Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

2

Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 513 491 515 539 557 534 541 579 574 585 558 573 1998 578 536 591 581 517 456 486 486 471 477 457 468 1999 466 438 489 495 499 510 547 557 544 555 541 579 2000 587 539 605 587 615 570 653 629 591 627 609 611 2001 658 591 677 690 718 694 692 679 686 697 688 700 2002 639 591 587 621 622 605 654 639 649 650 623 638 2003 689 624 649 676 702 691 733 732 704 734 719 748 2004 741 697 727 692 692 688 718 729 706 723 711 718

3

Illinois Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0

4

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

5

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

6

,"Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030oh2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030oh2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:25 AM" "Back to Contents","Data 1: Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030OH2" "Date","Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0 33284,0 33312,0

7

,"Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:27 AM" "Back to Contents","Data 1: Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030TN2" "Date","Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0 33284,0

8

,"Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030tn2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030tn2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:27 AM" "Back to Contents","Data 1: Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030TN2" "Date","Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 35611,0 35976,0 37802,0 38898,0

9

,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030va2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030va2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:29 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030VA2" "Date","Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0 33284,0

10

,"Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:26 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030PA2" "Date","Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 35611,0 35976,0 37802,0

11

,"South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030sd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030sd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:26 AM" "Back to Contents","Data 1: South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)" "Sourcekey","N9030SD2" "Date","South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0

12

,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030va2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030va2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:29 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030VA2" "Date","Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 35611,0 35976,0 37802,0 38898,0

13

,"Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:26 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030PA2" "Date","Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0

14

Federal Offshore--Gulf of Mexico Nonhydrocarbon Gases Removed from Natural  

U.S. Energy Information Administration (EIA) Indexed Site

Nonhydrocarbon Gases Removed from Natural Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

15

Nonhydrocarbon Gases Removed from Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

6-2013 6-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Louisiana NA NA NA NA NA NA 1996-2013 New Mexico NA NA NA NA NA NA 1996-2013 Oklahoma NA NA NA NA NA NA 1996-2013 Texas NA NA NA NA NA NA 1991-2013 Wyoming NA NA NA NA NA NA 1991-2013 Other States Other States Total NA NA NA NA NA NA 1996-2013 Alabama NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Maryland

16

Nonhydrocarbon Gases Removed from Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

661,168 718,674 721,507 836,698 867,922 761,836 1973-2012 661,168 718,674 721,507 836,698 867,922 761,836 1973-2012 Alaska 0 0 0 0 0 0 1996-2012 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 1997-2012 Louisiana 0 0 0 0 1996-2010 Louisiana Onshore NA NA NA NA NA NA 2003-2012 Louisiana State Offshore NA NA NA NA NA NA 2003-2012 New Mexico 28,962 32,444 33,997 40,191 39,333 38,358 1980-2012 Oklahoma 0 0 0 0 1996-2010 Texas 254,337 241,626 240,533 279,981 284,557 183,118 1980-2012 Texas Onshore 254,337 241,626 240,533 279,981 284,557 183,118 1992-2012 Texas State Offshore NA 0 0 0 0 0 2003-2012 Wyoming 154,157 161,952 155,366 164,221 152,421 151,288 1980-2012 Other States Other States Total 223,711 282,651 291,611 352,304 1994-2010 Alabama 16,529 17,394 16,658 14,418 18,972 NA 1980-2012

17

Nonhydrocarbon Gases Removed from Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

1-2013 1-2013 Alaska NA NA NA NA NA NA 1996-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana NA NA NA NA NA NA 1996-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1991-2013 Missouri NA NA NA NA NA NA 1991-2013 Montana NA NA NA NA NA NA 1996-2013 Nebraska NA NA NA NA NA NA 1991-2013 Nevada NA NA NA NA NA NA 1991-2013 New Mexico NA NA NA NA NA NA 1996-2013

18

California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 71 76 80 78 78 76 80 79 77 79 78 80 1997 20 18 20 20 20 20 20 20 20 20 20 20 1998 62 56 62 60 62 60 62 62 60 62 60 62 1999 18 16 18 17 18 17 18 18 17 18 17 18 2000 22 20 22 22 22 22 22 22 22 22 22 22 2001 21 19 21 20 21 20 21 21 20 21 20 21 2002 224 203 227 211 219 217 217 410 274 304 330 299 2003 309 277 304 289 307 293 298 285 279 281 276 281 2004 284 260 273 270 278 269 278 275 270 279 272 277 2005 104 250 276 272 280 267 282 289 280 288 281 283 2006 277 256 293 283 293 280 283 286 269 284 275 285 2007 261 242 277 268 277 264 268 270 254 268 260 269

19

Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,825 1,776 1,759 1,668 1,765 1,492 1,869 1,541 2,011 857 1,610 1,972 1992 2,247 1,940 1,988 2,248 2,249 2,233 2,381 2,259 2,222 2,290 2,277 2,387 1993 2,340 1,872 2,111 1,945 1,407 1,747 2,269 2,331 2,270 2,338 2,232 2,457 1994 2,473 2,025 2,223 2,147 1,562 1,554 2,551 2,616 2,287 2,375 2,593 2,575 1995 2,412 2,008 2,181 2,136 1,597 1,475 2,496 2,591 2,213 2,314 2,581 2,576 1996 2,211 2,030 2,287 2,270 2,346 2,216 2,232 2,297 2,257 2,293 2,292 2,275 1997 2,336 2,076 2,333 2,284 2,206 1,787 2,210 2,225 2,387 2,564 2,349 2,447 1998 2,281 2,028 2,282 2,245 2,151 1,732 2,162 2,156 2,342 2,519 2,310 2,404

20

Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 18 12 17 15 21 64 67 60 36 32 9 8 1997 6 6 8 6 5 5 10 24 47 13 28 5 1998 5 4 5 3 5 5 5 5 5 6 5 5 1999 5 6 7 7 7 8 6 8 6 6 5 5 2000 5 5 5 5 5 5 5 5 8 8 8 9 2001 9 7 7 6 7 6 9 8 8 8 7 7 2002 9 10 15 14 12 13 14 13 9 10 10 10 2003 11 10 10 10 11 11 11 12 9 10 9 9 2004 10 10 12 12 18 13 14 11 7 8 5 6 2005 6 6 7 6 7 8 9 8 8 8 7 7 2006 8 5 5 5 3 4 4 4 5 4 3 3 2007 6 4 4 4 2 3 3 3 4 3 2 2 2008 567 495 642 623 697 761 801 818 853 935 931 920 2009 614 540 589 564 544 513 535 536 497 479 483 349 2010 431 467 513 478 560 682 626 760 660 733 777 761

22

Montana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 134 102 102 102 24 20 27 7 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

23

Missouri Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

24

Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,374 2,117 2,567 2,440 2,313 2,308 2,342 2,478 2,317 2,472 2,521 2,381 1992 2,015 1,452 1,893 1,823 1,717 1,841 2,042 2,024 1,919 2,008 2,039 2,020 1993 13,055 11,433 13,119 12,645 13,201 6,119 12,956 13,525 13,301 13,884 14,076 13,925 1994 12,654 11,498 12,761 12,155 10,841 6,002 12,042 12,022 11,700 12,648 11,857 11,877 1995 13,054 11,340 12,181 12,297 12,586 12,154 12,287 10,493 12,228 12,613 12,100 12,391 1996 12,895 12,028 13,010 12,512 12,728 5,106 12,415 12,604 12,006 13,039 12,740 13,111 1997 13,025 11,329 13,134 12,620 12,437 9,809 12,318 12,317 11,967 12,304 12,546 12,607 1998 12,808 11,567 12,745 12,011 8,083 11,668 11,325 12,323 12,368 13,077 12,714 12,051

25

Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 730 790 769 1,205 963 766 715 704 861 583 478 765 2001 852 765 1,053 957 1,104 1,086 1,925 1,935 1,418 1,469 1,570 951 2002 1,221 1,265 1,334 1,269 1,197 1,224 1,354 1,285 1,259 1,525 1,172 1,115 2003 1,184 1,146 1,278 1,218 1,081 1,186 1,205 1,134 1,181 1,070 1,091 1,036 2004 991 932 942 895 880 864 744 961 883 886 823 790 2005 941 861 805 815 809 731 782 764 626 627 589 533 2006 695 479 534 493 469 447 463 485 497 555 530 469 2007 500 409 462 478 548 538 563 565 563 635 540 404

26

Maryland Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

27

Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

28

Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 730 790 769 1,205 963 766 715 704 861 583 478 765 2001 852 765 1,053 957 1,104 1,086 1,925 1,935 1,418 1,469 1,570 951 2002 1,221 1,265 1,334 1,269 1,197 1,224 1,354 1,285 1,259 1,525 1,172 1,115 2003 1,184 1,146 1,278 1,218 1,081 1,186 1,205 1,134 1,181 1,070 1,091 1,036 2004 991 932 942 895 880 864 744 961 883 886 823 790 2005 941 861 805 815 809 731 782 764 626 627 589 533 2006 695 479 534 493 469 447 463 485 497 555 530 469 2007 500 409 462 478 548 538 563 565 563 635 540 404

29

Texas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,942 13,557 14,940 12,971 14,588 14,028 14,816 14,906 15,187 15,171 14,489 14,803 1992 15,418 14,446 14,043 15,744 15,716 14,929 15,203 15,313 14,243 15,567 14,513 14,868 1993 15,307 13,813 15,250 14,590 15,480 14,914 15,983 16,468 14,486 15,673 15,868 16,426 1994 16,557 15,133 16,303 16,449 16,781 16,234 14,410 15,490 16,853 17,348 17,080 17,827 1995 16,874 15,423 16,615 16,765 17,103 16,545 14,686 15,787 17,177 17,681 17,408 18,169 1996 18,965 18,527 19,905 18,331 17,193 19,390 18,370 21,654 21,126 20,005 23,391 22,041 1997 21,201 19,430 21,726 19,323 22,294 21,770 23,348 23,536 21,611 22,478 23,411 23,268

30

California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 71 76 80 78 78 76 80 79 77 79 78 80 1997 20 18 20 20 20 20 20 20 20 20 20 20 1998 62 56 62 60 62 60 62 62 60 62 60 62 1999 18 16 18 17 18 17 18 18 17 18 17 18 2000 22 20 22 22 22 22 22 22 22 22 22 22 2001 21 19 21 20 21 20 21 21 20 21 20 21 2002 224 203 227 211 219 217 217 410 274 304 330 299 2003 309 277 304 289 307 293 298 285 279 281 276 281 2004 284 260 273 270 278 269 278 275 270 279 272 277 2005 104 250 276 272 280 267 282 289 280 288 281 283 2006 277 256 293 283 293 280 283 286 269 284 275 285 2007 261 242 277 268 277 264 268 270 254 268 260 269

31

Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,374 2,117 2,567 2,440 2,313 2,308 2,342 2,478 2,317 2,472 2,521 2,381 1992 2,015 1,452 1,893 1,823 1,717 1,841 2,042 2,024 1,919 2,008 2,039 2,020 1993 13,055 11,433 13,119 12,645 13,201 6,119 12,956 13,525 13,301 13,884 14,076 13,925 1994 12,654 11,498 12,761 12,155 10,841 6,002 12,042 12,022 11,700 12,648 11,857 11,877 1995 13,054 11,340 12,181 12,297 12,586 12,154 12,287 10,493 12,228 12,613 12,100 12,391 1996 12,895 12,028 13,010 12,512 12,728 5,106 12,415 12,604 12,006 13,039 12,740 13,111 1997 13,025 11,329 13,134 12,620 12,437 9,809 12,318 12,317 11,967 12,304 12,546 12,607 1998 12,808 11,567 12,745 12,011 8,083 11,668 11,325 12,323 12,368 13,077 12,714 12,051

32

Alaska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

33

New Mexico Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 8,529 7,949 8,687 8,339 8,740 8,289 7,875 7,987 7,677 7,773 7,824 8,089 1997 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 1998 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 1999 12,787 11,548 12,722 12,443 12,412 12,599 12,654 12,926 12,327 12,927 12,633 11,671 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 2,219 1,984 2,391 2,117 2,392 2,251 2,373 2,639 2,554 2,728 2,619 2,696

34

Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

35

Montana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 134 102 102 102 24 20 27 7 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

36

Mississippi Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,713 4,103 4,177 3,429 3,291 3,200 3,548 3,901 3,708 4,067 3,907 3,971 1992 3,944 3,653 3,861 3,656 3,806 4,011 4,105 4,107 2,254 4,223 4,138 4,015 1993 4,031 3,622 3,992 3,857 4,043 4,213 4,447 4,201 4,173 4,150 3,845 3,441 1994 3,468 3,196 3,665 3,492 3,683 3,619 3,903 3,999 3,578 4,030 3,792 3,920 1995 810 747 857 816 861 846 912 935 836 942 886 916 1996 829 744 786 751 808 750 776 725 326 427 693 701 1997 718 631 684 659 641 598 633 677 752 775 723 676 1998 734 676 691 696 727 713 720 746 685 716 705 711 1999 697 637 667 553 559 532 537 516 490 525 498 493 2000 487 1,362 1,346 1,380 1,545 1,453 1,616 1,565 1,526 1,608 1,546 1,558

37

Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

38

Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

39

Kansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

40

Florida Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 51 49 45 45 48 50 81 65 68 63 66 69 1997 69 66 79 72 70 58 67 65 67 59 57 64 1998 62 56 60 62 66 55 65 69 58 61 69 67 1999 67 58 64 59 55 51 65 74 68 68 73 65 2000 64 62 73 64 69 61 68 68 68 66 58 66 2001 59 51 56 64 57 61 71 68 63 90 49 46 2002 44 33 50 38 38 37 34 31 32 31 27 35 2003 30 26 30 27 27 36 35 30 35 38 34 37 2004 37 25 35 36 34 36 42 35 13 33 37 40 2005 43 31 37 33 36 27 12 19 26 26 25 23 2006 21 20 24 23 24 26 30 29 29 39 24 16 2007 15 15 17 17 17 19 22 21 21 29 17 12 2008 21 20 24 23 24 26 30 29 29 40 24 16 2009 2 2 3 2 3 3 3 3 3 4 3 2

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Oregon Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 35 22 31 35 20 19 20 16 19 19 16 14 1997 15 14 14 14 14 14 14 14 12 14 13 14 1998 13 11 14 13 13 13 13 13 13 12 12 12 1999 12 12 20 19 19 19 18 13 15 21 22 23 2000 20 17 17 16 17 15 15 16 16 18 16 15 2001 1 1 1 1 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0

42

Nevada Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

43

North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 18 12 17 15 21 64 67 60 36 32 9 8 1997 6 6 8 6 5 5 10 24 47 13 28 5 1998 5 4 5 3 5 5 5 5 5 6 5 5 1999 5 6 7 7 7 8 6 8 6 6 5 5 2000 5 5 5 5 5 5 5 5 8 8 8 9 2001 9 7 7 6 7 6 9 8 8 8 7 7 2002 9 10 15 14 12 13 14 13 9 10 10 10 2003 11 10 10 10 11 11 11 12 9 10 9 9 2004 10 10 12 12 18 13 14 11 7 8 5 6 2005 6 6 7 6 7 8 9 8 8 8 7 7 2006 8 5 5 5 3 4 4 4 5 4 3 3 2007 6 4 4 4 2 3 3 3 4 3 2 2 2008 567 495 642 623 697 761 801 818 853 935 931 920 2009 614 540 589 564 544 513 535 536 497 479 483 349 2010 431 467 513 478 560 682 626 760 660 733 777 761

44

Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

45

Arkansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

46

Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

47

West Virginia Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

48

Nebraska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

49

Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

50

Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

51

New Mexico Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 8,529 7,949 8,687 8,339 8,740 8,289 7,875 7,987 7,677 7,773 7,824 8,089 1997 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 1998 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 1999 12,787 11,548 12,722 12,443 12,412 12,599 12,654 12,926 12,327 12,927 12,633 11,671 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 2,219 1,984 2,391 2,117 2,392 2,251 2,373 2,639 2,554 2,728 2,619 2,696

52

Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,825 1,776 1,759 1,668 1,765 1,492 1,869 1,541 2,011 857 1,610 1,972 1992 2,247 1,940 1,988 2,248 2,249 2,233 2,381 2,259 2,222 2,290 2,277 2,387 1993 2,340 1,872 2,111 1,945 1,407 1,747 2,269 2,331 2,270 2,338 2,232 2,457 1994 2,473 2,025 2,223 2,147 1,562 1,554 2,551 2,616 2,287 2,375 2,593 2,575 1995 2,412 2,008 2,181 2,136 1,597 1,475 2,496 2,591 2,213 2,314 2,581 2,576 1996 2,211 2,030 2,287 2,270 2,346 2,216 2,232 2,297 2,257 2,293 2,292 2,275 1997 2,336 2,076 2,333 2,284 2,206 1,787 2,210 2,225 2,387 2,564 2,349 2,447 1998 2,281 2,028 2,282 2,245 2,151 1,732 2,162 2,156 2,342 2,519 2,310 2,404

53

U.S. Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 NA NA NA NA NA NA NA NA NA NA NA NA 1977 NA NA NA NA NA NA NA NA NA NA NA NA 1978 NA NA NA NA NA NA NA NA NA NA NA NA 1979 NA NA NA NA NA NA NA NA NA NA NA NA 1980 18,000 16,000 17,000 16,000 17,000 16,000 17,000 17,000 17,000 15,000 17,000 18,000 1981 20,000 18,000 18,000 18,000 18,000 19,000 20,000 18,000 18,000 18,000 17,000 20,000 1982 19,000 18,000 19,000 18,000 17,000 16,000 15,000 18,000 16,000 16,000 18,000 19,000 1983 19,994 16,995 17,995 15,995 16,995 18,995 17,995 19,994 18,995 17,995 18,995 20,994

54

Solar and stellar flares  

Science Journals Connector (OSTI)

...Lynden-Bell, E. R. Priest and N. O. Weiss Solar and stellar flares T. G. Forbes EOS Institute...advances in understanding the nature of solar flares. X-ray and UV imaging of flare...associated with currents flowing in the solar atmosphere. Although many different processes...

2000-01-01T23:59:59.000Z

55

Solar Flare Plasmas  

Science Journals Connector (OSTI)

...April 1981 research-article Solar Flare Plasmas A. H. Gabriel The solar flare is discussed in terms of its three phases: energy storage, energy release, and dissipation...made by the N.A.S.A. Solar Maximum Mission satellite...

1981-01-01T23:59:59.000Z

56

Solar and stellar flares  

Science Journals Connector (OSTI)

...R. Priest and N. O. Weiss Solar and stellar flares T. G. Forbes...understanding the nature of solar flares. X-ray and UV imaging...Pudritz (McCaster University, Canada). T-Tauri stars are known...thoughts on the applicability of solar are models to T-Tauri stars...

2000-01-01T23:59:59.000Z

57

FLARING PATTERNS IN BLAZARS  

SciTech Connect

Blazars radiate from relativistic jets launched by a supermassive black hole along our line of sight; the subclass of flat spectrum radio quasars exhibits broad emission lines, a telltale sign of a gas-rich environment and high accretion rate, contrary to the other subclass of the BL Lacertae objects. We show that this dichotomy of the sources in physical properties is enhanced in their flaring activity. The BL Lac flares yielded spectral evidence of being driven by further acceleration of highly relativistic electrons in the jet. Here, we discuss spectral fits of multi-{lambda} data concerning strong flares of the two flat spectrum radio quasars 3C 454.3 and 3C 279 recently detected in {gamma}-rays by the AGILE and Fermi satellites. We find that optimal spectral fits are provided by external Compton radiation enhanced by increasing production of thermal seed photons by growing accretion. We find such flares to trace patterns on the jet-power-electron-energy plane that diverge from those followed by flaring BL Lac objects and discuss why these occur.

Paggi, A.; Cavaliere, A.; Tavani, M. [Dipartimento di Fisica, Universita di Roma 'Tor Vergata', Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Vittorini, V.; D'Ammando, F., E-mail: paggi@roma2.infn.it [INAF/IASF-Roma, Via Fosso del Cavaliere 1, I-00100 Roma (Italy)

2011-08-01T23:59:59.000Z

58

Solar Flares and particle acceleration  

E-Print Network (OSTI)

-free emission) #12;X-ray spectrum of solar flares Thermal X-rays Non-thermal X-rays Gamma-ray lines Ramaty High from Krucker et al, 2007 Solar flares are rapid localised brightening in the lower atmosphere. More particle Flaring region T ~ 4x107 K => 3 keV per particle Flare volume 1027 cm3 => (104 km)3 Plasma density

59

Astronomy: Revealing flares  

Science Journals Connector (OSTI)

... far-off bursts of light, they must first take a foreground 'fog' of flaring stars in our own Galaxy into account. Despite these successes, our monitoring and knowledge of ... transient emission is important because it provides a window on diverse astrophysical objects, from variable stars and stellar explosions to the mergers of compact stellar remnants. Even more exciting is ...

J. Anthony Tyson

2006-07-26T23:59:59.000Z

60

VALUING FLARED NATURAL GAS  

Science Journals Connector (OSTI)

LAST YEAR , enough natural gas to supply 27% of U.S. needs was burned off as waste around the world, according to a new report by the World Bank. Flared natural gas is a by-product of petroleum production and is not generally considered worth capture and ...

2007-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Flare System Optimization  

E-Print Network (OSTI)

be minimally the flare manufacturer's total recommended flow. For systems with a liquid seal, the purge gas should be added downstream of the seal or designed to continuously flow through the seal at a low pressure. Excessive purge gas should not be added... problems with incorrect purge gas rates include: o Not knowing the correct purge rate o Missing restriction orifices o Improperly sized restriction orifices o Improper flow meter settings o Improperly set pressure regulators o Improper valve...

Aegerter, R.

62

PRECURSOR FLARES IN OJ 287  

SciTech Connect

We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending toward the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z{sub c} = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.

Pihajoki, P.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpaeae, A.; Takalo, L. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-21500 Piikkioe (Finland)] [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-21500 Piikkioe (Finland); Valtonen, M.; Nilsson, K. [Finnish Centre for Astronomy with ESO, University of Turku, FI-21500 Piikkioe (Finland)] [Finnish Centre for Astronomy with ESO, University of Turku, FI-21500 Piikkioe (Finland); Zola, S.; Koziel-Wierzbowska, D. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland)] [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland); Liakos, A. [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR 157 84 Zografos, Athens, Hellas (Greece)] [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR 157 84 Zografos, Athens, Hellas (Greece); Drozdz, M.; Winiarski, M.; Ogloza, W. [Mount Suhora Observatory, Pedagogical University, ul. Podchorazych 2, PL-30-084 Krakow (Poland)] [Mount Suhora Observatory, Pedagogical University, ul. Podchorazych 2, PL-30-084 Krakow (Poland); Provencal, J. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)] [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Santangelo, M. M. M. [O.A.C. Osservatorio Astronomico di Capannori, Via di Valle, I-55060 Vorno, Capannori (Italy)] [O.A.C. Osservatorio Astronomico di Capannori, Via di Valle, I-55060 Vorno, Capannori (Italy); Salo, H. [Department of Physical Sciences, University of Oulu, P.O. Box 3000, FI-90014 University of Oulu (Finland)] [Department of Physical Sciences, University of Oulu, P.O. Box 3000, FI-90014 University of Oulu (Finland); Chandra, S.; Ganesh, S.; Baliyan, K. S., E-mail: popiha@utu.fi [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India); and others

2013-02-10T23:59:59.000Z

63

Design Enhancements To Improve Flare Efficiency  

E-Print Network (OSTI)

Two flare systems used at separate units within a larger chemical complex were modified to improve overall performance and efficiency. One system was a standard enclosed ground flare; the other was a less-conventional horizontal ground flare system...

Dooley, K. A.; McLeod, G. M.; Lorenz, M. D.

64

Solar flares and energetic particles  

Science Journals Connector (OSTI)

...compiled and edited by Clare E. Parnell Solar flares and energetic particles Nicole Vilmer...Issue Astrophysical processes on the Sun . Solar flares are now observed at all wavelengths...Energetic electrons and ions interact with the solar atmosphere and produce high-energy X-rays...

2012-01-01T23:59:59.000Z

65

Parameterization of solar flare dose  

E-Print Network (OSTI)

A critical aspect of missions to the Moon or Mars is the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very...

Lamarche, Anne Helene

1995-01-01T23:59:59.000Z

66

Flares in Gamma Ray Bursts  

Science Journals Connector (OSTI)

The flare activity that is observed in GRBs soon after the prompt emission with the XRT (0.3–10 KeV) instrument on Board of the Swift satellite is leading to important clues in relation to the physical characteristics of the mechanism generating the emission of energy in Gamma Ray Bursts. We will briefly refer to the results obtained with the recent analysis [1] and [2] and discuss the preliminary results we obtained with a new larger sample of GRBs [limited to early flares] based on fitting of the flares using the Norris 2005 profile. We find in agreement with previous results that XRT flares follow the main characteristics observed in [3] for the prompt emission spikes. The estimate of the flare energy for the subsample with redshift is rather robust and an attempt is made using the redshisft sample to estimate how the energy emitted in flares depends on time. We used a H 0 ?=?70?km/s/Mpc ? ? ?=?0.7 ? m ?=?0.3 cosmology.

G. Chincarini; J. Mao; F. Pasotti; R. Margutti; C. Guidorzi; M. G. Bernardini; Swfit Italian team

2008-01-01T23:59:59.000Z

67

Magnetic reconnection configurations and particle acceleration in solar flares  

E-Print Network (OSTI)

types of solar flares. Upper panel: two-ribbon flares; Lower panel: compact flares. The color showsMagnetic reconnection configurations and particle acceleration in solar flares P. F. Chen, W. J space under different magnetic configurations. Key words: solar flares, magnetic reconnection, particle

Chen, P. F.

68

Detecting gas flares and estimating flaring volumes at individual flow stations using MODIS data  

Science Journals Connector (OSTI)

Abstract Gas flaring has gained global recognition as a prominent agent of pollution, leading to the establishment of the Global Gas Flaring Reduction (GGFR) initiative, which requires an objective means of monitoring flaring activity. Because auditable information on flaring activity is difficult to obtain there have recently been attempts to detect flares using satellite imagery, typically at global scales. However, to adequately assess the environmental and health impacts of flaring from local to regional scales, it is important that we have a means of acquiring information on the location of individual active flaring sites and the volume of gas combusted at these sites. In this study we developed an approach to the retrieval of such information using nighttime MODIS thermal imagery. The MODIS flare detection technique (MODET) and the MODIS flare volume estimation technique (MOVET) both exploit the absolute and contextual radiometric response of flare sites. The levels of detection accuracy and estimation error were quantified using independent observations of flare location and volume. The MODET and MOVET were applied to an archive of MODIS data spanning 2000–2014 covering the Niger Delta, Nigeria, a significant global hotspot of flaring activity. The results demonstrate the substantial spatial and temporal variability in gas flaring across the region, between states and between onshore and offshore sites. Thus, whilst the estimated total volume of gas flared in the region over the study period is large (350 Billion Cubic Metres), the heterogeneity in the flaring indicates that the impacts of such flares will be highly variable in space and time. In this context, the MODET and MOVET offer a consistent and objective means of monitoring flaring activity over an appropriate range of scales and it is now important that their robustness and transferability is tested in other oil-producing regions of the world.

Obinna C.D. Anejionu; G. Alan Blackburn; J. Duncan Whyatt

2015-01-01T23:59:59.000Z

69

Monitoring of FR Cnc Flaring Activity  

E-Print Network (OSTI)

Being excited by the detection of the first ever-observed optical flare in FR Cnc, we decided to continue photometrical monitoring of this object. The observations were carried out at Crimean Astrophysical Observatory (Crimea, Ukraine; CrAO - hereafter) and at the Terskol Observatory (Russia, Northern Caucasus). The obtained lightcurves are presented and discussed. No distinguishable flares were detected that could imply that flares on FR Cnc are very rare event.

A. Golovin; M. Andreev; E. Pavlenko; Yu. Kuznyetsova; V. Krushevska; A. Sergeev

2007-12-10T23:59:59.000Z

70

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Value & Marketed Production Wellhead Value & Marketed Production Definitions Key Terms Definition Marketed Production Gross withdrawals less gas used for repressuring, quantities vented and flared, and nonhydrocarbon gases removed in treating or processing operations. Includes all quantities of gas used in field and processing plant operations. Production The volume of natural gas withdrawn from reservoirs less (1) the volume returned to such reservoirs in cycling, repressuring of oil reservoirs, and conservation operations; less (2) shrinkage resulting from the removal of lease condensate; and less (3) nonhydrocarbon gases where they occur in sufficient quantity to render the gas unmarketable. Volumes of gas withdrawn from gas storage reservoirs and native gas, which has been transferred to the storage category, are not considered production. Flared and vented gas is also considered production. (This differs from "Marketed Production" which excludes flared and vented gas.)

71

Prediction of noise emissions from industrial flares  

Science Journals Connector (OSTI)

In many industries where combustible waste gases are obtained flares are used to burn these gases in a controlled manner. Among other environmental aspects the noise emissions associated with flaring are becoming increasingly important in many countries as population density goes up and residential and industrial areas move closer together. Installing noise control equipment on flares is almost impossible while they are in service since flares are typically a safety related plant component that can only be turned off after the connected plant has been shut down. Accordingly in order to plan appropriate noise controlmeasures in time and to avoid unnecessary costs predicting the noise emissions of flares as early in the design process as possible is crucial. This requires knowledge of the relevant individual noise sources associated to the flare system and the ability to calculate their respective contribution ? in the operating condition in question ? to the overall noise emission based on the data available in the planning stage. The present paper summarizes these sources and outlines some of the individual effects and parameters having an influence on the acoustical characteristics of flares.

Carl?Christian Hantschk; Edwin Schorer

2008-01-01T23:59:59.000Z

72

Summarizing FLARE assay images in colon carcinogenesis  

E-Print Network (OSTI)

usually develops slowly, the amount of oxidative damage to DNA can be used as a cancer biomarker. This dissertation examines effective ways of analyzing FLARE assay data, which quanti?es oxidative damage. The statistical methods will be implemented...

Leyk Williams, Malgorzata

2006-04-12T23:59:59.000Z

73

Reducing Safety Flaring through Advanced Control  

E-Print Network (OSTI)

An advanced process control application, using DMCplus® (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

2010-01-01T23:59:59.000Z

74

Sauget Plant Flare Gas Reduction Project  

E-Print Network (OSTI)

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

75

Reduction of Hydrocarbon Losses to Flare Systems  

E-Print Network (OSTI)

merit consideration because the losses and associated economic penalties are assumed to be small. Flare gas flow is not easily measured and as a result, most plants are unaware of how much product they are actually losing during normal operation...

Page, J.

1979-01-01T23:59:59.000Z

76

SPECTROPOLARIMETRY OF C-CLASS FLARE FOOTPOINTS  

SciTech Connect

We investigate the decay phase of a C-class flare in full-Stokes imaging spectropolarimetry with quasi-simultaneous measurements in the photosphere (6302.5 A line) and in the chromosphere (8542 A line) with the IBIS instrument. We analyze data from two fields of view, each spanning about 40'' Multiplication-Sign 80'' and targeting the two footpoints of the flare. A region of interest is identified from V/I images: a patch of opposite polarity in the smaller sunspot's penumbra. We find unusual flows in this patch at photospheric levels: a Doppler shift of -4 km s{sup -1}, but also a possible radial inflow into the sunspot of 4 km s{sup -1}. Such patches seem to be common during flares, but only high-resolution observations allowed us to see the inflow, which may be related to future flares observed in this region. Chromospheric images show variable overlying emission and flows and unusual Stokes profiles. We also investigate the irregular penumbra, whose formation may be blocked by the opposite polarity patch and flux emergence. The 40 minute temporal evolution depicts the larger of the flare ribbons becoming fainter and changing its shape. Measurable photospheric magnetic fields remain constant and we do not detect flare energy transport down from the chromosphere. We find no clear indications of impact polarization in the 8542 A line. We cannot exclude the possibility of impact polarization, because weaker signals may be buried in the prominent Zeeman signatures or it may have been present earlier during the flare.

Kleint, L., E-mail: kleintl@ucar.edu [High Altitude Observatory/NCAR, P.O. Box 3000, Boulder, CO 80307 (United States)

2012-04-01T23:59:59.000Z

77

The production of high energy particles in solar flares  

Science Journals Connector (OSTI)

A neutral point theory of solar flares might be tenable if sunspots were formed from flux tubes protruding through the photosphere. Such a mechanism is consistent with the point-like nature of a flare at its o...

P. A. Sweet

1958-09-01T23:59:59.000Z

78

Measurements on a shock wave generated by a solar flare  

Science Journals Connector (OSTI)

... The solar flare that occurred on 18 August 1979 at 1400 UT was one of the more ... August 1979 at 1400 UT was one of the more energetic flares of the current solar ...

Alan Maxwell; Murray Dryer

1982-11-18T23:59:59.000Z

79

REMOTE OSCILLATORY RESPONSES TO A SOLAR FLARE  

SciTech Connect

The processes governing energy storage and release in the Sun are both related to the solar magnetic field. We demonstrate the existence of a magnetic connection between the energy released by a flare and increased oscillatory power in the lower solar atmosphere. The oscillatory power in active regions tends to increase in response to explosive events at other locations, but not in the active region itself. We carry out timing studies and show that this effect is probably caused by a large-scale magnetic connection between the regions, instead of a globally-propagating wave. We show that oscillations tend to exist in longer-lived wave trains with short periods (P < 200 s) at the time of a flare. These wave trains may be mechanisms by which flare energy can be redistributed throughout the solar atmosphere.

Andic, A.; McAteer, R. T. J. [Astronomy Department, NMSU, MSC 4500, P.O. Box 30001, Las Cruces, NM 88003 (United States)

2013-07-20T23:59:59.000Z

80

High-Energy Flare Observations from the Solar Maximum Mission  

Science Journals Connector (OSTI)

...research-article High-Energy Flare Observations from the Solar Maximum Mission W...Vestrand We review high-energy observations of solar flares with emphasis...expectation, high-energy emission is a common property of solar flares. Direct interpretation...

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar-Type Magnetic Reconnection Model for Magnetar Giant Flares  

Science Journals Connector (OSTI)

......Papers 8320 8390 8420 Solar-Type Magnetic...Terasawa Hinode Science Project, National Astronomical...on the basis of solar flare/coronal...flare with enormous energy and long bursting...crucial mechanism of energy release in a solar flare (Parker 1963......

Youhei Masada; Shigehiro Nagataki; Kazunari Shibata; Toshio Terasawa

2010-08-25T23:59:59.000Z

82

Recovering Flare Gas Energy - A Different Approach  

E-Print Network (OSTI)

Energy Technology Conference, Houston, TX, September 16-18, 1987 SLIDLIN CH81ICAL CX1'1PANY RARE GAS RECXNERY SYSID1 K.O, ~LM 19) PSIG STEAM F,D, FAN0'1 '" N Z N NAT~L GAS SEAL SEAL FU\\RE OIL PoT STACK TANK FLARE GAS I?T ~y ~LM ~LM ESL...RECOVERING FLARE GAS ENERGY - A DIFFERENT APPROACH \\ WALTER BRENNER Process Engineer SunOlin Chemical Co. Claymont, Delaware AUSTRACT Most petrochemical complexes and oil re fineries have systems to collect and dispose of waste gases...

Brenner, W.

83

Energy Information Administration / Natural Gas Annual 2005 66  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 28. Summary Statistics for Natural Gas - Arizona, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 8 7 9 6 6 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 305 300 443 331 233 From Oil Wells .................................................. 1 * * * * Total................................................................... 307 301 443 331 233 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared .............................................. * 0 0 0 0 Wet After Lease Separation................................ 307 301 443 331 233 Nonhydrocarbon Gases Removed......................

84

Optical flares and flaring oscillations on the M-type eclipsing binary CU Cnc  

E-Print Network (OSTI)

We report here the discovery of an optical flare observed in R band from the red-dwarf eclipsing binary CU Cnc whose component stars are at the upper boundary of full convection (M1=0.43 and M2=0.4M0, M0 is the solar mass). The amplitude of the flare is the largest among those detected in R band (~0.52mag) and the duration time is about 73 minutes. As those observed on the Sun, quasi-periodic oscillations were seen during and after the flare. Three more R-band flares were found by follow up monitoring. In total, this binary was monitored photometrically by using R filter for 79.9 hours, which reveals a R-band flare rate about 0.05 flares per hour. These detections together with other strong chromospheric and coronal activities, i.e., very strong H_alpha and H_beta emission features and an EUV and X-ray source, indicate that it has very strong magnetic activity. Therefore, the apparent faintness (~1.4 magnitude in V) of CU Cnc compared with other single red dwarfs of the same mass can be plausibly explained by...

-B., Qian S; Zhu, L -Y; Liu, L; Liao, W -P; Zhao, E -G; He, J -J; Li, L -J; Li, K; Dai, Z -B

2012-01-01T23:59:59.000Z

85

Compensation of flare-induced CD changes EUVL  

DOE Patents (OSTI)

A method for compensating for flare-induced critical dimensions (CD) changes in photolithography. Changes in the flare level results in undesirable CD changes. The method when used in extreme ultraviolet (EUV) lithography essentially eliminates the unwanted CD changes. The method is based on the recognition that the intrinsic level of flare for an EUV camera (the flare level for an isolated sub-resolution opaque dot in a bright field mask) is essentially constant over the image field. The method involves calculating the flare and its variation over the area of a patterned mask that will be imaged and then using mask biasing to largely eliminate the CD variations that the flare and its variations would otherwise cause. This method would be difficult to apply to optical or DUV lithography since the intrinsic flare for those lithographies is not constant over the image field.

Bjorkholm, John E. (Pleasanton, CA); Stearns, Daniel G. (Los Altos, CA); Gullikson, Eric M. (Oakland, CA); Tichenor, Daniel A. (Castro Valley, CA); Hector, Scott D. (Oakland, CA)

2004-11-09T23:59:59.000Z

86

Flare Ribbon Energetics in the Early Phase of an SDO Flare  

E-Print Network (OSTI)

The sites of chromospheric excitation during solar flares are marked by extended extreme ultraviolet ribbons and hard X-ray footpoints. The standard interpretation is that these are the result of heating and bremsstrahlung emission from non-thermal electrons precipitating from the corona. We examine this picture using multi-wavelength observations of the early phase of an M-class flare SOL2010-08-07T18:24. We aim to determine the properties of the heated plasma in the flare ribbons, and to understand the partition of the power input into radiative and conductive losses. Using GOES, SDO/EVE, SDO/AIA and RHESSI we measure the temperature, emission measure and differential emission measure of the flare ribbons, and deduce approximate density values. The non-thermal emission measure, and the collisional thick target energy input to the ribbons are obtained from RHESSI using standard methods. We deduce the existence of a substantial amount of plasma at 10 MK in the flare ribbons, during the pre-impulsive and early...

Fletcher, L; Hudson, H S; Innes, D E

2014-01-01T23:59:59.000Z

87

Silica Scaling Removal Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Silica Scaling Removal Process Silica Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal...

88

Magnetar giant flares and afterglows as relativistic magnetized explosions  

Science Journals Connector (OSTI)

......case of crustal storage of magnetic field energy before the flare...see a medium-energy flare with a very...example, the crust response may depend on...with the typical frequency nu 1 GHz), and...Because the energy release during......

Maxim Lyutikov

2006-04-21T23:59:59.000Z

89

Size dependence of solar X-ray flare properties  

E-Print Network (OSTI)

Non-thermal and thermal parameters of 85 solar flares of GOES class B1 to M6 (background subtracted classes A1 to M6) have been compared to each other. The hard X-ray flux has been measured by RHESSI and a spectral fitting provided flux and spectral index of the non-thermal emission, as well as temperature and emission measure of the thermal emission. The soft X-ray flux was taken from GOES measurements. We find a linear correlation in a double logarithmic plot between the non-thermal flux and the spectral index. The higher the acceleration rate of a flare, the harder the non-thermal electron distribution. The relation is similar to the one found by a comparison of the same parameters from several sub-peaks of a single flare. Thus small flares behave like small subpeaks of large flares. Thermal flare properties such as temperature, emission measure and the soft X-ray flux also correlate with peak non-thermal flux. A large non-thermal peak flux entails an enhancement in both thermal parameters. The relation between spectral index and the non-thermal flux is an intrinsic feature of the particle acceleration process, depending on flare size. This property affects the reported frequency distribution of flare energies.

Marina Battaglia; Paolo C. Grigis; Arnold O. Benz

2005-05-09T23:59:59.000Z

90

Energy-Dependent Timing of Thermal Emission in Solar Flares  

Science Journals Connector (OSTI)

We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We ... observed by the Si detector of ...

Rajmal Jain; Arun Kumar Awasthi; Arvind Singh Rajpurohit…

2011-05-01T23:59:59.000Z

91

A BLAZAR-LIKE RADIO FLARE IN MRK 231  

SciTech Connect

Radio monitoring of the broad absorption line quasar (BALQSO) Mrk 231 from 13.9 GHz to 17.6 GHz detected a strong flat spectrum flare. Even though BALQSOs are typically weak radio sources, the 17.6 GHz flux density doubled in ?150 days, from ?135 mJy to ?270 mJy. It is demonstrated that the elapsed rise time in the quasar rest frame and the relative magnitude of the flare is typical of some of the stronger flares in blazars that are usually associated with the ejection of discrete components on parsec scales. The decay of a similar flare was found in a previous monitoring campaign at 22 GHz. We conclude that these flares are not rare. The implication is that Mrk 231 seems to be a quasar in which the physical mechanism that produces the broad absorption line wind is in tension with the emergence of a fledgling blazar.

Reynolds, Cormac; Hurley-Walker, Natasha [ICRAR-Curtin University, GPO Box U1987, Perth, Western Australia, 6102 (Australia)] [ICRAR-Curtin University, GPO Box U1987, Perth, Western Australia, 6102 (Australia); Punsly, Brian [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States)] [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); O'Dea, Christopher P., E-mail: brian.punsly1@verizon.net, E-mail: brian.punsly@comdev-usa.com [Laboratory for Multiwavelength Astrophysics, School of Physics and Astronomy, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

2013-10-20T23:59:59.000Z

92

EVIDENCE FOR HOT FAST FLOW ABOVE A SOLAR FLARE ARCADE  

SciTech Connect

Solar flares are one of the main forces behind space weather events. However, the mechanism that drives such energetic phenomena is not fully understood. The standard eruptive flare model predicts that magnetic reconnection occurs high in the corona where hot fast flows are created. Some imaging or spectroscopic observations have indicated the presence of these hot fast flows, but there have been no spectroscopic scanning observations to date to measure the two-dimensional structure quantitatively. We analyzed a flare that occurred on the west solar limb on 2012 January 27 observed by the Hinode EUV Imaging Spectrometer (EIS) and found that the hot (?30MK) fast (>500 km s{sup –1}) component was located above the flare loop. This is consistent with magnetic reconnection taking place above the flare loop.

Imada, S. [Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)] [Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Aoki, K.; Hara, H.; Watanabe, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588 (Japan); Harra, L. K. [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)] [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Shimizu, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara-shi, Kanagawa 229-8510 (Japan)] [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara-shi, Kanagawa 229-8510 (Japan)

2013-10-10T23:59:59.000Z

93

Abrupt Longitudinal Magnetic Field Changes in Flaring Active Regions  

Science Journals Connector (OSTI)

We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65° of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of ~10 G to as high as ~450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65° of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

G. J. D. Petrie; J. J. Sudol

2010-01-01T23:59:59.000Z

94

ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES IN FLARING ACTIVE REGIONS  

SciTech Connect

We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65{sup 0} of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of {approx}10 G to as high as {approx}450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65{sup 0} of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

Petrie, G. J. D. [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Sudol, J. J. [West Chester University, West Chester, PA 19383 (United States)

2010-12-01T23:59:59.000Z

95

The Sun as an X-Ray Star. III. Flares  

Science Journals Connector (OSTI)

In previous works we have developed a method to convert solar X-ray data, collected with the Yohkoh/SXT, into templates of stellar coronal observations. Here we apply the method to several solar flares, for comparison with stellar X-ray flares. Eight flares, from weak (GOES class C5.8) to very intense ones (X9) are selected as representative of the flaring Sun. The emission measure distribution versus temperature, EM(T), of the flaring regions is derived from Yohkoh/SXT observations in the rise, peak, and decay of the flares. The EM(T) is rather peaked and centered around T ? 107 K for most of the time. Typically, it grows during the rise phase of the flare, and then it decreases and shifts toward lower temperatures during the decay, more slowly if there is sustained heating. The most intense flare we studied shows emission measure even at very high temperatures (T ? 108 K). Time-resolved X-ray spectra both unfiltered and filtered through the instrumental responses of the nonsolar instruments ASCA/SIS and ROSAT/PSPC are then derived. Synthesized ASCA/SIS and ROSAT/PSPC spectra are generally well fitted with single thermal components at temperatures close to that of the EM(T) maximum, albeit two thermal components are needed to fit some flare decays. ROSAT/PSPC spectra show that solar flares are in a 2 orders of magnitude flux range (106-108 ergs cm-2 s-1) and a narrow PSPC hardness ratio range, however, higher than that of typical nonflaring solar-like stars.

F. Reale; G. Peres; S. Orlando

2001-01-01T23:59:59.000Z

96

Xray Flare Light Curves and Dimensions of the Flaring S. Serio, F. Reale, R. Betta, G. Peres  

E-Print Network (OSTI)

the temperature evolution as tracer of the presence of heating during the decay. Many solar flares appear). We outline here the method and some testing on spatially­resolved solar flares observed with Yohkoh (slope in a Log/Log plot) depends on the decay time of the heating re­ leased in the loop during

97

Deterministically Driven Avalanche Models of Solar Flares  

E-Print Network (OSTI)

We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global st...

Strugarek, Antoine; Joseph, Richard; Pirot, Dorian

2014-01-01T23:59:59.000Z

98

Noise Control of a Flare Stack  

Science Journals Connector (OSTI)

As part of its noise abatement program the Standard Oil Company of California has undertaken to reduce the noise radiated from the flare stacks serving the new process plants at the El Segundo Refinery. These flares used to burn excess refinery hydrocarbon gases have to operate smokelessly. To accomplish this high?pressure steam jets are used to discharge a turbulent steam?air mixture into the combustion zone. This system although muffled proved to be an intolerable source of noise in the adjacent community. An examination of the noise spectrum indicated that the mixing between the steam ejected from the 3 4 ? in. ? diam primary nozzle and the ambient air was a major source of noise. A series of exploratory model scale tests were conducted in an effort to reduce the noise. By replacing a single 3 4 ? in. ?diam nozzle with a multiple nozzle the radiated noise was reduced by 16 dB. The multiple nozzle configuration and the experimental program leading to its design are described.

A. S. Hersh; J. G. Seebold

1970-01-01T23:59:59.000Z

99

36Super-fast solar flares ! NASA's Ramaty High Energy Solar  

E-Print Network (OSTI)

36Super-fast solar flares ! NASA's Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite has been studying solar flares since 2002. The sequence of figures to the left shows a flaring region hr/3600 sec = 0.98 kilometers/sec. The solar flare blob was traveling at 207 kilometers per second

100

Soft X-ray Pulsations in Solar Flares  

E-Print Network (OSTI)

The soft X-ray emissions of solar flares come mainly from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the bulk of the total flare energy goes elsewhere. Recently Dolla et al. (2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES (Geostationary Operational Environmental Satellite) spacecraft. We analyze the suitability of the GOES data for this kind of analysis and find them to be generally valuable after Sept. 2010 (GOES-15). We then extend Dolla et al. results to a list of X-class flares from Cycle 24, and show that most of them display QPP in the impulsive phase. During the impulsive phase the footpoints of the newly-forming flare loops may also contribute to the observed soft X-ray variations. The QPP show up cleanly in both channels of the GOES dat...

Simões, Paulo J A; Fletcher, Lyndsay

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

OBSERVATIONS OF THERMAL FLARE PLASMA WITH THE EUV VARIABILITY EXPERIMENT  

SciTech Connect

One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the Geostationary Operational Environmental Satellites soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.

Warren, Harry P.; Doschek, George A. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Mariska, John T. [School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

2013-06-20T23:59:59.000Z

102

Solar Flare Measurements with STIX and MiSolFA  

E-Print Network (OSTI)

Solar flares are the most powerful events in the solar system and the brightest sources of X-rays, often associated with emission of particles reaching the Earth and causing geomagnetic storms, giving problems to communication, airplanes and even black-outs. X-rays emitted by accelerated electrons are the most direct probe of solar flare phenomena. The Micro Solar-Flare Apparatus (MiSolFA) is a proposed compact X-ray detector which will address the two biggest issues in solar flare modeling. Dynamic range limitations prevent simultaneous spectroscopy with a single instrument of all X-ray emitting regions of a flare. In addition, most X-ray observations so far are inconsistent with the high anisotropy predicted by the models usually adopted for solar flares. Operated at the same time as the STIX instrument of the ESA Solar Orbiter mission, at the next solar maximum (2020), they will have the unique opportunity to look at the same flare from two different directions: Solar Orbiter gets very close to the Sun wit...

Casadei, Diego

2014-01-01T23:59:59.000Z

103

PROPERTIES OF SEQUENTIAL CHROMOSPHERIC BRIGHTENINGS AND ASSOCIATED FLARE RIBBONS  

SciTech Connect

We report on the physical properties of solar sequential chromospheric brightenings (SCBs) observed in conjunction with moderate-sized chromospheric flares with associated Coronal mass ejections. To characterize these ephemeral events, we developed automated procedures to identify and track subsections (kernels) of solar flares and associated SCBs using high-resolution H{alpha} images. Following the algorithmic identification and a statistical analysis, we compare and find the following: SCBs are distinctly different from flare kernels in their temporal characteristics of intensity, Doppler structure, duration, and location properties. We demonstrate that flare ribbons are themselves made up of subsections exhibiting differing characteristics. Flare kernels are measured to have a mean propagation speed of 0.2 km s{sup -1} and a maximum speed of 2.3 km s{sup -1} over a mean distance of 5 Multiplication-Sign 10{sup 3} km. Within the studied population of SCBs, different classes of characteristics are observed with coincident negative, positive, or both negative and positive Doppler shifts of a few km s{sup -1}. The appearance of SCBs precedes peak flare intensity by Almost-Equal-To 12 minutes and decay Almost-Equal-To 1 hr later. They are also found to propagate laterally away from flare center in clusters at 45 km s{sup -1} or 117 km s{sup -1}. Given SCBs' distinctive nature compared to flares, we suggest a different physical mechanism relating to their origin than the associated flare. We present a heuristic model of the origin of SCBs.

Kirk, Michael S.; Balasubramaniam, K. S.; Jackiewicz, Jason; McAteer, R. T. James [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Milligan, Ryan O., E-mail: mskirk@nmsu.edu [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, University Road Belfast, BT7 1NN (United Kingdom)

2012-05-10T23:59:59.000Z

104

Sign singularity and flares in solar active region NOAA 11158  

E-Print Network (OSTI)

Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares, and the presence of correlation with EUV and X-ray flux, suggest that eruption of large flares can be linked to the small scale properties of the current structures.

Sorriso-Valvo, Luca; Kazachenko, Maria D; Krucker, Sam; Primavera, Leonardo; Servidio, Sergio; Vecchio, Antonio; Welsch, Brian T; Fisher, George H; Lepreti, Fabio; Carbone, Vincenzo

2015-01-01T23:59:59.000Z

105

Obscuration of Flare Emission by an Eruptive Prominence  

E-Print Network (OSTI)

We report on the eclipsing of microwave flare emission by an eruptive prominence from a neighboring region as observed by the Nobeyama Radioheliograph at 17 GHz. The obscuration of the flare emission appears as a dimming feature in the microwave flare light curve. We use the dimming feature to derive the temperature of the prominence and the distribution of heating along the length of the filament. We find that the prominence is heated to a temperature above the quiet Sun temperature at 17 GHz. The duration of the dimming is the time taken by the eruptive prominence in passing over the flaring region. We also find evidence for the obscuration in EUV images obtained by the Solar and Heliospheric Observatory (SOHO) mission.

Gopalswamy, Nat

2013-01-01T23:59:59.000Z

106

Lifetime of solar flare particles in coronal storage regions  

Science Journals Connector (OSTI)

Most discussions of lifetime of flare particles in the solar corona have assumed that collision loss is ... However, it is quite possible that the solar cosmic rays are not imbedded in 106...K coronal material bu...

Kinsey A. Anderson

1972-12-01T23:59:59.000Z

107

The Magnetohydrodynamics of Energy Release in Solar Flares [and Discussion  

Science Journals Connector (OSTI)

...1991 research-article The Magnetohydrodynamics of Energy Release in Solar Flares [and Discussion] E. R. Priest K. J. H...two key processes of magnetic eruption and magnetic energy conversion by reconnection are reviewed briefly, with...

1991-01-01T23:59:59.000Z

108

Interplanetary hydromagnetic clouds as flare-generated spheromaks  

Science Journals Connector (OSTI)

Solar flare-generated interplanetary clouds are proposed to be treated as oblate spheromaks (oblamaks) with predominantly force-free magnetic field. The solution found for a force-free field equation in spheroida...

K. G. Ivanov; A. F. Harshiladze

1985-08-01T23:59:59.000Z

109

Magnetic energy conversion, magnetospheric substorms and solar flares  

Science Journals Connector (OSTI)

... The magnetospheric substorm has been thought to be the manifestation of a sudden conversion of the magnetic ... of the magnetic energy stored in the magnetotail before substorm onset. It has been believed that solar flares ...

S.-I. Akasofu

1980-03-20T23:59:59.000Z

110

SHATTERING FLARES DURING CLOSE ENCOUNTERS OF NEUTRON STARS  

SciTech Connect

We demonstrate that resonant shattering flares can occur during close passages of neutron stars in eccentric or hyperbolic encounters. We provide updated estimates for the rate of close encounters of compact objects in dense stellar environments, which we find are substantially lower than given in previous works. While such occurrences are rare, we show that shattering flares can provide a strong electromagnetic counterpart to the gravitational wave bursts expected from such encounters, allowing triggered searches for these events to occur.

Tsang, David, E-mail: dtsang@physics.mcgill.ca [Department of Physics, McGill University, Montreal, QC (Canada)

2013-11-10T23:59:59.000Z

111

Constraining Solar Flare Differential Emission Measures with EVE and RHESSI  

E-Print Network (OSTI)

Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from $\\lesssim$2 to $\\gtrsim$50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly-observed solar flares. EVE is sensitive to ~2-25 MK thermal plasma emission, and RHESSI to $\\gtrsim$10 MK; together, the two instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from ...

Caspi, Amir; Warren, Harry P

2014-01-01T23:59:59.000Z

112

Low-energy cutoffs in electron spectra of solar flares: statistical survey  

E-Print Network (OSTI)

The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data base (February 2002 -- May 2006) has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularised inversion technique, we determine the mean electron flux distribution from count spectra of a selection of events with flat photon spectra in the 15--20 keV energy range. Such spectral behaviour is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range, e.g. a low-energy cutoff in the mean electron spectra of non-themal particles. We have found 18 cases which exhibit a statistically significant local minimum (a dip) in the range of 10--20 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction was applied, all low-energy cutoffs in the mean electron spectrum were removed and hence the low energy cutoffs in the mean electron spectrum of solar flares above $\\sim$12 keV cannot be viewed as real features in the electron spectrum. If low-energy cutoffs exist in the mean electron spectra, the energy of low energy cutoffs should be less than $\\sim$12 keV.

E. P. Kontar; E. Dickson; J. Kasparova

2008-05-10T23:59:59.000Z

113

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

114

Gamma-Ray Polarimetry of Two X-Class Solar Flares  

E-Print Network (OSTI)

We have performed the first polarimetry of solar flare emission at gamma-ray energies (0.2-1 MeV). These observations were performed with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) for two large flares: the GOES X4.8-class solar flare of 2002 July 23, and the X17-class flare of 2003 October 28. We have marginal polarization detections in both flares, at levels of 21% +/- 9% and -11% +/- 5% respectively. These measurements significantly constrain the levels and directions of solar flare gamma-ray polarization, and begin to probe the underlying electron distributions.

Steven E. Boggs; W. Coburn; E. Kalemci

2005-10-19T23:59:59.000Z

115

Technologies for Boron Removal  

Science Journals Connector (OSTI)

Tests were performed to examine the removal of boron from aqueous solution either with polyvinyl alcohol (PVA) alone or by both PVA and other inorganic additives under room temperature. ... Added calcium hydroxide increased the co-removal of borate with PVA, and this offers a polishing treatment after borate removal by liming. ... As boron removal can be achieved by chemical precipitation and coagulation, it is logical to assume that the EC could remove boron from water and industrial effluent. ...

Yonglan Xu; Jia-Qian Jiang

2007-11-23T23:59:59.000Z

116

Discovery of a Radio Flare from GRB 990123  

E-Print Network (OSTI)

We report the discovery of a radio counterpart to GRB 990123. In contrast to previous well-studied radio afterglows which rise to peak flux on a timescale of a week and then decay over several weeks to months, the radio emission from this GRB was clearly detected one day after the burst, after which it rapidly faded away. The simplest interpretation of this ``radio flare'' is that it arises from the reverse shock. In the framework of the afterglow models discussed to date, a forward shock origin for the flare is ruled out by our data. However, at late times, some radio afterglow emission (commensurate with the observed late-time optical emission, the optical afterglow) is expected from the forward shock. The relative faintness of the observed late-time radio emission provides an independent indication for a jet-like geometry in this GRB. We use the same radio observations to constrain two key parameters of the forward shock, peak flux and peak frequency, to within a factor of two. These values are inconsistent with the notion advocated by several authors that the prompt optical emission detected by ROTSE smoothly joins the optical afterglow emission. Finally, with hindsight we now recognize another such radio flare and this suggests that one out of eight GRBs has a detectable radio flare. This abundance coupled with the reverse shock interpretation suggests that the radio flare phenomenon has the potential to shed new light into the physics of reverse shocks in GRBs.

S. R. Kulkarni; D. A. Frail; R. Sari; G. H. Moriarty-Schieven; D. S. Shepherd; P. Udomprasert; A. C. S. Readhead; J. S. Bloom; M. Feroci; E. Costa

1999-03-30T23:59:59.000Z

117

Repeated X-ray Flaring Activity in Sagittarius A*  

E-Print Network (OSTI)

Investigating the spectral and temporal characteristics of the X-rays coming from Sagittarius A* (Sgr A*) is essential to our development of a more complete understanding of the emission mechanisms in this supermassive black hole located at the center of our Galaxy. Several X-ray flares with varying durations and spectral features have already been observed from this object. Here we present the results of two long XMM-Newton observations of the Galactic nucleus carried out in 2004, for a total exposure time of nearly 500 ks. During these observations we detected two flares from Sgr A* with peak 2-10 keV luminosities about 40 times (L ~ 9x10^34 erg s?1) above the quiescent luminosity: one on 2004 March 31 and another on 2004 August 31. The first flare lasted about 2.5 ks and the second about 5 ks. The combined fit on the Epic spectra yield photon indeces of about 1.5 and 1.9 for the first and second flare respectively. This hard photon index strongly suggests the presence of an important population of non-thermal electrons during the event and supports the view that the majority of flaring events tend to be hard and not very luminous.

Guillaume Belanger; Andrea Goldwurm; Fulvio Melia; Farah Yusef-Zadeh; Philippe Ferrando; Delphine Porquet; Nicolas Grosso; Robert Warwick

2005-08-19T23:59:59.000Z

118

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

119

E-Print Network 3.0 - acute gout flare Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

gout flare Search Powered by Explorit Topic List Advanced Search Sample search results for: acute gout flare Page: << < 1 2 3 4 5 > >> 1 Uricase for gout treatment Chapter 5.1...

120

An Invariable Point in the Energy Spectra of Non-Thermal Electrons of Solar Flares  

Science Journals Connector (OSTI)

The power-law energy spectra of non-thermal electrons for each 1.024 second have been drawn together during the flare. For some flares, it is discovered that the energy spectra taken at different times present...

W.Q. Gan

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Physical origin of X-ray flares following GRBs  

E-Print Network (OSTI)

One of the major achievements of Swift is the discovery of the erratic X-ray flares harboring nearly half of gamma-ray bursts (GRBs), both for long-duration and short-duration categories, and both for traditional hard GRBs and soft X-ray flashes (XRFs). Here I review the arguments in support of the suggestion that they are powered by reactivation of the GRB central engine, and that the emission site is typically ``internal'', i.e. at a distance within the forward shock front. The curvature effect that characterizes the decaying lightcurve slope during the fading phase of the flares provides an important clue. I will then discuss several suggestions to re-start the GRB central engine and comment on how future observations may help to unveil the physical origin of X-ray flares.

Bing Zhang

2006-02-25T23:59:59.000Z

122

Terahertz photometer to observe solar flares in continuum  

E-Print Network (OSTI)

Solar observations at sub-THz frequencies detected a new flare spectral component peaking in the THz range, simultaneously with the well known microwaves component, bringing challenging constraints for interpretation. Higher THz frequencies observations are needed to understand the nature of the mechanisms occurring in flares. A THz photometer system was developed to observe outside the terrestrial atmosphere on stratospheric balloons or satellites, or at exceptionally transparent ground stations. The telescope was designed to observe the whole solar disk detecting small relative changes in input temperature caused by flares at localized positions. A Golay cell detector is preceded by low-pass filters to suppress visible and near IR radiation, a band-pass filter, and a chopper. A prototype was assembled to demonstrate the new concept and the system performance. It can detect temperature variations smaller than 1 K for data sampled at a rate of 10/second, smoothed for intervals larger than 4 seconds. For a 76 ...

Marcon, Rogerio; Fernandes, Luis Olavo T; Godoy, Rodolfo; Marun, Adolfo; Bortolucci, Emilio C; Zakia, Maria Beny; Diniz, José Alexandre; Kudaka, Amauri S

2011-01-01T23:59:59.000Z

123

Energy Partitions and Evolution in a Purely Thermal Solar Flare  

E-Print Network (OSTI)

This paper presents a solely thermal flare, which we detected in the microwave range from the thermal gyro- and free-free emission it produced. An advantage of analyzing thermal gyro emission is its unique ability to precisely yield the magnetic field in the radiating volume. When combined with observationally-deduced plasma density and temperature, these magnetic field measurements offer a straightforward way of tracking evolution of the magnetic and thermal energies in the flare. For the event described here, the magnetic energy density in the radio-emitting volume declines over the flare rise phase, then stays roughly constant during the extended peak phase, but recovers to the original level over the decay phase. At the stage where the magnetic energy density decreases, the thermal energy density increases; however, this increase is insufficient, by roughly an order of magnitude, to compensate for the magnetic energy decrease. When the magnetic energy release is over, the source parameters come back to ne...

Fleishman, Gregory D; Gary, Dale E

2015-01-01T23:59:59.000Z

124

Other States Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Other States Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 408 1992 501 530 501 1993 501 522 515 533 536 531 583 546 1994 533 616 623 620 629 654 1995 667 594 663 634 643 626 643 663 603 553 567 578 1996 549 538 625 620 693 703 709 715 676 708 682 690 1997 133 124 135 142 147 142 149 177 160 150 159 161 1998 147 134 150 148 132 117 126 132 124 121 121 123 1999 754 406 686 588 693 611 708 340 590 811 785 592 2000 147 135 152 163 175 159 187 180 175 179 176 183 2001 166 149 171 206 224 208 221 218 229 222 222 238 2002 172 163 176 196 185 177 191 184 188 180 157 165

125

Modelling the influence of photospheric turbulence on solar flare statistics  

E-Print Network (OSTI)

Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model we suggest the origin for two important and widely studied properties of solar flare statistics, including the time-energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time-energy correlations appear to arise from the tube-tube interactions. The agreement with satellite measurements is encoura...

Mendoza, M; de Arcangelis, L; Andrade, J S; Herrmann, H J

2014-01-01T23:59:59.000Z

126

Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2  

E-Print Network (OSTI)

Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2 and Bruce J; published 17 June 2003) We argue that Earth's short-term temperature anomalies and the solar flare data sets that corresponds to the one that would be induced by the solar flare intermittency. The mean

Scafetta, Nicola

127

Detection of a Large Flare in FR Cnc (=1RXS J083230.9+154940)  

E-Print Network (OSTI)

We report detection of an optical flare in the BY Draconis type star FR Cnc. The flare duration is 41 min, the amplitude is in the B band 1.02 m. It is the first flare reported for this object.

Alex Golovin; Elena Pavlenko; Yuliana Kuznyetsova; Victoria Krushevska

2007-01-29T23:59:59.000Z

128

Thermal and Magnetic Parameters in Solar Flares Derived from GOES X-Ray Light Curves  

Science Journals Connector (OSTI)

......6110 6190 6220 6310 Thermal and Magnetic Parameters in Solar Flares Derived from...impulsive phase of 20 solar flares and to estimate the thermal and magnetic parameters...parameters and the thermal ones, have been applied not only to solar flares, but also......

Tetsuya T. Yamamoto; Takashi Sakurai

2010-06-25T23:59:59.000Z

129

Automatic Solar Flare Detection Using MLP, RBF and SVM , Frank Y. Shih1  

E-Print Network (OSTI)

in light curves. In the mean time, solar flares also emit high velocity charged particles that take one1 Automatic Solar Flare Detection Using MLP, RBF and SVM Ming Qu1 , Frank Y. Shih1 , Ju Jing2. The focus of the automatic solar flare detection is on the development of efficient feature

130

Title: Development of Statistical and Data Drive Models to Predict Flares for Space Weather Predictions  

E-Print Network (OSTI)

D and civilian assets in both space and ground. The current state of predictability of solar flares is basedTitle: Development of Statistical and Data Drive Models to Predict Solar Flares for Space Weather Collaborator: Dr. K. S. Balasubramaniam, Air Force Research Laboratory Summary: Solar flares impact Do

Johnson, Eric E.

131

Turbomachinery debris remover  

DOE Patents (OSTI)

An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

Krawiec, Donald F. (Pittsburgh, PA); Kraf, Robert J. (North Huntingdon, PA); Houser, Robert J. (Monroeville, PA)

1988-01-01T23:59:59.000Z

132

Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare  

E-Print Network (OSTI)

A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.

J. Kasparova; M. Karlicky; E. P. Kontar; R. A. Schwartz; B. R. Dennis

2005-08-30T23:59:59.000Z

133

TIDAL DISRUPTION FLARES: THE ACCRETION DISK PHASE  

SciTech Connect

The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of the main results derived from our simulations is that blackbody fits of X-ray data tend to overestimate the true mean disk temperature. In fact, the temperature derived from blackbody fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous (or accretion) timescale, which also fixes the rising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10{sup 45}-10{sup 46} erg s{sup -1}, whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The typical timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 yr. Predicted soft X-ray light curves reproduce quite well data on galaxies in which a variable X-ray emission possibly related to a tidal event was detected. In the cases of NGC 3599 and IC 3599, data are reproduced well by models defined by a black hole with mass {approx}10{sup 7} M{sub sun} and a disrupted star of about 1 solar mass. The X-ray variation observed in XMMSL1 is consistent with a model defined by a black hole with mass {approx}3 x 10{sup 6} M{sub sun} and a disrupted star of 1 solar mass, while that observed in the galaxy situated in the cluster A1689 is consistent with a model including a black hole of {approx}10{sup 7} M{sub sun} and a disrupted star of {approx}0.5 M{sub sun}.

Montesinos Armijo, Matias; De Freitas Pacheco, Jose A. [Observatoire de la Cote d'Azur, Laboratoire Cassiopee, Universite de Nice Sophia-Antipolis Bd de l'Observatoire, BP 4229, 06304 Nice Cedex 4 (France)

2011-08-01T23:59:59.000Z

134

Magnetic and dynamical photospheric disturbances observed during an M3.2 solar flare  

E-Print Network (OSTI)

This letter reports on a set of full-Stokes spectropolarimetric observations in the near infrared He I 10830 A spectral region covering the pre-, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He I 10830 A emission in the flare. The red component of the He I triplet peaks at an intensity ratio to the continuum of about 1.86. During the flare, He I Stokes V is substantially larger and appears reversed compared to the usually larger Si I Stokes V profile. The photospheric Si I inversions of the four Stokes profiles reveal the following: (1) the magnetic field strength in the photosphere decreases or is even absent during the flare phase, as compared to the pre-flare phase. However, this decrease is not permanent. After the flare the magnetic field recovers its pre-flare configuration in a short time (i.e., in 30 minutes after the flare). (2) In the photosphere, the line-of-sight velocities show a regular...

Kuckein, C; Sainz, R Manso

2015-01-01T23:59:59.000Z

135

Large Eddy Simulation of Industrial Flares Philip Smith  

E-Print Network (OSTI)

At the Institute for Clean and Secure Energy at the University of Utah we are focused on education through and private industry companies to promote rapid deployment of new technologies through the use of high to solve many industrially relevant problems such as industrial flares, oxy-coal combustion processes

Utah, University of

136

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same m...

Saint-Hilaire, P; Saint-Hilaire, Pascal; Benz, Arnold O.

2005-01-01T23:59:59.000Z

137

OBSERVATIONS OF RECONNECTING FLARE LOOPS WITH THE ATMOSPHERIC IMAGING ASSEMBLY  

SciTech Connect

Perhaps the most compelling evidence for the role of magnetic reconnection in solar flares comes from the supra-arcade downflows that have been observed above many post-flare loop arcades. These downflows are thought to be related to highly non-potential field lines that have reconnected and are propagating away from the current sheet. We present new observations of supra-arcade downflows taken with the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). The morphology and dynamics of the downflows observed with AIA provide new evidence for the role of magnetic reconnection in solar flares. With these new observations we are able to measure downflows originating at larger heights than in previous studies. We find, however, that the initial velocities measured here ({approx}144 km s{sup -1}) are well below the Alfven speed expected in the lower corona, and consistent with previous results. We also find no evidence that the downflows brighten with time, as would be expected from chromospheric evaporation. These observations suggest that simple two-dimensional models cannot explain the detailed observations of solar flares.

Warren, Harry P.; Sheeley, Neil R. Jr. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); O'Brien, Casey M. [Also at Massachusetts Institute of Technology, Cambridge, MA 02139, USA. (United States)

2011-12-01T23:59:59.000Z

138

Simulations of the Mars ionosphere during a solar flare  

E-Print Network (OSTI)

.05.23 08:00-10:00 Spring AGU Meeting 2006, Acapulco, Mexico #12;Increased fluxes of X-rays during solarSimulations of the Mars ionosphere during a solar flare Paul Withers, Joei Wroten, Michael Mendillo simulations of the Mars ionosphere driven by temporally-varying solar fluxes, concentrating on 15 and 26 April

Withers, Paul

139

Magnetic Flares and the Observed Optical Depth in Seyfert Galaxies  

E-Print Network (OSTI)

We here consider the pressure equilibrium during an intense magnetic flare above the surface of a cold accretion disk. Under the assumption that the heating source for the plasma trapped within the flaring region is an influx of energy transported inwards with a group velocity close to $c$, e.g., by magnetohydrodynamic waves, this pressure equilibrium can constrain the Thomson optical depth $\\tau_T$ to be of order unity. We suggest that this may be the reason why $\\tau_T\\sim 1$ in Seyfert Galaxies. We also consider whether current data can distinguish between the spectrum produced by a single X-ray emitting region with $\\tau_T\\sim 1$ and that formed by many different flares spanning a range of $\\tau_T$. We find that the current observations do not yet have the required energy resolution to permit such a differentiation. Thus, it is possible that the entire X-ray/$\\gamma$-ray spectrum of Seyfert Galaxies is produced by many independent magnetic flares with an optical depth $0.5<\\tau_T<2$.

Sergei Nayakshin; Fulvio Melia

1997-05-30T23:59:59.000Z

140

MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS  

SciTech Connect

Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

Kusano, K.; Bamba, Y.; Yamamoto, T. T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Iida, Y.; Toriumi, S. [Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Asai, A., E-mail: kusano@nagoya-u.jp [Unit of Synergetic Studies for Space, Kyoto University, 17 Kitakazan Ohmine-cho, Yamashina-ku, Kyoto 607-8471 (Japan)

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

142

Average Commercial Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

143

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

144

Energy Information Administration / Natural Gas Annual 2009 124  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 56. Summary Statistics for Natural Gas - New Hampshire, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

145

Energy Information Administration / Natural Gas Annual 2010 108  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 48. Summary Statistics for Natural Gas - Maryland, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 7 7 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 48 35 28 43 43 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 48 35 28 43 43 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

146

Energy Information Administration / Natural Gas Annual 2005 120  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 55. Summary Statistics for Natural Gas - New Hampshire, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

147

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

148

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

149

Energy Information Administration / Natural Gas Annual 2005 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 47. Summary Statistics for Natural Gas - Massachusetts, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

150

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

151

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

152

Energy Information Administration / Natural Gas Annual 2010 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Hampshire, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

153

Energy Information Administration / Natural Gas Annual 2010 134  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 61. Summary Statistics for Natural Gas - North Carolina, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

154

Energy Information Administration / Natural Gas Annual 2005 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 37. Summary Statistics for Natural Gas - Hawaii, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

155

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

156

Energy Information Administration / Natural Gas Annual 2010 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 36. Summary Statistics for Natural Gas - District of Columbia, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

157

Energy Information Administration / Natural Gas Annual 2009 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2005-2009 Number of Producing Gas Wells at End of Year ................................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 From Coalbed Wells ........................................ 0 0 0 0 0 From Shale Gas Wells..................................... 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed.....................

158

Energy Information Administration / Natural Gas Annual 2006 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 37. Summary Statistics for Natural Gas - Hawaii, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

159

Energy Information Administration / Natural Gas Annual 2010 128  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 58. Summary Statistics for Natural Gas - New Jersey, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

160

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 19 17 20 18 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,555 1,412 1,112 837 731 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,555 1,412 1,112 837 731 Repressuring ...................................................... 50 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,505 1,412 1,112 837 731 Nonhydrocarbon Gases Removed ..................... 214 198 3 0 0 Marketed Production

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Information Administration / Natural Gas Annual 2005 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 73. Summary Statistics for Natural Gas - Washington, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

162

Energy Information Administration / Natural Gas Annual 2009 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 50. Summary Statistics for Natural Gas - Minnesota, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

163

Energy Information Administration / Natural Gas Annual 2010 142  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 65. Summary Statistics for Natural Gas - Oregon, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 14 18 21 24 26 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 621 409 778 821 1,407 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 621 409 778 821 1,407 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

164

Energy Information Administration / Natural Gas Annual 2009 144  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 66. Summary Statistics for Natural Gas - Rhode Island, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

165

Energy Information Administration / Natural Gas Annual 2010 158  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 73. Summary Statistics for Natural Gas - Vermont, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

166

Energy Information Administration / Natural Gas Annual 2009 106  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 47. Summary Statistics for Natural Gas - Maryland, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 7 7 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 46 48 35 28 43 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 46 48 35 28 43 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

167

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

168

Energy Information Administration / Natural Gas Annual 2008 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 55. Summary Statistics for Natural Gas - Nevada, 2004-2008 Number of Wells Producing at End of Year.. 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 5 5 5 5 4 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 5 5 5 5 4 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 5 5 5 5 4 Extraction Loss...............................................

169

Energy Information Administration / Natural Gas Annual 2005 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 56. Summary Statistics for Natural Gas - New Jersey, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

170

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

171

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

172

Energy Information Administration / Natural Gas Annual 2006 116  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 53. Summary Statistics for Natural Gas - Nebraska, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 106 109 111 114 114 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 904 1,187 1,229 943 1,033 From Oil Wells.............................................. 288 279 269 258 185 Total............................................................... 1,193 1,466 1,499 1,201 1,217 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 5 12 23 29 17 Wet After Lease Separation............................ 1,188 1,454 1,476 1,172 1,200 Nonhydrocarbon Gases Removed

173

Energy Information Administration / Natural Gas Annual 2009 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 36. Summary Statistics for Natural Gas - Florida, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 2,954 2,845 2,000 2,742 290 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 2,954 2,845 2,000 2,742 290 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

174

Energy Information Administration / Natural Gas Annual 2007 96  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 42. Summary Statistics for Natural Gas - Iowa, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

175

Energy Information Administration / Natural Gas Annual 2006 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 54. Summary Statistics for Natural Gas - Nevada, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 6 6 5 5 5 Total............................................................... 6 6 5 5 5 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 6 6 5 5 5 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

176

Microsoft Word - Table_40_2.doc  

Gasoline and Diesel Fuel Update (EIA)

1 1 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,498 1,502 1,533 1,545 2,291 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 855 899 1,064 1,309 1,464 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 855 899 1,064 1,309 1,464 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. NA NA NA NA NA Wet After Lease Separation................................ 855 899 1,064 1,309 1,464 Nonhydrocarbon Gases Removed .....................

177

Energy Information Administration / Natural Gas Annual 2009 96  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 42. Summary Statistics for Natural Gas - Iowa, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

178

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

1 1 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

179

Energy Information Administration / Natural Gas Annual 2010 148  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 68. Summary Statistics for Natural Gas - South Carolina, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

180

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

182

Energy Information Administration / Natural Gas Annual 2007 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Hawaii, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

183

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

184

Energy Information Administration / Natural Gas Annual 2007 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

185

Energy Information Administration / Natural Gas Annual 2007 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Delaware, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

186

Energy Information Administration / Natural Gas Annual 2006 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 51. Summary Statistics for Natural Gas - Missouri, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

187

Energy Information Administration / Natural Gas Annual 2008 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

188

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

189

Energy Information Administration / Natural Gas Annual 2010 124  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 56. Summary Statistics for Natural Gas - Nevada, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 4 4 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 5 5 4 4 4 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 5 5 4 4 4 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

190

Average Commercial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

191

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

192

Energy Information Administration / Natural Gas Annual 2007 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

193

Energy Information Administration / Natural Gas Annual 2005 100  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 45. Summary Statistics for Natural Gas - Maine, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

194

Energy Information Administration / Natural Gas Annual 2005 160  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 75. Summary Statistics for Natural Gas - Wisconsin, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................

195

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

196

Energy Information Administration / Natural Gas Annual 2007 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

197

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

198

Energy Information Administration / Natural Gas Annual 2007 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 55. Summary Statistics for Natural Gas - Nevada, 2003-2007 Number of Wells Producing at End of Year.. 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 6 5 5 5 5 Total............................................................... 6 5 5 5 5 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 6 5 5 5 5 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

199

Energy Information Administration / Natural Gas Annual 2007 132  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 60. Summary Statistics for Natural Gas - North Carolina, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

200

Energy Information Administration / Natural Gas Annual 2008 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Information Administration / Natural Gas Annual 2009 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

202

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

203

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

204

Energy Information Administration / Natural Gas Annual 2006 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 38. Summary Statistics for Natural Gas - Idaho, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

205

Energy Information Administration / Natural Gas Annual 2006 76  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 33. Summary Statistics for Natural Gas - Delaware, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

206

Energy Information Administration / Natural Gas Annual 2007 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

207

Energy Information Administration / Natural Gas Annual 2010 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 53. Summary Statistics for Natural Gas - Missouri, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

208

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

209

Energy Information Administration / Natural Gas Annual 2007 70  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 29. Summary Statistics for Natural Gas - Arizona, 2003-2007 Number of Wells Producing at End of Year . 9 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 443 331 233 611 654 From Oil Wells ............................................. * * * * * Total.............................................................. 443 331 233 611 655 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed................. 0 0 0 0 0 Marketed Production...................................... 443 331 233 611 655 Extraction Loss .............................................. 0 0 0 0 0 Total Dry Production

210

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

211

Energy Information Administration / Natural Gas Annual 2007 124  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 56. Summary Statistics for Natural Gas - New Hampshire, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

212

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

213

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

214

Energy Information Administration / Natural Gas Annual 2010 114  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 51. Summary Statistics for Natural Gas - Minnesota, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

215

Energy Information Administration / Natural Gas Annual 2005 152  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 71. Summary Statistics for Natural Gas - Vermont, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

216

Energy Information Administration / Natural Gas Annual 2010 92  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 40. Summary Statistics for Natural Gas - Idaho, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

217

Energy Information Administration / Natural Gas Annual 2006 100  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 45. Summary Statistics for Natural Gas - Maine, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

218

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

219

Energy Information Administration / Natural Gas Annual 2008 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Jersey, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

220

Energy Information Administration / Natural Gas Annual 2010 166  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 77. Summary Statistics for Natural Gas - Wisconsin, 2006-2010 Number of Producing Gas Wells at End of Year ................................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 From Coalbed Wells ........................................ 0 0 0 0 0 From Shale Gas Wells..................................... 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed.....................

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Information Administration / Natural Gas Annual 2005 108  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 49. Summary Statistics for Natural Gas - Minnesota, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

222

Energy Information Administration / Natural Gas Annual 2005 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 54. Summary Statistics for Natural Gas - Nevada, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 6 6 5 5 Total................................................................... 7 6 6 5 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 6 6 5 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

223

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

224

Energy Information Administration / Natural Gas Annual 2005 128  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 59. Summary Statistics for Natural Gas - North Carolina, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

225

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

226

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

227

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

1 1 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

228

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

229

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

230

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

231

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

232

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

233

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

234

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 8 9 8 7 9 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 471 368 305 300 443 From Oil Wells.................................................. 3 1 1 0 0 Total................................................................... 474 368 307 301 443 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 474 368 307 301 443 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

235

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 300 280 300 225 240 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 189 183 180 174 169 From Oil Wells.................................................. 6 6 6 5 5 Total................................................................... 195 189 185 180 174 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 195 189 185 180 174 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

236

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

237

Energy Information Administration / Natural Gas Annual 2010 72  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 30. Summary Statistics for Natural Gas - Arizona, 2006-2010 Number of Producing Gas Wells at End of Year................................................ 7 7 6 6 5 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 611 654 523 711 183 From Oil Wells ............................................. * * * * 0 From Coalbed Wells .................................... 0 0 0 0 0 From Shale Gas Wells ................................. 0 0 0 0 0 Total.............................................................. 611 655 523 712 183 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed.................

238

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

239

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

240

Energy Information Administration / Natural Gas Annual 2008 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 50. Summary Statistics for Natural Gas - Minnesota, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Information Administration / Natural Gas Annual 2006 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 56. Summary Statistics for Natural Gas - New Jersey, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

242

Energy Information Administration / Natural Gas Annual 2005 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 34. Summary Statistics for Natural Gas - District of Columbia, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

243

Energy Information Administration / Natural Gas Annual 2005 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 38. Summary Statistics for Natural Gas - Idaho, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

244

Energy Information Administration / Natural Gas Annual 2008 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 46. Summary Statistics for Natural Gas - Maine, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

245

Energy Information Administration / Natural Gas Annual 2010 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Connecticut, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

246

Energy Information Administration / Natural Gas Annual 2010 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - Delaware, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

247

Energy Information Administration / Natural Gas Annual 2007 92  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 40. Summary Statistics for Natural Gas - Illinois, 2003-2007 Number of Wells Producing at End of Year.. 240 251 316 316 316 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 169 165 E 161 E 165 E 164 From Oil Wells.............................................. 5 5 E 5 E 5 E 5 Total............................................................... 174 170 E 166 E 170 E 169 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 174 E 170 E 166 E 170 E 169 Extraction Loss...............................................

248

Energy Information Administration / Natural Gas Annual 2007 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2003-2007 Number of Wells Producing at End of Year..... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production ......................................... 0 0 0 0 0 Extraction Loss.................................................. 0 0 0 0 0

249

Energy Information Administration / Natural Gas Annual 2005 142  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 66. Summary Statistics for Natural Gas - South Carolina, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

250

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

251

Energy Information Administration / Natural Gas Annual 2010 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Georgia, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

252

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

253

Energy Information Administration / Natural Gas Annual 2009 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Delaware, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

254

Energy Information Administration / Natural Gas Annual 2009 70  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 29. Summary Statistics for Natural Gas - Arizona, 2005-2009 Number of Producing Gas Wells at End of Year................................................ 6 7 7 6 6 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 233 611 654 523 711 From Oil Wells ............................................. * * * * * From Coalbed Wells .................................... 0 0 0 0 0 From Shale Gas Wells ................................. 0 0 0 0 0 Total.............................................................. 233 611 655 523 712 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed.................

255

Energy Information Administration / Natural Gas Annual 2007 106  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 47. Summary Statistics for Natural Gas - Maryland, 2003-2007 Number of Wells Producing at End of Year.. 7 7 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 48 34 46 48 35 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 48 34 46 48 35 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 48 34 46 48 35 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

256

Energy Information Administration / Natural Gas Annual 2009 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

257

Energy Information Administration / Natural Gas Annual 2009 108  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 48. Summary Statistics for Natural Gas - Massachusetts, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

258

Energy Information Administration / Natural Gas Annual 2007 144  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 66. Summary Statistics for Natural Gas - Rhode Island, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

259

Energy Information Administration / Natural Gas Annual 2009 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - District of Columbia, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

260

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 96 98 96 106 109 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,040 869 886 R 904 1,187 From Oil Wells.................................................. 356 349 322 R 288 279 Total................................................................... 1,395 1,218 1,208 R 1,193 1,466 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 R 5 12 Wet After Lease Separation................................ 1,395 1,218 1,208 R 1,188 1,454 Nonhydrocarbon Gases Removed .....................

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Information Administration / Natural Gas Annual 2005 74  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 32. Summary Statistics for Natural Gas - Connecticut, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

262

Energy Information Administration / Natural Gas Annual 2009 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

263

Energy Information Administration / Natural Gas Annual 2009 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 64. Summary Statistics for Natural Gas - Oregon, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 15 14 18 21 24 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 454 621 409 778 821 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 454 621 409 778 821 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

264

Energy Information Administration / Natural Gas Annual 2006 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 34. Summary Statistics for Natural Gas - District of Columbia, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

265

Energy Information Administration / Natural Gas Annual 2006 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 39. Summary Statistics for Natural Gas - Illinois, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 225 240 251 316 E 316 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 174 169 165 E 161 E 165 From Oil Wells.............................................. 5 5 5 E 5 E 5 Total............................................................... 180 174 170 E 166 E 170 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 180 174 170 166 170 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production

266

Energy Information Administration / Natural Gas Annual 2008 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

267

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

1 1 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

268

Energy Information Administration / Natural Gas Annual 2007 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 64. Summary Statistics for Natural Gas - Oregon, 2003-2007 Number of Wells Producing at End of Year.. 15 15 15 14 18 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 731 467 454 621 409 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 731 467 454 621 409 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 731 467 454 621 409 Extraction Loss............................................... 0 0 0

269

Energy Information Administration / Natural Gas Annual 2008 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2004-2008 Number of Wells Producing at End of Year..... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 From Coalbed Wells ........................................ 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production ......................................... 0 0 0 0 0 Extraction Loss..................................................

270

Energy Information Administration / Natural Gas Annual 2008 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

271

Energy Information Administration / Natural Gas Annual 2009 116  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 52. Summary Statistics for Natural Gas - Missouri, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

272

Energy Information Administration / Natural Gas Annual 2009 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

273

Energy Information Administration / Natural Gas Annual 2009 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Jersey, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

274

Energy Information Administration / Natural Gas Annual 2009 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 46. Summary Statistics for Natural Gas - Maine, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

275

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 8 7 7 6 6 Total................................................................... 8 7 7 6 6 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 8 7 7 6 6 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

276

Microsoft Word - Table_68_2.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 420 380 350 400 430 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,230 1,150 2,000 2,050 1,803 Total................................................................... 1,230 1,150 2,000 2,050 1,803 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. NA NA NA NA NA Wet After Lease Separation................................ 1,230 1,150 2,000 2,050 1,803 Nonhydrocarbon Gases Removed .....................

277

Energy Information Administration / Natural Gas Annual 2009 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 33. Summary Statistics for Natural Gas - Connecticut, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

278

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

279

Energy Information Administration / Natural Gas Annual 2005 136  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 63. Summary Statistics for Natural Gas - Oregon, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 20 18 15 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,112 837 731 467 454 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,112 837 731 467 454 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,112 837 731 467 454 Nonhydrocarbon Gases Removed .....................

280

Energy Information Administration / Natural Gas Annual 2009 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Hawaii, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

282

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 8 7 7 5 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 18 34 32 22 48 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 18 34 32 22 48 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 18 34 32 22 48 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

283

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

1 1 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

284

Energy Information Administration / Natural Gas Annual 2006 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 65. Summary Statistics for Natural Gas - Rhode Island, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

285

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

286

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

287

Energy Information Administration / Natural Gas Annual 2006 66  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 28. Summary Statistics for Natural Gas - Arizona, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year............................... 7 9 6 6 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 300 443 331 233 611 From Oil Wells ............................................. * * * * * Total.............................................................. 301 443 331 233 611 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Wet After Lease Separation........................... 301 443 331 233 611 Nonhydrocarbon Gases Removed................. 0 0 0 0 0 Marketed Production......................................

288

Energy Information Administration / Natural Gas Annual 2008 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - District of Columbia, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

289

Energy Information Administration / Natural Gas Annual 2005 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 51. Summary Statistics for Natural Gas - Missouri, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

290

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

291

Energy Information Administration / Natural Gas Annual 2006 160  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 75. Summary Statistics for Natural Gas - Wisconsin, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year .................................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Wet After Lease Separation............................... 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production .........................................

292

Energy Information Administration / Natural Gas Annual 2005 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 65. Summary Statistics for Natural Gas - Rhode Island, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

293

Energy Information Administration / Natural Gas Annual 2010 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Hawaii, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

294

Energy Information Administration / Natural Gas Annual 2005 102  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 46. Summary Statistics for Natural Gas - Maryland, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 5 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 32 22 48 34 46 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 32 22 48 34 46 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 32 22 48 34 46 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

295

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

296

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

297

Risk Removal | Department of Energy  

Energy Savers (EERE)

Risk Removal Risk Removal Workers safely remove old mercury tanks from the Y-12 National Security Complex. Workers safely remove old mercury tanks from the Y-12 National Security...

298

The optical flare and afterglow light curve of GRB 050904 at redshift z=6.29  

E-Print Network (OSTI)

GRB050904 is very interesting since it is by far the most distant GRB event known to date($z=6.29$). It was reported that during the prompt high energy emission phase, a very bright optical flare was detected, and it was temporal coincident with an X-ray flare. Here we use two models to explain the optical flare, One is the "late internal shock model", in which the optical flare is produced by the synchrotron radiation of the electrons accelerated by the late internal shock, and the X-ray flare is produced by the synchrotron-self-Compton mechanism. The other is the external forward-reverse shock model, in which the optical flare is from the reverse shock emission and the X-ray flare is attributed to the central engine activity. We show that with proper parameters, a bright optical flare can appear in both models. We think the "late internal shock model" is more favored since in this model the optical flash and the X-ray flare have the same origin, which provides a natural explanation of the temporal coincidence of them. In the forward-reverse shock scenario, fits to the optical flare and the late afterglow suggests that the physical parameters of the reverse shock are much different from that of forward shock, as found in modeling the optical flash of GRB 990123 previously.

D. M. Wei; T. Yan; Y. Z. Fan

2005-12-07T23:59:59.000Z

299

High-Energy Gamma-Ray Emission From Solar Flares: Summary of Fermi LAT Detections and Analysis of Two M-Class Flares  

E-Print Network (OSTI)

We present the detections of 19 solar flares detected in high-energy gamma rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first four years of operation. Interestingly, all flares are associated with fairly fast Coronal Mass Ejections (CMEs) and are not all powerful X-ray flares. We then describe the detailed temporal, spatial and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying gamma-ray emission over 13 hours, and the 2011 June 7 M2.5 flare, which was followed by gamma-ray emission lasting for 2 hours. We compare the Fermi-LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that a hadronic origin of the gamma rays is more likely than a leptonic origin and find that the energy spectrum of the proton distribution softens after the 2011 March 7 flare, favoring a scenario with continuous acceleration at the flare site. This work suggests that proton acceleratio...

,

2013-01-01T23:59:59.000Z

300

Silica Scaling Removal Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Silica Scaling Removal Process Silica Scaling Removal Process Silica Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal silica using small gel particles. Available for thumbnail of Feynman Center (505) 665-9090 Email Silica Scaling Removal Process Applications: Cooling tower systems Water treatment systems Water evaporation systems Potential mining applications (produced water) Industry applications for which silica scaling must be prevented Benefits: Reduces scaling in cooling towers by up to 50% Increases the number of cycles of concentration substantially Reduces the amount of antiscaling chemical additives needed Decreases the amount of makeup water and subsequent discharged water (blowdown) Enables considerable cost savings derived from reductions in

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

PROTRACTED LOW DOSE PHOTON AND SIMULATED SOLAR FLARE  

NLE Websites -- All DOE Office Websites (Extended Search)

PROTRACTED LOW DOSE PHOTON AND SIMULATED SOLAR FLARE PROTRACTED LOW DOSE PHOTON AND SIMULATED SOLAR FLARE PROTON EFFECTS ON CYTOKINE/CHEMOKINE EXPRESSION AFTER WHOLE-BODY IRRADIATION Asma Rizvi 2 , George Coutrakon 1 , James M. Slater 1 , Michael J. Pecaut 1,2 and Daila S. Gridley 1,2 Departments. of 1 Radiation Medicine and 2 Biochemistry & Microbiology Loma Linda University & Medical Center, Loma Linda, CA 92354 Astronauts are exposed to low dose/low dose rate radiation (LDR) and may also be acutely irradiated during a solar particle event (SPE). The biological effects of LDR alone and when combined with a solar particle event, are not yet clearly understood. Previous studies have shown that irradiation can have adverse effects on T cells. The reactive oxygen species (ROS) that are produced as a result of radiation can alter or damage the

302

Global Energetics of Solar Flares: I. Magnetic Energies  

E-Print Network (OSTI)

We present the first part of a project on the global energetics of solar flares and coronal mass ejections (CMEs) that includes about 400 M- and X-class flares observed with AIA and HMI onboard SDO. We calculate the potential energy, free energy, and the flare-dissipated magnetic energy. We calculate these magnetic parameters using two different NLFFF codes: The COR-NLFFF code uses the line-of-sight magnetic field component $B_z$ from HMI to define the potential field, and the 2D coordinates of automatically detected coronal loops in 6 coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric 3D vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of $ \\approx 3$. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The ma...

Aschwanden, Markus J; Jing, Ju

2014-01-01T23:59:59.000Z

303

Can we explain non-typical solar flares?  

E-Print Network (OSTI)

We used multi-wavelength high-resolution data from ARIES, THEMIS, and SDO instruments, to analyze a non-standard, C3.3 class flare produced within the active region NOAA 11589 on 2012 October 16. Magnetic flux emergence and cancellation were continuously detected within the active region, the latter leading to the formation of two filaments. Our aim is to identify the origins of the flare taking into account the complex dynamics of its close surroundings. We analyzed the magnetic topology of the active region using a linear force-free field extrapolation to derive its 3D magnetic configuration and the location of quasi-separatrix layers (QSLs) which are preferential sites for flaring activity. Because the active region's magnetic field was nonlinear force-free, we completed a parametric study using different linear force-free field extrapolations to demonstrate the robustness of the derived QSLs. The topological analysis shows that the active region presented a complex magnetic configuration comprising severa...

Dalmasse, K; Schmieder, B; Aulanier, G

2014-01-01T23:59:59.000Z

304

Seismic Emissions from a Highly Impulsive M6.7 Solar Flare  

E-Print Network (OSTI)

On 10 March 2001 the active region NOAA 9368 produced an unusually impulsive solar flare in close proximity to the solar limb. This flare has previously been studied in great detail, with observations classifying it as a type 1 white-light flare with a very hard spectrum in hard X-rays. The flare was also associated with a type II radio burst and coronal mass ejection. The flare emission characteristics appeared to closely correspond with previous instances of seismic emission from acoustically active flares. Using standard local helioseismic methods, we identified the seismic signatures produced by the flare that, to date, is the least energetic (in soft X-rays) of the flares known to have generated a detectable acoustic transient. Holographic analysis of the flare shows a compact acoustic source strongly correlated with the impulsive hard X-ray, visible continuum, and radio emission. Time-distance diagrams of the seismic waves emanating from the flare region also show faint signatures, mainly in the eastern sector of the active region. The strong spatial coincidence between the seismic source and the impulsive visible continuum emission reinforces the theory that a substantial component of the seismic emission seen is a result of sudden heating of the low photosphere associated with the observed visible continuum emission. Furthermore, the low-altitude magnetic loop structure inferred from potential--field extrapolations in the flaring region suggests that there is a significant inverse correlation between the seismicity of a flare and the height of the magnetic loops that conduct the particle beams from the corona.

J. C. Martinez-Oliveros; H. Moradi; A-C. Donea

2008-01-07T23:59:59.000Z

305

MEASUREMENTS OF THE CORONAL ACCELERATION REGION OF A SOLAR FLARE  

SciTech Connect

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph (NoRH) are used to investigate coronal hard X-ray and microwave emissions in the partially disk-occulted solar flare of 2007 December 31. The STEREO mission provides EUV images of the flare site at different viewing angles, establishing a two-ribbon flare geometry and occultation heights of the RHESSI and NoRH observations of {approx}16 Mm and {approx}25 Mm, respectively. Despite the occultation, intense hard X-ray emission up to {approx}80 keV occurs during the impulsive phase from a coronal source that is also seen in microwaves. The hard X-ray and microwave source during the impulsive phase is located {approx}6 Mm above thermal flare loops seen later at the soft X-ray peak time, similar in location to the above-the-loop-top source in the Masuda flare. A single non-thermal electron population with a power-law distribution (with spectral index of {approx}3.7 from {approx}16 keV up to the MeV range) radiating in both bremsstrahlung and gyrosynchrotron emission can explain the observed hard X-ray and microwave spectrum, respectively. This clearly establishes the non-thermal nature of the above-the-loop-top source. The large hard X-ray intensity requires a very large number (>5 x 10{sup 35} above 16 keV for the derived upper limit of the ambient density of {approx}8 x 10{sup 9} cm{sup -3}) of suprathermal electrons to be present in this above-the-loop-top source. This is of the same order of magnitude as the number of ambient thermal electrons. We show that collisional losses of these accelerated electrons would heat all ambient electrons to superhot temperatures (tens of keV) within seconds. Hence, the standard scenario, with hard X-rays produced by a beam comprising the tail of a dominant thermal core plasma, does not work. Instead, all electrons in the above-the-loop-top source seem to be accelerated, suggesting that the above-the-loop-top source is itself the electron acceleration region.

Krucker, Saem; Hudson, H. S.; Glesener, L.; Lin, R. P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); White, S. M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Masuda, S. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Wuelser, J.-P., E-mail: krucker@ssl.berkeley.ed [Solar and Astrophysics Laboratory, Lockheed Martin ATC, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2010-05-10T23:59:59.000Z

306

Continuous sulfur removal process  

DOE Patents (OSTI)

A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

Jalan, V.; Ryu, J.

1994-04-26T23:59:59.000Z

307

X-ray flaring from the young stars in CygnusOB2  

E-Print Network (OSTI)

Aims: We characterize individual and ensemble properties of X-ray flares from stars in the CygOB2 and ONC star-forming regions. Method: We analyzed X-ray lightcurves of 1003 CygOB2 sources observed with Chandra for 100 ksec and of 1616 ONC sources detected in the ``Chandra Orion Ultra-deep Project'' 850 ksec observation. We employed a binning-free maximum likelihood method to segment the light-curves into intervals of constants signal and identified flares on the basis of both the amplitude and the time-derivative of the source luminosity. We then derived and compared the flare frequency and energy distribution of CygOB2 and ONC sources. The effect of the length of the observation on these results was investigated by repeating the statistical analysis on five 100 ksec-long segments extracted from the ONC data. Results: We detected 147 and 954 flares from the CygOB2 and ONC sources, respectively. The flares in CygOB2 have decay times ranging from ~0.5 to about 10 hours. The flare energy distributions of all considered flare samples are described at high energies well by a power law with index alpha=-(2.1+-0.1). At low energies, the distributions flatten, probably because of detection incompleteness. We derived average flare frequencies as a function of flare energy. The flare frequency is seen to depend on the source's intrinsic X-ray luminosity, but its determination is affected by the length of the observation. The slope of the high-energy tail of the energy distribution is, however, affected little. A comparison of CygOB2 and ONC sources, accounting for observational biases, shows that the two populations, known to have similar X-ray emission levels, have very similar flare activity.

J. F. Albacete Colombo; M. Caramazza; E. Flaccomio; G. Micela; S. Sciortino

2007-08-17T23:59:59.000Z

308

NEUTRON AND ELECTROMAGNETIC EMISSIONS DURING THE 1990 MAY 24 SOLAR FLARE  

E-Print Network (OSTI)

NEUTRON AND ELECTROMAGNETIC EMISSIONS DURING THE 1990 MAY 24 SOLAR FLARE L. G. KOCHAROV,* JEONGWOO revised form 15 July, 1994) Abstract. In this paper, we are primarilyconcerned with the solar neutron emission during the 1990 May 24 flare, utilizing the counting rate of the Climax neutron monitor

Usoskin, Ilya G.

309

Regularized reconstruction of the differential emission measure from solar flare hard X-ray spectra  

E-Print Network (OSTI)

Regularized reconstruction of the differential emission measure from solar flare hard X-ray spectra for solar flare hard X-rays, it is currently unclear whether the electron distribution responsible between (T) and J( ). However, in the last years, two issues have made this inversion problem more

Piana, Michele

310

Particle acceleration and radiation by direct electric fields in flaring complex solar active regions  

E-Print Network (OSTI)

to connect the energy re- lease process with the acceleration of electrons in solar flares, using a CA modelParticle acceleration and radiation by direct electric fields in flaring complex solar active-Meudon, 92195 Meudon Cedex, FRANCE Abstract The acceleration and radiation of solar energetic particles

Anastasiadis, Anastasios

311

FLARE HEATING IN STELLAR CORONAE Vinay L. Kashyap and Jeremy J. Drake  

E-Print Network (OSTI)

for Astrophysics, 60 Garden Street, Cambridge, MA 02138; vkashyap@cfa.harvard.edu, jdrake¨renlingen and Villigen, 5232 Villigen PSI, Switzerland; guedel@astro.phys.ethz.ch, audard@astro.phys.ethz.ch Received to flares that are increasingly less energetic but are more numerous. Previous analyses of flares in light

Audard, Marc

312

Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre  

Science Journals Connector (OSTI)

... . The infrared flares all originated from within a few milliarcseconds, or a few hundred Schwarzschild radii, of the black-hole position (Table 1). That position was determined from ... the infrared flares originate in the innermost accretion zone, on a scale less than ten Schwarzschild radii (the light travel time across the ...

R. Genzel; R. Schödel; T. Ott; A. Eckart; T. Alexander; F. Lacombe; D. Rouan; B. Aschenbach

2003-10-30T23:59:59.000Z

313

A SOLAR FLARE MODEL IN BETWEEN MHD AND CELLULAR AUTOMATON* Heinz Isliker1  

E-Print Network (OSTI)

and still unresolved problems in solar physics is the nature of energy release in the solar atmosphere) and the reproduction of the observed solar flare statistics. On the other hand the energy release process has been, complementary approaches (CA and MHD) for the solar flare problem. * In The Proceedings of 4th Astronomical

Anastasiadis, Anastasios

314

White-light flares: A TRACE/RHESSI overview H. S. Hudson  

E-Print Network (OSTI)

White-light flares: A TRACE/RHESSI overview H. S. Hudson Space Sciences Laboratory, University includes a "white light" imaging capability with novel characteristics. Many flares with such white. The spectral response of the TRACE white-light passband extends into the UV, so these data capture

Hudson, Hugh

315

Flare Noise Reduction Exxon Chemical- Baytown Olefins Plant: 1994 CMA Energy Efficiency Award for "Flare Noise Reduction" in the category of "Public Outreach/Plant Site"  

E-Print Network (OSTI)

frequency noise that resembles the sound of a jet plane passing overhead. To supplement the qualitative data received from the community, quantitative noise data was collected at various flaring conditions, wind conditions, and steam rates. Additional...

Bradham, S.; Stephan, R.

316

Extreme Ultra-Violet Spectroscopy of the Flaring Solar Chromosphere  

E-Print Network (OSTI)

The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.

Milligan, Ryan O

2015-01-01T23:59:59.000Z

317

THE RELATIONSHIP BETWEEN EXTREME ULTRAVIOLET NON-THERMAL LINE BROADENING AND HIGH-ENERGY PARTICLES DURING SOLAR FLARES  

SciTech Connect

We have studied the relationship between the location of EUV non-thermal broadening and high-energy particles during large flares using the EUV Imaging Spectrometer on board Hinode, the Nobeyama Radio Polarimeter, the Nobeyama Radioheliograph, and the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. We have analyzed five large flare events that contain thermal-rich, intermediate, and thermal-poor flares classified by the definition discussed in the paper. We found that, in the case of thermal-rich flares, the non-thermal broadening of Fe XXIV occurred at the top of the flaring loop at the beginning of the flares. The source of 17 GHz microwaves is located at the footpoint of the flare loop. On the other hand, in the case of intermediate/thermal-poor flares, the non-thermal broadening of Fe XXIV occurred at the footpoint of the flare loop at the beginning of the flares. The source of 17 GHz microwaves is located at the top of the flaring loop. We discussed the difference between thermal-rich and intermediate/thermal-poor flares based on the spatial information of non-thermal broadening, which may provide clues that the presence of turbulence plays an important role in the pitch angle scattering of high-energy electrons.

Kawate, T. [Kwasan and Hida Observatory, Kyoto University, Kurabashira, Kamitakaracho, Takayama, Gifu 506-1314 (Japan); Imada, S. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

2013-10-01T23:59:59.000Z

318

Konus-Wind and Helicon-Coronas-F Observations of Solar Flares  

E-Print Network (OSTI)

Results of solar flare observations obtained in the Konus-Wind experiment from November, 1994 to December, 2013 and in the Helicon Coronas-F experiment during its operation from 2001 to 2005, are presented. For the periods indicated Konus-Wind detected in the trigger mode 834 solar flares, and Helicon-Coronas-F detected more than 300 solar flares. A description of the instruments and data processing techniques are given. As an example, the analysis of the spectral evolution of the flares SOL2012-11-08T02:19 (M 1.7) and SOL2002-03-10T01:34 (C5.1) is made with the Konus-Wind data and the flare SOL2003-10-26T06:11 (X1.2) is analyzed in the 2.223 MeV deuterium line with the Helicon-Coronas-F data.

Pal'shin, V D; Aptekar, R L; Golenetskii, S V; Kokomov, A A; Svinkin, D S; Sokolova, Z Ya; Ulanov, M V; Frederiks, D D; Tsvetkova, A E

2014-01-01T23:59:59.000Z

319

PLASMA HEATING IN THE VERY EARLY AND DECAY PHASES OF SOLAR FLARES  

SciTech Connect

In this paper, we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 September 20 and 2002 March 17, respectively. For both investigated flares we derived the energy fluxes contained in NTE beams from the RHESSI observational data constrained by observed GOES light curves. We showed that energy delivered by NTEs was fully sufficient to fulfill the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad hoc heating mechanisms other than heating by NTEs.

Falewicz, R.; Rudawy, P. [Astronomical Institute, University of Wroclaw, 51-622 Wroclaw, ul. Kopernika 11 (Poland); Siarkowski, M., E-mail: falewicz@astro.uni.wroc.pl, E-mail: rudawy@astro.uni.wroc.pl, E-mail: ms@cbk.pan.wroc.pl [Space Research Centre, Polish Academy of Sciences, 51-622 Wroclaw, ul. Kopernika 11 (Poland)

2011-05-20T23:59:59.000Z

320

Multi-TeV flaring from blazars: Markarian 421 a case study  

E-Print Network (OSTI)

The TeV blazar Markarian 421 underwent multi-TeV flaring during April 2004 and simultaneously observed in x-ray and TeV energies. It was observed that the TeV outbursts had no counterparts in the lower energies, which implies that this might be an orphan flare. In the context of hadronic model, we have shown that this multi-TeV flaring can be produced due to the interaction of Fermi-accelerated protons of energy $\\lesssim 168$ TeV with the background photons in the low energy tail of the synchrotron self-Compton spectrum of the blazar jet. We fit very well the flaring spectrum with this model. Based on this study, we speculate that Mrk 501 and PG 1553+113 are possible candidates for orphan flaring in the future.

Sahu, Sarira; Rajpoot, Subhash

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Drum lid removal tool  

DOE Patents (OSTI)

A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

Pella, Bernard M. (Martinez, GA); Smith, Philip D. (North Augusta, SC)

2010-08-24T23:59:59.000Z

322

Quasi-periodic pulsations in solar and stellar flares: re-evaluating their nature in the context of power-law flare Fourier spectra  

E-Print Network (OSTI)

The nature of quasi-periodic pulsations in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra, also referred to as 'red' noise processes, are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPP is needed. Here we adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power law properties of flare signals. Using data from the PROBA2/LYRA, Fermi/GBM, Nobeyama Radioheliograph and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required in order to explain the observations. Instead, the flare signals are adequately descri...

Inglis, A R; Dominique, M

2014-01-01T23:59:59.000Z

323

RAPID TeV GAMMA-RAY FLARING OF BL LACERTAE  

SciTech Connect

We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 {+-} 0.6) Multiplication-Sign 10{sup -6} photons m{sup -2} s{sup -1}, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 {+-} 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 {+-} 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.

Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States)] [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States)] [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States)] [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland)] [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States)] [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W.; Feng, Q.; Finley, J. P. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)] [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J.; Fortson, L. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)] [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States)] [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany)] [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Finnegan, G., E-mail: qfeng@purdue.edu, E-mail: cui@purdue.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Collaboration: VERITAS Collaboration; and others

2013-01-10T23:59:59.000Z

324

Condensate removal device  

DOE Patents (OSTI)

A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

Maddox, James W. (Newport News, VA); Berger, David D. (Alexandria, VA)

1984-01-01T23:59:59.000Z

325

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

326

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

327

Kentucky Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

328

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

329

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

330

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

331

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

332

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

333

Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

334

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

335

Two solar flares that became X-ray plasma ejections  

E-Print Network (OSTI)

Solar flares and X-ray plasma ejections (XPEs) occur simultaneously but usually are separated spatially. We present two exceptional events observed by {\\sl Yohkoh} in 2001 October 2 (event 1) and 2000 October 16 (event 2), in which features of flares and XPEs are mixed. Namely, the soft and hard X-ray images show intense sources of emission that move dynamically. Both events occurred inside broad active regions showing complicated multi-level structure reaching up to 200 Mm high. Both events show also similar four-stages evolution: (1) a fast rise of a system of loops, (2) sudden changes in their emission distribution, (3) a reconfiguration leading to liberation of large amounts of plasma, (4) a small, static loop as the final remnant. Nevertheless, the events are probably caused by different physical processes: emerging magnetic flux plus reconnection (event 1) and reconnection plus ballooning instability (event 2). Different is also the final destination of the ejected plasma: in the event 1 overlying magne...

Tomczak, Michal

2013-01-01T23:59:59.000Z

336

RETURN CURRENTS AND ENERGY TRANSPORT IN THE SOLAR FLARING ATMOSPHERE  

SciTech Connect

According to the standard Ohmic perspective, the injection of accelerated electrons into the flaring region violates local charge equilibrium and therefore, in response, return currents are driven by an electric field to equilibrate such charge violation. In this framework, the energy loss rate associated with these local currents has an Ohmic nature and significantly shortens the accelerated electron path. In the present paper, we adopt a different viewpoint and, specifically, we study the impact of the background drift velocity on the energy loss rate of accelerated electrons in solar flares. We first utilize the Rutherford cross-section to derive the formula of the energy loss rate when the collisional target has a finite temperature and the background instantaneously and coherently moves up to equilibrate the electron injection. We then use the continuity equation for electrons and imaging spectroscopy data provided by RHESSI to validate this model. We show that this new formula for the energy loss rate provides a better fit of the experimental data with respect to the model based on the effects of standard Ohmic return currents.

Codispoti, Anna; Torre, Gabriele; Piana, Michele; Pinamonti, Nicola [Dipartimento di Matematica, Universita di Genova, via Dodecaneso 35, I-16146 Genova (Italy)

2013-08-20T23:59:59.000Z

337

SLOW MAGNETOACOUSTIC OSCILLATIONS IN THE MICROWAVE EMISSION OF SOLAR FLARES  

SciTech Connect

Analysis of the microwave data, obtained in the 17 GHz channel of the Nobeyama Radioheliograph during the M1.6 flare on 2010 November 4, revealed the presence of 12.6 minute oscillations of the emitting plasma density. The oscillations decayed with the characteristic time of about 15 minutes. Similar oscillations with the period of about 13.8 minutes and the decay time of 25 minutes are also detected in the variation of EUV emission intensity measured in the 335 A channel of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed properties of the oscillations are consistent with the oscillations of hot loops observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) in the EUV spectra in the form of periodic Doppler shift. Our analysis presents the first direct observations of the slow magnetoacoustic oscillations in the microwave emission of a solar flare, complementing accepted interpretations of SUMER hot loop oscillations as standing slow magnetoacoustic waves.

Kim, S.; Shibasaki, K. [Nobeyama Solar Radio Observatory/NAOJ, Nagano 384-1305 (Japan); Nakariakov, V. M., E-mail: sjkim@nro.nao.ac.jp [Physics Department, University of Warwick, Coventry, CV4 7AL (United Kingdom)

2012-09-10T23:59:59.000Z

338

Illinois Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

339

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

340

RELATION BETWEEN THE CORONAL MASS EJECTION ACCELERATION AND THE NON-THERMAL FLARE CHARACTERISTICS  

SciTech Connect

We investigate the relationship between the main acceleration phase of coronal mass ejections (CMEs) and the particle acceleration in the associated flares as evidenced in Reuven Ramaty High Energy Solar Spectroscopic Imager non-thermal X-rays for a set of 37 impulsive flare-CME events. Both the CME peak velocity and peak acceleration yield distinct correlations with various parameters characterizing the flare-accelerated electron spectra. The highest correlation coefficient is obtained for the relation of the CME peak velocity and the total energy in accelerated electrons (c = 0.85), supporting the idea that the acceleration of the CME and the particle acceleration in the associated flare draw their energy from a common source, probably magnetic reconnection in the current sheet behind the erupting structure. In general, the CME peak velocity shows somewhat higher correlations with the non-thermal flare parameters than the CME peak acceleration, except for the spectral index of the accelerated electron spectrum, which yields a higher correlation with the CME peak acceleration (c Almost-Equal-To -0.6), indicating that the hardness of the flare-accelerated electron spectrum is tightly coupled to the impulsive acceleration process of the rising CME structure. We also obtained high correlations between the CME initiation height h{sub 0} and the non-thermal flare parameters, with the highest correlation of h{sub 0} to the spectral index {delta} of flare-accelerated electrons (c Almost-Equal-To 0.8). This means that CMEs erupting at low coronal heights, i.e., in regions of stronger magnetic fields, are accompanied by flares that are more efficient at accelerating electrons to high energies. In the majority of events ({approx}80%), the non-thermal flare emission starts after the CME acceleration, on average delayed by Almost-Equal-To 6 minutes, in line with the standard flare model where the rising flux rope stretches the field lines underneath until magnetic reconnection sets in. We find that the current sheet length at the onset of magnetic reconnection is 21 {+-} 7 Mm. The flare hard X-ray peaks are well synchronized with the peak of the CME acceleration profile, and in 75% of the cases they occur within {+-}5 minutes. Our findings provide strong evidence for the tight coupling between the CME dynamics and the particle acceleration in the associated flare in impulsive events, with the total energy in accelerated electrons being closely correlated with the peak velocity (and thus the kinetic energy) of the CME, whereas the number of electrons accelerated to high energies is decisively related to the CME peak acceleration and the height of the pre-eruptive structure.

Berkebile-Stoiser, S.; Veronig, A. M.; Bein, B. M.; Temmer, M., E-mail: asv@igam.uni-graz.at [Institute of Physics, University of Graz, A-8010 Graz (Austria)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The detection of M-dwarf UV flare events in the GALEX data archives  

E-Print Network (OSTI)

We present the preliminary results from implementing a new software tool that enables inspection of time-tagged photon data for the astronomical sources contained within individual GALEX ultraviolet images of the sky. We have inspected the photon data contained within 1802 GALEX images to reveal rapid, short-term (<500 sec) UV source variability in the form of stellar flares. The mean associated change in NUV magnitude due to this flaring activity is 2.7+/-0.3 mag. A list of 49 new UV variable-star candidates is presented, together with their associated Sloan Digital Sky Survey (SDSS) photometric magnitudes. From these data we can associate the main source of these UV flare events with magnetic activity on M-dwarf stars. Photometric parallaxes have been determined for 32 of these sources, placing them at distances ranging from approximately 25 to 1000pc. The average UV flare energy for these flare events is 2.5E30 ergs, which is of a similar energy to that of U-band, X-ray and EUV flares observed on many local M-dwarf stars. We have found that stars of classes M0 to M5 flare with energies spanning a far larger range and with an energy approximately 5 times greater than those of later (M6 to M8) spectral type.

Barry Y. Welsh; Jonathan M. Wheatley; Mark Seibert; Stanley E. Browne; Andrew A. West; Oswald H. W. Siegmund; Tom A. Barlow; Karl Forster; Peter G. Friedman; D. Christopher Martin; Patrick Morrissey; Todd Small; Ted Wyder; David Schiminovich; Susan Neff; R. Michael Rich

2006-05-12T23:59:59.000Z

342

HINODE OBSERVATIONS OF COHERENT LATERAL MOTION OF PENUMBRAL FILAMENTS DURING AN X-CLASS FLARE  

SciTech Connect

The X-3.4 class flare of 2006 December 13 was observed with a high cadence of 2 minutes at 0.2 arcsec resolution by HINODE/SOT FG instrument. The flare ribbons could be seen in G-band images also. A careful analysis of these observations after proper registration of images shows flare-related changes in penumbral filaments of the associated sunspot for the first time. The observations of sunspot deformation, decay of penumbral area, and changes in magnetic flux during large flares have been reported earlier in the literature. In this Letter, we report lateral motion of the penumbral filaments in a sheared region of the delta-sunspot during the X-class flare. Such shifts have not been seen earlier. The lateral motion occurs in two phases: (1) motion before the flare ribbons move across the penumbral filaments and (2) motion afterward. The former motion is directed away from expanding flare ribbons and lasts for about 4 minutes. The latter motion is directed in the opposite direction and lasts for more than 40 minutes. Further, we locate a patch in adjacent opposite polarity spot moving in opposite direction to the penumbral filaments. Together these patches represent conjugate footpoints on either side of the polarity inversion line, moving toward each other. This converging motion could be interpreted as shrinkage of field lines.

Gosain, S.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar [Udaipur Solar Observatory, Physical Research Laboratory, P.O. Box 198, Dewali, Badi Road, Udaipur 313001, Rajasthan (India)

2009-12-01T23:59:59.000Z

343

DOE Removes Brookhaven Contractor  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Removes DOE Removes Brookhaven Contractor Peña sends a message to DOE facilities nationwide INSIDE 2 Accelerator Rx 4 FermiKids 6 Spring at Fermilab Photos courtesy of Brookhaven National Laboratory by Judy Jackson, Office of Public Affairs Secretary of Energy Federico Peña announced on Thursday, May 1, that the Department of Energy would immediately terminate the current management contract with Associated Universities, Inc. at Brookhaven National Laboratory in Upton, New York. Peña said that he made the decision after receiving the results of a laboratory safety management review conducted by the independent oversight arm of DOE's Office of Environment, Safety and Health. In addition, the Secretary said he found unacceptable "the continued on page 8 Volume 20 Friday, May 16, 1997

344

Pneumatic soil removal tool  

DOE Patents (OSTI)

A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

Neuhaus, J.E.

1992-10-13T23:59:59.000Z

345

Regularized energy-dependent solar flare hard x-ray spectral index  

E-Print Network (OSTI)

The deduction from solar flare X-ray photon spectroscopic data of the energy dependent model-independent spectral index is considered as an inverse problem. Using the well developed regularization approach we analyze the energy dependency of spectral index for a high resolution energy spectrum provided by Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The regularization technique produces much smoother derivatives while avoiding additional errors typical of finite differences. It is shown that observations imply a spectral index varying significantly with energy, in a way that also varies with time as the flare progresses. The implications of these findings are discussed in the solar flare context.

Eduard P. Kontar; Alexander L. MacKinnon

2005-06-05T23:59:59.000Z

346

A NEW CORRELATION BETWEEN GRB X-RAY FLARES AND THE PROMPT EMISSION  

SciTech Connect

From a sample of gamma-ray bursts (GRBs) detected by the Fermi and Swift missions, we have extracted the minimum variability timescales for temporal structures in the light curves associated with the prompt emission and X-ray flares. A comparison of this variability timescale with pulse parameters such as rise times, determined via pulse-fitting procedures, and spectral lags, extracted via the cross-correlation function, indicates a tight correlation between these temporal features for both the X-ray flares and the prompt emission. These correlations suggest a common origin for the production of X-ray flares and the prompt emission in GRBs.

Sonbas, E. [Department of Physics, University of Adiyaman, 02040 Adiyaman (Turkey); MacLachlan, G. A.; Shenoy, A.; Dhuga, K. S.; Parke, W. C., E-mail: edasonbas@yahoo.com [Department of Physics, George Washington University, Washington, DC 20052 (United States)

2013-04-20T23:59:59.000Z

347

Simbol-X capability of detecting the non-thermal emission of stellar flares  

E-Print Network (OSTI)

We investigate the capability of detecting, with Simbol-X, non-thermal emission during stellar flares, and distinguishing it from hot thermal emission. We find that flare non-thermal emission is detectable when at least ~20 cts are detected with the CZT detector in the 20-80 keV band. Therefore Simbol-X will detect the non-thermal emission from some of the X-ray brightest nearby stars, whether the thermal vs. non-thermal relation, derived for solar flares, holds.

C. Argiroffi; G. Micela; A. Maggio

2008-01-16T23:59:59.000Z

348

Multiwavelength Coverage of a Bright Flare from Sgr A  

SciTech Connect

The dynamical center of our galaxy hosts a supermassive black hole, Sgr A*, which has been the target of an extensive multiwavelength campaign for a week in April 2007. We report here the detection of a bright flare from the vicinity of the horizon, observed simultaneously in X-rays (XMM-Newton) and NIR (VLT/NACO) on April 4{sup th}. For the first time, such an event also benefitted from a soft {gamma}-rays (INTEGRAL/ISGRI) and MIR (VLT/VISIR) coverage, which enabled us to derive upper limits at both ends of Sgr A* spectral energy distribution (SED). We discuss the physical implications of the contemporaneous light curves as well as the SED, in terms of synchrotron, synchrotron self-Compton and external Compton emission processes.

Trap, G.; Goldwurm, A. [Service d'Astrophysique (SAp)/IRFU/DSM/CEA Saclay-Bat. 709, 91191 Gif-sur-Yvette Cedex (France); AstroParticule and Cosmologie (APC)/Universite Paris VII/CNRS/CEA/Observatoire de Paris-Bat. Condorcet, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); Terrier, R. [AstroParticule and Cosmologie (APC)/Universite Paris VII/CNRS/CEA/Observatoire de Paris-Bat. Condorcet, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France)

2009-05-11T23:59:59.000Z

349

Far-IR and radio thermal continua in solar flares  

E-Print Network (OSTI)

With the invention of new far-infrared (FIR) and radio mm and sub-mm instruments (DESIR on SMESE satellite, ESO-ALMA), there is a growing interest in observations and analysis of solar flares in this so far unexplored wavelength region. Two principal radiation mechanisms play a role: the synchrotron emission due to accelerated particle beams moving in the magnetic field and the thermal emission due to the energy deposit in the lower atmospheric layers. In this contribution we explore the time-dependent effects of beams on thermal FIR and radio continua. We show how and where these continua are formed in the presence of time dependent beam heating and non-thermal excitation/ionisation of the chromospheric hydrogen plasma.

Kašparová, J; Karlický, M; Moravec, Z; Varady, M

2009-01-01T23:59:59.000Z

350

Ordered Vertex Removal Subgraph Problems  

E-Print Network (OSTI)

of the vertex removal and subgraph problems are shown to be P­complete. In addition, a natural lex­ icographicOrdered Vertex Removal and Subgraph Problems Ray Greenlaw Department of Computer Science University­8703196. #12; Vertex Removal and Graph Problems Ray Greenlaw Department of Computer Science FR­35

Greenlaw, Ray

351

Study of Solar Flares and Gamma-Ray Bursts in the Helicon Experiment  

Science Journals Connector (OSTI)

Detailed data on temporal profiles, energy spectra, and spectral variability of hard X-ray and gamma-ray flares of solar origin have been obtained ... , the Helicon experiment has also investigated cosmic gamma-ray

E. P. Mazets; R. L. Aptekar; S. V. Golenetskii…

2014-01-01T23:59:59.000Z

352

The correlation of solar flare production with magnetic energy in active regions  

Science Journals Connector (OSTI)

An investigation of 531 active regions was made to determine the correlation between energy released by flares and the available energy in magnetic fields of the regions. Regions with magnetic flux greater tha...

E. B. Mayfield; John K. Lawrence

1985-04-01T23:59:59.000Z

353

Ionospheric Effects associated with the Solar Flare of July 10, 1959  

Science Journals Connector (OSTI)

... with the flare were observed at the Department of Scientific and Industrial Research Radio Research Substation at Singapore by using an automatic ionosonde1. Fig. 1 shows measured values off0F2 and ...

V. A. W. HARRISON

1960-04-16T23:59:59.000Z

354

Astrophysical explosions: from solar flares to cosmic gamma-ray bursts  

Science Journals Connector (OSTI)

...from solar flares to cosmic gamma-ray bursts J. Craig Wheeler * * wheel...collapse supernovae and cosmic gamma-ray bursts, each representing a different...black holes|supernovae|gamma-ray bursts|deflagration|detonation...

2012-01-01T23:59:59.000Z

355

Helioseismic analysis of the solar flare-induced sunquake of 2005 January 15  

Science Journals Connector (OSTI)

......flaring region into the solar interior, but most of this energy is refracted back to the...the Reuven Ramaty High-Energy Solar Spectroscopic Imager...obtained by the GONG++ project, managed by the National Solar Observatory, a Division......

H. Moradi; A.-C. Donea; C. Lindsey; D. Besliu-Ionescu; P. S. Cally

2007-01-21T23:59:59.000Z

356

Thermal and Magnetic Parameters in Solar Flares Derived from GOES X-Ray Light Curves  

Science Journals Connector (OSTI)

......released amount of energy in a solar flare, and there...the derived thermal energy with the magnetic free energy. It is found that...Japan and Nobeyama Solar Radio Observatory...is a collaborative project involving the NRL......

Tetsuya T. Yamamoto; Takashi Sakurai

2010-06-25T23:59:59.000Z

357

Observations of Unresolved Photospheric Magnetic Fields in Solar Flares Using Fe i and Cr i Lines  

Science Journals Connector (OSTI)

The structure of the photospheric magnetic field during solar flares is examined using echelle spectropolarimetric observations. The study is based on several Fe i and Cr i lines observed at locations correspondi...

M. Gordovskyy; V. G. Lozitsky

2014-10-01T23:59:59.000Z

358

Indirect estimation of energy disposition by non-thermal electrons in solar flares  

Science Journals Connector (OSTI)

The broad-band EUV and microwave fluxes correlate strongly with hard X-ray fluxes in the impulsive phase of a solar flare. This note presents numerical aids for the estimation of the non-thermal electron fluxe...

H. S. Hudson; R. C. Canfield; S. R. Kane

1978-11-01T23:59:59.000Z

359

Radiative Hydrodynamic Models of the Optical and Ultraviolet Emission from Solar Flares  

E-Print Network (OSTI)

We report on radiative hydrodynamic simulations of moderate and strong solar flares. The flares were simulated by calculating the atmospheric response to a beam of non-thermal electrons injected at the apex of a one-dimensional closed coronal loop, and include heating from thermal soft X-ray, extreme ultraviolet and ultraviolet (XEUV) emission. The equations of radiative transfer and statistical equilibrium were treated in non-LTE and solved for numerous transitions of hydrogen, helium, and Ca II allowing the calculation of detailed line profiles and continuum emission. This work improves upon previous simulations by incorporating more realistic non-thermal electron beam models and includes a more rigorous model of thermal XEUV heating. We find XEUV backwarming contributes less than 10% of the heating, even in strong flares. The simulations show elevated coronal and transition region densities resulting in dramatic increases in line and continuum emission in both the UV and optical regions. The optical continuum reaches a peak increase of several percent which is consistent with enhancements observed in solar white light flares. For a moderate flare (~M-class), the dynamics are characterized by a long gentle phase of near balance between flare heating and radiative cooling, followed by an explosive phase with beam heating dominating over cooling and characterized by strong hydrodynamic waves. For a strong flare (~X-class), the gentle phase is much shorter, and we speculate that for even stronger flares the gentle phase may be essentially non-existent. During the explosive phase, synthetic profiles for lines formed in the upper chromosphere and transition region show blue shifts corresponding to a plasma velocity of ~120 km/s, and lines formed in the lower chromosphere show red shifts of ~40 km/s.

J. C. Allred; S. L. Hawley; W. P. Abbett; M. Carlsson

2005-07-13T23:59:59.000Z

360

Magnetic Reconnection During the Two-Phase Evolution of a Solar Eruptive Flare  

E-Print Network (OSTI)

We present a detailed multi-wavelength analysis and interpretation of the evolution of an M7.6 flare on October 24, 2003. The X-ray observations of the flare taken from the RHESSI spacecraft reveal two phases of the flare evolution. The first phase is characterized by the altitude decrease of the X-ray looptop (LT) source for $\\sim$11 minutes. Such a long duration of the descending LT source motion is reported for the first time. The EUV loops, located below the X-ray LT source, also undergo contraction with similar speed ($\\sim$15 km s$^{-1}$) in this interval. During the second phase the two distinct hard X-ray footpoints (FP) sources are observed which correlate well with UV and H$\\alpha$ flare ribbons. The X-ray LT source now exhibits upward motion. The RHESSI spectra during the first phase are soft and indicative of hot thermal emission from flaring loops with temperatures $T>25$ MK at the early stage. On the other hand, the spectra at high energies ($\\varepsilon \\gtrsim$25 keV) follow hard power laws during the second phase ($\\gamma = 2.6-2.8$). We show that the observed motion of the LT and FP sources can be understood as a consequence of three-dimensional magnetic reconnection at a separator in the corona. During the first phase of the flare, the reconnection releases an excess of magnetic energy related to the magnetic tensions generated before a flare by the shear flows in the photosphere. The relaxation of the associated magnetic shear in the corona by the reconnection process explains the descending motion of the LT source. During the second phase, the ordinary reconnection process dominates describing the energy release in terms of the standard model of large eruptive flares.

Bhuwan Joshi; Astrid Veronig; K. -S. Cho; S. -C. Bong; Y. -J. Moon; Jeongwoo Lee; B. V. Somov; P. K. Manoharan; Y. -H. Kim

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

MAGNETIC STRUCTURE PRODUCING X- AND M-CLASS SOLAR FLARES IN SOLAR ACTIVE REGION 11158  

SciTech Connect

We study the three-dimensional magnetic structure of the solar active region 11158, which produced one X-class and several M-class flares on 2011 February 13-16. We focus on the magnetic twist in four flare events, M6.6, X2.2, M1.0, and M1.1. The magnetic twist is estimated from the nonlinear force-free field extrapolated from the vector fields obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory using the magnetohydrodynamic relaxation method developed by Inoue et al. We found that strongly twisted lines ranging from half-turn to one-turn twists were built up just before the M6.6 and X2.2 flares and disappeared after that. Because most of the twists remaining after these flares were less than a half-turn twist, this result suggests that the buildup of magnetic twist over the half-turn twist is a key process in the production of large flares. On the other hand, even though these strong twists were also built up just before the M1.0 and M1.1 flares, most of them remained afterward. Careful topological analysis before the M1.0 and M1.1 flares shows that the strongly twisted lines were surrounded mostly by the weakly twisted lines formed in accordance with the clockwise motion of the positive sunspot, whose footpoints are rooted in strong magnetic flux regions. These results imply that these weakly twisted lines might suppress the activity of the strongly twisted lines in the last two M-class flares.

Inoue, S.; Magara, T.; Choe, G. S. [School of Space Research, Kyung Hee University 1, Seocheon-dong, Giheung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Hayashi, K. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Shiota, D., E-mail: inosato@khu.ac.kr [Solar-Terrestrial Environment Laboratory, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

2013-06-10T23:59:59.000Z

362

A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES  

SciTech Connect

We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.

Masson, S.; Antiochos, S. K. [Space Weather Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); DeVore, C. R., E-mail: sophie.masson@nasa.gov [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

2013-07-10T23:59:59.000Z

363

Universal Behavior of X-ray Flares from Black Hole Systems  

E-Print Network (OSTI)

X-ray flares have been discovered in black hole systems, such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A$^*$ at the center of our Galaxy, and some active galactic nuclei. Their occurrences are always companied by relativistic jets. However, it is still unknown whether there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here we report the observed data of X-ray flares, and show that they have three statistical properties similar to solar flares, including power-law distributions of energies, durations, and waiting times, which both can be explained by a fractal-diffusive self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetica...

Wang, F Y; Yi, S X; Xi, S Q

2014-01-01T23:59:59.000Z

364

Swift and Fermi observations of X-ray flares: the case of Late Internal Shock  

E-Print Network (OSTI)

Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than ten decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that, in this scenario, X-ray flares can be produced by a late-time relativistic (Gamma>50) outflow at radii R~10^13-10^14 cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.

Troja, E; Vasileiou, V; Omodei, N; Burgess, J M; Cutini, S; Connaughton, V; McEnery, J E

2014-01-01T23:59:59.000Z

365

Plasma Heating to Super-Hot Temperatures (>30 MK) in the August 9, 2011 Solar Flare  

E-Print Network (OSTI)

We investigate the August 9, 2011 solar flare of X-ray class X6.9, the "hottest" flare from 2000 to 2012, with a peak plasma temperature according to GOES data of 32.5 MK. Our goal is to determine the cause of such an anomalously high plasma temperature and to investigate the energy balance in the flare region with allowance made for the presence of a super-hot plasma (>30 MK). We analyze the RHESSI, GOES, AIA/SDO, and EVE/SDO data and discuss the spatial structure of the flare region and the results of our spectral analysis of its X-ray emission. Our analysis of the RHESSI X-ray spectra is performed in the one-temperature and two-temperature approximations by taking into account the emission of hot (20 MK) and super-hot (45 MK) plasmas. The hard X-ray spectrum in both models is fitted by power laws. The observed peculiarities of the flare are shown to be better explained in terms of the two-temperature model, in which the super-hot plasma is located at the flare loop tops (or in the magnetic cusp region). Th...

Sharykin, I N; Zimovets, I V

2015-01-01T23:59:59.000Z

366

Study of Two Successive Three-Ribbon Solar Flares on 2012 July 6  

E-Print Network (OSTI)

This Letter reports two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found with Halpha observations of 0.1" resolution from the New Solar Telescope and CaII H images from Hinode. The flaring site is characterized with an intriguing "fish-bone-like" morphology evidenced by both Halpha images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession in half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the PIL, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in Halpha apparently t...

Wang, Haimin; Deng, Na; Zeng, Zhicheng; Xu, Yan; Jing, Ju; Cao, Wenda

2013-01-01T23:59:59.000Z

367

Solar X-ray Flare Hazards on the Surface of Mars  

E-Print Network (OSTI)

Putative organisms on the Martian surface would be exposed to potentially high doses of ionizing radiation during strong solar X-ray flares. We extrapolate the observed flare frequency-energy release scaling relation to releases much larger than seen so far for the sun, an assumption supported by observations of flares on other solar- and subsolar-mass main sequence stars. We calculate the surficial reprocessed X-ray spectra using a Monte Carlo code we have developed. Biological doses from indirect genome damage are calculated for each parameterized flare spectrum by integration over the X-ray opacity of water. We estimate the mean waiting time for solar flares producing a given biological dose of ionizing radiation on Mars and compare with lethal dose data for a wide range of terrestrial organisms. These timescales range from decades for significant human health risk to 0.5 Myr for D. radiodurans lethality. Such doses require total flare energies of 10^33--10^38 erg, the lower range of which has been observe...

Smith, D S; Smith, David S.; Scalo, John M.

2006-01-01T23:59:59.000Z

368

Transition Region Emission and Energy Input to Thermal Plasma During the Impulsive Phase of Solar Flares  

E-Print Network (OSTI)

The energy released in a solar flare is partitioned between thermal and non-thermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by 5 flares and subsequently scattered by O VI ions in the corona to determine the 5.0 thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray emitting gas is ~ 0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by non-thermal particles exceeds the X-ray and UV energy losses and the rate of increase of the thermal energy.

J. C. Raymond; G. Holman; A. Ciaravella; A. Panasyuk; Y. -K. Ko; J. Kohl

2007-01-12T23:59:59.000Z

369

Photoactivated metal removal  

SciTech Connect

The authors propose the use of photochromic dyes as light activated switches to bind and release metal ions. This process, which can be driven by solar energy, can be used in environmental and industrial processes to remove metals from organic and aqueous solutions. Because the metals can be released from the ligands when irradiated with visible light, regeneration of the ligands and concentration of the metals may be easier than with conventional ion exchange resins. Thus, the process has the potential to be less expensive than currently used metal extraction techniques. In this paper, the authors report on their studies of the metal binding of spirogyran dyes and the hydrolytic stability of these dyes. They have prepared a number of spirogyrans and measured their binding constants for calcium and magnesium. They discuss the relationship of the structure of the dyes to their binding strengths. These studies are necessary towards determining the viability of this technique.

Nimlos, M.R.; Filley, J.; Ibrahim, M.A.; Watt, A.S.; Blake, D.M.

1999-07-01T23:59:59.000Z

370

THE ABRUPT CHANGES IN THE PHOTOSPHERIC MAGNETIC AND LORENTZ FORCE VECTORS DURING SIX MAJOR NEUTRAL-LINE FLARES  

SciTech Connect

We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.

Petrie, G. J. D. [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

2012-11-01T23:59:59.000Z

371

Ozone removal by HVAC filters  

Science Journals Connector (OSTI)

Residential and commercial HVAC filters that have been loaded with particles during operation in the field can remove ozone from intake or recirculated air. However, knowledge of the relative importance of HVAC filters as a removal mechanism for ozone in residential and commercial buildings is incomplete. We measured the ozone removal efficiencies of clean (unused) fiberglass, clean synthetic filters, and field-loaded residential and commercial filters in a controlled laboratory setting. For most filters, the ozone removal efficiency declined rapidly but converged to a non-zero (steady-state) value. This steady-state ozone removal efficiency varied from 0% to 9% for clean filters. The mean steady-state ozone removal efficiencies for loaded residential and commercial filters were 10% and 41%, respectively. Repeated exposure of filters to ozone following a 24-h period of no exposure led to a regeneration of ozone removal efficiency. Based on a theoretical scaling analysis of mechanisms that are involved in the ozone removal process, we speculate that the steady-state ozone removal efficiency is limited by reactant diffusion out of particles, and that regeneration is due to internal diffusion of reactive species to sites available to ozone for reaction. Finally, by applying our results to a screening model for typical residential and commercial buildings, HVAC filters were estimated to contribute 22% and 95%, respectively, of total ozone removal in HVAC systems.

P. Zhao; J.A. Siegel; R.L. Corsi

2007-01-01T23:59:59.000Z

372

The evolution of the width of X-ray flares with time in Gamma-ray bursts  

SciTech Connect

We present one of the most intriguing results obtained with an updated catalog of 113 early time (i.e. t{sub pk} < or approx. 1000 s) and 36 late time (i.e. t{sub pk} > or approx. 1000 s) X-ray flares detected by Swift in the afterglows of Gamma-Ray Bursts (GRB): the evolution of the width of the flares with time. This result, together with other properties investigated on early and late time flares and bright flares, provides a clear observational property that every model aiming at explaining the GRB emission has to face.

Bernardini, Maria Grazia [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); ICRANet, P.le della Repubblica 10, I-65100 Pescara (Italy); Chincarini, Guido; Margutti, Raffaella [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); University of Milano Bicocca, Physics Dept., P.zza della Scienza 3, I-20126 Milano (Italy)

2010-10-15T23:59:59.000Z

373

CONTINUUM CONTRIBUTIONS TO THE SDO/AIA PASSBANDS DURING SOLAR FLARES  

SciTech Connect

Data from the Multiple EUV Grating Spectrograph component of the Extreme-ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) were used to quantify the contribution of continuum emission to each of the extreme ultraviolet (EUV) channels of the Atmospheric Imaging Assembly (AIA), also on SDO, during an X-class solar flare that occurred on 2011 February 15. Both the pre-flare-subtracted EVE spectra and fits to the associated free-free continuum were convolved with the AIA response functions of the seven EUV passbands at 10 s cadence throughout the course of the flare. It was found that 10%-25% of the total emission in the 94 Å, 131 Å, 193 Å, and 335 Å passbands throughout the main phase of the flare was due to free-free emission. Reliable measurements could not be made for the 171 Å channel, while the continuum contribution to the 304 Å channel was negligible due to the presence of the strong He II emission line. Up to 50% of the emission in the 211 Å channel was found to be due to free-free emission around the peak of the flare, while an additional 20% was due to the recombination continuum of He II. The analysis was extended to a number of M- and X-class flares and it was found that the level of free-free emission contributing to both the 171 Å and 211 Å passbands increased with increasing GOES class. These results suggest that the amount of continuum emission that contributes to AIA observations during flares is more significant than stated in previous studies which used synthetic, rather than observed, spectra. These findings highlight the importance of spectroscopic observations carried out in conjunction with those from imaging instruments so that the data are interpreted correctly.

Milligan, Ryan O.; McElroy, Sarah A., E-mail: r.milligan@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN (United Kingdom)

2013-11-01T23:59:59.000Z

374

High resolution gamma ray spectroscopy of flares on the east and west limbs of the Sun  

E-Print Network (OSTI)

A new generation of Ge-based high-resolution gamma-ray spectrometers has allowed accurate measurements to be made of the profiles, widths and energies of the gamma-ray lines emitted in the impulsive phases of solar flares. Here we present measurements in two flares of the energies of the de-excitation lines of 12C and 16O at 4.4 and 6.1 MeV respectively by the Ge spectrometer SPI on board INTEGRAL, from which Doppler shifts are derived and compared with those expected from the recoil of 12C and 16O nuclei which were excited by the impacts of flare-accelerated ions. An anomalous Doppler measurement (in terms of recoil theory) has been reported by the Ge spectrometer RHESSI in a flare near the east limb, and explained by a tilt of the magnetic field lines at the footpoint of a magnetic loop away from the vertical, and towards the observer. This might be interpreted to imply a significant difference between the Doppler shifts on the east and west limbs, if it is a general phenomenon. SPI observed both east and west limb flares and found no significant difference in Doppler shifts. We also measured the shapes and fluences of these lines, and their fluence ratio to the 2.2 MeV line from the capture of flare-generated neutrons. Analyses of both quantities using thick-target models parametrized by solar physical and geometric quantities suggest that the two flares studied here also have magnetic fields tilted towards the observer, though the significance of the measurements is not high.

M. J. Harris; V. Tatischeff; J. Kiener; M. Gros; G. Weidenspointner

2006-10-29T23:59:59.000Z

375

Gamma bursts from neutron stars and stellar flares  

Science Journals Connector (OSTI)

If gamma bursts are locally galactic then the implied fluxes from a localized region of a neutron star surface are closed to the blackbody limit even at the extreme temperatures (of the order of 109 degrees) inferred from gamma?burst spectra. One reasonable model is the accretion of an astroid or comet (Harwit and Salpeter 1973) onto a magnetized neutron star. What is frequently described as tidal disruption instead becomes gravitational compression. Matter landing on a neutron star releases a specific energy density of several times c2/10. This energy density is ample to give rise to the inferred temperatures of 108 to 109 degrees. However radiation stress greatly exceeds the gravitational stress even at the neutron star surface and a near instantaneous adiabatic expansion of the hot surface layers cools them and terminates the release of any high temperature radiation. The effective temperature of the radiation then becomes roughly the Eddington limit of 2×107 degrees. Only by the restraint of the free surface expansion by a strong magnetic field (several times 1012 gauss) can the high temperature emission take place. The radiation from such a constrained plasma is not yet understood. The cooling mechanism is analogous to the collapse phase of solar and stellar flares.

Stirling A. Colgate

1982-01-01T23:59:59.000Z

376

Onset of Electron Acceleration in a Flare Loop  

E-Print Network (OSTI)

We carried out detailed analysis of X-ray and radio observations of a simple flare loop that occurred on 12th August 2002, with the impulsive hard X-ray (HXR) light curves dominated by a single pulse. The emission spectra of the early impulsive phase are consistent with an isothermal model in the coronal loop with a temperature reaching several keVs. A power-law high-energy spectral tail is evident near the HXR peak time, in accordance with the appearance of footpoints at high energies, and is well correlated with the radio emission. The energy content of the thermal component keeps increasing gradually after the disappearance of this nonthermal component. These results suggest that electron acceleration only covers a central period of a longer and more gradual energy dissipation process and that the electron transport within the loop plays a crucial role in the formation of the inferred power-law electron distribution. The spectral index of power-law photons shows a very gradual evolution indicating a quasi-...

Sharykin, I N; Fletcher, L

2014-01-01T23:59:59.000Z

377

High-sensitivity observations of solar flare decimeter radiation  

E-Print Network (OSTI)

A new acousto-optic radio spectrometer has observed the 1 - 2 GHz radio emission of solar flares with unprecedented sensitivity. The number of detected decimeter type III bursts is greatly enhanced compared to observations by conventional spectrometers observing only one frequency at the time. The observations indicate a large number of electron beams propagating in dense plasmas. For the first time, we report weak, reversed drifting type III bursts at frequencies above simultaneous narrowband decimeter spikes. The type III bursts are reliable signatures of electron beams propagating downward in the corona, apparently away from the source of the spikes. The observations contradict the most popular spike model that places the spike sources at the footpoints of loops. Conspicuous also was an apparent bidirectional type U burst forming a fish-like pattern. It occurs simultaneously with an intense U-burst at 600-370 MHz observed in Tremsdorf. We suggest that it intermodulated with strong terrestrial interference (cellular phones) causing a spurious symmetric pattern in the spectrogram at 1.4 GHz. Symmetric features in the 1 - 2 GHz range, some already reported in the literature, therefore must be considered with utmost caution.

Arnold O. Benz; Peter Messmer; Christian Monstein

2000-12-05T23:59:59.000Z

378

Removing Arsenic from Drinking Water  

ScienceCinema (OSTI)

See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

None

2013-05-28T23:59:59.000Z

379

Removing Arsenic from Drinking Water  

SciTech Connect

See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

None

2011-01-01T23:59:59.000Z

380

X-ray flares, neutrino cooled disks, and the dynamics of late accretion in GRB engines  

E-Print Network (OSTI)

We compute the average luminosity of X-ray flares as a function of time, for a sample of 10 long-duration gamma-ray burst afterglows. The mean luminosity, averaged over a timescale longer than the duration of the individual flares, declines as a power-law in time with index ~-1.5. We elaborate on the properties of the central engine that can produce such a decline. Assuming that the engine is an accreting compact object, and for a standard conversion factor between accretion rate and jet luminosity, the switch between a neutrino-cooled thin disk and a non-cooled thick disk takes place at the transition from the prompt to the flaring phase. We discuss the implications of this coincidence under different scenarios for the powering of the GRB outflow. We also show that the interaction of the outflow with the envelope of the progenitor star cannot produce flares out of a continuous relativistic flow, and conclude that it is the dynamics of the disk or the jet-launching mechanism that generates an intrinsically unsteady outflow on timescales much longer than the dynamical timescale of the system. This is consistent with the fact that X-ray flares are observed in short-duration GRBs as well as in long-duration ones.

Davide Lazzati; Rosalba Perna; Mitchell C. Begelman

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Optical Spectral Observations of a Flickering White-Light Kernel in a C1 Solar Flare  

E-Print Network (OSTI)

We analyze optical spectra of a two-ribbon, long duration C1.1 flare that occurred on 18 Aug 2011 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 \\AA\\ to 4550 \\AA\\ acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, $\\le$0''.5 ($10^{15}$ cm$^2$) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor (GBM) on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of h...

Kowalski, Adam F; Fletcher, Lyndsay

2014-01-01T23:59:59.000Z

382

Plasma heating in solar flares and their soft and hard X-ray emissions  

E-Print Network (OSTI)

In this paper, the energy budgets of two single-loop like flares observed in X- ray are analysed under the assumption that non-thermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on February 20th, 2002 and June 2nd, 2002, respectively. Using a 1D hydrodynamic code for both flares the energy deposited in the chromosphere was derived applying RHESSI observational data. The use of the Fokker-Planck formalism permits the calculation of distributions of the NTEs in flaring loops, thus spatial distributions of the X-ray non-thermal emissions and integral fluxes for the selected energy ranges which were compared with the observed ones. The best compatibility of the model with the observations was obtained for the June 2nd, 2002 event in both the 0.5-4 A GOES range and total fluxes in the 6-12 keV, 12-25 keV, 20-25 keV and 50- 100 keV energy bands. Results of photometry of the individual flaring structures in a high energy range ...

Falewicz, R

2014-01-01T23:59:59.000Z

383

Could the Wein fireball be associated to the "orphan" TeV flares ?  

E-Print Network (OSTI)

TeV $\\gamma$-ray detections in flaring states without activity in X-rays from blazars have attracted much attention due to the irregularity of these "orphan" flares. Although the synchrotron self-Compton model has been very successful in explaining the spectral energy distribution and spectral variability of these sources, it has not been able to describe these atypical flaring events. On the other hand, an electron-positron pair plasma at the base of the AGN jet was proposed as the mechanism of bulk acceleration of relativistic outflows. This plasma in quasi-themal equilibrium called Wein fireball emits radiation at MeV-peak energies serving as target of accelerated protons. In this work we describe the "orphan" TeV flares presented in blazars 1ES 1959+650 and Mrk421 assuming geometrical considerations in the jet and evoking the interactions of Fermi-accelerated protons and MeV-peak target photons coming from the Wein fireball. After describing successfully these "orphan" TeV flares, we correlate the TeV $\\g...

Fraija, Nissim

2015-01-01T23:59:59.000Z

384

An explanation for long flares from extragalactic globular cluster X-ray sources  

E-Print Network (OSTI)

Repeatedly flaring X-ray binaries have recently been discovered in NGC 4697 by Sivakoff and collaborators. We show that these flares can be explained as the result of eccentric binaries in globular clusters which accrete more rapidly at periastron than during the rest of the binary orbit. We show that theoretical timescales for producing eccentricities and circularising the binaries are consistent with what is needed to produce the observed population of flaring sources, although the circularisation timescales are highly uncertain on both observational and theoretical grounds. This model makes two clear theoretical predictions (1) the flares should be seen to be strictly periodic if adequate sampling is provided, and that periodicity should be of approximately 15 hours (2) this class of flaring behaviour should be seen only in globular cluster sources, and predominantly in the densest globular clusters. We also test the model for producing eccentricities through fly-by's of a third star near the binary in a globular cluster against a much larger database of millisecond pulsar observations than has been used in past work, and find that the theoretical cross sections for producing eccentricity in binaries are in reasonable agreement with most of the data, provided that the pulsar ages are about $4\\times10^9$ years.

Thomas J. Maccarone

2005-09-21T23:59:59.000Z

385

Soot and SO[subscript 2] contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery  

E-Print Network (OSTI)

This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order ...

Molina, Luisa Tan

386

Gamma-rays and the evolving, compact structures of the 2003/10/28 X17 flare  

E-Print Network (OSTI)

. The solar atmosphere into which the non-thermal particles precipitate is not simple: flares generally occur of non-thermal electrons and ions may amount to a large fraction of the total flare energy (e.g. Lin with hot plasma. The associated positron annihilation signatures early in the impulsive phase from 11:06 UT

California at Berkeley, University of

387

NEUTRON MONITOR DATA ON THE 15 JUNE 1991 FLARE: NEUTRONS AS A TEST FOR PROTON ACCELERATION SCENARIO  

E-Print Network (OSTI)

NEUTRON MONITOR DATA ON THE 15 JUNE 1991 FLARE: NEUTRONS AS A TEST FOR PROTON ACCELERATION SCENARIO.J.TANSKANEN University of Oulu, SF-90570, Oulu, Finland ABSTRACT. Response of A1ma-Ata neuuon monitor for solar neutrons of proton acceleration during the flare. The analysis of neutron monitor is an evidence in favour

Usoskin, Ilya G.

388

ELECTRON FLUX SPECTRAL IMAGING OF SOLAR FLARES THROUGH REGULARIZED ANALYSIS OF HARD X-RAY SOURCE VISIBILITIES  

E-Print Network (OSTI)

ELECTRON FLUX SPECTRAL IMAGING OF SOLAR FLARES THROUGH REGULARIZED ANALYSIS OF HARD X-RAY SOURCE a new method for imaging spectroscopy analysis of hard X-ray emission during solar flares. The method.e., the two-dimensional spatial Fourier transforms of the spectral image) to obtain smoothed (regularized

Piana, Michele

389

Empirical Determination of the Energy Loss Rate of Accelerated Electrons in a Well-Observed Solar Flare  

E-Print Network (OSTI)

Empirical Determination of the Energy Loss Rate of Accelerated Electrons in a Well-Observed Solar & Michele Piana1,3 ABSTRACT We present electron images of an extended solar flare source, deduced from the impulsive phase of a solar flare typically appears in the form of accelerated electrons. In the generally

Piana, Michele

390

Physics of ion acceleration in the solar flare on 2005 September 7 determines c-ray and neutron production  

E-Print Network (OSTI)

by the neutron monitors at Mt. Chacaltaya and Mexico City and by the solar neutron telescopes at Chacaltaya. Angular and energy-dependent neutron emission from solar flare magnetic loops, Astrophys. J. Sup- pl. SerPhysics of ion acceleration in the solar flare on 2005 September 7 determines c-ray and neutron

California at Berkeley, University of

391

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

392

Gamma-ray flares in the Crab Nebula: A case of relativistic reconnection?  

SciTech Connect

The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but bright flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.

Cerutti, B., E-mail: bcerutti@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Werner, G. R., E-mail: greg.werner@colorado.edu; Uzdensky, D. A., E-mail: uzdensky@colorado.edu [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, Colorado 80309-0390 (United States); Begelman, M. C., E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, Colorado 80309-0440 (United States)

2014-05-15T23:59:59.000Z

393

Hinode's Observational Result on the Saturation of Magnetic Helicity Injected into the Solar Atmosphere and Its Relation to the Occurrence of a Solar Flare  

Science Journals Connector (OSTI)

......Occurrence of a Solar Flare Tetsuya...Tsuneta Hinode Project Office, National...the onset of a solar flare, using...huge amount of energy in various forms...observed as large energy-release events...condition under which solar flares occur...thank the Hinode project for their generous......

Tetsuya Magara; Saku Tsuneta

2008-10-25T23:59:59.000Z

394

Transition Region Emission and Energy Input to Thermal Plasma during the Impulsive Phase of Solar Flares  

Science Journals Connector (OSTI)

The energy released in a solar flare is partitioned between thermal and nonthermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by five flares and subsequently scattered by O VI ions in the corona to determine the 5.0 ? log T ? 6.0 transition region luminosities. We compare them with the rates of increase of thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas, and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray-emitting gas is ~0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by nonthermal particles exceeds the energy radiated in X-rays, the energy radiated at transition region temperatures, and the rate of increase of the thermal energy.

John C. Raymond; Gordon Holman; A. Ciaravella; A. Panasyuk; Y.-K. Ko; J. Kohl

2007-01-01T23:59:59.000Z

395

Impulsive Phase Flare Energy Transport by Large-Scale Alfvén Waves and the Electron Acceleration Problem  

Science Journals Connector (OSTI)

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the preflare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration—large-scale Alfvén wave pulses—transport the energy and the magnetic field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. First, in a coronal plasma with -->? me/mp, the waves propagate as inertial Alfvén waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between electrons and wave fronts. Second, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

L. Fletcher; H. S. Hudson

2008-01-01T23:59:59.000Z

396

Lag-luminosity relation in gamma-ray burst X-ray flares  

SciTech Connect

In strict analogy to prompt pulses, X-ray flares observed by Swift-XRT in long Gamma-Ray Bursts define a lag-luminosity relation: L{sub p,iso}{sup 0.3-10} k{sup eV} {infinity}t{sub lag}{sup -0.95{+-}0.23}. The lag-luminosity is proven to be a fundamental law extending {approx}5 decades in time and {approx}5 in energy. This is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism.

Margutti, R.

2010-10-15T23:59:59.000Z

397

Do flares in Sagittarius A* reflect the last stage of tidal capture?  

E-Print Network (OSTI)

In recent years the case for the presence of 3-4 10^6 M_sun black hole in our Galactic Center has gained strength from results of stellar dynamics observations and from the detection of several rapid X-ray and IR flares observed in the Sagittarius A* from 2000 to 2004. Here we explore the idea that such flares are produced when the central black hole tidally captures and disrupts a small body - e.g. a comet or an asteroid.

A. Cadez; M. Calvani; A. Gomboc; U. Kostic

2007-09-03T23:59:59.000Z

398

WCH Removes Massive Test Reactor  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, WA -- Hanford's River Corridor contractor, Washington Closure Hanford, has met a significant cleanup challenge on the U.S. Department of Energy's (DOE) Hanford Site by removing a 1,082...

399

FROM LARGE-SCALE LOOPS TO THE SITES OF DENSE FLARING LOOPS: PREFERENTIAL CONDITIONS FOR LONG-PERIOD PULSATIONS IN SOLAR FLARES  

SciTech Connect

Long-period quasi-periodic pulsations (QPPs) of solar flares are a class apart from shorter period events. By involving an external resonator, the mechanism they call upon differs from traditional QPP models, but has wider applications. We present a multi-wavelength analysis of spatially resolved QPPs, with periods around 10 minutes, observed in the X-ray spectrum primarily at energies between 3 and 25 keV. Complementary observations obtained in H{alpha} and radio emission in the kHz to GHz frequency range, together with an analysis of the X-ray plasma properties provide a comprehensive picture that is consistent with a dense flaring loop subject to periodic energization and thermalization. The QPPs obtained in H{alpha} and type III radio bursts, with similar periods as the QPPs in soft X-rays, have the longest periods ever reported for those types of data sets. We also report 1-2 GHz radio emission, concurrent with but unrestricted to the QPP time intervals, which is multi-structured at regularly separated narrowband frequencies and modulated with {approx}18 minute periods. This radio emission can be attributed to the presence of multiple 'quiet' large-scale loops in the background corona. Large scale but shorter inner loops below may act as preferential resonators for the QPPs. The observations support interpretations consistent with both inner and outer loops subject to fast kink magnetohydrodynamic waves. Finally, X-ray imaging indicates the presence of double coronal sources in the flaring sites, which could be the particular signatures of the magnetically linked inner loops. We discuss the preferential conditions and the driving mechanisms causing the repeated flaring.

Foullon, C.; Verwichte, E.; Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Fletcher, L.; Hannah, I. G. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Cecconi, B. [LESIA, CNRS, UPMC, Universite Paris Diderot, Observatoire de Paris, 5 Place Jules Janssen, 92190 Meudon (France); Phillips, K. J. H. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Tan, B. L., E-mail: claire.foullon@warwick.ac.u [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

2010-08-10T23:59:59.000Z

400

Automatic Solar Flare Tracking Using Image Processing Qu Ming and Shih Frank (shih@njit.edu)  

E-Print Network (OSTI)

using solar H images obtained from Big Bear Solar Observatory in California. In this paper, we studyAutomatic Solar Flare Tracking Using Image Processing Techniques Qu Ming and Shih Frank (shih Center for Solar-Terrestrial Research, New Jersey Institute of Technology Newark, NJ 07102 Big Bear Solar

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The periodic variations of a white-light flare observed with ULTRACAM  

E-Print Network (OSTI)

High time resolution observations of a white--light flare on the active star EQ PegB show evidence of intensity variations with a period of approximately 10 s. The period drifts to longer values during the decay phase of the flare. If the oscillation is interpreted as an impulsively--excited, standing--acoustic wave in a flare loop, the period implies a loop length of 1.7 Mm and 3.4 Mm for the case of the fundamental mode and the second harmonic, respectively. However, the small loop lengths imply a very high modulation depth making the acoustic interpretation unlikely. A more realistic interpretation may be that of a fast--MHD wave, with the modulation of the emission being due to the magnetic field. Alternatively, the variations could be due to a series of reconnection events. The periodic signature may then arise as a result of the lateral separation of individual flare loops or current sheets with oscillatory dynamics (i.e. periodic reconnection).

M. Mathioudakis; D. S. Bloomfield; D. B. Jess; V. S. Dhillon; T. R. Marsh

2006-05-08T23:59:59.000Z

402

The evolution of energetic particles and the emitted radiation in solar flares  

SciTech Connect

The evolution of accelerated particle distributions in a magnetized plasma and the resulting radiation are calculated, and the results are applied to solar flares. To study the radiation on timescales of order of the particle lifetimes, the evolution of the particle distribution is determined using the Fokker-Planck equation including Coulomb collisions and magnetic mirroring. Analytic solution to the equation are obtained for limiting cases such as homogeneous injection in a homogeneous plasma, and for small pitch angle. These analytic solutions are used to place constraints on flare parameters such as density, loop length, and the injection timescale for very short impulsive flares. For general particle distributions in arbitrary magnetic field and background density, the equation is solved numerically. Over longer timescales, the variation with X-ray peak fluxes is shown to be consistent with the nonthermal thick target beam model, while multithermal and thin target models have difficulty matching the observations. The relative timing of microwaves and X-ray during individual flares is then investigated. The observation that the microwaves are observed to peak {approximately}2 s later than hard X-rays is interpreted as being due to an excess of microwave flux above that predicted by the simple thick target model. The author discusses a number of possible sources for this excess microwave flux including a flattening in the electron spectrum above hard X-ray energies, thermal synchroton emission, and trapping of electrons by converging magnetic field.

Lu, E.T.

1989-01-01T23:59:59.000Z

403

NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE  

SciTech Connect

Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

2013-08-10T23:59:59.000Z

404

A common stochastic process rules gamma-ray burst prompt emission and X-ray flares  

E-Print Network (OSTI)

Prompt gamma-ray and early X-ray afterglow emission in gamma-ray bursts (GRBs) are characterized by a bursty behavior and are often interspersed with long quiescent times. There is compelling evidence that X-ray flares are linked to prompt gamma-rays. However, the physical mechanism that leads to the complex temporal distribution of gamma-ray pulses and X-ray flares is not understood. Here we show that the waiting time distribution (WTD) of pulses and flares exhibits a power-law tail extending over 4 decades with index ~2 and can be the manifestation of a common time-dependent Poisson process. This result is robust and is obtained on different catalogs. Surprisingly, GRBs with many (>=8) gamma-ray pulses are very unlikely to be accompanied by X-ray flares after the end of the prompt emission (3.1 sigma Gaussian confidence). These results are consistent with a simple interpretation: an hyperaccreting disk breaks up into one or a few groups of fragments, each of which is independently accreted with the same pro...

Guidorzi, C; Frontera, F; Margutti, R; Baldeschi, A; Amati, L

2015-01-01T23:59:59.000Z

405

The use of electron maps to constrain some physical properties of solar flares  

E-Print Network (OSTI)

The use of electron maps to constrain some physical properties of solar flares A. M. Massone1 and M Energy Solar Spectroscopic Imager (RHESSI) is a set of Fourier components of the X-ray radiation sam, Italy #12;­ 2 ­ According to a rough classification, two typologies of inverse problems in astronomy can

Piana, Michele

406

THE SPECIFIC ACCELERATION RATE IN LOOP-STRUCTURED SOLAR FLARES IMPLICATIONS  

E-Print Network (OSTI)

THE SPECIFIC ACCELERATION RATE IN LOOP-STRUCTURED SOLAR FLARES ­ IMPLICATIONS FOR ELECTRON spectrum inside the acceleration region. The models are characterized by two parameters: the plasma density@dima.unige.it #12;­ 2 ­ 1. Introduction The Ramaty High Energy Solar Spectroscopic Imager (RHESSI, Lin et al. 2002

Piana, Michele

407

Decay-phase Cooling and Inferred Heating of M- and X-class Solar Flares  

Science Journals Connector (OSTI)

In this paper, the cooling of 72 M- and X-class flares is examined using GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the observed total cooling times are compared with the predictions of an analytical zero-dimensional hydrodynamic model. We find that the model does not fit the observations well, but does provide a well-defined lower limit on a flare's total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay-phase heating necessary to account for the discrepancy is quantified and found be ~50% of the total thermally radiated energy, as calculated with GOES. This decay-phase heating is found to scale with the observed peak thermal energy. It is predicted that approximating the total thermal energy from the peak is minimally affected by the decay-phase heating in small flares. However, in the most energetic flares the decay-phase heating inferred from the model can be several times greater than the peak thermal energy.

Daniel F. Ryan; Phillip C. Chamberlin; Ryan O. Milligan; Peter T. Gallagher

2013-01-01T23:59:59.000Z

408

The Sun as an X-ray Star: III. Flares F. Reale, G. Peres  

E-Print Network (OSTI)

distribution vs. temperature and its evolution during some selected solar ares, representative of the wideThe Sun as an X-ray Star: III. Flares F. Reale, G. Peres Dip. di Scienze Fisiche & Astronomiche class C5.8) to very intense ones (X9) are selected as representative of the aring Sun. The emission

409

Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure  

E-Print Network (OSTI)

two different fluids: CaCl2 solution and air. A constant contact angle of 90° is the pivotal factor resulting in the outward bowing and convex shape of the CaCl2 solution-air interface. The contact angle at the CaCl2 solution-air inter- face is maintained by a flared structure in the polydimethylsiloxane

410

Earth Planets Space, 00, 000--000, 2000 Solar Flare Mechanism Based on Magnetic Arcade  

E-Print Network (OSTI)

field lines, generation of magnetic islands in the magnetic arcade, and coalescence of magnetic islands reconnection of open magnetic field lines above a magnetic arcade [Sturrock (1968)] or reconnection of solar flares based on re­ sistive reconnection of magnetic field subject to continuous increase

411

Oscillating Magnetic Trap and Non-Thermal Emission from Solar Flares  

Science Journals Connector (OSTI)

......connected with the electron thermal conductivity and ion viscosity...1, ed. Galeev A. A., Sudan R. N. (North-Holland Physics...Oscillating Magnetic Trap and Non-Thermal Emission from Solar Flares...scattering of trapped non-thermal electrons (Aschwanden et al......

Yuri Tsap; Yulia Kopylova; Tatiana Goldvarg; Alexander Stepanov

2013-12-05T23:59:59.000Z

412

Evidence of Electron Acceleration around the Reconnection X-point in a Solar Flare  

E-Print Network (OSTI)

Particle acceleration is one of the most significant features that are ubiquitous among space and cosmic plasmas. It is most prominent during flares in the case of the Sun, with which huge amount of electromagnetic radiation and high-energy particles are expelled into the interplanetary space through acceleration of plasma particles in the corona. Though it has been well understood that energies of flares are supplied by the mechanism called magnetic reconnection based on the observations in X-rays and EUV with space telescopes, where and how in the flaring magnetic field plasmas are accelerated has remained unknown due to the low plasma density in the flaring corona. We here report the first observational identification of the energetic non-thermal electrons around the point of the ongoing magnetic reconnection (X-point); with the location of the X-point identified by soft X-ray imagery and the localized presence of non-thermal electrons identified from imaging-spectroscopic data at two microwave frequencies...

Narukage, Noriyuki; Sakao, Taro

2014-01-01T23:59:59.000Z

413

THE 5 GHz ARECIBO SEARCH FOR RADIO FLARES FROM ULTRACOOL DWARFS  

SciTech Connect

We present the results of a 4.75 GHz survey of 33 brown dwarfs and one young exoplanetary system for flaring radio emission, conducted with the 305 m Arecibo radio telescope. The goal of this program was to detect and characterize the magnetic fields of objects cooler than spectral type L3.5, the coolest brown dwarf detected prior to our survey. We have also attempted to detect flaring radio emission from the HR 8799 planetary system, guided by theoretical work indicating that hot, massive exoplanets may have strong magnetic fields capable of generating radio emission at GHz frequencies. We have detected and confirmed radio flares from the T6.5 dwarf 2MASS J10475385+2124234. This detection dramatically extends the temperature range over which brown dwarfs appear to be at least sporadic radio-emitters, from 1900 K (L3.5) down to 900 K (T6.5). It also demonstrates that the utility of radio detection as a unique tool to study the magnetic fields of substellar objects extends to the coolest dwarfs, and, plausibly to hot, massive exoplanets. We have also identified a single, 3.6{sigma} flare from the L1 dwarf, 2MASS J1439284+192915. This detection is tentative and requires confirmation by additional monitoring observations.

Route, Matthew; Wolszczan, Alexander, E-mail: mroute@astro.psu.edu, E-mail: alex@astro.psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

2013-08-10T23:59:59.000Z

414

Modelling the very high energy flare of 3C 279 using one-zone leptonic model  

Science Journals Connector (OSTI)

......Papers Modelling the very high energy flare of 3C279 using one-zone...AIP Conf. Vol. 745, High Energy Gamma-ray Astronomy: 2nd...International Symposium on High Energy Gamma-Ray Astronomy. Am. Inst. Phys., New York, p. 23. Shu F. H......

S. Sahayanathan; S. Godambe

2012-01-11T23:59:59.000Z

415

A STATISTICAL STUDY OF THE SPECTRAL HARDENING OF CONTINUUM EMISSION IN SOLAR FLARES  

SciTech Connect

The observed hard X-ray and {gamma}-ray continuum in solar flares is interpreted as Bremsstrahlung emission of accelerated non-thermal electrons. It has been noted for a long time that in many flares the energy spectra show hardening at energies around or above 300 keV. In this paper, we first conduct a survey of spectral hardening events that were previously studied in the literature. We then perform a systematic examination of 185 flares from the Solar Maximum Mission. We identify 23 electron-dominated events whose energy spectra show clear double power laws. A statistical study of these events shows that the spectral index below the break ({gamma}{sub 1}) anti-correlates with the break energy ({epsilon}{sub b}). Furthermore, {gamma}{sub 1} also anti-correlates with Fr, the fraction of photons above the break compared to the total photons. A hardening spectrum, as well as the correlations between ({gamma}{sub 1}, {epsilon}{sub b}) and ({gamma}{sub 1}, Fr), provide stringent constraints on the underlying electron acceleration mechanism. Our results support a recent proposal that electrons are being accelerated diffusively at a flare termination shock with a width of the order of an ion inertial length scale.

Kong, X.; Chen, Y. [Institute of Space Sciences and School of Space Science and Physics, Shandong University, Weihai 264209 (China); Li, G., E-mail: xl_kong@hotmail.com, E-mail: gang.li@uah.edu [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2013-09-10T23:59:59.000Z

416

Thermal to Nonthermal Energy Partition at the Early Rise Phase of Solar Flares  

Science Journals Connector (OSTI)

In some flares, the thermal component appears much earlier than the nonthermal component in the X-ray range. Using sensitive microwave observations, we revisit this finding made by Battaglia et al. based on a thorough analysis of RHESSI data. We have found that nonthermal microwave emission produced by accelerated electrons with energy of at least several hundred keV appears as early as the thermal soft X-ray emission, indicating that the electron acceleration takes place at the very early flare phase. The non-detection of the hard X-rays at that early stage of the flares is thus an artifact of a limited RHESSI sensitivity. In all of the considered events, the microwave emission intensity increases at the early flare phase. We found that either thermal or nonthermal gyrosynchrotron emission can dominate the low-frequency (optically thick) part of the microwave spectrum below the spectral peak occurring at 3-10 GHz. In contrast, the high-frequency optically thin part of the spectrum is always formed by the nonthermal, accelerated electron component, whose power-law energy spectrum can extend up to a few MeV at this early flare stage. This means that even though the total number of accelerated electrons is small at this stage, their nonthermal spectrum is fully developed. This implies that an acceleration process of available seed particles is fully operational. While creation of this seed population (the process commonly called "injection" of the particles from the thermal pool into the acceleration process) has a rather low efficiency at this stage, the plasma heating efficiency is high. This imbalance between the heating and acceleration (in favor of the heating) is difficult to reconcile within most of available flare energization models. Being reminiscent of the trade off between the Joule heating and runaway electron acceleration, it puts additional constraints on the electron injection into the acceleration process. As a byproduct of this study, we demonstrate that for those cases when the optically thick part of the radio spectrum is dominated by the thermal contribution, the microwave spectral data yield reliable estimates of the magnetic field and source area at the early flare phase.

Alexander A. Altyntsev; Gregory D. Fleishman; Sergey V. Lesovoi; Nataliia S. Meshalkina

2012-01-01T23:59:59.000Z

417

Recommendation 199: Recommendation to Remove Uncontaminated Areas...  

Office of Environmental Management (EM)

9: Recommendation to Remove Uncontaminated Areas of the Oak Ridge Reservation from the National Priorities List Recommendation 199: Recommendation to Remove Uncontaminated Areas of...

418

Magnetic Flares and State Transitions in Galactic Black Hole and Neutron Star Systems  

E-Print Network (OSTI)

We here examine the conditions of the two-phase disk model under which magnetic flares arise above the cold accretion disk due to magnetic buoyancy and produce X-rays via Comptonization of the disk's soft radiation. We find that the disk's ability to produce strong magnetic flares is substantially diminished in its radiation dominated regions due to the diffusion of radiation into the magnetic flux tubes. Using a simplified, yet physically self-consistent, model that takes this effect into account, we show that the hard X-ray spectrum of some GBHCs can be explained as the X-ray emission by magnetic flares only when the disk's bolometric luminosity is a relatively small fraction ($\\sim$ 5%) of the Eddington value, $L_{Edd}$. Further, we compute the hard ($20-200$ keV) and soft ($1-20$ keV) X-ray power as a function of the disk's luminosity, and find an excellent agreement with the available data for GBHC transient and persistent sources. We conclude that the observed high-energy spectrum of stellar-sized accretion disk systems can be explained by Comptonization of the disk's soft radiation by the hot gas trapped inside the magnetic flares when the luminosity falls in the range $\\sim 10^{-3}-10^{-1}\\times L_{Edd}$. For higher luminosities, another emission mechanism must be at work. For lower luminosities, the X-ray emissivity may still be dominated by magnetic flares, but this process is more likely to be thermal or non-thermal bremstrahlung, so that the X-ray spectrum below $\\sim 10^{-3}L_{Edd}$ may be quite distinct from the typical hard spectrum for higher luminosities.

Sergei Nayakshin; Fulvio Melia

1997-10-21T23:59:59.000Z

419

Removing Stains from Washable Fabrics.  

E-Print Network (OSTI)

of May 8, 1914, as amended, and June 30, 1914, in cooperation with the United States Department of Agriculture. Zerle L. Carpenter, Director, Texas Agricultural Extension Service, The Texas A&M University System. lOM-1l-88, New CLO ...I UUL. Z TA24S.7 8873 NO.1616 B.1616 / Texas Agricultural Extension Service LIBRARY FEB 0 1 1989 Texas A&M University Removing Stains from Washable Fabrics Ann Vanderpoorten 8eard* Most spots and stains can be removed by prompt...

Beard, Ann Vanderpoorten

1988-01-01T23:59:59.000Z

420

Massive Hanford Test Reactor Removed - Plutonium Recycle Test...  

Office of Environmental Management (EM)

Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed...

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Multipollutant Removal with WOWClean® System  

E-Print Network (OSTI)

such as petcoke, coal, wood, diesel and natural gas. In addition to significant removal of CO2, test results demonstrate the capability to reduce 99.5% SOx (from levels as high as 2200 ppm), 90% reduction of NOx, and > 90% heavy metals. The paper will include...

Romero, M.

2010-01-01T23:59:59.000Z

422

Anti-phase signature of flare generated transverse loop oscillations R.S. White, E. Verwichte & C. Foullon  

E-Print Network (OSTI)

are analysed by constructing space-time diagrams from cuts made parallel to the projected loop displacements: Magnetohydrodynamics (MHD) - Sun: corona - Sun: oscillations - Sun: UV radiation - Sun: flares 1. INTRODUCTION

423

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

424

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 14,750 13,487 14,370 14,367 12,900 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 76,770 81,545 81,723 88,259 87,608 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 76,770 81,545 81,723 88,259 87,608 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 76,770 81,545 81,723 88,259 87,608 Nonhydrocarbon Gases Removed

425

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60 71 68 69 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 702 648 563 531 550 From Oil Wells.................................................. 8,637 10,032 10,751 9,894 11,055 Total................................................................... 9,340 10,680 11,313 10,424 11,605 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,555 1,806 2,043 1,880 2,100 Wet After Lease Separation................................ 7,785 8,875 9,271 8,545 9,504 Nonhydrocarbon Gases Removed

426

Energy Information Administration / Natural Gas Annual 2008 154  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 71. Summary Statistics for Natural Gas - Utah, 2004-2008 Number of Wells Producing at End of Year.. 3,657 4,092 4,858 5,197 5,578 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 259,432 279,412 322,848 276,634 337,924 From Oil Wells.............................................. 31,153 32,583 33,472 35,104 36,056 From Coalbed Wells ..................................... NA NA NA 73,623 67,619 Total............................................................... 290,586 311,994 356,321 385,361 441,598 Repressuring .................................................. 1,337 1,294 1,300 1,742 1,571 Vented and Flared.......................................... 688 595 585 1,005 1,285 Nonhydrocarbon Gases Removed

427

Energy Information Administration / Natural Gas Annual 2006 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 35. Summary Statistics for Natural Gas - Florida, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 3,785 3,474 3,525 2,954 2,845 Total............................................................... 3,785 3,474 3,525 2,954 2,845 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 3,785 3,474 3,525 2,954 2,845 Nonhydrocarbon Gases Removed .................

428

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 Indiana - Table 40 I n d i a n a 509,215 250,766 3.41 1,064 0.01 310 2.52 147,338 3.08 17,572 0.33 78,479 2.58 494,465 2.41 40. Summary Statistics for Natural Gas Indiana, 1997-2001 Table 1997 1998 1999 2000 2001 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 1,458 1,479 1,498 1,502 1,533 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 526 615 855 899 1,064 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 526 615 855 899 1,064 Repressuring ................................................ 0 0 0 0 0 Vented and Flared........................................ 0 0 0 0 0 Wet After Lease Separation ......................... 526 615 855 899 1,064 Nonhydrocarbon Gases Removed...............

429

Energy Information Administration / Natural Gas Annual 2007 130  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 59. Summary Statistics for Natural Gas - New York, 2003-2007 Number of Wells Producing at End of Year.. 5,878 5,781 5,449 5,985 6,680 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 35,943 45,963 54,851 55,339 54,232 From Oil Wells.............................................. 194 87 329 641 710 Total............................................................... 36,137 46,050 55,180 55,980 54,942 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 36,137 46,050 55,180 55,980 54,942

430

Energy Information Administration / Natural Gas Annual 2007 154  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 71. Summary Statistics for Natural Gas - Utah, 2003-2007 Number of Wells Producing at End of Year.. 3,220 3,657 4,092 R 4,858 5,197 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 254,488 259,432 279,412 R 322,848 350,257 From Oil Wells.............................................. 29,871 31,153 32,583 R 33,472 35,104 Total............................................................... 284,359 290,586 311,994 R 356,321 385,361 Repressuring .................................................. 1,785 1,337 1,294 1,300 1,742 Vented and Flared.......................................... 705 688 595 R 585 1,005 Nonhydrocarbon Gases Removed ................. 13,810 10,592 8,883 R 6,116 6,205 Marketed Production

431

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

432

Energy Information Administration / Natural Gas Annual 2007 98  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 43. Summary Statistics for Natural Gas - Kansas, 2003-2007 Number of Wells Producing at End of Year.. 17,387 18,120 18,946 19,713 19,713 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 369,624 350,413 332,860 327,386 322,836 From Oil Wells.............................................. 50,403 47,784 45,390 44,643 44,023 Total............................................................... 420,027 398,197 378,250 372,029 366,859 Repressuring .................................................. 714 677 643 620 E 618 Vented and Flared.......................................... 420 398 378 365 E 363 Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production ......................................

433

Energy Information Administration / Natural Gas Annual 2007 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 36. Summary Statistics for Natural Gas - Florida, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 3,474 3,525 2,954 2,845 2,000 Total............................................................... 3,474 3,525 2,954 2,845 2,000 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 387 402 337 304 E 222 Marketed Production ...................................... 3,087 3,123 2,616 2,540 1,778 Extraction Loss...............................................

434

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

435

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

436

Energy Information Administration / Natural Gas Annual 2007 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 53. Summary Statistics for Natural Gas - Montana, 2003-2007 Number of Wells Producing at End of Year.. 4,539 4,971 5,751 6,578 6,925 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 78,175 87,292 91,833 93,759 97,483 From Oil Wells.............................................. 8,256 10,546 16,722 20,278 23,092 Total............................................................... 86,431 97,838 108,555 114,037 120,575 Repressuring .................................................. 2 5 9 19 6 Vented and Flared.......................................... 403 1,071 629 1,173 3,721 Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production ......................................

437

Energy Information Administration / Natural Gas Annual 2007 138  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 63. Summary Statistics for Natural Gas - Oklahoma, 2003-2007 Number of Wells Producing at End of Year.. 34,334 35,612 36,704 38,060 38,364 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 1,487,451 1,597,915 1,592,524 1,640,389 1,709,207 From Oil Wells.............................................. 70,704 57,854 46,786 48,597 35,186 Total............................................................... 1,558,155 1,655,769 1,639,310 1,688,985 1,744,393 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... NA NA NA NA NA Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production

438

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

439

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012 (trillion cubic feet) Natural Gas Plant Liquids Production Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 29.5 0.8 0.2 3.3 2.963 0.112 0.620 0.971 0.014 24.1 1.3 2.9 2.8 2.5 2.9 7.2 0.03 9.1 0.003 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

440

Energy Information Administration / Natural Gas Annual 2007 100  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 44. Summary Statistics for Natural Gas - Kentucky, 2003-2007 Number of Wells Producing at End of Year.. 12,900 13,920 14,175 15,892 16,563 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 87,608 94,259 92,795 95,320 95,437 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 87,608 94,259 92,795 95,320 95,437 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 87,608 94,259 92,795 95,320 95,437

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Information Administration / Natural Gas Annual 2008 130  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 59. Summary Statistics for Natural Gas - New York, 2004-2008 Number of Wells Producing at End of Year.. 5,781 5,449 5,985 6,680 6,675 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 45,963 54,851 55,339 54,232 49,607 From Oil Wells.............................................. 87 329 641 710 714 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 46,050 55,180 55,980 54,942 50,320 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production

442

Energy Information Administration / Natural Gas Annual 2007 136  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 62. Summary Statistics for Natural Gas - Ohio, 2003-2007 Number of Wells Producing at End of Year.. 33,828 33,828 33,735 33,945 34,416 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 87,993 85,018 77,819 81,155 82,827 From Oil Wells.............................................. 5,647 5,458 5,704 5,160 5,268 Total............................................................... 93,641 90,476 83,523 86,315 88,095 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... NA NA NA NA NA Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production ......................................

443

Microsoft Word - front_matter_Dec12.docx  

Gasoline and Diesel Fuel Update (EIA)

5 5 Egypt Figure 2. Natural gas supply and disposition in the United States, 2011 (trillion cubic feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 28.5 0.9 0.2 3.4 3.117 0.129 0.002 0.500 0.937 0.018 22.9 1.1 3.5 3.1 2.0 3.2 6.9 0.03 7.6 0.035 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

444

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

445

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

446

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 Indiana - Table 55 I n d i a n a 587,213 319,890 3.56 855 0.00 48 0.84 151,529 3.21 7,655 0.25 73,643 2.42 552,765 2.78 55. Summary Statistics for Natural Gas Indiana, 1995-1999 Table 1995 1996 1997 1998 1999 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 1,347 1,367 1,458 1,479 1,498 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 249 360 526 615 855 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 249 360 526 615 855 Repressuring ................................................ NA NA NA NA NA Nonhydrocarbon Gases Removed............... NA NA NA NA NA Wet After Lease Separation ......................... 249 360 526 615 855 Vented and Flared........................................

447

Energy Information Administration / Natural Gas Annual 2007 72  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 30. Summary Statistics for Natural Gas - Arkansas, 2003-2007 Number of Wells Producing at End of Year.. 7,606 3,460 3,462 R 3,814 4,773 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 157,039 176,221 180,969 R 262,911 262,905 From Oil Wells.............................................. 12,915 11,088 9,806 R 7,833 7,509 Total............................................................... 169,953 187,310 190,774 R 270,744 270,414 Repressuring .................................................. 0 0 0 439 516 Vented and Flared.......................................... 354 241 241 R 12 11 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

448

Energy Information Administration / Natural Gas Annual 2007 76  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 32. Summary Statistics for Natural Gas - Colorado, 2003-2007 Number of Wells Producing at End of Year..... 18,774 16,718 22,691 20,568 22,949 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 970,229 1,002,453 1,038,739 1,101,361 1,093,695 From Oil Wells................................................. 51,065 87,170 105,247 113,035 160,833 Total.................................................................. 1,021,294 1,089,622 1,143,985 1,214,396 1,254,529 Repressuring ..................................................... 8,885 9,229 9,685 10,285 10,625 Vented and Flared............................................. 1,123 1,158 1,215 1,291 1,333 Nonhydrocarbon Gases Removed

449

Energy Information Administration / Natural Gas Annual 2008 72  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 30. Summary Statistics for Natural Gas - Arkansas, 2004-2008 Number of Wells Producing at End of Year.. 3,460 3,462 3,814 4,773 5,592 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 176,221 180,969 262,911 259,708 437,006 From Oil Wells.............................................. 11,088 9,806 7,833 7,509 7,378 From Coalbed Wells ..................................... NA NA NA 3,198 2,698 Total............................................................... 187,310 190,774 270,744 270,414 447,082 Repressuring .................................................. 0 0 439 516 511 Vented and Flared.......................................... 241 241 12 11 20 Nonhydrocarbon Gases Removed

450

Energy Information Administration / Natural Gas Annual 2008 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 53. Summary Statistics for Natural Gas - Montana, 2004-2008 Number of Wells Producing at End of Year.. 4,971 5,751 6,578 6,925 7,095 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 87,292 91,833 93,759 84,460 82,400 From Oil Wells.............................................. 10,546 16,722 20,278 23,092 22,995 From Coalbed Wells ..................................... NA NA NA 13,022 14,004 Total............................................................... 97,838 108,555 114,037 120,575 119,399 Repressuring .................................................. 5 9 19 6 6 Vented and Flared.......................................... 1,071 629 1,173 3,721 6,863 Nonhydrocarbon Gases Removed

451

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

1 1 Indiana - Table 56 I n d i a n a 561,632 312,222 3.28 899 0.00 50 0.60 160,027 3.21 7,754 0.25 90,378 2.81 570,431 2.75 56. Summary Statistics for Natural Gas Indiana, 1996-2000 Table 1996 1997 1998 1999 2000 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 1,367 1,458 1,479 1,498 1,502 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 360 526 615 855 899 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 360 526 615 855 899 Repressuring ................................................ NA NA NA NA NA Vented and Flared........................................ NA NA NA NA NA Wet After Lease Separation ......................... 360 526 615 855 899 Nonhydrocarbon Gases Removed...............

452

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

453

Average Commercial Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

454

Energy Information Administration / Natural Gas Annual 2006 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 68. Summary Statistics for Natural Gas - Tennessee, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 400 430 280 400 330 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 2,050 1,803 2,100 2,200 1,793 Total............................................................... 2,050 1,803 2,100 2,200 1,793 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... NA NA NA NA NA Wet After Lease Separation............................ 2,050 1,803 2,100 2,200 1,793 Nonhydrocarbon Gases Removed

455

Microsoft Word - Table_72_2.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 2,752 3,051 3,521 3,429 3,506 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 72,189 71,545 71,543 76,915 81,086 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 72,189 71,545 71,543 76,915 81,086 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 72,189 71,545 71,543 76,915 81,086 Nonhydrocarbon Gases Removed

456

Energy Information Administration / Natural Gas Annual 2007 166  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 77. Summary Statistics for Natural Gas - Wyoming, 2003-2007 Number of Wells Producing at End of Year.. 18,154 20,244 23,734 25,052 26,900 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 1,652,504 1,736,136 1,803,443 1,900,589 2,102,362 From Oil Wells.............................................. 183,612 192,904 200,383 211,177 156,066 Total............................................................... 1,836,115 1,929,040 2,003,826 2,111,766 2,258,428 Repressuring .................................................. 131,125 164,164 171,616 114,343 133,716 Vented and Flared.......................................... 16,685 16,848 31,161 31,661 47,331 Nonhydrocarbon Gases Removed

457

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

458

Photosphere emission in the X-Ray Flares of Swift Gamma-Ray Bursts and Implications for the Fireball Properties  

E-Print Network (OSTI)

X-ray flares of gamma-ray bursts (GRBs) are usually observed in the soft X-ray range and the spectral coverage is limited. In this paper, we present an analysis of 32 GRB X-ray flares that are simultaneously observed by both BAT and XRT on board the Swift mission, so a joint spectral analysis with a wider spectral coverage is possible. Our results show that the joint spectra of 19 flares are fitted with the absorbed single power-law or the Band function models. More interestingly, the joint spectra of the other 13 X-ray flares are fitted with the absorbed single power-law model plus a black body (BB) component. Phenomenally, the observed spectra of these 13 flares are analogous to several GRBs with a thermal component, but only with a much lower temperature of $kT=1\\sim 3$ keV. Assuming that the thermal emission is the photosphere emission of the GRB fireball, we derive the fireball properties of the 13 flares that have redshift measurements, such as the bulk Lorentz factor $\\Gamma_{\\rm ph}$ of the outflow. T...

Peng, Fang-Kun; Wang, Xiang-Yu; Hou, Shu-Jin; Xi, Shao-Qiang; Lu, Rui-Jing; Zhang, Jin; Zhang, Bing

2014-01-01T23:59:59.000Z

459

Interplay of Boltzmann equation and continuity equation for accelerated electrons in solar flares  

E-Print Network (OSTI)

During solar flares a large amount of electrons are accelerated within the plasma present in the solar atmosphere. Accurate measurements of the motion of these electrons start becoming available from the analysis of hard X-ray imaging-spectroscopy observations. In this paper, we discuss the linearized perturbations of the Boltzmann kinetic equation describing an ensemble of electrons accelerated by the energy release occurring during solar flares. Either in the limit of high energy or at vanishing background temperature such an equation reduces to a continuity equation equipped with an extra force of stochastic nature. This stochastic force is actually described by the well known energy loss rate due to Coulomb collision with ambient particles, but, in order to match the collision kernel in the linearized Boltzmann equation it needs to be treated in a very specific manner. In the second part of the paper the derived continuity equation is solved with some hyperbolic techniques, and the obtained solution is wr...

Codispoti, Anna

2015-01-01T23:59:59.000Z

460

QUASI-PERIODIC WIGGLES OF MICROWAVE ZEBRA STRUCTURES IN A SOLAR FLARE  

SciTech Connect

Quasi-periodic wiggles of microwave zebra pattern (ZP) structures with periods ranging from about 0.5 s to 1.5 s are found in an X-class solar flare on 2006 December 13 at the 2.6-3.8 GHz with the Chinese Solar Broadband Radio Spectrometer (SBRS/Huairou). Periodogram and correlation analysis show that the wiggles have two to three significant periodicities and are almost in phase between stripes at different frequencies. The Alfvén speed estimated from the ZP structures is about 700 km s{sup –1}. We find the spatial size of the wave-guiding plasma structure to be about 1 Mm with a detected period of about 1 s. This suggests that the ZP wiggles can be associated with the fast magnetoacoustic oscillations in the flaring active region. The lack of a significant phase shift between wiggles of different stripes suggests that the ZP wiggles are caused by a standing sausage oscillation.

Yu, Sijie; Tan, Baolin; Yan, Yihua [Key Laboratory of Solar Activity, National Astronomical Observatories Chinese Academy of Sciences, Beijing 100012 (China); Nakariakov, V. M.; Selzer, L. A., E-mail: sjyu@nao.cas.cn [Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)

2013-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

RAPID GAMMA-RAY FLUX VARIABILITY DURING THE 2013 MARCH CRAB NEBULA FLARE  

SciTech Connect

We report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) · 10{sup –6} cm{sup –2} s{sup –1} on 2013 March 6. This value exceeds the average flux by almost a factor of six and implies a ?20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time.

Mayer, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany)] [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Hays, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)] [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cheung, C. C.; Grove, J. E. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)] [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Dutka, M. S. [Catholic University of America, Washington, DC 20064 (United States)] [Catholic University of America, Washington, DC 20064 (United States); Kerr, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)] [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ojha, R., E-mail: michael.mayer@desy.de, E-mail: rolf.buehler@desy.de, E-mail: elizabeth.a.hays@nasa.gov [ORAU/NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2013-10-01T23:59:59.000Z

462

Numerical Study of a Propagating Non-Thermal Microwave Feature in a Solar Flare Loop  

E-Print Network (OSTI)

We analytically and numerically study the motion of electrons along a magnetic loop, to compare with the observation of the propagating feature of the non-thermal microwave source in the 1999 August 28 solar flare reported by Yokoyama et al. (2002). We model the electron motion with the Fokker-Planck equation and calculate the spatial distribution of the gyrosynchrotron radiation. We find that the microwave propagating feature does not correspond to the motion of electrons with a specific initial pitch angle. This apparent propagating feature is a consequence of the motion of an ensemble of electrons with different initial pitch angles, which have different time and position to produce strong radiation in the loop. We conclude that the non-thermal electrons in the 1999 August 28 flare were isotropically accelerated and then are injected into the loop.

T. Minoshima; T. Yokoyama

2008-06-02T23:59:59.000Z

463

THE RELATIONSHIP BETWEEN X-RAY LUMINOSITY AND MAJOR FLARE LAUNCHING IN GRS 1915+105  

SciTech Connect

We perform the most detailed analysis to date of the X-ray state of the Galactic black hole candidate GRS 1915+105 just prior to (0-4 hr) and during the brief (1-7 hr) ejection of major (superluminal) radio flares. A very strong model independent correlation is found between the 1.2 keV-12 keV X-ray flux 0-4 hr before flare ejections with the peak optically thin 2.3 GHz emission of the flares. This suggests a direct physical connection between the energy in the ejection and the luminosity of the accretion flow preceding the ejection. In order to quantify this concept, we develop techniques to estimate the intrinsic (unabsorbed) X-ray luminosity, L {sub intrinsic}, from RXTE All Sky Monitor data and to implement known methods to estimate the time-averaged power required to launch the radio emitting plasmoids, Q (sometimes called jet power). We find that the distribution of intrinsic luminosity from 1.2 keV-50 keV, L {sub intrinsic} (1.2-50), is systematically elevated just before ejections compared to arbitrary times when there are no major ejections. The estimated Q is strongly correlated with L {sub intrinsic} (1.2-50) 0-4 hr before the ejection, the increase in L {sub intrinsic} (1.2-50) in the hours preceding the ejection and the time-averaged L {sub intrinsic} (1.2-50) during the flare rise. Furthermore, the total time-averaged power during the ejection (Q + the time average of L {sub intrinsic} (1.2-50) during ejection) is strongly correlated with L {sub intrinsic} (1.2-50) just before launch with near equality if the distance to the source is Almost-Equal-To 10.5 kpc.

Punsly, Brian [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States)] [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); Rodriguez, Jerome, E-mail: brian.punsly1@verizon.net, E-mail: brian.punsly@comdev-usa.com [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU SAp, F-91191 Gif-sur-Yvette (France)] [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU SAp, F-91191 Gif-sur-Yvette (France)

2013-02-20T23:59:59.000Z

464

An Accretion-Induced X-ray Flare in Sgr A*  

E-Print Network (OSTI)

The recent detection of a three-hour X-ray flare from Sgr A* by Chandra provides very strong evidence for a compact emitting region near this supermassive black hole at the Galactic center. Sgr A*'s mm/sub-mm spectrum and polarimetric properties, and its quiescent-state X-ray flux density, are consistent with a model in which low angular momentum gas captured at large radii circularizes to form a hot, magnetized Keplerian flow within tens of Schwarzschild radii of the black hole's event horizon. In Sgr A*'s quiescent state, the X-ray emission appears to be produced by self-Comptonization (SSC) of the mm/sub-mm synchrotron photons emitted in this region. In this paper, we show that the prominent X-ray flare seen in Sgr A* may be due to a sudden enhancement of accretion through the circularized flow. Depending on whether the associated response of the anomalous viscosity is to increase or decrease in tandem with this additional injection of mass, the X-ray photons during the outburst may be produced either via thermal bremsstrahlung (if the viscosity decreases), or via SSC (if the viscosity increases). However, the latter predicts a softer X-ray spectrum than was seen by Chandra, so it appears that a bremsstrahlung origin for the X-ray outburst is favored. A strong correlation is expected between the mm/sub-mm and X-ray fluxes when the flare X-rays are produced by SSC, while the correlated variability is strongest between the sub-mm/far-IR and X-rays when bremsstrahlung emission is dominant during the flare. In addition, we shows that future coordinated multi-wavelength observations planned for the 2002 and 2003 cycles may be able to distinguish between the accretion and jet scenarios.

Siming Liu; Fulvio Melia

2002-01-21T23:59:59.000Z

465

THE WHITE LIGHT LIMB FLARE OF 16 AUGUST 1989 AND ITS CHROMOSPHERIC COUNTERPART  

E-Print Network (OSTI)

THE WHITE LIGHT LIMB FLARE OF 16 AUGUST 1989 AND ITS CHROMOSPHERIC COUNTERPART Jianqi You 1 comparing the white-light (#21;5600 #6; 800 #23; A) and the slit-jaw H#11; images (0.5 #23; A passband) of the 2N/X20 white-light are of 16 August 1989, we found that the H#11; counterpart identi#12;cation

Li, Hui

466

Removing Barriers to Interdisciplinary Research  

E-Print Network (OSTI)

A significant amount of high-impact contemporary scientific research occurs where biology, computer science, engineering and chemistry converge. Although programmes have been put in place to support such work, the complex dynamics of interdisciplinarity are still poorly understood. In this paper we interrogate the nature of interdisciplinary research and how we might measure its "success", identify potential barriers to its implementation, and suggest possible mechanisms for removing these impediments.

Naomi Jacobs; Martyn Amos

2010-12-19T23:59:59.000Z

467

Magnetohydrodynamic Simulation of the X2.2 Solar Flare on 2011 February 15: II. A Dynamics Connecting the Solar Flare and the Coronal Mass Ejection  

E-Print Network (OSTI)

We clarify a relationship of the dynamics of a solar flare and a growing Coronal Mass Ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. 2014. We found that the strongly twisted lines formed through the tether-cutting reconnection in the twisted lines of a nonlinear force-free field (NLFFF) can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruption as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. Then the newly formed large flux tube exceeds the critical height of the torus instability. The tether-cutting reconnection thus plays an important role in the triggering a CME. Furthermore, we found that the tangential fields at the solar surface illust...

Inoue, S; Magara, T; Choe, G S; Park, Y D

2015-01-01T23:59:59.000Z

468

The accretion environment in Vela X-1 during a flaring period using XMM-Newton  

E-Print Network (OSTI)

We present analysis of 100 ks contiguous XMM-Newton data of the prototypical wind accretor Vela X-1. The observation covered eclipse egress between orbital phases 0.134 and 0.265, during which a giant flare took place, enabling us to study the spectral properties both outside and during the flare. This giant flare with a peak luminosity of $3.92^{+0.42}_{-0.09} \\times 10^{37}$ erg s$^{-1}$ cm$^{-2}$ allows estimates of the physical parameters of the accreted structure with a mass of $\\sim$ $10^{21}$ g. We have been able to model several contributions to the observed spectrum with a phenomenological model formed by three absorbed power laws plus three emission lines. After analysing the variations with orbital phase of the column density of each component, as well as those in the Fe and Ni fluorescence lines, we provide a physical interpretation for each spectral component. Meanwhile, the first two components are two aspects of the principal accretion component from the surface of the neutron star, and the thi...

Martínez-Núñez, Silvia; Kühnel, Matthias; Kretschmar, Peter; Stuhlinger, Martin; Rodes-Roca, José Joaquín; Fürst, Feliz; Kreykenbohm, Ingo; Martin-Carrillo, Antonio; Pollock, Andy M T; Wilms, Joern

2014-01-01T23:59:59.000Z

469

MODELING OF GYROSYNCHROTRON RADIO EMISSION PULSATIONS PRODUCED BY MAGNETOHYDRODYNAMIC LOOP OSCILLATIONS IN SOLAR FLARES  

SciTech Connect

A quantitative study of the observable radio signatures of the sausage, kink, and torsional magnetohydrodynamic (MHD) oscillation modes in flaring coronal loops is performed. Considering first non-zero order effect of these various MHD oscillation modes on the radio source parameters such as magnetic field, line of sight, plasma density and temperature, electron distribution function, and the source dimensions, we compute time-dependent radio emission (spectra and light curves). The radio light curves (of both flux density and degree of polarization) at all considered radio frequencies are then quantified in both time domain (via computation of the full modulation amplitude as a function of frequency) and in Fourier domain (oscillation spectra, phases, and partial modulation amplitude) to form the signatures specific to a particular oscillation mode and/or source parameter regime. We found that the parameter regime and the involved MHD mode can indeed be distinguished using the quantitative measures derived in the modeling. We apply the developed approach to analyze radio burst recorded by Owens Valley Solar Array and report possible detection of the sausage mode oscillation in one (partly occulted) flare and kink or torsional oscillations in another flare.

Mossessian, George; Fleishman, Gregory D. [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

2012-04-01T23:59:59.000Z

470

Determining Energy Balance in the Flaring Chromosphere from Oxygen V Line Ratios  

E-Print Network (OSTI)

The impulsive phase of solar flares is a time of rapid energy deposition and heating in the lower solar atmosphere, leading to changes in the temperature and density structure of the region. We use an O V density diagnostic formed of the 192 to 248 line ratio, provided by Hinode EIS, to determine the density of flare footpoint plasma, at O V formation temperatures of 250,000 K, giving a constraint on the properties of the heated transition region. Hinode EIS rasters from 2 small flare events in December 2007 were used. Raster images were co-aligned to identify and establish the footpoint pixels, multiple-component Gaussian line fitting of the spectra was carried out to isolate the diagnostic pair, and the density was calculated for several footpoint areas. The assumptions of equilibrium ionization and optically thin radiation for the O V lines were found to be acceptable. Properties of the electron distribution, for one event, were deduced from earlier RHESSI hard X-ray observations and used to calculate the ...

Graham, David R; Labrosse, Nicolas

2014-01-01T23:59:59.000Z

471

Solar Flare Chromospheric Line Emission: Comparison Between IBIS High-resolution Observations and Radiative Hydrodynamic Simulations  

E-Print Network (OSTI)

Solar flares involve impulsive energy release, which results in enhanced radiation in a broad spectral and at a wide height range. In particular, line emission from the chromosphere (lower atmosphere) can provide critical diagnostics of plasma heating processes. Thus, a direct comparison between high-resolution spectroscopic observations and advanced numerical modeling results can be extremely valuable, but has not been attempted so far. We present in this paper such a self-consistent investigation of an M3.0 flare observed by the Dunn Solar Telescope's (DST) Interferometric Bi-dimensional Spectrometer (IBIS) on 2011 September 24 that we have modeled with the radiative hydrodynamic code RADYN (Carlsson & Stein 1992, 1997; Abbett & Hawley 1999; Allred et al. 2005). We obtained images and spectra of the flaring region with IBIS in H$\\alpha$ 6563 \\AA\\ and Ca II 8542 \\AA, and with the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) in X-rays. The latter was used to infer the non-thermal elect...

da Costa, Fatima Rubio; Petrosian, Vahé; Dalda, Alberto Sainz; Liu, Wei

2014-01-01T23:59:59.000Z

472

Observations of post-flare supra-arcades: instabilities at the head of reconnection jets  

E-Print Network (OSTI)

Supra-arcades are bright fans of emission that develop after eruptive flares, above post-flare arcades. The underlying flare arcades are thought to be a consequence of magnetic reconnection along a current sheet in the corona. At the same time, theory predicts plasma jets from the reconnection site which, because of their low density, are extremely difficult to observe directly. It has been suggested, however, that the dark supra-arcade downflows (SADs) seen falling through supra-arcade fans may be low-density jet plasma. The head of a low density jet directed towards higher density plasma would be Rayleigh-Taylor unstable, and lead to the development of rapidly growing low and high density fingers along the interface. Here we show details of SADs forming at the top of bright supra-arcade fans, as seen in Solar Dynamics Observatory Atmospheric Imaging Assembly 131A images. The SADs often formed near the top of fan spikes. Some of the SADs were seen to split at their heads. Most SADs did not show enhanced emis...

Innes, Davina; Bhattacharjee, Amitava; Huang, Yi-Min

2014-01-01T23:59:59.000Z

473

Imaging and spectroscopic observations of magnetic reconnection and chromospheric evaporation in a solar flare  

E-Print Network (OSTI)

Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfv\\'{e}n speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of greatly redshifted ($\\sim$125 km s$^{-1}$ along line of sight) Fe {\\sc{xxi}} 1354.08\\AA{} emission line with a $\\sim$100 km s$^{-1}$ nonthermal width at the reconnection site of a flare. The redshifted Fe {\\sc{xxi}} feature coincides spatially with the loop-top X-Ray source observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) also...

Tian, Hui; Reeves, Katharine K; Raymond, John C; Guo, Fan; Liu, Wei; Chen, Bin; Murphy, Nicholas A

2014-01-01T23:59:59.000Z

474

Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem  

E-Print Network (OSTI)

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta < m_e/m_p, the waves propagate as inertial Alfven waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between el...

Fletcher, L

2007-01-01T23:59:59.000Z

475

Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare  

E-Print Network (OSTI)

We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy ($\\gsim 100$ keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy ($\\lsim 100$ keV) HXRs. We interpret these observations in terms of an electron transport model called {\\TPP}. We numerically solved the spatially-homogeneous {\\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.

T. Minoshima; T. Yokoyama; N. Mitani

2007-10-02T23:59:59.000Z

476

Libya HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Libya HEU Removal Libya HEU Removal Location Libya United States 27 34' 9.5448" N, 17 24' 8.4384" E See map: Google Maps Javascript is required to view this map....

477

Canada HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Canada HEU Removal Canada HEU Removal Location Canada United States 53 47' 24.972" N, 104 35' 23.4384" W See map: Google Maps Javascript is required to view this map....

478

Israel HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Israel HEU Removal Israel HEU Removal Location Israel United States 30 53' 18.2328" N, 34 52' 14.178" E See map: Google Maps Javascript is required to view this map....

479

Uzbekistan HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Uzbekistan HEU Removal Uzbekistan HEU Removal Location Uzbekistan United States 42 6' 56.196" N, 63 22' 8.9076" E See map: Google Maps Javascript is required to view this map...

480

France HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Four-Year Plan France HEU Removal France HEU Removal Location United States 45 44' 20.0544" N, 2 17' 6.5616" E See map: Google Maps Javascript is required to view this map...

Note: This page contains sample records for the topic "flaring removing nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Chile HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Four-Year Plan Chile HEU Removal Chile HEU Removal Location United States 25 28' 1.4916" S, 69 33' 55.548" W See map: Google Maps Javascript is required to view this map...

482

Taiwan HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Taiwan HEU Removal Taiwan HEU Removal Location Taiwan United States 24 35' 37.4964" N, 120 53' 36.798" E See map: Google Maps Javascript is required to view this map....

483

Romania HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Romania HEU Removal Romania HEU Removal Location Romania United States 45 47' 1.932" N, 24 41' 50.1576" E See map: Google Maps Javascript is required to view this map....