beta} decay may help to resolve this question, but are also sensitive to new, higher-dimension {delta}L=2 operators. In this paper we place two phenomenological constraints on these operators at dimension d{<=}11. First, we require that the operators obey the quark flavor symmetries of the standard model, with any violation of the symmetries being due to Yukawa interactions, a scheme known as minimal flavor violation. Second, we require that the operators which generate neutrinoless double {beta} decay, and any operators related by the flavor symmetries, do not induce neutrino masses above the experimental and astrophysical limits. We find that these requirements severely constrain the operators which can violate lepton number, such that most can no longer contribute to neutrinoless double {beta} decay at observable rates. It is noteworthy that quark flavor symmetries can play such a strong role in constraining new leptonic physics, even when that physics is not quark flavor changing. Those few operators that can mimic a Majorana neutrino mass then appear with cutoffs below a TeV, and represent new physics which could be directly probed at the LHC or a future linear collider.
Measurement of heavy-flavor production in Pb-Pb collisions at the LHC with ALICE
Robert Grajcarek; for the ALICE Collaboration
2012-09-10T23:59:59.000Z
A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider (LHC) has been built in order to study the Quark-Gluon Plasma (QGP) created in high-energy nuclear collisions. As heavy-flavor quarks are produced at the early stage of the collision, they serve as sensitive probes for the QGP. The ALICE detector with its capabilities such as particle identification, secondary vertexing and tracking in a high multiplicity environment can address, among other measurements, the heavy-flavor sector in heavy-ion collisions. We present latest results on the measurement of the nuclear modification factor of open heavy-flavors as well as on the measurement of open heavy-flavor azimuthal anisotropy v2 in Pb-Pb collisions at sqrt(s) = 2.76 TeV. Open charmed hadrons are reconstructed in the hadronic decay channels D0->Kpi, D+->Kpipi, and D*+->D0pi applying a secondary decay-vertex topology. Complementary measurements are performed by detecting electrons (muons) from semi-leptonic decays of open heavy-flavor hadrons in the central (forward) rapidity region.
average glandular dose: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
doses and cancer rates to the workers m the first Soviet atom-bomb facility, near 2 Chelyabinsk and 4,600 at the plutonium sep- aration plant. If we allow for an average work...
INDIVIDUAL REFORM ELEMENTS .63Average course exam score
Colorado at Boulder, University of
INDIVIDUAL REFORM ELEMENTS .63Average course exam score .11In class clicker score .02Lecture: · Correlations with effort/curricular elements are positive but not high, indicating no individual course reform
areally averaged heat: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Chulwoo Jung; Christoph Lehner 2014-02-18 56 The Fallacy of Averages University of Kansas - KU ScholarWorks Summary: of component variables as well, we found that ignoring...
STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL
of a building feature, material, or construction assembly occur in a building, a weighted average there is more than one level of floor, wall, or ceiling insulation in a building, or more than one type
From average case complexity to improper learning [Extended Abstract
Linial, Nathan "Nati"
is that the standard reduc- tions from NP-hard problems do not seem to apply in this context. There is essentially only.1145/2591796.2591820. Keywords Hardness of improper learning, DNFs, Halfspaces, Average Case complexity, CSP problems, Resolution
average neutronic properties: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
M. H. van Kerkwijk 2004-03-20 2 Average over energy effect of parity nonconservation in neutron scattering on heavy nuclei Nuclear Theory (arXiv) Summary: Using semiclassical...
average power optical: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
systems, Multiple Subcarrier Strohmer, Thomas 3 June 1, 2000 Vol. 25, No. 11 OPTICS LETTERS 859 16.2-W average power from a diode-pumped Materials Science Websites...
Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...
Broader source: Energy.gov (indexed) [DOE]
35: Average Annual Gasoline Pump Price, 1929-2013 fotw835web.xlsx More Documents & Publications Offshore Wind Market and Economic Analysis Report 2013 Response to several FOIA...
THE UNIVERSITY OF RHODE ISLAND FRINGE BENEFIT AVERAGE RATE
Rhode Island, University of
THE UNIVERSITY OF RHODE ISLAND FRINGE BENEFIT AVERAGE RATE FY 2015 Allocation Cost or Classified.2% URI Budget & Financial Planning Office 9.17.14 Office:fringebenefits:office of sponsored projects: FY2015 Allocation #12;
On the Choice of Average Solar Zenith Angle
Cronin, Timothy W.
Idealized climate modeling studies often choose to neglect spatiotemporal variations in solar radiation, but doing so comes with an important decision about how to average solar radiation in space and time. Since both ...
average neck flexion: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
profiles including the singular isothermal sphere, the Navarro-Frenk-White... Retana-Montenegro, E; Baes, M 2012-01-01 13 Fast Averaging MIT - DSpace Summary: We are interested in...
averaged cross sections: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...
averaged cross section: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...
average cross sections: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...
average effective dose: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
field theory, Chern-Simons theory is discussed in detail. M. Reuter 1996-02-04 2 Is dark energy an effect of averaging? CERN Preprints Summary: The present standard model of...
Partial Averaging Near a Resonance in Planetary Dynamics
Nader Haghighipour
1999-02-03T23:59:59.000Z
Following the general numerical analysis of Melita and Woolfson (1996), I showed in a recent paper that a restricted, planar, circular planetary system consisting of Sun, Jupiter and Saturn would be captured in a near (2:1) resonance when one would allow for frictional dissipation due to interplanetary medium (Haghighipour, 1998). In order to analytically explain this resonance phenomenon, the method of partial averaging near a resonance was utilized and the dynamics of the first-order partially averaged system at resonance was studied. Although in this manner, the finding that resonance lock occurs for all initial relative positions of Jupiter and Saturn was confirmed, the first-order partially averaged system at resonance did not provide a complete picture of the evolutionary dynamics of the system and the similarity between the dynamical behavior of the averaged system and the main planetary system held only for short time intervals. To overcome these limitations, the method of partial averaging near a resonance is extended to the second order of perturbation in this paper and a complete picture of dynamical behavior of the system at resonance is presented. I show in this study that the dynamics of the second-order partially averaged system at resonance resembles the dynamical evolution of the main system during the resonance lock in general, and I present analytical explanations for the evolution of the orbital elements of the main system while captured in resonance.
Flavored Dark Matter and the Galactic Center Gamma-Ray Excess
Agrawal, Prateek; Batell, Brian; Hooper, Dan; Lin, Tongyan
2014-09-01T23:59:59.000Z
Thermal relic dark matter particles with a mass of 31-40 GeV and that dominantly annihilate to bottom quarks have been shown to provide an excellent description of the excess gamma rays observed from the center of the Milky Way. Flavored dark matter provides a well-motivated framework in which the dark matter can dominantly couple to bottom quarks in a flavor-safe manner. We propose a phenomenologically viable model of bottom flavored dark matter that can account for the spectral shape and normalization of the gamma-ray excess while naturally suppressing the elastic scattering cross sections probed by direct detection experiments. This model will be definitively tested with increased exposure at LUX and with data from the upcoming high-energy run of the Large Hadron Collider (LHC).
THE EFFECTS OF DIETARY a-TOCOPHEROL AND TUNA, SAFFLOWER, AND LINSEED OILS ON THE FLAVOR OF TURKEY
THE EFFECTS OF DIETARY a-TOCOPHEROL AND TUNA, SAFFLOWER, AND LINSEED OILS ON THE FLAVOR OF TURKEY L. CRAWFORD,l D. W. PETERSON,2 M. J. KRETSCH,l A. L. LILYBLADE,2 AND H. S. OLCO~ ABSTRACT Turkeys were fed, these oils caused a fishy flavor to develop in the turkey carcass, andaÂ·tocopherol fed concomitantly, greatly
H. Malekzadeh
2008-10-29T23:59:59.000Z
Enforcing color and electric charge neutrality conditions on the three-flavor color superconducting matter, I derive the explicit form of the quark propagators and the gluon self-energies for the gapless and the ordinary color-flavor-locked phases.
Average Soil Water Retention Curves Measured by Neutron Radiography
Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD
2011-01-01T23:59:59.000Z
Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.
Effects of dietary fish oil on fatty acid composition and flavor of channel catfish
Haynes, Kellie Cecile
1989-01-01T23:59:59.000Z
EFFECTS OF DIETARY FISH OIL ON FATTY ACID COMPOSITION AND FLAVOR OF CHANNEL CATFISH A Thesis by KELLIE CECILE HAYNES Submitted to the Office of Graduate Studies of Texas A8M University in partial fulfilment of the requirements for the degree... of MASTER OF SCIENCE December 1989 Major Subject: Food Science and Technology EFFECTS OF DIETARY FISH OIL ON FATTY ACID COMPOSITION AND FLAVOR OF CHANNEL CATFISH A thesis by KELLIE CECILE HAYNES Approved as to style and content by: J myT Ke...
Y. Maezawa; T. Umeda; S. Aoki; S. Ejiri; T. Hatsuda; K. Kanaya; H. Ohno
2012-10-24T23:59:59.000Z
Free energies between static quarks and Debye screening masses in the quark-gluon plasma are studied on the basis of Polyakov-line correlations in lattice simulations of 2+1 flavors QCD with the renormalization-group improved gluon action and the $O(a)$-improved Wilson quark action. We perform simulations at $m_{\\rm PS}/m_{\\rm V} = 0.63$ (0.74) for light (strange) flavors with lattice sizes of $32^3 \\times N_t$ with $N_t=4$--12. We adopt the fixed-scale approach, where temperature can be varied without changing the spatial volume and renormalization factor. We find that, at short distance, the free energies of static quarks in color-singlet channel converge to the static-quark potential evaluated from the Wilson-loop at zero-temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the free energies of static quarks approach to twice the single-quark free energies, implying that the interaction between static quarks is fully screened. The screening properties can be well described by the screened Coulomb form with appropriate Casimir factor at high temperature. We also discuss a limitation of the fixed-scale approach at high temperature.
Neutrino-neutrino interactions in a supernova and their effect on neutrino flavor conversions
Dighe, Amol [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India)
2011-11-23T23:59:59.000Z
The neutrino-neutrino interactions inside a supernova core give rise to nonlinear collective effects that significantly influence the neutrino flavor conversions inside the star. I shall describe these interactions, the new oscillation phenomena they generate, and their effect on the neutrino fluxes arriving at the earth.
Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors
Weise, Wolfram
Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors Thomas Hell, Simon Rößner, Marco Point July 28--August 22, 2008 Th. Hell Thermodynamics of a Nonlocal PNJL Model #12;Outline 1 Mass 2 Thermodynamics of the Nonlocal PNJL Model Coupling Quarks and Polyakov Loop Gap Equations
Thermodynamics in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach
T. Umeda; S. Aoki; S. Ejiri; T. Hatsuda; K. Kanaya; Y. Maezawa; H. Ohno
2012-12-06T23:59:59.000Z
We study thermodynamic properties of 2+1 flavor QCD with improved Wilson quarks coupled with the RG improved Iwasaki glue, using the fixed scale approach. We present the results for the equation of state, renormalized Polyakov loop, and chiral condensate.
First search for the flavor changing neutral current decay D-0 -> gamma gamma
Ammar, Raymond G.; Besson, David Zeke
2003-03-01T23:59:59.000Z
Using 13.8 fb(-1) of data collected at or just below the Y(4S) with the CLEO detector, we report the result of a search for the flavor changing neutral current process D-0 --> gammagamma. We observe no significant signal ...
Distinguishing Flavor Non-universal Colorons from Z' Bosons at the LHC
R. Sekhar Chivukula; Pawin Ittisamai; Elizabeth H. Simmons
2015-02-17T23:59:59.000Z
Electrically-neutral massive color-singlet and color-octet vector bosons, which are often predicted in Beyond the Standard Model theories, have the potential to be discovered as dijet resonances at the LHC. A color-singlet resonance that has leptophobic couplings needs further investigation to be distinguished from a color-octet one. In previous work, we introduced a method for discriminating between the two kinds of resonances when their couplings are flavor-universal, using measurements of the dijet resonance mass, total decay width and production cross-section. Here, we describe an extension of that method to cover a more general scenario, in which the vector resonances could have flavor non-universal couplings; essentially, we incorporate measurements of the heavy-flavor decays of the resonance into the method. We present our analysis in a model-independent manner for a dijet resonance with mass 2.5-6.0 TeV at the LHC with $\\sqrt{s}=14$ TeV and integrated luminosities 30, 100, 300 and 1000 ${\\rm fb}^{-1}$, and show that the measurements of the heavy-flavor decays should allow conclusive identification of the vector boson. Note that our method is generally applicable even for a Z' boson with non-Standard invisible decays. We include an appendix of results for various resonance couplings and masses to illustrate how well each observable must be measured to distinguish colorons from Z' bosons.
Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande
Super-Kamiokande collaboration
2006-06-14T23:59:59.000Z
We report on the results of a three-flavor oscillation analysis using Super-Kamiokande~I atmospheric neutrino data, with the assumption of one mass scale dominance ($\\Delta m_{12}^2$$=$0). No significant flux change due to matter effect, which occurs when neutrinos propagate inside the Earth for $\\theta_{13}$$\
Full three flavor oscillation analysis of atmospheric neutrino data observed in Super-Kamiokande
Tokyo, University of
Full three flavor oscillation analysis of atmospheric neutrino data observed in Super-Kamiokande angles 12, 23, 13, and one CP phase parameter (cp), by the atmospheric neutrino data observed in Super-Kamiokande. The Super-Kamiokande, a 50 kt water Cherenkov detector, started taking data in 1996 and has been observed
W / Z + heavy flavor production and the standard model Higgs searches at the Tevatron
Choi, S.Y.; /UC, Riverside
2004-08-01T23:59:59.000Z
Searches for the Standard Model Higgs in WH and H {yields} WW channels by CDF and D0 collaborations are presented. The preliminary results are based on < 180 pb{sup -1} of data analyzed by each experiment. Important backgrounds to Higgs searches, such as heavy flavor production in association with massive vector bosons (W and Z) are studied in the process.
Cosmological Consequences of Classical Flavor-Space Locked Gauge Field Radiation
Jannis Bielefeld; Robert R. Caldwell
2015-03-17T23:59:59.000Z
We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early universe, and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress-energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: non-zero cross correlation of the cosmic microwave background temperature and polarization, $TB$ and $EB$, both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future CMB experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and magnetic field energy density. The fluctuation power of primordial gravitational waves oscillates back and forth into fluctuations of the gauge field. In certain cases, the gravitational wave spectrum is shown to be suppressed or amplified by up to an order of magnitude depending on the initial conditions of the gauge field.
Cosmological Consequences of Classical Flavor-Space Locked Gauge Field Radiation
Bielefeld, Jannis
2015-01-01T23:59:59.000Z
We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early universe, and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress-energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: non-zero cross correlation of the cosmic microwave background temperature and polarization, $TB$ and $EB$, both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future CMB experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and mag...
Measurement of B(d) mixing using opposite-side flavor tagging
Baringer, Philip S.; Bean, Alice; Coppage, Don; Hensel, Carsten; Moulik, Tania; Wilson, Graham Wallace
2006-12-15T23:59:59.000Z
We report on a measurement of the B(0)(d) mixing frequency and the calibration of an opposite-side flavor tagger in the D0 experiment. Various properties associated with the b quark on the opposite side of the reconstructed B meson are combined...
averaged lorentz dynamics: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
averaged lorentz dynamics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Dynamics on Lorentz manifolds...
average energy losses: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
average energy losses First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Comparing energy loss...
HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB
Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher
2012-07-01T23:59:59.000Z
Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.
Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging
Raftery, Adrian
the chance of winds high enough to pose dangers for boats or aircraft. In situations calling for a cost/loss analysis, the probabilities of different outcomes need to be known. For wind speed, this issue often arisesProbabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc
The Scientist : Surpassing the Law of Averages The Scientist
Heller, Eric
/8/2009 7:02:24 PM] #12;The Scientist : Surpassing the Law of Averages "Single-cell genomics appears to be the most straightforward, and at the moment the only way we can assemble the genomes of the uncultured and pushing technological limitations to bring their studies of genomics, genetics, RNA transcription
Optimal Control with Weighted Average Costs and Temporal Logic Specifications
Murray, Richard M.
Optimal Control with Weighted Average Costs and Temporal Logic Specifications Eric M. Wolff Control and Dynamical Systems California Institute of Technology Pasadena, California 91125 Email: ewolff@caltech.edu Ufuk Topcu Control and Dynamical Systems California Institute of Technology Pasadena, California 91125
Navy Estimated Average Hourly Load Profile by Month (in MW)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Navy Estimated Average Hourly Load Profile by Month (in MW) MONTH HE1 HE2 HE3 HE4 HE5 HE6 HE7 HE8 HE9 HE10 HE11 HE12 HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24...
Paleosecular variation and the average geomagnetic field at 20 latitude
Johnson, Catherine Louise
-averaged field (TAF) for a two-parameter longitudinally symmetric (zonal) model. Values for our model parameters rocks, and oceanic sediments, but consistent with that from reversed polarity continental and igneous to paleosecular variation (PSV). We examine PSV at ±20° using virtual geomagnetic pole (VGP) dispersion
Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging
Washington at Seattle, University of
February 24, 2006 1J. McLean Sloughter is Graduate Research Assistant, Adrian E. Raftery is BlumsteinProbabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging J. McLean Sloughter, Adrian E. Raftery and Tilmann Gneiting 1 Department of Statistics, University of Washington
Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging
Raftery, Adrian
: J. McLean Sloughter, Department of Mathematics, Seattle University, 901 12th Ave., P.O. Box 222000Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN SLOUGHTER Seattle University, Seattle, Washington TILMANN GNEITING Heidelberg University, Heidelberg
average specific absorption: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
average specific absorption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Original Research Specific...
Microsystems and Nanotechnology Group
Pulfrey, David L.
Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report 2007 Microsystems and Nanotechnology Research Group 1 About
Microsystems and Nanotechnology Group
Pulfrey, David L.
Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report 2008 Microsystems and Nanotechnology Research Group 1 About
Averaging cross section data so we can fit it
Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC
2014-10-23T23:59:59.000Z
The ^{56}Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
Estimate of average freeze-out volume in multifragmentation events
Piantelli, S; Borderie, B; Bougault, R; Chbihi, A; Dayras, R; Durand, D; Frankland, J D; Galíchet, E; Guinet, D; Lanzalone, G; Lautesse, P; Le Neindre, N; López, O; Pârlog, M; Rivet, M F; Rosato, E; Tamain, B; Vient, E; Vigilante, M; Volant, C; Wieleczko, J P
2005-01-01T23:59:59.000Z
An estimate of the average freeze-out volume for multifragmentation events is presented. Values of volumes are obtained by means of a simulation using the experimental charged product partitions measured by the 4pi multidetector INDRA for 129Xe central collisions on Sn at 32 AMeV incident energy. The input parameters of the simulation are tuned by means of the comparison between the experimental and simulated velocity (or energy) spectra of particles and fragments.
High Average Power, High Energy Short Pulse Fiber Laser System
Messerly, M J
2007-11-13T23:59:59.000Z
Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.
Determination of the uncertainty in assembly average burnup
Cacciapouti, R.J.; Lam, G.M.; Theriault, P.A.; Delmolino, P.M.
1998-12-31T23:59:59.000Z
Pressurized water reactors maintain records of the assembly average burnup for each fuel assembly at the plant. The reactor records are currently used by commercial reactor operators and vendors for (a) special nuclear accountability, (b) placement of spent fuel in storage pools, and (c) dry storage cask design and analysis. A burnup credit methodology has been submitted to the US Nuclear Regulatory Commission (NRC) by the US Department of Energy. In order to support this application, utilities are requested to provide burnup uncertainty as part of their reactor records. The collected burnup data are used for the development of a plant correction to the cask vendor supplied burnup credit loading curve. The objective of this work is to identify a feasible methodology for determining the 95/95 uncertainty in the assembly average burnup. Reactor records are based on the core neutronic analysis coupled with measured in-core detector data. The uncertainty of particular burnup records depends mainly on the uncertainty associated with the methods used to develop the records. The methodology adopted for this analysis utilizes current neutronic codes for the determination of the uncertainty in assembly average burnup.
Ribak, Erez
Fig. 3. Averaged PSF of a whole eye without immersion (a), compared to average eye with corneal of the complete eye was calculated by the averaged Zernike coefficients measured on 532 eyes. All PSFs were). The PSFs were calculated by averaging Zernike coefficients measured from 228 eyes. Both PSFs were
average neutron parameters: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
invariant parameters (ACIPs) are calculated for six groups of BATSE cosmic gamma-ray bursts selected by their peak fluxes on the 1.024 s time scale. The ACIPs represent the...
average parameters required: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
invariant parameters (ACIPs) are calculated for six groups of BATSE cosmic gamma-ray bursts selected by their peak fluxes on the 1.024 s time scale. The ACIPs represent the...
A. E. Kazantsev; K. V. Stepanyantz
2014-10-05T23:59:59.000Z
We verify the identity which relates the two-point Green functions of ${\\cal N}=1$ SQED with $N_f$ flavors, regularized by higher derivatives, by explicit calculations in the three-loop approximation. This identity explains why in the limit of the vanishing external momentum the two-point Green function of the gauge superfield is given by integrals of double total derivatives in the momentum space. It also allows to derive the NSVZ $\\beta$-function exactly in all loops if the renormalization group functions are defined in terms of the bare coupling constant. In order to verify the considered identity we use it for constructing integrals giving the three-loop $\\beta$-function starting from the two-point Green functions of the matter superfields in the two-loop approximation. Then we demonstrate that the results for these integrals coincide with the sums of the corresponding three-loop supergraphs.
Continuum limit physics from 2+1 flavor domain wall QCD
Aoki, Y.; Izubuchi, T.; Arthur, R.; Blum, T.; Boyle, P.A.; Brommel, D.; Christ, N.H.; Dawson, C.; Flynn, J.M.; Jin, X.Y.; Jung, C.; Kelly, C.; Li, M.; Lichtl, A.; Lightman, M.; Lin, M.F.; Mawhinney, R.D.; Maynard,C.M.; Ohta, S.; Pendleton, B.J.; Sachrajda, C.T.; Scholz, E.E.; Soni, A.; Wennekers, J.; Zanotti, J.M.; Zhou, R.
2011-04-22T23:59:59.000Z
We present physical results obtained from simulations using 2+1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing a, [a{sup -1} = 1.73(3) GeV and a{sup -1} = 2.28(3) GeV]. On the coarser lattice, with 24{sup 3} x 64 x 16 points (where the 16 corresponds to L{sub s}, the extent of the 5th dimension inherent in the domain wall fermion formulation of QCD), the analysis of C. Allton et al. Phys. Rev. D 78 is extended to approximately twice the number of configurations. The ensembles on the finer 32{sup 3} x 64 x 16 lattice are new. We explain in detail how we use lattice data obtained at several values of the lattice spacing and for a range of quark masses in combined continuum-chiral fits in order to obtain results in the continuum limit and at physical quark masses. We implement this procedure for our data at two lattice spacings and with unitary pion masses in the approximate range 290-420 MeV (225-420 MeV for partially quenched pions). We use the masses of the {pi} and K mesons and the {Omega} baryon to determine the physical quark masses and the values of the lattice spacing. While our data in the mass ranges above are consistent with the predictions of next-to-leading order SU(2) chiral perturbation theory, they are also consistent with a simple analytic ansatz leading to an inherent uncertainty in how best to perform the chiral extrapolation that we are reluctant to reduce with model-dependent assumptions about higher order corrections. In some cases, particularly for f{sub {pi}}, the pion leptonic decay constant, the uncertainty in the chiral extrapolation dominates the systematic error. Our main results include f{sub {pi}} = 124(2){sub stat}(5){sub syst} MeV, f{sub K}/f{sub {pi}} = 1.204(7)(25) where f{sub K} is the kaon decay constant, m{sub s}{sup MS} (2 GeV) = (96.2 {+-} 2.7) MeV and m{sub ud}{sup MS} (2 GeV) = (3.59 {+-} 0.21) MeV (m{sub s}/m{sub ud} = 26.8 {+-} 1.4) where m{sub s} and m{sub ud} are the mass of the strange quark and the average of the up and down quark masses, respectively, [{Sigma}{sup MS} (2 GeV)]{sup 1/3} = 256(6) MeV, where {Sigma} is the chiral condensate, the Sommer scale r{sub 0} = 0.487(9) fm and r{sub 1} = 0.333(9) fm.
\\EVIDENCE FOR ELECTRON NEUTRINO FLAVOR CHANGE THROUGH MEASUREMENT OF THE 8 B SOLAR NEUTRINO FLUX have had in Sudbury. Godwin Mayers, Ron Pearce, and Jim Cook for the wonderful job they have done
Properties of Group Five and Group Seven transactinium elements
Wilk, Philip A.
2001-01-01T23:59:59.000Z
of Group Five and Group Seven Transactinium Elementsof Group Five and Group Seven Transactinium Elements byof Group Five and Group Seven Transactinium Elements by
Y. Maezawa; S. Aoki; S. Ejiri; T. Hatsuda; N. Ishii; K. Kanaya; N. Ukita
2007-02-02T23:59:59.000Z
We report the current status of our systematic studies of the QCD thermodynamics by lattice QCD simulations with two flavors of improved Wilson quarks. We evaluate the critical temperature of two flavor QCD in the chiral limit at zero chemical potential and show the preliminary result. Also we discuss fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to chemical potential.
Average Fe K-alpha emission from distant AGN
A. Corral; M. J. Page; F. J. Carrera; X. Barcons; S. Mateos; J. Ebrero; M. Krumpe; A. Schwope; J. A. Tedds; M. G. Watson
2008-10-02T23:59:59.000Z
One of the most important parameters in the XRB (X-ray background) synthesis models is the average efficiency of accretion onto SMBH (super-massive black holes). This can be inferred from the shape of broad relativistic Fe lines seen in X-ray spectra of AGN (active galactic nuclei). Several studies have tried to measure the mean Fe emission properties of AGN at different depths with very different results. We compute the mean Fe emission from a large and representative sample of AGN X-ray spectra up to redshift ~ 3.5. We developed a method of computing the rest-frame X-ray average spectrum and applied it to a large sample (more than 600 objects) of type 1 AGN from two complementary medium sensitivity surveys based on XMM-Newton data, the AXIS and XWAS samples. This method makes use of medium-to-low quality spectra without needing to fit complex models to the individual spectra but with computing a mean spectrum for the whole sample. Extensive quality tests were performed by comparing real to simulated data, and a significance for the detection of any feature over an underlying continuum was derived. We detect with a 99.9% significance an unresolved Fe K-alpha emission line around 6.4 keV with an EW ~ 90 eV, but we find no compelling evidence of any significant broad relativistic emission line in the final average spectrum. Deviations from a power law around the narrow line are best represented by a reflection component arising from cold or low-ionization material. We estimate an upper limit for the EW of any relativistic line of 400 eV at a 3 sigma confidence level. We also marginally detect the so-called Iwasawa-Taniguchi effect on the EW for the unresolved emission line, which appears weaker for higher luminosity AGN.
Pseudoscalar bosonic excitations in the color-flavor locked phase at moderate densities
Verena Kleinhaus; Michael Buballa
2008-08-26T23:59:59.000Z
The properties of pseudoscalar bosonic excitations in the color-flavor locked phase at moderate densities are studied within a model of the Nambu--Jona-Lasinio type. Our previous analysis is extended to Goldstone bosons with hidden flavor and to higher-lying modes which stay massive in the chiral limit. The bosons are constructed explicitly by solving the Bethe-Salpeter equation for quark-quark scattering in random phase approximation. The masses and weak decay constants of the Goldstone bosons are found in good agreement with predictions from the low-energy effective theory. In the non-Goldstone sector we find an SU(3) octet which is weakly bound, while the singlet appears to be unbound.
Pseudoscalar bosonic excitations in the color-flavor locked phase at moderate densities
Kleinhaus, Verena
2008-01-01T23:59:59.000Z
The properties of pseudoscalar bosonic excitations in the color-flavor locked phase at moderate densities are studied within a model of the Nambu--Jona-Lasinio type. Our previous analysis is extended to Goldstone bosons with hidden flavor and to higher-lying modes which stay massive in the chiral limit. The bosons are constructed explicitly by solving the Bethe-Salpeter equation for quark-quark scattering in random phase approximation. The masses and weak decay constants of the Goldstone bosons are found in good agreement with predictions from the low-energy effective theory. In the non-Goldstone sector we find an SU(3) octet which is weakly bound, while the singlet appears to be unbound.
Self-induced flavor instabilities of a dense neutrino stream in a two-dimensional model
Mirizzi, Alessandro; Saviano, Ninetta
2015-01-01T23:59:59.000Z
We consider a simplifed model for self-induced flavor conversions of a dense neutrino gas in two dimensions, showing new solutions that spontaneously break the spatial symmetries of the initial conditions. As a result of the symmetry breaking induced by the neutrino-neutrino interactions, the coherent behavior of the neutrino gas becomes unstable. This instability produces large spatial variations in the flavor content of the ensemble. Furthermore, it also leads to the creation of domains of different net lepton number flux. The transition of the neutrino gas from a coherent to incoherent behavior shows an intriguing analogy with a streaming flow changing from laminar to turbulent regime. These finding would be relevant for the self-induced conversions of neutrinos streaming-off a supernova core.
Lepton-flavor-violating decay {tau}{yields}{mu}{mu}{mu} at the CERN LHC
Giffels, M.; Stahl, A. [III. Physikalisches Institut, RWTH Aachen, 52056 Aachen (Germany); Kallarackal, J. [Institut fuer Theoretische Physik, RWTH Aachen, 52074 Aachen (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, 12489 Berlin (Germany); Kraemer, M.; O'Leary, B. [Institut fuer Theoretische Physik, RWTH Aachen, 52074 Aachen (Germany)
2008-04-01T23:59:59.000Z
Lepton-flavor-violating {tau} decays are predicted in many extensions of the standard model at a rate observable at future collider experiments. In this article we focus on the decay {tau}{yields}{mu}{mu}{mu}, which is a promising channel to observe lepton-flavor violation at the CERN Large Hadron Collider (LHC). We present analytic expressions for the differential decay width derived from a model-independent effective Lagrangian with general four-fermion operators, and estimate the experimental acceptance for detecting the decay {tau}{yields}{mu}{mu}{mu} at the LHC. Specific emphasis is given to decay angular distributions and how they can be used to discriminate new physics models. We provide specific predictions for various extensions of the standard model, including supersymmetric, little Higgs, and technicolor models.
Table 14a. Average Electricity Prices, Projected vs. Actual
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a. Average Electricity
Table 14b. Average Electricity Prices, Projected vs. Actual
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a. Average Electricityb.
Table 14b. Average Electricity Prices, Projected vs. Actual
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a. Average
Table 17. Average Price of U.S. Coke Exports
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average3.5.6.7.
Table 19. Average Price of U.S. Coal Imports
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average Price
Table 22. Average Price of U.S. Coke Imports
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average1.2.
A light plasmon mode in the color-flavor-locking phase
H. Malekzadeh; Dirk H. Rischke
2006-11-10T23:59:59.000Z
We calculate the spectral densities of electric and magnetic gluons at zero temperature in color-superconducting quark matter in the color-flavor-locking (CFL) phase. We find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity.
Gluon self-energy in the color-flavor-locked phase
Malekzadeh, H; Rischke, Dirk H.
2006-01-01T23:59:59.000Z
We calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the color-flavor-locked (CFL) phase. We find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity.
Gluon self-energy in the color-flavor-locked phase
H. Malekzadeh; Dirk H. Rischke
2006-06-08T23:59:59.000Z
We calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the color-flavor-locked (CFL) phase. We find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity.
On the Resonant Spin Flavor Precession of the Neutrino in the Sun
Y. Tayalati; J. Derkaoui
1999-09-25T23:59:59.000Z
This work deals with the possible solution of the solar neutrino problem in the framework of the resonant neutrino spin-flavor precession scenario. The event rate results from the solar neutrino experiments as well as the recoil electron energy spectrum from SuperKamiokande are used to constrain the free parameters of the neutrino in this model. We consider two kinds of magnetic profiles inside the sun. For both cases, a static and a twisting field are discussed.
An explicit SU(12) family and flavor unification model with natural fermion masses and mixings
Albright, Carl H. [Northern Illinois Univ., Dekalb, IL (United States); Feger, Robert P. [Vanderbilt Univ., Nashville, TN (United States); Kephart, Thomas W. [Vanderbilt Univ., Nashville, TN (United States)
2012-07-01T23:59:59.000Z
We present an SU(12) unification model with three light chiral families, avoiding any external flavor symmetries. The hierarchy of quark and lepton masses and mixings is explained by higher dimensional Yukawa interactions involving Higgs bosons that contain SU(5) singlet fields with VEVs about 50 times smaller than the SU(12) unification scale. The presented model has been analyzed in detail and found to be in very good agreement with the observed quark and lepton masses and mixings.
Improving the Flavor of Ground Beef by Selecting Trimmings from Specific Locations
Harbison, Amanda 1989-
2012-08-17T23:59:59.000Z
point decreases. Smith, Yang, Larsen, and Tume, (1998), Wood et al. (2003), and Chung et al. (2006) demonstrated that fat hardness is dictated primarily by the concentration of stearic acid. Of the eight fat depots studied, brisket had the lowest slip... of grain-fed beef when compared to grass-fed beef (Cox et al., 2006). Therefore, fatty acid profiles can cause a distinct difference in acceptability of meat samples. Gas chromatography with mass spectrometry In recent years, flavor research has become...
Study of the running coupling constant in 10-flavor QCD with the Schroedinger functional method
N. Yamada; M. Hayakawa; K. -I. Ishikawa; Y. Osaki; S. Takeda; S. Uno
2009-10-22T23:59:59.000Z
The electroweak gauge symmetry is allowed to be spontaneously broken by the strongly interacting vector-like gauge dynamics. When the gauge coupling of a theory runs slowly in a wide range of energy scale, the theory is extremely interesting. This may open up the possibility that the origin of all masses may be traced back to the gauge theory. We use the SF method to determine the scale dependence of the gauge coupling of 10-flavor QCD. Preliminary results are reported.
Higgs Boson masses and B-Physics Constraints in Non-Minimal Flavor Violating SUSY scenarios
Arana-Catania, M; Herrero, M J; Penaranda, S
2011-01-01T23:59:59.000Z
We present one-loop corrections to the Higgs boson masses in the MSSM with Non-Minimal Flavor Violation. The flavor violation is generated from the hypothesis of general flavor mixing in the squark mass matrices, and these are parameterized by a complete set of delta^XY_ij (X, Y = L,R; i; j = t, c, u or b, s, d). We calculate the corrections to the Higgs masses in terms of these delta^XY_ij taking into account all relevant restrictions from B-physics data. This includes constraints from BR(B -> Xs gamma), BR(Bs -> mu+ mu-) and delta M_B_s . After taking into account these constraints we find sizable corrections to the Higgs boson masses, in the case of the lightest MSSM Higgs boson mass exceeding tens of GeV. These corrections are found mainly for the low tan beta case. In the case of a Higgs boson mass measurement these corrections might be used to set further constraints on delta^XY_ij.
An overview of the CUJET model: Jet Flavor Tomography applied at RHIC and LHC
Alessandro Buzzatti; Miklos Gyulassy
2012-10-01T23:59:59.000Z
Jet Flavor Tomography is a powerful tool used to probe the properties of Quark Gluon Plasma formed in heavy ion collisions at RHIC and LHC. A new Monte Carlo model of jet quenching developed at Columbia University, CUJET, was applied to predict the jet flavor and centrality dependence of the nuclear modification factor $R_{AA}$. The predictions for fragments $f=\\pi,D,B,e$, derived from quenched jet flavors $a=g,u,c,b$ in central and peripheral collisions at RHIC and LHC, exhibit novel features such as a level crossing pattern in $R_{AA\\rightarrow a\\rightarrow f}$ over a broad transverse momentum range which can test jet-medium dynamics in quark gluon plasmas and help discriminate between current energy loss models. Furthermore, the inclusion of running coupling effects seems to change the jet energy dependence of the jet energy loss to a non trivial constant behavior, with a visible impact on the predictions for $R_{AA}$.
Light scalar as the messenger of electroweak and flavor symmetry breaking
Lykken, J. D. [Theoretical Physics Department, Fermilab, P.O. Box 500, Batavia, Illinois 60510 (United States); Murdock, Z. [Department of Physics and Oklahoma Center for High Energy Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Nandi, S. [Theoretical Physics Department, Fermilab, P.O. Box 500, Batavia, Illinois 60510 (United States); Department of Physics and Oklahoma Center for High Energy Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)
2009-04-01T23:59:59.000Z
We propose a new framework for understanding the hierarchies of fermion masses and mixings. The masses and mixings of all standard model (SM) charged fermions other than top arise from higher dimensional operators involving a messenger scalar S and flavon scalars F{sub i}. The flavons spontaneously break SM flavor symmetries at around the TeV scale. The SM singlet scalar S couples directly to the Higgs H and spontaneously breaks another U(1) at the electroweak scale. At the TeV scale, SM quarks and charged leptons have renormalizable couplings to S, but not to H or F{sub i}. These couplings involve new heavy vectorlike fermions. Integrating out these fermions produces a pattern of higher dimensional operators that reproduce the observed hierarchies of the SM masses and mixings in terms of powers of the 'little hierarchy': the ratio of the electroweak scale to the flavor-breaking scale. The framework has important phenomenological implications. Flavor-changing neutral currents are within experimental limits but D{sup 0}-D{sup 0} mixing and B{sub s}{yields}{mu}{sup +}{mu}{sup -} could be close to current sensitivities. The neutral scalar s of the messenger field mixes with the light Higgs of the SM, which can have strong effects on Higgs decay branching fractions. The s mass eigenstate may be lighter than the Higgs, and could be detected at the Tevatron or the LHC.
Plasma dynamics and a significant error of macroscopic averaging
Marek A. Szalek
2005-05-22T23:59:59.000Z
The methods of macroscopic averaging used to derive the macroscopic Maxwell equations from electron theory are methodologically incorrect and lead in some cases to a substantial error. For instance, these methods do not take into account the existence of a macroscopic electromagnetic field EB, HB generated by carriers of electric charge moving in a thin layer adjacent to the boundary of the physical region containing these carriers. If this boundary is impenetrable for charged particles, then in its immediate vicinity all carriers are accelerated towards the inside of the region. The existence of the privileged direction of acceleration results in the generation of the macroscopic field EB, HB. The contributions to this field from individual accelerated particles are described with a sufficient accuracy by the Lienard-Wiechert formulas. In some cases the intensity of the field EB, HB is significant not only for deuteron plasma prepared for a controlled thermonuclear fusion reaction but also for electron plasma in conductors at room temperatures. The corrected procedures of macroscopic averaging will induce some changes in the present form of plasma dynamics equations. The modified equations will help to design improved systems of plasma confinement.
Average Fe K-alpha emission from distant AGN
Corral, A; Carrera, F J; Barcons, X; Mateos, S; Ebrero, J; Krumpe, M; Schwope, A; Tedds, J A; Watson, M G
2008-01-01T23:59:59.000Z
One of the most important parameters in the XRB (X-ray background) synthesis models is the average efficiency of accretion onto SMBH (super-massive black holes). This can be inferred from the shape of broad relativistic Fe lines seen in X-ray spectra of AGN (active galactic nuclei). Several studies have tried to measure the mean Fe emission properties of AGN at different depths with very different results. We compute the mean Fe emission from a large and representative sample of AGN X-ray spectra up to redshift ~ 3.5. We developed a method of computing the rest-frame X-ray average spectrum and applied it to a large sample (more than 600 objects) of type 1 AGN from two complementary medium sensitivity surveys based on XMM-Newton data, the AXIS and XWAS samples. This method makes use of medium-to-low quality spectra without needing to fit complex models to the individual spectra but with computing a mean spectrum for the whole sample. Extensive quality tests were performed by comparing real to simulated data, a...
Yearly average performance of the principal solar collector types
Rabl, A.
1981-01-01T23:59:59.000Z
The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.
Topological Quantum Hashing with the Icosahedral Group
Burrello, Michele [International School for Advanced Studies (SISSA), Via Beirut 2-4, I-34014 Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste (Italy); Xu Haitan [Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027 (China); Mussardo, Giuseppe [International School for Advanced Studies (SISSA), Via Beirut 2-4, I-34014 Trieste (Italy); International Centre for Theoretical Physics (ICTP), I-34014 Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste (Italy); Wan Xin [Asia Pacific Center for Theoretical Physics (APCTP), Pohang, Gyeongbuk 790-784 (Korea, Republic of); Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027 (China)
2010-04-23T23:59:59.000Z
We study an efficient algorithm to hash any single-qubit gate into a braid of Fibonacci anyons represented by a product of icosahedral group elements. By representing the group elements by braid segments of different lengths, we introduce a series of pseudogroups. Joining these braid segments in a renormalization group fashion, we obtain a Gaussian unitary ensemble of random-matrix representations of braids. With braids of length O(log{sup 2}(1/{epsilon})), we can approximate all SU(2) matrices to an average error {epsilon} with a cost of O(log(1/{epsilon})) in time. The algorithm is applicable to generic quantum compiling.
Calibbi, Lorenzo; Masiero, Antonio; Paradisi, Paride; Shadmi, Yael
2015-01-01T23:59:59.000Z
Motivated by the null results of LHC searches, which together with the Higgs mass, severely constrain minimal supersymmetric extensions of the standard model, we adopt a model-independent approach to study charged slepton flavor. We examine a number of simplified models, with different subsets of sleptons, electroweak gauginos, and Higgsinos, and derive the allowed slepton flavor dependence in the region probed by current LHC searches, and in the region relevant for the 14 TeV LHC. We then study the impact of the allowed flavor dependence on lepton plus missing energy searches. In some cases, flavor dependence significantly modifies the reach of the searches. These effects may be even larger at the next LHC run, since for the higher masses probed at 14 TeV, larger flavor mixings and relative mass splittings are compatible with low-energy constraints. Retaining the full lepton flavor information can increase the sensitivity of the searches.
Measurement strategies for estimating long-term average wind speeds
Ramsdell, J.V.; Houston, S.; Wegley, H.L.
1980-10-01T23:59:59.000Z
The uncertainty and bias in estimates of long-term average wind speeds inherent in continuous and intermittent measurement strategies are examined by simulating the application of the strategies to 40 data sets. Continuous strategies have smaller uncertainties for fixed duration measurement programs, but intermittent strategies make more efficient use of instruments and have smaller uncertainties for a fixed amount of instrument use. Continuous strategies tend to give biased estimates of the long-term annual mean speed unless an integral number of years' data is collected or the measurement program exceeds 3 years in duration. Intermittent strategies with three or more month-long measurement periods per year do not show any tendency toward bias.
Average System Cost Methodology : Administrator's Record of Decision.
United States. Bonneville Power Administration.
1984-06-01T23:59:59.000Z
Significant features of average system cost (ASC) methodology adopted are: retention of the jurisdictional approach where retail rate orders of regulartory agencies provide primary data for computing the ASC for utilities participating in the residential exchange; inclusion of transmission costs; exclusion of construction work in progress; use of a utility's weighted cost of debt securities; exclusion of income taxes; simplification of separation procedures for subsidized generation and transmission accounts from other accounts; clarification of ASC methodology rules; more generous review timetable for individual filings; phase-in of reformed methodology; and each exchanging utility must file under the new methodology within 20 days of implementation by the Federal Energy Regulatory Commission of the ten major participating utilities, the revised ASC will substantially only affect three. (PSB)
GROUP THERAPY Syracuse University
McConnell, Terry
your individual needs. In a group, up to eight students meet with one or two group therapists. MostGROUP THERAPY Syracuse University Counseling Center 200 Walnut Place Phone: 315-443-4715 Fax: 315-443-4276 counselingcenter.syr.edu WHAT STUDENTS SAY ABOUT GROUP THERAPY I was really anxious about joining a group
Istvan Danko; for the CLEO Collaboration
2006-01-18T23:59:59.000Z
We present the analysis technique and preliminary results of two ongoing analyses at CLEO which put lepton universality and lepton flavor conservation to the test in Upsilon decays.
Average and recommended half-life values for two neutrino double beta decay: Upgrade-2013
Barabash, A. S. [Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)
2013-12-30T23:59:59.000Z
All existing positive results on two neutrino double beta decay in different nuclei were analyzed. Using the procedure recommended by the Particle Data Group, weighted average values for half-lives of {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 100}Mo?{sup 100}Ru (0{sub 1}{sup +}), {sup 116}Cd, {sup 130}Te, {sup 136}Xe, {sup 150}Nd, {sup 150}Nd?{sup 150}Sm (0{sub 1}{sup +}) and {sup 238}U were obtained. Existing geochemical data were analyzed and recommended values for half-lives of {sup 128}Te and {sup 130}Ba are proposed. I recommend the use of these results as the most currently reliable values for half-lives.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from...
Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom
Benevides, Luis A. [Naval Sea Systems Command,1333 Isaac Hull Avenue, Washington Navy Yard, DC 20376 (United States); Hintenlang, David E. [University of Florida, 202 Nuclear Sciences Center, P.O. Box 1183, Gainesville Florida 32611 (United States)
2011-05-05T23:59:59.000Z
The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.
Long-term average performance benefits of parabolic trough improvements
Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.
1980-03-01T23:59:59.000Z
Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.
High average power magnetic modulator for copper lasers
Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.
1991-06-14T23:59:59.000Z
Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.
Ensemble bayesian model averaging using markov chain Monte Carlo sampling
Vrugt, Jasper A [Los Alamos National Laboratory; Diks, Cees G H [NON LANL; Clark, Martyn P [NON LANL
2008-01-01T23:59:59.000Z
Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.
QEP WORKING GROUP CHARGES Assessment Working Group
Liu, Paul
and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data
Selmer groups as flat cohomology groups
?esnavi?ius, K?stutis
2014-01-01T23:59:59.000Z
Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined ...
1. Tsubono Group 1 1 Tsubono Group
Ejiri, Shinji
optical fiber Test of the law of gravitation at extremely small distance references [1] Y. Aso, M. Ando1. Tsubono Group 1 1 Tsubono Group Research Subjects: Experimental Relativity, Gravitational Wave Physics, Laser Inter- ferometer Member: Kimio TSUBONO and Masaki ANDO The detection of gravitational waves
{CP} Violation in Flavor Tagged $B_s \\to J/\\psi \\phi$ Decays
Makhoul, Khaldoun; /MIT
2009-06-01T23:59:59.000Z
In this dissertation, we present the results of a time-dependent angular analysis of B{sub s} {yields} J/{psi}{phi} decays performed with the use of initial-state flavor tagging. CP violation is observed in this mode through the interference of decay without net mixing and decay with net mixing, that is, B{sub s} {yields} J/{psi}{phi} and B{sub s} {yields} {bar B}{sub s} {yields} J/{psi}{phi}. The time-dependent angular analysis is used to extract the decay widths of the heavy and light B{sub s} eigenstates and the difference between these decay widths {Delta}{Lambda}{sub s} {triple_bond} {Lambda}{sub s}{sup L}-{Lambda}{sub s}{sup H}. Initial-state flavor tagging is used to determine the matter-antimatter content of the B{sub s} mesons at production time. We combine flavor tagging with the angular analysis, which statistically determines the contributions of the CP-even and CP-odd components at decay time, to measure the CP-violating phase {beta}{sub s}. The phase {beta}{sub s} is expressed in terms of elements of the Cabibbo-Kobayashi-Maskawa matrix as {beta}{sub s} {triple_bond} arg (-V{sub ts}V*{sub tb}/V{sub cs}V*{sub cb}), and is predicted by the Standard Model to be close to zero, {beta}{sub s}{sup SM} = 0.02. In the measurement of {Delta}{Lambda}{sub s}, we use a dataset corresponding to 1.7 fb{sup -1} of luminosity, collected at the CDF experiment from proton-antiproton collisions at a center of mass energy {radical}s = 1.96 TeV. In the measurement of {beta}{sub s}, we use a dataset corresponding to 1.3 fb{sup -1} of collected luminosity. We measure {Delta}{Lambda}{sub s} = (0.071{sub -0.059}{sup +0.064} {+-} 0.007) ps{sup -1} using the time-dependent angular analysis. Combining the angular analysis with flavor-tagging, we find that assuming the Standard Model predictions of {beta}{sub s} and {Delta}{Lambda}{sub s}, the probability of a deviation as large as the level of the observed data is 33%. We obtain a suite of associated results which are discussed in detail in this dissertation alongside the main results.
Effect of copper and iron on the oxidative flavor deterioration of ice cream
Miah, Md. Abdul Hamid
1961-01-01T23:59:59.000Z
EFFECT GF CCFPlB\\ AND IRCN ". N THE CXIDATIVE FLAVCR DCTCRICB . T" N ' F ICE CIGAR A Thesis Xd, Ahdul Hajsid Nish Submitted to the (hadvete School of the Agricultural and Vechanical Collage of Texas in partial fclfilIment of the requiresents... for the degree of "ASTER CP SCIENCE Jhnuary I~ Nc )or Sub)catt Dairy &~actures EFFECT GF COFFER ARD IRON CR Tlm OXIDATIVE FLAVOR DETKRI/Z'TJ ' CF ICE CRE//P A Thesis Pi? Pbdul Hasid 'Pish Approved as to style and content by: I /'i'I /' ' / , r...
Heavy-quark potential with dynamical flavors: A first-order transition
Bigazzi, Francesco [Physique Theorique et Mathematique and International Solvay Institutes, Universite Libre de Bruxelles, CP 231, B-1050 Bruxelles (Belgium); Cotrone, Aldo L. [Institute for Theoretical Physics, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Nunez, Carlos [University of Wales Swansea, Department of Physics, Singleton Park, Swansea, SA2 8PP, Wales (United Kingdom); Paredes, Angel [Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)
2008-12-01T23:59:59.000Z
We study the static potential between external quark-antiquark pairs in a strongly coupled gauge theory with a large number of colors and massive dynamical flavors, using a dual string description. When the constituent mass of the dynamical quarks is set below a certain critical value, we find a first-order phase transition between a linear and a Coulomb-like regime. Above the critical mass the two phases are smoothly connected. We also study the dependence on the theory parameters of the quark-antiquark separation at which the static configuration decays into specific static-dynamical mesons.
Yue, Chong-Xing; Guo, Yu-Chen
2015-01-01T23:59:59.000Z
Taking into account of the constraints on the lepton flavor violation (LFV) couplings of the standard model (SM) Higgs boson H with leptons from low energy experiments and the recent CMS results, we investigate production of the SM Higgs boson associated with a lepton $\\tau$ via $e\\gamma$ collision at the ILC and LHeC experiments. The production cross sections are calculated, the LFV signals and the relevant SM backgrounds are examined. The LFV signals of the SM Higgs boson might be observed via $e\\gamma$ collision in future ILC experiments.
Lepton flavor violating Higgs couplings and single production of the Higgs boson via e ?collision
Chong-Xing Yue; Cong Pang; Yu-Chen Guo
2015-05-08T23:59:59.000Z
Taking into account of the constraints on the lepton flavor violation (LFV) couplings of the standard model (SM) Higgs boson H with leptons from low energy experiments and the recent CMS results, we investigate production of the SM Higgs boson associated with a lepton $\\tau$ via $e\\gamma$ collision at the ILC and LHeC experiments. The production cross sections are calculated, the LFV signals and the relevant SM backgrounds are examined. The LFV signals of the SM Higgs boson might be observed via $e\\gamma$ collision in future ILC experiments.
Scaling test of two-flavor O(a)-improved lattice QCD
Michele Della Morte; Patrick Fritzsch; Harvey B. Meyer; Hubert Simma; Rainer Sommer; Shinji Takeda; Oliver Witzel; Ulli Wolff
2008-04-30T23:59:59.000Z
We report on a scaling test of several mesonic observables in the non-perturbatively O(a) improved Wilson theory with two flavors of dynamical quarks. The observables are constructed in a fixed volume of 2.4fm x (1.8fm)^3 with Schroedinger functional boundary conditions. No significant scaling violations are found. Using the kaon mass determined in \\cite{cernI}, we update our estimate of the Lambda parameter to Lambda^(2)_{msbar}/m_K = 0.52(6).
Search for Lepton Flavor Violation in the Decay tau -> electron gamma
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San
2005-08-26T23:59:59.000Z
A search for the non-conservation of lepton flavor in the decay {tau}{sup {+-}} {yields} e{sup {+-}}{gamma} has been performed with 2.07 x 10{sup 8} e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} events collected by the BABAR detector at the PEP-II storage ring at a center-of-mass energy near 10.58 GeV. They find no evidence for a signal and set an upper limit on the branching ratio of {Beta}({tau}{sup {+-}} {yields} e{sup {+-}}{gamma}) < 1.1 x 10{sup -7} at 90% confidence level.
Search for Lepton-Flavor and Lepton-Number Violation in the Decay tau to lhh'
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San
2005-06-29T23:59:59.000Z
A search for lepton-flavor and lepton-number violation in the decay of the tau lepton into one charged lepton and two charged hadrons is performed using 221.4 fb{sup -1} of data collected at an e{sup +}e{sup -} center-of-mass energy of 10.58 GeV with the BABAR detector at the PEP-II storage ring. In all 14 decay modes considered, the observed data are compatible with background expectations, and upper limits are set in the range {Beta}({tau} {yields} {ell}hh') < (0.7-4.8) x 10{sup -7} at 90% confidence level.
Observable T{sub 7} Lepton Flavor Symmetry at the Large Hadron Collider
Cao Qinghong [High Energy Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 (United States); Khalil, Shaaban [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No. 11837, P.O. Box 43 (Egypt); Department of Mathematics, Ain Shams University, Faculty of Science, Cairo 11566 (Egypt); Ma, Ernest [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Okada, Hiroshi [Centre for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No. 11837, P.O. Box 43 (Egypt)
2011-04-01T23:59:59.000Z
More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T{sub 7} and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.
Study of the running coupling constant in 10-flavor QCD with the Schrödinger functional method
N. Yamada; M. Hayakawa; K. -I. Ishikawa; Y. Osaki; S. Takeda; S. Uno
2010-03-17T23:59:59.000Z
The electroweak gauge symmetry is allowed to be spontaneously broken by the strongly interacting vector-like gauge dynamics. When the gauge coupling of a theory runs slowly in a wide range of energy scale, the theory is a candidate for walking technicolor. This may open up the possibility that the origin of all masses may be traced back to the gauge theory. We use the \\SF method to see whether the gauge coupling of 10-flavor QCD "walks" or not. Preliminary result is reported.
Limits on tau lepton flavor violating decays in three charged leptons
Cervelli, Alberto
2010-04-29T23:59:59.000Z
A search for the neutrinoless, lepton-flavor violating decay of the {tau} lepton into three charged leptons has been performed using an integrated luminosity of 468 fb{sup -1} collected with the BABAR detector at the PEP-II collider. In all six decay modes considered, the numbers of events found in data are compatible with the background expectations. Upper limits on the branching fractions are set in the range (1.8-3.3) x 10{sup -8} at 90% confidence level.
Falsifying High-Scale Baryogenesis with Neutrinoless Double Beta Decay and Lepton Flavor Violation
Deppisch, Frank F; Hirsch, Martin; Huang, Wei-Chih; Päs, Heinrich
2015-01-01T23:59:59.000Z
Interactions that manifest themselves as lepton number violating processes at low energies in combination with sphaleron transitions typically erase any pre-existing baryon asymmetry of the universe. In this letter, we discuss the constraints obtained from an observation of neutrinoless double beta decay in this context. If a new physics mechanism of neutrinoless double beta decay is observed, typical scenarios of high-scale baryogenesis will be excluded unless the baryon asymmetry is stabilized via some new mechanism. We also sketch how this conclusion can be extended beyond the first lepton generation by incorporating lepton flavor violating processes.
Falsifying High-Scale Baryogenesis with Neutrinoless Double Beta Decay and Lepton Flavor Violation
Frank F. Deppisch; Julia Harz; Martin Hirsch; Wei-Chih Huang; Heinrich Päs
2015-03-16T23:59:59.000Z
Interactions that manifest themselves as lepton number violating processes at low energies in combination with sphaleron transitions typically erase any pre-existing baryon asymmetry of the universe. In this letter, we discuss the constraints obtained from an observation of neutrinoless double beta decay in this context. If a new physics mechanism of neutrinoless double beta decay is observed, typical scenarios of high-scale baryogenesis will be excluded unless the baryon asymmetry is stabilized via some new mechanism. We also sketch how this conclusion can be extended beyond the first lepton generation by incorporating lepton flavor violating processes.
A global approach to top-quark flavor-changing interactions
Gauthier Durieux; Fabio Maltoni; Cen Zhang
2014-12-22T23:59:59.000Z
We adopt a fully gauge-invariant effective-field-theory approach for parametrizing top-quark flavor-changing-neutral-current interactions. It allows for a global interpretation of experimental constraints (or measurements) and the systematic treatment of higher-order quantum corrections. We discuss some recent results obtained at next-to-leading order accuracy in QCD and perform, at that order, a first global analysis of a subset of the available experimental limits in terms of effective operator coefficients. We encourage experimental collaborations to adopt this approach and extend the analysis by using all information they have prime access to.
Dirac or inverse seesaw neutrino masses with B – L gauge symmetry and S? flavor symmetry
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ma, Ernest; Srivastava, Rahul
2015-02-01T23:59:59.000Z
Many studies have been made on extensions of the standard model with B – L gauge symmetry. The addition of three singlet (right-handed) neutrinos renders it anomaly-free. It has always been assumed that the spontaneous breaking of B – L is accomplished by a singlet scalar field carrying two units of B – L charge. This results in a very natural implementation of the Majorana seesaw mechanism for neutrinos. However, there exists in fact another simple anomaly-free solution which allows Dirac or inverse seesaw neutrino masses. We show for the first time these new possibilities and discuss an application tomore »neutrino mixing with S? flavor symmetry.« less
Two-flavor QCD phases and condensates at finite isospin chemical potential
Zhao Zhang; Yu-xin Liu
2007-02-06T23:59:59.000Z
We study the phase structure and condensates of two-flavor QCD at finite isospin chemical potential in the framework of a confining, Dyson-Schwinger equation model. We find that the pion superfluidity phase is favored at high enough isospin chemical potential. A new gauge invariant mixed quark-gluon condensate induced by isospin chemical potential is proposed based on Operator Product Expansion. We investigate the sign and magnitude of this new condensate and show that it's an important condensate in QCD sum rules at finite isospin density.
Chang-Hwan Lee; Ismail Zahed
2014-03-07T23:59:59.000Z
We discuss the general features of the electromagnetic radiation from a thermal hadronic gas as constrained by chiral symmetry. The medium effects on the electromagnetic spectral functions and the partial restoration of chiral symmetry are quantified in terms of the pion densities. The results are compared with the electromagnetic radiation from a strongly interacting quark-gluon plasma in terms of the leading gluon condensate operators. We use the spectral functions as constrained by the emission rates to estimate the electric conductivity, the light flavor susceptibility and diffusion constant across the transition from the correlated hadronic gas to a strongly interacting quark-gluon plasma.
Measurement of the B?s lifetime in the flavor-specific decay channel B?s ? D?s ???X
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Abazov, V.? M. [Joint Inst. for Nuclear Research (JINR), Moscow (Russia); Abbott, B. [Univ. of Oklahoma, Norman, OK (United States); Acharya, B.? S. [Tata Inst. of Fundamental Research, Mumbai (India); Adams, M. [Univ. of Illinois, Chicago, IL (United States); Adams, T. [Florida State Univ., Tallahassee, FL (United States); Agnew, J.? P. [Univ. of Manchester (United Kingdom); Alexeev, G.? D. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Alkhazov, G. [Petersburg Nuclear Physics Inst., St. Petersburg (Russia); Alton, A. [Univ. of Michigan, Ann Arbor, MI (United States); Askew, A. [Florida State Univ., Tallahassee, FL (United States); Atkins, S. [Louisiana Tech Univ., Ruston, LA (United States); Augsten, K. [Czech Technical Univ., Prague (Czech Republic); Avila, C. [Univ. de los Andes, Bogota (Columbia); Badaud, F. [Univ. Blaise Pascal, Clermont (France); Bagby, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Baldin, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bandurin, D.? V. [Univ. of Virginia, Charlottesville, VA (United States); Banerjee, S. [Tata Inst. of Fundamental Research, Mumbai (India); Barberis, E.; Baringer, P.; Bartlett, J.? F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S.? B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P.? C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E.? E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X.? B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C.? P.; Camacho-Pérez, E.; Casey, B.? C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K.? M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S.? W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W.? E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S.? J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S.? P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H.? T.; Diesburg, M.; Ding, P.? F.; Dominguez, A.; Dubey, A.; Dudko, L.? V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V.? D.; Enari, Y.; Evans, H.; Evdokimov, V.? N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H.? E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P.? H.; Garcia-Bellido, A.; García-González, J.? A.; Gavrilov, V.; Geng, W.; Gerber, C.? E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P.? D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M.? W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J.? M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A.? P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M.? D.; Hirosky, R.; Hoang, T.; Hobbs, J.? D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J.? L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A.? S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M.? S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A.? W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y.? N.; Kiselevich, I.; Kohli, J.? M.; Kozelov, A.? V.; Kraus, J.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V.? A.; Lammers, S.; Lebrun, P.; Lee, H.? S.; Lee, S.? W.; Lee, W.? M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q.? Z.; Lim, J.? K.; Lincoln, D.; Linnemann, J.; Lipaev, V.? V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A.? L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V.? L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C.? L.; Meijer, M.? M.; Melnitchouk, A.; Menezes, D.; Mercadante, P.? G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N.? K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H.? A.; Negret, J.? P.; Neustroev, P.; Nguyen, H.? T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S.? K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.
2015-02-01T23:59:59.000Z
We present an updated measurement of the B?s lifetime using the semileptonic decays B?s ? D?s ???X, with D?s ? ??? and ? ? K?K? (and the charge conjugate process). This measurement uses the full Tevatron Run II sample of proton-antiproton collisions at ?s = 1.96 TeV, comprising an integrated luminosity of 10.4 fb?1. We find a flavor-specifc lifetime Tfs(B?s) = 1.479 ± 0.010 (stat) ± 0.021 (syst) ps. This technique is also used to determine the B? lifetime using the analogous B? ? D????X decay with D? ? ??? and ? ? K?K? , yielding T(B?) = 1.534 ± 0.019 (stat) ± 0.021 (syst) ps. Both measurements are consistent with the current world averages, and the B?s lifetime measurement is one of the most precise to date. Taking advantage of the cancellation of systematic uncertainties, we determine the lifetime ratio Tfs(B?s)/T(B?) = 0.964 ± 0.013 (stat) ± 0.007 (syst).
Measurement of the B?s lifetime in the flavor-specific decay channel B?s ? D?s ???X
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Abazov, V.? M.; Abbott, B.; Acharya, B.? S.; Adams, M.; Adams, T.; Agnew, J.? P.; Alexeev, G.? D.; Alkhazov, G.; Alton, A.; Askew, A.; et al
2015-02-01T23:59:59.000Z
We present an updated measurement of the B?s lifetime using the semileptonic decays B?s ? D?s ???X, with D?s ? ??? and ? ? K?K? (and the charge conjugate process). This measurement uses the full Tevatron Run II sample of proton-antiproton collisions at ?s = 1.96 TeV, comprising an integrated luminosity of 10.4 fb?1. We find a flavor-specifc lifetime Tfs(B?s) = 1.479 ± 0.010 (stat) ± 0.021 (syst) ps. This technique is also used to determine the B? lifetime using the analogous B? ? D????X decay with D? ? ??? and ? ? K?K? , yielding T(B?) = 1.534 ±more »0.019 (stat) ± 0.021 (syst) ps. Both measurements are consistent with the current world averages, and the B?s lifetime measurement is one of the most precise to date. Taking advantage of the cancellation of systematic uncertainties, we determine the lifetime ratio Tfs(B?s)/T(B?) = 0.964 ± 0.013 (stat) ± 0.007 (syst).« less
Mirizzi, Alessandro
2015-01-01T23:59:59.000Z
Self-induced flavor conversions of supernova (SN) neutrinos have been characterized in the spherically symmetric "bulb model", reducing the neutrino evolution to a one dimensional problem along a radial direction. We lift this assumption, presenting a two-dimensional model where neutrinos are launched from a spherical neutrino-sphere with many zenithal angles and two azimuthal angles. We also assume that self-induced conversions are not suppressed by large matter effects. In this situation we find that self-interacting neutrinos spontaneously break axial and spherical symmetries. As a result the flavor content and the lepton number of the neutrino gas would acquire seizable direction-dependent variations, breaking the coherent behavior found in the spherically symmetric case. This finding would suggest that the previous results of the self-induced flavor evolution obtained in one-dimensional models should be critically re-examined.
Renormalization Group Analysis of Supersymmetric Particle Interactions
Box, Andrew D. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)
2010-02-10T23:59:59.000Z
We reexamine the renormalization group equations (RGEs) for the dimensionless and dimensionful parameters of the Minimal Supersymmetric Standard Model (MSSM), incorporating 1-loop thresholds. The inclusion of these thresholds necessarily results in splitting between dimen-sionless couplings which are equal at the tree level. Assuming that the SUSY-breaking mechanism does not introduce new intergenerationalcouplings, we present the most general form for high-scale, soft-SUSY-breaking (SSB) parameters. With this as our boundary condition, we consider illustrative examples of numerical solutions to the RGEs. In a supersymmetric grand unified theory with the scale of SUSY scalars split from that of gauginos and higgsinos, we find that the gaugino mass unification relation may be violated to the order of 10%. Further, we consider the rate for the flavor violating decay of the lightest stop to charm plus neutralino. We find that using the complete RGE solution as opposed to the commonly used 'single-step' integration of the RGEs can qualitatively change the picture of event-topologies from top-squark pair production, or from gluino production if gluino to stop plus top is the dominant gluino decay mode.
Transverse Quark Spin Effects and the Flavor Dependence of the Boer-Mulders Function
Leonard P. Gamberg; Gary R. Goldstein; Marc Schlegel
2007-07-30T23:59:59.000Z
The naive time reversal odd (T-odd) parton distribution $h_{1}^{\\perp}$, the so-called Boer-Mulders function, for both $u$- and $d$-quarks is considered in the diquark spectator model. While other approaches give evidence that the signs of the Boer-Mulders function for both flavors $u$ and $d$ are the same and negative, previous caculations in the diquark-spectator model found $h_{1}^{\\perp(u)}$ and $h_{1}^{\\perp(d)}$ have differnet signs. The flavor dependence is of significance for the analysis of the azimuthal $\\cos(2\\phi)$ asymmetries in unpolarized SIDIS and DY-processes, as well as for the overall physical understanding of the distribution of transversely polarized quarks in unpolarized nucleons. We find substantial differences with previous work. In particular we obtain estimates of the zeroth, half and first moments of Boer-Mulders functions that are negative over the full range in Bjorken $x$ for both the up and down quarks. In conjunction with the Collins function we then predict the $\\cos(2\\phi)$ azimuthal asymmetry for $\\pi^{+}$ and $\\pi^{-}$ in this framework. We also find that the Sivers up and down quark are negative and postive respectively. As a by-product of the formalism, we calculate the chiral-odd but T-even function $h_{1L}^{\\perp}$ in the spectator framework, which allows us to present a prediction for the single spin asymmetry $A_{UL}^{\\sin(2\\phi)}$ for a longitudinally polarized target in SIDIS.
Metastability bounds on flavor-violating trilinear soft terms in the MSSM
Park, Jae-hyeon [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany)
2011-03-01T23:59:59.000Z
The vacuum stability bounds on flavor-violating trilinear soft terms are revisited from the viewpoint that one should not ban a standard-model-like false vacuum as long as it is long-lived on a cosmological time scale. The vacuum transition rate is evaluated numerically by searching for the bounce configuration. Like stability, a metastability bound does not decouple even if sfermion masses grow. Apart from being more generous than stability, the new bounds are largely independent of Yukawa couplings except for the stop trilinears. With vacuum longevity imposed on otherwise arbitrary LR insertions, it is found that a super flavor factory has the potential to probe sparticle masses up to a few TeV through B and {tau} physics whereas the MEG experiment might cover a far wider range. In the stop sector, metastability is more restrictive than any existing experimental constraint such as from electroweak precision data. Also discussed are dependency on other parameters and reliability under radiative corrections.
Heavy flavor measurements using high-pt electrons in the ALICE EMCal
Mark Heinz
2010-06-07T23:59:59.000Z
Heavy flavor hadrons, i.e. those containing charm and bottom quarks, will be abundantly produced at the LHC and are important probes of the Quark-Gluon Plasma (QGP). Of particular interest is the investigation of parton energy loss in the medium. Using heavy flavor jets we will have a pure sample of quark jets with which to study the color-charge effects on energy loss. In addition, studies of bottom production in p+p collision at LHC energies will be utilized to further constrain the current parameters used by NLO and FONLL calculations. The talk will focus on the very high-pt electron particle identi?cation using the EMCal detector. We present the electron reconstruction and measurements which can be achieved with 1 nominal year of Pb-Pb running at 5.5 TeV. We then estimate the rate of non-photonic electrons and present systematic and statistical error bars. Finally, we show preliminary results on B-jet tagging techniques in p+p which utilize jet-finding algorithms (FASTJET) in conjunction with displaced secondary vertices containing high-pt electrons.
On the Dynamics of Non-Relativistic Flavor-Mixed Particles
Mikhail V. Medvedev
2014-05-28T23:59:59.000Z
Evolution of a system of interacting non-relativistic quantum flavor-mixed particles is considered both theoretically and numerically. It was shown that collisions of mixed particles not only scatter them elastically, but can also change their mass eigenstates thus affecting particles' flavor composition and kinetic energy. The mass eigenstate conversions and elastic scattering are related but different processes, hence the conversion $S$-matrix elements can be arbitrarily large even when the elastic scattering $S$-matrix elements vanish. The conversions are efficient when the mass eigenstates are well-separated in space but suppressed if their wave-packets overlap; the suppression is most severe for mass-degenerate eigenstates in flat space-time. The mass eigenstate conversions can lead to an interesting process, called `quantum evaporation,' in which mixed particles, initially confined deep inside a gravitational potential well and scattering only off each other, can escape from it without extra energy supply leaving nothing behind inside the potential at $t\\to \\infty$. Implications for the cosmic neutrino background and the two-component dark matter model are discussed and a prediction for the direct detection dark matter experiments is made.
Modeling pion physics in the $?$-regime of two-flavor QCD using strong coupling lattice QED
D. J. Cecile; Shailesh Chandrasekharan
2007-08-03T23:59:59.000Z
In order to model pions of two-flavor QCD we consider a lattice field theory involving two flavors of staggered quarks interacting strongly with U(1) gauge fields. For massless quarks, this theory has an $SU_L(2)\\times SU_R(2) \\times U_A(1)$ symmetry. By adding a four-fermion term we can break the U_A(1) symmetry and thus incorporate the physics of the QCD anomaly. We can also tune the pion decay constant F, to be small compared to the lattice cutoff by starting with an extra fictitious dimension, thus allowing us to model low energy pion physics in a setting similar to lattice QCD from first principles. However, unlike lattice QCD, a major advantage of our model is that we can easily design efficient algorithms to compute a variety of quantities in the chiral limit. Here we show that the model reproduces the predictions of chiral perturbation theory in the $\\epsilon$-regime.
Effective Yukawa couplings and flavor-changing Higgs boson decays at linear colliders
Gabrielli, E. [CERN, PH-TH, CH-1211 Geneva 23 (Switzerland); Mele, B. [INFN, Sezione di Roma, c/o Dipartimento di Fisica, Universita di Roma 'La Sapienza', Piazzale A. Moro 2, I-00185 Rome (Italy)
2011-04-01T23:59:59.000Z
We analyze the advantages of a linear-collider program for testing a recent theoretical proposal where the Higgs boson Yukawa couplings are radiatively generated, keeping unchanged the standard-model mechanism for electroweak-gauge-symmetry breaking. Fermion masses arise at a large energy scale through an unknown mechanism, and the standard model at the electroweak scale is regarded as an effective field theory. In this scenario, Higgs boson decays into photons and electroweak gauge-boson pairs are considerably enhanced for a light Higgs boson, which makes a signal observation at the LHC straightforward. On the other hand, the clean environment of a linear collider is required to directly probe the radiative fermionic sector of the Higgs boson couplings. Also, we show that the flavor-changing Higgs boson decays are dramatically enhanced with respect to the standard model. In particular, we find a measurable branching ratio in the range (10{sup -4}-10{sup -3}) for the decay H{yields}bs for a Higgs boson lighter than 140 GeV, depending on the high-energy scale where Yukawa couplings vanish. We present a detailed analysis of the Higgs boson production cross sections at linear colliders for interesting decay signatures, as well as branching-ratio correlations for different flavor-conserving/nonconserving fermionic decays.
Phase diagram and surface tension in the three-flavor Polyakov-quark-meson model
Bruno W. Mintz; Rudnei O. Ramos; Juergen Schaffner-Bielich; Rainer Stiele
2013-02-28T23:59:59.000Z
We obtain the in-medium effective potential of the three-flavor Polyakov-Quark-Meson model as a real function of real variables in the Polyakov loop variable, to allow for the study of all possible minima of the model. At finite quark chemical potential, the real and imaginary parts of the effective potential, in terms of the Polyakov loop variables, are made apparent, showing explicitly the fermion sign problem of the theory. The phase diagram and other equilibrium observables, obtained from the real part of the effective potential, are calculated in the mean-field approximation. The obtained results are compared to those found with the so-called saddle-point approach. Our procedure also allows the calculation of the surface tension between the chirally broken and confined phase, and the chirally restored and deconfined phase. The values of surface tension we find for low temperatures are very close to the ones recently found for two-flavor chiral models. Some consequences of our results for the early Universe, for heavy-ion collisions, and for proto-neutron stars are briefly discussed.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-Plate
TEC Working Group Topic Groups Archives Communications Meeting...
Office of Environmental Management (EM)
TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call...
Antonio Enea Romano
2007-01-27T23:59:59.000Z
We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.
Romano, A E
2006-01-01T23:59:59.000Z
We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...
Mechanical Engineering & Thermal Group
Mojzsis, Stephen J.
Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced
Interagency Sustainability Working Group
Broader source: Energy.gov [DOE]
The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.
Not Available
2008-03-01T23:59:59.000Z
NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.
Fact #638: August 30, 2010 Average Expenditure for a New Car...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
8: August 30, 2010 Average Expenditure for a New Car Declines in Relation to Family Earnings Fact 638: August 30, 2010 Average Expenditure for a New Car Declines in Relation to...
Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)
2010-11-09T23:59:59.000Z
A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.
Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)
2012-07-31T23:59:59.000Z
A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.
Sen, Srimoyee
2015-01-01T23:59:59.000Z
We consider the phase diagram of QCD at very high baryon density and at zero temperature in the presence of a strong magnetic field. The state of matter at such high densities and low temperatures is believed to be a phase known as the color-flavor locked phase which breaks color and electromagnetic gauge invariance leaving a linear combination of them unbroken. Of the 9 quarks (three flavors and three colors), five are neutral under this unbroken generator and four are oppositely charged. In the presence of a magnetic field corresponding to the unbroken generator however, the properties of the condensate changes and a new phase known as the magnetic color flavor locked (MCFL)phase is realized. This phase breaks some of the color-flavor symmetry of the Lagrangian spontaneously, giving rise to 6 Goldstone modes, 5 of which are pseudo Goldstone modes. These Goldstone modes are composed of excitations that correspond to both neutral quarks and charged quarks. Hence it is natural to expect that the propagators of...
Srimoyee Sen
2015-03-11T23:59:59.000Z
We consider the phase diagram of QCD at very high baryon density and at zero temperature in the presence of a strong magnetic field. The state of matter at such high densities and low temperatures is believed to be a phase known as the color-flavor locked phase which breaks color and electromagnetic gauge invariance leaving a linear combination of them unbroken. Of the 9 quarks (three flavors and three colors), five are neutral under this unbroken generator and four are oppositely charged. In the presence of a magnetic field corresponding to the unbroken generator however, the properties of the condensate changes and a new phase known as the magnetic color flavor locked (MCFL)phase is realized. This phase breaks some of the color-flavor symmetry of the Lagrangian spontaneously, giving rise to 6 Goldstone modes, 5 of which are pseudo Goldstone modes. These Goldstone modes are composed of excitations that correspond to both neutral quarks and charged quarks. Hence it is natural to expect that the propagators of these Goldstone modes get affected in the presence of a magnetic field and their speed becomes considerably anisotropic. Although this anisotropy is self-evident from symmetry arguments, it has not been quantified yet. We calculate this anisotropy in the speed of the Goldstone modes using an NJL model type of interaction between the quarks and comment on the impact of such anisotropic modes on the transport properties of the MCFL phase.
Production of heavy flavor and photons on high-energy colliders, and rare decays of heavy mesons
Production of heavy flavor and photons on high-energy colliders, and rare decays of heavy mesons (FCNC) decay Â¯B0 Â¯K0 e+ e- K- + e+ e-. Prompt photon production in pp (pÂ¯p) collisions. Production measurement of photon polarization is difficult, therefore one can instead use virtual-photon production b
Search for flavor changing neutral currents in top quark decays in pp collisions at 7 TeV
Apyan, Aram
The results of a search for flavor changing neutral currents in top quark decays t?Zq in events with a topology compatible with the decay chain tt¯?Wb+Zq???b+??q are presented. The search is performed with a data sample ...
S86 JUNE 2006| above-average precipitation totals for the year, caus-
in Croatia and Bosnia-Herzegovina, but below average for June in Bulgaria. Rainfall totals in April and June
O'Mahony, Donal E.
GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA ANDERSON FITZSIMONS, DENISEBINCHY, SUSAN CARLEY, JESSE CONWAY, AILBHE BROOKE, HENRY CONLAN, DEIRDRE, CAOIMHE HESKIN, CLODAGH MC GOVERN, MARIE-CLAIREMURRAY, AINE GROGAN, CLARE GERARD, ALLISON MC QUAID, RACHEL
Light colored scalar as messenger of up-quark flavor dynamics in grand unified theories
Dorsner, Ilja [Department of Physics, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo (Bosnia and Herzegowina); Fajfer, Svjetlana [Department of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); J. Stefan Institute, Jamova 39, P.O. Box 3000, 1001 Ljubljana (Slovenia); Kamenik, Jernej F.; Kosnik, Nejc [J. Stefan Institute, Jamova 39, P.O. Box 3000, 1001 Ljubljana (Slovenia)
2010-11-01T23:59:59.000Z
The measured forward-backward asymmetry in the tt production at the Tevatron might be explained by the additional exchange of a colored weak singlet scalar. Such state appears in some of the grand unified theories, and its interactions with the up-quarks are purely antisymmetric in flavor space. We systematically investigate the resulting impact on charm and top quark physics. The constraints on the relevant Yukawa couplings come from the experimentally measured observables related to D{sup 0}-D{sup 0} oscillations, as well as dijet and single-top production measurements at the Tevatron. After fully constraining the relevant Yukawa couplings, we predict possible signatures of this model in rare top quark decays. In a class of grand unified models we demonstrate how the obtained information enables to constrain the Yukawa couplings of the up-quarks at very high energy scale.
Localization and chiral symmetry in 2+1 flavor domain wall QCD
David J. Antonio; Kenneth C. Bowler; Peter A. Boyle; Norman H. Christ; Michael A. Clark; Saul D. Cohen; Chris Dawson; Alistair Hart; Balint Joó; Chulwoo Jung; Richard D. Kenway; Shu Li; Meifeng Lin; Robert D. Mawhinney; Christopher M. Maynard; Shigemi Ohta; Robert J. Tweedie; Azusa Yamaguchi
2008-01-01T23:59:59.000Z
We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.
Lepton flavor violation as a probe of quark-lepton unification
Cheung, Kingman; Kang, Sin Kyu; Kim, C.S.; Lee, Jake [Department of Physics, Tsing Hua Univeristy, Hsinchu, Taiwan (China); School of Physics, Seoul National University, Seoul 151-741 (Korea, Republic of); Department of Physics, Yonsei University, Seoul 120-749 (Korea, Republic of)
2005-08-01T23:59:59.000Z
The recent measurements of the solar neutrino mixing angle {theta}{sub sol} and the Cabibbo mixing angle {theta}{sub C} reveal a surprising relation, {theta}{sub sol}+{theta}{sub C}{approx_equal}({pi}/4), which has been interpreted as an evidence for quark-lepton unification. We show in realizations of quark-lepton unification that the PMNS mixing matrix can be decomposed into a CKM-like matrix and maximal mixing matrices. We explore a possibility to probe such implications by considering the relative sizes of branching ratios for the lepton flavor violating radiative decay processes, l{sub i}{yields}l{sub j}{gamma}, in the context of the supersymmetric standard model with heavy right-handed Majorana neutrinos.
Chiral vortical wave and induced flavor charge transport in a rotating quark-gluon plasma
Jiang, Yin; Liao, Jinfeng
2015-01-01T23:59:59.000Z
We show the existence of a new gapless collective excitation in a rotating fluid system with chiral fermions, named as the Chiral Vortical Wave (CVW). The CVW has its microscopic origin at the quantum anomaly and macroscopically arises from interplay between vector and axial charge fluctuations induced by vortical effects. The wave equation is obtained both from hydrodynamic current equations and from chiral kinetic theory and its solutions show nontrivial CVW-induced charge transport from different initial conditions. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of induced flavor quadrupole in QGP and estimate the elliptic flow splitting effect for Lambda baryons that may be experimentally measured.
Helium nuclei, deuteron and dineutron in 2+1 flavor lattice QCD
Takeshi Yamazaki; Ken-ichi Ishikawa; Yoshinobu Kuramashi; Akira Ukawa
2012-07-18T23:59:59.000Z
We calculate the binding energies for multi-nucleon bound states with the nuclear mass number less than or equal to 4 in 2+1 flavor QCD at the lattice spacing of a = 0.09 fm employing a relatively heavy quark mass corresponding to m_pi = 0.51 GeV. To distinguish a bound state from attractive scattering states, we investigate the volume dependence of the energy shift between the ground state and the state of free nucleons by changing the spatial extent of the lattice from 2.9 fm to 5.8 fm. We conclude that ^4He, ^3He, deuteron and dineutron are bound at m_pi = 0.51 GeV. We compare their binding energies with those in our quenched studies and also with several previous investigations.
Observation of the Baryonic Flavor-Changing Neutral Current Decay ?b0 ? ?µ+µ-
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, T [Helsinki Inst. of Phys.; Gonzalez, B Alvarez [Oviedo U.; Cantabria Inst. of Phys.; Amerio, S [INFN, Padua; Amidei, D [Michigan U.; Anastassov, A [Northwestern U.; Annovi, A [Frascati; Antos, J [Comenius U.; Apollinari, G [Fermilab; Appel, J A [Fermilab; Apresyan, A [Purdue U.; Arisawa, T [Waseda U.; Dubna, JINR
2011-11-08T23:59:59.000Z
The authors report the first observation of the baryonic flavor-changing neutral current decay ?b0 ? ?µ+µ- with 24 signal events and a statistical significance of 5.8 Gaussian standard deviations. This measurement uses a pp? collisions data sample corresponding to 6.8 fb-1 at ?s = 1.96 TeV collected by the CDF II detector at the Tevatron collider. The total and differential branching ratios for ?b0 ? ?µ+µ- are measured. They find ?(?b0 ? ?µ+µ-) = [1.73 ± 0.42(stat) ± 0.55(syst)] x 10-6. They also report the first measurement of the differential branching ratio of Bs0??µ+µ- using 49 signal events. In addition, they report branching ratios for B+?K+µ+µ-, B0?K0µ+µ- and ?? K*(892)µ+µ- decays.
Static quark free energies at finite temperature with two flavors of improved Wilson quarks
Y. Maezawa; S. Ejiri; T. Hatsuda; N. Ishii; N. Ukita; S. Aoki; K. Kanaya
2006-10-02T23:59:59.000Z
Polyakov loop correlations at finite temperature in two-flavor QCD are studied in lattice simulations with the RG-improved gluon action and the clover-improved Wilson quark action. From the simulations on a $16^3 \\times 4$ lattice, we extract the free energies, the effective running coupling $g_{\\rm eff}(T)$ and the Debye screening mass $m_D(T)$ for various color channels of heavy quark--quark and quark--anti-quark pairs above the critical temperature. The free energies are well approximated by the screened Coulomb form with the appropriate Casimir factors. The magnitude and the temperature dependence of the Debye mass are compared to those of the next-to-leading order thermal perturbation theory and to a phenomenological formula given in terms of $g_{\\rm eff}(T)$. Also we made a comparison between our results with the Wilson quark and those with the staggered quark previously reported.
Two-Flavor Staggered Fermion Thermodynamics at N_t = 12
Claude Bernard; Tom Blum; Carleton DeTar; Steven Gottlieb; Kari Rummukainen; Urs M. Heller; James Hetrick; Douglas Toussaint; Robert L. Sugar
1996-05-23T23:59:59.000Z
We present results of an ongoing study of the nature of the high temperature crossover in QCD with two light fermion flavors. These results are obtained with the conventional staggered fermion action at the smallest lattice spacing to date---approximately 0.1 fm. Of particular interest are a study of the temperature of the crossover a determination of the induced baryon charge and baryon susceptibility, the scalar susceptibility, and the chiral order parameter, used to test models of critical behavior associated with chiral symmetry restoration. From our new data and published results for N_t = 4, 6, and 8, we determine the QCD magnetic equation of state from the chiral order parameter using O(4) and mean field critical exponents and compare it with the corresponding equation of state obtained from an O(4) spin model and mean field theory. We also present a scaling analysis of the Polyakov loop, suggesting a temperature dependent ``constituent quark free energy.''
Magnetic Field and Flavor Effects on the Gamma-Ray Burst Neutrino Flux
Philipp Baerwald; Svenja Hümmer; Walter Winter
2011-03-04T23:59:59.000Z
We reanalyze the prompt muon neutrino flux from gamma-ray bursts (GRBs), at the example of the often used reference Waxman-Bahcall GRB flux, in terms of the particle physics involved. We first reproduce this reference flux treating synchrotron energy losses of the secondary pions explicitly. Then we include additional neutrino production modes, the neutrinos from muon decays, the magnetic field effects on all secondary species, and flavor mixing with the current parameter uncertainties. We demonstrate that the combination of these effects modifies the shape of the original Waxman-Bahcall GRB flux significantly, and changes the normalization by a factor of three to four. As a consequence, the gamma-ray burst search strategy of neutrino telescopes may be based on the wrong flux shape, and the constraints derived for the GRB neutrino flux, such as the baryonic loading, may in fact be already much stronger than anticipated.
Net-baryon number fluctuations in (2+1)-flavor QCD
Christian Schmidt
2010-07-29T23:59:59.000Z
We present a lattice study of net-baryon number fluctuations in (2+1)-flavor QCD. The results are based on a Taylor expansion of the pressure with respect to the baryon chemical potential. We calculate higher moments of the net-baryon number fluctuations and compare with the corresponding resonance gas results. We find that for temperature below 0.9T_c the fluctuations seem to agree with the hadron resonance gas predictions. Close to T_c, higher moments are increasingly more sensitive to the critical behavior of the QCD phase transition. Furthermore, we estimate the radius of convergence of the Taylor series as well as the curvature of the transition line in the temperature chemical potential plane.
J. Q. Zhang; X. C. Song; W. J. Huo; T. F. Feng
2002-06-17T23:59:59.000Z
In an effective lagrangian approach [EM97] to new physics, the authors in ref. [HL99] pushed tau anomalous magnetic and electric dipole moments (AMDM and EDM) down to $10^{-11}$ and $10^{-25} e cm$ by using a Fritzsch-Xing lepton mass matrix ansatz. In this note, we find that, in this approach, there exists the connection between $\\tau$ AMDM and EDM and the lepton flavor mixing matrix. By using the current neutrino oscillation experimental results, we investigate the parameter space of lepton mixing angles to $\\tau$ AMDM and EDM. We can obtain the same or smaller bounds of $\\delta a_\\tau$ and $d_\\tau$ acquired in ref. [HL99] and constrain $\\theta_l$ (the mixing angle obtained by long-baseline neutrino oscillation experiments) from $\\tau$ AMDM and EDM.
Condensation phenomena in two-flavor scalar QED at finite chemical potential
Alexander Schmidt; Philippe de Forcrand; Christof Gattringer
2015-01-26T23:59:59.000Z
We study condensation in two-flavored, scalar QED with non-degenerate masses at finite chemical potential. The conventional formulation of the theory has a sign problem at finite density which can be solved using an exact reformulation of the theory in terms of dual variables. We perform a Monte Carlo simulation in the dual representation and observe a condensation at a critical chemical potential $\\mu_c$. After determining the low-energy spectrum of the theory we try to establish a connection between $\\mu_c$ and the mass of the lightest excitation of the system, which are naively expected to be equal. It turns out, however, that the relation of the critical chemical potential to the mass spectrum in this case is non-trivial: Taking into account the form of the condensate and making some simplifying assumptions we suggest an adequate explanation which is supported by numerical results.
Collective excitations in a superfluid of color-flavor locked quark matter
Kenji Fukushima; Kei Iida
2005-05-14T23:59:59.000Z
We investigate collective excitations coupled with baryon density in a system of massless three-flavor quarks in the collisionless regime. By using the Nambu-Jona-Lasinio (NJL) model in the mean-field approximation, we derive the spectra both for the normal and color-flavor locked (CFL) superfluid phases at zero temperature. In the normal phase, we obtain zero sound as a low-lying collective mode in the particle-hole (vector) channel. In the CFL phase, when the excitation energy, $\\omega$, is smaller than the threshold given by twice the pairing gap $\\Delta$ ($\\omegaphase of $\\Delta$ appears as a sharp peak in the particle-particle ($H$) channel. We reproduce the property known from low energy effective theories that this mode propagates at a velocity of $v_H=1/\\sqrt{3}$ in the low momentum regime; the decay constant $f_H$ in the NJL model is identical with the QCD result in the mean-field approximation. We also find that as the momentum of the phonon increases, the excitation energy goes up and asymptotically approaches $\\omega=2\\Delta$. Above the threshold for pair excitations ($\\omega>2\\Delta$), zero sound manifests itself in the vector channel. By locating the zero sound pole of the vector propagator in the complex energy plane we investigate the attenuation and energy dispersion relation of zero sound. In the long wavelength limit, the phonon mode has its spectral weight in the $H$ channel alone, while the spectral function vanishes in the vector channel. We finally extend our study to the case of nonzero temperature.
Nucleon structure with two flavors of dynamical domain-wall fermions
Huey-Wen Lin; Tom Blum; Shigemi Ohta; Shoichi Sasaki; Takeshi Yamazaki
2008-02-06T23:59:59.000Z
We present a numerical lattice quantum chromodynamics calculation of isovector form factors and the first few moments of the isovector structure functions of the nucleon. The calculation employs two degenerate dynamical flavors of domain-wall fermions, resulting in good control of chiral symmetry breaking. Non-perturbative renormalization of the relevant quark currents is performed where necessary. The inverse lattice spacing, $a^{-1}$, is about 1.7 GeV. We use degenerate up and down dynamical quark masses around 1, 3/4 and 1/2 the strange quark mass. The physical volume of the lattice is about $(1.9{fm})^3$. The ratio of the isovector vector to axial charges, $g_A/g_V$, trends a bit lower than the experimental value as the quark mass is reduced toward the physical point. We calculate the momentum-transfer dependences of the isovector vector, axial, induced tensor and induced pseudoscalar form factors. The Goldberger-Treiman relation holds at low momentum transfer and yields a pion-nucleon coupling, $g_{\\pi NN} = 15.5(1.4)$, where the quoted error is only statistical. We find that the flavor non-singlet quark momentum fraction $_{u-d}$ and quark helicity fraction $_{\\Delta u-\\Delta d}$ overshoot their experimental values after linear chiral extrapolation. We obtain the transversity, $_{\\delta u-\\delta d} = 0.93(6)$ in $\\bar{\\rm MS}$ at 2 GeV and a twist-3 polarized moment, $d_1$, appears small, suggesting that the Wandzura-Wilczek relation holds approximately. We discuss the systematic errors in the calculation, with particular attention paid to finite-volume effects, excited-state contamination, and chiral extrapolations.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
members will execute in August 2011. Facilities Use Charge agreements are drafted: In review stage by customer group; Proposal specifies annual update of charge amount...
Not Available
2008-03-01T23:59:59.000Z
The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.
Tuite, P.; Tuite, K.; Harris, G. [Waste Management Group, Inc., Peekskill, NY (United States)
1994-09-01T23:59:59.000Z
This report evaluates the effects of concentration averaging practices on the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) generated by the nuclear utility industry and sealed sources. Using estimates of the number of waste components that individually exceed Class C limits, this report calculates the proportion that would be classified as GTCC LLW after applying concentration averaging; this proportion is called the concentration averaging factor. The report uses the guidance outlined in the 1993 Nuclear Regulatory Commission (NRC) draft Branch Technical Position on concentration averaging, as well as waste disposal experience at nuclear utilities, to calculate the concentration averaging factors for nuclear utility wastes. The report uses the 1993 NRC draft Branch Technical Position and the criteria from the Barnwell, South Carolina, LLW disposal site to calculate concentration averaging factors for sealed sources. The report addresses three waste groups: activated metals from light water reactors, process wastes from light-water reactors, and sealed sources. For each waste group, three concentration averaging cases are considered: high, base, and low. The base case, which is the most likely case to occur, assumes using the specific guidance given in the 1993 NRC draft Branch Technical Position on concentration averaging. To project future GTCC LLW generation, each waste category is assigned a concentration averaging factor for the high, base, and low cases.
Fermilab | Employee Advisory Group | Focus Group Report
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focus Group Report A random sampling of
C. S. Lim; K. Ogure; H. Tsujimoto
2003-02-11T23:59:59.000Z
We derive the reduction formula, which expresses the survival rate for the three-flavor neutrino oscillation by the two-flavor one, to the next-to-leading order in case there is one resonance due to the matter effect. We numerically find that the next-to-leading reduction formula is extremely accurate and the improvement is relevant for the precision test of solar neutrino oscillation and the indirect measurment of CP violation in the leptonic sector. We also derive the reduction formula, which is slightly different from that previously obtained, in case there are two resonances. We numerically verify that this reduction formula is quite accurate and is valid for wider parameter region than the previously obtained ones are.
Working group report: Neutrino physics
2009-01-01T23:59:59.000Z
Working group report: Neutrino physics Acknowledgements TheWorking group report: Neutrino physics Coordinators: SANDHYAthe report of the neutrino physics working group at WHEPP-X.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
General Information ASD Groups ESHQA Operations Argonne Home > Advanced Photon Source > Power Systems Group This page is currently under construction. Old PS Group Site (visible...
Miles, Christopher J.
Models of maximal flavor violation (MxFV) in elementary particle physics may contain at least one new scalar SU(2) doublet field ?FV=(?[superscript 0],?[superscript +]) that couples the first and third generation quarks ...
Belloni, Alberto, Ph. D. Massachusetts Institute of Technology
2007-01-01T23:59:59.000Z
The search for flavor oscillations in the neutral Bs - B meson system constitutes a flagship analysis of the Tevatron proton-anti-proton collider physics program and an important probe for effects due to new physics beyond ...
Williams, Michael
A search for the lepton-flavor-violating decays B[0 over s] ? e[superscript ±]?[superscript ?] and B[superscript 0] ? e[superscript ±]?[superscript ?] is performed with a data sample, corresponding to an integrated luminosity ...
Plan averaging for multicriteria navigation of sliding window IMRT and VMAT
Craft, David, E-mail: dcraft@partners.org; Papp, Dávid; Unkelbach, Jan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)] [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)
2014-02-15T23:59:59.000Z
Purpose: To describe a method for combining sliding window plans [intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT)] for use in treatment plan averaging, which is needed for Pareto surface navigation based multicriteria treatment planning. Methods: The authors show that by taking an appropriately defined average of leaf trajectories of sliding window plans, the authors obtain a sliding window plan whose fluence map is the exact average of the fluence maps corresponding to the initial plans. In the case of static-beam IMRT, this also implies that the dose distribution of the averaged plan is the exact dosimetric average of the initial plans. In VMAT delivery, the dose distribution of the averaged plan is a close approximation of the dosimetric average of the initial plans. Results: The authors demonstrate the method on three Pareto optimal VMAT plans created for a demanding paraspinal case, where the tumor surrounds the spinal cord. The results show that the leaf averaged plans yield dose distributions that approximate the dosimetric averages of the precomputed Pareto optimal plans well. Conclusions: The proposed method enables the navigation of deliverable Pareto optimal plans directly, i.e., interactive multicriteria exploration of deliverable sliding window IMRT and VMAT plans, eliminating the need for a sequencing step after navigation and hence the dose degradation that is caused by such a sequencing step.
High-average-power, diode-pumped solid state lasers for energy and industrial applications
Krupke, W.F.
1994-03-02T23:59:59.000Z
Progress at LLNL in the development high-average-power diode-pumped solid state lasers is summarized, including the development of enabling technologies.
E-Print Network 3.0 - area average temperature Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and Fisheries Sciences Collection: Environmental Sciences and Ecology 24 The Greenhouse Effect Temperature Equilibrium Summary: - it is neither heating nor cooling on average....
Pllumbi, Else; Wanajo, Shinya; Janka, H -Thomas; Huedepohl, Lorenz
2014-01-01T23:59:59.000Z
Neutrino oscillations, especially to light sterile states, can affect the nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 Msun electron-capture supernova, whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations both between active and active-sterile flavors. We also take into account the alpha-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution which depend in a subtle way on the relative radial positions of the sterile MSW resonances, of collective flavor transformations, and on the formation of alpha-particles. For the adopted supernova progenitor, we find that neutrino oscillations, also to a sterile state wi...
Mishchenko, Yuriy
2004-12-01T23:59:59.000Z
MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati
Quark-Antiquark and Diquark Condensates in Vacuum in a 2D Two-Flavor Gross-Neveu Model
Zhou Bang-Rong
2007-03-07T23:59:59.000Z
The analysis based on the renormalized effective potential indicates that, similar to in the 4D two-flavor Nambu-Jona-Lasinio (NJL) model, in a 2D two-flavor Gross-Neveu model, the interplay between the quark-antiquark and the diquark condensates in vacuum also depends on $G_S/H_S$, the ratio of the coupling constants in scalar quark-antiquark and scalar diquark channel. Only the pure quark-antiquark condensates exist if $G_S/H_S>2/3$ which is just the ratio of the color numbers of the quarks participating in the diquark and quark-antiquark condensates. The two condensates will coexist if $0condensates arise only at $G_S/H_S=0$ and are not in a possibly finite region of $G_S/H_S$ below 2/3.
Quark-Antiquark and Diquark Condensates in Vacuum in a 3D Two-Flavor Gross-Neveu Model
Bang-Rong Zhou
2007-06-23T23:59:59.000Z
The effective potential analysis indicates that, in a 3D two-flavor Gross-Neveu model in vacuum, depending on less or bigger than the critical value 2/3 of $G_S/H_P$, where $G_S$ and $H_P$ are respectively the coupling constants of scalar quark-antiquark channel and pseudoscalar diquark channel, the system will have the ground state with pure diquark condensates or with pure quark-antiquark condensates, but no the one with coexistence of the two forms of condensates. The similarities and differences in the interplay between the quark-antiquark and the diquark condensates in vacuum in the 2D, 3D and 4D two-flavor four-fermion interaction models are summarized.
Letter of intent for the study of CP violation and heavy flavor physics at PEP-II
BaBar Collaboration
1994-06-18T23:59:59.000Z
This report discusses the following topics on CP violation and heavy flavor physics experiments: Physics at PEP-II; detector overview; PEP-II and the interaction region; vertex detector; main tracking chamber; particle identification; electromagnetic calorimeter; muon and neutral hadron detector; magnet coil and flux return; electronics, trigger, and data acquisition; computing; CP asymmetry simulations; collaboration issues; project organization and management; and budget and schedule.
Nuclear modification factor for light and heavy flavors within pQCD and recent data from the LHC
B. G. Zakharov
2012-10-15T23:59:59.000Z
We examine the flavor dependence of the nuclear modification factor $R_{AA}$ in the pQCD calculations at LHC energies. The computations are performed accounting for radiative and collisional parton energy loss with running coupling constant. Our results show that the recent LHC data on the $R_{AA}$ for charged hadrons, D-mesons and non-photonic electrons agree reasonably with the pQCD picture of the parton energy loss with the dominating contribution from the radiative mechanism.
Sanjib Kumar Agarwalla; Yee Kao; Debashis Saha; Tatsu Takeuchi
2015-06-28T23:59:59.000Z
In this article we unravel the role of matter effect in neutrino oscillation in the presence of lepton-flavor-conserving, non-universal non-standard interactions (NSI's) of the neutrino. Employing the Jacobi method, we derive approximate analytical expressions for the effective mass-squared differences and mixing angles in matter. It is shown that, within the effective mixing matrix, the Standard Model (SM) W-exchange interaction only affects $\\theta_{12}$ and $\\theta_{13}$, while the flavor-diagonal NSI's only affect $\\theta_{23}$. The CP-violating phase $\\delta$ remains unaffected. Using our simple and compact analytical approximation, we study the impact of the flavor-diagonal NSI's on the neutrino oscillation probabilities for various appearance and disappearance channels. At higher energies and longer baselines, it is found that the impact of the NSI's can be significant in the numu to numu channel, which can probed in future atmospheric neutrino experiments, if the NSI's are of the order of their current upper bounds. Our analysis also enables us to explore the possible degeneracy between the octant of $\\theta_{23}$ and the sign of the NSI parameter for a given choice of mass hierarchy in a simple manner.
Generalized isospin, generalized mass groups, and generalized Gell-Mann--Okubo formalism
Beaudoin, N; Sandapen, R
2013-01-01T23:59:59.000Z
The current concepts of isospin and baryon mass groups are only well-adapted to deal with baryon multiplets involving both the u and d quarks, and some other quark k. In this paper, we generalize isospin and mass groups to accommodate baryon multiplets involving quarks of any flavor, and the Gell-Mann--Okubo (GMO) formalism is generalized accordingly. Generalized isospin proves to be a simple and valuable framework when working in non-udk baryon multiplets, and provides new quantum numbers that allows us to distinguish \\Lambda-like baryons from \\Sigma-like baryons in the non-udk multiplets. The generalized GMO formalism allows us to quantify the quality of flavor symmetries seen in baryon multiplets, and also allows us to predict the masses of all observable J^P = 1/2^+ and 3/2^+ baryons with an estimated accuracy on the order of 50 MeV in the worst cases, on mass scales that span anywhere from 1000 MeV to 15000 MeV.
GRADE NUMBER OF CREDITS FACTOR QUALITY POINTS HOW TO COMPUTE A GRADE POINT AVERAGE
Massachusetts at Amherst, University of
.00 = __________ TOTALS: _________ __________ CREDITS QUALITY PTS. Divide total credits into total quality pointsGRADE NUMBER OF CREDITS FACTOR QUALITY POINTS HOW TO COMPUTE A GRADE POINT AVERAGE A _________ x 4 and the result is the grade point average (GPA). QUALITY PTS. = GPA ____________ = CREDITS
Boyer, Edmond
trajectory of the averaged system. Key words: Optimal control, Singular perturbations, occupational measures is to study singularly perturbed control systems. Firstly, we provide linearized formulation version and sufficient conditions in order to identify the optimal trajectory of the averaged system. Linear programming
Tradeoffs and Average-Case Equilibria in Selfish Routing Martin Hoefer
Reiterer, Harald
the expected price of anarchy of the game for various social cost functions. For total latency social cost cost in polyno- mial time. Furthermore, our analyses of the expected prices are average-case analyses, 2007 Abstract We consider the price of selfish routing in terms of tradeoffs and from an average
A spatiotemporal auto-regressive moving average model for solar radiation
Stone, J. V.
A spatiotemporal auto-regressive moving average model for solar radiation C.A. Glasbey and D 1). Solar radiation, averaged over ten minute intervals, was recorded at each site for two years otherwise there are too many parameters to be estimated. As we wish to simulate solar radiation on a network
Variances of the Average Numbers of Nucleotide Substitutions Within and Between Populations'
Nei, Masatoshi
Variances of the Average Numbers of Nucleotide Substitutions Within and Between Populations the variances of nucleotide diversity within pop- ulations and of nucleotide divergence between populations of the extent of DNA polymorphism is nucleotide diversity (z), which is defined as the average number of either
The finite temperature QCD using 2+1 flavors of domain wall fermions at Nt = 8
Cheng, M; Christ, N H; Li, M; Mawhinney, R D; Renfrew, D; Hegde, P; Karsch, F; Lin, M; Vranas, P
2009-11-30T23:59:59.000Z
We study the region of the QCD phase transition using 2+1 flavors of domain wall fermions (DWF) and a 16{sup 3} x 8 lattice volume with a fifth dimension of L{sub s} = 32. The disconnected light quark chiral susceptibility, quark number susceptibility and the Polyakov loop suggest a chiral and deconfining crossover transition lying between 155 and 185 MeV for our choice of quark mass and lattice spacing. In this region the lattice scale deduced from the Sommer parameter r{sub 0} is a{sup -1} {approx} 1.3 GeV, the pion mass is {approx} 300 MeV and the kaon mass is approximately physical. The peak in the chiral susceptibility implies a pseudo critical temperature T{sub c} = 171(10)(17) MeV where the first error is associated with determining the peak location and the second with our unphysical light quark mass and non-zero lattice spacing. The effects of residual chiral symmetry breaking on the chiral condensate and disconnected chiral susceptibility are studied using several values of the valence L{sub s}.
Finite Temperature QCD Using 2 þ 1 Flavors of Domain Wall Fermions at Nt ¼ 8
Karsch, F.; Lim, M; Cheng, M; Christ, N; Hegde, P.; Li, L.; Mawhinney, R.; Renfrew, D.; Vranas, P.
2010-03-30T23:59:59.000Z
We study the region of the QCD phase transition using 2 + 1 flavors of domain wall fermions and a 16{sup 3} x 8 lattice volume with a fifth dimension of L{sub s} = 32. The disconnected light quark chiral susceptibility, quark number susceptibility, and the Polyakov loop suggest a chiral and deconfining crossover transition lying between 155 and 185 MeV for our choice of quark mass and lattice spacing. In this region the lattice scale deduced from the Sommer parameter r{sub 0} is a{sup -1} {approx} 1.3 GeV, the pion mass is {approx} 300 MeV, and the kaon mass is approximately physical. The peak in the chiral susceptibility implies a pseudocritical temperature T{sub c} = 171(10)(17) MeV where the first error is associated with determining the peak location and the second with our unphysical light quark mass and nonzero lattice spacing. The effects of residual chiral symmetry breaking on the chiral condensate and disconnected chiral susceptibility are studied using several values of the valence L{sub s}.
Analysis of a three flavor neutrino oscillation fit to recent Super-Kamiokande data
Christoph Meier; Tommy Ohlsson
1999-11-03T23:59:59.000Z
We have analyzed the most recent available Super-Kamiokande data in a three flavor neutrino oscillation model. We have here neglected possible matter effects and performed a fit to atmospheric and solar Super-Kamiokande data. We have investigated a large parameter range, where the mixing angles were restricted to $0 \\leq \\theta_i \\leq \\pi/2$, $ i=1,2,3$, and the mass squared differences were taken to be in the intervals $10^{-11} {\\rm eV}^2 \\leq \\Delta m^2 \\leq 10^{-2} {\\rm eV}^2$ and $10^{-4} {\\rm eV}^2 \\leq \\Delta M^2 \\leq 10 {\\rm eV}^2$. This yielded a best solution characterized by the parameter values $\\theta_1 \\simeq 45^\\circ$, $\\theta_2 \\simeq 10^\\circ$, $\\theta_3 \\simeq 45^\\circ$, $\\Delta m^2 \\simeq 4.4 \\times 10^{-10} {\\rm eV}^2$, and $\\Delta M^2 \\simeq 1.01 \\times 10^{-3} {\\rm eV}^2$, which shows that the analyzed experimental data speak in favor of a bimaximal mixing scenario with one of the mass squared differences in the ``just-so'' domain and the other one in the range capable of providing a solution to the atmospheric neutrino problem.
Cao, Shanshan; Bass, Steffen A
2015-01-01T23:59:59.000Z
We construct a theoretical framework to describe the evolution of heavy flavors produced in relativistic heavy-ion collisions. The in-medium energy loss of heavy quarks is described using our modified Langevin equation that incorporates both quasi-elastic scatterings and the medium-induced gluon radiation. The space-time profiles of the fireball is described by a (2+1)-dimensional hydrodynamics simulation. A hybrid model of fragmentation and coalescence is utilized for heavy quark hadronization, after which the produced heavy mesons together with the soft hadrons produced from the bulk QGP are fed into the hadron cascade UrQMD model to simulate the subsequent hadronic interactions. We find that the medium-induced gluon radiation contributes significantly to heavy quark energy loss at high $p_\\mathrm{T}$; heavy-light quark coalescence enhances heavy meson production at intermediate $p_\\mathrm{T}$; and scatterings inside the hadron gas further suppress the $D$ meson $R_\\mathrm{AA}$ at large $p_\\mathrm{T}$ and e...
Minimally allowed neutrinoless double beta decay rates from approximate flavor symmetries
Jenkins, James [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) and Northwestern University, Department of Physics and Astronomy, Evanston, Illinois 60208 (United States)
2009-06-01T23:59:59.000Z
Neutrinoless double beta decay ({beta}{beta}0{nu}) is among the only realistic probes of Majorana neutrinos. In the standard scenario, dominated by light neutrino exchange, the process amplitude is proportional to m{sub ee}, the e-e element of the Majorana mass matrix. Naively, current data allow for vanishing m{sub ee}, but this should be protected by an appropriate flavor symmetry. All such symmetries lead to mass matrices inconsistent with oscillation phenomenology. I perform a spurion analysis to break all possible Abelian symmetries that guarantee vanishing {beta}{beta}0{nu} rates and search for minimally allowed values. I survey 230 broken structures to yield m{sub ee} values and current phenomenological constraints under a variety of scenarios. This analysis also extracts predictions for both neutrino oscillation parameters and kinematic quantities. Assuming reasonable tuning levels, I find that m{sub ee}>4x10{sup -6} eV at 99% confidence. Bounds below this value might indicate the Dirac neutrino nature or the existence of new light (eV-MeV scale) degrees of freedom that can potentially be probed elsewhere.
Nucleon structure functions from dynamical (2+1)-flavor domain wall fermions
Shigemi Ohta; for the RBC; UKQCD Collaborations
2009-11-13T23:59:59.000Z
We report lattice-volume independence of low moments of nucleon structure functions from the coarse RIKEN-BNL-Columbia (RBC) and UKQCD joint dynamical (2+1)-flavor domain-wall fermions (DWF) ensembles at the lattice cut off of (a^{-1}\\sim1.7) GeV. The isovector quark momentum fraction, (_{u-d}), and helicity fraction, (_{\\Delta u - \\Delta d}), both fully non-perturbatively renormalized are studied on two spatial volumes of ((\\sim {\\rm 2.7 fm})^3) and ((\\sim {\\rm 1.8 fm})^3). Their naturally renormalized ratio, (_{u-d}/_{\\Delta u - \\Delta d}), is not affected by any finite-size effect. It does not depend strongly on light quark mass and does agree well with the experiment. The respective absolute values, fully non-perturbatively renormalized, do not show any finite-size effect either. They show trending toward the respective experimental values at the lightest up- and down-quark mass. This trending down to the experimental values appears to be a real physical effect driven by lighter quarks. The observations are in contrast to the huge finite-size effect seen in the axial-current form factors.
Nucleon structure with dynamical (2+1)-flavor domain wall fermions lattice QCD
Shigemi Ohta; Takeshi Yamazaki
2008-09-30T23:59:59.000Z
We report isovector form factors and low moments of isovector structure functions of nucleon from the coarse RIKEN-BNL-Columbia (RBC) and UKQCD joint dynamical (2+1)-flavor domain-wall fermions (DWF) ensembles. The lattice cut off is estimated at (a^{-1}=1.7) GeV. The lattice volume is as large as 2.7 fm across. We carefully optimize the nucleon source/sink separation in time to about 1.4 fm. Unexpectedly large finite-size effect in the axial charge is found. The effect scales with a single variable, the product (m_\\pi L) of the pion mass (m_\\pi) and lattice spatial linear extent (L), and sets in at around (m_\\pi L = 5). We also discuss momentum-transfer dependence of the vector, induced tensor, axial-vector and induced pesudo-scalar form factors. From structure functions, fully non-perturbatively renormalized iso-vector quark momentum fraction, (_{u-d}), helicity fraction, (_{\\Delta u - \\Delta d}), and transversity, (_{\\delta u - \\delta d}), are reported, as well as an unrenormalized twist-3 coefficient, (d_1). The ratio of the momentum to helicity fractions, (_{u-d}/_{\\Delta u - \\Delta d}), does not depend on light quark mass and agree well with the experiment. Their respective absolute values, fully renormalized, shows interesting trending toward the respective experimental values at the lightest light quark mass.
Volume-averaged macroscopic equation for fluid flow in moving porous media
Wang, Liang; Guo, Zhaoli; Mi, Jianchun
2014-01-01T23:59:59.000Z
Darcy's law and the Brinkman equation are two main models used for creeping fluid flows inside moving permeable particles. For these two models, the time derivative and the nonlinear convective terms of fluid velocity are neglected in the momentum equation. In this paper, a new momentum equation including these two terms are rigorously derived from the pore-scale microscopic equations by the volume-averaging method, which can reduces to Darcy's law and the Brinkman equation under creeping flow conditions. Using the lattice Boltzmann equation method, the macroscopic equations are solved for the problem of a porous circular cylinder moving along the centerline of a channel. Galilean invariance of the equations are investigated both with the intrinsic phase averaged velocity and the phase averaged velocity. The results demonstrate that the commonly used phase averaged velocity cannot serve as the superficial velocity, while the intrinsic phase averaged velocity should be chosen for porous particulate systems.
Strangulation in Galaxy Groups
Kawata, Daisuke
2007-01-01T23:59:59.000Z
We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed leading to a galaxy with S0 properties. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field...
Strangulation in Galaxy Groups
Daisuke Kawata; John S. Mulchaey
2007-11-20T23:59:59.000Z
We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed, which may lead to a galaxy similar to an S0. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field.
Finite group symmetry breaking
G. Gaeta
2005-10-02T23:59:59.000Z
Finite group symmetry is commonplace in Physics, in particular through crystallographic groups occurring in condensed matter physics -- but also through the inversions (C,P,T and their combinations) occurring in high energy physics and field theory. The breaking of finite groups symmetry has thus been thoroughly studied, and general approaches exist to investigate it. In Landau theory, the state of a system is described by a finite dimensional variable (the {\\it order parameter}), and physical states correspond to minima of a potential, invariant under a group. In this article we describe the basics of symmetry breaking analysis for systems described by a symmetric polynomial; in particular we discuss generic symmetry breakings, i.e. those determined by the symmetry properties themselves and independent on the details of the polynomial describing a concrete system. We also discuss how the plethora of invariant polynomials can be to some extent reduced by means of changes of coordinates, i.e. how one can reduce to consider certain types of polynomials with no loss of generality. Finally, we will give some indications on extension of this theory, i.e. on how one deals with symmetry breakings for more general groups and/or more general physical systems.
Fast quantum algorithms for approximating some irreducible representations of groups
Stephen P. Jordan
2009-04-21T23:59:59.000Z
We consider the quantum complexity of estimating matrix elements of unitary irreducible representations of groups. For several finite groups including the symmetric group, quantum Fourier transforms yield efficient solutions to this problem. Furthermore, quantum Schur transforms yield efficient solutions for certain irreducible representations of the unitary group. Beyond this, we obtain poly(n)-time quantum algorithms for approximating matrix elements from all the irreducible representations of the alternating group A_n, and all the irreducible representations of polynomial highest weight of U(n), SU(n), and SO(n). These quantum algorithms offer exponential speedup in worst case complexity over the fastest known classical algorithms. On the other hand, we show that average case instances are classically easy, and that the techniques analyzed here do not offer a speedup over classical computation for the estimation of group characters.
David G. Loomis
2012-05-28T23:59:59.000Z
The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.
Evan Hughes
2009-01-08T23:59:59.000Z
The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.
Solomon, A. I., E-mail: a.i.solomon@open.ac.u [Open University, Department of Physics (United Kingdom)
2010-03-15T23:59:59.000Z
The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.
Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH
Min, Byung Il
Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory
Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.
1994-01-01T23:59:59.000Z
The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.
GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Stabilitcroissanceetperformanceconomique
Boyer, Edmond
GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1026 économique, stabilité, canal d'investissement. Classification JEL : B22, E32, O42 1 Dr. Zied Ftiti. Université de Lyon, Université Lyon 2, F - 69007, Lyon, France. CNRS, GATE Lyon-St Etienne, UMR n° 5824
GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Sectorbasedexplanationofverticalintegrationin
Paris-Sud XI, Université de
GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1136, France CNRS, GATE Lyon-St Etienne, UMR n° 5824, 69130, Ecully, France Université de Saint-Etienne, Jean. Reif, G. Solard, 2009 ; B. Mura, 2010). A network relates to a network of downstream firms using
GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Dynamicmodelsofresidentialsgrgation
Paris-Sud XI, Université de
GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1017 #12;DYNAMIC MODELS OF RESIDENTIAL SEGREGATION: AN ANALYTICAL SOLUTION S´ebastian GRAUWINa,b,c , Florence GOFFETTE-NAGOTa,d, , Pablo JENSENa,b,c,e aUniversit´e de Lyon, Lyon, F-69007, France bInstitut rh
Daunizeau, Jean
) is measurement error True response magnitude is fixed 111 Xy Fixed effect #12;Random effects-sphericity modelling Examples Power and efficiency: summary Overview #12;Group analysis: fixed versus random effects Two RFX methods: Holmes & Friston (HF) approach non-sphericity modelling Examples Power
TKN Telecommunication Networks Group
Wichmann, Felix
consumption. Quite some effort has already been undertaken to address this issue, striving for low-energy trends in the power consumption, the NICs and APs are classified according to the following aspects Group Power consumption of WLAN network elements Salvatore Chiaravalloti, Filip Idzikowski, Lukasz
Averaged Energy Inequalities for Non-Minimally Coupled Classical Scalar Fields
Lutz W. Osterbrink
2006-12-11T23:59:59.000Z
The stress-energy tensor for the non-minimally coupled scalar field is known not to satisfy the pointwise energy conditions, even on the classical level. We show, however, that local averages of the classical stress-energy tensor satisfy certain inequalities and give bounds for averages along causal geodesics. It is shown that in vacuum background spacetimes, ANEC and AWEC are satisfied. Furthermore we use our result to show that in the classical situation we have an analogue to the so called quantum interest conjecture. These results lay the foundations for averaged energy inequalities for the quantised non-minimally coupled fields.
Johannes Bergstrom; Tommy Ohlsson; He Zhang
2011-04-04T23:59:59.000Z
We show that, in the low-scale type-I seesaw model, renormalization group running of neutrino parameters may lead to significant modifications of the leptonic mixing angles in view of so-called seesaw threshold effects. Especially, we derive analytical formulas for radiative corrections to neutrino parameters in crossing the different seesaw thresholds, and show that there may exist enhancement factors efficiently boosting the renormalization group running of the leptonic mixing angles. We find that, as a result of the seesaw threshold corrections to the leptonic mixing angles, various flavor symmetric mixing patterns (e.g., bi-maximal and tri-bimaximal mixing patterns) can be easily accommodated at relatively low energy scales, which is well within the reach of running and forthcoming experiments (e.g., the LHC).
Minimally allowed beta beata 0_nu rates from approximate flavor symmetries
Jenkins, James [Los Alamos National Laboratory
2008-01-01T23:59:59.000Z
Neutrinoless double beta decay ({beta}{beta}0{nu}) is the only realistic probe of Majorana neutrinos. In the standard scenario, dominated by light neutrino exchange, the process amplitude is proportional to m{sub ee} , the e - e element of the Majorana mass matrix. This is expected to hold true for small {beta}{beta}{nu} rates ({Gamma}{sub {beta}{beta}0{nu}}), even in the presence of new physics. Naively, current data allows for vanishing m{sub ee} , but this should be protected by an appropriate flavor symmetry. All such symmetries lead to mass matrices inconsistent with oscillation phenomenology. Hence, Majorana neutrinos imply nonzero {Gamma}{sub {beta}{beta}0{nu}}. I perform a spurion analysis to break all possible abelian symmetries that guarantee {Gamma}{sub {beta}{beta}0{nu}} = 0 and search for minimally allowed m{sub ee} values. Specifically, I survey 259 broken structures to yield m{sub ee} values and current phenomenological constraints under a variety of scenarios. This analysis also extracts predictions for both neutrino oscillation parameters and kinematic quantities. Assuming reasonable tuning levels, I find that m{sub ee} > 4 x 10{sup -6} eV at 99% confidence. Bounds below this value would indicate the Dirac neutrino nature or the existence of new light (eV-MeV scale) degrees of freedom that can potentially be probed elsewhere. This limit can be raised by improvements in neutrino parameter measurements, particularly of the reactor mixing angle, depending on the best fit parameter values. Such improvements will also significantly constrain the available model space and aid in future constructions.
Nucleon isovector structure functions in (2+1)-flavor QCD with domain wall fermions
Yasumichi Aoki; Tom Blum; Huey-Wen Lin; Shigemi Ohta; Shoichi Sasaki; Robert Tweedie; Takeshi Yamazaki; James Zanotti
2010-03-17T23:59:59.000Z
We report on numerical lattice QCD calculations of some of the low moments of the nucleon structure functions. The calculations are carried out with gauge configurations generated by the RBC and UKQCD collaborations with (2+1)-flavors of dynamical domain wall fermions and the Iwasaki gauge action ($\\beta = 2.13$). The inverse lattice spacing is $a^{-1} = 1.73$ GeV, and two spatial volumes of ((2.7{\\rm fm})^3) and ((1.8 {\\rm fm})^3) are used. The up and down quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while the strange mass is about 12 % heavier than the physical one. The structure function moments we present include fully non-perturbatively renormalized iso-vector quark momentum fraction, (_{u-d}), helicity fraction, (_{\\Delta u - \\Delta d}), and transversity, (_{\\delta u - \\delta d}), as well as an unrenormalized twist-3 coefficient, (d_1). The ratio of the momentum to helicity fractions, (_{u-d}/_{\\Delta u - \\Delta d}), does not show dependence on the light quark mass and agrees well with the value obtained from experiment. Their respective absolute values, fully renormalized, show interesting trends toward their respective experimental values at the lightest quark mass. A prediction for the transversity, (0.7 _{\\delta u -\\delta d} < 1.1), in the (\\bar{\\rm MS}) scheme at 2 GeV is obtained. The twist-3 coefficient, (d_1), though yet to be renormalized, supports the perturbative Wandzura-Wilczek relation.
Nucleon-Nucleon Scattering Parameters in the Limit of SU(3) Flavor Symmetry
Beane, Silas [Universität Bonn; Chang, Emanuel [University of Washington; Savage, Martin [University of Washington; Lin, Huey-Wen [University of Washington; Orginos, Konstantinos [College of William and Mary, JLAB; Cohen, Saul [University of Washington; Detmold, William [MIT; Luu, Tom [College of William and Mary; Parreno, Assumpta [Universitat de Barcelona, Martí i Franquès 1; Junnarkar, Parikshit [University of New Hampshire; Walker-Loud, Andre Paul [LBNL, UC-Berkeley
2013-08-01T23:59:59.000Z
The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with Lattice Quantum Chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a lattice spacing of b ~ 0.145 fm. With determinations of the energies of the two-nucleon systems ?both of which contain bound states at these light-quark masses? at rest and moving in the lattice volume, Luscher?s method is used to determine the low-energy phase shift in each channel, from which the scattering length and effective range are obtained. The scattering parameters in the {sup 1}S{sub 0} channel are found to be m{sub ?}a{sup ({sup 1}S{sub 0})} = 9.51+/-0.74+/-1.00 and m{sub ?}r{sup ({sup 1}S{sub 0})} = 4.76+/-0.37+/-0.40, and in the {sup 3}S{sub 1} channel are m{sub ?}a{sup ({sup 3}S{sub 1})} = 7.45+/-0.57+/-0.71 and m{sub ?}r{sup ({sup 3}S{sub 1})} = 3.71+/-0.28+/-0.28. These values are consistent with the two-nucleon system exhibiting Wigner?s supermultiplet symmetry, which becomes exact in the limit of large-N{sub c}.
Renormalization of local quark-bilinear operators for Nf=3 flavors of SLiNC fermions
M. Constantinou; R. Horsley; H. Panagopoulos; H. Perlt; P. E. L. Rakow; G. Schierholz; A. Schiller; J. M. Zanotti
2014-08-26T23:59:59.000Z
The renormalization factors of local quark-bilinear operators are computed non-perturbatively for $N_f=3$ flavors of SLiNC fermions, with emphasis on the various procedures for the chiral and continuum extrapolations. The simulations are performed at a lattice spacing $a=0.074$ fm, and for five values of the pion mass in the range of 290-465 MeV, allowing a safe and stable chiral extrapolation. Emphasis is given in the subtraction of the well-known pion pole which affects the renormalization factor of the pseudoscalar current. We also compute the inverse propagator and the Green's functions of the local bilinears to one loop in perturbation theory. We investigate lattice artifacts by computing them perturbatively to second order as well as to all orders in the lattice spacing. The renormalization conditions are defined in the RI$'$-MOM scheme, for both the perturbative and non-perturbative results. The renormalization factors, obtained at different values of the renormalization scale, are translated to the ${\\bar{\\rm MS}}$ scheme and are evolved perturbatively to 2 GeV. Any residual dependence on the initial renormalization scale is eliminated by an extrapolation to the continuum limit. We also study the various sources of systematic errors. Particular care is taken in correcting the non-perturbative estimates by subtracting lattice artifacts computed to one loop perturbation theory using the same action. We test two different methods, by subtracting either the ${\\cal O}(g^2\\,a^2)$ contributions, or the complete (all orders in $a$) one-loop lattice artifacts.
Thermal conductivity of the quark matter for the SU(2) light-flavor sector
Seung-il Nam
2015-03-04T23:59:59.000Z
We investigate the thermal conductivity ($\\kappa$) of the quark matter at finite quark chemical potential $(\\mu)$ and temperature $(T)$, employing the Green-Kubo formula, for the SU(2) light-flavor sector with the finite current-quark mass $m=5$ MeV. As a theoretical framework, we construct an effective thermodynamic potential from the $(\\mu,T)$-modified liquid-instanton model (mLIM). Note that all the relevant model parameters are designated as functions of $T$, using the trivial-holonomy caloron solution. By solving the self-consistent equation of mLIM, we acquire the constituent-quark mass $M_0$ as a function of $T$ and $\\mu$, satisfying the universal-class patterns of the chiral phase transition. From the numerical results for $\\kappa$, we observe that there emerges a peak at $\\mu\\approx200$ MeV for the low-$T$ region, i.e. $T\\lesssim100$ MeV. As $T$ increase over $T\\approx100$ MeV, the curve for $\\kappa$ is almost saturated as a function of $T$ in the order of $\\sim10^{-1}\\,\\mathrm{GeV}^2$, and grows with respect to $\\mu$ smoothly. At the normal nuclear-matter density $\\rho_0=0.17\\,\\mathrm{fm}^{-3}$, $\\kappa$ shows its maximum $6.22\\,\\mathrm{GeV}^2$ at $T\\approx10$ MeV, then decreases exponentially down to $\\kappa\\approx0.2\\,\\mathrm{GeV}^2$. We also compute the ratio of $\\kappa$ and the entropy density, i.e. $\\kappa/s$ as a function of $(\\mu,T)$ which is a monotonically decreasing function for a wide range of $T$, then approaches a lower bound at very high $T$: $\\kappa/s_\\mathrm{min}\\gtrsim0.3\\,\\mathrm{GeV}^{-1}$ in the vicinity of $\\mu=0$.
The averaging process in permeability estimation from well-test data
Oliver, D.S. (Saudi Aramco (SA))
1990-09-01T23:59:59.000Z
Permeability estimates from the pressure derivative or the slope of the semilog plot usually are considered to be averages of some large ill-defined reservoir volume. This paper presents results of a study of the averaging process, including identification of the region of the reservoir that influences permeability estimates, and a specification of the relative contribution of the permeability of various regions to the estimate of average permeability. The diffusion equation for the pressure response of a well situated in an infinite reservoir where permeability is an arbitrary function of position was solved for the case of small variations from a mean value. Permeability estimates from the slope of the plot of pressure vs. the logarithm of drawdown time are shown to be weighted averages of the permeabilities within an inner and outer radius of investigation.
average power diode-pumped: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
are required for numerous applications such as UV generation for lithography and pumping by a fiber- coupled diode bar1 generated 7-ps pulses with 4.5-W average power and...
Reconstruction of ionization probabilities from spatially averaged data in N dimensions
Stroahaber, James; Kolomenskii, A; Schuessler, Hans
2010-07-06T23:59:59.000Z
We present an analytical inversion technique, which can be used to recover ionization probabilities from spatially averaged data in an N-dimensional detection scheme. The solution is given as a power series in intensity. For this reason, we call...
Tamez, Jeannine Paola
2009-05-15T23:59:59.000Z
The current study examined the subjective and physiological reactivity to body image stimuli among females engaging in a social comparison task. Study I was conducted to select images of thin and average size models and neutral objects for Study...
System average rates of U.S. investor-owned electric utilities : a statistical benchmark study
Berndt, Ernst R.
1995-01-01T23:59:59.000Z
Using multiple regression methods, we have undertaken a statistical "benchmark" study comparing system average electricity rates charged by three California utilities with 96 other US utilities over the 1984-93 time period. ...
Experiments with a time-dependent, zonally averaged, seasonal, enery balance climatic model
Thompson, Starley Lee
1977-01-01T23:59:59.000Z
EXPERIMENTS WITH A TI&E-DEPENDENT, ZONALLY AVERAGED, SEASONAL, ENERGY BALANCE CLIMATIC MODEL A Thesis by STARLEY LEE THOMPSON Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the decree... of MASTER OF SCIENCE December 1977 Major Subject: Meteorology EXPERIMENTS WITH A TIME DEPENDENT~ ZONALLY AVERAGED~ SEASONAL, ENERGY BALANCE CLIMATIC MODEL A Thesis by STARLEY LEE THOMPSON Approved as to style and content by: (Chairman of Committee...
Variation in the annual average radon concentration measured in homes in Mesa County, Colorado
Rood, A.S.; George, J.L.; Langner, G.H. Jr.
1990-04-01T23:59:59.000Z
The purpose of this study is to examine the variability in the annual average indoor radon concentration. The TMC has been collecting annual average radon data for the past 5 years in 33 residential structures in Mesa County, Colorado. This report is an interim report that presents the data collected up to the present. Currently, the plans are to continue this study in the future. 62 refs., 3 figs., 12 tabs.
Experiments with a time-dependent, zonally averaged, seasonal, enery balance climatic model
Thompson, Starley Lee
1977-01-01T23:59:59.000Z
EXPERIMENTS WITH A TI&E-DEPENDENT, ZONALLY AVERAGED, SEASONAL, ENERGY BALANCE CLIMATIC MODEL A Thesis by STARLEY LEE THOMPSON Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the decree... of MASTER OF SCIENCE December 1977 Major Subject: Meteorology EXPERIMENTS WITH A TIME DEPENDENT~ ZONALLY AVERAGED~ SEASONAL, ENERGY BALANCE CLIMATIC MODEL A Thesis by STARLEY LEE THOMPSON Approved as to style and content by: (Chairman of Committee...
Ambedkar Dukkipati; M. Narsimha Murty; Shalabh Bhatnagar
2005-05-30T23:59:59.000Z
As additivity is a characteristic property of the classical information measure, Shannon entropy, pseudo-additivity is a characteristic property of Tsallis entropy. Renyi generalized Shannon entropy by means of Kolmogorov-Nagumo averages, by imposing additivity as a constraint.In this paper we show that there exists no generalization for Tsallis entropy, by means of Kolmogorov-Nagumo averages, which preserves the pseudo-additivity.
Average over energy effect of parity nonconservation in neutron scattering on heavy nuclei
O. P. Sushkov
1996-03-05T23:59:59.000Z
Using semiclassical approximation we consider parity nonconservation (PNC) averaged over compound resonances. We demonstrate that the result of the averaging crucially depends on the properties of residual strong nucleon-nucleon interaction. Natural way to elucidate this problem is to investigate experimentally PNC spin rotation with nonmonachromatic neutron beam: $E \\sim \\Delta E \\sim 1MeV$. Value of the effect can reach $\\psi \\sim 10^{-5}-10^{-4}$ per mean free path.
Mohanty, Saraju P.
power, power fluctuation, average power and total energy are equally design constraints. In this work by the average power (energy). The increase in energy and average power consumption, increases the energy bill (£¥¤§¦¨¦© ¡ ). As the energy (average power) consumption increases, it necessitates the increase in generation which in turn
Schulte, Ralph
2001-12-01T23:59:59.000Z
The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of a paraffin removal system developed by the KKG Group utilizing the technology of two Russian scientists, Gennady Katzyn and Boris Koggi. The system consisting of chemical ''sticks'' that generate heat in-situ to melt the paraffin deposits in oilfield tubing. The melted paraffin is then brought to the surface utilizing the naturally flowing energy of the well.
Searching for the squark flavor mixing in CP violations of Bs -> K+ K- and K0bar K0 decays
Atsushi Hayakawa; Yusuke Shimizu; Morimitsu Tanimoto; Kei Yamamoto
2014-01-08T23:59:59.000Z
We study CP violations in the B_s-> K+K- and Bs->K0K0 decays in order to find the contribution of the supersymmetry, which comes from the gluino-squark mediated flavor changing current. We obtain the allowed region of the squark flavor mixing parameters by putting the experimental data, the mass difference Delta M_Bs, the CP violating phase phi_s in Bs to J/psi phi decay and the b to s gamma branching ratio. In addition to these data, we take into account the constraint from the asymmetry of B0->K+pi because the Bs->K+K- decay is related with the B0->K+pi- decay by replacing the spectator s with d. Under these constraints, we predict the magnitudes of the CP violation in the Bs->K+K- and Bs->K0K0 decays. The predicted region of the CP violation C_{K+K-} is strongly cut from the direct CP violation of barB0 to K-pi+, therefore, the deviation from the SM prediction of C_{K+K-} is not found. On the other hand, the CP violation S_{K+K-} is possibly deviated from the SM prediction considerably, in the region of 0.1- 0.5. Since the standard model predictions of C_{K0bar K0} and S_{K0bar K0} are very small, the squark contribution can be detectable in C_{K0bar K0} and S_{K0bar K0}. These magnitudes are expected in the region C_{K0bar K0}=-0.06-0.06 and S_{K0bar K0}=-0.5-0.3. More precise data of these CP violations provide us a crucial test for the gluino-squark mediated flavor changing current.
Else Pllumbi; Irene Tamborra; Shinya Wanajo; H. -Thomas Janka; Lorenz Huedepohl
2014-06-11T23:59:59.000Z
Neutrino oscillations, especially to light sterile states, can affect the nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 Msun electron-capture supernova, whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations both between active and active-sterile flavors. We also take into account the alpha-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution which depend in a subtle way on the relative radial positions of the sterile MSW resonances, of collective flavor transformations, and on the formation of alpha-particles. For the adopted supernova progenitor, we find that neutrino oscillations, also to a sterile state with eV-mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, four cases with reduced Ye in the wind are considered. In these cases, despite the conversion of neutrinos to sterile neutrinos, Ye increases compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, alpha-effect.
Mass spectrum of diquarks and mesons in the color--flavor locked phase of dense quark matter
Ebert, D; Yudichev, V L
2007-01-01T23:59:59.000Z
The spectrum of meson and diquark excitations of dense quark matter is considered in the framework of the Nambu -- Jona-Lasinio model with three types of massless quarks in the presense of a quark number chemical potential $\\mu$. We investigate the effective action of meson- and diquark fields both at sufficiently large values of $\\mu>\\mu_c\\approx 330$ MeV, where the color--flavor locked (CFL) phase is realized, and in the chirally broken phase of quark matter ($\\mu\\mu_c$.
Fujii, Kanji
2014-01-01T23:59:59.000Z
On the basis of quantum field theory, we consider a unified description of various processes accompanied by neutrinos, namely weak decays and oscillation processes. The structures of the expectation values of flavor-neutrino numbers with respect to neutrino-source hadron state are investigated. Due to the smallness of neutrino masses, we naturally obtain the old (i.e. pre-mixing) formulas of decay probabilities. Together, it is shown that the oscillation formulas, similar to the usual ones, are applied irrespectively of the details of neutrino-producing processes. The derived oscillation formulas are the same in form as the usually used ones except for the oscillation length.
E. O. Iltan
2006-02-19T23:59:59.000Z
We study the branching ratios of the lepton flavor violating processes \\mu -> e\\gamma, \\tau -> e\\gamma and \\tau -> \\mu\\gamma by considering that the new Higgs scalars localize with Gaussian profile in the extra dimension. We see that the BRs of the LFV decays \\mu -> e \\gamma, \\tau -> e \\gamma and \\tau -> \\mu\\gamma are at the order of the magnitude of 10^{-12}, 10^{-16} and 10^{-12} in the considered range of the free parameters. These numerical values are slightly suppressed in the case that the localization points of new Higgs scalars are different than origin.
Y. Maezawa; S. Aoki; S. Ejiri; T. Hatsuda; N. Ishii; K. Kanaya; N. Ukita; T. Umeda
2010-05-11T23:59:59.000Z
Screenings of the quark-gluon plasma in electric and magnetic sectors are studied on the basis of generalized Polyakov-line correlation functions in lattice QCD simulations with two flavors of improved Wilson quarks. Using the Euclidean-time reflection ($\\R$) and the charge conjugation ($\\Ca$), electric and magnetic screening masses are extracted in a gauge invariant manner. Long distance behavior of the standard Polyakov-line correlation in the quark-gluon plasma is found to be dictated by the magnetic screening. Also, ratio of the two screening masses agrees with that obtained from the dimensionally-reduced effective field theory and the ${\\cal N}=4$ supersymmetric Yang-Mills theory.
Celine Degrande; Fabio Maltoni; Jian Wang; Cen Zhang
2015-03-02T23:59:59.000Z
Computations at next-to-leading order in the Standard Model offer new technical challenges in presence of higher dimensional operators. We introduce a framework that, starting from the top-quark effective field theory at dimension six, allows to make predictions for cross sections as well as distributions in a fully automatic way. As an application, we present the first complete results at NLO in QCD for flavor changing neutral interactions including parton shower effects, for $tZ$, $th$, $t\\gamma$ associated production at the LHC.
Nucleon structure from RBC/UKQCD 2+1 flavor DWF dynamical ensembles at a nearly physical pion mass
Shigemi Ohta; for the RBC; UKQCD Collaborations
2010-11-05T23:59:59.000Z
We report the status of nucleon structure calculations on the (2+1)-flavor dynamical domain-wall fermions ensembles with pion masses as low as 180 and 250 MeV on a lattice with about 4.6 fm spatial extent. A combination of the Iwasaki+dislocation- suppressing-determinant-ratio (I+DSDR) gauge action and DWF fermion action allows us to generate these ensembles at cutoff of about 1.4 GeV while keeping the residual mass small. Nucleon source Gaussian smearing has been optimized. Preliminary nucleon mass estimates are 0.98 and 1.05 GeV.
Research Groups - Cyclotron Institute
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch Finds VitaminResearch Groups
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS Communications Group Print
Office of Legacy Management (LM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal -Center05Sites Â»ri
Office of Legacy Management (LM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...)369s ..T
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology|SolarSpeakers BureauSpecialSpecific Group
Digital Technology Group Computer Laboratory
Cambridge, University of
Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language
High Temperature Membrane Working Group
Broader source: Energy.gov [DOE]
This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.
Assessing the Accuracy of Masses and Spatial Correlations of Galaxy Groups
James J. Frederic
1994-09-07T23:59:59.000Z
Two algorithms for the identification of galaxy groups from redshift surveys are tested by application to simulated data derived from N-body simulation. The accuracy of the membership assignments by these algorithms is studied in a companion to this paper (Frederic 1994). Here we evaluate the accuracy of group mass estimates and the group-group correlation function. We find a strong bias to low values in the virial mass estimates of groups identified using the algorithm of Nolthenius \\& White (1987). The Huchra \\& Geller (1982) algorithm gives virial mass estimates which are correct on average. These two algorithms result in group catalogs with similar two-point correlations. We find that groups in a CDM model have excessively large mass to light ratios even when the group richness distribution agrees with observations. We also find that our CDM groups are more strongly correlated than individual halos (galaxies), unlike the groups in the CfA redshift survey extension.
Winter 2015 Positive Parenting Group
Winter 2015 Positive Parenting Group This is an eight-week parent group series starting Monday, January 12, 2015 Future parent group sessions to be held: January 26 (no group 19th ) February 2, 9 and 23 (no group 16th ) and March 2, 9 and 16 6:00 p.m. to 8:00 p.m. Room 145 of the Clinical Services
Outline c and b Production in p¯p c and b Production in DIS Photoproduction of c and b b Production at HERA Conclusions Heavy Flavor Production at HERA and the Tevatron Bruce Straub, University of Oxford Physics in Collision, Buzios, Brazil , 5-9 July 2006 Heavy Flavor Production at HERA and the Tevatron
Ford, Alexander L.
2012-12-31T23:59:59.000Z
from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 The distribution of dark matter in a region of size 5h?1 Mpc. The classical ?CDMmodel is on the left and the two-component flavor-mixed ?CDMmodel....3 The distribution of dark matter in a region of size 50h?1 Mpc. The classical ?CDMmodel is on the left and the two-component flavor-mixed ?CDMmodel is on the right. One can see that the large structure match quite well. Figure (2.2) is a zoomed in region located...
Das, S P; Rosado, A; Xoxocotzi, R
2015-01-01T23:59:59.000Z
We analyze the prospect for observing the lightest and heavier CP-even neutral Higgs bosons( $\\phi$= $h$ and $H$) in their decays to flavor violating $b \\bar s$ (with charge conjugation) at the proposed Large Hadron electron Collider(LHeC), with center-of-mass energy approximately 1.296 TeV, in the framework of the Two Higgs Doublet Model Type-III, assuming a four-zero texture in the Yukawa matrices and a general Higgs potential. We consider scenarios in agreement with the current experimental data of flavor physics constraints and Higgs physics. We consider the charge current production processes: $\
S. P. Das; J. Hernández-Sánchez; A. Rosado; R. Xoxocotzi
2015-03-04T23:59:59.000Z
We analyze the prospect for observing the lightest and heavier CP-even neutral Higgs bosons( $\\phi$= $h$ and $H$) in their decays to flavor violating $b \\bar s$ (with charge conjugation) at the proposed Large Hadron electron Collider(LHeC), with center-of-mass energy approximately 1.296 TeV, in the framework of the Two Higgs Doublet Model Type-III, assuming a four-zero texture in the Yukawa matrices and a general Higgs potential. We consider scenarios in agreement with the current experimental data of flavor physics constraints and Higgs physics. We consider the charge current production processes: $\
Mutual friction in a cold color flavor locked superfluid and r-mode instabilities in compact stars
Massimo Mannarelli; Cristina Manuel; Basil A. Sa'd
2008-12-15T23:59:59.000Z
Dissipative processes acting in rotating neutron stars are essential in preventing the growth of the r-mode instability. We estimate the damping time of r-modes of an hypothetical compact quark star made up by color flavor locked quark matter at a temperature $T \\lesssim 0.01$ MeV. The dissipation that we consider is due to the the mutual friction force between the normal and the superfluid component arising from the elastic scattering of phonons with quantized vortices. This process is the dominant one for temperatures $T \\lesssim 0.01$ MeV where the mean free path of phonons due to their self-interactions is larger than the radius of the star and they can be described as an ideal bosonic gas. We find that r-modes oscillations are efficiently damped by this mechanism for pulsars rotating at frequencies of the order of 1 Hz at most. Our analysis rules out the possibility that cold pulsars rotating at higher frequencies are entirely made up by color flavor locked quark matter.
Nuclear forces from quenched and 2+1 flavor lattice QCD using the PACS-CS gauge configurations
N. Ishii; S. Aoki; T. Hatsuda; for PACS-CS Collaboration
2009-03-31T23:59:59.000Z
Two of recent progress in lattice QCD approach to nuclear force are reported. (i) Tensor force from quenched lattice QCD: By truncating the derivative expansion of inter-nucleon potential to the strictly local terms, we obtain central force V_C(r) and tensor force V_T(r) separately from s-wave and d-wave components of Bethe-Salpeter wave function for two nucleon state with J^P=1^+. Numerical calculation is performed with quenched QCD on 32^4 lattice using the standard plaquette action at beta=5.7 with the standard Wilson quark action with kappa=0.1640, 0.1665, 0.1678. Preliminary results show that the depths of the resulting tensor force amount to 20 to 40 MeV, which is enhanced in the light quark mass region. (ii) Nuclear force from 2+1 flavor QCD with PACS-CS gauge configuration: Preliminary full QCD results are obtained by using 2+1 flavor gauge configurations generated by PACS-CS collaboration. The resulting potential has the midium range attraction of about 30 MeV similar to the preceding quenched calculations. However, the repulsive core at short distance is significantly stronger than the corresponding quenched QCD result.
Chaotic motion at the emergence of the time averaged energy decay
Cesar Manchein; Jane Rosa; Marcus W. Beims
2009-05-29T23:59:59.000Z
A system plus environment conservative model is used to characterize the nonlinear dynamics when the time averaged energy for the system particle starts to decay. The system particle dynamics is regular for low values of the $N$ environment oscillators and becomes chaotic in the interval $13\\le N\\le15$, where the system time averaged energy starts to decay. To characterize the nonlinear motion we estimate the Lyapunov exponent (LE), determine the power spectrum and the Kaplan-Yorke dimension. For much larger values of $N$ the energy of the system particle is completely transferred to the environment and the corresponding LEs decrease. Numerical evidences show the connection between the variations of the {\\it amplitude} of the particles energy time oscillation with the time averaged energy decay and trapped trajectories.
Reconstruction of ionization probabilities from spatially averaged data in N dimensions
Strohaber, J.; Kolomenskii, A. A.; Schuessler, H. A. [Department of Physics, Texas A and M University, College Station, Texas 77843-4242 (United States)
2010-07-15T23:59:59.000Z
We present an analytical inversion technique, which can be used to recover ionization probabilities from spatially averaged data in an N-dimensional detection scheme. The solution is given as a power series in intensity. For this reason, we call this technique a multiphoton expansion (MPE). The MPE formalism was verified with an exactly solvable inversion problem in two dimensions, and probabilities in the postsaturation region, where the intensity-selective scanning approach breaks down, were recovered. In three dimensions, ionization probabilities of Xe were successfully recovered with MPE from simulated (using the Ammosov-Delone-Krainov tunneling theory) ion yields. Finally, we tested our approach with intensity-resolved benzene-ion yields, which show a resonant multiphoton ionization process. By applying MPE to this data (which were artificially averaged), the resonant structure was recovered, which suggests that the resonance in benzene may have been observed in spatially averaged data taken elsewhere.
Experimental Estimation of Average Fidelity of a Clifford Gate on a 7-qubit Quantum Processor
Dawei Lu; Hang Li; Denis-Alexandre Trottier; Jun Li; Aharon Brodutch; Anthony P. Krismanich; Ahmad Ghavami; Gary I. Dmitrienko; Guilu Long; Jonathan Baugh; Raymond Laflamme
2014-11-28T23:59:59.000Z
Quantum gates in experiment are inherently prone to errors that need to be characterized before they can be corrected. Full characterization via quantum process tomography is impractical and often unnecessary. For most practical purposes, it is enough to estimate more general quantities such as the average fidelity. Here we use a unitary 2-design and twirling protocol for efficiently estimating the average fidelity of Clifford gates, to certify a 7-qubit entangling gate in a nuclear magnetic resonance quantum processor. Compared with more than $10^8$ experiments required by full process tomography, we conducted 1656 experiments to satisfy a statistical confidence level of 99%. The average fidelity of this Clifford gate in experiment is 55.1%, and rises to 87.5% if the infidelity due to decoherence is removed. The entire protocol of certifying Clifford gates is efficient and scalable, and can easily be extended to any general quantum information processor with minor modifications.
Cropper, Clark [University of Tennessee, Knoxville (UTK); Perfect, Edmund [ORNL; van den Berg, Dr. Elmer [University of Tennessee, Knoxville (UTK); Mayes, Melanie [ORNL
2010-01-01T23:59:59.000Z
The capillary pressure-saturation function can be determined from centrifuge drainage experiments. In soil physics, the data resulting from such experiments are usually analyzed by the 'averaging method.' In this approach, average relative saturation, , is expressed as a function of average capillary pressure, <{psi}>, i.e., (<{psi}>). In contrast, the capillary pressure-saturation function at a physical point, i.e., S({psi}), has been extracted from similar experiments in petrophysics using the 'integral method.' The purpose of this study was to introduce the integral method applied to centrifuge experiments to a soil physics audience and to compare S({psi}) and (<{psi}>) functions, as parameterized by the Brooks-Corey and van Genuchten equations, for 18 samples drawn from a range of porous media (i.e., Berea sandstone, glass beads, and Hanford sediments). Steady-state centrifuge experiments were performed on preconsolidated samples with a URC-628 Ultra-Rock Core centrifuge. The angular velocity and outflow data sets were then analyzed using both the averaging and integral methods. The results show that the averaging method smoothes out the drainage process, yielding less steep capillary pressure-saturation functions relative to the corresponding point-based curves. Maximum deviations in saturation between the two methods ranged from 0.08 to 0.28 and generally occurred at low suctions. These discrepancies can lead to inaccurate predictions of other hydraulic properties such as the relative permeability function. Therefore, we strongly recommend use of the integral method instead of the averaging method when determining the capillary pressure-saturation function by steady-state centrifugation. This method can be successfully implemented using either the van Genuchten or Brooks-Corey functions, although the latter provides a more physically precise description of air entry at a physical point.
Artuso, M.; et al.,
2013-10-18T23:59:59.000Z
Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.
Mofrad, Mohammad R. K.
, in order to better resolve the drag profiles along the filament. A large part of the hydrodynamic dragAveraged implicit hydrodynamic model of semiflexible filaments Preethi L. Chandran and Mohammad R 2009; published 26 March 2010 We introduce a method to incorporate hydrodynamic interaction in a model
ATOC 3500 Thursday, Feb. 18, 2010 Hand back Midterm Exams (average = 89)
Toohey, Darin W.
ATOC 3500 Thursday, Feb. 18, 2010 Hand back Midterm Exams (average = 89) Interaction of atmospheric and efflorescence equate to a change in state from solid to liquid as the relative humidity (RH) changes. RH can change due to an increase in the mixing ratio of water vapor (equating to more collisions of water
Power Control for Block-Fading Channels with Peak-to-Average Power Constraints
GuillÃ©n i FÃ bregas, Albert
.nguyen@postgrads.unisa.edu.au Albert GuillÂ´en i F`abregas Engineering Department University of Cambridge Cambridge, CB2 1PZ, UK guillen@ieee.org Lars K. Rasmussen Institute for Telecommunications Research University of South Australia Mawson Lakes SA 5095 lars.rasmussen@unisa.edu.au Abstract-- Power allocation with peak-to-average power con
Peak-to-average power ratio reduction in OFDM based on transformation of partial
Peak-to-average power ratio reduction in OFDM based on transformation of partial transmit sequences number, but T-PTS is less complex. Introduction: To avoid the occurrence of large peak power of signals G. Lu, P. Wu and C. Carlemalm-Logothetis A novel scheme (transformation of partial transmit
ON THE SELF-AVERAGING OF WAVE ENERGY IN RANDOM GUILLAUME BAL
Bal, Guillaume
ON THE SELF-AVERAGING OF WAVE ENERGY IN RANDOM MEDIA GUILLAUME BAL Abstract. We consider transport equations for arbitrary statistical moments of the wave field is used to show that wave energy initial energy distributions. We show that wave energy is not stable, and instead scintillation is created
Average-case analysis of perfect sorting by reversals Mathilde Bouvel
Boyer, Edmond
genomics, is the process of sorting a signed permutation to either the identity or to the reversed identity example here: we perform an average case analysis of a sorting algorithm from computational genomics by generating function analysis of a family of trees. Motivation: a computational genomics problem
Neurocomputing 69 (2006) 10621065 Dependence of the spike-triggered average voltage on
Gerstner, Wulfram
2006-01-01T23:59:59.000Z
.V. All rights reserved. Keywords: Spike-triggered voltage; h-current; Damped voltage oscillations 1 oscillations. The model comprises a variable v for the membrane voltage, with time-scale tv and a secondNeurocomputing 69 (2006) 10621065 Dependence of the spike-triggered average voltage on membrane
Micro-engineered first wall tungsten armor for high average power laser fusion energy systems
Ghoniem, Nasr M.
Micro-engineered first wall tungsten armor for high average power laser fusion energy systems is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first is a coordinated effort to develop laser inertial fusion energy [1]. The first stage of the HAPL program
WAVELET ESTIMATION IN HOMOMORPHIC DOMAIN BY SPECTRAL AVERAGING, FOR DECONVOLUTION OF SEISMIC DATA
Paris-Sud XI, Université de
WAVELET ESTIMATION IN HOMOMORPHIC DOMAIN BY SPECTRAL AVERAGING, FOR DECONVOLUTION OF SEISMIC DATA M In geophysics, a homomorphic system is used to modelize the convolution of an emitted wavelet (source) with the impulse response of the earth into the sum of the log spectra of the wavelet and the earth's response
Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements
Hansen, René Rydhof
of indoor air pollution sources. Concurrently, great efforts are made to make buildings energy efficient 1970s, while less attention has been paid to IAQ. Insufficient venting of indoor air pollutantsSeasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements Marie
Expansion and Growth of Structure Observables in a Macroscopic Gravity Averaged Universe
Wijenayake, Tharake
2015-01-01T23:59:59.000Z
We investigate the effect of averaging inhomogeneities on expansion and large-scale structure growth observables using the exact and covariant framework of Macroscopic Gravity (MG). It is well-known that applying the Einstein's equations and spatial averaging do not commute and lead to the averaging problem. For the MG formalism applied to the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, this gives an extra dynamical term encapsulated as an averaging density parameter denoted $\\Omega_A$. An exact isotropic cosmological solution of MG for the flat FLRW metric is already known in the literature, we derive here an anisotropic exact solution. Using the isotropic solution, we compare the expansion history to current data of distances to supernovae, Baryon Acoustic Oscillations, CMB last scattering surface, and Hubble constant measurements, and find $-0.05 \\le \\Omega_A \\le 0.07$ (at the 95% CL). For the flat metric case this reduces to $-0.03 \\le \\Omega_A \\le 0.05$. We also find that the inclusion of this ter...
Climate Projections Using Bayesian Model Averaging and Space-Time Dependence
Haran, Murali
Climate Projections Using Bayesian Model Averaging and Space-Time Dependence K. Sham Bhat, Murali Haran, Adam Terando, and Klaus Keller. Abstract Projections of future climatic changes are a key input to the design of climate change mitiga- tion and adaptation strategies. Current climate change projections
Plio-Pleistocene time-averaged field in southern Patagonia recorded in lava flows
Singer, Bradley S.
Plio-Pleistocene time-averaged field in southern Patagonia recorded in lava flows V. Mejia and N. D of 53 lava flows from southern Patagonia (latitudes 49.5Â°Â52.1Â°S) that include the Pali-Aike volcanic, 7 figures, 3 tables. Keywords: paleomagnetic secular variation; Patagonia; Pali-Aike Volcanic Field
Is Average Run Length to False Alarm Always an Informative Criterion?
Mei, Yajun
applications, including statistical process control (SPC), industrial quality control, target or signal- point detection. A partial list includes cumulative sum (CUSUM), Shewhart's control chart, exponentially-weighted moving average (EWMA) charts, Shiyayev-Roberts proce- dures, window-limited control charts, and scan
Average Consensus in the Presence of Delays in Directed Graph Topologies
Hadjicostis, Christoforos
@kth.se. #12;directed interconnection topology (digraph). The objective of a consensus problem is to have all values that the nodes initially posses (initial values). When the agents (asymptotically) reach agreement shown in [4] that, under a fixed interconnection topology, average consensus can be reached
ILP and Iterative LP Solutions for Peak and Average Power Optimization in HLS
Ramanujam, J. "Ram"
. Ramanujam2 1 Electrical Engineering Dept., Assiut University, Egypt 2 Electrical and Computer Engineering as average power and energy consumptions. As the design problem becomes large, exact solution takes-flow graph (DFG) executes. We define Scheduling for Low Power and Energy (SLoPE) in high-level synthesis
Effects of nuclear structure on average angular momentum in subbarrier fusion
A. B. Balantekin; J. R. Bennett; S. Kuyucak
1994-07-21T23:59:59.000Z
We investigate the effects of nuclear quadrupole and hexadecapole couplings on the average angular momentum in sub-barrier fusion reactions. This quantity could provide a probe for nuclear shapes, distinguishing between prolate vs. oblate quadrupole and positive vs. negative hexadecapole couplings. We describe the data in the O + Sm system and discuss heavier systems where shape effects become more pronounced.
C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald
2007-02-01T23:59:59.000Z
Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.
Seminario de Estadstica e Investigacin Operativa "Tree, web and average web value for
Tradacete, Pedro
Seminario de Estadística e Investigación Operativa "Tree, web and average web value for cycle solution concepts, called web values, are introduced axiomatically, each one with respect to some specific recursive algorithms to calculate them. Additionally the efficiency and stability of web values are studied
Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioral Synthesis
Mohanty, Saraju P.
Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioral Synthesis for the reduction of total power and power fluctuation dur- ing behavioral synthesis. We consider resources of dual component library which is then used during behavioral synthesis. The formulated multi-objective cost
Why should I recycle? The average American generates 4.5 pounds of waste daily.
Tsien, Roger Y.
Why should I recycle? The average American generates 4.5 pounds of waste daily. Instead of throwing paper and containers in the trash,recycle them in single-stream receptacles conveniently located throughout campus.These guidelines will help you recycle more and waste less. What's recyclable? · Mixed
S79JUNE 2006STATE OFTHE CLIMATE IN 2005 | FIG. 6.28. European average temperature anomalies
Â90 average. Romania and Bulgaria received significant rainfall excesses during the year, with August totals above average in Romania (Fig. 6.29). A warm January, with areas of eastern Ukraine more than 5Â°C above
Libby, J.; Malde, S.; Powell, A.; Wilkinson, G.; Asner, David M.; Bonvicini, Giovanni; Briere, R. A.; Gershon, T.; Naik, P.; Pedlar, Todd K.; Rademacker, J.; Ricciardi, S.; Thomas, C.
2014-07-14T23:59:59.000Z
New determination of the D0!K?!+!0 and D0!K?!+!+!? coherence factors and average strong-phase differences
Reidy, J.J.; Cremaldi, L.M.; Summers, D.J.
1992-01-01T23:59:59.000Z
The High Energy Physics Group has been principally involved with Fermilab experiments on photoproduction and hadroproduction of charm. Nuclear reactions with a mixed 250-GeV hadronic beam and 500-GeV [pi]-N interactions were used. Considerable attention is devoted to the UNIX/RISC computing farm. The Group also has an SSC R D program dealing with the adaptation and use of the HETC-based detector simulation code CALOR89, the development of liquid scintillator technology for use in SSC detector calorimeters, the hanging file calorimeter project, and the calorimetry program for GEM.
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 2001 prepared by: Data Management Group Joint Program..............................................................................2 Text Based Data Retrieval System `drs' ..........................................................2 Internet Browser Data Retrieval System (iDRS)..............................................3 Complex Data
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 1999 prepared by: Data Management Group Joint Program................................................................. 1 INFORMATION PROCESSING ............................................. 2 Text Based Data Retrieval System `drs' ........................ 2 Internet Browser Data Retrieval System (iDRS) ............ 3
Data Management Group Annual Report
Toronto, University of
iv Data Management Group Annual Report 2003 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located ........................................................................................................ 3 Text-based Data Retrieval System `drs
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:02...
INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP
space exploration infrastructure standards facilitating interoperability through an international with relevant existing international working groups/ organisations. Â· Preparation and Organization of a WS1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting
ASD Groups | Advanced Photon Source
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ASD Groups Accelerator Operations and Physics Applies integrated expertise in accelerator physics, operations techniques, safety systems, software development, and numerical...
Taylor, Frank E.
A measurement of the B[0 over s] ? J/?? decay parameters, updated to include flavor tagging is reported using 4.9??fb[superscript ?1] of integrated luminosity collected by the ATLAS detector from ?s = 7??TeV pp collisions ...
Taylor, Frank E.
Using a sample of dilepton top-quark pair (t[bar over t]) candidate events, a study is performed of the production of top-quark pairs together with heavy-flavor (HF) quarks, the sum of t[bar over t] + b + X and t[bar over ...
Sanghoon Lim
2014-08-18T23:59:59.000Z
Charm and bottom quarks are formed predominantly by gluon fusion in the initial hard scatterings at RHIC, making them good probes of the full medium evolution. Previous measurements at RHIC have shown large suppression and azimuthal anisotropy of open heavy-flavor hadrons in Au+Au collisions at $\\sqrt{s_{NN}}=200~{\\rm GeV}$. Explaining the simultaneously large suppression and flow of heavy quarks has been challenging. To further understand the heavy-flavor transport in the hot and dense medium, it is imperative to also measure cold nuclear matter effects which affect the initial distribution of heavy quarks as well as the system size dependence of the final state suppression. In this talk, new measurements by the PHENIX collaboration of electrons from heavy-flavor decays in $p$+$p$, $d$+Au, and Cu+Cu collisions at $\\sqrt{s_{NN}}=200~{\\rm GeV}$ are presented. In particular, a surprising enhancement of intermediate transverse momentum heavy-flavor decay leptons in $d$+Au at mid and backward rapidity are also seen in mid-central Cu+Cu collisions. This enhancement is much larger than the expectation from anti-shadowing of the parton distributions and is theoretically unexplained.
Ammar, Raymond G.; Bean, Alice; Besson, David Zeke; Zhao, X.
2001-10-01T23:59:59.000Z
We have searched a sample of 9.6 x 10(6) B(B) over bar events for the flavor-changing neutral current decays B --> Kl(+)l(-) and B --> K*(892)l(+)l(-). We subject the latter decay to the requirement that the dilepton mass ...
Apyan, Aram
A search for flavor-changing neutral currents in top-quark decays t ? Zq is performed in events produced from the decay chain t[bar over t] ? Zq + Wb, where both vector bosons decay leptonically, producing a final state ...
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 2000 prepared by: Data Management Group Joint Program the operation of the EMME/2 simu- lation package on the Data Management Group's computer system. During the year computing resource at the DMG. A major challenge in 2000 was to maintain this service while operating out
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 2004 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located of the funding partners: Ministry of Transportation, Ontario #12;SUMMARY The Data Management Group (DMG
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 1997 #12;Data Management Group Annual Report 1997 A co-operative project that is jointly funded by members of the Toronto Area Transportation Planning Data Collection: (416) 978-3941 #12;Data Management Group 1997 Annual Report Table of Contents 1 INTRODUCTION
Water Resources Working Group Report
Sheridan, Jennifer
Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members WICCI Tim Asplund (Co-Chair) - Wisconsin Department
Fermilab Steering Group Report
Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab
2007-01-01T23:59:59.000Z
The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.
Renormalization group running of neutrino parameters in the inverse seesaw model
Johannes Bergstrom; Michal Malinsky; Tommy Ohlsson; He Zhang
2012-07-06T23:59:59.000Z
We perform a detailed study of the renormalization group equations in the inverse seesaw model. Especially, we derive compact analytical formulas for the running of the neutrino parameters in the standard model and the minimal supersymmetric standard model, and illustrate that, due to large Yukawa coupling corrections, significant running effects on the leptonic mixing angles can be naturally obtained in the proximity of the electroweak scale, perhaps even within the reach of the LHC. In general, if the mass spectrum of the light neutrinos is nearly degenerate, the running effects are enhanced to experimentally accessible levels, well suitable for the investigation of the underlying dynamics behind the neutrino mass generation and the lepton flavor structure. In addition, the effects of the seesaw thresholds are discussed, and a brief comparison to other seesaw models is carried out.
Renormalization group running of neutrino parameters in the inverse seesaw model
Bergstroem, Johannes; Malinsky, Michal; Ohlsson, Tommy; Zhang He [Department of Theoretical Physics, School of Engineering Sciences, Royal Institute of Technology (KTH)-AlbaNova University Center, Roslagstullsbacken 21, 106 91 Stockholm (Sweden)
2010-06-01T23:59:59.000Z
We perform a detailed study of the renormalization group equations in the inverse seesaw model. Especially, we derive compact analytical formulas for the running of the neutrino parameters in the standard model and the minimal supersymmetric standard model, and illustrate that, due to large Yukawa coupling corrections, significant running effects on the leptonic mixing angles can be naturally obtained in the proximity of the electroweak scale, perhaps even within the reach of the LHC. In general, if the mass spectrum of the light neutrinos is nearly degenerate, the running effects are enhanced to experimentally accessible levels, well suitable for the investigation of the underlying dynamics behind the neutrino mass generation and the lepton flavor structure. In addition, the effects of the seesaw thresholds are discussed, and a brief comparison to other seesaw models is carried out.
The pMSSM Interpretation of LHC Results Using Rernormalization Group Invariants
Carena, Marcela [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lykken, Joseph [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Sekmen, Sezen [CERN, Geneva (Switzerland); Shah, Nausheen R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Wagner, Carlos E.M. [Enrico Fermi Institute, Univ. of Chicago, IL (United States)
2012-10-01T23:59:59.000Z
The LHC has started to constrain supersymmetry-breaking parameters by setting bounds on possible colored particles at the weak scale. Moreover, constraints from Higgs physics, flavor physics, the anomalous magnetic moment of the muon, as well as from searches at LEP and the Tevatron have set additional bounds on these parameters. Renormalization Group Invariants (RGIs) provide a very useful way of representing the allowed parameter space by making direct connection with the values of these parameters at the messenger scale. Using a general approach, based on the pMSSM parametrization of the soft supersymmetry-breaking parameters, we analyze the current experimental constraints to determine the probability distributions for the RGIs. As examples of their application, we use these distributions to analyze the question of Gaugino Mass Unification and to probabilistically determine the parameters of General and Minimal Gauge Mediation with arbitrary Higgs mass parameters at the Messenger Scale.
Correlation properties of loose groups
Maia, M.A.G.; Da Costa, L.N. (Observatorio Nacional do Brasil, Rio de Janeiro (Brazil))
1990-02-01T23:59:59.000Z
The two-point spatial correlation function for loose groups of galaxies is computed, using the recently compiled catalog of groups in the southern hemisphere. It is found that the correlation function for groups has a similar slope to that of galaxies but with a smaller amplitude, confirming an earlier result obtained from a similar analysis of the CfA group catalog. This implies that groups of galaxies are more randomly distributed than galaxies, which may be consistent with the predictions of Kashlinsky (1987) for a gravitational clustering scenario for the formation of large-scale structures. 21 refs.
Stanley Prawiradjaja
2003-05-31T23:59:59.000Z
Traditionally soymilk has been made with whole soybeans; however, there are other alternative raw ingredients for making soymilk, such as soy flour or full-fat soy flakes. US markets prefer soymilk with little or no beany flavor. modifying the process or using lipoxygenase-free soybeans can be used to achieve this. Unlike the dairy industry, fat reduction in soymilk has been done through formula modification instead of by conventional fat removal (skimming). This project reports the process optimization for solids and protein extraction, flavor improvement and fat removal in the production of 5, 8 and 12 {sup o}Brix soymilk from full fat soy flakes and whole soybeans using the Takai soymilk machine. Proximate analyses, and color measurement were conducted in 5, 8 and 12 {sup o}Brix soymilk. Descriptive analyses with trained panelists (n = 9) were conducted using 8 and 12 {sup o}Brix lipoxygenase-free and high protein blend soy flake soymilks. Rehydration of soy flakes is necessary to prevent agglomeration during processing and increase extractability. As the rehydration temperature increases from 15 to 50 to 85 C, the hexanal concentration was reduced. Enzyme inactivation in soy flakes milk production (measured by hexanal levels) is similar to previous reports with whole soybeans milk production; however, shorter rehydration times can be achieved with soy flakes (5 to 10 minutes) compared to whole beans (8 to 12 hours). Optimum rehydration conditions for a 5, 8 and 12 {sup o}Brix soymilk are 50 C for 5 minutes, 85 C for 5 minutes and 85 C for 10 minutes, respectively. In the flavor improvement study of soymilk, the hexanal date showed differences between undeodorized HPSF in contrast to triple null soymilk and no differences between deodorized HPSF in contrast to deodorized triple null. The panelists could not differentiate between the beany, cereal, and painty flavors. However, the panelists responded that the overall aroma of deodorized 8 {sup o}Brix triple null and HPSF soymilk are lower than the undeodorized triple null and HPSF soymilk. The triple null soymilk was perceived to be more bitter than the HPSF soymilk by the sensory panel due to oxidation on the triple null soy flakes. This oxidation may produce other aroma that was not analyzed using the GC but noticed by the panelists. The sensory evaluation results did show that the deodorizer was able to reduce the soymilk aroma in HPSF soymilk so it would be similar to triple null soymilk at 8 {sup o}Brix level. Regardless of skimming method and solids levels, the fat from the whole soybean milk was removed less efficiently than soy flake milk (7 to 30% fat extraction in contrast to 50 to 80% fat extraction respectively). In soy flake milk, less fat was removed as the % solid increases regardless of the processing method. In whole soybean milk, the fat was removed less efficiently at lower solids level milk using the commercial dairy skimmer and more efficient at lower solids level using the centrifuge-decant method. Based on the Hunter L, a, b measurement, the color of the reduced fat soy flake milk yielded a darker, greener and less yellow colored milk than whole soymilk ({alpha} < 0.05), whereas no differences were noticed in reduced fat soybean milk ({alpha} < 0.05). Color comparison of whole and skim cow's milk showed the same the same trend as in the soymilk.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.
2011-08-01T23:59:59.000Z
We present a new method to measure the top quark pair production cross section and the background rates with data corresponding to an integrated luminosity of 2.7 fb-1 from p p? collisions at ?s = 1.96 TeV collected with the CDF II Detector. We select events with a single electron or muon candidate, missing transverse energy, and at least one b-tagged jet. We perform a simultaneous fit to a jet flavor discriminant across nine samples defined by the number of jets and b-tags. An advantage of this approach is that many systematic uncertainties are measured in situ and inversely scale with integrated luminosity. We measure a top cross section of ?tt? = 7.64 ± 0.57 (stat + syst) ± 0.45 (luminosity) pb.
Zhaofeng Liu; Ying Chen; Shao-Jing Dong; Michael Glatzmaier; Ming Gong; Anyi Li; Keh-Fei Liu; Yi-Bo Yang; Jian-Bo Zhang
2014-08-19T23:59:59.000Z
We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale independent renormalization constant for the axial vector current is computed using the Ward Identity. The renormalization constants for scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks each on two lattices with sizes 24^3x64 and 32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; et al
2011-08-01T23:59:59.000Z
We present a new method to measure the top quark pair production cross section and the background rates with data corresponding to an integrated luminosity of 2.7 fb-1 from p p? collisions at ?s = 1.96 TeV collected with the CDF II Detector. We select events with a single electron or muon candidate, missing transverse energy, and at least one b-tagged jet. We perform a simultaneous fit to a jet flavor discriminant across nine samples defined by the number of jets and b-tags. An advantage of this approach is that many systematic uncertainties are measured in situ and inversely scalemore »with integrated luminosity. We measure a top cross section of ?tt? = 7.64 ± 0.57 (stat + syst) ± 0.45 (luminosity) pb.« less
R-parity violating effects in top quark flavor-changing neutral-current production at LHC
Cao Junjie [College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007 (China); Ottawa-Carleton Institute for Physics, Carleton University, Ottawa, K1S 5B6 (Canada); Heng Zhaoxia; Yang Jinmin [Institute of Theoretical Physics and Kavli Institute for Theoretical Physics China, Academia Sinica, Beijing 100190 (China); Wu Lei [College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007 (China)
2009-03-01T23:59:59.000Z
In the minimal supersymmetric model the R-parity violating top quark interactions, which are so far weakly constrained, can induce various flavor-changing neutral-current (FCNC) productions for the top quark at the large hadron collider (LHC). In this work we assume the presence of the B-violating couplings and examine their contributions to the FCNC productions proceeding through the parton processes cg{yields}t, gg{yields}tc, cg{yields}t{gamma}, cg{yields}tZ and cg{yields}th. We find that all these processes can be greatly enhanced relative to the R-parity preserving predictions. In the parameter space allowed by current experiments, all the production channels except cg{yields}th can reach the 3{sigma} sensitivity, in contrast to the R-parity preserving case in which only cg{yields}t can reach the 3{sigma} sensitivity.
Thomas DeGrand
2011-09-06T23:59:59.000Z
I carry out a finite-size scaling study of the correlation length in SU(3) lattice gauge theory coupled to 12 fundamental flavor fermions, using recent data published by Fodor, Holland, Kuti, Nogradi and Schroeder. I make the assumption that the system is conformal in the zero-mass, infinite volume limit, that scaling is violated by both nonzero fermion mass and by finite volume, and that the scaling function in each channel is determined self-consistently by the data. From several different observables I extract a common exponent for the scaling of the correlation length xi with the fermion mass m_q, xi proportional to m_q to the power -1/y_m, with y_m ~ 1.35. Shortcomings of the analysis are discussed.
M. Ferreira; P. Costa; O. Lourenço; T. Frederico; C. Providência
2014-06-20T23:59:59.000Z
The QCD phase diagram at zero chemical potential and finite temperature subject to an external magnetic field is studied within the three flavor Nambu--Jona-Lasinio (NJL) model and the NJL model with the Polyakov loop (PNJL). A scalar coupling parameter dependent on the magnetic field intensity is considered. The scalar coupling has been fitted so that the lattice QCD pseudocritical chiral transition temperatures are reproduced and in the limit of large magnetic field decreases with the inverse of the magnetic field intensity. This dependence of the coupling allows to reproduce the lattice QCD results with respect to the quark condensates and Polyakov loop: due to the magnetic field the quark condensates are enhanced at low and high temperatures and suppressed for temperatures close to the transition temperatures and the Polyakov loop increases with the magnetic field.
Renormalization, averaging, conservation laws and AdS (in)stability
Ben Craps; Oleg Evnin; Joris Vanhoof
2015-01-19T23:59:59.000Z
We continue our analytic investigations of non-linear spherically symmetric perturbations around the anti-de Sitter background in gravity-scalar field systems, and focus on conservation laws restricting the (perturbatively) slow drift of energy between the different normal modes due to non-linearities. We discover two conservation laws in addition to the energy conservation previously discussed in relation to AdS instability. A similar set of three conservation laws was previously noted for a self-interacting scalar field in a non-dynamical AdS background, and we highlight the similarities of this system to the fully dynamical case of gravitational instability. The nature of these conservation laws is best understood through an appeal to averaging methods which allow one to derive an effective Lagrangian or Hamiltonian description of the slow energy transfer between the normal modes. The conservation laws in question then follow from explicit symmetries of this averaged effective theory.
Monache, L D; Grell, G A; McKeen, S; Wilczak, J; Pagowski, M O; Peckham, S; Stull, R; McHenry, J; McQueen, J
2006-03-20T23:59:59.000Z
Kalman filtering (KF) is used to postprocess numerical-model output to estimate systematic errors in surface ozone forecasts. It is implemented with a recursive algorithm that updates its estimate of future ozone-concentration bias by using past forecasts and observations. KF performance is tested for three types of ozone forecasts: deterministic, ensemble-averaged, and probabilistic forecasts. Eight photochemical models were run for 56 days during summer 2004 over northeastern USA and southern Canada as part of the International Consortium for Atmospheric Research on Transport and Transformation New England Air Quality (AQ) Study. The raw and KF-corrected predictions are compared with ozone measurements from the Aerometric Information Retrieval Now data set, which includes roughly 360 surface stations. The completeness of the data set allowed a thorough sensitivity test of key KF parameters. It is found that the KF improves forecasts of ozone-concentration magnitude and the ability to predict rare events, both for deterministic and ensemble-averaged forecasts. It also improves the ability to predict the daily maximum ozone concentration, and reduces the time lag between the forecast and observed maxima. For this case study, KF considerably improves the predictive skill of probabilistic forecasts of ozone concentration greater than thresholds of 10 to 50 ppbv, but it degrades it for thresholds of 70 to 90 ppbv. Moreover, KF considerably reduces probabilistic forecast bias. The significance of KF postprocessing and ensemble-averaging is that they are both effective for real-time AQ forecasting. KF reduces systematic errors, whereas ensemble-averaging reduces random errors. When combined they produce the best overall forecast.
Yoshio Uwano; Hiromi Yuya
2009-12-17T23:59:59.000Z
The averaged learning equation (ALEH) applicable to the principal component analyzer is studied from both quantum information geometry and dynamical system viewpoints. On the quantum information space (QIS), the space of regular density matrices endowed with the quantum SLD-Fisher metric, a gradient system is given as an extension of the ALEH; on the submanifold, consisting of the diagonal matrices, of the QIS, the gradient flow coincides with the ALEH up to a local diffeomorphism.
Sellers, D.
2001-01-01T23:59:59.000Z
Using Utility Bills and Average Daily Energy Consumption to Target Commissioning Efforts and Track Building Performance By: David Sellers, Senior Engineer, Portland Energy Conservation Inc, Portland, Oregon ABSTRACT This paper discusses using basic... by contacting the author at: Dsellers@peci.org www.peci.org Phone: - 503-248-4636 extension 224 Mailing address through August 3, 2001 Portland Energy Conservation, Inc. 921 SW Washington Street Suite 312 Portland, Oregon 97205 Mailing address after August 3...
Average balance equations, scale dependence, and energy cascade for granular materials
Riccardo Artoni; Patrick Richard
2015-03-09T23:59:59.000Z
A new averaging method linking discrete to continuum variables of granular materials is developed and used to derive average balance equations. Its novelty lies in the choice of the decomposition between mean values and fluctuations of properties which takes into account the effect of gradients. Thanks to a local homogeneity hypothesis, whose validity is discussed, simplified balance equations are obtained. This original approach solves the problem of dependence of some variables on the size of the averaging domain obtained in previous approaches which can lead to huge relative errors (several hundred percentages). It also clearly separates affine and nonaffine fields in the balance equations. The resulting energy cascade picture is discussed, with a particular focus on unidirectional steady and fully developed flows for which it appears that the contact terms are dissipated locally unlike the kinetic terms which contribute to a nonlocal balance. Application of the method is demonstrated in the determination of the macroscopic properties such as volume fraction, velocity, stress, and energy of a simple shear flow, where the discrete results are generated by means of discrete particle simulation.
Average discharge rate representation of voice onset time in the chinchilla auditory nerve
Sinex, D.G.; McDonald, L.P.
1988-05-01T23:59:59.000Z
Responses of chinchilla auditory-nerve fibers to synthesized stop consonants differing in voice onset time (VOT) were obtained. The syllables, heard as /ga/--/ka/ or /da/--/ta/, were similar to those previously used by others in psychophysical experiments with human and with chinchilla subjects. Average discharge rates of neurons tuned to the frequency region near the first formant generally increased at the onset of voicing, for VOTs longer than 20 ms. These rate increases were closely related to spectral amplitude changes associated with the onset of voicing and with the activation of the first formant; as a result, they provided accurate information about VOT. Neurons tuned to frequency regions near the second and third formants did not encode VOT in their average discharge rates. Modulations in the average rates of these neurons reflected spectral variations that were independent of VOT. The results are compared to other measurements of the peripheral encoding of speech sounds and to psychophysical observations suggesting that syllables with large variations in VOT are heard as belonging to one of only two phonemic categories.
Fejos, G
2015-01-01T23:59:59.000Z
Temperature dependence of the $U_A(1)$ anomaly is investigated by taking into account mesonic fluctuations in the $U(3)\\times U(3)$ linear sigma model. A field dependent anomaly coefficient function of the effective potential is calculated within the finite temperature functional renormalization group approach. The applied approximation scheme is a generalization of the chiral invariant expansion technique developed in [G. Fej\\H{o}s, Phys. Rev. D 90, 096011 (2014)]. We provide an analytic expression and also numerical evidence that depending on the relationship between the two quartic couplings, mesonic fluctuations can either strengthen of weaken the anomaly as a function of the temperature. Role of the six-point invariant of the $U(3)\\times U(3)$ group, and therefore the stability of the chiral expansion is also discussed in detail.
G. Fejos
2015-06-29T23:59:59.000Z
Temperature dependence of the $U_A(1)$ anomaly is investigated by taking into account mesonic fluctuations in the $U(3)\\times U(3)$ linear sigma model. A field dependent anomaly coefficient function of the effective potential is calculated within the finite temperature functional renormalization group approach. The applied approximation scheme is a generalization of the chiral invariant expansion technique developed in [G. Fejos, Phys. Rev. D 90, 096011 (2014)]. We provide an analytic expression and also numerical evidence that depending on the relationship between the two quartic couplings, mesonic fluctuations can either strengthen of weaken the anomaly as a function of the temperature. Role of the six-point invariant of the $U(3)\\times U(3)$ group, and therefore the stability of the chiral expansion is also discussed in detail.
TEC Working Group Topic Groups Rail Conference Call Summaries...
Office of Environmental Management (EM)
September 11, 1998 Meeting June 22, 1998 Meeting May 27, 1998 Meeting November 3, 1997 Meeting September 18, 1997 Meeting More Documents & Publications TEC Working Group...
On The Harmonic Oscillator Group
Raquel M. Lopez; Sergei K. Suslov; Jose M. Vega-Guzman
2011-12-04T23:59:59.000Z
We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. A six parameter family of the square integrable oscillator wave functions, which seems cannot be obtained by the standard separation of variables, is presented as an example. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.
Safarevic's Theorem on Solvable Groups as Galois Groups
extension Kjk with Galois group G(Kjk) Â¸ = G. Å¸ SafareviÅ¸c proved this result in 1954. The intricate proof ) are embedable into G. Then there exists a Galois extension Kjk with Galois group isomorphic to G, which