Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A CLASSIFICATION SCHEME FOR TURBULENT ACCELERATION PROCESSES IN SOLAR FLARES  

SciTech Connect

We establish a classification scheme for stochastic acceleration models involving low-frequency plasma turbulence in a strongly magnetized plasma. This classification takes into account both the properties of the accelerating electromagnetic field, and the nature of the transport of charged particles in the acceleration region. We group the acceleration processes as either resonant, non-resonant, or resonant-broadened, depending on whether the particle motion is free-streaming along the magnetic field, diffusive, or a combination of the two. Stochastic acceleration by moving magnetic mirrors and adiabatic compressions are addressed as illustrative examples. We obtain expressions for the momentum-dependent diffusion coefficient D(p), both for general forms of the accelerating force and for the situation when the electromagnetic force is wave-like, with a specified dispersion relation {omega} = {omega}(k). Finally, for models considered, we calculate the energy-dependent acceleration time, a quantity that can be directly compared with observations of the time profile of the radiation field produced by the accelerated particles, such as those occuring during solar flares.

Bian, Nicolas; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: eduard@astro.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

2012-08-01T23:59:59.000Z

2

EMPIRICAL DETERMINATION OF THE ENERGY LOSS RATE OF ACCELERATED ELECTRONS IN A WELL-OBSERVED SOLAR FLARE  

Science Conference Proceedings (OSTI)

We present electron images of an extended solar flare source, deduced from RHESSI hard X-ray imaging spectroscopy data. We apply the electron continuity equation to these maps in order to determine empirically the form of the energy loss rate for the bremsstrahlung-emitting electrons. We show that this form is consistent with an energy transport model involving Coulomb collisions in a target with a temperature of about 2 Multiplication-Sign 10{sup 7} K, with a continuous injection of fresh deka-keV electrons at a rate of approximately 10{sup -2} electrons s{sup -1} per ambient electron.

Torre, Gabriele; Pinamonti, Nicola; Guo, Jingnan; Piana, Michele [Dipartimento di Matematica, Universita di Genova, Genova, via Dodecaneso 35, 16146 Genova (Italy); Emslie, A. Gordon [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Massone, Anna Maria, E-mail: torre@dima.unige.it, E-mail: pinamont@dima.unige.it, E-mail: guo@pitagora.dima.unige.it, E-mail: piana@dima.unige.it, E-mail: emslieg@wku.edu, E-mail: annamaria.massone@cnr.it [CNR-SPIN, Via Dodecaneso 33, I-16146 Genova (Italy)

2012-06-01T23:59:59.000Z

3

Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes  

E-Print Network (OSTI)

We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

2005-08-24T23:59:59.000Z

4

SATURATION LEVELS FOR WHITE-LIGHT FLARES OF FLARE STARS: VARIATION OF MINIMUM FLARE DURATION FOR SATURATION  

Science Conference Proceedings (OSTI)

Taking into account results obtained from models and from statistical analyses of obtained parameters, we discuss flare activity levels and flare characteristics of five UV Ceti stars. We present the parameters of unpublished flares detected over two years of observations of V1005 Ori. We compare parameters of the U-band flares detected over several seasons of observations of AD Leo, EV Lac, EQ Peg, V1054 Oph, and V1005 Ori. Flare frequencies calculated for all program stars and maximum energy levels of the flares are compared, and we consider which is the most correct parameter as an indicator of flare activity levels. Using the One Phase Exponential Association function, the distributions of flare equivalent duration versus flare total duration are modeled for each program star. We use the Independent Samples t-Test in the statistical analyses of the parameters obtained from the models. The results reveal some properties of flare processes occurring on the surfaces of UV Ceti type stars. (1) Flare energies cannot be higher than a specific value regardless of the length of the flare total duration. This must be a saturation level for white-light flares occurring in flare processes observed in the U band. Thus, for the first time it is shown that white-light flares have a saturation in a specific energy range. (2) The span values, which are the difference between the equivalent durations of flares with the shortest and longest total durations, are almost equal for each star. (3) The half-life values, minimum flare durations for saturation, increase toward the later spectral types. (4) Both maximum total durations and maximum rise times computed from the observed flares decrease toward the later spectral types among the UV Ceti stars. According to the maximum energy levels obtained from the models, both EV Lac and EQ Peg are more active than the other three program stars, while AD Leo is the most active flare star according to the flare frequencies.

Dal, H. A.; Evren, S., E-mail: ali.dal@ege.edu.tr [Department of Astronomy and Space Sciences, University of Ege, Bornova, 35100 Izmir (Turkey)

2011-02-15T23:59:59.000Z

5

Real time loss detection for SNM in process  

Science Conference Proceedings (OSTI)

This paper discusses the basis of a design for real time special nuclear material (SNM) loss detectors. The design utilizes process measurements and signal processing techniques to produce a timely estimate of material loss. A state estimator is employed as the primary signal processing algorithm. Material loss is indicated by changes in the states or process innovations (residuals). The design philosophy is discussed in the context of these changes.

Candy, J.V.; Dunn, D.R.; Gavel, D.T.

1980-03-20T23:59:59.000Z

6

Extraction Loss of Natural Gas at Processing Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

7

Practical Guide to Vegetable Oil ProcessingChapter 12 Loss Management  

Science Conference Proceedings (OSTI)

Practical Guide to Vegetable Oil Processing Chapter 12 Loss Management Processing eChapters Processing Press Downloadable pdf of Chapter 12 Loss Management from the book ...

8

Energy Loss in Nuclear Drell-Yan Process  

E-Print Network (OSTI)

By means of the nuclear parton distributions which can be used to provide a good explanation for the EMC effect in the whole x range, we investigate the energy loss effect in nuclear Drell-Yan process. When the cross section of lepton pair production is considered varying with the center-of-mass energy of the nucleon-nucleon collision, we find that the nuclear Drell-Yan(DY) ratio is suppressed due to the energy loss, which balances the overestimate of the DY ratio only in consideration of the effect of nuclear parton distributions.

Jian-Jun Yang; Guang-Lie Li

1998-05-21T23:59:59.000Z

9

THE SOLAR FLARE IRON ABUNDANCE  

SciTech Connect

The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

Phillips, K. J. H. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH6 5NT (United Kingdom); Dennis, B. R., E-mail: kjhp@mssl.ucl.ac.uk, E-mail: Brian.R.Dennis@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-03-20T23:59:59.000Z

10

FLARES AND THEIR UNDERLYING MAGNETIC COMPLEXITY  

Science Conference Proceedings (OSTI)

SphinX (Solar PHotometer IN X-rays), a full-disk-integrated spectrometer, observed 137 flare-like/transient events with active region (AR) 11024 being the only AR on disk. The Hinode X-Ray Telescope (XRT) and Solar Optical Telescope observe 67 of these events and identified their location from 12:00 UT on July 3 through 24:00 UT 2009 July 7. We find that the predominant mechanisms for flares observed by XRT are (1) flux cancellation and (2) the shearing of underlying magnetic elements. Point- and cusp-like flare morphologies seen by XRT all occur in a magnetic environment where one polarity is impeded by the opposite polarity and vice versa, forcing the flux cancellation process. The shearing is either caused by flux emergence at the center of the AR and separation of polarities along a neutral line or by individual magnetic elements having a rotational motion. Both mechanisms are observed to contribute to single- and multiple-loop flares. We observe that most loop flares occur along a large portion of a polarity inversion line. Point- and cusp-like flares become more infrequent as the AR becomes organized with separation of the positive and negative polarities. SphinX, which allows us to identify when these flares occur, provides us with a statistically significant temperature and emission scaling law for A and B class flares: EM = 6.1 x 10{sup 33} T{sup 1.9{+-}0.1}.

Engell, Alexander J.; Golub, Leon; Korreck, Kelly [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Siarkowski, Marek; Gryciuk, Magda; Sylwester, Janusz; Sylwester, Barbara [Space Research Center, Polish Academy of Sciences, Kopernika 11, 51-622 Wroclaw (Poland); Cirtain, Jonathan, E-mail: aengell@cfa.harvard.edu [Marshall Space Flight Center NASA, Mail Code: VP62, Marshall Space Flight Center, AL 35812 (United States)

2011-01-01T23:59:59.000Z

11

Process Refinements - Accounting for Motor-Fuel Losses  

NLE Websites -- All DOE Office Websites (Extended Search)

Accounting for Motor-Fuel Losses Accounting for Motor-Fuel Losses Motor fuel may be lost by leakage from storage tanks, spillage, fire, or other means; in addition, measurement differences brought about by temperature or other conditions and meter faults can result in apparent losses. Because this lost fuel is neither consumed on the highway nor used for off-highway purposes, it presents a problem for determining the appropriate base for taxation. In the past, FHWA allowed States to report actual losses or a percentage loss, which was capped at 1%. Usage data for States that did not report losses were not adjusted by FHWA to account for losses. In addition, diesel losses were not considered significant and were not counted. During the reassessment meetings and in the Federal Register notice of August 17, 2000, it was recommended that actual diesel losses also be documented and reported. However, because diesel reporting accounts for actual on-highway fuel use, a reporting of diesel losses is unnecessary.

12

Extraction Loss of Natural Gas at Processing Plants (Summary...  

Annual Energy Outlook 2012 (EIA)

Extraction Loss Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area...

13

Reducing Safety Flaring through Advanced Control  

E-Print Network (OSTI)

An advanced process control application, using DMCplus® (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system pressure required changes in C3/C4 make-up gas usage. These changes led, in turn, to some instability in the fuel gas system that sometimes required purge to the safety flare system to stabilize. As the composition of the fuel gas supply changed, so did its heating value, which caused fluctuations in the control of various fuel gas consumers. The DMCplus application now controls fuel gas pressure tightly and also stabilizes the fuel gas heating value. The understanding of each fuel gas provider and user was essential to the success of this application, as was the design of the DMCplus application. SmartStepTM (Aspen Technology, Inc.) - automated testing software - was used to efficiently develop the DMCplus models; however, a number of models were developed prior to the plant test period using long-term plant history data.

Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

2010-01-01T23:59:59.000Z

14

Sauget Plant Flare Gas Reduction Project  

E-Print Network (OSTI)

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams.

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

15

Process Modeling and Reduction of Copper Loss in Smelting Slag  

Science Conference Proceedings (OSTI)

The copper losses in RHF slag was more than 3% in 2006 and 2007. ... How to Control Strength and Grain Structure of 304L Stainless Steel during Forging .... Use of Polymeric Residues from the Footwear Industry in Layers of Asphalt ...

16

FLARES PRODUCING WELL-ORGANIZED POST-FLARE ARCADES (SLINKIES) HAVE EARLY PRECURSORS  

SciTech Connect

Exploding loop systems producing X-ray flares often, but not always, bifurcate into a long-living, well-organized system of multi-threaded loop arcades resembling solenoidal slinkies. The physical conditions that cause or prevent this process are not known. To address this problem, we examined most of the major (X-class) flares that occurred during the last decade and found that the flares that bifurcate into long-living slinky arcades have different signatures than those that do not 'produce' such structures. The most striking difference is that, in all cases of slinky formation, GOES high energy proton flux becomes significantly enhanced 10-24 hr before the flare occurs. No such effect was found prior to the 'non-slinky' flares. This fact may be associated with the difference between energy production by a given active region and the amount of energy required to bring the entire system into the form of well-organized, self-similar loop arcades. As an example illustrating the process of post-flare slinky formation, we present observations taken with the Hinode satellite, in several wavelengths, showing a time sequence of pre-flare and flare activity, followed by the formation of dynamically stable, well-organized structures. One of the important features revealed is that post-flare coronal slinky formation is preceded by scale invariant structure formation in the underlying chromosphere/transition region. We suggest that the observed regularities can be understood within the framework of self-organized critical dynamics characterized by scale invariant structure formation with critical parameters largely determined by energy saturation level. The observed regularities per se may serve as a long-term precursor of strong flares and may help to study predictability of system behavior.

Ryutova, M. P. [Lawrence Livermore National Laboratory/IGPP, Livermore, CA 94550 (United States); Frank, Z.; Hagenaar, H.; Berger, T., E-mail: ryutova1@llnl.gov, E-mail: zoe@lmsal.com, E-mail: hagenaar@lmsal.com, E-mail: berger@lmsal.com [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2011-06-01T23:59:59.000Z

17

Initial Observations of Sunspot Oscillations Excited by Solar Flare  

E-Print Network (OSTI)

Observations of a large solar flare of December 13, 2006, using Solar Optical Telescope (SOT) on Hinode spacecraft revealed high-frequency oscillations excited by the flare in the sunspot chromosphere. These oscillations are observed in the region of strong magnetic field of the sunspot umbra, and may provide a new diagnostic tool for probing the structure of sunspots and understanding physical processes in solar flares.

Kosovichev, A G

2007-01-01T23:59:59.000Z

18

Process and design techniques for low loss integrated silicon photonics  

E-Print Network (OSTI)

Microprocessors have truly revolutionized the efficiency of the world due to the high-volume and low-cost of complimentary metal oxide semiconductor (CMOS) process technology. However, the traditional scaling methods by ...

Sparacin, Daniel Knight

2006-01-01T23:59:59.000Z

19

STATISTICAL ANALYSES ON THERMAL ASPECTS OF SOLAR FLARES  

SciTech Connect

The frequency distribution of flare energies provides a crucial diagnostic to calculate the overall energy residing in flares and to estimate the role of flares in coronal heating. It often takes a power law as its functional form. We have analyzed various variables, including the thermal energies E{sub th} of 1843 flares at their peak time. They were recorded by both Geostationary Operational Environmental Satellites and Reuven Ramaty High-Energy Solar Spectroscopic Imager during the time period from 2002 to 2009 and are classified as flares greater than C 1.0. The relationship between different flare parameters is investigated. It is found that fitting the frequency distribution of E{sub th} to a power law results in an index of -2.38. We also investigate the corrected thermal energy E{sub cth}, which represents the flare total thermal energy including the energy loss in the rising phase. Its corresponding power-law slope is -2.35. Compilation of the frequency distributions of the thermal energies from nanoflares, microflares, and flares in the present work and from other authors shows that power-law indices below -2.0 have covered the range from 10{sup 24} to 10{sup 32} erg. Whether this frequency distribution can provide sufficient energy to coronal heatings in active regions and the quiet Sun is discussed.

Li, Y. P.; Gan, W. Q.; Feng, L., E-mail: wqgan@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China)

2012-03-10T23:59:59.000Z

20

Predict flare noise and spectrum  

Science Conference Proceedings (OSTI)

Predicting flare combustion noise is important to ensure the flare is a certain distance from inhabited areas. Generally, it not feasible to increase the stack height to lower the overall noise at a particular point. This article shows how to calculate flare noise including spectrum considerations. Depending on the spectrum, a lower power noise source may sound louder than a higher power source.

Leite, O.C. (Pilgrim Steel Co., Glassboro, NJ (US))

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Loss Effect in High Energy Nuclear Drell-Yan Process  

E-Print Network (OSTI)

The energy loss effect in nuclear matter, which is another nuclear effect apart from the nuclear effect on the parton distribution as in deep inelastic scattering process, can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of the nuclear parton distribution studied only with lepton deep inelastic scattering experimental data, measured Drell-Yan production cross sections for 800GeV proton incident on a variety of nuclear targets are analyzed within Glauber framework which takes into account energy loss of the beam proton. It is shown that the theoretical results with considering the energy loss effect are in good agreement with the FNAL E866.

Chun-Gui Duan; Li-Hua Song; Li-Juan Huo; Guang-Lie Li

2004-05-13T23:59:59.000Z

22

Energy Loss Effect in High Energy nuclear Drell-Yan Process  

E-Print Network (OSTI)

The energy loss effect in nuclear matter,which is another nuclear effect apart from the nuclear effect on the parton distribution as in deep inelastic scattering process,can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of the nuclear parton distribution studied only with lepton deep inelastic scattering experimental data, measured Drell-Yan production cross sections for 800GeV proton incident on a variety of nuclear targets are analyzed within Glauber framework which takes into account energy loss of the beam proton. It is shown that the theoretical results with considering the energy loss effect are in good agreement with the FNAL E866.

Chungui Duan

2004-01-01T23:59:59.000Z

23

The excess wing in the dielectric loss of glass-forming ethanol: A relaxation process  

E-Print Network (OSTI)

A detailed dielectric investigation of liquid, supercooled liquid, and glassy ethanol reveals a third relaxation process, in addition to the two processes already known. The relaxation time of the newly detected process exhibits strong deviations from thermally activated behavior. Most important, this process is the cause of the apparent excess wing, which was claimed to be present in the dielectric loss spectra of glass-forming ethanol. In addition, marked deviations of the spectra of ethanol from the scaling proposed by Dixon and Nagel have been detected.

R. Brand; P. Lunkenheimer; U. Schneider; A. Loidl

2000-02-29T23:59:59.000Z

24

Quark energy loss and shadowing in nuclear Drell-Yan process  

E-Print Network (OSTI)

The energy loss effect in nuclear matter is another nuclear effect apart from the nuclear effects on the parton distribution as in deep inelastic scattering process. The quark energy loss can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of three kinds of quark energy loss parameterizations given in literature and the nuclear parton distribution extracted only with lepton-nucleus deep inelastic scattering experimental data, measured Drell-Yan production cross sections are analyzed for 800GeV proton incident on a variety of nuclear targets from FNAL E866. It is shown that our results with considering the energy loss effect are much different from these of the FNAL E866 who analysis the experimental data with the nuclear parton distribution functions obtained by using the deep inelastic lA collisions and pA nuclear Drell-Yan data . Considering the existence of energy loss effect in Drell-Yan lepton pairs production,we suggest that the extraction of nuclear parton distribution functions should not include Drell-Yan experimental data.

Chun-Gui Duan; Shu-Wen Cui; Zhan-Yuan Yan; Guang-Lie Li

2004-08-16T23:59:59.000Z

25

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

26

Interferometric at-wavelength flare characterization of EUV optical systems  

DOE Patents (OSTI)

The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.

Naulleau, Patrick P. (Oakland, CA); Goldberg, Kenneth Alan (Berkeley, CA)

2001-01-01T23:59:59.000Z

27

Angular scattering in electron capture and loss D/sup -/ beam formation processes  

Science Conference Proceedings (OSTI)

The development of high energy (> 150 keV) neutral beams for heating and fueling magnetic fusion devices depends on the ability to produce well-collimated negative ion beams. The double capture charge-exchange technique is a known, scalable method. In order to maximize the overall efficiency of the process and to achieve the desired beam characteristics, it is necessary to examine the optical qualities of the beams as well as the total efficiency of beam production. A combined modeling and experimental study of the angular scattering effects in negative ion formation and loss processes has therefore been undertaken.

Coggiola, M.J.; Hodges, R.V.; Huestis, D.L.; Peterson, J.R.

1980-01-01T23:59:59.000Z

28

Remote Oscillatory responses to a solar flare  

E-Print Network (OSTI)

The processes governing energy storage and release in the Sun are both related to the solar magnetic field. We demonstrate the existence of a magnetic connection between energy released caused by a flare and increased oscillatory power in the lower solar atmosphere. The oscillatory power in active regions tends to increase in response to explosive events at a different location, but not in the region itself. We carry out timing studies and show that this is probably caused by a large scale magnetic connection between the regions, and not a globally propagating wave. We show that oscillations tend to exist in longer lived wave trains at short periods (Psolar atmosphere.

Andic, Aleksandra

2013-01-01T23:59:59.000Z

29

Analytic Loss Distributional Approach Model for Operational Risk from the alpha-Stable Doubly Stochastic Compound Processes and Implications for Capital Allocation  

E-Print Network (OSTI)

Under the Basel II standards, the Operational Risk (OpRisk) advanced measurement approach is not prescriptive regarding the class of statistical model utilised to undertake capital estimation. It has however become well accepted to utlise a Loss Distributional Approach (LDA) paradigm to model the individual OpRisk loss process corresponding to the Basel II Business line/event type. In this paper we derive a novel class of doubly stochastic alpha-stable family LDA models. These models provide the ability to capture the heavy tailed loss process typical of OpRisk whilst also providing analytic expressions for the compound process annual loss density and distributions as well as the aggregated compound process annual loss models. In particular we develop models of the annual loss process in two scenarios. The first scenario considers the loss process with a stochastic intensity parameter, resulting in an inhomogeneous compound Poisson processes annually. The resulting arrival process of losses under such a model...

Peters, Gareth W; Young, Mark; Yip, Wendy

2011-01-01T23:59:59.000Z

30

THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS  

Science Conference Proceedings (OSTI)

Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

Ryan, Daniel F.; Gallagher, Peter T. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-10-15T23:59:59.000Z

31

A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses  

Science Conference Proceedings (OSTI)

A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification efficiency is calculated based on entropy balances or based on exergy balances. In practice, however, exergy balances are less affected by measurement uncertainties, whereas entropy balances can not be recommended if measurement uncertainties are not corrected in a way that the energy balance of the storage process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged directly, and a tank-in-tank system whose outer tank is charged and the inner tank is discharged thereafter. The new method has a great potential for the comparison of the stratification efficiencies of thermal energy storages and storage components such as stratifying devices. (author)

Haller, Michel Y.; Streicher, Wolfgang [Institute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25/B, 8010 Graz (Austria); Yazdanshenas, Eshagh; Andersen, Elsa; Furbo, Simon [Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800, Kgs. Lyngby (Denmark); Bales, Chris [Solar Energy Research Center SERC, Hoegskolan Dalarna, 781 88 Borlaenge (Sweden)

2010-06-15T23:59:59.000Z

32

Earth Planets Space, , , Flares and the Chromosphere  

E-Print Network (OSTI)

The radiative energy of a solar flare appears mainly in the optical and UV continuum, which form in the lower,631-14,659 (1997). Obayashi, T., Energy Build-up and Release Mechanisms in Solar and Auro- ral Flares, Solar Phys produces in the photospheric magnetic field. Key words: Solar flares, Solar chromosphere, Solar corona

Hudson, Hugh

33

OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES  

SciTech Connect

Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures of 2 Multiplication-Sign 10{sup 4} K and observed peak luminosities of M{sub g} = -18.3 and -20.4 ({nu}L{sub {nu}} = 5 Multiplication-Sign 10{sup 42}, 4 Multiplication-Sign 10{sup 43} erg s{sup -1}, in the rest frame); their cooling rates are very low, qualitatively consistent with expectations for tidal disruption flares. The properties of the TDE candidates are examined using (1) SDSS imaging to compare them to other flares observed in the search, (2) UV emission measured by GALEX, and (3) spectra of the hosts and of one of the flares. Our pipeline excludes optically identifiable AGN hosts, and our variability monitoring over nine years provides strong evidence that these are not flares in hidden AGNs. The spectra and color evolution of the flares are unlike any SN observed to date, their strong late-time UV emission is particularly distinctive, and they are nuclear at high resolution arguing against these being first cases of a previously unobserved class of SNe or more extreme examples of known SN types. Taken together, the observed properties are difficult to reconcile with an SN or an AGN-flare explanation, although an entirely new process specific to the inner few hundred parsecs of non-active galaxies cannot be excluded. Based on our observed rate, we infer that hundreds or thousands of TDEs will be present in current and next-generation optical synoptic surveys. Using the approach outlined here, a TDE candidate sample with O(1) purity can be selected using geometric resolution and host and flare color alone, demonstrating that a campaign to create a large sample of TDEs, with immediate and detailed multi-wavelength follow-up, is feasible. A by-product of this work is quantification of the power spectrum of extreme flares in AGNs.

Van Velzen, Sjoert; Farrar, Glennys R. [Center for Cosmology and Particle Physics, New York University, NY 10003 (United States); Gezari, Suvi [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Morrell, Nidia [Carnegie Observatories, Las Campanas Observatory, Casillas 601, La Serena (Chile); Zaritsky, Dennis [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Oestman, Linda [Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Smith, Mathew [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 (South Africa); Gelfand, Joseph [New York University-Abu Dhabi, Abu Dhabi (United Arab Emirates); Drake, Andrew J., E-mail: s.vanvelzen@astro.ru.nl [Center for Advance Computing Research, California Institute of Technology, Pasadena, CA 91225 (United States)

2011-11-10T23:59:59.000Z

34

Detecting Solar Neutrino Flares and Flavors  

E-Print Network (OSTI)

Intense solar flares originated in sun spots produce high energy particles (protons, $\\alpha$) well observable by satellites and ground-based detectors. The flare onset produces signals in different energy bands (radio, X, gamma and neutrons). The most powerful solar flares as the ones occurred on 23 February 1956, 29 September 1989 and the more recent on October 28th, and the 2nd, 4th, 13th of November 2003 released in sharp times the largest flare energies (${E}_{FL} \\simeq {10}^{31}\\div {10}^{32} erg). The high energy solar flare protons scatter within the solar corona and they must be source of a prompt neutrino burst through the production of charged pions. Later on, solar flare particles hitting the atmosphere may marginally increase the atmospheric neutrino flux. The prompt solar neutrino flare may be detected in the largest underground $\

D. Fargion

2003-12-01T23:59:59.000Z

35

Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare  

E-Print Network (OSTI)

A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.

J. Kasparova; M. Karlicky; E. P. Kontar; R. A. Schwartz; B. R. Dennis

2005-08-30T23:59:59.000Z

36

SIMULATING THE EFFECTS OF INITIAL PITCH-ANGLE DISTRIBUTIONS ON SOLAR FLARES  

SciTech Connect

In this work, we model both the thermal and non-thermal components of solar flares. The model we use, HYLOOP, combines a hydrodynamic equation solver with a non-thermal particle tracking code to simulate the thermal and non-thermal dynamics and emission of solar flares. In order to test the effects of pitch-angle distribution on flare dynamics and emission, a series of flares is simulated with non-thermal electron beams injected at the loop apex. The pitch-angle distribution of each beam is described by a single parameter and allowed to vary from flare to flare. We use the results of these simulations to generate synthetic hard and soft X-ray emissions (HXR and SXR). The light curves of the flares in Hinode's X-ray Telescope passbands show a distinct signal that is highly dependent on pitch-angle distribution. The simulated HXR emission in the 3-6 keV bandpass shows the formation and evolution of emission sources that correspond well to the observations of pre-impulsive flares. This ability to test theoretical models of thermal and non-thermal flare dynamics directly with observations allows for the investigation of a wide range of physical processes governing the evolution of solar flares. We find that the initial pitch-angle distribution of non-thermal particle populations has a profound effect on loop top HXR and SXR emission and that apparent motion of HXR is a natural consequence of non-thermal particle evolution in a magnetic trap.

Winter, Henry D.; Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); Martens, Petrus, E-mail: hwinter@cfa.harvard.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

2011-07-10T23:59:59.000Z

37

THE ABRUPT CHANGES IN THE PHOTOSPHERIC MAGNETIC AND LORENTZ FORCE VECTORS DURING SIX MAJOR NEUTRAL-LINE FLARES  

SciTech Connect

We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.

Petrie, G. J. D. [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

2012-11-01T23:59:59.000Z

38

Recovering Flare Gas Energy - A Different Approach  

E-Print Network (OSTI)

Most petrochemical complexes and oil refineries have systems to collect and dispose of waste gases. Usually this is done by burning in a flare. Some installations recover these gases by compressing them into their fuel system. Because SunOlin shares its flare system with a neighboring oil refinery, changes to the flare system operation could have far-reaching impact on both plants. Therefore, a flare gas recovery system was designed and installed so that waste gases can be burned directly in a steam boiler. This was done for both safety and operational reasons. This presented a number of interesting design and operating problems which are discussed in this paper.

Brenner, W.

1987-09-01T23:59:59.000Z

39

Terrestrial Response To Eruptive Solar Flares: Geomagnetic  

E-Print Network (OSTI)

During the interval of August 1978- December 1979, 56 unambiguous fast forward shocks were identified using magnetic field and plasma data collected by the spacecraft. Because this is at a solar maximum we assume the streams causing these shocks are associated coronal mass ejections and eruptive solar flares. For these shocks we shall describe the shock- storm relationship for the level of intense storms storms. We will also present for the solar physicist a summary of the interplanetary /magnetosphere functions, based on the reconnection process. We will d by giving an overview of the long-term evolution of geomagnetic storms such those associated with the seasonal and solar cycle distributions. 1. Introduction Because the em...

Walter Gonzalez Instituto; Walter D. Gonzalez; Bruce T. Tsurutani

1989-01-01T23:59:59.000Z

40

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Natural Gas Vented and Flared Ohio Natural Gas Gross Withdrawals and Production Natural Gas Vented and Flared...

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Texas Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Vented and Flared (Million Cubic Feet) Texas Natural Gas Vented and Flared (Million Cubic Feet) Decade...

42

CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS  

SciTech Connect

Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

Wang Haimin; Liu Chang, E-mail: haimin.wang@njit.edu [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States)

2012-12-01T23:59:59.000Z

43

Solar Flares STFC Advanced Summer School  

E-Print Network (OSTI)

Solar Flares STFC Advanced Summer School in Solar Physics H. S. Hudson Space Sciences Laboratory University of California, Berkeley and University of Glasgow Glasgow Summerschool 2011 Part 1: Introduction · A solar flare is, strictly speaking, the electromagnetic radiation from a coronal magnetic energy release

California at Berkeley, University of

44

Analysis of the working process and mechanical losses in a Stirling engine for a solar power unit  

SciTech Connect

In this paper a second level mathematical model for the computational simulation of the working process of a 1-kW Stirling engine has been used and the results obtained are presented. The internal circuit of the engine in the calculation scheme was divided into five chambers, namely, the expansion space, heater, regenerator, cooler and the compression space, and the governing system of ordinary differential equations for the energy and mass conservation were solved in each chamber by Euler`s method. In addition, mechanical losses in the construction of the engine have been determined and the computational results show that the mechanical losses for this particular design of the Stirling engine may be up to 50% of the indicated power of the engine.

Makhkamov, K.K. [Uzbek Academy of Sciences, Tashkent (Uzbekistan). Physical and Technical Inst.; Ingham, D.B. [Univ. of Leeds (United Kingdom). Dept. of Applied Mathematics

1999-05-01T23:59:59.000Z

45

A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES  

Science Conference Proceedings (OSTI)

We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.

Masson, S.; Antiochos, S. K. [Space Weather Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); DeVore, C. R., E-mail: sophie.masson@nasa.gov [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

2013-07-10T23:59:59.000Z

46

Reordering an index to speed query processing without loss of effectiveness  

Science Conference Proceedings (OSTI)

Following Long and Suel, we empirically investigate the importance of document order in search engines which rank documents using a combination of dynamic (query-dependent) and static (query-independent) scores, and use document-at-a-time (DAAT) processing. ... Keywords: efficiency and effectiveness, enterprise search, information retrieval, inverted files

David Hawking; Timothy Jones

2012-12-01T23:59:59.000Z

47

FLARING SOLAR HALE SECTOR BOUNDARIES  

SciTech Connect

The sector structure that organizes the magnetic field of the solar wind into large-scale domains has a clear pattern in the photospheric magnetic field as well. The rotation rate, 27-28.5 days, implies an effectively rigid rotation originating deeper in the solar interior than the sunspots. The photospheric magnetic field is known to be concentrated near that portion (the Hale boundary) in each solar hemisphere, where the change in magnetic sector polarity matches that between the leading and following sunspot polarities in active regions in the respective hemispheres. We report here that flares and microflares also concentrate at the Hale boundaries, implying that flux emergence and the creation of free magnetic energy in the corona also have a direct cause in the deep interior.

Svalgaard, L. [HEPL, Stanford University, Stanford, CA 94304 (United States); Hannah, I. G.; Hudson, H. S., E-mail: leif@leif.org [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

2011-05-20T23:59:59.000Z

48

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network (OSTI)

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery fuel gas system. The system consists of liquid knock-out, compression, and liquid seal facilities. Now that the debugging-stage challenges have been dealt with, Shell Canada is more than satisfied with the system performance. A well-thought-out installation can today be safe, trouble-free, and attractive from an economic and environmental viewpoint. This paper highlights general guidelines for the sizing, design and operation of a refinery flare gas recovery facility.

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

49

Product transfer service chosen over LPG flaring  

SciTech Connect

Seadrift Pipeline Corp. recently decommissioned its Ella Pipeline, an 108-mile, 8-in. line between the King Ranch and a Union Carbide plant at Seadrift, Texas. The pipeline company opted for the product transfer services of pipeline Dehydrators Inc. to evacuate the ethane-rich LPG mixture from the pipeline instead of flaring the LPG or displacing it with nitrogen at operating pressures into another pipeline. The product transfer system of Pipeline Dehydrators incorporates the use of highly specialized portable compressors, heat exchangers and interconnected piping. The product transfer process of evacuating a pipeline is an economically viable method that safely recovers a very high percentage of the product while maintaining product purity. Using positive-displacement compressors, PLD transferred the LPG from the idled 8-in. Ella line into an adjacent 12-in. ethane pipeline that remained in service at approximately 800 psig. Approximately 4.3 million lb of LPG (97% ethane, 2.7% methane and 0.3% propane) were transferred into the ethane pipeline, lowering the pressure on the Ella Pipeline from 800 psig to 65 psig.

Horn, J.; Powers, M.

1994-07-01T23:59:59.000Z

50

Enclosed ground-flare incinerator  

DOE Patents (OSTI)

An improved ground flare is provided comprising a stack, two or more burner assemblies, and a servicing port so that some of the burner assemblies can be serviced while others remain in operation. The burner assemblies comprise a burner conduit and nozzles which are individually fitted to the stack's burner chamber and are each removably supported in the chamber. Each burner conduit is sealed to and sandwiched between a waste gas inlet port and a matching a closure port on the other side of the stack. The closure port can be opened for physically releasing the burner conduit and supplying sufficient axial movement room for extracting the conduit from the socket, thereby releasing the conduit for hand removal through a servicing port. Preferably, the lower end of the stack is formed of one or more axially displaced lower tubular shells which are concentrically spaced for forming annular inlets for admitting combustion air. An upper tubular exhaust stack, similarly formed, admits additional combustion air for increasing the efficiency of combustion, increasing the flow of exhausted for improved atmospheric dispersion and for cooling the upper stack.

Wiseman, Thomas R. (Calgary, CA)

2000-01-01T23:59:59.000Z

51

New waste-heat refrigeration unit cuts flaring, reduces pollution  

Science Conference Proceedings (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

52

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Vented and Flared (Million Cubic Feet) Ohio Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0...

53

Illinois Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Illinois Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

54

The Role of Magnetic Fields in Transient Seismic Emission Driven by Atmospheric Heating in Flares  

E-Print Network (OSTI)

The physics of transient seismic emission in flares remains largely mysterious. Its discoverers proposed that these "sunquakes" are the signature of a shock driven by "thick-target heating" of the flaring chromosphere. H-{\\alpha} observations show evidence for such a shock. However, simulations of shocks driven by impulsive chromospheric heating show withering radiative losses as the shock proceeds downward. The compression of the shocked gas heats and increases its density, making it more radiative. So, radiative losses increase radically with the strength of the shock. This has introduced doubt that sufficient energy from such a shock can penetrate into the solar interior to match that indicated by the helioseismic signatures. We point out that simulations of acoustic transients driven by impulsive heating have no account for magnetic fields characteristic of transient-seismic-source environments. These must have a major impact on the seismic flux conducted into the solar interior. A strong horizontal magne...

Lindsey, C; Oliveros, J C Martinez; Hudson, H S

2013-01-01T23:59:59.000Z

55

Solar flares as harbinger of new physics  

E-Print Network (OSTI)

This work provides additional evidence on the involvement of exotic particles like axions and/or other WISPs, following recent measurements during the quietest Sun and flaring Sun. Thus, SPHINX mission observed a minimum basal soft X-rays emission in the extreme solar minimum in 2009. The same scenario (with ~17 meV axions) fits also the dynamical behaviour of white-light solar flares, like the measured spectral components in the visible and in soft X-rays, and, the timing between them. Solar chameleons remain a viable candidate, since they may preferentially convert to photons in outer space.

Zioutas, K; Semertzidis, Y; Papaevangelou, T; Georgiopoulou, E; Gardikiotis, A; Dafni, T

2011-01-01T23:59:59.000Z

56

CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158  

SciTech Connect

It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 A channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 Multiplication-Sign 10{sup 20} Mx, 2.0 Multiplication-Sign 10{sup 20} Mx, and 21.0 Multiplication-Sign 10{sup 20} Mx, respectively, resulting in free energy drops of 3.89 Multiplication-Sign 10{sup 30} erg, 2.62 Multiplication-Sign 10{sup 30} erg, and 1.68 Multiplication-Sign 10{sup 32} erg.

Tarr, Lucas; Longcope, Dana; Millhouse, Margaret [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

2013-06-10T23:59:59.000Z

57

He I D3 OBSERVATIONS OF THE 1984 MAY 22 M6.3 SOLAR FLARE  

SciTech Connect

The He I D3 line has a unique response to a flare impact on the low solar atmosphere and can be a powerful diagnostic tool for energy transport processes. Using images obtained from the recently digitized films of the Big Bear Solar Observatory, we report D3 observations of the M6.3 flare on 1984 May 22, which occurred in an active region with a circular magnetic polarity inversion line (PIL). The impulsive phase of the flare starts with a main elongated source that darkens in D3, inside of which bright emission kernels appear at the time of the initial small peak in hard X-rays (HXRs). These flare cores subsequently evolve into a sharp emission strand lying within the dark halo; this evolution occurs at the same time as the main peak in HXRs, reversing the overall source contrast from -5% to 5%. The radiated energy in D3 during the main peak is estimated to be about 10{sup 30} erg, which is comparable to that carried by nonthermal electrons above 20 keV. Afterward, the flare proceeds along the circular PIL in the counterclockwise direction to form a dark circular ribbon in D3, which apparently mirrors the bright ribbons in H{alpha} and He I 10830 A. All of these ribbons last for over one hour in the late gradual phase. We suggest that the present event resembles the so-called black-light flare that was proposed based on continuum images, and that D3 darkening and brightening features herein may be due to thermal conduction heating and the direct precipitation of high-energy electrons, respectively.

Liu Chang; Xu Yan; Deng Na; Lee, Jeongwoo; Zhang Jifeng; Wang Haimin [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Prasad Choudhary, Debi, E-mail: chang.liu@njit.edu [Physics and Astronomy Department, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-0001 (United States)

2013-09-01T23:59:59.000Z

58

A Bayesian approach to comparing theoretic models to observational data: A case study from solar flare physics  

E-Print Network (OSTI)

Solar flares are large-scale releases of energy in the solar atmosphere, which are characterized by rapid changes in the hydrodynamic properties of plasma from the photosphere to the corona. Solar physicists have typically attempted to understand these complex events using a combination of theoretical models and observational data. From a statistical perspective, there are many challenges associated with making accurate and statistically significant comparisons between theory and observations, due primarily to the large number of free parameters associated with physical models. This class of ill-posed statistical problem is ideally suited to Baysian methods. In this paper, the solar flare studied by Raftery et al. (2008) is reanalysed using a Baysian framework. This enables us to study the evolution of the flare's temperature, emission measure and energy loss in a statistically self-consistent manner. The Baysian-based techniques confirm that both conductive and non-thermal beam heating play important roles i...

Adamakis, S; Walsh, R W; Gallagher, P T

2011-01-01T23:59:59.000Z

59

COMPARISON OF SEISMIC SIGNATURES OF FLARES OBTAINED BY SOHO/MICHELSON DOPPLER IMAGER AND GONG INSTRUMENTS  

Science Conference Proceedings (OSTI)

The first observations of seismic responses to solar flares were carried out using time-distance (TD) and holography techniques applied to SOHO/Michelson Doppler Imager (MDI) Dopplergrams obtained from space and unaffected by terrestrial atmospheric disturbances. However, the ground-based network GONG is potentially a very valuable source of sunquake observations, especially in cases where space observations are unavailable. In this paper, we present an updated technique for pre-processing of GONG observations for the application of subjacent vantage holography. Using this method and TD diagrams, we investigate several sunquakes observed in association with M- and X-class solar flares and compare the outcomes with those reported earlier using MDI data. In both GONG and MDI data sets, for the first time, we also detect the TD ridge associated with the 2001 September 9 flare. Our results show reassuringly positive identification of sunquakes from GONG data that can provide further information about the physics of seismic processes associated with solar flares.

Zharkov, S.; Matthews, S. A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT (United Kingdom); Zharkova, V. V. [Horton D Building, Department of Mathematics, University of Bradford, Bradford, BD7 1DP (United Kingdom)

2011-10-01T23:59:59.000Z

60

Super-hot (T > 30 MK) Thermal Plasma in Solar Flares  

E-Print Network (OSTI)

The Sun offers a convenient nearby laboratory to study the physical processes of particle acceleration and impulsive energy release in magnetized plasmas that occur throughout the universe, from planetary magnetospheres to black hole accretion disks. Solar flares are the most powerful explosions in the solar system, releasing up to 10^32-10^33 ergs over only 100-1,000 seconds, accelerating electrons up to hundreds of MeV and heating plasma to tens of MK. The accelerated electrons and the hot plasma each contain tens of percent of the total flare energy, indicating an intimate link between particle acceleration, plasma heating, and flare energy release. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observes the X-ray emission from these processes from ~3 keV to ~17 MeV with unprecedented spectral, spatial, and temporal resolution. RHESSI observations show that "super-hot" (>30 MK) plasma temperatures are achieved almost exclusively by intense, GOES X-class flares and appear to be strictly a...

Caspi, Amir

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A NEW METHOD FOR CLASSIFYING FLARES OF UV Ceti TYPE STARS: DIFFERENCES BETWEEN SLOW AND FAST FLARES  

SciTech Connect

In this study, a new method is presented to classify flares derived from the photoelectric photometry of UV Ceti type stars. This method is based on statistical analyses using an independent samples t-test. The data used in analyses were obtained from four flare stars observed between 2004 and 2007. The total number of flares obtained in the observations of AD Leo, EV Lac, EQ Peg, and V1054 Oph is 321 in the standard Johnson U band. As a result flares can be separated into two types, slow and fast, depending on the ratio of flare decay time to flare rise time. The ratio is below 3.5 for all slow flares, while it is above 3.5 for all fast flares. Also, according to the independent samples t-test, there is a difference of about 157 s between equivalent durations of slow and fast flares. In addition, there are significant differences between amplitudes and rise times of slow and fast flares.

Dal, H. A.; Evren, S., E-mail: ali.dal@ege.edu.t [Department of Astronomy and Space Sciences, University of Ege, Bornova, 35100 Izmir (Turkey)

2010-08-15T23:59:59.000Z

62

A Statistical Solar Flare Forecast Method  

E-Print Network (OSTI)

A Bayesian approach to solar flare prediction has been developed, which uses only the event statistics of flares already observed. The method is simple, objective, and makes few ad hoc assumptions. It is argued that this approach should be used to provide a baseline prediction for certain space weather purposes, upon which other methods, incorporating additional information, can improve. A practical implementation of the method for whole-Sun prediction of Geostationary Observational Environment Satellite (GOES) events is described in detail, and is demonstrated for 4 November 2003, the day of the largest recorded GOES flare. A test of the method is described based on the historical record of GOES events (1975-2003), and a detailed comparison is made with US National Oceanic and Atmospheric Administration (NOAA) predictions for 1987-2003. Although the NOAA forecasts incorporate a variety of other information, the present method out-performs the NOAA method in predicting mean numbers of event days, for both M-X and X events. Skill scores and other measures show that the present method is slightly less accurate at predicting M-X events than the NOAA method, but substantially more accurate at predicting X events, which are important contributors to space weather.

M. S. Wheatland

2005-05-14T23:59:59.000Z

63

THE MECHANISMS FOR THE ONSET AND EXPLOSIVE ERUPTION OF CORONAL MASS EJECTIONS AND ERUPTIVE FLARES  

Science Conference Proceedings (OSTI)

We have investigated the onset and acceleration of coronal mass ejections (CMEs) and eruptive flares. To isolate the eruption physics, our study uses the breakout model, which is insensitive to the energy buildup process leading to the eruption. We performed 2.5D simulations with adaptive mesh refinement that achieved the highest overall spatial resolution to date in a CME/eruptive flare simulation. The ultra-high resolution allows us to separate clearly the timing of the various phases of the eruption. Using new computational tools, we have determined the number and evolution of all X- and O-type nulls in the system, thereby tracking both the progress and the products of reconnection throughout the computational domain. Our results show definitively that CME onset is due to the start of fast reconnection at the breakout current sheet. Once this reconnection begins, eruption is inevitable; if this is the only reconnection in the system, however, the eruption will be slow. The explosive CME acceleration is triggered by fast reconnection at the flare current sheet. Our results indicate that the explosive eruption is caused by a resistive instability, not an ideal process. Moreover, both breakout and flare reconnections begin first as a form of weak tearing characterized by slowly evolving plasmoids, but eventually transition to a fast form with well-defined Alfvenic reconnection jets and rapid flux transfer. This transition to fast reconnection is required for both CME onset and explosive acceleration. We discuss the key implications of our results for CME/flare observations and for theories of magnetic reconnection.

Karpen, J. T.; Antiochos, S. K. [Code 674, NASA GSFC, Greenbelt, MD 20771 (United States); DeVore, C. R. [Code 6042, NRL, Washington, DC 20375 (United States)

2012-11-20T23:59:59.000Z

64

Flare-gas recovery success at Canadian refineries  

SciTech Connect

It appears that some North American refining companies still cling to an old philosophy that flare gas recovery systems are unsafe, unreliable, uneconomic, or unnecessary. Shell Canada's recent experience with two modern systems has proven otherwise. Two of Shell Canada's refineries, at Sarnia, Ont., and Montreal East, Que., have now logged about 6 years' total operating experience with modern flare gas recovery units. The compression facilities in each utilize a two-stage reciprocating machine, one liquid seal drum per flare stack, and an automated load control strategy. The purpose was to recover the normal continuous flow of refinery flare gas for treatment and use in the refinery fuel gas system.

Allen, G.D.; Chan, H.H.; Wey, R.E.

1983-06-01T23:59:59.000Z

65

TOWARD RELIABLE BENCHMARKING OF SOLAR FLARE FORECASTING METHODS  

Science Conference Proceedings (OSTI)

Solar flares occur in complex sunspot groups, but it remains unclear how the probability of producing a flare of a given magnitude relates to the characteristics of the sunspot group. Here, we use Geostationary Operational Environmental Satellite X-ray flares and McIntosh group classifications from solar cycles 21 and 22 to calculate average flare rates for each McIntosh class and use these to determine Poisson probabilities for different flare magnitudes. Forecast verification measures are studied to find optimum thresholds to convert Poisson flare probabilities into yes/no predictions of cycle 23 flares. A case is presented to adopt the true skill statistic (TSS) as a standard for forecast comparison over the commonly used Heidke skill score (HSS). In predicting flares over 24 hr, the maximum values of TSS achieved are 0.44 (C-class), 0.53 (M-class), 0.74 (X-class), 0.54 ({>=}M1.0), and 0.46 ({>=}C1.0). The maximum values of HSS are 0.38 (C-class), 0.27 (M-class), 0.14 (X-class), 0.28 ({>=}M1.0), and 0.41 ({>=}C1.0). These show that Poisson probabilities perform comparably to some more complex prediction systems, but the overall inaccuracy highlights the problem with using average values to represent flaring rate distributions.

Bloomfield, D. Shaun; Higgins, Paul A.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland); McAteer, R. T. James, E-mail: shaun.bloomfield@tcd.ie [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003-8001 (United States)

2012-03-10T23:59:59.000Z

66

Geomagnetic storm dependence on the solar flare class  

E-Print Network (OSTI)

Content. Solar flares are often used as precursors of geomagnetic storms. In particular, Howard and Tappin (2005) recently published in A&A a dependence between X-ray class of solar flares and Ap and Dst indexes of geomagnetic storms which contradicts to early published results. Aims. We compare published results on flare-storm dependences and discuss possible sources of the discrepancy. Methods. We analyze following sources of difference: (1) different intervals of observations, (2) different statistics and (3) different methods of event identification and comparison. Results. Our analysis shows that magnitude of geomagnetic storms is likely to be independent on X-ray class of solar flares.

Yermolaev, Y I; Yermolaev, Yu. I.

2006-01-01T23:59:59.000Z

67

X-ray Flares in Gamma-Ray Bursts.  

E-Print Network (OSTI)

??Data from the Swift mission have now shown that flares are a common component of Gamma-Ray Burst afterglows, appearing in roughly 50% of GRBs to… (more)

Morris, David

2008-01-01T23:59:59.000Z

68

MAGNETAR GIANT FLARES AND THEIR PRECURSORS-FLUX ROPE ERUPTIONS WITH CURRENT SHEETS  

SciTech Connect

We propose a catastrophic magnetospheric model for magnetar precursors and their successive giant flares. Axisymmetric models of the magnetosphere, which contain both a helically twisted flux rope and a current sheet, are established based on force-free field configurations. In this model, the helically twisted flux rope would lose its equilibrium and erupt abruptly in response to the slow and quasi-static variations at the ultra-strongly magnetized neutron star's surface. In a previous model without current sheets, only one critical point exists in the flux rope equilibrium curve. New features show up in the equilibrium curves for the flux rope when current sheets appear in the magnetosphere. The causal connection between the precursor and the giant flare, as well as the temporary re-entry of the quiescent state between the precursor and the giant flare, can be naturally explained. Magnetic energy would be released during the catastrophic state transitions. The detailed energetics of the model are also discussed. The current sheet created by the catastrophic loss of equilibrium of the flux rope provides an ideal place for magnetic reconnection. We point out the importance of magnetic reconnection for further enhancement of the energy release during eruptions.

Yu Cong [National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China); Huang Lei, E-mail: cyu@ynao.ac.cn, E-mail: muduri@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China)

2013-07-10T23:59:59.000Z

69

An Experiment to Locate the Site of TeV Flaring in M87  

SciTech Connect

We describe a Chandra X-ray target-of-opportunity project designed to isolate the site of TeV flaring in the radio galaxy M87. To date, we have triggered the Chandra observations only once (2010 April) and by the time of the first of our nine observations, the TeV flare had ended. However, we found that the X-ray intensity of the unresolved nucleus was at an elevated level for our first observation. Of the more than 60 Chandra observations we have made of the M87 jet covering nine years, the nucleus was measured at a comparably high level only three times. Two of these occasions can be associated with TeV flaring, and at the time of the third event, there were no TeV monitoring activities. From the rapidity of the intensity drop of the nucleus, we infer that the size of the emitting region is of order a few light days x the unknown beaming factor; comparable to the same sort of estimate for the TeV emitting region. We also find evidence of spectral evolution in the X-ray band which seems consistent with radiative losses affecting the non-thermal population of the emitting electrons within the unresolved nucleus.

Harris, D.E.; /Harvard-Smithsonian Ctr. Astrophys.; Massaro, F.; /Harvard-Smithsonian Ctr. Astrophys. /KIPAC, Menlo Park /SLAC; Cheung, C.C.; /Natl. Acad. Sci. /Naval Research Lab, Wash., D.C.; Horns, D.; Raue, M.; /Hamburg U.; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; Wagner, S.; /Heidelberg Observ.; Colin, P.; /Munich, Max Planck Inst.; Mazin, D.; /Barcelona, IFAE; Wagner, R.; /Munich, Max Planck Inst.; Beilicke, M.; /McDonnell Ctr. Space Sci.; LeBohec, S.; Hui, M.; /Utah U.; Mukherjee, R.; /Barnard Coll.

2012-05-18T23:59:59.000Z

70

YOHKOH remnants: partially occulted flares in hard X-rays  

E-Print Network (OSTI)

Flares being partially occulted by the solar limb, are the best reservoir of our knowledge about hard X-ray loop-top sources. Recently, the survey of partially occulted flares observed by the RHESSI has been published (Krucker & Lin 2008). The extensive YOHKOH database still awaits such activities. This work is an attempt to fill this gap. Among from 1286 flares in the YOHKOH Hard X-ray Telescope Flare Catalogue, for which the hard X-ray images had been enclosed, we identified 98 events that occurred behind the solar limb. We investigated their hard X-ray spectra and spatial structure. We found that in most cases the hard X-ray spectrum of partially occulted flares consists of two components, non-thermal and thermal, which are co-spatial. The photon energy spectra of the partially occulted flares are systematically steeper than spectra of the non-occulted flares. Such a difference we explain as a consequence of intrinsically dissimilar conditions ruling in coronal parts of flares, in comparison with the f...

Tomczak, M

2009-01-01T23:59:59.000Z

71

Geomagnetic storm dependence on the solar flare class  

E-Print Network (OSTI)

We compare published results on flare-storm dependences and discuss possible sources of the discrepancy. We analyze following sources of difference: (1) different intervals of observations, (2) different statistics and (3) different methods of event identification and comparison. Our analysis shows that magnitude of geomagnetic storms is likely to be independent on X-ray class of solar flares.

Yu. I. Yermolaev; M. Yu. Yermolaev

2006-01-01T23:59:59.000Z

72

Summarizing FLARE assay images in colon carcinogenesis  

E-Print Network (OSTI)

Intestinal tract cancer is one of the more common cancers in the United States. While in some individuals a genetic component causes the cancer, the rate of cancer in the remainder of the population is believed to be affected by diet. Since cancer usually develops slowly, the amount of oxidative damage to DNA can be used as a cancer biomarker. This dissertation examines effective ways of analyzing FLARE assay data, which quanti?es oxidative damage. The statistical methods will be implemented on data from a FLARE assay experiment, which examines cells from the duodenum and the colon to see if there is a difference in the risk of cancer due to corn or ?sh oil diets. Treatments of the oxidizing agent dextran sodium sulfate (DSS), DSS with a recovery period, as well as a control will also be used. Previous methods presented in the literature examined the FLARE data by summarizing the DNA damage of each cell with a single number, such as the relative tail moment (RTM). Variable skewness is proposed as an alternative measure, and shown to be as effective as the RTM in detecting diet and treatment differences in the standard analysis. The RTM and skewness data is then analyzed using a hierarchical model, with both the skewness and RTM showing diet/treatment differences. Simulated data for this model is also considered, and shows that a Bayes Factor (BF) for higher dimensional models does not follow guidelines presented by Kass and Raftery (1995). It is hypothesized that more information is obtained by describing the DNA damage functions, instead of summarizing them with a single number. From each function, seven points are picked. First, they are modeled independently, and only diet effects are found. However, when the correlation between points at the cell and rat level is modeled, much stronger diet and treatment differences are shown both in the colon and the duodenum than for any of the previous methods. These results are also easier to interpret and represent graphically, showing that the latter is an effective method of analyzing the FLARE data.

Leyk Williams, Malgorzata

2004-12-01T23:59:59.000Z

73

Flares as fingerprints of inner solar darkness  

E-Print Network (OSTI)

Xray flares and other much weaker solar brightenings have their roots in magnetized regions. Until now, such a solar Xray emission had been discarded as potential axion signature, as it did not match the expectations of the standard axion model: signal must appear exclusively near disk centre and its analog spectrum must peak at 4.2 keV. We argue how to reconcile model with observation. This work is in support of previous claims about the axion origin of specific solar observations.

Zioutas, K; Semertzidis, Y; Papaevangelou, T

2008-01-01T23:59:59.000Z

74

The mass loss process in dwarf galaxies from 3D hydrodynamical simulations: the role of dark matter and starbursts  

E-Print Network (OSTI)

Theoretical $\\Lambda$CDM cosmological models predict a much larger number of low mass dark matter haloes than has been observed in the Local Group of galaxies. One possible explanation is the increased difficulty of detecting these haloes if most of the visible matter is lost at early evolutionary phases through galactic winds. In this work we study the current models of triggering galactic winds in dwarf spheroidal galaxies (dSph) from supernovae, and study, based on 3D hydrodynamic numerical simulations, the correlation of the mass loss rates and important physical parameters as the dark matter halo mass and its radial profile, and the star formation rate. We find that the existence of winds is ubiquitous, independent on the gravitational potential. Our simulations revealed that the Rayleigh-Taylor Instability (RTI) may play a major role on pushing matter out of these systems, even for very massive haloes. The instability is responsible for 5 - 40% of the mass loss during the early evolution of the galaxy, ...

Ruiz, Luciana O; Lanfranchi, Gustavo A; Caproni, Anderson

2012-01-01T23:59:59.000Z

75

ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES IN FLARING ACTIVE REGIONS  

Science Conference Proceedings (OSTI)

We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65{sup 0} of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of {approx}10 G to as high as {approx}450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65{sup 0} of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

Petrie, G. J. D. [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Sudol, J. J. [West Chester University, West Chester, PA 19383 (United States)

2010-12-01T23:59:59.000Z

76

X-ray Flares in Orion Low Mass Stars  

E-Print Network (OSTI)

Context. X-ray flares are common phenomena in pre-main sequence stars. Their analysis gives insights into the physics at work in young stellar coronae. The Orion Nebula Cluster offers a unique opportunity to study large samples of young low mass stars. This work is part of the Chandra Orion Ultradeep project (COUP), an ~10 day long X-ray observation of the Orion Nebula Cluster (ONC). Aims. Our main goal is to statistically characterize the flare-like variability of 165 low mass (0.1-0.3 M_sun) ONC members in order to test and constrain the physical scenario in which flares explain all the observed emission. Methods. We adopt a maximum likelihood piece-wise representation of the observed X-ray light curves and detect flares by taking into account both the amplitude and time derivative of the count-rate. We then derive the frequency and energy distribution of the flares. Results. The high energy tail of the energy distribution of flares is well described by a power-law with index 2.2. We test the hypothesis that light curves are built entirely by overlapping flares with a single power law energy distribution. We constrain the parameters of this simple model for every single light curve. The analysis of synthetic light curves obtained from the model indicates a good agreement with the observed data. Comparing low mass stars with stars in the mass interval (0.9-1.2M_sun), we establish that, at ~1 Myr, low mass and solar mass stars of similar X-ray luminosity have very similar flare frequencies. Conclusions. Our observational results are consistent with the following model/scenario: the light curves are entirely built by over- lapping flares with a power-law intensity distribution; the intense flares are individually detected, while the weak ones merge and form a pseudo-quiescent level, which we indicate as the characteristic level.

M. Caramazza; E. Flaccomio; G. Micela; F. Reale; S. J. Wolk; E. D. Feigelson

2007-06-11T23:59:59.000Z

77

CORONAL ELECTRON DISTRIBUTION IN SOLAR FLARES: DRIFT-KINETIC MODEL  

SciTech Connect

Using a model of particle acceleration and transport in solar flares, we investigate the height distribution of coronal electrons by focusing on the energy-dependent pitch-angle scattering. When pitch-angle scattering is not included, the peak heights of loop-top electrons are constant, regardless of their energy, owing to the continuous acceleration and compression of the electrons via shrinkage of magnetic loops. On the other hand, under pitch-angle scattering, the electron heights are energy-dependent: intermediate-energy electrons are at a higher altitude, whereas lower and higher energy electrons are at lower altitudes. This implies that the intermediate-energy electrons are inhibited from following the shrinking field lines to lower altitudes because pitch-angle scattering causes efficient precipitation of these electrons into the footpoint and their subsequent loss from the loop. This result is qualitatively consistent with the position of the above-the-loop-top hard X-ray (HXR) source that is located above coronal HXR loops emitted by lower energy electrons and microwaves emitted by higher energy electrons. Quantitative agreement with observations might be achieved by considering primary acceleration before the onset of loop shrinkage and additional pitch-angle scattering via wave-particle interactions.

Minoshima, Takashi; Kusano, Kanya [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25, Syowa-machi, Kanazawaku, Yokohama 236-0001 (Japan); Masuda, Satoshi; Miyoshi, Yoshizumi, E-mail: minoshim@jamstec.go.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

2011-05-10T23:59:59.000Z

78

LETTER Earth Planets Space, 61, 577580, 2009 Flares and the chromosphere  

E-Print Network (OSTI)

mechanism remains an open problem. Consideration of wave transport of energy in solar flares and CMEs seems. Melrose, D. B., Energy propagation into a flare kernel during a solar flare, ApJ, 387, 403­413, 1992 magnetic field. Key words: Solar flares, solar chromosphere, solar corona, Alfv´en waves. 1. Introduction

California at Berkeley, University of

79

HEATING OF FLARE LOOPS WITH OBSERVATIONALLY CONSTRAINED HEATING FUNCTIONS  

SciTech Connect

We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Angstrom-Sign observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models.

Qiu Jiong; Liu Wenjuan; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

2012-06-20T23:59:59.000Z

80

RAPID TRANSITION OF UNCOMBED PENUMBRAE TO FACULAE DURING LARGE FLARES  

Science Conference Proceedings (OSTI)

In the past two decades, the complex nature of sunspots has been disclosed with high-resolution observations. One of the most important findings is the 'uncombed' penumbral structure, where a more horizontal magnetic component carrying most of Evershed flows is embedded in a more vertical magnetic background. The penumbral bright grains are locations of hot upflows and dark fibrils are locations of horizontal flows that are guided by a nearly horizontal magnetic field. On the other hand, it was found that flares may change the topology of sunspots in {delta} configuration: the structure at the flaring polarity inversion line becomes darkened while sections of peripheral penumbrae may disappear quickly and permanently associated with flares. The high spatial and temporal resolution observations obtained with the Hinode/Solar Optical Telescope provide an excellent opportunity to study the evolution of penumbral fine structures associated with major flares. Taking advantage of two near-limb events, we found that in sections of peripheral penumbrae swept by flare ribbons the dark fibrils completely disappear, while the bright grains evolve into faculae that are signatures of vertical magnetic flux tubes. The corresponding magnetic fluxes measured in the decaying penumbrae show stepwise changes temporally correlated with the flares. These observations suggest that the horizontal magnetic field component of the penumbra could be straightened upward (i.e., turning from horizontal to vertical) due to magnetic field restructuring associated with flares, which results in the transition of penumbrae to faculae.

Wang Haimin; Deng Na; Liu Chang, E-mail: haimin.wang@njit.edu [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS  

Science Conference Proceedings (OSTI)

We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast ({>=}1000 km s{sup -1}) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes ({alpha} values) of power-law size distributions of the peak 1-8 A fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes {>=}1 pr cm{sup -2} s{sup -1} sr{sup -1}) and (b) fast CMEs were {approx}1.3-1.4 compared to {approx}1.2 for the peak proton fluxes of >10 MeV SEP events and {approx}2 for the peak 1-8 A fluxes of all SXR flares. The difference of {approx}0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

Cliver, E. W. [Space Vehicles Directorate, Air Force Research Laboratory, Sunspot, NM 88349 (United States); Ling, A. G. [Atmospheric Environmental Research, Lexington, MA 02421 (United States); Belov, A. [IZMIRAN, Troitsk, Moscow Region 142190 (Russian Federation); Yashiro, S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-09-10T23:59:59.000Z

82

PROPERTIES OF SEQUENTIAL CHROMOSPHERIC BRIGHTENINGS AND ASSOCIATED FLARE RIBBONS  

SciTech Connect

We report on the physical properties of solar sequential chromospheric brightenings (SCBs) observed in conjunction with moderate-sized chromospheric flares with associated Coronal mass ejections. To characterize these ephemeral events, we developed automated procedures to identify and track subsections (kernels) of solar flares and associated SCBs using high-resolution H{alpha} images. Following the algorithmic identification and a statistical analysis, we compare and find the following: SCBs are distinctly different from flare kernels in their temporal characteristics of intensity, Doppler structure, duration, and location properties. We demonstrate that flare ribbons are themselves made up of subsections exhibiting differing characteristics. Flare kernels are measured to have a mean propagation speed of 0.2 km s{sup -1} and a maximum speed of 2.3 km s{sup -1} over a mean distance of 5 Multiplication-Sign 10{sup 3} km. Within the studied population of SCBs, different classes of characteristics are observed with coincident negative, positive, or both negative and positive Doppler shifts of a few km s{sup -1}. The appearance of SCBs precedes peak flare intensity by Almost-Equal-To 12 minutes and decay Almost-Equal-To 1 hr later. They are also found to propagate laterally away from flare center in clusters at 45 km s{sup -1} or 117 km s{sup -1}. Given SCBs' distinctive nature compared to flares, we suggest a different physical mechanism relating to their origin than the associated flare. We present a heuristic model of the origin of SCBs.

Kirk, Michael S.; Balasubramaniam, K. S.; Jackiewicz, Jason; McAteer, R. T. James [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Milligan, Ryan O., E-mail: mskirk@nmsu.edu [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, University Road Belfast, BT7 1NN (United Kingdom)

2012-05-10T23:59:59.000Z

83

Methodology for estimating volumes of flared and vented natural gas  

Science Conference Proceedings (OSTI)

The common perception in the United States that natural gas produced with oil is a valuable commodity probably dates from the 1940's. Before that time, most operators regarded natural gas associated with or dissolved in oil as a nuisance. Indeed, most associated/dissolved natural gas produced in the United States before World War II probably was flared or vented to the atmosphere. This situation has changed in the United States, where flaring and venting have decreased dramatically in recent years, in part because of environmental concerns, but also because of the changing view of the value of natural gas. The idea that gas is a nuisance is beginning to change almost everywhere, as markets for gas have developed in Europe, Japan, and elsewhere, and as operators have increasingly utilized or reinjected associated-dissolved gas in their oil-production activities. Nevertheless, in some areas natural gas continues to be flared or vented to the atmosphere. Gas flares in Russia, the Niger Delta, and the Middle East are some of the brightest lights on the nighttime Earth. As we increasingly consider the global availability and utility of natural gas, and the environmental impacts of the consumption of carbon-based fuels, it is important to know how much gas has been flared or vented, how much gas is currently being flared or vented, and the distribution of flaring or venting through time. Unfortunately, estimates of the volumes of flared and vented gas are generally not available. Despite the inconsistency and inavailability of data, the extrapolation method outlined provides a reliable technique for estimating amounts of natural gas flared and vented through time. 36 refs., 7 figs., 6 tabs.

Klett, T.R.; Gautier, D.L. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

84

WAS AN OUTBURST OF AQUILA X-1 A MAGNETIC FLARE?  

Science Conference Proceedings (OSTI)

I point to an interesting similarity in the radio and the soft X-ray light curves between the 2009 November outburst of the X-ray binary Aquila X-1 and some solar flares. The ratio of the soft X-ray and radio luminosities of Aquila X-1 in that outburst is also similar to some weak solar flares, as is the radio spectrum near 8 GHz. Based on these as well as on some other recent studies that point to some similar properties of accretion disk coronae and stellar flares, such as the ratio of radio to X-ray luminosities, I speculate that the soft X-ray outburst of Aquila X-1 was related to a huge magnetic flare from its disk corona.

Soker, Noam, E-mail: soker@physics.technion.ac.i [Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

2010-10-01T23:59:59.000Z

85

Michigan Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Michigan Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 1,861: 1,120: 808 ...

86

Lifetime of solar flare particles in coronal storage regions  

Science Conference Proceedings (OSTI)

Most discussions of lifetime of flare particles in the solar corona have ... However, it is quite possible that the solar cosmic rays are not imbedded in I0 a K coronal.

87

Flare Noise Reduction Exxon Chemical- Baytown Olefins Plant: 1994 CMA Energy Efficiency Award for "Flare Noise Reduction" in the category of "Public Outreach/Plant Site"  

E-Print Network (OSTI)

Numerous community complaints were received because of what nearby residents perceived as excessive noise from BOP's elevated flares. Representatives from the Baytown Olefins Plant met with community residents to better understand their concerns. This qualitative data helped identify the flare noise problem to which BOP responded. BOP continued to solicit community feedback as various flare noise tests were conducted. Of particular concern to the community were low frequency rumbling noise and a higher frequency noise that resembles the sound of a jet plane passing overhead. To supplement the qualitative data received from the community, quantitative noise data was collected at various flaring conditions, wind conditions, and steam rates. Additional testing was performed to determine optimum steam rates for flaring events that could eliminate smoking and minimize noise. These tests concluded that reducing steam to the flare could reduce flare noise without jeopardizing smokeless operation. High intensity, low frequency rumbling noise (0-10 Hz), was rattling the windows and doors in the nearby community. It is typically generated by flame instability. Flame instability was occurring at BOP at fairly low flaring rates, and has been attributed to changes in the flare gas heating value and flare steam rates. Although a moderate amount of center steam lifts the flame off the top of the flare tip and prevents backburning (another source of flare noise), too much center steam makes a flame even less stable. This instability essentially causes a series of small explosions at the flare tip that generate low frequency noise. Combustion noise and steam injection noise contributed to the jet engine sound that was objectionable to the community. Steam injection noise increases as the amount of hydrocarbon burned in the flare increases, and noise increases as both hydrocarbon and steam injection increase. Although it is difficult to minimize the hydrocarbon to the flare, the steam to hydrocarbon ratio can be controlled to a minimum amount required for smokeless operation. Additionally, BOP can optimize the use of its two flares to reduce noise.

Bradham, S.; Stephan, R.

1996-04-01T23:59:59.000Z

88

THE n-DISTRIBUTION OF ELECTRONS AND DOUBLE LAYERS IN THE ELECTRON-BEAM-RETURN-CURRENT SYSTEM OF SOLAR FLARES  

SciTech Connect

We investigate processes in the electron-beam-return-current system in the impulsive phase of solar flares to answer a question about the formation of the n-electron distribution detected in this phase of solar flares. An evolution of the electron-beam-return-current system with an initial local density depression is studied using a three-dimensional electromagnetic particle-in-cell model. In the system the strong double layer is formed. Its electric field potential increases with the electron beam flux. In this electric field potential, the electrons of background plasma are strongly accelerated and propagate in the return-current direction. The high-energy part of their distribution at the high-potential side of the strong double layer resembles that of the n-distribution. Thus, the detection of the n-distributions, where a form of the high-energy part of the distribution is the most important, can indicate the presence of strong double layers in solar flares. The similarity between processes in solar flare loops and those in the downward current region of the terrestrial aurora, where the double layers were observed by FAST satellite, supports this idea.

Karlicky, Marian, E-mail: karlicky@asu.cas.cz [Astronomical Institute of the Academy of Sciences of the Czech Republic, CZ-25165 Ondrejov (Czech Republic)

2012-05-01T23:59:59.000Z

89

Correlation between Flux and Spectral Index during Flares in Sagittarius A*  

E-Print Network (OSTI)

Flares in Sagittarius A* are produced by hot plasmas within a few Schwarzschild radii of the supermassive black hole at the Galactic center. The recent detection of a correlation between the spectral index and flux during a near infrared (NIR) flare provides a means to conduct detailed investigations of the plasma heating and radiation processes. We study the evolution of the electron distribution function under the influence of a turbulent magnetic field in a hot collisionless plasma. The magnetic field, presumably generated through instabilities in the accretion flow, can both heat the plasma via resonant wave-particle coupling and cool the electrons via radiation. The electron distribution can generally be approximated as relativistic Maxwellian. To account for the observed correlation, we find that the magnetic field needs to be anti-correlated with the electron ''temperature''. NIR and X-ray light curves are produced for a cooling and a heating phase. The model predicts simultaneous flare activity in the NIR and X-ray bands, which can be compared with observations. These results can be applied to MHD simulations to study the radiative characteristics of collisionless plasmas, especially accretion flows in low-luminosity AGNs.

Jonathan M. Bittner; Siming Liu; Christopher L. Fryer; Vahe Petrosian

2006-08-10T23:59:59.000Z

90

SHORT-TERM SOLAR FLARE LEVEL PREDICTION USING A BAYESIAN NETWORK APPROACH  

SciTech Connect

A Bayesian network approach for short-term solar flare level prediction has been proposed based on three sequences of photospheric magnetic field parameters extracted from Solar and Heliospheric Observatory/Michelson Doppler Imager longitudinal magnetograms. The magnetic measures, the maximum horizontal gradient, the length of neutral line, and the number of singular points do not have determinate relationships with solar flares, so the solar flare level prediction is considered as an uncertainty reasoning process modeled by the Bayesian network. The qualitative network structure which describes conditional independent relationships among magnetic field parameters and the quantitative conditional probability tables which determine the probabilistic values for each variable are learned from the data set. Seven sequential features-the maximum, the mean, the root mean square, the standard deviation, the shape factor, the crest factor, and the pulse factor-are extracted to reduce the dimensions of the raw sequences. Two Bayesian network models are built using raw sequential data (BN{sub R}) and feature extracted data (BN{sub F}), respectively. The explanations of these models are consistent with physical analyses of experts. The performances of the BN{sub R} and the BN{sub F} appear comparable with other methods. More importantly, the comprehensibility of the Bayesian network models is better than other methods.

Yu Daren; Huang Xin; Hu Qinghua; Zhou Rui [Harbin Institute of Technology, No. 92 West Da Zhi Street, Harbin, Heilongjiang Province 150001 (China); Wang Huaning [National Astronomical Observatories, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Cui Yanmei, E-mail: huangxinhit@yahoo.com.c [Center for Space Science and Applied Research, No. 1 Nanertiao, Zhongguancun, Haidian District, Beijing 100080 (China)

2010-02-10T23:59:59.000Z

91

TRANSITION REGION EMISSION FROM SOLAR FLARES DURING THE IMPULSIVE PHASE  

SciTech Connect

There are relatively few observations of UV emission during the impulsive phases of solar flares, so the nature of that emission is poorly known. Photons produced by solar flares can resonantly scatter off atoms and ions in the corona. Based on off-limb measurements by the Solar and Heliospheric Observatory/Ultraviolet Coronagraph Spectrometer, we derive the O VI {lambda}1032 luminosities for 29 flares during the impulsive phase and the Ly{alpha} luminosities of 5 flares, and we compare them with X-ray luminosities from GOES measurements. The upper transition region and lower transition region luminosities of the events observed are comparable. They are also comparable to the luminosity of the X-ray emitting gas at the beginning of the flare, but after 10-15 minutes the X-ray luminosity usually dominates. In some cases, we can use Doppler dimming to estimate flow speeds of the O VI emitting gas, and five events show speeds in the 40-80 km s{sup -1} range. The O VI emission could originate in gas evaporating to fill the X-ray flare loops, in heated chromospheric gas at the footpoints, or in heated prominence material in the coronal mass ejection. All three sources may contribute in different events or even in a single event, and the relative timing of UV and X-ray brightness peaks, the flow speeds, and the total O VI luminosity favor each source in one or more events.

Johnson, H.; Raymond, J. C.; Murphy, N. A.; Suleiman, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Giordano, S. [INAF-Osservatorio Astronomico di Torino, via Osservatorio 20, 10025 Pino Torinese (Italy); Ko, Y.-K. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Ciaravella, A. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo (Italy)

2011-07-10T23:59:59.000Z

92

ANATOMY OF A SOLAR FLARE: MEASUREMENTS OF THE 2006 DECEMBER 14 X-CLASS FLARE WITH GONG, HINODE, AND RHESSI  

SciTech Connect

Some of the most challenging observations to explain in the context of existing flare models are those related to the lower atmosphere and below the solar surface. Such observations, including changes in the photospheric magnetic field and seismic emission, indicate the poorly understood connections between energy release in the corona and its impact in the photosphere and the solar interior. Using data from Hinode, TRACE, RHESSI, and GONG we study the temporal and spatial evolution of the 2006 December 14 X-class flare in the chromosphere, photosphere, and the solar interior. We investigate the connections between the emission at various atmospheric depths, including acoustic signatures obtained by time-distance and holography methods from the GONG data. We report the horizontal displacements observed in the photosphere linked to the timing and locations of the acoustic signatures we believe to be associated with this flare, their vertical and horizontal displacement velocities, and their potential implications for current models of flare dynamics.

Matthews, S. A.; Zharkov, S. [UCL Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT UK (United Kingdom); Zharkova, V. V. [Horton D Building, Department of Mathematics, University of Bradford, Bradford, BD7 1DP (United Kingdom)

2011-10-01T23:59:59.000Z

93

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

Science Conference Proceedings (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

94

THE SOLAR FLARE SULFUR ABUNDANCE FROM RESIK OBSERVATIONS  

SciTech Connect

The RESIK instrument on CORONAS-F spacecraft observed several sulfur X-ray lines in three of its four channels covering the wavelength range 3.8-6.1 A during solar flares. The fluxes are analyzed to give the sulfur abundance. Data are chosen for when the instrument parameters were optimized. The measured fluxes of the S XV 1s{sup 2}-1s4p (w4) line at 4.089 A gives A(S) = 7.16 {+-} 0.17 (abundances on a logarithmic scale with A(H) = 12) which we consider to be the most reliable. Estimates from other lines range from 7.13 to 7.24. The preferred S abundance estimate is very close to recent photospheric abundance estimates and to quiet-Sun solar wind and meteoritic abundances. This implies no fractionation of sulfur by processes tending to enhance the coronal abundance from the photospheric that depend on the first ionization potential (FIP), or that sulfur, though its FIP has an intermediate value of 10.36 eV, acts like a 'high-FIP' element.

Sylwester, J.; Sylwester, B. [Space Research Centre, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Phillips, K. J. H. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Kuznetsov, V. D., E-mail: js@cbk.pan.wroc.pl, E-mail: bs@cbk.pan.wroc.pl, E-mail: kjhp@mssl.ucl.ac.uk, E-mail: kvd@izmiran.ru [Institute of Terrestrial Magnetism and Radiowave Propagation (IZMIRAN), Troitsk, Moscow (Russian Federation)

2012-06-01T23:59:59.000Z

95

NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES  

Science Conference Proceedings (OSTI)

New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Chamberlin, Phillip C.; Klimchuk, James A. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD 20771 (United States); Didkovsky, Leonid; Judge, Darrell [Space Sciences Center, University of Southern California, Los Angeles, CA 90089 (United States); Mariska, John; Warren, Harry [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Schrijver, Carolus J. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Webb, David F. [Institute for Scientific Research, Boston College, Chestnut Hill, MA 02467 (United States); Bailey, Scott [Electrical and Computer Engineering Department, Virginia Tech, Blacksburg, VA 24061 (United States); Tobiska, W. Kent, E-mail: tom.woods@lasp.colorado.edu [Space Environment Technologies, Pacific Palisades, CA 90272 (United States)

2011-10-01T23:59:59.000Z

96

SPONTANEOUS CURRENT-LAYER FRAGMENTATION AND CASCADING RECONNECTION IN SOLAR FLARES. I. MODEL AND ANALYSIS  

Science Conference Proceedings (OSTI)

Magnetic reconnection is commonly considered to be a mechanism of solar (eruptive) flares. A deeper study of this scenario reveals, however, a number of open issues. Among them is the fundamental question of how the magnetic energy is transferred from large, accumulation scales to plasma scales where its actual dissipation takes place. In order to investigate this transfer over a broad range of scales, we address this question by means of a high-resolution MHD simulation. The simulation results indicate that the magnetic-energy transfer to small scales is realized via a cascade of consecutively smaller and smaller flux ropes (plasmoids), analogous to the vortex-tube cascade in (incompressible) fluid dynamics. Both tearing and (driven) 'fragmenting coalescence' processes are equally important for the consecutive fragmentation of the magnetic field (and associated current density) into smaller elements. At the later stages, a dynamic balance between tearing and coalescence processes reveals a steady (power-law) scaling typical of cascading processes. It is shown that cascading reconnection also addresses other open issues in solar-flare research, such as the duality between the regular large-scale picture of (eruptive) flares and the observed signatures of fragmented (chaotic) energy release, as well as the huge number of accelerated particles. Indeed, spontaneous current-layer fragmentation and the formation of multiple channelized dissipative/acceleration regions embedded in the current layer appear to be intrinsic to the cascading process. The multiple small-scale current sheets may also facilitate the acceleration of a large number of particles. The structure, distribution, and dynamics of the embedded potential acceleration regions in a current layer fragmented by cascading reconnection are studied and discussed.

Barta, Miroslav; Buechner, Joerg [Max Planck Institute for Solar System Research, D-37191 Katlenburg-Lindau (Germany); Karlicky, Marian; Skala, Jan, E-mail: barta@mps.mpg.de [Astronomical Institute of the Academy of Sciences of the Czech Republic, CZ-25165 Ondrejov (Czech Republic)

2011-08-10T23:59:59.000Z

97

AUTOMATED SOLAR FLARE STATISTICS IN SOFT X-RAYS OVER 37 YEARS OF GOES OBSERVATIONS: THE INVARIANCE OF SELF-ORGANIZED CRITICALITY DURING THREE SOLAR CYCLES  

SciTech Connect

We analyzed the soft X-ray light curves from the Geostationary Operational Environmental Satellites over the last 37 years (1975-2011) and measured with an automated flare detection algorithm over 300,000 solar flare events (amounting to Almost-Equal-To 5 times higher sensitivity than the NOAA flare catalog). We find a power-law slope of {alpha}{sub F} = 1.98 {+-} 0.11 for the (background-subtracted) soft X-ray peak fluxes that is invariant through three solar cycles and agrees with the theoretical prediction {alpha}{sub F} = 2.0 of the fractal-diffusive self-organized criticality (FD-SOC) model. For the soft X-ray flare rise times, we find a power-law slope of {alpha}{sub T} = 2.02 {+-} 0.04 during solar cycle minima years, which is also consistent with the prediction {alpha}{sub T} = 2.0 of the FD-SOC model. During solar cycle maxima years, the power-law slope is steeper in the range of {alpha}{sub T} Almost-Equal-To 2.0-5.0, which can be modeled by a solar-cycle-dependent flare pile-up bias effect. These results corroborate the FD-SOC model, which predicts a power-law slope of {alpha}{sub E} = 1.5 for flare energies and thus rules out significant nanoflare heating. While the FD-SOC model predicts the probability distribution functions of spatio-temporal scaling laws of nonlinear energy dissipation processes, additional physical models are needed to derive the scaling laws between the geometric SOC parameters and the observed emissivity in different wavelength regimes, as we derive here for soft X-ray emission. The FD-SOC model also yields statistical probabilities for solar flare forecasting.

Aschwanden, Markus J.; Freeland, Samuel L., E-mail: aschwanden@lmsal.com [Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Org. ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2012-08-01T23:59:59.000Z

98

THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES  

Science Conference Proceedings (OSTI)

One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

Pongkitiwanichakul, Peera; Chandran, Benjamin D. G. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Karpen, Judith T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); DeVore, C. Richard, E-mail: pbu3@unh.edu, E-mail: benjamin.chandran@unh.edu, E-mail: judy.karpen@nasa.gov, E-mail: devore@nrl.navy.mil [Naval Research Laboratory, Washington, DC 20375 (United States)

2012-09-20T23:59:59.000Z

99

Muon and Tau Neutrinos Spectra from Solar Flares  

E-Print Network (OSTI)

Solar neutrino flares and mixing are considered. Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The observed and estimated total flare energy should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with, gamma,radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold of 113 MeV. The rarest tau appearence will be possible only for hardest solar neutrino energies above 3.471 GeV

D. Fargion; F. Moscato

2004-05-03T23:59:59.000Z

100

Super-hot (T > 30 MK) Thermal Plasma in Solar Flares  

E-Print Network (OSTI)

MNRAS, 148, 17 Kane, S. R. , et al. 1980, in Solar Flares: AMonograph from SKYLAB Solar Workshop II, ed. P. A.Moore, R. , et al. 1980, in Solar Flares: A Monograph from

Caspi, Amir

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Other States Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Other States Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 408 1992 501 530 501 1993 501 522 515 533 536 531 583 546 1994 533 616 623 620 629 654 1995 667 594 663 634 643 626 643 663 603 553 567 578 1996 549 538 625 620 693 703 709 715 676 708 682 690 1997 133 124 135 142 147 142 149 177 160 150 159 161 1998 147 134 150 148 132 117 126 132 124 121 121 123 1999 754 406 686 588 693 611 708 340 590 811 785 592 2000 147 135 152 163 175 159 187 180 175 179 176 183 2001 166 149 171 206 224 208 221 218 229 222 222 238 2002 172 163 176 196 185 177 191 184 188 180 157 165

102

Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2  

E-Print Network (OSTI)

Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2 and Bruce J; published 17 June 2003) We argue that Earth's short-term temperature anomalies and the solar flare data sets that corresponds to the one that would be induced by the solar flare intermittency. The mean

Scafetta, Nicola

103

Federal Offshore--Gulf of Mexico Natural Gas Extraction Loss...  

Annual Energy Outlook 2012 (EIA)

Pages: Extraction Loss of Natural Gas at Processing Plants (Summary) Federal Offshore Gulf of Mexico Natural Gas Plant Processing Extraction Loss of Natural Gas at...

104

Utah Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Utah Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 3,000: 2,906: 2,802 ...

105

OBSERVATIONS OF RECONNECTING FLARE LOOPS WITH THE ATMOSPHERIC IMAGING ASSEMBLY  

SciTech Connect

Perhaps the most compelling evidence for the role of magnetic reconnection in solar flares comes from the supra-arcade downflows that have been observed above many post-flare loop arcades. These downflows are thought to be related to highly non-potential field lines that have reconnected and are propagating away from the current sheet. We present new observations of supra-arcade downflows taken with the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). The morphology and dynamics of the downflows observed with AIA provide new evidence for the role of magnetic reconnection in solar flares. With these new observations we are able to measure downflows originating at larger heights than in previous studies. We find, however, that the initial velocities measured here ({approx}144 km s{sup -1}) are well below the Alfven speed expected in the lower corona, and consistent with previous results. We also find no evidence that the downflows brighten with time, as would be expected from chromospheric evaporation. These observations suggest that simple two-dimensional models cannot explain the detailed observations of solar flares.

Warren, Harry P.; Sheeley, Neil R. Jr. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); O'Brien, Casey M. [Also at Massachusetts Institute of Technology, Cambridge, MA 02139, USA. (United States)

2011-12-01T23:59:59.000Z

106

MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS  

SciTech Connect

Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

Kusano, K.; Bamba, Y.; Yamamoto, T. T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Iida, Y.; Toriumi, S. [Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Asai, A., E-mail: kusano@nagoya-u.jp [Unit of Synergetic Studies for Space, Kyoto University, 17 Kitakazan Ohmine-cho, Yamashina-ku, Kyoto 607-8471 (Japan)

2012-11-20T23:59:59.000Z

107

Electric Field Perturbations in Terrestrial Clouds and Solar Flare Events  

Science Conference Proceedings (OSTI)

Atmospheric electrical data taken on 3744 m high Niwot Ridge, Colorado, during 1966, 1967 and 1968 are reexamined for evidence of a solar-weather link between the earth’s electric field and solar flare events. The onset of the response of the ...

Doyne Sartor

1980-04-01T23:59:59.000Z

108

A STATISTICAL STUDY OF THE RELATIONSHIP BETWEEN THE TRANSPORT RATE OF MAGNETIC HELICITY AND SOLAR FLARES  

SciTech Connect

We present a statistical study which is aimed at understanding the fact that some flares (type I flare) are associated with sharp variations of the transport rate of magnetic helicity (dH/dt) while others are not (type II flare). The sample consists of 49 M-class and X-class flares which were produced by nine isolated active regions. Using high temporal magnetograms obtained by the Michelson Doppler Imager instrument on the Solar and Heliospheric Observatory, we calculate the temporal variation of dH/dt during the flaring time, and compare its profile with the soft X-ray flux. We find that type I flares have longer duration and higher peak flux in soft X-ray than type II flares. Furthermore, the ratio of the total unsigned magnetic flux of the host active region to that of the visible solar disk is also higher for type I flares, while the total flux itself is independent of the flare type. Our results show that whether the flare is associated with sharp variations of dH/dt depends on the properties of the flare and of its host active region. The relationship between dH/dt and microwave bursts is also discussed.

Zhang Yin; Tan Baolin; Yan Yihua, E-mail: zhangyin@bao.ac.c [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing, 100012 (China)

2009-10-20T23:59:59.000Z

109

NEUTRINO-COOLED ACCRETION MODEL WITH MAGNETIC COUPLING FOR X-RAY FLARES IN GAMMA-RAY BURSTS  

Science Conference Proceedings (OSTI)

The neutrino-cooled accretion disk, which was proposed to work as the central engine of gamma-ray bursts, encounters difficulty in interpreting the X-ray flares after the prompt gamma-ray emission. In this paper, the magnetic coupling (MC) between the inner disk and the central black hole (BH) is taken into consideration. For mass accretion rates around 0.001 {approx} 0.1 M{sub Sun} s{sup -1}, our results show that the luminosity of neutrino annihilation can be significantly enhanced due to the coupling effects. As a consequence, after the gamma-ray emission, a remnant disk with mass M{sub disk} {approx}ray flares with the rest frame duration less than 100 s. In addition, a comparison between the MC process and the Blandford-Znajek mechanism is shown on the extraction of BH rotational energy.

Luo Yang; Gu Weimin; Liu Tong; Lu Jufu, E-mail: guwm@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

2013-08-20T23:59:59.000Z

110

Power of Turbulent Reconnection: Star Formation, Acceleration of Cosmic Rays, Heat Transfer, Flares and Gamma Ray Bursts  

E-Print Network (OSTI)

Turbulence is ubiquitous in astrophysical fluids. Therefore it is necessary to study magnetic reconnection in turbulent environments. The model of fast turbulent reconnection proposed in Lazarian & Vishniac 1999 has been successfully tested numerically and it suggests numerous astrophysical implications. Those include a radically new possibility of removing magnetic field from collapsing clouds which we termed "reconnection diffusion", acceleration of cosmic rays within shrinking filaments of reconnected magnetic fields, flares of reconnection, from solar flares to much stronger ones which can account for gamma ray bursts. In addition, the model reveals a very intimate relation between magnetic reconnection and properties of strong turbulence, explaining how turbulent eddies can transport heat in magnetized plasmas. This is a small fraction the astrophysical implications of the quantitative insight into the fundamental process of magnetic reconnection in turbulent media.

Lazarian, A

2011-01-01T23:59:59.000Z

111

PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS  

SciTech Connect

The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times of the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) x 10{sup 22} Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) x 10{sup 42} Mx{sup 2} during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.

Park, Sung-hong; Wang Haimin [Space Weather Research Laboratory, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, 101 Tiernan Hall, Newark, NJ 07102 (United States); Chae, Jongchul, E-mail: sp295@njit.ed [Astronomy Program and FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

2010-07-20T23:59:59.000Z

112

PROTRACTED LOW DOSE PHOTON AND SIMULATED SOLAR FLARE  

NLE Websites -- All DOE Office Websites (Extended Search)

PROTRACTED LOW DOSE PHOTON AND SIMULATED SOLAR FLARE PROTRACTED LOW DOSE PHOTON AND SIMULATED SOLAR FLARE PROTON EFFECTS ON CYTOKINE/CHEMOKINE EXPRESSION AFTER WHOLE-BODY IRRADIATION Asma Rizvi 2 , George Coutrakon 1 , James M. Slater 1 , Michael J. Pecaut 1,2 and Daila S. Gridley 1,2 Departments. of 1 Radiation Medicine and 2 Biochemistry & Microbiology Loma Linda University & Medical Center, Loma Linda, CA 92354 Astronauts are exposed to low dose/low dose rate radiation (LDR) and may also be acutely irradiated during a solar particle event (SPE). The biological effects of LDR alone and when combined with a solar particle event, are not yet clearly understood. Previous studies have shown that irradiation can have adverse effects on T cells. The reactive oxygen species (ROS) that are produced as a result of radiation can alter or damage the

113

The Acceleration of Ions in Solar Flares During Magnetic Reconnection  

E-Print Network (OSTI)

The acceleration of solar flare ions during magnetic reconnection is explored via particle-in-cell simulations that self-consistently follow the motions of both protons and $\\alpha$ particles. We demonstrate that the dominant ion heating during reconnection with a guide field (a magnetic component perpendicular to the reconnection plane) results from pickup behavior during the entry into reconnection exhausts. In contrast with anti-parallel reconnection, the temperature increment is dominantly transverse, rather than parallel, to the local magnetic field. The comparison of protons and alphas reveals a mass-to-charge ($M/Q$) threshold in pickup behavior that favors heating of high $M/Q$ ions over protons, which is consistent with impulsive flare observations.

Knizhnik, Kalman; Drake, James F

2011-01-01T23:59:59.000Z

114

THE ACCELERATION OF IONS IN SOLAR FLARES DURING MAGNETIC RECONNECTION  

Science Conference Proceedings (OSTI)

The acceleration of solar flare ions during magnetic reconnection is explored via particle-in-cell simulations that self-consistently and simultaneously follow the motions of both protons and {alpha} particles. We show that the dominant heating of thermal ions during guide field reconnection, the usual type in the solar corona, results from pickup behavior during the entry into reconnection exhausts. In contrast to anti-parallel reconnection, the temperature increment is dominantly transverse, rather than parallel, to the local magnetic field. A comparison of protons and {alpha} reveals a mass-to-charge (M/Q) threshold in pickup behavior that favors the heating of high-M/Q ions, which is consistent with impulsive flare observations.

Knizhnik, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Swisdak, M.; Drake, J. F., E-mail: kknizhni@pha.jhu.edu, E-mail: swisdak@umd.edu, E-mail: drake@umd.edu [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States)

2011-12-20T23:59:59.000Z

115

GENERIC MODEL FOR MAGNETIC EXPLOSIONS APPLIED TO SOLAR FLARES  

Science Conference Proceedings (OSTI)

An accepted model for magnetospheric substorms is proposed as the basis for a generic model for magnetic explosions and is applied to solar flares. The model involves widely separated energy-release and particle-acceleration regions, with energy transported Alfvenically between them. On a global scale, these regions are coupled by a large-scale current that is set up during the explosion by redirection of pre-existing current associated with the stored magnetic energy. The explosion-related current is driven by an electromotive force (EMF) due to the changing magnetic flux enclosed by this current. The current path and the EMF are identified for an idealized quadrupolar model for a flare.

Melrose, D. B. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia)

2012-04-10T23:59:59.000Z

116

COMPTEL Observation of the Flaring Quasar PKS0528+134  

E-Print Network (OSTI)

With a direct demodulation method, we have reanalyzed the data from COMPTEL/CGRO observation of PKS0528+134 during the 1993 March flare in gamma-rays. Our results show that during the flare gamma-rays were detected at a level approximately 2.4-3.8 times greater than the observed intensity in two earlier COMPTEL observations VP 0 and VP 1 in the energy range 3 MeV to 30 MeV. The 3-30 MeV time variability of the flux follows well the trend as observed by EGRET/CGRO at higher energies. No convincing excess can be found around the position of PKS0528+134 in the energy range 0.75 MeV to 3 MeV, which indicates a spectral break around 3 MeV. The detections and non-detections in the four standard COMPTEL energy bands are consistent with the earlier reports given by Collmar et al., while the feature that gamma-rays of the quasar still kept on flaring at energies down to 3 MeV is clearly found.

S. Zhang; T. P. Li; M. Wu

1998-10-08T23:59:59.000Z

117

A COMPARATIVE STUDY OF CONFINED AND ERUPTIVE FLARES IN NOAA AR 10720  

Science Conference Proceedings (OSTI)

We investigate the distinct properties of two types of flares: eruptive flares associated with coronal mass ejections (CMEs) and confined flares without CMEs. Our study sample includes nine M- and X-class flares, all from the same active region (AR), six of which are confined and three others which are eruptive. The confined flares tend to be more impulsive in the soft X-ray time profiles and show slenderer shapes in the Extreme-ultraviolet Imaging Telescope 195 A images, while the eruptive ones are long-duration events and show much more extended brightening regions. The location of the confined flares is closer to the center of the AR, while the eruptive flares are at the outskirts. This difference is quantified by the displacement parameter, which is the distance between the AR center and the flare location; the average displacement of the six confined flares is 16 Mm, while that of the eruptive ones is as large as 39 Mm. Further, through nonlinear force-free field extrapolation, we find that the decay index of the transverse magnetic field in the low corona ({approx}10 Mm) is larger for eruptive flares than for confined ones. In addition, the strength of the transverse magnetic field over the eruptive flare sites is weaker than it is over the confined ones. These results demonstrate that the strength and the decay index of the background magnetic field may determine whether or not a flare is eruptive or confined. The implication of these results on CME models is discussed in the context of torus instability of the flux rope.

Cheng, X.; Ding, M. D.; Guo, Y. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Zhang, J. [School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Drive, MSN 6A2, Fairfax, VA 22030 (United States); Su, J. T., E-mail: dmd@nju.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2011-05-10T23:59:59.000Z

118

TESTING AUTOMATED SOLAR FLARE FORECASTING WITH 13 YEARS OF MICHELSON DOPPLER IMAGER MAGNETOGRAMS  

Science Conference Proceedings (OSTI)

Flare occurrence is statistically associated with changes in several characteristics of the line-of-sight magnetic field in solar active regions (ARs). We calculated magnetic measures throughout the disk passage of 1075 ARs spanning solar cycle 23 to find a statistical relationship between the solar magnetic field and flares. This expansive study of over 71,000 magnetograms and 6000 flares uses superposed epoch (SPE) analysis to investigate changes in several magnetic measures surrounding flares and ARs completely lacking associated flares. The results were used to seek any flare associated signatures with the capability to recover weak systematic signals with SPE analysis. SPE analysis is a method of combining large sets of data series in a manner that yields concise information. This is achieved by aligning the temporal location of a specified flare in each time series, then calculating the statistical moments of the 'overlapping' data. The best-calculated parameter, the gradient-weighted inversion-line length (GWILL), combines the primary polarity inversion line (PIL) length and the gradient across it. Therefore, GWILL is sensitive to complex field structures via the length of the PIL and shearing via the gradient. GWILL shows an average 35% increase during the 40 hr prior to X-class flares, a 16% increase before M-class flares, and 17% increase prior to B-C-class flares. ARs not associated with flares tend to decrease in GWILL during their disk passage. Gilbert and Heidke skill scores are also calculated and show that even GWILL is not a reliable parameter for predicting solar flares in real time.

Mason, J. P.; Hoeksema, J. T., E-mail: JMason86@sun.stanford.ed, E-mail: JTHoeksema@sun.stanford.ed [W. W. Hansen Experimental Physics Laboratory, Stanford University, 450 Serra Mall, Stanford, CA 94305-4085 (United States)

2010-11-01T23:59:59.000Z

119

Super-hot (T > 30 MK) Thermal Plasma in Solar Flares  

E-Print Network (OSTI)

xi Chapter 1: The Sun and Solarexpress. xi Chapter 1: The Sun and Solar Flares Introductionand release. 1.1 Solar structure The Sun, as any other star,

Caspi, Amir

2010-01-01T23:59:59.000Z

120

Study of flow and loss processes at the ends of a linear theta pinch. Progress report for the period June 1, 1976--May 31, 1977  

DOE Green Energy (OSTI)

Experimental and analytical studies initiating and supporting research on flow and energy losses at the ends of a linear theta pinch have been carried out. A 25 cm linear pinch coil has been driven by a 515,000 A discharge with 10 ..mu..sec half-cycle time supplied by a 100 ..mu..F, 18 kV energy storage system. With reliable preionization generated up to 400 mT He, current sheath behavior has been identified with magnetic loop probes and double loop probes. Spectroscopic determination of preionization has been made. A ruby laser Thomson scattering diagnostic has been designed and is being procured. A study of transient plasma behavior in a 10 cm theta pinch has been carried out with a Twyman-Green interferometer using a 7 mW He--Ne CW laser. Pressure, electric field, and velocity probe diagnostics have received preliminary testing. Design work has been completed for the doubling of pinch length and energy storage system. Studies of particle loss scaling and reactor scaling of linear theta pinch devices have been reported. Detailed calculations of plasma properties at the end of the pinch coil following expansion from the central coil have been carried out. A O--D, time dependent computer code that includes conduction, convection, and magnetic field diffusion has been developed. Predicted plasma behavior is in good agreement with experimental data.

York, T.M.; Klevans, E.H.

1977-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Detecting giant solar flares based on sunspot parameters using bayesian networks  

Science Conference Proceedings (OSTI)

This paper presents the use of Bayesian Networks (BN) in a new area, the detection of solar flares. The paper describes how to learn a Bayesian Network (BN) using a set of variables representing sunspots parameters such that the BN can detect and classify ... Keywords: bayesian networks, forecast systems, fusion of information, solar flares, sunspot

Tatiana Raffaelli; Adriana V. R. Silva; Maurício Marengoni

2006-12-01T23:59:59.000Z

122

Quasi-periodic flares in EXO 2030+375 observed with INTEGRAL  

E-Print Network (OSTI)

Context: Episodic flaring activity is a common feature of X-ray pulsars in HMXBs. In some Be/X-ray binaries flares were observed in quiescence or prior to outbursts. EXO 2030+375 is a Be/X-ray binary showing "normal" outbursts almost every ~46 days, near periastron passage of the orbital revolution. Some of these outbursts were occasionally monitored with the INTEGRAL observatory. Aims: The INTEGRAL data revealed strong quasi-periodic flaring activity during the rising part of one of the system's outburst. Such activity has previously been observed in EXO 2030+375 only once, in 1985 with EXOSAT. (Some indications of single flares have also been observed with other satellites.) Methods: We present the analysis of the flaring behavior of the source based on INTEGRAL data and compare it with the flares observed in EXO 2030+375 in 1985. Results: Based on the observational properties of the flares, we argue that the instability at the inner edge of the accretion disk is the most probable cause of the flaring activ...

Klochkov, D; Santangelo, A; Staubert, R; Kretschmar, P; Caballero, I; Postnov, K; Wilson-Hodge, C A

2011-01-01T23:59:59.000Z

123

High-Energy Aspects of Solar Flares: Overview of the Volume  

E-Print Network (OSTI)

In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23

Dennis, Brian R; Hudson, Hugh S

2011-01-01T23:59:59.000Z

124

Reducing flare emissions from chemical plants and refineries through the application of fuzzy control system  

Science Conference Proceedings (OSTI)

Increasing legislative requirements on a global basis are driving the development of solutions to reduce emission. Flaring and venting of waste hydrocarbon gases is a known contributor to pollution and increasing pressure is being exerted onto operators ... Keywords: air assist, combustion, combustion efficiency, emissions, flare, fuzzy control, member ship function, steam injection, toxic gas

A. Alizadeh-Attar; H. R. Ghoohestani; I. Nasr Isfahani

2007-04-01T23:59:59.000Z

125

Reducing flare emissions from chemical plants and refineries through the application of fuzzy control system  

Science Conference Proceedings (OSTI)

Increasing legislative requirements on a global basis are driving the development of solutions to reduce emission. Flaring and venting of waste hydrocarbon gases is a known contributor to pollution and increasing pressure is being exerted onto operators ... Keywords: air assist, combustion, combustion efficiency, emissions, flare, fuzzy control, member ship function, steam injection, toxic gas

A. Alizadeh-Attar; H. R. Ghoohestani; I. Nasr Isfahani

2007-06-01T23:59:59.000Z

126

Topological changes of the photospheric magnetic field inside active regions: a prelude to flares  

E-Print Network (OSTI)

The observations of magnetic field variations as a signature of flaring activity is one of the main goal in solar physics. Some efforts in the past give apparently no unambiguous observations of changes. We observed that the scaling laws of the current helicity inside a given flaring active region change clearly and abruptly in correspondence with the eruption of big flares at the top of that active region. Comparison with numerical simulations of MHD equations, indicates that the change of scaling behavior in the current helicity, seems to be associated to a topological reorganization of the footpoint of the magnetic field loop, namely to dissipation of small scales structures in turbulence. It is evident that the possibility of forecasting in real time high energy flares, even if partially, has a wide practical interest to prevent the effects of big flares on Earth and its environment.

L. Sorriso-Valvo; V. Carbone; V. Abramenko; V. Yurchyshyn; A. Noullez; H. Politano; A. Pouquet; P. Veltri

2002-07-11T23:59:59.000Z

127

PLASMA HEATING IN THE VERY EARLY AND DECAY PHASES OF SOLAR FLARES  

SciTech Connect

In this paper, we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 September 20 and 2002 March 17, respectively. For both investigated flares we derived the energy fluxes contained in NTE beams from the RHESSI observational data constrained by observed GOES light curves. We showed that energy delivered by NTEs was fully sufficient to fulfill the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad hoc heating mechanisms other than heating by NTEs.

Falewicz, R.; Rudawy, P. [Astronomical Institute, University of Wroclaw, 51-622 Wroclaw, ul. Kopernika 11 (Poland); Siarkowski, M., E-mail: falewicz@astro.uni.wroc.pl, E-mail: rudawy@astro.uni.wroc.pl, E-mail: ms@cbk.pan.wroc.pl [Space Research Centre, Polish Academy of Sciences, 51-622 Wroclaw, ul. Kopernika 11 (Poland)

2011-05-20T23:59:59.000Z

128

Solar X-ray Flare Hazards on the Surface of Mars  

E-Print Network (OSTI)

Putative organisms on the Martian surface would be exposed to potentially high doses of ionizing radiation during strong solar X-ray flares. We extrapolate the observed flare frequency-energy release scaling relation to releases much larger than seen so far for the sun, an assumption supported by observations of flares on other solar- and subsolar-mass main sequence stars. We calculate the surficial reprocessed X-ray spectra using a Monte Carlo code we have developed. Biological doses from indirect genome damage are calculated for each parameterized flare spectrum by integration over the X-ray opacity of water. We estimate the mean waiting time for solar flares producing a given biological dose of ionizing radiation on Mars and compare with lethal dose data for a wide range of terrestrial organisms. These timescales range from decades for significant human health risk to 0.5 Myr for D. radiodurans lethality. Such doses require total flare energies of 10^33--10^38 erg, the lower range of which has been observed for other stars. Flares are intermittent bursts, so acute lethality will only occur on the sunward hemisphere during a sufficiently energetic flare, unlike low-dose-rate, extended damage by cosmic rays. We estimate the soil and CO_2 ice columns required to provide 1/e shielding as 4--9 g cm^-2, depending on flare mean energy and atmospheric column density. Topographic altitude variations give a factor of two variation in dose for a given flare. Life in ice layers that may exist ~ 100 g cm^-2 below the surface would be well protected.

David S. Smith; John M. Scalo

2006-10-03T23:59:59.000Z

129

coastal loss | NOLA DEFENDER  

U.S. Energy Information Administration (EIA)

BP Oil Doubled Wetland Loss, Study Says Posted Tuesday, ... coastal loss; Deepwater Horizon; louisiana coast; Oil; proceedings of the national academy ...

130

Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

131

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

132

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

133

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

134

Kentucky Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

135

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

136

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

137

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

138

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

139

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

140

SLOW MAGNETOACOUSTIC OSCILLATIONS IN THE MICROWAVE EMISSION OF SOLAR FLARES  

Science Conference Proceedings (OSTI)

Analysis of the microwave data, obtained in the 17 GHz channel of the Nobeyama Radioheliograph during the M1.6 flare on 2010 November 4, revealed the presence of 12.6 minute oscillations of the emitting plasma density. The oscillations decayed with the characteristic time of about 15 minutes. Similar oscillations with the period of about 13.8 minutes and the decay time of 25 minutes are also detected in the variation of EUV emission intensity measured in the 335 A channel of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed properties of the oscillations are consistent with the oscillations of hot loops observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) in the EUV spectra in the form of periodic Doppler shift. Our analysis presents the first direct observations of the slow magnetoacoustic oscillations in the microwave emission of a solar flare, complementing accepted interpretations of SUMER hot loop oscillations as standing slow magnetoacoustic waves.

Kim, S.; Shibasaki, K. [Nobeyama Solar Radio Observatory/NAOJ, Nagano 384-1305 (Japan); Nakariakov, V. M., E-mail: sjkim@nro.nao.ac.jp [Physics Department, University of Warwick, Coventry, CV4 7AL (United Kingdom)

2012-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SLOW MAGNETOACOUSTIC WAVES IN TWO-RIBBON FLARES  

Science Conference Proceedings (OSTI)

We demonstrate that disturbances observed to propagate along the axis of the arcade in two-ribbon solar flares at the speed of a few tens of km s{sup -1}, well below the Alfven and sound speeds, can be interpreted in terms of slow magnetoacoustic waves. The waves can propagate across the magnetic field, parallel to the magnetic neutral line, because of the wave-guiding effect due to the reflection from the footpoints. The perpendicular group speed of the perturbation is found to be a fraction of the sound speed, which is consistent with observations. The highest value of the group speed grows with the increase in the ratio of the sound and Alfven speeds. For a broad range of parameters, the highest value of the group speed corresponds to the propagation angle of 25 deg. - 28 deg. to the magnetic field. This effect can explain the temporal and spatial structure of quasi-periodic pulsations observed in two-ribbon flares.

Nakariakov, V. M. [Physics Department, University of Warwick, Coventry, CV4 7AL (United Kingdom); Zimovets, I. V., E-mail: V.Nakariakov@warwick.ac.uk [Space Research Institute, Russian Academy of Sciences, Profsoyuznaya Street 84/32, Moscow 117997 (Russian Federation)

2011-04-01T23:59:59.000Z

142

The emission measure distribution of impulsive phase flare footpoints  

E-Print Network (OSTI)

The temperature distribution of the emitting plasma is a crucial constraint when studying the heating of solar flare footpoints. However, determining this for impulsive phase footpoints has been difficult in the past due to insufficient spatial resolution to resolve the footpoints from the loop structures, and a lack of spectral and temporal coverage. We use the capabilities of Hinode/EIS to obtain the first emission measure distributions (EMDs) from impulsive phase footpoints in six flares. Observations with good spectral coverage were analysed using a regularized inversion method to recover the EMDs. We find that the EMDs all share a peak temperature of around 8 MK, with lines formed around this temperature having emission measures peaking between 10^28 and 10^29 cm^-5, indicating a substantial presence of plasma at very high temperatures within the footpoints. An EMD gradient of EM(T) ~ T is found in all events. Previous theoretical work on emission measure gradients shows this to be consistent with a scen...

Graham, D R; Fletcher, L; Milligan, R O

2013-01-01T23:59:59.000Z

143

Interruption of Tidal Disruption Flares By Supermassive Black Hole Binaries  

E-Print Network (OSTI)

Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $\\propto t^{-5/3}$, would stop at a time $T_{\\rm tr} \\simeq \\eta T_{\\rm b}$. Here, $\\eta \\sim0.25$ and $T_{\\rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{\\rm r} \\simeq \\xi T_b$, where $\\xi \\sim 1$. Both $\\eta$ and $\\xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.

F. K. Liu; S. Li; Xian Chen

2009-10-21T23:59:59.000Z

144

Illinois Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

145

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

146

THE LONGITUDINAL TRANSPORT OF ENERGETIC IONS FROM IMPULSIVE SOLAR FLARES IN INTERPLANETARY SPACE  

SciTech Connect

We present a study of the longitudinal spread of energetic charged particles from a localized instantaneous compact source on the Sun. Our study utilizes a diffusive-transport model for the propagation of energetic ions in interplanetary space. We show that even for very small values of the ratio of perpendicular to parallel diffusion coefficients-a few percent-the particles spread significantly in longitude. Spatial diffusion and adiabatic energy loss of ions in the interplanetary plasma cause impulsive particle events at Earth's orbit to last a few days. In this time, the combination of transport both along and across the local Parker-spiral magnetic field and the longitudinal motion of the magnetic lines of forces rooted at the Sun as it rotates leads to substantial longitudinal transport of the particles. We show that spacecraft separated by as much as 180 Degree-Sign or more may observe events associated with compact solar sources, such as those from impulsive solar flares. Our results are qualitatively consistent with recent multi-spacecraft observations.

Giacalone, J.; Jokipii, J. R. [Department of Planetary Sciences, University of Arizona, Tucson, AZ (United States)

2012-06-01T23:59:59.000Z

147

Survey on solar X-ray flares and associated coherent radio emissions  

E-Print Network (OSTI)

The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.

Arnold O. Benz; Paolo Grigis; Andre Csillagy; Pascal Saint-Hilaire

2004-10-19T23:59:59.000Z

148

Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem  

E-Print Network (OSTI)

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

L. Fletcher; H. S. Hudson

2007-12-20T23:59:59.000Z

149

ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES  

Science Conference Proceedings (OSTI)

We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lag the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.

Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J. [Department of Physics, West Chester University, West Chester, PA 19383 (United States)

2012-11-20T23:59:59.000Z

150

Procession  

E-Print Network (OSTI)

UEE 2008 Ziermann, Martin 2004 Macht und Architektur: ZweiP ROCESSION Martin Stadler EDITORS W ILLEKE W ENDRICHFull Citation: Stadler, Martin, 2008, Procession. In Jacco

Stadler, Martin

2008-01-01T23:59:59.000Z

151

Processing  

Science Conference Proceedings (OSTI)

...are processed to complex final shapes by investment casting. Iron-nickel-base superalloys are not customarily investment cast. Investment casting permits intricate internal cooling

152

Regularized energy-dependent solar flare hard x-ray spectral index  

E-Print Network (OSTI)

The deduction from solar flare X-ray photon spectroscopic data of the energy dependent model-independent spectral index is considered as an inverse problem. Using the well developed regularization approach we analyze the energy dependency of spectral index for a high resolution energy spectrum provided by Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The regularization technique produces much smoother derivatives while avoiding additional errors typical of finite differences. It is shown that observations imply a spectral index varying significantly with energy, in a way that also varies with time as the flare progresses. The implications of these findings are discussed in the solar flare context.

Eduard P. Kontar; Alexander L. MacKinnon

2005-06-05T23:59:59.000Z

153

A NEW CORRELATION BETWEEN GRB X-RAY FLARES AND THE PROMPT EMISSION  

Science Conference Proceedings (OSTI)

From a sample of gamma-ray bursts (GRBs) detected by the Fermi and Swift missions, we have extracted the minimum variability timescales for temporal structures in the light curves associated with the prompt emission and X-ray flares. A comparison of this variability timescale with pulse parameters such as rise times, determined via pulse-fitting procedures, and spectral lags, extracted via the cross-correlation function, indicates a tight correlation between these temporal features for both the X-ray flares and the prompt emission. These correlations suggest a common origin for the production of X-ray flares and the prompt emission in GRBs.

Sonbas, E. [Department of Physics, University of Adiyaman, 02040 Adiyaman (Turkey); MacLachlan, G. A.; Shenoy, A.; Dhuga, K. S.; Parke, W. C., E-mail: edasonbas@yahoo.com [Department of Physics, George Washington University, Washington, DC 20052 (United States)

2013-04-20T23:59:59.000Z

154

Chromosome aberrations and loss of some cell functions following in vitro exposure to retorted oil shale. [Cultured cells were exposed to processes oil shale particles (spent shales)  

SciTech Connect

An investigation of cellular level effects of processed oil shale from a simulation of modified in situ retorting was undertaken as part of an assessment of the toxicity and mutagenicity of oil shale. Complete assessment of the health hazards associated with physical contact, inhalation, or ingestion of oil shale has not been examined in humans and until it becomes practical to assess these hazards in man, we must rely upon well established in vitro detection procedures in addition to whole animal testing. CHO cells and L-2 rat lung epithelial cell lines were exposed in vitro to processed oil shale particles at different intervals following exposure. Cells were analyzed for chromosome alterations, cell colony forming ability, DNA synthesis, and cell transformation. The results of these studies demonstrate that retorted oil shale, under these experimental conditions, does modify cells in vitro. Chromosome aberrations increased with dose, cell colony forming ability decreased exponentially with dose, and the rate of DNA synthesis was affected, however cell transformation was not demonstrated after 3 months.

Stroud, A.N.

1979-01-01T23:59:59.000Z

155

Filament and Flare Detection in H{\\alpha} image sequences  

E-Print Network (OSTI)

Solar storms can have a major impact on the infrastructure of the earth. Some of the causing events are observable from ground in the H{\\alpha} spectral line. In this paper we propose a new method for the simultaneous detection of flares and filaments in H{\\alpha} image sequences. Therefore we perform several preprocessing steps to enhance and normalize the images. Based on the intensity values we segment the image by a variational approach. In a final postprecessing step we derive essential properties to classify the events and further demonstrate the performance by comparing our obtained results to the data annotated by an expert. The information produced by our method can be used for near real-time alerts and the statistical analysis of existing data by solar physicists.

Riegler, Gernot; Pötzi, Werner; Veronig, Astrid

2013-01-01T23:59:59.000Z

156

Observing Lense-Thirring Precession in Tidal Disruption Flares  

E-Print Network (OSTI)

When a star is tidally disrupted by a supermassive black hole (SMBH), the streams of liberated gas form an accretion disk after their return to pericenter. We demonstrate that Lense-Thirring precession in the spacetime around a rotating SMBH can produce significant time evolution of the disk angular momentum vector, due to both the periodic precession of the disk and the nonperiodic, differential precession of the bound debris streams. Jet precession and periodic modulation of disk luminosity are possible consequences. The persistence of the jetted X-ray emission in the Swift J164449.3+573451 flare suggests that the jet axis was aligned with the spin axis of the SMBH during this event.

Nicholas Stone; Abraham Loeb

2011-09-29T23:59:59.000Z

157

When Do Losses Count?  

Science Conference Proceedings (OSTI)

Current global and national databases that monitor losses from natural hazards suffer from a number of limitations, which in turn lead to misinterpretation and fallacies concerning the “truthfulness” of hazard loss data. These biases often go ...

Melanie Gall; Kevin A. Borden; Susan L. Cutter

2009-06-01T23:59:59.000Z

158

Evaluating Transformer Losses  

E-Print Network (OSTI)

This paper outlines how to determine what transformer losses cost and how to evaluate transformer bids to optimize the investment.

Grun, R. L. Jr.

1989-09-01T23:59:59.000Z

159

Flare system for safe disposal of LNG from a disabled tanker  

SciTech Connect

The feasibility of a flare system for the rapid and safe incineration of the cargo of a disabled LNG tanker is evaluated. The project developed design parameters and proof-of-principle investigations of a system for off-loading and flaring LNG from a disabled LNG tanker. The system described offers enough promise to warrant additional investigation, if cargo burning is desired as a way of reducing other possible hazards.

Not Available

1982-12-01T23:59:59.000Z

160

High-temperature phase transition in a plasma and the mechanism of powerful solar flares  

E-Print Network (OSTI)

It is shown that the high- temperature phase transition in a plasma gives the mechanism of transition from the highly conductive state to the highly resistive state of a plasma in the `electric circuit' model of solar flares which was first introduced by H.Alfven and P.Carlqvist in 1967. With this addendum, the modern version of the electric circuit model can explain both the fast dissipation of energy and the acceleration of particles in a solar flare.

Fedor V. Prigara

2006-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Correction of SOHO CELIAS/SEM EUV Measurements saturated by extreme solar flare events  

E-Print Network (OSTI)

The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 sec cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1 -- 50.0 nm) by the flare soft X-ray and EUV flux. The first order EUV channel (26 -- 34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEM EUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Earth atmosphere response. A simple and effective correction technique based on analysis of SEM count-rate profiles, GOES X-ray, and GOES proton data has been developed and used for correcting EUV measurements for the five extreme solar flare events of July 14, 2000, October 28, November 2, November 4, 2003, and January 20, 2005. Although none of the 2000 and 2003 flare peaks were contaminated by the presence of SEPs, the January 20, 2005 SEPs were unusually prompt and contaminated the peak. The estimated accuracy of the correction is about 7.5% for large X-class events.

L. V. Didkovsky; D. L. Judge; A. R. Jones; S. Wieman; B. T. Tsurutani; D. McMullin

2006-10-04T23:59:59.000Z

162

A STATISTICAL STUDY OF SPECTRAL HARDENING IN SOLAR FLARES AND RELATED SOLAR ENERGETIC PARTICLE EVENTS  

SciTech Connect

Using hard X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we investigate the reliability of spectral hardening during solar flares as an indicator of related solar energetic particle (SEP) events at Earth. All RHESSI data are analyzed, from 2002 February through the end of Solar Cycle 23, thereby expanding upon recent work on a smaller sample of flares. Previous investigations have found very high success when associating soft-hard-harder (SHH) spectral behavior with energetic proton events, and confirmation of this link would suggest a correlation between electron acceleration in solar flares and SEPs seen in interplanetary space. In agreement with these past findings, we find that of 37 magnetically well-connected flares (W30-W90), 12 of 18 flares with SHH behavior produced SEP events and none of 19 flares without SHH behavior produced SEPs. This demonstrates a statistically significant dependence of SHH and SEP observations, a link that is unexplained in the standard scenario of SEP acceleration at the shock front of coronal mass ejections and encourages further investigation of the mechanisms which could be responsible.

Grayson, James A.; Krucker, Saem [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Lin, R. P., E-mail: jgrayson@berkeley.ed, E-mail: krucker@ssl.berkeley.ed, E-mail: rlin@ssl.berkeley.ed [Also at Department of Physics, University of California, Berkeley, CA 94720-7300 (United States)

2009-12-20T23:59:59.000Z

163

Survey on solar X-ray flares and associated coherent radio emissions  

E-Print Network (OSTI)

The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them w...

Benz, A O; Csillagy, A; Saint-Hilaire, P; Benz, Arnold O.; Grigis, Paolo; Csillagy, Andre; Saint-Hilaire, Pascal

2004-01-01T23:59:59.000Z

164

Correction of SOHO CELIAS/SEM EUV Measurements saturated by extreme solar flare events  

E-Print Network (OSTI)

The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 sec cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1 -- 50.0 nm) by the flare soft X-ray and EUV flux. The first order EUV channel (26 -- 34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEM EUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Ea...

Didkovsky, L V; Jones, A R; Wieman, S; Tsurutani, B T; McMullin, D

2006-01-01T23:59:59.000Z

165

NUMERICAL SIMULATIONS OF CHROMOSPHERIC HARD X-RAY SOURCE SIZES IN SOLAR FLARES  

Science Conference Proceedings (OSTI)

X-ray observations are a powerful diagnostic tool for transport, acceleration, and heating of electrons in solar flares. Height and size measurements of X-ray footpoint sources can be used to determine the chromospheric density and constrain the parameters of magnetic field convergence and electron pitch-angle evolution. We investigate the influence of the chromospheric density, magnetic mirroring, and collisional pitch-angle scattering on the size of X-ray sources. The time-independent Fokker-Planck equation for electron transport is solved numerically and analytically to find the electron distribution as a function of height above the photosphere. From this distribution, the expected X-ray flux as a function of height, its peak height, and full width at half-maximum are calculated and compared with RHESSI observations. A purely instrumental explanation for the observed source size was ruled out by using simulated RHESSI images. We find that magnetic mirroring and collisional pitch-angle scattering tend to change the electron flux such that electrons are stopped higher in the atmosphere compared with the simple case with collisional energy loss only. However, the resulting X-ray flux is dominated by the density structure in the chromosphere and only marginal increases in source width are found. Very high loop densities (>10{sup 11} cm{sup -3}) could explain the observed sizes at higher energies, but are unrealistic and would result in no footpoint emission below about 40 keV, contrary to observations. We conclude that within a monolithic density model the vertical sizes are given mostly by the density scale height and are predicted smaller than the RHESSI results show.

Battaglia, M.; Kontar, E. P.; Fletcher, L.; MacKinnon, A. L., E-mail: marina.battaglia@fhnw.ch [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

2012-06-10T23:59:59.000Z

166

2 Solar flare signatures of the ionospheric GPS total electron content 3 J. Y. Liu,1,2  

E-Print Network (OSTI)

2 Solar flare signatures of the ionospheric GPS total electron content 3 J. Y. Liu,1,2 C. H. Lin,1, ionospheric solar flare effects on the total electron content (TEC) and 7 associated time rate of change (r. The occurrence times and 9 locations of 11 solar flares are isolated from the 1­8 A° X-ray radiations of the 10

Chen, Yuh-Ing

167

The evolution of the width of X-ray flares with time in Gamma-ray bursts  

SciTech Connect

We present one of the most intriguing results obtained with an updated catalog of 113 early time (i.e. t{sub pk} < or approx. 1000 s) and 36 late time (i.e. t{sub pk} > or approx. 1000 s) X-ray flares detected by Swift in the afterglows of Gamma-Ray Bursts (GRB): the evolution of the width of the flares with time. This result, together with other properties investigated on early and late time flares and bright flares, provides a clear observational property that every model aiming at explaining the GRB emission has to face.

Bernardini, Maria Grazia [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); ICRANet, P.le della Repubblica 10, I-65100 Pescara (Italy); Chincarini, Guido; Margutti, Raffaella [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); University of Milano Bicocca, Physics Dept., P.zza della Scienza 3, I-20126 Milano (Italy)

2010-10-15T23:59:59.000Z

168

FLARES IN THE CRAB NEBULA DRIVEN BY UNTWISTING MAGNETIC FIELDS  

Science Conference Proceedings (OSTI)

The recent discovery of PeV electrons from the Crab Nebula, produced on rapid timescales of one day or less with a sharply peaked gamma-ray spectrum without hard X-rays, challenges traditional models of diffusive shock acceleration followed by synchrotron radiation. Here, we outline an acceleration model involving a DC electric field parallel to the magnetic field in a twisted toroidal field around the pulsar. Sudden developments of resistivity in localized regions of the twisted field are thought to drive the particle acceleration, up to PeV energies, resulting in flares. This model can reproduce the observed timescales of T Almost-Equal-To 1 day, the peak photon energies of U{sub {Phi},rr} Almost-Equal-To 1 MeV, maximum electron energies of U{sub e,rr} Almost-Equal-To 1 PeV, and luminosities of L Almost-Equal-To 10{sup 36} erg s{sup -1}.

Sturrock, Peter [Center of Space Science and Astrophysics, Stanford University, Stanford, CA 94305 (United States); Aschwanden, Markus J., E-mail: sturrock@stanford.edu, E-mail: aschwanden@lmsal.com [Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Org. ADBS, Bldg. 252, 3251 Hanover St., Palo Alto, CA 94304 (United States)

2012-06-01T23:59:59.000Z

169

SUPPRESSION OF ENERGETIC ELECTRON TRANSPORT IN FLARES BY DOUBLE LAYERS  

SciTech Connect

During flares and coronal mass ejections, energetic electrons from coronal sources typically have very long lifetimes compared to the transit times across the systems, suggesting confinement in the source region. Particle-in-cell simulations are carried out to explore the mechanisms of energetic electron transport from the corona to the chromosphere and possible confinement. We set up an initial system of pre-accelerated hot electrons in contact with ambient cold electrons along the local magnetic field and let it evolve over time. Suppression of transport by a nonlinear, highly localized electrostatic electric field (in the form of a double layer) is observed after a short phase of free-streaming by hot electrons. The double layer (DL) emerges at the contact of the two electron populations. It is driven by an ion-electron streaming instability due to the drift of the back-streaming return current electrons interacting with the ions. The DL grows over time and supports a significant drop in temperature and hence reduces heat flux between the two regions that is sustained for the duration of the simulation. This study shows that transport suppression begins when the energetic electrons start to propagate away from a coronal acceleration site. It also implies confinement of energetic electrons with kinetic energies less than the electrostatic energy of the DL for the DL lifetime, which is much longer than the electron transit time through the source region.

Li, T. C.; Drake, J. F.; Swisdak, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States)

2012-09-20T23:59:59.000Z

170

Distribution System Losses Evaluation  

Science Conference Proceedings (OSTI)

Currently, there is not an industry standard on how utilities calculate and account for electrical losses and reductions in electric system losses. Computer models used to analyze power flows typically only include the primary components of the distribution system infrastructure. More detailed electric system models can benefit utilities by providing more accurate loss calculations as well as benefits for system planning and engineering. The utility industry could benefit from having a consistent and uni...

2008-12-16T23:59:59.000Z

171

Energy losses in switches  

DOE Green Energy (OSTI)

The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF{sub 6} polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V{sub peak}I{sub peak}){sup 1.1846}. When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset.

Martin, T.H.; Seamen, J.F.; Jobe, D.O.

1993-07-01T23:59:59.000Z

172

Modeling the Loss Distribution  

Science Conference Proceedings (OSTI)

In this paper, we focus on modeling and predicting the loss distribution for credit risky assets such as bonds and loans. We model the probability of default and the recovery rate given default based on shared covariates. We develop a new class of default ... Keywords: Basel II, default prediction, loss distribution, recovery rates

Sudheer Chava; Catalina Stefanescu; Stuart Turnbull

2011-07-01T23:59:59.000Z

173

Plasma heating in the very early and decay phases of solar flares  

E-Print Network (OSTI)

In this paper we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons are the only source of plasma heating during all phases of both events. The flares were observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Geostationary Operational Environmental Satellite (GOES) on September 20, 2002 and March 17, 2002, respectively. For both investigated flares we derived the energy fluxes contained in non-thermal electron beams from the RHESSI observational data constrained by observed GOES light-curves. We showed that energy delivered by non-thermal electrons was fully sufficient to fulfil the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad-hoc heating mechanisms other than heating by non-thermal electrons.

Falewicz, R; Rudawy, P

2011-01-01T23:59:59.000Z

174

HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES  

SciTech Connect

We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

2012-03-10T23:59:59.000Z

175

OBSERVATIONAL EVIDENCE OF CHANGING PHOTOSPHERIC VECTOR MAGNETIC FIELDS ASSOCIATED WITH SOLAR FLARES  

Science Conference Proceedings (OSTI)

Recent observations have provided evidence that the solar photospheric magnetic fields could have rapid and permanent changes in both longitudinal and transverse components associated with major flares. As a result, the Lorentz force (LF) acting on the solar photosphere and solar interior could be perturbed, and the change of LF is always nearly in the downward direction. However, these rapid and permanent changes have not been systematically investigated, yet, using vector magnetograms. In this paper, we analyze photospheric vector magnetograms covering five flares to study the evolution of photospheric magnetic fields. In particular, we investigate two-dimensional spatial distributions of the changing LF. Around the major flaring polarity inversion line, the net change of the LF is directed downward in an area of {approx}10{sup 19} cm{sup 2} for X-class flares. For all events, the white-light observations show that sunspots darken in this location after flares, and magnetic fields become more inclined, which is consistent with the ideas put forward by Hudson et al. and Fisher et al., and observations.

Su, J. T.; Jing, J.; Wang, H. M. [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Mao, X. J.; Wang, X. F.; Zhang, H. Q.; Deng, Y. Y.; Guo, J.; Wang, G. P., E-mail: sjt@bao.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2011-06-01T23:59:59.000Z

176

PRIOR FLARING AS A COMPLEMENT TO FREE MAGNETIC ENERGY FOR FORECASTING SOLAR ERUPTIONS  

Science Conference Proceedings (OSTI)

From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1300 sunspot active regions across the 30 Degree-Sign radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days; (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions; and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.

Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F. [ZP13 MSFC/NASA, Huntsville, AL 35812 (United States); Khazanov, Igor [CSPAR, Cramer Hall/NSSTC, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2012-09-20T23:59:59.000Z

177

Soot and SO[subscript 2] contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery  

E-Print Network (OSTI)

This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order ...

Molina, Luisa Tan

178

A new solar flare heavy ion model and its implementation through MACREE, an improved modeling tool to calculate single event effect rates in space  

Science Conference Proceedings (OSTI)

A new solar flare heavy ion model has been developed to support Space Station Single Event Effects (SEE) evaluations. It shows good agreement with previous flare data, and is implemented through an improved version of the CREME code.

Majewski, P.P.; Normand, E.; Oberg, D.L. [Boeing Defense and Space Group, Seattle, WA (United States)] [Boeing Defense and Space Group, Seattle, WA (United States)

1995-12-01T23:59:59.000Z

179

Spots, plages, and flares on lambda Andromedae and II Pegasi  

E-Print Network (OSTI)

We present the results of a contemporaneous photometric and spectroscopic monitoring of lambda And and II Peg aimed at investigating the behavior of surface inhomogeneities in the atmospheres of these active stars which have nearly the same temperature but different gravity. The light curves and the modulation of the surface temperature, as recovered from LDRs, are used to map the photospheric spots, while the H-alpha emission has been used as an indicator of chromospheric inhomogeneities. The spot temperatures and sizes were derived from a spot model applied to the contemporaneous light and temperature curves. We find larger and cooler spots on II Peg (T_sp ~ 3600 K) compared to lambda And (T_sp ~ 3900 K); this could be the result of both the different gravity and the higher activity level of the former. Moreover, we find a clear anti-correlation between the H-alpha emission and the photospheric diagnostics. We have also detected a modulation of the intensity of the HeI D_3 line with the star rotation. A rough reconstruction of the 3D structure of their atmospheres has been also performed by applying a spot/plage model to the light and temperature curves and to the H-alpha flux modulation. A close spatial association of photospheric and chromospheric active regions has been found in both stars. Larger and cooler spots have been found on II Peg, the system with the active component of higher gravity and higher activity level. The area ratio of plages to spots seems to decrease when the spots get bigger. Moreover, with the present and literature data, a correlation between the temperature difference Delta_T = T_ph - T_sp and the surface gravity has been also suggested. In addition, a strong flare affecting the H-alpha, the HeI D_3, and the cores of NaI D_1,2 lines has been observed on II Peg.

A. Frasca; K. Biazzo; G. Tas; S. Evren; A. C. Lanzafame

2007-11-21T23:59:59.000Z

180

Detection of a proton beam during the impulsive phase of a stellar flare  

SciTech Connect

A transient event consistent with the predicted temporal and spectral signatures of an energetic proton beam was detected in the impulsive phase of a small flare on the red dwarf star AU Microscopii. It consisted of a prominent increase in the flux in the red wing of Lyman-alpha near 1223 A, simultaneously with the peak of a flare observed in the 1206 A transition region line of Si III. The probability that the red wing event was a chance fluctuation is one chance in 2.5 x 10 exp 4. This observation represents a confirmation of the prediction by Orrall and Zirker (1976) in which downstreaming protons accelerated during the impulsive phase of a flare charge exchange with ambient neutral hydrogen and emit Lyman-alpha radiation from 1 to 15 A redward of line center. 22 refs.

Woodgate, B.E.; Robinson, R.D.; Carpenter, K.G.; Maran, S.P.; Shore, S.N. (NASA, Goddard Space Flight Center, Greenbelt, MD (United States))

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

182

TIME-DEPENDENT DENSITY DIAGNOSTICS OF SOLAR FLARE PLASMAS USING SDO/EVE  

SciTech Connect

Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 10{sup 4} and 10{sup 7} K, including transitions from highly ionized iron ({approx}>10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 10{sup 11.2}-10{sup 12.1} cm{sup -3} were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to be determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.

Milligan, Ryan O.; Kennedy, Michael B.; Mathioudakis, Mihalis; Keenan, Francis P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN (United Kingdom)

2012-08-10T23:59:59.000Z

183

GAMMA-RAY ACTIVITY IN THE CRAB NEBULA: THE EXCEPTIONAL FLARE OF 2011 APRIL  

SciTech Connect

The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab Nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of Almost-Equal-To 11 lt-yr across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 {+-} 6) Multiplication-Sign 10{sup -7} cm{sup -2} s{sup -1} above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 {+-} 26) MeV at flare maximum. The observations imply that the emission region was likely relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.

Buehler, R.; Blandford, R. D.; Charles, E.; Chiang, J.; Funk, S.; Kerr, M.; Massaro, F.; Romani, R. W. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Scargle, J. D. [Space Sciences Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Baldini, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Belfiore, A.; Saz Parkinson, P. M. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); D'Ammando, F. [IASF Palermo, 90146 Palermo (Italy); Dermer, C. D.; Grove, J. E. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Harding, A. K.; Hays, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mazziotta, M. N. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari (Italy); Tennant, A. F., E-mail: buehler@stanford.edu, E-mail: rdb3@stanford.edu, E-mail: Jeffrey.D.Scargle@nasa.gov [NASA, Marshall Space Flight Center, Huntsville, AL 35812 (United States); and others

2012-04-10T23:59:59.000Z

184

PARTICLE ACCELERATION AT A FLARE TERMINATION SHOCK: EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE  

Science Conference Proceedings (OSTI)

We investigate the acceleration of charged particles (both electrons and protons) at collisionless shocks predicted to exist in the vicinity of solar flares. The existence of standing termination shocks has been examined by flare models and numerical simulations. We study electron energization by numerically integrating the equations of motion of a large number of test-particle electrons in the time-dependent two-dimensional electric and magnetic fields generated from hybrid simulations (kinetic ions and fluid electron) using parameters typical of the solar flare plasma environment. The shock is produced by injecting plasma flow toward a rigid piston. Large-scale magnetic fluctuations-known to exist in plasmas and known to have important effects on the nonthermal electron acceleration at shocks-are also included in our simulations. For the parameters characteristic of the flaring region, our calculations suggest that the termination shock formed in the reconnection outflow region (above post-flare loops) could accelerate electrons to a kinetic energy of a few MeV within 100 ion cyclotron periods, which is of the order of a millisecond. Given a sufficient turbulence amplitude level ({delta}B{sup 2}/B 2{sub 0} {approx} 0.3), about 10% of thermal test-particle electrons are accelerated to more than 15 keV. We find that protons are also accelerated, but not to as high energy in the available time and the energy spectra are considerably steeper than that of the electrons for the parameters used in our simulations. Our results are qualitatively consistent with the observed hard X-ray emissions in solar flares.

Guo Fan; Giacalone, Joe, E-mail: guofan@lpl.arizona.edu [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)

2012-07-01T23:59:59.000Z

185

SMALL-SCALE MICROWAVE BURSTS IN LONG-DURATION SOLAR FLARES  

SciTech Connect

Solar small-scale microwave bursts (SMBs), including microwave dot, spike, and narrow-band type III bursts, are characterized by very short timescales, narrow frequency bandwidth, and very high brightness temperatures. Based on observations of the Chinese Solar Broadband Radio Spectrometer at Huairou with superhigh cadence and frequency resolution, this work presents an intensive investigation of SMBs in several flares that occurred in active region NOAA 10720 during 2005 January 14-21. Especially for long-duration flares, the SMBs occurred not only in the early rising and impulsive phase, but also in the flare decay phase and even after the end of the flare. These SMBs are strong bursts with inferred brightness temperatures of at least 8.18 Multiplication-Sign 10{sup 11}-1.92 Multiplication-Sign 10{sup 13} K, very short lifetimes of 5-18 ms, relative frequency bandwidths of 0.7%-3.5%, and superhigh frequency drifting rates. Together with their obviously different polarizations from background emission (the quiet Sun, and the underlying flaring broadband continuum), such SMBs should be individual, independent strong coherent bursts related to some non-thermal energy release and the production of energetic particles in a small-scale source region. These facts show the existence of small-scale strong non-thermal energy releasing activities after the flare maxima, which is meaningful for predicting space weather. Physical analysis indicates that a plasma mechanism may be the most favorable candidate for the formation of SMBs. From the plasma mechanism, the velocities and kinetic energy of fast electrons can be deduced and the region of electron acceleration can also be tracked.

Tan Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

2013-08-20T23:59:59.000Z

186

Center-to-Limb Variation of Radio Emissions from Thermal-Rich and Thermal-Poor Solar Flares  

E-Print Network (OSTI)

A statistical analysis of radio flare events was performed by using the event list of Nobeyama Radioheliograph in 1996-2009. We examined center-to-limb variations of 17GHz and 34GHz flux by dividing the flare events into different groups with respect to the 'thermal plasma richness' (ratio of the peak flux of soft X-ray to non-thermal radio emissions) and the duration of radio bursts. It is found that peak flux of 17 and 34GHz tend to be higher toward the limb for thermal-rich flares with short durations. We propose that the thermal-rich flares, which are supposed to be associated with an efficient precipitation of high energy particles into the chromosphere, have a pitch angle distribution of non-thermal electrons with a higher population along the flare loop.

Kawate, Tomoko; Kiyoshi, Ichimoto

2011-01-01T23:59:59.000Z

187

Cosmic GRB energy-redshift relation and Primordial flares as possible energy source for the central engine  

E-Print Network (OSTI)

By considering similar observed properties of gamma ray bursts (GRB) and solar flares with the prevailing physical conditions in the cosmic environment, the following study suggests that most likely and promising energy source for the central engine which triggers GRB may be due to primordial flares, solar flare like phenomena, at the sites of inter galactic or inter galactic clusters in the early universe. The derived energy-redshift relation, E = E_{0}{(1+z)}^3 (where E is the amount of energy released, z is the redshift of GRB and E_{0} is a constant which is estimated to be ~ 10^{52} ergs), from the simple flare mechanism, is confirmed from the least square fit with the observed energy-redshift relation. Some of the physical parameters like length scale, strength of magnetic field, etc., of the flaring region of the GRB are estimated.

Hiremath, K M

2009-01-01T23:59:59.000Z

188

Lag-luminosity relation in gamma-ray burst X-ray flares  

Science Conference Proceedings (OSTI)

In strict analogy to prompt pulses, X-ray flares observed by Swift-XRT in long Gamma-Ray Bursts define a lag-luminosity relation: L{sub p,iso}{sup 0.3-10} k{sup eV} {infinity}t{sub lag}{sup -0.95{+-}0.23}. The lag-luminosity is proven to be a fundamental law extending {approx}5 decades in time and {approx}5 in energy. This is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism.

Margutti, R.

2010-10-15T23:59:59.000Z

189

Search for correlations between solar flares and decay rate of radioactive nuclei  

E-Print Network (OSTI)

The deacay rate of three different radioactive sources 40K, 137Cs and natTh has been measured with NaI and Ge detectors. Data have been analyzed to search for possible variations in coincidence with the two strongest solar flares of the years 2011 and 2012. No significant deviations from standard expectation have been observed, with a few 10-4 sensitivity. As a consequence, we could not find any effect like that recently reported by Jenkins and Fischbach: a few per mil decrease in the decay rate of 54Mn during solar flares in December 2006.

E. Bellotti; C. Broggini; G. Di Carlo; M. Laubenstein; R. Menegazzo

2013-02-05T23:59:59.000Z

190

Heat loss from an open cavity  

DOE Green Energy (OSTI)

Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

1995-12-01T23:59:59.000Z

191

PROPERTIES OF THE ACCELERATION REGIONS IN SEVERAL LOOP-STRUCTURED SOLAR FLARES  

Science Conference Proceedings (OSTI)

Using RHESSI hard X-ray imaging spectroscopy observations, we analyze electron flux maps for a number of extended coronal loop flares. For each event, we fit a collisional model with an extended acceleration region to the observed variation of loop length with electron energy E, resulting in estimates of the plasma density in, and longitudinal extent of, the acceleration region. These quantities in turn allow inference of the number of particles within the acceleration region and hence the filling factor f-the ratio of the emitting volume to the volume that encompasses the emitting region(s). We obtain values of f that lie mostly between 0.1 and 1.0; the (geometric) mean value is f = 0.20 Multiplication-Sign / Division-Sign 3.9, somewhat less than, but nevertheless consistent with, unity. Further, coupling information on the number of particles in the acceleration region with information on the total rate of acceleration of particles above a certain reference energy (obtained from spatially integrated hard X-ray data) also allows inference of the specific acceleration rate (electron s{sup -1} per ambient electron above the chosen reference energy). We obtain a (geometric) mean value of the specific acceleration rate {eta}(20 keV) =(6.0 Multiplication-Sign / Division-Sign 3.4) Multiplication-Sign 10{sup -3} electrons s{sup -1} per ambient electron; this value has implications both for the global electrodynamics associated with replenishment of the acceleration region and for the nature of the particle acceleration process.

Guo Jingnan; Piana, Michele [Dipartimento di Matematica, Universita di Genova, Via Dodecaneso 35, 16146 Genova (Italy); Gordon Emslie, A. [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Massone, Anna Maria, E-mail: guo@dima.unige.it, E-mail: piana@dima.unige.it, E-mail: emslieg@wku.edu, E-mail: annamaria.massone@cnr.it [CNR-SPIN, Via Dodecaneso 33, I-16146 Genova (Italy)

2012-08-10T23:59:59.000Z

192

GAMMA-RAY BURSTS IN CIRCUMSTELLAR SHELLS: A POSSIBLE EXPLANATION FOR FLARES  

Science Conference Proceedings (OSTI)

It is now generally accepted that long-duration gamma-ray bursts (GRBs) are due to the collapse of massive rotating stars. The precise collapse process itself, however, is not yet fully understood. Strong winds, outbursts, and intense ionizing UV radiation from single stars or strongly interacting binaries are expected to destroy the molecular cloud cores that give birth to them and create highly complex circumburst environments for the explosion. Such environments might imprint features on GRB light curves that uniquely identify the nature of the progenitor and its collapse. We have performed numerical simulations of realistic environments for a variety of long-duration GRB progenitors with ZEUS-MP and have developed an analytical method for calculating GRB light curves in these profiles. Though a full, three-dimensional, relativistic magnetohydrodynamical computational model is required to precisely describe the light curve from a GRB in complex environments, our method can provide a qualitative understanding of these phenomena. We find that, in the context of the standard afterglow model, massive shells around GRBs produce strong signatures in their light curves, and that this can distinguish them from those occurring in uniform media or steady winds. These features can constrain the mass of the shell and the properties of the wind before and after the ejection. Moreover, the interaction of the GRB with the circumburst shell is seen to produce features that are consistent with observed X-ray flares that are often attributed to delayed energy injection by the central engine. Our algorithm for computing light curves is also applicable to GRBs in a variety of environments such as those in high-redshift cosmological halos or protogalaxies, both of which will soon be targets of future surveys such as the Joint Astrophysics Nascent Satellite or Lobster.

Mesler, Robert A.; Pihlstroem, Ylva M. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Whalen, Daniel J. [MS B227, T-2 Los Alamos National Laboratory, Los Alamos NM, 87545 (United States); Lloyd-Ronning, Nicole M.; Fryer, Chris L., E-mail: meslerra@unm.edu [MS-B227, T-6 Los Alamos National Laboratory, Los Alamos NM, 87545 (United States)

2012-10-01T23:59:59.000Z

193

Helioseismic response to X2.2 solar flare of February 15, 2011  

E-Print Network (OSTI)

The X2.2-class solar flare of February 15, 2011, produced a powerful sunquake event, representing a helioseismic response to the flare impact in the solar photosphere, which was observed with the HMI instrument on the Solar Dynamics Observatory (SDO). The impulsively excited acoustic waves formed a compact wavepacket traveling through the solar interior and appearing on the surface as expanding wave ripples. The initial flare impacts were observed in the form of compact and rapid variations of the Doppler velocity, line-of-sight magnetic field and continuum intensity. These variations formed a typical two-ribbon flare structure, and are believed to be associated with thermal and hydrodynamic effects of high-energy particles heating the lower atmosphere. The analysis of the SDO/HMI and X-ray data from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) shows that the helioseismic waves were initiated by the photospheric impact in the early impulsive phase, observed prior to the hard X-ray (50-100 keV) i...

Kosovichev, Alexander G

2011-01-01T23:59:59.000Z

194

A giant radio flare from Cygnus X-3 with associated Gamma-ray emission  

E-Print Network (OSTI)

With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emis...

Corbel, S; Tomsick, J A; Szostek, A; Corbet, R H D; Miller-Jones, J C A; Richards, J L; Pooley, G; Trushkin, S; Dubois, R; Hill, A B; Kerr, M; Max-Moerbeck, W; Readhead, A C S; Bodaghee, A; Tudose, V; Parent, D; Wilms, J; Pottschmidt, K

2012-01-01T23:59:59.000Z

195

CHARGE-EXCHANGE LIMITS ON LOW-ENERGY {alpha}-PARTICLE FLUXES IN SOLAR FLARES  

Science Conference Proceedings (OSTI)

This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Ly{alpha} line of He II at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary {alpha} particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon{sup -1}. We study 10 events in total, including the {gamma}-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism.

Hudson, H. S. [SSL, UC Berkeley, CA 94720 (United States); Fletcher, L.; MacKinnon, A. L. [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Woods, T. N., E-mail: hhudson@ssl.berkeley.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Dr., Boulder, CO 80303 (United States)

2012-06-20T23:59:59.000Z

196

The short gamma-ray burst SGR giant flare connection Kevin Hurley  

E-Print Network (OSTI)

SOLAR SUBMILLIMETER AND GAMMA-RAY BURST EMISSION P. Kaufmann,1,2 J.-P. Raulin,1 A. M. Melo,1 E headings: gamma rays: bursts -- Sun: flares 1. INTRODUCTION The interaction of ultrarelativistic electrons observations of a burst in the submillimeter and gamma-ray ranges were obtained for the first time on 2001

California at Berkeley, University of

197

NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE  

Science Conference Proceedings (OSTI)

Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

2013-08-10T23:59:59.000Z

198

POST-FLARE ULTRAVIOLET LIGHT CURVES EXPLAINED WITH THERMAL INSTABILITY OF LOOP PLASMA  

Science Conference Proceedings (OSTI)

In the present work, we study the C8 flare that occurred on 2000 September 26 at 19:49 UT and observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation spectrometer from the beginning of the impulsive phase to well beyond the disappearance in the X-rays. The emission first decayed progressively through equilibrium states until the plasma reached 2-3 MK. Then, a series of cooler lines, i.e., Ca X, Ca VII, Ne VI, O IV, and Si III (formed in the temperature range log T = 4.3-6.3 under equilibrium conditions), are emitted at the same time and all evolve in a similar way. Here, we show that the simultaneous emission of lines with such a different formation temperature is due to thermal instability occurring in the flaring plasma as soon as it has cooled below {approx}2 MK. We can qualitatively reproduce the relative start time of the light curves of each line in the correct order with a simple (and standard) model of a single flaring loop. The agreement with the observed light curves is greatly improved, and a slower evolution of the line emission is predicted, if we assume that the model loop consists of an ensemble of subloops or strands heated at slightly different times. Our analysis can be useful for flare observations with the Solar Dynamics Observatory/Extreme ultraviolet Variability Experiment.

Reale, F. [Dipartimento di Fisica, Universita degli Studi di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Orlando, S. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy)

2012-02-10T23:59:59.000Z

199

Bayesian decision tree averaging for the probabilistic interpretation of solar flare occurrences  

Science Conference Proceedings (OSTI)

Bayesian averaging over Decision Trees (DTs) allows the class posterior probabilities to be estimated, while the DT models are understandable for domain experts. The use of Markov Chain Monte Carlo (MCMC) technique of stochastic approximation makes the ... Keywords: Bayesian averaging, Markov Chain Monte Carlo, decision tre, machine learning, solar flare, uncertainty

Vitaly Schetinin; Valentina Zharkova; Sergei Zharkov

2006-10-01T23:59:59.000Z

200

Results of the South African Cloud-Seeding Experiments Using Hygroscopic Flares  

Science Conference Proceedings (OSTI)

A new method of seeding convective clouds for the purpose of augmenting rainfall is being developed in South Africa. Flares that produce small salt particles (0.5-?m mean diameter) are attached to the trailing edge of the wings of seeding ...

G. K. Mather; D. E. Terblanche; F. E. Steffens; L. Fletcher

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GEOMAGNETIC CONSEQUENCES OF THE SOLAR FLARES DURING THE LAST HALE SOLAR CYCLE (II)  

E-Print Network (OSTI)

GEOMAGNETIC CONSEQUENCES OF THE SOLAR FLARES DURING THE LAST HALE SOLAR CYCLE (II) Georgeta Maris the outer atmospheric layer to the ground. The energy source of all these geomagnetic disturbances of the Sun. This paper is part of a larger study concerning the geomagnetic effects produced by solar

202

Mass-loss from Red Giants  

E-Print Network (OSTI)

Although much is known about the nature of winds from hot stars and giants and supergiants with spectral types earlier than K, there is still much to be learned regarding the mass-loss process in cool, late-type stars. We will review the current state of research, with particular reference to observations and modelling of mass-loss from giant stars in symbiotic systems.

Brian Espey; Cian Crowley

2008-03-07T23:59:59.000Z

203

IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS  

SciTech Connect

Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia)

2012-08-10T23:59:59.000Z

204

A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. I. FLARES AND EARLY SHALLOW-DECAY COMPONENT  

Science Conference Proceedings (OSTI)

Well-sampled optical light curves of 146 gamma-ray bursts (GRBs) are compiled from the literature. By empirical fitting, we identify eight possible emission components and summarize the results in a 'synthetic' light curve. Both optical flare and early shallow-decay components are likely related to long-term central engine activities. We focus on their statistical properties in this paper. Twenty-four optical flares are obtained from 19 GRBs. The isotropic R-band energy is smaller than 1% of E{sub {gamma},iso}. The relation between the isotropic luminosities of the flares and gamma rays follows L{sup F}{sub R,iso}{proportional_to}L {sup 1.11{+-}0.27}{sub {gamma},iso}. Later flares tend to be wider and dimmer, i.e., w{sup F} {approx} t{sup F}{sub p}/2 and L{sup F}{sub R,iso}{proportional_to}[t{sup F}{sub p}/(1 + z)]{sup -1.15{+-}0.15}. The detection probability of the optical flares is much smaller than that of X-ray flares. An optical shallow-decay segment is observed in 39 GRBs. The relation between the break time and break luminosity is a power law, with an index of -0.78 {+-} 0.08, similar to that derived from X-ray flares. The X-ray and optical breaks are usually chromatic, but a tentative correlation is found. We suggest that similar to the prompt optical emission that tracks {gamma}-rays, the optical flares are also related to the erratic behavior of the central engine. The shallow-decay component is likely related to a long-lasting spinning-down central engine or piling up of flare materials onto the blast wave. Mixing of different emission components may be the reason for the diverse chromatic afterglow behaviors.

Li Liang; Liang Enwei; Tang Qingwen; Chen Jiemin; Xi Shaoqiang; Zhang Bing; Lu Ruijing; Lue Lianzhong [Department of Physics and GXU-NAOC, Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Lue Houjun; Gao He [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States); Zhang Jin; Wei Jianyan [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yi Shuangxi, E-mail: lew@gxu.edu.cn, E-mail: zhang@physics.unlv.edu [College of Astronomy and Space Sciences, Nanning University, Nanjing 210093 (China)

2012-10-10T23:59:59.000Z

205

THE RELATIONSHIP BETWEEN THE SUDDEN CHANGE OF THE LORENTZ FORCE AND THE MAGNITUDE OF ASSOCIATED FLARES  

SciTech Connect

The rapid and irreversible change of photospheric magnetic fields associated with flares has been confirmed by many recent studies. These studies showed that the photospheric magnetic fields respond to coronal field restructuring and turn to a more horizontal state near the magnetic polarity inversion line (PIL) after eruptions. Recent theoretical work has shown that the change in the Lorentz force associated with a magnetic eruption will lead to such a field configuration at the photosphere. The Helioseismic Magnetic Imager has been providing unprecedented full-disk vector magnetograms covering the rising phase of the solar cycle 24. In this study, we analyze 18 flares in four active regions, with GOES X-ray class ranging from C4.7 to X5.4. We find that there are permanent and rapid changes of magnetic field around the flaring PIL, the most notable of which is the increase of the transverse magnetic field. The changes of fields integrated over the area and the derived change of Lorentz force both show a strong correlation with flare magnitude. It is the first time that such magnetic field changes have been observed even for C-class flares. Furthermore, for seven events with associated coronal mass ejections (CMEs), we use an estimate of the impulse provided by the Lorentz force, plus the observed CME velocity, to estimate the CME mass. We find that if the timescale of the back reaction is short, i.e., in the order of 10 s, the derived values of CME mass ({approx}10{sup 15} g) generally agree with those reported in literature.

Wang Shuo; Liu Chang; Wang Haimin, E-mail: shuo.wang@njit.edu [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States)

2012-09-20T23:59:59.000Z

206

Catalogue of a Loss  

E-Print Network (OSTI)

Catalogue of a Loss is a collection of sixty-two prose poems written within the past year and half. The work is printed on 4x6 cards. Each poem may be read individually from a single card or the poems can be read in ...

Berger, Larisa (Larisa A.)

2012-01-01T23:59:59.000Z

207

Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing  

E-Print Network (OSTI)

Intermittent magnetohydrodynamical turbulence is most likely at work in the magnetized solar atmosphere. As a result, an array of scaling and multi-scaling image-processing techniques can be used to measure the expected self-organization of solar magnetic fields. While these techniques advance our understanding of the physical system at work, it is unclear whether they can be used to predict solar eruptions, thus obtaining a practical significance for space weather. We address part of this problem by focusing on solar active regions and by investigating the usefulness of scaling and multi-scaling image-processing techniques in solar flare prediction. Since solar flares exhibit spatial and temporal intermittency, we suggest that they are the products of instabilities subject to a critical threshold in a turbulent magnetic configuration. The identification of this threshold in scaling and multi-scaling spectra would then contribute meaningfully to the prediction of solar flares. We find that the fractal dimension of solar magnetic fields and their multi-fractal spectrum of generalized correlation dimensions do not have significant predictive ability. The respective multi-fractal structure functions and their inertial-range scaling exponents, however, probably provide some statistical distinguishing features between flaring and non-flaring active regions. More importantly, the temporal evolution of the above scaling exponents in flaring active regions probably shows a distinct behavior starting a few hours prior to a flare and therefore this temporal behavior may be practically useful in flare prediction. The results of this study need to be validated by more comprehensive works over a large number of solar active regions.

Manolis K. Georgoulis

2005-11-15T23:59:59.000Z

208

OBSERVATIONAL STUDY OF THE QUASI-PERIODIC FAST-PROPAGATING MAGNETOSONIC WAVES AND THE ASSOCIATED FLARE ON 2011 MAY 30  

SciTech Connect

On 2011 May 30, quasi-periodic fast-propagating (QFP) magnetosonic waves accompanied by a C2.8 flare were directly imaged by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The QFP waves successively emanated from the flare kernel, they propagated along a cluster of open coronal loops with a phase speed of {approx}834 km s{sup -1} during the flare's rising phase, and the multiple arc-shaped wave trains can be fitted with a series of concentric circles. We generate the k - {omega} diagram of the Fourier power and find a straight ridge that represents the dispersion relation of the waves. Along the ridge, we find a lot of prominent nodes which represent the available frequencies of the QFP waves. On the other hand, the frequencies of the flare are also obtained by analyzing the flare light curves using the wavelet technique. The results indicate that almost all the main frequencies of the flare are consistent with those of the QFP waves. This suggests that the flare and the QFP waves were possibly excited by a common physical origin. On the other hand, a few low frequencies (e.g., 2.5 mHz (400 s) and 0.7 mHz (1428 s)) revealed by the k - {omega} diagram cannot be found in the accompanying flare. We propose that these low frequencies were possibly due to the leakage of the pressure-driven p-mode oscillations from the photosphere into the low corona, which should be a noticeable mechanism for driving the QFP waves observed in the corona.

Shen Yuandeng; Liu Yu, E-mail: ydshen@ynao.ac.cn [Yunnan Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China)

2012-07-01T23:59:59.000Z

209

ABRUPT CHANGES OF THE PHOTOSPHERIC MAGNETIC FIELD IN ACTIVE REGIONS AND THE IMPULSIVE PHASE OF SOLAR FLARES  

SciTech Connect

We compared time profiles of changes of the unsigned photospheric magnetic flux in active regions with those of their associated soft X-ray (SXR) bursts for a sample of 75 {>=} M5 flares well observed by Global Oscillation Network Group longitudinal magnetographs. Sixty-six of these events had stepwise changes in the spatially integrated unsigned flux during the SXR flares. In superposed epoch plots for these 66 events, there is a sharp increase in the unsigned magnetic flux coincident with the onset of the flare impulsive phase while the end of the stepwise change corresponds to the time of peak SXR emission. We substantiated this result with a histogram-based comparison of the timing of flux steps (onset, midpoint of step, and end) for representative points in the flaring regions with their associated SXR event time markers (flare onset, onset of impulsive phase, time of peak logarithmic derivative, maximum). On an individual event basis, the principal part of the stepwise magnetic flux change occurred during the main rise phase of the SXR burst (impulsive phase onset to SXR peak) for {approx}60% of the 66 cases. We find a close timing agreement between magnetic flux steps and >100 keV emission for the three largest hard X-ray (>100 keV) bursts in our sample. These results identify the abrupt changes in photospheric magnetic fields as an impulsive phase phenomenon and indicate that the coronal magnetic field changes that drive flares are rapidly transmitted to the photosphere.

Cliver, E. W. [Space Vehicles Directorate, Air Force Research Laboratory, Sunspot, NM 88349 (United States); Petrie, G. J. D. [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Ling, A. G. [Atmospheric Environmental Research, Lexington, MA 02421 (United States)

2012-09-10T23:59:59.000Z

210

Preliminary summary of the observations of the 16 February 1984 solar flare (STIP interval XV, 12-21 February 1984)  

Science Conference Proceedings (OSTI)

The solar flare on 16 Feb. 1984 (0900 UT) and the associated photon and particle emissions were perhaps the most interesting solar and interplanetary phenomena during STIP Interval XV, 12 to 21 Feb. 1984. The x-ray and microwave radio emissions, as observed from the Earth, were relatively weak and no optical flare was reported. However, the hard x-ray and low energy gamma-ray observations made with the Pioneer Venus Orbiter spacecraft behind the west limb of the Sun indicate that the flare was, in reality, very intense. There is evidence that the flare was located approx 40 deg behind the west limb of the Sun and hence, for instruments located near the Earth, the most intense parts of the x-ray and microwave radio sources were occulted by the photosphere. However, the effect of occultation on the metric type II, type III, and type IV and decimetric (type DCIM) radio sources appeared to be relatively small. Following the flare, a large increase in the counting rates was recorded by several ground level neutron monitors and energetic particle detectors located in interplanetary space. A preliminary analysis of the 16 Feb. 1984 flare observations follows.

Kane, S.R.; Urbarz, H.W.

1987-01-01T23:59:59.000Z

211

Flare magnetic reconnection and relativistic particles in the 2003 October 28 event  

E-Print Network (OSTI)

An X17.2 solar flare occurred on 2003 October 28, accompanied by multi-wavelength emissions and a high flux of relativistic particles observed at 1AU. We present the analytic results of the TRACE, SOHO, RHESSI, ACE, GOES, hard X-ray (INTEGRAL satellite), radio (Onderejov radio telescope), and neutron monitor data. It is found that the inferred magnetic reconnection electric field correlates well with the hard X-ray, gamma-ray, and neutron emission at the Sun. Thus the flare's magnetic reconnection probably makes a crucial contribution to the prompt relativistic particles, which could be detected at 1 AU. Since the neutrons were emitted a few minutes before the injection of protons and electrons, we propose a magnetic-field evolution configuration to explain this delay. We do not exclude the effect of CME-driven shock, which probably plays an important role in the delayed gradual phase of solar energetic particles.

C. Li; Y. H. Tang; Y. Dai; C. Fang; J. -C. Vial

2007-06-25T23:59:59.000Z

212

Measuring parameters of AGN central engines with very high energy gamma-ray flares  

E-Print Network (OSTI)

We discuss a "compact source" model of very high energy (VHE) emission from blazars in which the variability time is determined by the blazar central engine. In this model electron or proton acceleration close to the supermassive black hole is followed by the development of electromagnetic cascade in a radiatively inefficient accretion flow. Assuming such a model for the TeV blazar PKS 2155-304, we show that the variability properties of the TeV gamma-ray signal observed during a bright flare from this source, such as the minimal variability time scale and the recurrence period of the sub-flares, constrain the mass and the angular momentum of the supermassive black hole.

Neronov, A

2008-01-01T23:59:59.000Z

213

Power Laws in Solar Flares: Self-Organized Criticality or Turbulence?  

E-Print Network (OSTI)

We study the time evolution of Solar Flares activity by looking at the statistics of quiescent times $\\tau_{L}$ between successive bursts. The analysis of 20 years of data reveals a power law distribution with exponent $\\alpha \\simeq 2.4$ which is an indication of complex dynamics with long correlation times. The observed scaling behavior is in contradiction with the Self-Organized Criticality models of Solar Flares which predict Poisson-like statistics. Chaotic models, including the destabilization of the laminar phases and subsequent restabilization due to nonlinear dynamics, are able to reproduce the power law for the quiescent times. In the case of the more realistic Shell Model of MHD turbulence we are able to reproduce all the observed distributions.

Guido Boffetta; Vincenzo Carbone; Paolo Giuliani; Pierluigi Veltri; Angelo Vulpiani

1999-04-23T23:59:59.000Z

214

Process Developments  

Science Conference Proceedings (OSTI)

...Although melt loss had become the major cost factor in ingot production, it was the soaring cost of energy during the 1973 energy crisis that triggered the search for more-efficient remelt processes. This effort also sought to develop process that were less labor intensive and more...

215

MICROWAVE QUASI-PERIODIC PULSATION WITH MILLISECOND BURSTS IN A SOLAR FLARE ON 2011 AUGUST 9  

SciTech Connect

A peculiar microwave quasi-periodic pulsation (QPP) accompanying a hard X-ray (HXR) QPP of about 20 s duration occurred just before the maximum of an X6.9 solar flare on 2011 August 9. The most interesting aspect is that the microwave QPP consists of millisecond timescale superfine structures. Each microwave QPP pulse is made up of clusters of millisecond spike bursts or narrowband type III bursts. There are three different frequency drift rates: the global frequency drift rate of the microwave QPP pulse group, the frequency drift rate of the microwave QPP pulse, and the frequency drift rate of individual millisecond spikes or type III bursts. The physical analysis indicates that the energetic electrons accelerating from a large-scale highly dynamic magnetic reconnecting current sheet above the flaring loop propagate downward, impact the flaring plasma loop, and produce HXR bursts. The tearing-mode (TM) oscillations in the current sheet modulate HXR emission and generate HXR QPP; the energetic electrons propagating downward produce Langmuir turbulence and plasma waves, resulting in plasma emission. The modulation of TM oscillation on the plasma emission in the current-carrying plasma loop may generate microwave QPP. The TM instability produces magnetic islands in the loop. Each X-point will be a small reconnection site and will accelerate the ambient electrons. These accelerated electrons impact the ambient plasma and trigger the millisecond spike clusters or the group of type III bursts. Possibly, each millisecond spike burst or type III burst is one of the elementary bursts (EBs). A large number of such EB clusters form an intense flaring microwave burst.

Tan Baolin; Tan Chengming, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of the Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing 100012 (China)

2012-04-10T23:59:59.000Z

216

MODELING OF GYROSYNCHROTRON RADIO EMISSION PULSATIONS PRODUCED BY MAGNETOHYDRODYNAMIC LOOP OSCILLATIONS IN SOLAR FLARES  

Science Conference Proceedings (OSTI)

A quantitative study of the observable radio signatures of the sausage, kink, and torsional magnetohydrodynamic (MHD) oscillation modes in flaring coronal loops is performed. Considering first non-zero order effect of these various MHD oscillation modes on the radio source parameters such as magnetic field, line of sight, plasma density and temperature, electron distribution function, and the source dimensions, we compute time-dependent radio emission (spectra and light curves). The radio light curves (of both flux density and degree of polarization) at all considered radio frequencies are then quantified in both time domain (via computation of the full modulation amplitude as a function of frequency) and in Fourier domain (oscillation spectra, phases, and partial modulation amplitude) to form the signatures specific to a particular oscillation mode and/or source parameter regime. We found that the parameter regime and the involved MHD mode can indeed be distinguished using the quantitative measures derived in the modeling. We apply the developed approach to analyze radio burst recorded by Owens Valley Solar Array and report possible detection of the sausage mode oscillation in one (partly occulted) flare and kink or torsional oscillations in another flare.

Mossessian, George; Fleishman, Gregory D. [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

2012-04-01T23:59:59.000Z

217

EVOLUTION OF CURRENTS OF OPPOSITE SIGNS IN THE FLARE-PRODUCTIVE SOLAR ACTIVE REGION NOAA 10930  

SciTech Connect

Analysis of a time series of high spatial resolution vector magnetograms of the active region NOAA 10930 available from the Solar Optical Telescope SpectroPolarimeter on board Hinode revealed that there is a mixture of upward and downward currents in the two footpoints of an emerging flux rope. The flux emergence rate is almost the same in both the polarities. We observe that along with an increase in magnetic flux, the net current in each polarity increases initially for about three days after which it decreases. This net current is characterized by having exactly opposite signs in each polarity while its magnitude remains almost the same most of the time. The decrease of the net current in both the polarities is due to the increase of current having a sign opposite to that of the net current. The dominant current, with the same sign as the net current, is seen to increase first and then decreases during the major X-class flares. Evolution of non-dominant current appears to be a necessary condition for flare initiation. The above observations can be plausibly explained in terms of the superposition of two different force-free states resulting in a non-zero Lorentz force in the corona. This Lorentz force then pushes the coronal plasma and might facilitate the magnetic reconnection required for flares. Also, the evolution of the net current is found to follow the evolution of magnetic shear at the polarity inversion line.

Ravindra, B. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Venkatakrishnan, P.; Tiwari, Sanjiv Kumar; Bhattacharyya, R., E-mail: ravindra@iiap.res.in, E-mail: pvk@prl.res.in, E-mail: tiwari@mps.mpg.de, E-mail: ramit@prl.res.in [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313 001 (India)

2011-10-10T23:59:59.000Z

218

86 GHz polarimetry of OVV1633+382 after a major mm flare  

E-Print Network (OSTI)

The 18 mag QSO 1633+382 (4C38.41, z=1.807) showed a very pronounced outburst in 2001/2002. With a peak amplitude of more than 9 Jy at 90GHz, this flare was brighter than any known previous flare in this source (data available since 1980).During onset, the mm-flare was particulary fast, with an increase of more than 2 Jy at 230 GHz in less than 8 days. Since January 2002, the mm-flux of 1633+382 is decaying. During this decline, however, local flux variations with amplitudes of 1-3 Jy were seen, indicative of underlying and more rapid source activity on time scales of 1-2 months. After the main peak occurring in 2001.99, the 90 GHz flux showed secondary maxima at approximately half year intervals in 2002.3, 2002.7 and 2003.13. This kind of periodicity might be explained via the lighthouse model (Camenzind and Krockenberger 1992), which is based on the magnetic accelerator of Blanford and Payne (1982). At present the millimeter flux is nearly back to its quiescent level of 2-2.5 Jy, which the source had before ...

Sohn, B W; Agudo, I; Witzel, A; Zensus, J A; Ungerechts, H; Terasranta, H

2005-01-01T23:59:59.000Z

219

Information Loss in Black Hole Evaporation  

E-Print Network (OSTI)

Parikh-Wilczek tunnelling framework is investigated again. We argue that Parikh-Wilczek's treatment, which satisfies the first law of black hole thermodynamics and consists with an underlying unitary theory, is only suitable for a reversible process. Because of the negative heat capacity, an evaporating black hole is a highly unstable system. That is, the factual emission process is irreversible, the unitary theory will not be satisfied and the information loss is possible.

Jingyi Zhang; Yapeng Hu; Zheng Zhao

2005-12-11T23:59:59.000Z

220

Gas Water Heater Energy Losses  

E-Print Network (OSTI)

non-firing, non- recovery mode, i.e. , during standby mode.The stack losses while in standby mode account for about 43%can be made by reducing standby heat losses. This paper

Biermayer, Peter

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fermi acceleration at fast shock in a solar flare and impulsive loop-top hard X-ray source  

E-Print Network (OSTI)

We propose that non-thermal electrons are efficiently accelerated by first-order Fermi process at the fast shock, as a natural consequence of the new magnetohydrodynamic picture of the flaring region revealed with Yohkoh. An oblique fast shock is naturally formed below the reconnection site, and boosts the acceleration to significantly decrease the injection energy. The slow shocks attached to the reconnection X-point heat the plasma up to 10--20 MK, exceeding the injection energy. The combination of the oblique shock configuration and the pre-heating by the slow shock allows bulk electron acceleration from the thermal pool. The accelerated electrons are trapped between the two slow shocks due to the magnetic mirror downstream of the fast shock, thus explaining the impulsive loop-top hard X-ray source discovered with Yohkoh. Acceleration time scale is ~ 0.3--0.6 s, which is consistent with the time scale of impulsive bursts. When these electrons stream away from the region enclosed by the fast shock and the s...

Tsuneta, S; Tsuneta, Saku; Naito, Tsuguya

1998-01-01T23:59:59.000Z

222

Sub-terahertz, microwaves and high energy emissions during the December 6, 2006 flare, at 18:40 UT  

E-Print Network (OSTI)

The presence of a solar burst spectral component with flux density increasing with frequency in the sub-terahertz range, spectrally separated from the well-known microwave spectral component, bring new possibilities to explore the flaring physical processes, both observational and theoretical. The solar event of 6 December 2006, starting at about 18:30 UT, exhibited a particularly well-defined double spectral structure, with the sub-THz spectral component detected at 212 and 405 GHz by SST and microwaves (1-18 GHz) observed by the Owens Valley Solar Array (OVSA). Emissions obtained by instruments in satellites are discussed with emphasis to ultra-violet (UV) obtained by the Transition Region And Coronal Explorer (TRACE), soft X-rays from the Geostationary Operational Environmental Satellites (GOES) and X- and gamma-rays from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The sub-THz impulsive component had its closer temporal counterpart only in the higher energy X- and gamma-rays ranges. The spatial positions of the centers of emission at 212 GHz for the first flux enhancement were clearly displaced by more than one arc-minute from positions at the following phases. The observed sub-THz fluxes and burst source plasma parameters were found difficult to be reconciled to a purely thermal emission component. We discuss possible mechanisms to explain the double spectral components at microwaves and in the THz ranges.

Pierre Kaufmann; Gerard Trottet; C. Guillermo Gimenez de Castro; Jean-Pierre Raulin; Sam Krucker; Albert Y. Shih; Hugo Levato

2008-11-21T23:59:59.000Z

223

Louisiana Wetland Loss at Askives  

U.S. Energy Information Administration (EIA)

Louisiana Wetland Loss? - Find Questions and Answers at Askives, the first startup that gives you an straight answer

224

X-ray flares observed from six young stars located in the region of star clusters NGC 869 and IC 2602  

E-Print Network (OSTI)

We present an analysis of seven intense X-ray flares observed from six stars (LAV 796, LAV 1174, SHM2002 3734, 2MASS 02191082+5707324, V553 Car, V557 Car) for the first time. These stars are located in the region of young open star clusters NGC 869 and IC 2602. These flares detected in the XMM-Newton data show a rapid rise (10-40 minutes) and a slow decay (20-90 minutes). The X-ray luminosities during the flares in the energy band 0.3-7.5 keV are in the range of $10^{29.9}$ to $10^{31.7}$ erg s$^{-1}$. The strongest flare was observed with the ratio $\\sim 13$ for count rates at peak of the flare to the quiescent intensity. The maximum temperature during the flares has been found to be $\\sim$100 MK. The semi loop lengths for the flaring loops are estimated to be of the order of $\\rm{10^{10}}$ cm. The physical parameters of the flaring structure, the peak density, pressure, and minimum magnetic field required to confine the plasma have been derived and found to be consistent with flares from pre-main sequence s...

Bhatt, Himali; Singh, K P; Sagar, Ram; Kumar, Brijesh

2013-01-01T23:59:59.000Z

225

An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles  

E-Print Network (OSTI)

The extreme solar and SEP event of 20 January 2005 is analyzed from two perspectives. Firstly, we study features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs. All emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in strong magnetic fields. Thus, protons and electrons responsible for flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays identified with pi^0-decay emission, are similar and correspond in time. The origin of the pi^0-decay gamma-rays is argued to be the same as that of lower energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600 km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred simultaneously within the flare region. We do not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate later on.

V. V. Grechnev; V. G. Kurt; I. M. Chertok; A. M. Uralov; H. Nakajima; A. T. Altyntsev; A. V. Belov; B. Yu. Yushkov; S. N. Kuznetsov; L. K. Kashapova; N. S. Meshalkina; N. P. Prestage

2008-06-27T23:59:59.000Z

226

Lease and Plant Fuel Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed Extraction Loss Dry Production Imports By Pipeline LNG Imports Exports...

227

MAGNETIC NON-POTENTIALITY OF SOLAR ACTIVE REGIONS AND PEAK X-RAY FLUX OF THE ASSOCIATED FLARES  

SciTech Connect

Predicting the severity of solar eruptive phenomena such as flares and coronal mass ejections remains a great challenge despite concerted efforts to do so over the past several decades. However, the advent of high-quality vector magnetograms obtained from Hinode (SOT/SP) has increased the possibility of meeting this challenge. In particular, the spatially averaged signed shear angle (SASSA) seems to be a unique parameter for quantifying the non-potentiality of active regions. We demonstrate the usefulness of the SASSA for predicting flare severity. For this purpose, we present case studies of the evolution of magnetic non-potentiality using 115 vector magnetograms of four active regions, namely, ARs NOAA 10930, 10960, 10961, and 10963 during 2006 December 8-15, 2007 June 3-10, 2007 June 28-July 5, and 2007 July 10-17, respectively. The NOAA ARs 10930 and 10960 were very active and produced X and M class flares, respectively, along with many smaller X-ray flares. On the other hand, the NOAA ARs 10961 and 10963 were relatively less active and produced only very small (mostly A- and B-class) flares. For this study, we have used a large number of high-resolution vector magnetograms obtained from Hinode (SOT/SP). Our analysis shows that the peak X-ray flux of the most intense solar flare emanating from the active regions depends on the magnitude of the SASSA at the time of the flare. This finding of the existence of a lower limit of the SASSA for a given class of X-ray flares will be very useful for space weather forecasting. We have also studied another non-potentiality parameter called the mean weighted shear angle (MWSA) of the vector magnetograms along with the SASSA. We find that the MWSA does not show such distinction as the SASSA for upper limits of the GOES X-ray flux of solar flares; however, both the quantities show similar trends during the evolution of all active regions studied.

Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay, E-mail: pvk@prl.res.i, E-mail: sgosain@prl.res.i [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313 001 (India)

2010-09-20T23:59:59.000Z

228

Low Impact Weight Loss Exercises | Fish Oil Weight Loss  

U.S. Energy Information Administration (EIA)

Low Impact Weight Loss Exercises. You want to lose weight, but for whatever reason, you want to or only can perform low impact exercises. No problem.

229

RELATIVISTIC SHOCK BREAKOUTS-A VARIETY OF GAMMA-RAY FLARES: FROM LOW-LUMINOSITY GAMMA-RAY BURSTS TO TYPE Ia SUPERNOVAE  

SciTech Connect

The light from a shock breakout of stellar explosions, which carries a wealth of information, strongly depends on the shock velocity at the time of the breakout. The emission from Newtonian breakouts, typical in regular core-collapse supernovae (SNe), has been explored extensively. However, a large variety of explosions result in mildly or ultrarelativistic breakouts, where the observed signature is unknown. Here we calculate the luminosity and spectrum produced by relativistic breakouts. In order to do so, we improve the analytic description of relativistic radiation-mediated shocks and follow the system from the breakout itself, through the planar phase and into the spherical phase. We limit our calculation to cases where the post-breakout acceleration of the gas ends during the planar phase (i.e., the final gas Lorentz factor {approx}< 30). We find that spherical relativistic breakouts produce a flash of gamma rays with energy, E{sub bo}, temperature, T{sub bo}, and duration, t{sup obs} b{sub o}, that provide the breakout radius ( Almost-Equal-To 5 R{sub Sun }(t{sup obs}{sub bo}/10 s)(T{sub bo}/50 keV){sup 2}) and the Lorentz factor ( Almost-Equal-To T{sub bo}/50 keV). They also always satisfy a relativistic breakout relation (t{sup obs}{sub bo}/20 s) {approx} (E{sub bo}/10{sup 46} erg){sup 1/2}(T{sub bo}/50 keV){sup -2.68}. The breakout flare is typically followed, on longer timescales, by X-rays that carry a comparable energy. We apply our model to a variety of explosions, including Type Ia and .Ia SNe, accretion-induced collapse, energetic SNe, and gamma-ray bursts (GRBs). We find that all these events produce detectable gamma-ray signals, some of which may have already been seen. Some particular examples are: (1) relativistic shock breakouts provide a natural explanation to the energy, temperature, and timescales of low-luminosity GRBs. Indeed, all observed low-luminosity GRBs satisfy the relativistic breakout relation. (2) Nearby broad-line Type Ib/c (like SN 2002ap) may produce a detectable {gamma}-ray signal. (3) Galactic Type Ia SNe may produce detectable {gamma}-ray flares. We conclude that relativistic shock breakouts provide a generic process for the production of gamma-ray flares.

Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, Re'em [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel)

2012-03-10T23:59:59.000Z

230

Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 1,994 1,804 1,837 1,504 1,798 1,541 1,890 1,954 1,742 2,018 1,823 1,711 2002 1,661 1,512 1,693 1,728 1,794 1,738 1,809 1,820 1,523 1,433 1,667 1,714 2003 1,728 1,590 1,801 1,753 1,774 1,675 1,639 1,702 1,612 1,661 1,555 1,617 2004 1,554 1,465 1,600 1,544 1,566 1,463 1,536 1,508 1,194 1,301 1,336 1,339 2005 1,368 1,266 1,430 1,362 1,429 1,351 1,291 1,204 609 607 862 1,021

231

ANALYSIS AND MODELING OF TWO FLARE LOOPS OBSERVED BY AIA AND EIS  

Science Conference Proceedings (OSTI)

We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in extreme ultraviolet (EUV) images. The UV 1600 A emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by the Atmospheric Imaging Assembly (AIA) and the EUV Imaging Spectrometer (EIS). Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed, we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops with cross-sectional area of 5'' by 5'', and compute the plasma evolution in the loops using the EBTEL model. We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and in observations.

Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

2012-10-10T23:59:59.000Z

232

VLBI OBSERVATION OF MICROQUASAR CYG X-3 DURING AN X-RAY STATE TRANSITION FROM SOFT TO HARD IN THE 2007 MAY-JUNE FLARE  

SciTech Connect

We present a radio observation of microquasar Cyg X-3 during an X-ray state transition from ultrasoft to hard state in the 2007 May-June flare using the VLBI Exploration of Radio Astrometry at 22 GHz. During the transition, a short-lived mini-flare of {approx}< 3 hr was detected prior to the major flare. In such a transition, a jet ejection is believed to occur, but there have been no direct observations to support it. An analysis of Gaussian fits to the observed visibility amplitudes shows a time variation of the source axis, or a structural change, during the mini-flare. Our model fits, together with other multiwavelength observations in the radio, soft, and hard X-rays, and the shock-in-jet models for other flaring activities at GHz wavebands, suggest a high possibility of synchrotron flares during the mini-flare, indicative of a predominant contribution from jet activity. Therefore, the mini-flare with an associated structural change is indicative of a jet ejection event in the state transition from ultrasoft to hard state.

Kim, Jeong-Sook; Kim, Sang Joon [School of Space Science, Kyunghee University, Seocheon-dong, Giheung-si, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Soon-Wook [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Kurayama, Tomoharu [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065 (Japan); Honma, Mareki [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sasao, Tetsuo, E-mail: evony@kasi.re.kr, E-mail: skim@kasi.re.kr [Yaeyama Star Club, Ookawa, Ishigaki, Okinawa 904-0022 (Japan)

2013-07-20T23:59:59.000Z

233

Constraints on a strong X-ray flare in the Seyfert galaxy MCG-6-30-15  

E-Print Network (OSTI)

We discuss implications of a strong flare event observed in the Seyfert galaxy MCG-6-30-15 assuming that the emission is due to localized magnetic reconnection. We conduct detailed radiative transfer modeling of the reprocessed radiation for a primary source that is elevated above the disk. The model includes relativistic effects and Keplerian motion around the black hole. We show that for such a model setup the observed time-modulation must be intrinsic to the primary source. Using a simple analytical model we then investigate time delays between hard and soft X-rays during the flare. The model considers an intrinsic delay between primary and reprocessed radiation, which measures the geometrical distance of the flare source to the reprocessing sites. The observed time delays are well reproduced if one assumes that the reprocessing happens in magnetically confined, cold clouds.

R. W. Goosmann; B. Czerny; V. Karas; M. Dovciak; G. Ponti; M. Mouchet

2007-02-26T23:59:59.000Z

234

The energy spectrum, time history, and IPN error ellipse of GRB051103, a possible extragalactic SGR giant flare  

E-Print Network (OSTI)

GRB051103 is considered to be a candidate soft gamma repeater (SGR) extragalactic giant magnetar flare by virtue of its time history, localization, and energy spectrum. We have derived a refined interplanetary network localization for this burst which reduces the size of the error box by over a factor of two. We examine its time history for evidence of a periodic component, which would be one signature of an SGR giant flare, and conclude that this component is neither detected nor detectable under reasonable assumptions. We analyze the time-resolved energy spectra of this event with improved time- and energy resolution, and conclude that although the spectrum is very hard, its temporal evolution at late times cannot be determined, which further complicates the giant flare association.

Hurley, K; Perley, D; Mitrofanov, I G; Golovin, D V; Kozyrev, A S; Litvak, M L; Sanin, A B; Boynton, W; Fellows, C; Harshmann, K; Ohno, M; Yamaoka, K; Nakagawa, Y E; Smith, D M; Cline, T; Gehrels, N; Krimm, H; Palmer, D M; Duncan, R C; Wigger, C; Hajdas, W; Atteia, J -L; Ricker, G; Vanderspek, R; Rau, A; Von Kienlin, A

2009-01-01T23:59:59.000Z

235

Constraints on a strong X-ray flare in the Seyfert galaxy MCG-6-30-15  

E-Print Network (OSTI)

We discuss implications of a strong flare event observed in the Seyfert galaxy MCG-6-30-15 assuming that the emission is due to localized magnetic reconnection. We conduct detailed radiative transfer modeling of the reprocessed radiation for a primary source that is elevated above the disk. The model includes relativistic effects and Keplerian motion around the black hole. We show that for such a model setup the observed time-modulation must be intrinsic to the primary source. Using a simple analytical model we then investigate time delays between hard and soft X-rays during the flare. The model considers an intrinsic delay between primary and reprocessed radiation, which measures the geometrical distance of the flare source to the reprocessing sites. The observed time delays are well reproduced if one assumes that the reprocessing happens in magnetically confined, cold clouds.

Goosmann, R W; Karas, V; Dovciak, M; Ponti, G; Mouchet, M

2007-01-01T23:59:59.000Z

236

The Neupert effect in solar flares and implications for coronal heating  

E-Print Network (OSTI)

Based on simultaneous observations of solar flares in hard and soft X-rays we studied several aspects of the Neupert effect. About half of 1114 analyzed events show a timing behavior consistent with the Neupert effect. For these events, a high correlation between the soft X-ray peak flux and the hard X-ray fluence is obtained, being indicative of electron-beam-driven evaporation. However, for about one fourth of the events there is strong evidence for an additional heating agent other than electron beams. We discuss the relevance of these findings with respect to Parker's idea of coronal heating by nanoflares.

A. Veronig; B. Vrsnak; B. R. Dennis; M. Temmer; A. Hanslmeier; J. Magdalenic

2002-08-05T23:59:59.000Z

237

THE RELATIONSHIP BETWEEN HARD X-RAY PULSE TIMINGS AND THE LOCATIONS OF FOOTPOINT SOURCES DURING SOLAR FLARES  

SciTech Connect

The cause of quasi-periodic pulsations in solar flares remains the subject of debate. Recently, Nakariakov and Zimovets proposed a new model suggesting that, in two-ribbon flares, such pulsations could be explained by propagating slow waves. These waves may travel obliquely to the magnetic field, reflect in the chromosphere, and constructively interfere at a spatially separate site in the corona, leading to quasi-periodic reconnection events progressing along the flaring arcade. Such a slow wave regime would have certain observational characteristics. We search for evidence of this phenomenon during a selection of two-ribbon flares observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager, Solar and Heliospheric Observatory, and Transition Region and Coronal Explorer; the flares of 2002 November 9, 2005 January 19, and 2005 August 22. We were not able to observe a clear correlation between hard X-ray footpoint separations and pulse timings during these events. Also, the motion of hard X-ray footpoints is shown to be continuous within the observational error, whereas a discontinuous motion might be anticipated in the slow wave model. Finally, we find that for a preferential slow wave propagation angle of 25 Degree-Sign -28 Degree-Sign that is expected for the fastest waves, the velocities of the hard X-ray footpoints lead to estimated pulse periods and ribbon lengths significantly larger than the measured values. Hence, for the three events studied, we conclude that the observational characteristics cannot be easily explained via the Nakariakov and Zimovets propagating slow wave model when only angles of 25 Degree-Sign -28 Degree-Sign are considered. We provide suggested flare parameters to optimize future studies of this kind.

Inglis, A. R.; Dennis, B. R. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-04-01T23:59:59.000Z

238

Plasma end-loss studies on Scylla I-C  

SciTech Connect

The end-loss process in the collision dominated Scylla I-C plasma has been investigated with a local pressure sensitive diagnostic, integrated density measurement and axially arrayed diamagnetic loop probes. The development of a plasma loss orifice, well within the theta-pinch coil, has been identified. The magnitude of the observed orifice is found to be in excellent agreement with that predicted from collisional MHD theories. The axially flowing plasma is well confined until it flows through the loss orifice. After passing through the orifice, rapid axial expansion is observed. An indication of the existence of inward traveling rarefaction waves has been observed from the plasma midplane temperature data; an abrupt decrease in the plasma temperature at t approximately equal to 6.5 ..mu..s corresponds to the predicted time of arrival of rarefaction waves at the coil midplane. The plasma loss rate derived from the pressure data indicates an initial period (t < 4 ..mu..s) of rapid particle loss followed by a period (t > 4 ..mu..s) of gradual decay in the loss rate. This initial period of high loss rate is predicted from the MHD flow theories when the measured, time dependent plasma parameters are substituted into the analytical models. The loss rate determined from the end-on interferograms does not respond to the detailed structure of the plasma loss process.

McKenna, K.F.; York, T.M.

1976-08-01T23:59:59.000Z

239

The Solar Flare Chlorine Abundance from RESIK X-ray Spectra  

E-Print Network (OSTI)

The abundance of chlorine is determined from X-ray spectra obtained with the RESIK instrument on {\\em CORONAS-F} during solar flares between 2002 and 2003. Using weak lines of He-like Cl, \\ion{Cl}{16}, between 4.44 and 4.50 \\AA, and with temperatures and emission measures from {\\em GOES} on an isothermal assumption, we obtained $A({\\rm Cl}) = 5.75 \\pm 0.26$ on a scale $A({\\rm H}) = 12$. The uncertainty reflects an approximately factor 2 scatter in measured line fluxes. Nevertheless our value represents what is probably the best solar determination yet obtained. It is higher by factors of 1.8 and 2.7 than Cl abundance estimates from an infrared sunspot spectrum and nearby \\ion{H}{2} regions. The constancy of the RESIK abundance values over a large range of flares ({\\em GOES} class from below C1 to X1) argues for any fractionation that may be present in the low solar atmosphere to be independent of the degree of solar activity.

Sylwester, B; Sylwester, J; Kuznetsov, V D

2011-01-01T23:59:59.000Z

240

THE SOLAR FLARE CHLORINE ABUNDANCE FROM RESIK X-RAY SPECTRA  

SciTech Connect

The abundance of chlorine is determined from X-ray spectra obtained with the RESIK instrument on CORONAS-F during solar flares between 2002 and 2003. Using weak lines of He-like Cl, Cl XVI, between 4.44 and 4.50 A, and with temperatures and emission measures from GOES on an isothermal assumption, we obtained A(Cl) = 5.75 {+-} 0.26 on a scale A(H) = 12. The uncertainty reflects an approximately a factor of two scatter in measured line fluxes. Nevertheless, our value represents what is probably the best solar determination yet obtained. It is higher by factors of 1.8 and 2.7 than Cl abundance estimates from an infrared sunspot spectrum and nearby H II regions. The constancy of the RESIK abundance values over a large range of flares (GOES class from below C1 to X1) argues for any fractionation that may be present in the low solar atmosphere to be independent of the degree of solar activity.

Sylwester, B.; Sylwester, J. [Space Research Centre, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Phillips, K. J. H. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Kuznetsov, V. D., E-mail: bs@cbk.pan.wroc.pl, E-mail: js@cbk.pan.wroc.pl, E-mail: kjhp@mssl.ucl.ac.uk, E-mail: kvd@izmiran.ru [Institute of Terrestrial Magnetism and Radiowave Propagation (IZMIRAN), Troitsk, Moscow (Russian Federation)

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Low-energy cutoffs in electron spectra of solar flares: statistical survey  

E-Print Network (OSTI)

The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data base (February 2002 -- May 2006) has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularised inversion technique, we determine the mean electron flux distribution from count spectra of a selection of events with flat photon spectra in the 15--20 keV energy range. Such spectral behaviour is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range, e.g. a low-energy cutoff in the mean electron spectra of non-themal particles. We have found 18 cases which exhibit a statistically significant local minimum (a dip) in the range of 10--20 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction was applied, all low-energy cutoffs in the mean electron spectrum were removed and hence the low energy cutoffs in the mean electron spectrum of solar flares above $\\sim$12 keV cannot be viewed as real features in the electron spectrum. If low-energy cutoffs exist in the mean electron spectra, the energy of low energy cutoffs should be less than $\\sim$12 keV.

E. P. Kontar; E. Dickson; J. Kasparova

2008-05-10T23:59:59.000Z

242

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

243

BeppoSAX and Ulysses data on the giant flare from SGR 1900+14  

E-Print Network (OSTI)

The extraordinary giant flare of 1998 August 27 from SGR 1900+14 was the most intense event ever detected from this or any other cosmic source (even more intense than the famous March 5th 1979 event). It was longer than any previous burst from SGR1900+14 by more than one order of magnitude, and it displayed the same 5.16-s periodicity in hard X-rays that was detected in the low energy X-ray flux of its quiescent counterpart. The event was detected by several gamma-ray experiments in space, among them the Ulysses gamma-ray burst detector and the BeppoSAX Gamma Ray Burst Monitor. These instruments operate in different energy ranges, and a comparison of their data shows that the event emitted a strongly energy-dependent flux, and displayed strong spectral evolution during the outburst itself. Here we present a joint analysis of the BeppoSAX and Ulysses data, in order to identify the energy-dependent features of this event and understand some of the physical conditions in the environment of the neutron star which generated this flare.

M. Feroci; K. Hurley; R. Duncan; C. Thompson; E. Costa; F. Frontera

1999-12-23T23:59:59.000Z

244

Flaring up: radio diagnostics of the kinematic, hydrodynamic and environmental properties of GRBs  

E-Print Network (OSTI)

The specific incidence of radio flares appears to be significantly larger than that of the prompt optical emission. This abundance, coupled with the reverse shock interpretation suggests that radio flares add a unique probe on the physics of GRB shocks. Motivated thus, we estimate the strength of the reverse shock expected for bursts in which multi-wavelength observations have allowed the physical parameters of the forward shock to be determined. We use all 6 bursts (980519, 990123, 990510, 991208, 991216, 000418) which are found to be adiabatic and thus predicted to have a strong reverse shock. We aim to constrain the hydrodynamic evolution of the reverse shock and the initial bulk Lorentz factor -- which we found to be between $10^{2}$ and $10^{3}$ and well above the lower limits derived from the requirement that gamma-ray bursts be optically thin to high-energy photons. In half of the cases we improve the description of the early afterglow lightcurves by adding a contribution from the reverse shock. Modelling of this early emission provides the opportunity to investigate the immediate surroundings of the burst. For 991216 and 991208, the expected $1/r^2$ density structure for a stellar wind is not compatible with the early afterglow lightcurves. Considering the radial range relevant to these GRBs, we discuss the conditions under which the inclusion of a wind termination shock may resolve the absence of a $1/r^2$ density profile.

A. M. Soderberg; E. Ramirez-Ruiz

2002-10-23T23:59:59.000Z

245

Conservation of both current and helicity in a quadrupolar model for solar flares  

E-Print Network (OSTI)

A model for a solar flare, involving magnetic reconnection transferring flux and current between current-carrying magnetic loops connecting two pairs of footpoints, is generalized to include conservation of magnetic helicity during reconnection, as well as conservation of current at all four footpoints. For a set of force-free loops, with the $i$th loop having flux $F_i$ and current $I_i$, the self and mutual helicities are proportional to the self and mutual inductances with the constant of proportionality determined by $\\alpha_i=F_i/\\mu_0I_i$. In a constant-$\\alpha$ model, the change in magnetic energy is proportional to the change in helicity, and conservation of helicity implies conservation of magnetic energy, so that a flare cannot occur. In a quadrupolar model, with $\\alpha_1>\\alpha_2$ initially, $\\alpha_1$ increases and $\\alpha_2$ decreases when flux and current are transferred from loops~1 and~2 to loops~3 and~4. A model that conserves both current and helicity is constructed; it depends on the initial $\\alpha$s, and otherwise is somewhat simpler than when helicity is neglected.

Don Melrose

2004-03-02T23:59:59.000Z

246

The nature of the 4th track in GX 5-1: discovery of Fe XXVI RRC in massive flares  

E-Print Network (OSTI)

We present an explanation of the 4th branch of the Z-track based on analysis of high-quality RXTE data on the source GX 5-1. Spectral analysis shows that the physical evolution on the 4th track is a continuation of the flaring branch which we previously proposed consists of unstable nuclear burning of the accretion flow on the neutron star. In flaring there is a huge increase of the neutron star emission from a volume that increases to a radius of 21 km. The 4th branch is shown to consist of flaring under conditions that the mass accretion rate and thus the total source luminosity is falling. We detect strong emission on the flaring and 4th branches at energies between 7.8 - 9.4 keV inconsistent with origin as Fe K emission, which we suggest is the radiative recombination continua (RRC) of iron Fe XXVI at 9.28 keV and of lower states. Evolution of the emission takes place, the energy falling but the flux increasing strongly, consistent with production in the large volume of unstable nuclear burning around the...

Church, M J; Peach, C; Balucinska-Church, M

2009-01-01T23:59:59.000Z

247

DENSE OPTICAL AND NEAR-INFRARED MONITORING OF CTA 102 DURING HIGH STATE IN 2012 WITH OISTER: DETECTION OF INTRA-NIGHT ''ORPHAN POLARIZED FLUX FLARE''  

Science Conference Proceedings (OSTI)

CTA 102, classified as a flat spectrum radio quasar at z = 1.037, produced an exceptionally bright optical flare in 2012 September. Following the Fermi Large Area Telescope detection of enhanced {gamma}-ray activity, we closely monitored this source in the optical and near-infrared bands for the 10 subsequent nights using 12 telescopes in Japan and South Africa. On MJD 56197 (2012 September 27, four to five days after the peak of bright {gamma}-ray flare), polarized flux showed a transient increase, while total flux and polarization angle (PA) remained almost constant during the ''orphan polarized-flux flare.'' We also detected an intra-night and prominent flare on MJD 56202. The total and polarized fluxes showed quite similar temporal variations, but the PA again remained constant during the flare. Interestingly, the PAs during the two flares were significantly different from the jet direction. The emergence of a new emission component with a high polarization degree (PD) up to 40% would be responsible for the observed two flares, and such a high PD indicates the presence of a highly ordered magnetic field at the emission site. We argue that the well-ordered magnetic field and even the observed directions of the PA, which is grossly perpendicular to the jet, are reasonably accounted for by transverse shock(s) propagating down the jet.

Itoh, Ryosuke; Fukazawa, Yasushi; Tanaka, Yasuyuki T. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Abe, Yuhei [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan); Akitaya, Hiroshi; Kawabata, Koji S.; Moritani, Yuki [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Arai, Akira [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo-cho, Sayo, Hyogo 679-5313 (Japan); Hayashi, Masahiko [National Astronomical Observatory of Japan, Osawa 2-21-2, Mitaka, Tokyo 181-8588 (Japan); Hori, Takafumi; Nakata, Chikako [Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Isogai, Mizuki [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto-City 603-8555 (Japan); Izumiura, Hideyuki; Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Honjo 3037-5, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Miyanoshita, Ryo [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Morokuma, Tomoki [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Nagayama, Takahiro [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nakamoto, Jumpei [Department of Earth and Planetary Sciences, School of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan); Oasa, Yumiko, E-mail: itoh@hep01.hepl.hiroshima-u.ac.jp [Faculty of Education, Saitama University, 255 Shimo-Okubo, Sakura, Saitama, 338-8570 (Japan); and others

2013-05-10T23:59:59.000Z

248

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

249

IMPULSIVE PHASE CORONAL HARD X-RAY SOURCES IN AN X3.9 CLASS SOLAR FLARE  

SciTech Connect

We present the analysis of a pair of unusually energetic coronal hard X-ray (HXR) sources detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager during the impulsive phase of an X3.9 class solar flare on 2003 November 3, which simultaneously shows two intense footpoint (FP) sources. A distinct loop top (LT) coronal source is detected up to {approx}150 keV and a second (upper) coronal source up to {approx}80 keV. These photon energies, which were not fully investigated in earlier analysis of this flare, are much higher than commonly observed in coronal sources and pose grave modeling challenges. The LT source in general appears higher in altitude with increasing energy and exhibits a more limited motion compared to the expansion of the thermal loop. The high-energy LT source shows an impulsive time profile and its nonthermal power-law spectrum exhibits soft-hard-soft evolution during the impulsive phase, similar to the FP sources. The upper coronal source exhibits an opposite spatial gradient and a similar spectral slope compared to the LT source. These properties are consistent with the model of stochastic acceleration of electrons by plasma waves or turbulence. However, the LT and FP spectral index difference (varying from {approx}0 to 1) is much smaller than commonly measured and than that expected from a simple stochastic acceleration model. Additional confinement or trapping mechanisms of high-energy electrons in the corona are required. Comprehensive modeling including both kinetic effects and the macroscopic flare structure may shed light on this behavior. These results highlight the importance of imaging spectroscopic observations of the LT and FP sources up to high energies in understanding electron acceleration in solar flares. Finally, we show that the electrons producing the upper coronal HXR source may very likely be responsible for the type III radio bursts at the decimetric/metric wavelength observed during the impulsive phase of this flare.

Chen Qingrong; Petrosian, Vahe, E-mail: qrchen@gmail.com, E-mail: vahep@stanford.edu [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States)

2012-03-20T23:59:59.000Z

250

A scaled gradient projection method for the X-ray imaging of solar flares  

E-Print Network (OSTI)

In this paper we present a new optimization algorithm for the reconstruction of X-ray images of solar flares by means of the data collected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The imaging concept of the satellite is based of rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade a greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of a scaled gradient projection method for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function, by means of a discrepancy principle accounting for the Poisson nature of the noise affecting th...

Bonettini, S

2013-01-01T23:59:59.000Z

251

SIMULATION OF DESCENDING MULTIPLE SUPRA-ARCADE RECONNECTION OUTFLOWS IN SOLAR FLARES  

Science Conference Proceedings (OSTI)

After recent Atmospheric Imaging Assembly observations by Savage, McKenzie, and Reeves, we revisit the scenario proposed by us in previous papers. We have shown that sunward, generally dark plasma features that originated above posteruption flare arcades are consistent with a scenario where plasma voids (which we identify as supra-arcade reconnection outflows, SAROs) generate the bouncing and interfering of shocks and expansion waves upstream of an initial localized deposition of energy that is collimated in the magnetic field direction. In this paper, we analyze the multiple production and interaction of SAROs and their individual structures that make them relatively stable features while moving. We compare our results with observations and with the scenarios proposed by other authors.

Cecere, M.; Schneiter, M.; Costa, A.; Elaskar, S. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Maglione, S. [Facultad de Ingenieria, Universidad Nacional de Rio Cuarto, Rio Cuarto, Cordoba (Argentina)

2012-11-10T23:59:59.000Z

252

Stepwise method determines source of FCC catalyst losses  

Science Conference Proceedings (OSTI)

A set of guidelines for fluid catalytic cracking unit (FCCU) monitoring and a logical, stepwise approach to troubleshooting FCC catalyst losses is discussed. This will help process or operations engineers find the causes of such losses. A thorough understanding of the entire catalyst stem during normal operations establishes the base line data necessary for troubleshooting. A comprehensive, ongoing analysis of catalyst losses include: catalyst balance, fresh catalyst physical properties, equilibrium catalyst properties, fine particle size distribution, pressure surveys, and line and restriction orifice records. The paper goes on to identify each step in monitoring these operations and properties.

Fletcher, R. [Akzo-Nobel Chemicals Inc., Houston, TX (United States)

1995-08-28T23:59:59.000Z

253

Energy Loss by Breaking waves  

Science Conference Proceedings (OSTI)

Observations of the frequency of wind wave breaking in deep water are combined with laboratory estimates of the rate of energy loss a from single breaking wave to infer the net rate of energy transfer to the mixed layer from breaking waves, as a ...

S. A. Thorpe

1993-11-01T23:59:59.000Z

254

THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES OBSERVED WITH AIA/SDO: FRACTAL DIFFUSION, SUB-DIFFUSION, OR LOGISTIC GROWTH?  

SciTech Connect

We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission, amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.

Aschwanden, Markus J., E-mail: aschwanden@lmsal.com [Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Organization ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2012-09-20T23:59:59.000Z

255

Study of high energy ion loss during hydrogen minority heating in TFTR  

DOE Green Energy (OSTI)

High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45{degrees} below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described.

Park, J.; Zweben, S.J.

1994-03-01T23:59:59.000Z

256

Biological Damage due to Photospheric, Chromospheric and Flare Radiation in the Environments of Main-Sequence Stars  

E-Print Network (OSTI)

We explore the biological damage initiated in the environments of F, G, K, and M-type main-sequence stars due to photospheric, chromospheric and flare radiation. The amount of chromospheric radiation is, in a statistical sense, directly coupled to the stellar age as well as the presence of significant stellar magnetic fields and dynamo activity. With respect to photospheric radiation, we also consider detailed synthetic models, taking into account millions or hundred of millions of lines for atoms and molecules. Chromospheric UV radiation is increased in young stars in regard to all stellar spectral types. Flare activity is most pronounced in K and M-type stars, which also has the potential of stripping the planetary atmospheres of close-in planets, including planets located in the stellar habitable zone. For our studies, we take DNA as a proxy for carbon-based macromolecules, guided by the paradigm that carbon might constitute the biochemical centerpiece of extraterrestrial life forms. Planetary atmospheric ...

Cuntz, M; Kurucz, R L

2009-01-01T23:59:59.000Z

257

RHESSI AND SDO/AIA OBSERVATIONS OF THE CHROMOSPHERIC AND CORONAL PLASMA PARAMETERS DURING A SOLAR FLARE  

SciTech Connect

X-ray and extreme ultraviolet (EUV) observations are an important diagnostic of various plasma parameters of the solar atmosphere during solar flares. Soft X-ray and EUV observations often show coronal sources near the top of flaring loops, while hard X-ray emission is mostly observed from chromospheric footpoints. Combining RHESSI with simultaneous Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) observations, it is possible for the first time to determine the density, temperature, and emission profile of the solar atmosphere over a wide range of heights during a flare, using two independent methods. Here we analyze a near limb event during the first of three hard X-ray peaks. The emission measure, temperature, and density of the coronal source is found using soft X-ray RHESSI images while the chromospheric density is determined using RHESSI visibility analysis of the hard X-ray footpoints. A regularized inversion technique is applied to AIA images of the flare to find the differential emission measure (DEM). Using DEM maps, we determine the emission and temperature structure of the loop, as well as the density, and compare it with RHESSI results. The soft X-ray and hard X-ray sources are spatially coincident with the top and bottom of the EUV loop, but the bulk of the EUV emission originates from a region without cospatial RHESSI emission. The temperature analysis along the loop indicates that the hottest plasma is found near the coronal loop-top source. The EUV observations suggest that the density in the loop legs increases with increasing height while the temperature remains constant within uncertainties.

Battaglia, M. [Institute of 4D Technologies, School of Engineering, University of Applied Sciences and Arts Northwestern Switzerland, CH-5210 Windisch (Switzerland); Kontar, E. P., E-mail: marina.battaglia@fhnw.ch [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

2012-12-01T23:59:59.000Z

258

Processing Gain(-) or Loss(+) from Refinery Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

259

Processing Gain(-) or Loss(+) from Refinery & Blender Net ...  

U.S. Energy Information Administration (EIA)

East Coast-2,682-1,614-1,425-1,558-1,500-1,614: 1993-2013: Appalachian No. 1-90: 18: 18: 59: ... La. Gulf Coast-6,778-7,707-8,094-7,604-8,043-8,477: ...

260

Circumstellar emission and flares on FK Comae Berenices: Analysis and modelling of Balmer and He I D3 line variations  

E-Print Network (OSTI)

We present results on spectroscopic observations of the fast-rotating active giant FK Comae, obtained mainly with the ESA-MUSICOS spectrograph at the Isaac Newton Telescope (INT) in 1996 and 1997 and also with the Aurelie spectrograph at the Observatoire de Haute Provence (OHP) in 1997. The profiles analysed are those of the Balmer, Halpha and Hbeta, and He I D3 (5876 A) lines. We analyse the Balmer line variability and phase behaviour. We confirm these lines as highly variable, with excess emission that originates from extended structures and exhibits clear signs of rotational modulation. We have described the line profiles for two distinct states of activity, using different modelling approaches. Similar techniques were applied to the He I D3 spectra. A large flare event lasting several days was detected in both Balmer lines and in the He I D3 line. The energy released during this flare in H alpha is of the order of 10^37 erg, making it the largest Halpha flare reported on a cool star. Our results confirm the extreme complexity of the circumstellar environment of FK Comae. The activity level of this star is quite variable demanding different approaches to the line profile analysis.

J. M. Oliveira; B. H. Foing

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Properties of the energetic particle distributions during the October 28, 2003 solar flare from INTEGRAL/SPI observations  

E-Print Network (OSTI)

Analysis of spectra obtained with the gamma-ray spectrometer SPI onboard INTEGRAL of the GOES X17-class flare on October 28, 2003 is presented. In the energy range 600 keV - 8 MeV three prominent narrow lines at 2.223, 4.4 and 6.1 MeV, resulting from nuclear interactions of accelerated ions within the solar atmosphere could be observed. Time profiles of the three lines and the underlying continuum indicate distinct phases with several emission peaks and varying continuum-to-line ratio for several minutes before a smoother decay phase sets in. Due to the high-resolution Ge detectors of SPI and the exceptional intensity of the flare, detailed studies of the 4.4 and 6.1 MeV line shapes was possible for the first time. Comparison with calculated line shapes using a thick target interaction model and several energetic particle angular distributions indicates that the nuclear interactions were induced by downward-directed particle beams with alpha-to-proton ratios of the order of 0.1. There are also indications that the 4.4 MeV to 6.1 MeV line fluence ratio changed between the beginning and the decay phase of the flare, possibly due to a temporal evolution of the energetic particle alpha-to-proton ratio.

J. Kiener; M. Gros; V. Tatischeff; G. Weidenspointner

2005-11-03T23:59:59.000Z

262

Evidence for departure from a power-law flare size distribution for a small solar active region  

E-Print Network (OSTI)

Active region 11029 was a small, highly flare-productive solar active region observed at a time of extremely low solar activity. The region produced only small flares: the largest of the $>70$ Geostationary Observational Environmental Satellite (GOES) events for the region has a peak 1--$8{\\AA}$ flux of $2.2\\times 10^{-6} {\\rm W} {\\rm m}^{-2}$ (GOES C2.2). The background-subtracted GOES peak-flux distribution suggests departure from power-law behavior above $10^{-6} {\\rm W} {\\rm m}^{-2}$, and a Bayesian model comparison strongly favors a power-law plus rollover model for the distribution over a simple power-law model. The departure from the power law is attributed to this small active region having a finite amount of energy. The rate of flaring in the region varies with time, becoming very high for two days coinciding with the onset of an increase in complexity of the photospheric magnetic field. The observed waiting-time distribution for events is consistent with a piecewise-constant Poisson model. These res...

Wheatland, M S

2010-01-01T23:59:59.000Z

263

Sound energy loss during sonolysis  

Science Conference Proceedings (OSTI)

This paper gives an analysis of sound energy losses due to sonolysis — dissociation of the part of water molecules to radicals H? and ?OH. The value of the energy loss can be evaluated by using the concentration of hydrogen peroxide which appears in the water as a result of cross?recombination of radicals ?OH+?OH=H2O2. Data previously obtained by different authors were used for the present analysis. Data for fresh water and also for water with dissolved gases were considered. Data covered a sound frequency range from 1.5 kHz to 2 MHz and sound pressure amplitudes 0.6–2.5 atm for normal static pressure and a water temperature of 20?°C. It is shown that the rate of increasing hydrogen peroxide concentration is proportional to the intensity of sound. The rate is also propor? tional to the concentration of dissolved oxygen and argon in water while other gases (hydrogen

Dmitry A. Selivanovsky; Grigory A. Domrachev

1995-01-01T23:59:59.000Z

264

Further Results on Forecasting and Model Selection Under Asymmetric Loss  

E-Print Network (OSTI)

: We make three related contributions. First, we propose a new technique for solving prediction problems under asymmetric loss using piecewise-linear approximations to the loss function, and we establish existence and uniqueness of the optimal predictor. Second, we provide a detailed application to optimal prediction of a conditionally heteroskedastic process under asymmetric loss, the insights gained from which are broadly applicable. Finally, we incorporate our results into a general framework for recursive prediction-based model selection under the relevant loss function. Acknowledgements: Helpful discussion was provided by Adolf Buse, Hashem Pesaran, Dale Poirrier, Enrique Sentana, Jim Stock, Ken Wallis, participants at meetings of the Econometric Society World Congress, the NBER/NSF Forecasting Seminar, the UCSD Conference on Multivariate Financial Econometrics, and numerous university seminars. All remaining inadequacies are ours alone. We thank the National Science Foundation, t...

Peter F. Christoffersen; Francis X. Diebold

1996-01-01T23:59:59.000Z

265

The gas temperature in flaring disks around pre-main sequence stars  

E-Print Network (OSTI)

A model is presented which calculates the gas temperature and chemistry in the surface layers of flaring circumstellar disks using a code developed for photon-dominated regions. Special attention is given to the influence of dust settling. It is found that the gas temperature exceeds the dust temperature by up to several hundreds of Kelvins in the part of the disk that is optically thin to ultraviolet radiation, indicating that the common assumption that Tgas=Tdust is not valid throughout the disk. In the optically thick part, gas and dust are strongly coupled and the gas temperature equals the dust temperature. Dust settling has little effect on the chemistry in the disk, but increases the amount of hot gas deeper in the disk. The effects of the higher gas temperature on several emission lines arising in the surface layer are examined. The higher gas temperatures increase the intensities of molecular and fine-structure lines by up to an order of magnitude, and can also have an important effect on the line shapes.

B. Jonkheid; F. G. A. Faas; G. -J. van Zadelhoff; E. F. van Dishoeck

2004-08-26T23:59:59.000Z

266

On the usage of Flaring Gas Layers to determine the Shape of Dark Matter Halos  

E-Print Network (OSTI)

I present a new method of deriving the shape of the dark matter (DM) halos of spiral galaxies. The method relies on the comparison of model predictions with high spectral and spatial resolution HI observations of the gas layer. The potential arising from the {\\em total} mass distribution of the galaxy is used in the calculation of the vertical distribution of the gas. I developed a new algorithm to calculate the force field of an arbitrary, azimuthally symmetric, density distribution. This algorithm is used to calculate the forces due to the radially truncated stellar disk as well as of the flaring gas layer. I use a simple two-parameter family of disk-halo models which have essentially the same observed equatorial rotation curve but different vertical forces. This mass model is composed of a stellar disk with constant M/L, and a DM-halo with a given axial ratio. I approximate the radial force due to the gaseous disk, and iteratively determine the vertical force due to the global distribution of the gas. The thickness of the gaseous disk is sensitive to both the flattening of the DM-halo and the self-gravity of the gas, but not to the particular choice of disk-halo decomposition. I show that the determination of the thickness of the gas layer is not restricted to edge-on galaxies, but can be measured for moderately inclined systems as well.

Rob P. Olling

1995-05-02T23:59:59.000Z

267

Evolution of Anemone AR NOAA 10798 and the Related Geo-Effective Flares and CMEs  

E-Print Network (OSTI)

We present a detailed examination of the features of the Active Region (AR) NOAA 10798. This AR generated coronal mass ejections (CMEs) that caused a large geomagnetic storm on 24 August 2005 with the minimum Dst index of -216 nT. We examined the evolution of the AR and the features on/near the solar surface and in the interplanetary space. The AR emerged in the middle of a small coronal hole, and formed a {\\it sea anemone} like configuration. H$\\alpha$ filaments were formed in the AR, which have southward axial field. Three M-class flares were generated, and the first two that occurred on 22 August 2005 were followed by Halo-type CMEs. The speeds of the CMEs were fast, and recorded about 1200 and 2400 km s$^{-1}$, respectively. The second CME was especially fast, and caught up and interacted with the first (slower) CME during their travelings toward Earth. These acted synergically to generate an interplanetary disturbance with strong southward magnetic field of about -50 nT, which was followed by the large g...

Asai, Ayumi; Ishii, Takako T; Oka, Mitsuo; Kataoka, Ryuho; Fujiki, Ken'ichi; Gopalswamy, Nat

2008-01-01T23:59:59.000Z

268

Evolution of Anemone AR NOAA 10798 and the Related Geo-Effective Flares and CMEs  

E-Print Network (OSTI)

We present a detailed examination of the features of the Active Region (AR) NOAA 10798. This AR generated coronal mass ejections (CMEs) that caused a large geomagnetic storm on 24 August 2005 with the minimum Dst index of -216 nT. We examined the evolution of the AR and the features on/near the solar surface and in the interplanetary space. The AR emerged in the middle of a small coronal hole, and formed a {\\it sea anemone} like configuration. H$\\alpha$ filaments were formed in the AR, which have southward axial field. Three M-class flares were generated, and the first two that occurred on 22 August 2005 were followed by Halo-type CMEs. The speeds of the CMEs were fast, and recorded about 1200 and 2400 km s$^{-1}$, respectively. The second CME was especially fast, and caught up and interacted with the first (slower) CME during their travelings toward Earth. These acted synergically to generate an interplanetary disturbance with strong southward magnetic field of about -50 nT, which was followed by the large geomagnetic storm.

Ayumi Asai; Kazunari Shibata; Takako T. Ishii; Mitsuo Oka; Ryuho Kataoka; Ken'ichi Fujiki; Nat Gopalswamy

2008-12-11T23:59:59.000Z

269

A long-duration flare in the X-ray/EUV selected chromospherically active binary 2RE J0743+224  

E-Print Network (OSTI)

2RE J0743+224 (BD +23 1799) is a chromospherically active star selected by X-rays and EUV emission detected in the Einstein Slew Survey and ROSAT Wide Field Camara (WFC) all sky survey, and classified as single-lined spectroscopic binary by (Jeffries et al. 1995). We present here high resolution echelle spectroscopic observations of this binary, obtained during a 10 night run 12-21 January 1998 using the 2.1m telescope at McDonald Observatory. These observations reveal it is a double-lined spectroscopic binary. A dramatic increase in the chromospheric emissions (H_alpha and Ca II IRT lines) is detected during the observations. Several arguments favor the interpretation of this behavior as an unusual long-duration flare. First the temporal evolution of the event is similar to the observed in other solar and stellar flares, with an initial impulsive phase characterized by a strong increase in the chromospheric lines (the H_alpha EW change in a factor of 5 in only one day) and thereafter, the line emission decreased gradually over several days. Second, a broad component in the H_alpha line profile is observed just at the beginning of the event. Third, the detection of the He I D_{3} in emission and a filled-in He I 6678 A. We detect a Li I 6708 A line enhancement which is clearly related with the temporal evolution of the flare. The maximum Li I enhancement occurs just after the maximum chromospheric emission observed in the flare. We suggest that this Li I is produced by spallation reactions in the flare. This is the first time that such LiI enhancement associate with a stellar flare is reported, and probably the long-duration of this flare is a key factor for this detection.

D. Montes; L. W. Ramsey

1998-09-09T23:59:59.000Z

270

Mechanical model for ductility loss  

Science Conference Proceedings (OSTI)

A mechanical model was constructed to probe into the mechanism of ductility loss. Fracture criterion based on critical localized deformation was undertaken. Two microstructure variables were considered in the model. Namely, the strength ratio of grain boundary affected area to the matrix, ..cap omega.., and the linear fraction, x, of grain boundary affected area. A parametrical study was carried out. The study shows that the ductility is very sensitive to those microstructure parameters. The functional dependence of ductility to temperature as well as strain-rate, suggested by the model, is demonstrated to be consistent with the observation.

Hu, W.L.

1980-02-11T23:59:59.000Z

271

Quantum cryptographic system with reduced data loss  

DOE Patents (OSTI)

A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.

Lo, Hoi-Kwong (1309, Low Block, Lei Moon House Ap Lei Chau Estate, Hong Kong, HK); Chau, Hoi Fung (Flat C, 42nd Floor, Tower 1, University Heights 23 Pokfield Road, Pokfulam, Hong Kong, HK)

1998-01-01T23:59:59.000Z

272

Quantum cryptographic system with reduced data loss  

DOE Patents (OSTI)

A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.

Lo, H.K.; Chau, H.F.

1998-03-24T23:59:59.000Z

273

Loss mechanisms in turbine tip clearance flows  

E-Print Network (OSTI)

Numerical simulations of tip clearance ow have been carried out to dene the loss generation mechanisms associated with tip leakage in unshrouded axial turbines. Mix- ing loss between the leakage, which takes the form of a ...

Huang, Arthur (Arthur C.)

2011-01-01T23:59:59.000Z

274

Hydrodynamic Simulation of a nano-flare heated multi-strand solar atmospheric loop  

E-Print Network (OSTI)

There is a growing body of evidence that the plasma loops seen with current instrumentation (SOHO, TRACE and Hinode) may consist of many sub-resolution elements or strands. Thus, the overall plasma evolution we observe in these features could be the cumulative result of numerous individual strands undergoing sporadic heating. This paper presents a short (10^9 cm ~ 10 Mm) ``global loop'' as 125 individual strands where each strand is modelled independently by a one-dimensional hydrodynamic simulation. The energy release mechanism across the strands consists of localised, discrete heating events (nano-flares). The strands are ``coupled'' together through the frequency distribution of the total energy input to the loop which follows a power law distribution with index alpha. The location and lifetime of each energy event occurring is random. Although a typical strand can go through a series of well-defined heating/cooling cycles, when the strands are combined, the overall quasi-static emission measure weighted thermal profile for the global loop reproduces a hot apex/cool base structure. Localised cool plasma blobs are seen to travel along individual strands which could cause the loop to `disappear' from coronal emission and appear in transition or chromospheric ones. As alpha increases (from 0 to 2.29 to 3.29), more weight is given to the smallest heating episodes. Consequently, the overall global loop apex temperature increases while the variation of the temperature around that value decreases. Any further increase in alpha saturates the loop apex temperature variations at the current simulation resolution. The effect of increasing the number of strands and the loop length as well as the implications of these results upon possible future observing campaigns for TRACE and Hinode are discussed.

Aveek Sarkar; Robert W Walsh

2008-04-18T23:59:59.000Z

275

The "Carina Flare" Supershell: Probing the Atomic and Molecular ISM in a Galactic Chimney  

E-Print Network (OSTI)

The "Carina Flare" supershell, GSH 287+04-17, is a molecular supershell originally discovered in 12CO(J=1-0) with the NANTEN 4m telescope. We present the first study of the shell's atomic ISM, using HI 21 cm line data from the Parkes 64m telescope Southern Galactic Plane Survey. The data reveal a gently expanding, ~ 230 x 360 pc HI supershell that shows strong evidence of Galactic Plane blowout, with a break in its main body at z ~ 280 pc and a capped high-latitude extension reaching z ~ 450 pc. The molecular clouds form co-moving parts of the atomic shell, and the morphology of the two phases reflects the supershell's influence on the structure of the ISM. We also report the first discovery of an ionised component of the supershell, in the form of delicate, streamer-like filaments aligned with the proposed direction of blowout. The distance estimate to the shell is re-examined, and we find strong evidence to support the original suggestion that it is located in the Carina Arm at a distance of 2.6 +- 0.4 kpc. Associated HI and H2 masses are estimated as M(HI) ~ 7 +- 3 x 10^5 Msol and M(H2) ~ 2.0 +- 0.6 x 10^5 Msol, and the kinetic energy of the expanding shell as E ~ 1 x 10^51 erg. We examine the results of analytical and numerical models to estimate a required formation energy of several 10^51 to ~ 10^52 erg, and an age of ~ 10^7 yr. This age is compatible with molecular cloud formation time-scales, and we briefly consider the viability of a supershell-triggered origin for the molecular component.

J. R. Dawson; N. Mizuno; T. Onishi; N. M. McClure-Griffiths; Y. Fukui

2008-02-29T23:59:59.000Z

276

Louisiana Wetland Loss Fact at Askives  

U.S. Energy Information Administration (EIA)

Louisiana Wetland Loss Fact? - Find Questions and Answers at Askives, the first startup that gives you an straight answer

277

TIME DELAYS IN QUASI-PERIODIC PULSATIONS OBSERVED DURING THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15  

Science Conference Proceedings (OSTI)

We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on timescale 1-30 s and find different time lags between different wavebands. During the impulsive phase, the Reuven Ramaty High Energy Solar Spectroscopic Imager channels in the range 25-100 keV lead all the other channels. They are followed by the Nobeyama RadioPolarimeters at 9 and 17 GHz and the extreme-ultraviolet (EUV) channels of the Euv SpectroPhotometer (ESP) on board the Solar Dynamic Observatory. The zirconium and aluminum filter channels of the Large Yield Radiometer on board the Project for On-Board Autonomy satellite and the soft X-ray (SXR) channel of ESP follow. The largest lags occur in observations from the Geostationary Operational Environmental Satellite, where the channel at 1-8 A leads the 0.5-4 A channel by several seconds. The time lags between the first and last channels is up to Almost-Equal-To 9 s. We identified at least two distinct time intervals during the flare impulsive phase, during which the QPPs were associated with two different sources in the Nobeyama RadioHeliograph at 17 GHz. The radio as well as the hard X-ray channels showed different lags during these two intervals. To our knowledge, this is the first time that time lags are reported between EUV and SXR fluctuations on these timescales. We discuss possible emission mechanisms and interpretations, including flare electron trapping.

Dolla, L.; Marque, C.; Seaton, D. B.; Dominique, M.; Berghmans, D.; Cabanas, C.; De Groof, A.; Verdini, A.; West, M. J.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Van Doorsselaere, T. [Centrum voor Plasma-Astrofysica, Department of Mathematics, KULeuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Schmutz, W. [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos Dorf (Switzerland); Zender, J., E-mail: dolla@sidc.be [European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

2012-04-10T23:59:59.000Z

278

Corona losses dependence from the conductor diameter  

Science Conference Proceedings (OSTI)

This paper presents possibility to decrease the corona power losses in overhead transmission lines. Corona power losses can be reduced by increasing the diameter of the conductor and used bundled conductors per phase. The objectives were to determine ... Keywords: corona model, critical disruptive voltage, electric discharge, electric field, power losses, transmission line

Isuf Krasniqi; Vjollca Komoni; Avni Alidemaj; Gazmend Kabashi

2011-10-01T23:59:59.000Z

279

Shield Losses in Medium-Voltage Cables  

Science Conference Proceedings (OSTI)

Utilities can substantially reduce cable costs and circulating current losses by optimizing the design of concentric neutral conductors for underground distribution cables and by configuring installed cables to minimize energy loss. This guide shows how to design neutral conductors for maximum cost-effectiveness and includes calculations of circulating current losses and ampacities for commonly used cables.

1987-12-14T23:59:59.000Z

280

Fermi Guest Investigator Program Cycle 2 Project Final Report Albedo Polarimetry of Gamma-Ray Bursts and Solar Flares with GBM  

SciTech Connect

Several key properties of GRBs remain poorly understood and are difficult or even impossible to infer with the information currently being collected. Polarization measurements will probe the precise nature of the central engine. For solar flares, high-energy polarization measurements are expected to be useful in determining the beaming (or directivity) of solar flare electrons - a quantity that may provide important clues about electron acceleration and transport. We propose to investigate the viability of using the Fermi Gamma-ray Burst Monitor (GBM) to measure the polarization of GRBs and solar flares using the albedo photon flux. This approach was previously developed for use with BATSE data. We will conduct a careful study of this technique using a modified version of the GRESS simulation tools developed by the GBM team.

Kippen, Richard Marc [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy-loss rate of a fast particle in graphene  

SciTech Connect

The energy-loss rate of a fast particle in graphene is studied. The energy-loss rate always increases with increasing incident particle energy, which is quite unusual when compared to electron gas in normal metal. Graphene exhibits a ''discriminating'' behavior where there exists a low energy cut-off below which the scattering process is strictly forbidden, leading to lossless traverse of an external particle in graphene. This low energy cutoff is of the order of nearest neighbor hopping bandwidth. Our results suggest that backscattering is also absent in the external particle scattering of graphene.

Ang, Yee Sin; Zhang, C. [School of Engineering Physics, University of Wollongong, 2522 NSW (Australia); Kee, Chun Yun [Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

2011-08-01T23:59:59.000Z

282

Induction machine stray loss from inter-bar currents  

E-Print Network (OSTI)

Stray load loss refers generally to the sources of induction machine loss not accounted for by typical calculations of primary or secondary copper loss, no load core loss, or friction and windage loss. Harmonic rotor bar ...

Englebretson, Steven Carl

2009-01-01T23:59:59.000Z

283

On the Information Loss in Static Systems  

E-Print Network (OSTI)

In this work we give a concise definition of information loss from a system-theoretic point of view. Based on this definition, we analyze the information loss in static input-output systems subject to a continuous-valued input. For a certain class of multiple-input, multiple-output systems the information loss is quantified. An interpretation of this loss is accompanied by upper bounds which are simple to evaluate. Finally, a class of systems is identified for which the information loss is necessarily infinite. Quantizers and limiters are shown to belong to this class.

Geiger, Bernhard C

2011-01-01T23:59:59.000Z

284

Study of Heat Loss: Commercial and Residential  

E-Print Network (OSTI)

There is much savings involved in the prevention of heat loss. Many structures exhibit such loss. Much can be done to improve or minimize the heat loss in a structure. These include interior and exterior modifications. It has been shown that heat can move by means of convection, conduction, and radiation. Problems with heat loss can be due to moisture, and poor construction techniques. There is a beneficial cost savings involved in the prevention of heat loss. Prevention techniques include insulation, caulking, weather stripping, and double pane windows. There are tables available for one to reference and calculate the return on their investment or “payback tim”

Emmett Ientilucci

1995-01-01T23:59:59.000Z

285

A charged particle transport analysis of the dose to a silicon-germanium thermoelectric element due to a solar flare event  

DOE Green Energy (OSTI)

A version of the BRYNTRN baryon transport code written at the NASA Langley Research Center has been used to analyze the dose to a typical space reactor thermoelectric (TE) element due to a solar flare event. The code has been used in the past to calculate the dose/dose equivalent distributions to astronauts due to solar flares. It has been modified to accommodate multiple layers of spacecraft and component material. Differential and integrated doses to the TE element are presented and discussed. 5 refs.

Dandini, V.J.

1991-01-01T23:59:59.000Z

286

Gas-rich sediment and coastal wetland loss in Louisiana  

SciTech Connect

High rates of wetland loss in southern Louisiana provide the impetus for examining the role that trapped, biogenic gases play in regulating subsidence of coastal areas. A significant cause for wetland loss in this region is relative sea-level rise produced by sediment-volume reduction. Dewatering, grain reorientation and packing, and oxidation of organic-rich sediments are thought to be the main processes for volume loss. It is argued that natural and anthropogenic causes for sediment degasification play a critical role in sediment-volume reduction. Compressional wave velocities were measured at 34 sites in both the abandoned (Holocene) and modern parts of the Mssissippi Delta. A low-frequency source (<200 Hz) was used to maximize sound-wave dispersion caused by interstitial gas bubbles. Compressional wave velocities measured at low frequencies relative to the gas-bubble resonant-frequency undergo maximum change from the velocity for a gas-free sediment.

Thompson, M.D.; McGinnis, L.D.; Wilkey, P.L.; Miller, S.F.

1993-03-01T23:59:59.000Z

287

Fluid loss to formation stopped prior to gravel packing  

Science Conference Proceedings (OSTI)

Union Texas Petroleum has combined special techniques in offshore Louisiana gravel-packing operations to combat severe fluid loss that had jeopardized previous gravel-packed completions. By using an annulus pressure-controlled circulation valve and a crosslinked polymer gelled block, Union Texas was able to totally halt loss of fluid to a formation that had an 1,835-psi overbalanced (the hydrostatic pressure of well fluid in the treating string-to-casing annulus exceeded formation pressure by 1,835 psi). The pressure-controlled valve permitted process control without pipe movement, and the gelled block prevented fluid loss to the formation while the gravel pack was being installed. The well was perforated underbalanced, using tubing-conveyed guns, for perforation cleanup.

Quarnstrom, T.F. (Union Texas Petroleum, Houston, TX (US)); Cavender, T.W.; Shelton, G. (Vann Systems Houston, TX (US))

1989-09-25T23:59:59.000Z

288

PHYSICAL PROCESSES SHAPING GAMMA-RAY BURST X-RAY AFTERGLOW LIGHT CURVES: THEORETICAL IMPLICATIONS FROM THE SWIFT X-RAY TELESCOPE OBSERVATIONS  

E-Print Network (OSTI)

PHYSICAL PROCESSES SHAPING GAMMA-RAY BURST X-RAY AFTERGLOW LIGHT CURVES: THEORETICAL IMPLICATIONS August 15; accepted 2005 December 19 ABSTRACT With the successful launch of the Swift Gamma-Ray Burst component is consistent with the tail emission of the prompt gamma-ray bursts and/or the X-ray flares

Zhang, Bing

289

A return to strong radio flaring by Circinus X-1 observed with the Karoo Array Telescope test array KAT-7  

E-Print Network (OSTI)

Circinus X-1 is a bright and highly variable X-ray binary which displays strong and rapid evolution in all wavebands. Radio flaring, associated with the production of a relativistic jet, occurs periodically on a ~17-day timescale. A longer-term envelope modulates the peak radio fluxes in flares, ranging from peaks in excess of a Jansky in the 1970s to an historic low of milliJanskys during the years 1994 to 2007. Here we report first observations of this source with the MeerKAT test array, KAT-7, part of the pathfinder development for the African dish component of the Square Kilometre Array (SKA), demonstrating successful scientific operation for variable and transient sources with the test array. The KAT-7 observations at 1.9 GHz during the period 13 December 2011 to 16 January 2012 reveal in temporal detail the return to the Jansky-level events observed in the 1970s. We compare these data to contemporaneous single-dish measurements at 4.8 and 8.5 GHz with the HartRAO 26-m telescope and X-ray monitoring from...

Armstrong, R P; Nicolson, G D; Ratcliffe, S; Linares, M; Horrell, J; Richter, L; Schurch, M P E; Coriat, M; Woudt, P; Jonas, J; Booth, R; Fanaroff, B

2013-01-01T23:59:59.000Z

290

Based on Hierarchy Analysis and Fuzzy Mathematical Electric Enterprises Loss Problems  

Science Conference Proceedings (OSTI)

Whenever mentioning electric enterprises, people will always have the impression: the more power generation the more losses. With China's economic marketing process deepening, market reform of electric power prices appears to shoulder heavy responsibilities. ... Keywords: electric enterprises losses, AHP, fuzzy mathematics

Yao Hua; Zhenkun Tian

2012-05-01T23:59:59.000Z

291

Vehicle Technologies Office: Parasitic Loss Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Parasitic Loss Reduction Parasitic Loss Reduction Heavy vehicles lose a tremendous amount of energy to wind resistance and drag, braking, and rolling resistance. Such non-engine losses can account for an approximate 45% decrease in efficiency. Other sources of energy loss include: friction and wear in the power train, thermal (heat) loads, operation of auxiliary loads (air conditioning, heaters, refrigeration, etc.), and engine idling. The parasitic loss activity identifies methodologies that may reduce energy losses, and tests those in the laboratory. Promising technologies are then prototyped and tested onboard heavy vehicles. Once validated, technologies must be tested on-road to obtain durability, reliability, and life-cycle cost data for the developmental component and/or design strategy.

292

Reduce Radiation Losses from Heating Equipment  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

Not Available

2006-01-01T23:59:59.000Z

293

Analysis of TPV Network Losses (a Presentation)  

DOE Green Energy (OSTI)

This talk focuses on the theoretical analysis of electrical losses associated with electrically networking large numbers of TPV cells to produce high power TPV power generators.

DM DePoy; MW Dashiell; DD Rahner; LR Danielson; JE Oppenlander; JL Vell; RJ Wehrer

2004-12-08T23:59:59.000Z

294

Wetland loss dynamics in southwestern Barataria basin ...  

U.S. Energy Information Administration (EIA)

ABSTRACT We determined spatial associations of wetland loss rates in a 950-km2 study area in the southwestern Barataria basin of Louisiana's ...

295

Louisiana Coastal Land Loss Video Release  

U.S. Energy Information Administration (EIA)

Today, the U.S. Geological Survey National Wetlands Research Center is pleased to announce the release of a new Louisiana coastal land loss video, ...

296

Solar activity can be surprisingly good for Last month, the sun went haywire. Almost every day for two weeks in early September, solar flares  

E-Print Network (OSTI)

Solar activity can be surprisingly good for astronauts Last month, the sun went haywire. Almost every day for two weeks in early September, solar flares issued from a giant sunspot named "active region 798/808." X-rays ionized Earth's upper atmosphere. Solar protons peppered the Moon

California at Santa Cruz, University of

297

Chandra observation of an unusually long and intense X-ray flare from a young solar-like star in M78  

E-Print Network (OSTI)

LkHA312 has been observed serendipitously with the ACIS-I detector on board Chandra with 26h continuous exposure. This H_alpha emission line star belongs to the star-forming region M78 (NGC2068). From the optical and NIR data, we show that it is a pre-main sequence (PMS) low-mass star with a weak NIR excess. This genuine T Tauri star displayed an X-ray flare with an unusual long rise phase (~8h). The X-ray emission was nearly constant during the first 18h of the observation, and then increased by a factor of 13 during a fast rise phase (~2h), and reached a factor of 16 above the quiescent X-ray level at the end of a gradual phase (~6h) showing a slower rise. To our knowledge this flare, with \\~0.4-~0.5 cts/s, has the highest count rate observed so far with Chandra from a PMS low-mass star. By chance, the source position, 8.2' off-axis, protected this observation from pile-up. We make a spectral analysis of the X-ray emission versus time, showing that the plasma temperature of the quiescent phase and the flare peak reaches 29MK and 88MK, respectively. The quiescent and flare luminosities in the energy range 0.5--8keV corrected from absorption (N_H~1.7E21 cm^{-2}) are 6E30erg/s and ~1E32erg/s, respectively. The ratio of the quiescent X-ray luminosity on the LkHA312 bolometric luminosity is very high with log(L_X/L_bol)= -2.9, implying that the corona of LkHA312 reached the `saturation' level. The X-ray luminosity of the flare peak reaches ~2% of the stellar bolometric luminosity. The different phases of this flare are finally discussed in the framework of solar flares, which leads to the magnetic loop height from 3.1E10 to 1E11 cm (0.2-0.5 R*, i.e., 0.5-1.3 R_sun).

N. Grosso; T. Montmerle; E. D. Feigelson; T. G. Forbes

2004-02-27T23:59:59.000Z

298

Energy harvesting: A battle against power losses  

E-Print Network (OSTI)

Is it possible, are indefinite operational life and wireless power grids possible? Maybe not for every application, but how about for micro-scale devices? The fact is in situ energy sources like MEMS vibrational and thermoelectric generators can potentially achieve these goals for small footprint systemin-package (SiP) solutions like bio-implantable devices and wireless sensor transceiver network nodes. The key objective is to scavenge sufficient energy from the environment to sustain the micro-power system indefinitely, or at least extend life to practical levels. The problem, however, is micro-scale harvesters can only generate low-to-moderate power, and the energy-storage and power-delivery processes of the system inherently consume a portion of that, which is why the various functions of a loading application must be power-moded, that is, multiplexed, duty-cycled, and turned off when not needed. Fortunately, low frequency ambient vibrations are relatively abundant, stable, and predictable, and tuned MEMS- and CMOS-compatible electrostatic harvesters, for instance, can generate moderate power levels [1], but only if they prevail over the power losses associated with energy storage and power delivery. The focus of this article is to therefore identify, quantify, and discuss the power-consuming mechanisms present in a harvester circuit. Harvesting energy

A. Rinc; Oacute N-mora; Senior Member; Erick O. Torres; Student Member; Ieee Georgia

2006-01-01T23:59:59.000Z

299

U-008: Symantec Data Loss Prevention Bugs in KeyView Filter Lets Remote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08: Symantec Data Loss Prevention Bugs in KeyView Filter Lets 08: Symantec Data Loss Prevention Bugs in KeyView Filter Lets Remote Users Deny Service U-008: Symantec Data Loss Prevention Bugs in KeyView Filter Lets Remote Users Deny Service October 11, 2011 - 8:00am Addthis PROBLEM: Symantec Data Loss Prevention Bugs in KeyView Filter Lets Remote Users Deny Service PLATFORM: Symantec Data Loss Prevention Enforce/Detection Servers for Windows 10.x, 11.x ABSTRACT: A remote user can create a file that, when processed by the target filter, will cause partial denial of service conditions. reference LINKS: Symantec Security Advisory SYM11-013 SecurityTracker Alert ID: 1026157 IMPACT ASSESSMENT: Medium Discussion: Multiple vulnerabilities were reported in Symantec Data Loss Prevention. A remote user can cause denial of service conditions on the target system.A

300

Tennessee Natural Gas Plant Processing  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 View History Natural Gas Processed (Million Cubic Feet) 6,146 6,200 1989-2011 Total Liquids Extracted (Thousand Barrels) 347 356 2010-2011 Extraction Loss...

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Definition: Reduced Electricity Losses | Open Energy Information  

Open Energy Info (EERE)

Losses Losses Jump to: navigation, search Dictionary.png Reduced Electricity Losses Functions that provide this benefit could help manage peak feeder loads, reduced electricity throughput, locate electricity production closer to the load and ensure that voltages remain within service tolerances, while minimizing the amount of reactive power provided. These actions can reduce electricity losses by making the system more efficient for a given load served or by actually reducing the overall load on the system.[1] Related Terms load, electricity generation, reactive power, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Electricity_Losses&oldid=502644

302

Process / CI Process  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Process/Continual Improvement Rev. 11_0406 Page 1 of 6 2 Process/Continual Improvement Rev. 11_0406 Page 1 of 6 EOTA - Business Process Document Title: Process/Continual Improvement Document Number: P-012 Rev 11_0406 Document Owner: Elizabeth Sousa Backup Owner: David Rocha Approver(s): Melissa Otero Parent Document: Q-001 Quality Manual Notify of Changes: EOTA Staff Referenced Document(s): F-016 Process/Continual Improvement Form, P-001 Document Control Process, P-008 Corrective Action and Preventive Action, P-004 Business System Management Review P-012 Process/Continual Improvement Rev. 11_0406 Page 2 of 6 Revision History:

303

THE PRODUCTION OF LOW-ENERGY NEUTRONS IN SOLAR FLARES AND THE IMPORTANCE OF THEIR DETECTION IN THE INNER HELIOSPHERE  

Science Conference Proceedings (OSTI)

Neutron detectors on spacecraft in the inner heliosphere can observe the low-energy (production using a computer code incorporating updated neutron-production cross sections for the proton and {alpha}-particle reactions with heavier elements at all ion energies, especially at low energies (E{sub ion} exploration of ion acceleration in weak flares not previously observable and may reveal acceleration at other sites not previously detected where low-energy neutrons could be the only high-energy signature of ion acceleration. Also, a measurement of the low-energy neutron spectrum will provide important information about the accelerated-ion spectrum that is not available from the capture line fluence measurement alone.

Murphy, R. J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Kozlovsky, B. [Department of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel); Share, G. H., E-mail: murphy@ssd5.nrl.navy.mil, E-mail: benz@wise.tau.ac.il, E-mail: share@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

2012-09-15T23:59:59.000Z

304

FLARE-ASSOCIATED TYPE III RADIO BURSTS AND DYNAMICS OF THE EUV JET FROM SDO/AIA AND RHESSI OBSERVATIONS  

Science Conference Proceedings (OSTI)

We present a detailed description of the interrelation between the Type III radio bursts and energetic phenomena associated with the flare activities in active region AR11158 at 07:58 UT on 2011 February 15. The timing of the Type III radio burst measured by the radio wave experiment on Wind/WAVE and an array of ground-based radio telescopes coincided with an extreme-ultraviolet (EUV) jet and hard X-ray (HXR) emission observed by SDO/AIA and RHESSI, respectively. There is clear evidence that the EUV jet shares the same source region as the HXR emission. The temperature of the jet, as determined by multiwavelength measurements by Atmospheric Imaging Assembly, suggests that Type III emission is associated with hot, 7 MK, plasma at the jet's footpoint.

Chen Naihwa; Ip, Wing-Huen [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Innes, Davina, E-mail: d949001@astro.ncu.edu.tw, E-mail: wingip@astro.ncu.edu.tw, E-mail: innes@mps.mpg.de [Max-Planck-Institut fuer Sonnensystemforschung, D-37191 Katlenburg-Lindau (Germany)

2013-06-01T23:59:59.000Z

305

A Rapid Loss Index for Tropical Cyclone Disasters in China  

Science Conference Proceedings (OSTI)

Disaster emergency response needs rapid estimation on disaster loss. In China it is of great importance to develop a loss index for rapidly assessing tropical cyclone (TC) disaster loss. In this paper, a new composite loss index for TC landing on China ... Keywords: Tropical Cyclone, Disaster, Loss Index, Rapid Loss Assessment

Ying Li; Weihua Fang

2012-06-01T23:59:59.000Z

306

Negative ion detachment processes  

DOE Green Energy (OSTI)

This paper discusses the following topics: H{sup {minus}} and D{sup {minus}} collisions with atomic hydrogen; collisional decomposition of SF{sub 6}{sup {minus}}; two-electron loss processes in negative ion collisions; associative electron detachment; and negative ion desorption from surfaces.

Champion, R.L.; Doverspike, L.D.

1990-10-01T23:59:59.000Z

307

Why Ť25?? and Y-12 mercury losses  

NLE Websites -- All DOE Office Websites (Extended Search)

"25"? and Y-12 mercury losses Recently I learned something new regarding the "shortcut names" or code names for uranium-235 and plutonium-239. It seems the codes used to discuss...

308

Corona losses in HVdc bipolar lines  

SciTech Connect

The problem related to the prediction of corona losses in HVdc bipolar lines has been solved, in the past, by means of semi-empirical monomial formulae. However, the proposed formulae that are simpler to use do not always give adequate calculation precision, while the formulae that provide the closest results require implicit functions of different complexity, which are difficult to apply; moreover, it is not possible to understand clearly what influence the variations of the different line parameters have on the losses themselves. The new monomial semi-empirical relationship, proposed to predict the corona losses in HVdc bipolar lines, is very simple to use; it highlights the dependence of power losses due to the corona effect by the different line parameters. The formula has been developed by elaborating a considerable amount of available experimental data.

Corbellini, U.; Pelacchi, P. [Univ. of Pisa (Italy). Dept. of Electric Systems and Automation

1996-07-01T23:59:59.000Z

309

Trough Receiver Heat Loss Testing (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the design, fabrication, and qualification of an experimental capability for thermal loss testing of full-size trough receiver elements; and the testing on a variety of receivers.

Lewandowski, A.; Feik, C.; Hansen, R.; Phillips, S.; Bingham, C.; Netter, J.; Forristal, R.; Burkholder, F.; Meglan, B.; Wolfrum, E.

2006-02-01T23:59:59.000Z

310

LOFT advanced densitometer for nuclear loss-of-coolant experiments  

SciTech Connect

A ''nuclear hardened'' gamma densitometer, a device which uses radiation attenuation to measure fluid density in the presence of a background radiation field, is described. Data from the nuclear hardened gamma densitometer are acquired by time sampling the coolant fluid piping and fluid attenuated source energy spectrum. The data are used to calculate transient coolant fluid cross sectional average density to analyze transient mass flow and other thermal-hydraulic characteristics during the Loss-of-Fluid Test (LOFT) loss-of-coolant experiments. The nuclear hardened gamma densitometer uses a pulse height analysis or energy discrimination, pulse counting technique which makes separation of the gamma radiation source signal from the reactor generated gamma radiation background noise signal possible by processing discrete pulses which retain their pulse amplitude information.

Johnson, L.O.; Lassahn, G.D.; Wood, D.B.

1979-01-01T23:59:59.000Z

311

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01T23:59:59.000Z

312

LATERAL OFFSET OF THE CORONAL MASS EJECTIONS FROM THE X-FLARE OF 2006 DECEMBER 13 AND ITS TWO PRECURSOR ERUPTIONS  

Science Conference Proceedings (OSTI)

Two GOES sub-C-class precursor eruptions occurred within {approx}10 hr prior to and from the same active region as the 2006 December 13 X4.3-class flare. Each eruption generated a coronal mass ejection (CME) with center laterally far offset ({approx}> 45 Degree-Sign ) from the co-produced bright flare. Explaining such CME-to-flare lateral offsets in terms of the standard model for solar eruptions has been controversial. Using Hinode/X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) data, and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and Michelson Doppler Imager (MDI) data, we find or infer the following. (1) The first precursor was a 'magnetic-arch-blowout' event, where an initial standard-model eruption of the active region's core field blew out a lobe on one side of the active region's field. (2) The second precursor began similarly, but the core-field eruption stalled in the side-lobe field, with the side-lobe field erupting {approx}1 hr later to make the CME either by finally being blown out or by destabilizing and undergoing a standard-model eruption. (3) The third eruption, the X-flare event, blew out side lobes on both sides of the active region and clearly displayed characteristics of the standard model. (4) The two precursors were offset due in part to the CME originating from a side-lobe coronal arcade that was offset from the active region's core. The main eruption (and to some extent probably the precursor eruptions) was offset primarily because it pushed against the field of the large sunspot as it escaped outward. (5) All three CMEs were plausibly produced by a suitable version of the standard model.

Sterling, Alphonse C.; Moore, Ronald L. [Space Science Office, VP62, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Harra, Louise K., E-mail: alphonse.sterling@nasa.gov, E-mail: ron.moore@nasa.gov, E-mail: lkh@mssl.ucl.ac.uk [UCL-Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom)

2011-12-10T23:59:59.000Z

313

Global crop yield losses from recent warming  

Science Conference Proceedings (OSTI)

Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach, especially at the local scale (6-8). At the global scale, however, many of the processes and impacts captured by field scale models will tend to cancel out, and therefore simpler empirical/statistical models with fewer input requirements may be as accurate (8, 9). Empirical/statistical models also allow the effects of poorly modeled processes (e.g., pest dynamics) to be captured and uncertainties to be readily quantified (10). Here we develop new, empirical/statistical models of global yield responses to climate using datasets on broad-scale yields, crop locations, and climate variability. We focus on global average yields for the six most widely grown crops in the world: wheat, rice, maize, soybeans, barley, and sorghum. Production of these crops accounts for over 40% of global cropland area (11). 55% of non-meat calories, and over 70% of animal feed (12).

Lobell, D; Field, C

2006-06-02T23:59:59.000Z

314

Was the GLE on May 17, 2012 linked with the M5.1-class flare the first in the 24th solar cycle?  

E-Print Network (OSTI)

On May 17, 2012 an M5.1-class flare exploded from the sun. An O-type coronal mass ejection (CME) was also associated with this flare. There was an instant increase in proton flux with peak at $\\geq 100$ MeV, leading to S2 solar radiation storm level. In about 20 minutes after the X-ray emission, the solar particles reached the Earth.It was the source of the first (since December 2006) ground level enhancement (GLE) of the current solar cycle 24. The GLE was detected by neutron monitors (NM) and other ground based detectors. Here we present an observation by the Tupi muon telescopes (Niteroi, Brazil, $22^{0}.9 S$, $43^{0}.2 W$, 3 m above sea level) of the enhancement of muons at ground level associated with this M5.1-class solar flare. The Tupi telescopes registered a muon excess over background $\\sim 20\\%$ in the 5-min binning time profile. The Tupi signal is studied in correlation with data obtained by space-borne detectors (GOES, ACE), ground based neutron monitors (Oulu) and air shower detectors (the IceTo...

Augusto, C R A; Navia, C E; Felicio, A C S; Freire, F; Pinto, A C S; Pimentel, B; Paulista, M; Vianna, J; Fauth, C; Sinzi, T

2013-01-01T23:59:59.000Z

315

Visualization and Data Mining in an 3D Immersive ...  

Science Conference Proceedings (OSTI)

... 39 4.12 Solar Flare . . . . . ... 42 Page 49. 4.12 Solar Flare The Solar Flare data set was processed by Harry Bullen. ...

2010-11-23T23:59:59.000Z

316

Support vector machines with the ramp loss and the hard margin loss  

E-Print Network (OSTI)

Nov 4, 2008 ... Despite the fact that training SVM with the robust loss functions requires the solution of a quadratic mixed-integer program (QMIP) and is ...

317

Atom-molecule conversion with particle losses  

E-Print Network (OSTI)

Based on the mean-field approximation and the phase space analysis, we study the dynamics of an atom-molecule conversion system subject to particle loss. Starting from the many-body dynamics described by a master equation, an effective nonlinear Schr\\"odinger equation is introduced. The classical phase space is then specified and classified by fixed points. The boundary, which separate different dynamical regimes have been calculated and discussed. The effect of particle loss on the conversion efficiency and the self-trapping is explored.

B. Cui; L. C. Wang; X. X. Yi

2011-03-01T23:59:59.000Z

318

AC Loss Measurements with a Cryocooled Sample  

SciTech Connect

A new cryostat cooled by a closed-cycle Cryomech GB-37 cryocooler for superconductor measurements at temperatures down to 20 K is described. The sample is conductively coupled to the cold stage so as to minimize vibration and thermal stresses. AC losses have been measured calorimetrically in several HTSC coils that have been wound to simulate sub-scale transformer winding pairs. Stable temperatures down to 20 K were reached on these coils, allowing measurements at practical levels of ac current and I{sub c}. By using short ac current pulses, losses on individual turns could be resolved. Results are reported mainly to showcase the apparatus, measurement procedure and analytical approach.

Schwenterly, S.W.

2001-02-15T23:59:59.000Z

319

Have Disaster Losses Increased Due to Anthropogenic Climate Change?  

Science Conference Proceedings (OSTI)

The increasing impact of natural disasters over recent decades has been well documented, especially the direct economic losses and losses that were insured. Claims are made by some that climate change has caused more losses, but others assert ...

Laurens M. Bouwer

2011-01-01T23:59:59.000Z

320

Investigation of a combustion driven oscillation in a refinery flare. Part B: Visualisation of a periodic flow instability in a bifurcating duct following a contraction  

SciTech Connect

A flow visualisation study was performed to investigate a periodic flow instability in a bifurcating duct within the tip of the flares at the Shell refinery in Clyde, NSW, to verify the trigger of a combustion-driven oscillation proposed in Part A of this study, and to identify its features. The model study assessed only the flow instability, uncoupled from the acoustic resonance and the combustion that are also present in the actual flare. Three strong, coupled flow oscillations were found to be present in three regions of the fuel line in the flare tip model. A periodic flow separation was found to occur within the contraction at the inlet to the tip, a coupled, periodic flow oscillation was found in the two transverse ''cross-over ducts'' from the central pipe to the outer annulus and an oscillating flow recirculation was present in the ''end-cap'' region of the central pipe. The dimensionless frequency of these oscillations in the model was found to match that measured in the full-scale plant for high fuel flow rates. This, and the strength of these flow oscillations, gives confidence that they are integral to the full-scale combustion-driven oscillation and most likely the primary trigger. The evidence indicates that the periodic flow instability is initiated by the separation and roll-up of the annular boundary layer at the start of the contraction in the fuel section of the flare tip. The separation generates an annular vortex which interacts with the blind-ended pipe downstream, leading to a pressure wave which propagates back upstream, initiating the next separation event and repeating the cycle. The study also investigated flow control devices with a view to finding a practical approach to mitigate the oscillations. The shape of these devices was constrained to allow installation without removing the tip of the flare. This aspect of the study highlighted the strength and nature of the coupled oscillation, since it proved to be very difficult to mitigate the oscillation in this way. An effective configuration is presented, comprising of three individual components, all three of which were found to be necessary to eliminate the oscillation completely. (author)

Riese, M.; Kelso, R.M.; Nathan, G.J. [School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Mullinger, P.J. [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia)

2007-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear parton distribution functions and energy loss effect in the Drell-Yan reaction off nuclei  

E-Print Network (OSTI)

The energy loss effect in nuclear matter is another nuclear effect apart from the nuclear effects on the parton distribution as in deep inelastic scattering process. The quark energy loss can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of two typical kinds of quark energy loss parametrization and the different sets of nuclear parton distribution functions, we present a analysis of the E866 experiments on the nuclear dependence of Drell-Yan lepton pair production resulting from the bombardment of Be, Fe and W targets by 800GeV protons at Fermilab. It is found that the quark energy loss in cold nuclei is strongly dependent on the used nuclear parton distribution functions. The further prospects of using relatively low energy proton incident on nuclear targets are presented by combining the quark energy loss rate determined from a fit to the E866 nuclear-dependent ratios versus $x_1$, with the nuclear parton distribution functions given from lA deep inelastic scattering (DIS) data. The experimental study of the relatively low energy nuclear Drell-Yan process can give valuable insight in the enengy loss of fast quark propagating a cold nuclei and help to pin down nuclear parton distributions functions.

ChunGui Duan; LiHua Song; ShuoHe Wang; GuangLie Li

2006-01-23T23:59:59.000Z

322

Influence of a combustion-driven oscillation on global mixing in the flame from a refinery flare  

Science Conference Proceedings (OSTI)

An assessment of the influence of strong combustion-driven oscillations on mixing rates and visible radiation in the flame from a full-scale refinery flare is reported. Importantly, the oscillations were generated naturally, with no external forcing, and at a high Reynolds number of 4 x 10{sup 6}. These conditions differentiate this study from those of previous investigations, which all involved some external forcing and were at a Re too low to ensure fully turbulent flow within the flame. A frame-by-frame analysis of video footage, providing good resolution of the instantaneous edge of each flame, was used to assess flame dimensions, and so to determine a global residence time. Since the flames are in the fast-chemistry regime, the visual imagers can be used to determine a global mixing rate. The analysis reveals a consistent picture that the combustion-driven oscillations do not result in a significant change to the global mixing rate, but do increase the visible radiation. This is in contrast to previous investigations, using externally forced jets, where forcing at the preferred mode has been found to increase mixing rates and reduce radiation. (author)

Langman, A.S.; Nathan, G.J. [School of Mechanical Engineering, Centre for Energy Technology, The University of Adelaide, SA 5005 (Australia)

2011-01-15T23:59:59.000Z

323

STUDY OF THE THREE-DIMENSIONAL CORONAL MAGNETIC FIELD OF ACTIVE REGION 11117 AROUND THE TIME OF A CONFINED FLARE USING A DATA-DRIVEN CESE-MHD MODEL  

Science Conference Proceedings (OSTI)

We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma {beta}. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by {approx}10{sup 30} erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

Jiang Chaowei; Feng Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, S. T.; Hu Qiang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn, E-mail: wus@uah.edu, E-mail: qh0001@uah.edu [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2012-11-10T23:59:59.000Z

324

ORNL analysis predicts losses from extreme weather damage could...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL analysis predicts losses from extreme weather damage could double by 2050 Researcher tackles unprecedented county-by-county economic loss forecast Research in impacts,...

325

Aerodynamic Losses and Heat Transfer in a Blade Cascade with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3 Blade Cascade with 3 - - D D Endwall Endwall Contouring Contouring...

326

South Dakota Natural Gas Extraction Loss (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Extraction Loss (Million Cubic Feet) South Dakota Natural Gas Extraction Loss (Million Cubic Feet) Decade...

327

Mobile device protection from loss and capture  

Science Conference Proceedings (OSTI)

Mobile devices play a critical role in assistive environments. How to authenticate and secure communications among them has become more important especially against loss and capture of the devices. In this paper, we present an approach to protect signing ... Keywords: assistive environment, authentication, digital signature, forward security, mobile device

Zhengyi Le; Yi Ouyang; Yurong Xu; Fillia Makedon

2008-07-01T23:59:59.000Z

328

Reconciling Change in Oi-Horizon Carbon-14 with Mass Loss for an Oak Forest  

SciTech Connect

First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the 14C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the 14C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies (~35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the 14C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the 14C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures reflect C immobilization and recycling in the microbial pool, and do not necessarily replicate results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent 14C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

Hanson, Paul J [ORNL; Swanston, Christopher W. [Lawrence Livermore National Laboratory (LLNL); Garten Jr, Charles T [ORNL; Todd Jr, Donald E [ORNL; Trumbore, Susan E. [University of California, Irvine

2005-01-01T23:59:59.000Z

329

Reconciling Change in Oi-Horizon 14C With Mass Loss for an Oak Forest  

SciTech Connect

First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the {sup 14}C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the {sup 14}C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies ({approx}35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the {sup 14}C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the {sup 14}C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures are subject to C immobilization and recycling in the microbial pool, and do not necessarily reflect results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent {sup 14}C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

Hanson, P J; Swanston, C W; Garten, Jr., C T; Todd, D E; Trumbore, S E

2005-06-27T23:59:59.000Z

330

Process / CI Process  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Post Travel Summary 11_0221 Page 1 of 3 7 Post Travel Summary 11_0221 Page 1 of 3 EOTA - Business Process Document Title: Post Travel Summary Document Number: ADMF-017 Post Travel Summary 11_0221 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ADMP-004, Contractor Travel Process Notify of Changes: EOTA Staff Referenced Document(s): ADMF-007 EOTA Pre-Travel Authorization Form ADMF-017 Post Travel Summary 11_0221 Page 2 of 3 Revision History: Rev. Description of Change 11_0221 Initial Release ADMF-017 Post Travel Summary 11_0221 Page 3 of 3

331

Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares  

E-Print Network (OSTI)

Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient ($\\alpha_{eff}$) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay ($\\bigtriangleup t$)....

Basak, Tamal

2013-01-01T23:59:59.000Z

332

Reducing fischer-tropsch catalyst attrition losses in high ...  

Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems United States Patent

333

Scannerless loss modulated flash color range imaging  

SciTech Connect

Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

2009-02-24T23:59:59.000Z

334

Scannerless loss modulated flash color range imaging  

SciTech Connect

Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

2008-09-02T23:59:59.000Z

335

Economics of heat loss for power cables  

SciTech Connect

Energy losses occur in power cables which cause a rise in the conductor temperature. A trend toward higher allowable conductor temperatures has increased the energy losses during operation. At the same time, the costs of the energy has increased dramatically. With a given installation and load, energy costs vary inversely with the conductor size. However, initial costs vary directly with the conductor size. This relationship can be utilized to select a conductor size which minimizes the sum of the initial costs an the energy costs. This paper reviews present value techniques and identifies the level of energy costs in some particular installation configurations. An analysis is made of the marginal costs and savings available by changing the size of the conductor in a cable circuit.

Cornelison, K.E.

1982-07-01T23:59:59.000Z

336

Recent Stirling engine loss - understanding results  

DOE Green Energy (OSTI)

For several years, the National Aeronautics and Space Administration and other US Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA`s objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed.

Tew, R.C.; Thieme, L.G.; Dudenhoefer, J.E.

1994-09-01T23:59:59.000Z

337

Sirius A: turbulence or mass loss?  

E-Print Network (OSTI)

Context. Abundance anomalies observed in a fraction of A and B stars of both Pop I and II are apparently related to internal particle transport. Aims. Using available constraints from Sirius A, we wish to determine how well evolutionary models including atomic diffusion can explain observed abundance anomalies when either turbulence or mass loss is used as the main competitor to atomic diffusion. Methods. Complete stellar evolution models, including the effects of atomic diffusion and radiative accelerations, have been computed from the zero age main-sequence of 2.1M\\odot stars for metallicities of Z0 = 0.01 \\pm 0.001 and shown to agree with the observed parameters of Sirius A. Surface abundances were predicted for three values of the mass loss rate and for four values of the mixed surface zone. Results. A mixed mass of ~ 10^-6 M\\odot or a mass loss rate of 10^-13 M\\odot/yr were determined through comparison with observations. Of the 17 abundances determined observationally which are included in our calculati...

Michaud, G; Vick, M

2011-01-01T23:59:59.000Z

338

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

8 WBT Course Development Process 110512 Page 1 of 7 EOTA - Business Process Document Title: WBT Course Development Process Document Number: ISDP- 018 Rev. 110512 Document Owner:...

339

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

6 WBT Programming Process 110426 Page 1 of 5 EOTA - Business Process Document Title: WBT Programming Process Document Number: ITTP-016 Rev. 110426 Document Owner: Doug Bond...

340

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

6 ILT Course Development Process 110512 Page 1 of 7 EOTA - Business Process Document Title: ILT Course Development Process Document Number: ISDP-016 Rev. 110512 Document Owner:...

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

4 NetworkTechnical Support Process 110406 Page 1 of 5 EOTA - Business Process Document Title: NetworkTechnical Support Process Document Number: ITTP-014 Rev. 110406 Document...

342

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Training Production Process Overview 110620 1 of 6 EOTA - Business Process Document Title: Training Production Process Document Number: ISDP-002 Rev. 110620 Document Owner:...

343

An hourglass model for the flare of HST-1 in M87  

E-Print Network (OSTI)

To explain the multi-wavelength light curves (from radio to X-ray) of HST-1 in the M87 jet, we propose an hourglass model that is a modified two-zone system of Tavecchio & Ghisellini (hereafter TG08): a slow hourglass-shaped or Laval nozzle-shaped layer connected by two revolving exponential surfaces surrounding a fast spine, through which plasma blobs flow. Based on the conservation of magnetic flux, the magnetic field changes along the axis of the hourglass. We adopt the result of TG08---the high-energy emission from GeV to TeV can be produced through inverse Compton by the two-zone system, and the photons from radio to X-ray are mainly radiated by the fast inner zone system. Here, we only discuss the light curves of the fast inner blob from radio to X-ray. When a compressible blob travels down the axis of the first bulb in the hourglass, because of magnetic flux conservation, its cross section experiences an adiabatic compression process, which results in particle acceleration and the brightening of HS...

Liu, Wen-Po; Chen, Yong Jun; Wang, Chun-Cheng; Shen, Zhi-Qiang

2013-01-01T23:59:59.000Z

344

Magnetically enhanced centrifugation for continuous biopharmaceutical processing  

E-Print Network (OSTI)

Effective separation and purification of biopharmaceutical products from the media in which they are produced continues to be a challenging task. Such processes usually involve multiple steps and the overall product loss ...

Chen, Fei, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

345

A red supergiant nebula at 25 micron: arcsecond scale mass-loss asymmetries of mu Cep  

E-Print Network (OSTI)

We present diffraction limited (0.6") 24.5micron Subaru/COMICS images of the red supergiant mu Cep. We report the detection of a circumstellar nebula, that was not detected at shorter wavelengths. It extends to a radius of at least 6" in the thermal infrared. On these angular scales, the nebula is roughly spherical, in contrast, it displays a pronounced asymmetric morphology closer in. We simultaneously model the azimuthally averaged intensity profile of the nebula and the observed spectral energy distribution using spherical dust radiative transfer models. The models indicate a constant mass-loss process over the past 1000 years, for mass-loss rates a few times 10^(-7) Msun/yr. This work supports the idea that at least part of the asymmetries in shells of evolved massive stars and supernovae may be due to the mass-loss process in the red supergiant phase.

W. J. de Wit; R. D. Oudmaijer; T. Fujiyoshi; M. G. Hoare; M. Honda; H. Kataza; T. Miyata; Y. K. Okamoto; T. Onaka; S. Sako; T. Yamashita

2008-08-09T23:59:59.000Z

346

System Losses and Assessment Trade Study  

SciTech Connect

This Advanced Fuel Cycle Initiative (AFCI) study has developed new analysis methods to examine old and new technology options toward the goal of improving fuel cycle systems. We have integrated participants and information from AFCI Systems Analysis, Transmutation Fuels, Separations, and Waste Form Campaigns in the Systems Losses and Assessment Trade Study. The initial objectives of this study were to 1) increase understanding of system interdependencies and thereby identify system trade-offs that may yield important insights, 2) define impacts of separations product purity on fuel manufacture and transmutation reactivity, 3) define impacts from transuranic (TRU) losses to waste, 4) identify the interrelationships involved in fuels and separations technology performance, and 5) identify system configuration adjustments with the greatest potential for influencing system losses. While bounding and analyzing this initial problem, we also identified significantly higher-level programmatic drivers with broad implications to the current fuel cycle research charter and the general issue of a DOE complex wide need for a comprehensive and integrated nuclear material management as addressed by the new DOE Order 410.2 titled “Management of Nuclear Materials”. The initial modeling effort developed in this study for a much smaller subset of material (i.e., commercial fuel) and a selected transmutation scheme (i.e., fast reactor recycling) is a necessary first step towards examining a broader set of nuclear material management options, dispositioning strategies and integrated waste management options including potential areas of research leverage. The primary outcome from this initial study has been an enhanced integration among Campaigns and associated insights and analysis methods. Opportunities for improved understanding between the groups abound. The above lanthanide-actinide example highlights the importance of evaluating options via integration across the Campaigns. Plans for Fiscal Year 2010 are being made in a coordinated fashion such that the knowledge gained from the research performed by the Campaigns can benefit on-going work of the study, and that improved understanding of the system relationships can be used to guide the specific research and development (R&D) activities within the Campaigns. In FY-10, the System Losses and Assessment Trade Study will carry-over activities from FY-09. We will continue to refine impurity and loss estimates and impurity limits on fuels by incorporating results from ongoing R&D. And we will begin work on an enhanced nuclear material management model to allow us to continue to improve our overall system understanding of the trade-offs between separations, fuel fabrication, waste forms, waste disposition, SNM losses, reactor performance, and proliferation resistance. In the future, we can also better understand how used fuel and other forms of remote-handled SNM can be better integrated into an overall nuclear material management program that will evolve for the DOE complex via Order 410.2 (DOE 2009).

David Shropshire; Steve Piet; Nick Soelberg; Robert Cherry; Roger Henry; David Meikrantz; Greg Teske; Eric Shaber; Candido Pereira

2009-09-01T23:59:59.000Z

347

Optimal detection of losses by thermal probes  

E-Print Network (OSTI)

We consider the discrimination of lossy bosonic channels and focus to the case when one of the values for the loss parameter is zero, i.e., we address the detection of a possible loss against the alternative hypothesis of an ideal lossless channel. This discrimination is performed by inputting one-mode or two-mode squeezed thermal states with fixed total energy. By optimizing over this class of states, we find that the optimal inputs are pure, thus corresponding to single- and two-mode squeezed vacuum states. In particular, we show that for any value of the damping rate smaller than a critical value there is a threshold on the energy that makes the two-mode squeezed vacuum state more convenient than the corresponding single-mode state, whereas for damping larger than this critical value two-mode squeezed vacua are always better. We then consider the discrimination in realistic conditions, where it is unlikely to have pure squeezing. Thus by fixing both input energy and squeezing, we show that two-mode squeezed thermal states are always better than their single- mode counterpart when all the thermal photons are directed into the dissipative channel. Besides, this result also holds approximately for unbalanced distribution of the thermal photons. Finally, we also investigate the role of correlations in the improvement of detection. For fixed input squeezing (single-mode or two-mode), we find that the reduction of the quantum Chernoff bound is a monotone function of the two-mode entanglement as well as the quantum mutual information and the quantum discord. We thus verify that employing squeezing in the form of correlations (quantum or classical) is always a resource for loss detection whenever squeezed thermal states are taken as input.

Carmen Invernizzi; Matteo G. A. Paris; Stefano Pirandola

2010-11-11T23:59:59.000Z

348

Selective Loss and Preservation of Biographical Knowledge: Implications for Representation  

E-Print Network (OSTI)

this paper we review the evidence from individual patients with either selective loss or preservation of personrelated knowledge (e.g. recognition of a person as famous, knowledge of a person's occupation, nationality and any uniquely identifying information) in public and autobiographical domains, associated with various pathologies (e.g. cerebrovascular involvement, herpes simplex viral encephalitis, particular forms of dementia). Furthermore, we address explanations of the phenomena and raise issues for future research. The focus of our review is on conceptual representation in semantic memory rather than on pure expressive problems, as difficulties in retrieving names (in proper name anomia, for example) appear to involve separate levels of processing (e.g. Valentine et al., 1996)

Catherine Haslam; Janice Kay; J. Richard Hanley

2002-01-01T23:59:59.000Z

349

Managing Catastrophic Loss of Sensitive Data: A Guide for IT and Security Professionals  

Science Conference Proceedings (OSTI)

Offering a structured approach to handling and recovering from a catastrophic data loss, this book will help both technical and non-technical professionals put effective processes in place to secure their business-critical information and provide a roadmap ... Keywords: Security

Constantine Photopoulos

2008-04-01T23:59:59.000Z

350

Quantum optical coherence can survive photon losses using a continuous-variable quantum  

E-Print Network (OSTI)

Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure,5 , Nicolas J. Cerf3 and Ulrik L. Andersen1 * A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved

Cerf, Nicolas

351

Status of wake and array loss research  

DOE Green Energy (OSTI)

In recent years, many projects have evaluated wind turbine wake effects and resultant array losses in both Europe and the United States. This paper examines the status of current knowledge about wake effects and array losses and suggests future research. Single-turbine wake characteristics have been studied extensively and are generally described well by existing theoretical models. Field measurements of wake effects in wind turbine arrays are largely limited to small arrays, with 2 to 4 rows of turbines. Few data have been published on wake effects within large arrays. Measurements of wake deficits downwind of large arrays that deficits are substantially larger and extend farther downwind than expected. Although array design models have been developed, these models have been tested and verified using only limited data from a few rows of wind turbines in complex terrain, whereas some of the largest arrays have more than 40 rows of wind turbines. Planned cooperative efforts with the wind industry will obtain existing data relevant to analyzing energy deficits within large arrays and identifying data sets for potential use in array model verification efforts. Future research being considered include a cooperative research experiment to obtain more definitive data on wake deficits and turbulence within and downwind of large arrays. 16 refs., 9 figs., 1 tab.

Elliott, D.L.

1991-09-01T23:59:59.000Z

352

Parabolic Trough Receiver Heat Loss Testing (Poster)  

DOE Green Energy (OSTI)

Parabolic trough receivers, or heat collection elements (HCEs), absorb sunlight focused by the mirrors and transfer that thermal energy to a fluid flowing within them. Thje absorbing tube of these receivers typically operates around 400 C (752 F). HCE manufacturers prevent thermal loss from the absorbing tube to the environment by using sputtered selective Cermet coatings on the absorber and by surrounding the absorber with a glass-enclosed evacuated annulus. This work quantifies the heat loss of the Solel UVAC2 and Schott PTR70 HCEs. At 400 C, the HCEs perform similarly, losing about 400 W/m of HCE length. To put this in perspective, the incident beam radiation on a 5 m mirror aperture is about 4500 W/m, with about 75% of that energy ({approx} 3400 W/m) reaching the absorber surface. Of the 3400 W/m on the absorber, about 3000 W/m is absorbed into the working fluid while 400 W/m is lost to the environment.

Price, H.; Netter, J.; Bingham, C.; Kutscher, C.; Burkholder, F.; Brandemuehl, M.

2007-03-01T23:59:59.000Z

353

Analytical Controlled Losses of Potassium from Straw  

E-Print Network (OSTI)

of the ashing process. Chlorine is present in the strawsuch as potassium and chlorine in biomass ash is criticalnitrogen sulfur oxygen chlorine moisutre (% wet basis)

Thy, P.; Grundvig, S.; Jenkins, B. M.; Shiraki, R.; Lesher, C. E.

2005-01-01T23:59:59.000Z

354

Analytical Controlled Losses of Potassium from Straw  

E-Print Network (OSTI)

high-fouling biomass fuels in combustion boilers and othercombustion processes, and knowledge of LOI is the minimum requirement for proper interpreta- tion of analyses of biomass

Thy, P.; Grundvig, S.; Jenkins, B. M.; Shiraki, R.; Lesher, C. E.

2005-01-01T23:59:59.000Z

355

An overview of MHD seawater thruster performance and loss mechanisms  

DOE Green Energy (OSTI)

Loss mechanisms affecting the performance of an MHD seawater thruster system have ben identified and discussed. Among those losses are the jet and nozzle losses, joule heating losses, surface potential and electro-chemical losses, frictional losses, and electrical end losses. Simple, but accurate, models have seen used to assess the relative and absolute magnitude of these losses and to investigate their influence on the overall thruster efficiency. A parametric study has been performed for a generic full size seawater vehicle propelled by an MHD thruster at different operating conditions. The results of this study confirm that higher efficiencies can be achieved at high magnetic field strengths (> 10 Tesla). Furthermore, the results indicate that higher efficiencies can be maintained over a wide range of cruising speeds (2--20 m/s or 4--40 knots) at higher magnetic fields (20 Tesla).

Doss, E.D.; Geyer, H.K.

1992-01-01T23:59:59.000Z

356

An overview of MHD seawater thruster performance and loss mechanisms  

DOE Green Energy (OSTI)

Loss mechanisms affecting the performance of an MHD seawater thruster system have ben identified and discussed. Among those losses are the jet and nozzle losses, joule heating losses, surface potential and electro-chemical losses, frictional losses, and electrical end losses. Simple, but accurate, models have seen used to assess the relative and absolute magnitude of these losses and to investigate their influence on the overall thruster efficiency. A parametric study has been performed for a generic full size seawater vehicle propelled by an MHD thruster at different operating conditions. The results of this study confirm that higher efficiencies can be achieved at high magnetic field strengths (> 10 Tesla). Furthermore, the results indicate that higher efficiencies can be maintained over a wide range of cruising speeds (2--20 m/s or 4--40 knots) at higher magnetic fields (20 Tesla).

Doss, E.D.; Geyer, H.K.

1992-09-01T23:59:59.000Z

357

Gene family evolution by duplication, speciation and loss - CECM  

E-Print Network (OSTI)

increase of the lower bound. Let S = {S1,...,Sk} be a set .... (expected number of event by million years) and a gene loss rate of 0.02. We chose a gene gain/loss ...

358

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

359

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

360

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Process Deviation 11_0304 Page 1 of 6 0 Process Deviation 11_0304 Page 1 of 6 EOTA - Business Process Document Title: Process Deviation Document Number: P-010 Rev 11-0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-013 Process Deviation Form, P-008 Corrective/Preventive Action, F-014 Process Deviation Log, ADMP-001 Procurement Process P-010 Process Deviation 11_0304 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 08_0822 Process assigned to new owner. Process and flowchart modified to require completion of all items on F-013. 09_0122 Process and flowchart modified to reflect process modifications.

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Efficient gas-separation process to upgrade dilute methane stream for use as fuel  

DOE Patents (OSTI)

A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

2012-03-06T23:59:59.000Z

362

Loss Mechanisms and High Power Piezoelectric Components - TMS  

Science Conference Proceedings (OSTI)

Oct 15, 2006 ... Loss Mechanisms and High Power Piezoelectric Components ... we demonstrated high power multilayer piezoelectric transformers with Cu or ...

363

Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)  

DOE Green Energy (OSTI)

Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

Deline, C.

2010-09-23T23:59:59.000Z

364

Processing Division  

Science Conference Proceedings (OSTI)

Advances the processing knowledge and managerial skills by providing a forum of technical information and networking opportunities. Processing Division Divisions achievement agricultural analytical application award awards biotechnology detergents

365

EIS Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Process The EIS Process The two Conversion Facility EISs have been prepared pursuant to the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality NEPA...

366

Proposal Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposal Process R&D Overview 100G Testbed Testbed Description Testbed Results Current Testbed Research Proposal Process Terms and Conditions Virtual Circuits (OSCARS) Performance...

367

Electron energy loss spectroscopy of disilane  

SciTech Connect

Electron energy loss spectra of disilane have been recorded over an excitation energy range of 20 eV employing electrons of 20 and 200 eV incident energy for scattering angles of 0/sup 0/--90/sup 0/. Every transition detected except one appears at an energy consistent with the first observed members of Rydberg series converging to one of four possible ion states. The first two observed transitions belong to (2a/sub 1//sub g/)/sup 2/..-->../sup 1//sup ,//sup 3/(2a/sub 1//sub g/,4s) dipole forbidden channels appearing at excitation energies of )similarreverse arrowto)6.3 and 7.05 eV for the triplet and singlet, respectively. Evidence is presented for the identification of additional forbidden transitions as well as possible low-lying valence transition

Dillon, M.A.; Spence, D.; Boesten, L.; Tanaka, H.

1988-04-01T23:59:59.000Z

368

Ac loss calorimeter for three-phase cable  

SciTech Connect

A calorimeter for measuring ac losses in meter-long lengths of HTS superconducting power transmission line cables is described. The calorimeter, which is based on a temperature difference technique, has a precision of 1 mW and measures single, two-phase (coupling), and three-phase losses. The measurements show significant coupling losses between phases.

Daney, D.E.; Boenig, H.J.; Maley, M.P.; McMurry, D.E.; DeBlanc, B.G. [Los Alamos National Lab., NM (United States). Superconductivity Technology Center

1996-10-01T23:59:59.000Z

369

Aging, Estrogen Loss and Epoxyeicosatrienoic Acids Alison R. Lee1.  

E-Print Network (OSTI)

Aging, Estrogen Loss and Epoxyeicosatrienoic Acids (EETs) Alison R. Lee1. , Angela S. Pechenino1 loss, caused by menopause, and aging have inflammatory consequences. Epoxyeicosatrienoic acids (EETs cyclooxygenases and lipoxygenases. We hypothesized that aging and estrogen loss would reduce levels of anti

Hammock, Bruce D.

370

Analysis of technical loss in distribution line system  

Science Conference Proceedings (OSTI)

This research was aimed to present Technical loss analysis in Hatyai of Provincial Electricity Authority (PEA). This Analysis used calculation and PSS/Adept program. For considering the technical loss in distribution system included: transmission line ... Keywords: PSS/Adept program, technical loss, three phase power flow

Narong Mungkung; Nittaya Gomurut; Tanes Tanitteerapan; Somchai Arunrungrusmi; Weerachai Chaokumnerd; Toshifumi Yuji

2009-05-01T23:59:59.000Z

371

Great Plains Coal Gasification Plant start-up and modification report. [Lurgi Process  

SciTech Connect

This report will help in designing future coal conversion plants by documenting the areas which need additional research to obtain more reliable process data, more careful planning and equipment selection. The scope of this report is to: describe the problem with the particular process or item of equipment; identify the modification that was implemented to correct the problem; evaluate the impacts of the modification; and document the cost of the modification. Contents include the following: (1) process modifications (coal, oxygen and steam, gasification and gas processing, sulfur recovery, flare system, liquid processing, ash handling and solids disposal, other systems); (2) start-up schedule; (3) SNG production; (4) environmental data; and (5) cost data.

Miller, W.R.; Honea, F.I.; Lang, R.A.; Berty, T.E.; Delaney, R.C.; Hospodarec, R.W.; Mako, P.F.

1986-03-01T23:59:59.000Z

372

BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE  

Science Conference Proceedings (OSTI)

The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

Plum, Michael A [ORNL

2012-01-01T23:59:59.000Z

373

Hydrocarbon Processing`s refining processes `96  

Science Conference Proceedings (OSTI)

The paper compiles information on the following refining processes: alkylation, benzene reduction, benzene saturation, catalytic cracking, catalytic reforming, coking, crude distillation, deasphalting, deep catalytic cracking, electrical desalting, ethers, fluid catalytic cracking, hydrocracking, hydrogenation, hydrotreating, isomerization, resid catalytic cracking, treating, and visbreaking. The application, products, a description of the process, yield, economics, installation, and licensor are given for each entry.

NONE

1996-11-01T23:59:59.000Z

374

Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles' Electrical Propulsion Systems  

DOE Green Energy (OSTI)

Isolated gate bipolar transistors (IGBTs) are widely used in power electronic applications including electric, hybrid electric, and plug-in hybrid electric vehicles (EVs, HEVs, and PHEVs). The trend towards more electric vehicles (MEVs) has demanded the need for power electronic devices capable of handling power in the range of 10-100 kW. However, the converter losses in this power range are of critical importance. Therefore, thermal management of the power electronic devices/converters is crucial for the reliability and longevity of the advanced vehicles. To aid the design of heat exchangers for the IGBT modules used in propulsion motor drives, a loss model for the IGBTs is necessary. The loss model of the IGBTs will help in the process of developing new heat exchangers and advanced thermal interface materials by reducing cost and time. This paper deals with the detailed loss modeling of IGBTs for advanced electrical propulsion systems. An experimental based loss model is proposed. The proposed loss calculation method utilizes the experimental data to reconstruct the loss surface of the power electronic devices by means of curve fitting and linear extrapolating. This enables the calculation of thermal losses in different voltage, current, and temperature conditions of operation. To verify the calculation method, an experimental test set-up was designed and built. The experimental set-up is an IGBT based bi-directional DC/DC converter. In addition, simulation results are presented to verify the proposed calculation method.

Cao, J.; Bharathan, D.; Emadi, A.

2007-01-01T23:59:59.000Z

375

Detonation propagation in a high loss configuration  

SciTech Connect

This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

Jackson, Scott I [Los Alamos National Laboratory; Shepherd, Joseph E [CALTECH

2009-01-01T23:59:59.000Z

376

Solar flare-related eruptions followed by long-lasting occultation of the emission in the He II 304 A line and in microwaves  

E-Print Network (OSTI)

Plasma with a temperature close to the chromospheric one is ejected in solar eruptions. Such plasma can occult some part of emission of compact sources in active regions as well as quiet solar areas. Absorption phenomena can be observed in the microwave range as the so-called 'negative bursts' and also in the He II 304 A line. The paper considers three eruptive events associated with rather powerful flares. Parameters of absorbing material of an eruption are estimated from multi-frequency records of a 'negative burst' in one event. 'Destruction' of an eruptive filament and its dispersion like a cloud over a huge area observed as a giant depression of the 304 A line emission has been revealed in a few events. One such event out of three ones known to us is considered in this paper. Another event is a possibility.

Grechnev, V V; Chertok, I M; Uralov, A M

2010-01-01T23:59:59.000Z

377

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Course/Analysis Initiation Process 11_0512 Page 1 of 6 10 Course/Analysis Initiation Process 11_0512 Page 1 of 6 EOTA - Business Process Document Title: Course/Analysis Initiation Process Document Number: ISDP- 010 Rev 11_0512 Document Owner: Elizabeth Sousa Backup Owner: Vickie Pleau Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-001 Technical Direction, ISDF-035 Analysis Feasibility Assessment, ISDP-010, Course Analysis Initiation Process, ISDP-015, WBT/ILT/Ex Design Process ISDP-010 Course/Analysis Initiation Process 11_0512 Page 2 of 6 Revision History: Rev. Description of Change 10_0630 Initial Release 11_0512 Modified verbiage for clarification and updated referenced documents.

378

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Course Evaluation and Close-out Process 10_0630 Page 1 of 5 4 Course Evaluation and Close-out Process 10_0630 Page 1 of 5 EOTA - Business Process Document Title: Course Evaluation and Close-out Process Document Number: ISDP-014 Rev. 10_0630 Document Owner: Vickie Pleau Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-011, ISD History File Acceptance, ISDF-012, ISD History File Checklist ISDP-014 Course Evaluation and Close-out Process 10_0630 Page 2 of 5 Revision History: Rev. Description of Change 10_0630 Initial Release ISDP-014 Course Evaluation and Close-out Process 10_0630 Page 3 of 5 I. Purpose To effectively plan and control the process for evaluating and finalizing EOTA ILT, EX and WBT training products, assuring

379

Controlling internal barrier in low loss BaTiO3 supercapacitors U-C. Chung, C. Elissalde, S. Mornet and M. Maglione  

E-Print Network (OSTI)

1 Controlling internal barrier in low loss BaTiO3 supercapacitors U-C. Chung, C. Elissalde, S Supercapacitor behavior has been reported in a number of oxides including reduced BaTiO3 ferroelectric ceramics to process bulk composites having supercapacitor features with low dielectric losses and temperature

Paris-Sud XI, Université de

380

Shoreline erosion and wetland loss in Mississippi  

Science Conference Proceedings (OSTI)

Set within a geologic framework that includes Pleistocene and Holocene barrier complexes, estuarine bays, and fluvio-deltaic tidal wetlands, coastal Mississippi shares environmental problems of shoreline erosion and wetland loss with her neighboring Gulf Coast states. The mainland coast consists of several Pleistocene headlands and barrier complexes interspersed with the St. Louis Bay and Back Bay of Biloxi estuaries. Tidal wetlands are found in the protected bays and tributary streams, as well as in the Pleistocene/Holocene deltaic environments associated with the Escatawpa, Pascagoula, Pearl, and Mississippi fluvial systems. Four barrier islands, formed by erosion and modification of a late Pleistocene/Holocene beach ridge, lie 6 to 12 mi offshore. Historically, these islands with a combined length of 30 mi have both migrated westward in response to prevailing longshore currents and also transgressed across the shallow platform of Mississippi Sound. Wave erosion, both normal and storm-induced, has historically caused shoreline retreat on both the barrier islands and on the mainland. Erosion rates in excess of 30 ft/yr have been measured at the updrift ends of the barrier islands while accretion has characterized the downdrift ends. Net shoreline retreat rates of 6 ft/yr have been measured on the Gulf side of the islands, although the Sound side rates are nearly as high. Since the earliest accurate maps were made in 1848, Mississippi's barrier islands have experienced a 20% reduction in area, amounting to about 2,000 acres (800 ha). Mainland shoreline retreat rates are similarly high, except for along the more stable and now artificially nourished beaches of Harrison County. Erosion rates exceeding 10 ft/yr since 1940 have been noted at the Point aux Chenes headland and the Grand Batture Islands. These islands, which formerly sheltered valuable oyster grounds and protected fragile marshes, have been reduced to shoals over the last several decades.

Meyer-Arendt, K.J. (Mississippi State Univ., Mississippi State (USA)); Gazzier, C.A.

1990-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Minimizing Energy Losses in Ducts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimizing Energy Losses in Ducts Minimizing Energy Losses in Ducts Minimizing Energy Losses in Ducts June 24, 2012 - 5:45pm Addthis Placing ductwork in conditioned space can help reduce energy losses. | Photo courtesy of ©iStockphoto/SimplyCreativePhotography Placing ductwork in conditioned space can help reduce energy losses. | Photo courtesy of ©iStockphoto/SimplyCreativePhotography In new home construction or in retrofits, proper duct system design is critical. In recent years, energy-saving designs have sought to include ducts and heating systems in the conditioned space. Many existing duct systems lose a lot of energy from leakage and poor insulation, but you can reduce that loss by sealing and insulating your ducts. Existing ducts may also be blocked or may require simple upgrades.

382

Impacts of the Venezuelan Crude Oil Production Loss  

Gasoline and Diesel Fuel Update (EIA)

Impacts of the Venezuelan Crude Oil Production Loss Impacts of the Venezuelan Crude Oil Production Loss EIA Home > Petroleum > Petroleum Feature Articles Impacts of the Venezuelan Crude Oil Production Loss Printer-Friendly PDF Impacts of the Venezuelan Crude Oil Production Loss By Joanne Shore and John Hackworth1 Introduction The loss of almost 3 million barrels per day of crude oil production in Venezuela following a strike in December 2002 resulted in an increase in the world price of crude oil. However, in the short term, the volume loss probably affected the United States more than most other areas. This country receives more than half of Venezuela's crude and product exports, and replacing the lost volumes proved difficult. U.S. imports of Venezuelan crude oil dropped significantly in December 2002 relative to other years

383

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

5 WBT/ILT/EX Course Design Process 10_0630 Page 1 of 6 5 WBT/ILT/EX Course Design Process 10_0630 Page 1 of 6 EOTA - Business Process Document Title: WBT/ILT/EX Course Design Process Document Number: ISDP-015 Rev. 10_0630 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-046 Training Design/Development Summary, ISDF-004 Design Document, ISDF-006A WBT Script Template, ISDF- 007 Lesson Plan Template, ISDF-012, ISD History File Checklist ISDP-015 WBT/ILT/EX Course Design Process 10_0630 Page 2 of 6 Revision History: Rev. Description of Change 10_0630 Initial Release ISDP-015 WBT/ILT/EX Course Design Process 10_0630 Page 3 of 6

384

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Exercise Development Process 11_0414 Page 1 of 8 7 Exercise Development Process 11_0414 Page 1 of 8 EOTA - Business Process Document Title: Exercise Development Process Document Number: ISDP-017 Revision 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Product Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-001 Technical Direction, ISDF-004 Design Document, ISDF-006 WBT Script Template, ISDF-007 Lesson Plan Template, ITTP-016 WBT Programming ISDP-017 Exercise Development Process 11_0414 Page 2 of 8 Revision History: Rev. Description of Change 10_0630 Initial Release 11_0223 Made changes to accurately reflect TPP. 11_0414 Added Derivative Classifier to step 12.0 ISDP-017 Exercise Development Process 11_0414 Page 3 of 8

385

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Website Development-Maintenance Process 11_0419Page 1 of 6 5 Website Development-Maintenance Process 11_0419Page 1 of 6 EOTA - Business Process Document Title: Website Development-Maintenance Process Document Number: ITTP-015 Rev. 11_0419 Document Owner: Benjamin Aragon Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: ITT Referenced Document(s): ITTF-016 Website Development/Maintenance Log, ISDP-002 Training Production Process ITTP-015 Website Development-Maintenance Process 11_0419Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 11_0419 Deleted decision point 2.1 and 2.2, incorporated Notifying Requester into step 2.0, modified verbiage for clarification. ITTP-015 Website Development-Maintenance Process 11_0419Page 3 of 6

386

Impacts of Substation Transformer and Bus Configuration on Distribution Losses  

Science Conference Proceedings (OSTI)

The technical losses on Electricit de France (EDF) distribution networks are annually estimated at about 18 TWh. Since the costs for these losses are ultimately covered by the end-use tariff paid by the customers, EDF has many reasons to find a way to reduce them, including the desire to increase customer satisfaction, meet commitments for sustainable development, and anticipate future regulatory requirements. EDF has identified two main ways to reduce losses on distribution systems: developing new rules...

2009-03-26T23:59:59.000Z

387

A Study of Conversion Reactions Using Electron Energy Loss  

Science Conference Proceedings (OSTI)

In this study, conversion mechanism in NiO was studied using high resolution transmission electron microscopy and electron energy loss spectroscopy (EELS).

388

Analysis of beam loss induced abort kicker instability  

SciTech Connect

Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems and improved stability of the RHIC operation.

Zhang W.; Sandberg, J.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Pai, C.; Tan, Y.

2012-05-20T23:59:59.000Z

389

Instrumentation for Evaluating PV System Performance Losses from Snow: Preprint  

DOE Green Energy (OSTI)

Describes the use of a pyranometer with a heater and a digital camera to determine losses related to snow for PV systems located at National Renewable Energy Laboratory.

Marion, B.; Rodriguez, J.; Pruett, J.

2009-04-01T23:59:59.000Z

390

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

Facebook icon Twitter icon Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

391

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

NLE Websites -- All DOE Office Websites (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification...

392

Impacts of the Venezuelan Crude Oil Production Loss  

U.S. Energy Information Administration (EIA)

Energy Information Administration 1 Impacts of the Venezuelan Crude Oil Production Loss ... The gravity increased most at the ConocoPhillips Sweeny ...

393

Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations.  

E-Print Network (OSTI)

??Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these… (more)

Boyd, Steven J

2006-01-01T23:59:59.000Z

394

Scientific assessment of coastal wetland loss, restoration and ...  

U.S. Energy Information Administration (EIA)

Get this from a library! Scientific assessment of coastal wetland loss, restoration and management in Louisiana. [Donald F Boesch; Louisiana State ...

395

Trends and causes of historical wetland loss in coastal ...  

U.S. Energy Information Administration (EIA)

Get this from a library! Trends and causes of historical wetland loss in coastal Louisiana. [Julie Christine Bernier; Geological Survey (U.S.),

396

Abatement of wetland loss in Louisiana through diversions of ...  

U.S. Energy Information Administration (EIA)

Get this from a library! Abatement of wetland loss in Louisiana through diversions of Mississippi River water using siphons. [David W Roberts; ...

397

Primary causes of wetland loss at Madison Bay, Terrebonne ...  

U.S. Energy Information Administration (EIA)

Get this from a library! Primary causes of wetland loss at Madison Bay, Terrebonne Parish, Louisiana. [Robert A Morton; Ginger Tiling; Nicholas F ...

398

Neutral Oil Loss During Alkali Refining - ResearchGate  

U.S. Energy Information Administration (EIA)

Neutral Oil Loss During Alkali Refining. Albert J. Dijkstra. Journal of Oil & Fat Industries (Impact ... Experiments with cotton oil and soybean o ...

399

UPDATE: Oil set for longest weekly loss streak since 1998  

U.S. Energy Information Administration (EIA)

UPDATE: Oil set for longest weekly loss streak since 1998,Read most current stock market news, Get stock, fund, etf analyst reports from an ...

400

IMPACT Loss Prevention Software - Syntex Management Systems, Inc.  

U.S. Energy Information Administration (EIA)

Developed by Houston's Syntex Management Systems, IMPACT Loss Prevention Software is quickly becoming a standard in the oil and gas industry

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mitigating greenhouse gas and nitrogen loss with improved fertilizer ...  

Science Conference Proceedings (OSTI)

impacts on greenhouse gas (GHG) emission, N loss and economic implication are rarely analysed. A decision support system (DSS) has been developed to.

402

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

DOE Green Energy (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

403

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Functional/Job/Task Analysis Process 11_0718 Page 1 of 8 5 Functional/Job/Task Analysis Process 11_0718 Page 1 of 8 EOTA - Business Process Document Title: Functional/Job/Task Analysis Process Document Number: ISDP-005 Rev 11_0718 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: PM2 Referenced Document(s): ISDF-XXX Vision User Guide (currently being developed ) ISDP-005 Functional/Job/Task Analysis Process 11_0718 Page 2 of 8 Revision History: Rev. Description of Change 08_0410 Initial Release 10_0630 Process modified to match steps within the TPP 11_0718 Minor editorial changes; changed step 8.0 from Task-to-Training Matrix to "Analysis"-to-Training Matrix.

404

aluminum processing  

Science Conference Proceedings (OSTI)

Refining of Potroom Metal Using the Hydro Ram Crucible Fluxing Process [pp. .... Approachgeneration of Aluminum Wrought Alloy Scrap of Old Cars [pp.

405

materials processing  

Science Conference Proceedings (OSTI)

... of the Stainless Steel Elaborated by the Duplex Procedure (Electric Furnace- VOD Installation) [pp. ... Materials Processing on a Solar Furnace Satellite [pp.

406

Microwave-enhanced chemical processes  

DOE Patents (OSTI)

A process for disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Effecting intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400.degree. C. in the presence of microwave radiation for a time sufficient to break the hydrocarbon chlorine bonds and provide detoxification values in excess of 80 and further detoxifying the bed followed by additional disposal of toxic wastes.

Varma, Ravi (Hinsdale, IL)

1990-01-01T23:59:59.000Z

407

Design of artificial neural networks for distribution feeder loss analysis  

Science Conference Proceedings (OSTI)

To enhance the efficiency for power loss analysis of voluminous distribution feeders, ANN-based simplified power loss models with the Levenberg-Marquardt (LM) algorithm have been developed for overhead feeders and underground feeders, respectively. The ... Keywords: Artificial neural network, Customer information system, Levenberg-Marquardt algorithm, Outage management system

Tsung-En Lee; Chin-Ying Ho; Chia-Hung Lin; Meei-Song Kang

2011-11-01T23:59:59.000Z

408

Testing a Model of IR Radiative Losses: Preprint  

DOE Green Energy (OSTI)

Thermopile pyranometers exhibit IR radiative losses that affect global and diffuse shortwave measurements made with first class thermopile based instruments. Pyrgeometers can be used to measure the sky temperature and are used to calculate the pyranometer?s IR radiative losses.

Vignola, F.; Long, C. N.; Reda, I.

2009-08-01T23:59:59.000Z

409

MODELING OF EDDY CURRENT LOSS AND TEMPERATURE OF THE MAGNETS  

E-Print Network (OSTI)

(SPMSM); interior magnet PM motors; time-stepped ÂŻnite-element analysis (FEA); thermal circuits in traditional motor design and analysis. However, due to the high conductivity of the rare-earth magnet, neody-element analysis (FEA) for the calculation of eddy current loss in the magnet. Based on the calculated losses

Mi, Chunting "Chris"

410

The Modeling of Slurry Friction Loss of Hydraulic Fracturing  

Science Conference Proceedings (OSTI)

In recent years, the research on theoretical model of hydraulic fracturing has experienced development. But there is little progress in the research on slurry friction loss in the fracturing string, which is the key to guide the design and construction ... Keywords: slurry, friction loss, momentum transfer

Yongming Li; Hu Mao; Fengsheng Yao; Song Wang; Jinzhou Zhao

2011-10-01T23:59:59.000Z

411

Poker Player Behavior After Big Wins and Big Losses  

Science Conference Proceedings (OSTI)

We find that experienced poker players typically change their style of play after winning or losing a big pot---most notably, playing less cautiously after a big loss, evidently hoping for lucky cards that will erase their loss. This finding is consistent ... Keywords: break-even hypothesis, investment, prospect theory, risk

Gary Smith; Michael Levere; Robert Kurtzman

2009-09-01T23:59:59.000Z

412

Kalman filter model for determining block and trickle SNM losses  

Science Conference Proceedings (OSTI)

This paper describes an integrated decision procedure for deciding whether a diversion of SNM has occurred. Two possible types of diversion are considered: a block loss during a single time period and a cumulative trickle loss over several time periods. The methodology used is based on a compound Kalman filter model. Numerical examples will illustrate our approach.

Barlow, R.E.; Durst, M.J.; Smiriga, N.G.

1982-04-20T23:59:59.000Z

413

AC Losses in the New High-Temperature Superconductors  

Science Conference Proceedings (OSTI)

This report addresses the properties of high-temperature ceramic oxide superconductors in low magnetic fields. It discusses ac losses in the superconducting and normal states, the influence of anisotropy, and a database for monitoring advances in superconductivity. The ac losses of the oxide superconductors were found to be excessive.

1989-03-17T23:59:59.000Z

414

Linear-optics manipulations of photon-loss codes  

E-Print Network (OSTI)

We discuss codes for protecting logical qubits carried by optical fields from the effects of amplitude damping, i.e. linear photon loss. We demonstrate that the correctability condition for one-photon loss imposes limitations on the range of manipulations than can be implemented with passive linear-optics networks.

Konrad Banaszek; Wojciech Wasilewski

2007-02-09T23:59:59.000Z

415

MINIMIZATION OF CARBON LOSS IN COAL REBURNING  

SciTech Connect

This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO{sub x} and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO{sub x} control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO{sub x} reduction in basic coal reburning depends on process conditions, initial NO{sub x} and coal type. Up to 60% NO{sub x} reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO{sub x} reduction in reburning by coal gasification products. Modeling predicted that composition of coal gasification products depends on gasification temperature. At lower temperature yield of hydrocarbons is high which results in higher efficiency of NO{sub x} control. As temperature decreases, yield of hydrocarbons increases and CO and H{sub 2} yields decrease.

Vladimir M. Zamansky; Vitali V. Lissianski

2001-09-07T23:59:59.000Z

416

Investigating late stage biopharmaceutical product loss using novel analytical and process technology  

E-Print Network (OSTI)

The biopharmaceutical industry uses recombinant protein technologies to provide novel therapeutics to patients around the world. These technologies have presented exciting opportunities for breakthrough medical treatments ...

Hunnicutt, Leigh Anne

2008-01-01T23:59:59.000Z

417

Process and apparatus for reducing the loss of hydrogen from Stirling engines  

SciTech Connect

A Stirling engine assembly is described which defines a working gas volume therein, the Stirling engine assembly comprising: a working gas reservoir for storing a working gas at a pressure greater than pressure of the working gas in the working volume of the Stirling engine; a trap cell operatively connected between an outlet of the reservoir and the Stirling engine working volume. The trap cell includes an enclosure having porous windows at either end thereof and a sorbent with an affinity for water vapor therein, such that water vapor adsorbed on the sorbent diffuses into the hydrogen passing from the reservoir into the working engine; a compressor means for drawing working gas from the Stirling engine working volume, through the trap cell and pumping the working gas into the hydrogen reservoir. The sorbent in the trap cell at the reduced pressure caused by the compressor adsorbs water vapor from the working gas such that substantially dry working gas is pumped by the compressor into the reservoir. The working gas is doped with water vapor by the tank cell as it passes into the Stirling engine and is dried by the trap cell as it is removed from the working engine for storage in the reservoir to prevent condensation of water vapor in the reservoir.

Alger, D.L.

1987-03-24T23:59:59.000Z

418

THE 2011 FEBRUARY 15 X2 FLARE, RIBBONS, CORONAL FRONT, AND MASS EJECTION: INTERPRETING THE THREE-DIMENSIONAL VIEWS FROM THE SOLAR DYNAMICS OBSERVATORY AND STEREO GUIDED BY MAGNETOHYDRODYNAMIC FLUX-ROPE MODELING  

SciTech Connect

The 2011 February 15 X2.2 flare and associated Earth-directed halo coronal mass ejection were observed in unprecedented detail with high resolution in spatial, temporal, and thermal dimensions by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, as well as by instruments on the two STEREO spacecraft, then at near-quadrature relative to the Sun-Earth line. These observations enable us to see expanding loops from a flux-rope-like structure over the shearing polarity-inversion line between the central {delta}-spot groups of AR 11158, developing a propagating coronal front ('EIT wave'), and eventually forming the coronal mass ejection moving into the inner heliosphere. The observations support the interpretation that all of these features, including the 'EIT wave', are signatures of an expanding volume traced by loops (much larger than the flux rope only), surrounded by a moving front rather than predominantly wave-like perturbations; this interpretation is supported by previously published MHD models for active-region and global scales. The lateral expansion of the eruption is limited to the local helmet-streamer structure and halts at the edges of a large-scale domain of connectivity (in the process exciting loop oscillations at the edge of the southern polar coronal hole). The AIA observations reveal that plasma warming occurs within the expansion front as it propagates over quiet Sun areas. This warming causes dimming in the 171 A (Fe IX and Fe X) channel and brightening in the 193 and 211 A (Fe XII-XIV) channels along the entire front, while there is weak 131 A (Fe VIII and Fe XXI) emission in some directions. An analysis of the AIA response functions shows that sections of the front running over the quiet Sun are consistent with adiabatic warming; other sections may require additional heating which MHD modeling suggests could be caused by Joule dissipation. Although for the events studied here the effects of volumetric expansion are much more obvious than true wave phenomena, we discuss how different magnetic environments within and around the erupting region can lead to the signatures of either or both of these aspects.

Schrijver, Carolus J.; Title, Alan M. [Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Aulanier, Guillaume; Pariat, Etienne; Delannee, Cecile, E-mail: schrijver@lmsal.com, E-mail: title@lmsal.com, E-mail: guillaume.aulanier@obspm.fr, E-mail: etienne.pariat@obspm.fr, E-mail: ceaulanier@voila.fr [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris Diderot, 5 Place Jules Janssen, 92190 Meudon (France)

2011-09-10T23:59:59.000Z

419

Analysis of mass loss of a coal particle during the course of burning in a flow of inert material  

SciTech Connect

This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

Pelka, Piotr [Czestochowa University of Technology, Department of Boilers and Thermodynamics, Armii Krajowej 19c, Czestochowa, Silesia 42-200 (Poland)

2009-08-15T23:59:59.000Z

420

Casting Processes  

Science Conference Proceedings (OSTI)

Table 1   General characteristics of casting processes...casting processes Characteristic Casting process Green sand Resin-bonded sand Plaster Lost foam Investment Permanent mold Die Part Material (casting) All All Zn to Cu Al to cast iron All Zn to cast iron Zn to Cu Porosity and voids (a) C-E D-E D-E C-E E B-C A-C Shape (b) All All All All All Not T3, 5,...

Note: This page contains sample records for the topic "flared processing losses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MINIMIZATION OF CARBON LOSS IN COAL REBURNING  

SciTech Connect

This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO{sub x} reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO{sub x} reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO{sub x} reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO{sub x} reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO{sub x} reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO{sub x} reduction on the surface of char played important role. Economic analysis confirmed economic benefits of the FFR technology. Two options to gasify coal were considered: one included a common gasifier and another included a gasifier injector at each injection location. Economic analysis suggested that an FFR system with a common gasifier was more economic than a conventional reburning system and had NO{sub x} reduction cost similar to that of the major competing technology, LNB/SOFA system, for all economic scenarios.

Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

2002-09-10T23:59:59.000Z

422

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 ILT Course Implementation 11_0512 Page 1 of 8 2 ILT Course Implementation 11_0512 Page 1 of 8 EOTA - Business Process Document Title: ILT Course Implementation Document Number: ISDP-012 Rev. 11_0512 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-007 Lesson Plan Template, ISDF-014 Course Announcement, ISDF-010, After Action Report, ISDF-008 ILT Student Feedback Survey, ISDF-009, Design/Development Review Checklist, ITTF-014 Publication Review and Approval, ISDF-048, After Action Report Calculation Template, ISDP-011, Exercise Course Implementation Process, ITTP-015 Website Development/Maintenance Process, ISDF-015, ILT/EX Course Support Checklist

423

Process Applications  

Science Conference Proceedings (OSTI)

...flash-welding applications include: Chain links Transmission bands Automotive flywheel ring gears Strips that are joined for continuous processing lines Wire and bar drawing operations for continuous stamping press

424

Process Heating  

Science Conference Proceedings (OSTI)

This technical update uses real world examples to discuss applications of electrotechnology in industrial process heating and to highlight some of the emerging technologies in this field. These emerging technologies, when implemented in a plant, will provide significant energy savings as well as increase productivity. The report presents three case studies of successful implementation of two different electric process-heating technologies in three different industries. The case studies show that in some ...

2011-12-07T23:59:59.000Z

425

Commissioning : The Total Process  

E-Print Network (OSTI)

In recent years, most new buildings have been equipped with increasingly sophisticated heating, ventilating, and air-conditioning (HVAC) systems, energy conservation equipment, lighting systems, security systems, and environmental control devices that rely on electronic control. Very frequently these systems and design features have not performed as expected. This can result in energy-efficiency losses. occupant complaints about comfort, indoor air quality problems. high operating costs, and increased liability for building owners, operators, employers, and design professionals. Building commissioning was developed in response to these concerns. Commissioning involves the examining and testing of building systems to verify aspects of the building design, ensure that the building is constructed in accordance with the contract documents, and verify that the building and its systems function according to the design intent documents. The process helps to integrate and organize the design, construction, operations, and maintenance of a building's systems to produce a healthy, comfortable, and efficient facility.

Kettler, G. J.

1998-01-01T23:59:59.000Z

426

Beam Loss Monitors for NSLS-II Storage Ring  

SciTech Connect

The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. To measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber (VC) wall. This will be done using the Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

Kramer, S.L.; Cameron, P.

2011-03-28T23:59:59.000Z

427

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

NLE Websites -- All DOE Office Websites (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification Technology Manager: Gary J. Stiegel DOE Project Manager: James R. Longanbach Project Manager: Michael D. Rutkowski Principal Investigators: Michael G. Klett Norma J. Kuehn Ronald L. Schoff Vladimir Vaysman Jay S. White Power Plant Water Usage and Loss Study i August 2005 TABLE OF CONTENTS TABLE OF CONTENTS ...................................................................................................................... I LIST OF TABLES.............................................................................................................................III

428

Cladding embrittlement during postulated loss-of-coolant accidents.  

DOE Green Energy (OSTI)

The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

2008-07-31T23:59:59.000Z

429

Geologic controls influencing CO2 loss from a leaking well.  

Science Conference Proceedings (OSTI)

Injection of CO2 into formations containing brine is proposed as a long-term sequestration solution. A significant obstacle to sequestration performance is the presence of existing wells providing a transport pathway out of the sequestration formation. To understand how heterogeneity impacts the leakage rate, we employ two dimensional models of the CO2 injection process into a sandstone aquifer with shale inclusions to examine the parameters controlling release through an existing well. This scenario is modeled as a constant-rate injection of super-critical CO2 into the existing formation where buoyancy effects, relative permeabilities, and capillary pressures are employed. Three geologic controls are considered: stratigraphic dip angle, shale inclusion size and shale fraction. In this study, we examine the impact of heterogeneity on the amount and timing of CO2 released through a leaky well. Sensitivity analysis is performed to classify how various geologic controls influence CO2 loss. A 'Design of Experiments' approach is used to identify the most important parameters and combinations of parameters to control CO2 migration while making efficient use of a limited number of computations. Results are used to construct a low-dimensional description of the transport scenario. The goal of this exploration is to develop a small set of parametric descriptors that can be generalized to similar scenarios. Results of this work will allow for estimation of the amount of CO2 that will be lost for a given scenario prior to commencing injection. Additionally, two-dimensional and three-dimensional simulations are compared to quantify the influence that surrounding geologic media has on the CO2 leakage rate.

Hopkins, Polly L.; Martinez, Mario J.; McKenna, Sean Andrew; Klise, Katherine A.

2010-12-01T23:59:59.000Z

430

Deposition Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Pulsed Plasma Processing Pulsed Plasma Processing NEW: Downloadable: Invited Talk "Pulsed Metal Plasmas," presented at the 2006 AVS Meeting, San Francisco, California, November 15, 2006. (PDF, file size 8 MB). Plasma Sources for Window Coatings Deposition processes for low-emittance and solar control coatings can be improved through the use of advanced plasma technology developed at LBNL. A new type of constricted glow-discharge plasma source was selected for the 1997 R&D 100 Award. Invented by LBNL researchers Andre Anders, Mike Rubin, and Mike Dickinson, the source was designed to be compatible with industrial vacuum deposition equipment and practice. Construction is simple, rugged and inexpensive. It can operate indefinitely over a wide range of chamber pressure without any consumable parts such as filaments or grids. Several different gases including Argon, Oxygen and Nitrogen have been tested successfully.

431

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 WBT Course Implementation 11_0512 Page 1 of 7 3 WBT Course Implementation 11_0512 Page 1 of 7 EOTA - Business Process Document Title: WBT Course Implementation Document Number: ISDP-013 Rev. 11_0512 Document Owner: Elizabeth Sousa Backup Owner: Vickie Pleau Approver(s): Melissa Otero Parent Document: ISDP-002, Training Product Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-014, Course Announcement Template, ITTF-014, Publication Review and Approval, ISDF-010 After Action Report, ISDF-042 Validation & Acceptance, ISDF-048, After Action Report Calculation Template, ITTP-015, Website Development Maintenance ISDP-013 WBT Course Implementation 11_0512 Page 2 of 7 Revision History: Rev. Description of Change 10_0630 Initial Release 11_0405 Added ISDF-048, After Action Report Calculation Template to process.

432

The uncertainties due to quark energy loss on determining nuclear sea quark distribution from nuclear Drell-Yan data  

E-Print Network (OSTI)

By means of two different parametrizations of quark energy loss and the nuclear parton distributions determined only with lepton-nuclear deep inelastic scattering experimental data, a leading order phenomenological analysis is performed on the nuclear Drell-Yan differential cross section ratios as a function of the quark momentum fraction in the beam proton and target nuclei for E772 experimental data. It is shown that there is the quark energy loss effect in nuclear Drell-Yan process apart from the nuclear effects on the parton distribution as in deep inelastic scattering. The uncertainties due to quark energy loss effect is quantified on determining nuclear sea quark distribution by using nuclear Drell-Yan data. It is found that the quark energy loss effect on nuclear Drell-Yan cross section ratios make greater with the increase of quark momentum fraction in the target nuclei. The uncertainties from quark energy loss become bigger as the nucleus A come to be heavier. The Drell-Yan data on proton incident middle and heavy nuclei versus deuterium would result in an overestimate for nuclear modifications on sea quark distribution functions with neglecting the quark energy loss. Our results are hoped to provide good directional information on the magnitude and form of nuclear modifications on sea quark distribution functions by means of the nuclear Drell-Yan experimental data.

C. G. Duan; N. Liu; G. L. Li

2008-11-05T23:59:59.000Z

433

Comparisons of Interception Loss from Tropical and Temperate Vegetation Canopies  

Science Conference Proceedings (OSTI)

A multilayer crop model is used to investigate interception loss from oak, pine, wheat and grass canopies. It is shown that the evaporative properties of the full oak canopy are similar to those of the evergreen tropical rain forest. Evaporation ...

J. G. Lockwood; P. J. Sellers

1982-10-01T23:59:59.000Z

434

Partition of energy Loss from the Barotropic Tide in Fjords  

Science Conference Proceedings (OSTI)

As the barotropic tide propagates into and out of a fjord, it loses energy to friction, internal tides and high-frequency internal waves. Estimates of these losses for three British Columbia fjords, using current meter data, indicate that ...

B. De Young; S. Pond

1989-02-01T23:59:59.000Z

435

Vision Loss: Visual Impairment and Vision Impairment | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Vision Loss: Visual Impairment and Vision Impairment Vision Loss: Visual Impairment and Vision Impairment Vision Loss: Visual Impairment and Vision Impairment Visual impairment or vision impairment is vision loss that constitutes a significant limitation of visual capability resulting from disease, trauma, or a congenital or degenerative condition that cannot be corrected by conventional means, including refractive correction, medication, or surgery. Low Vision Anyone with non-correctable reduced vision is considered to be visually impaired, and can have a wide range of causes. Blindness Blindness is the condition of lacking visual perception due to physiological or