Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Industrial Carbon Capture Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

2

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

Science Conference Proceedings (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

3

Sauget Plant Flare Gas Reduction Project  

E-Print Network (OSTI)

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams.

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

4

Industrial Carbon Capture Project Selections  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Partner Organizations) Funding Lead Organization Location (City, State) Project Title - Project Description 1) Large Scale Testing of Advanced Gasification Technologies Air Products & Chemicals, Inc. $71,700,000 Allentown, PA Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems Air Products will accelerate commercial manufacture of ion transport membranes modules and initiate the development a 2,000 TPD pre- commercial scale facility ahead of schedule, enabling this technology

5

Grangemouth Advanced CO2 Capture Project GRACE | Open Energy...  

Open Energy Info (EERE)

GRACE is a project consortium that aims to develop cost improving technologies for carbon capture and separation. References Grangemouth Advanced CO2 Capture Project...

6

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

7

NETL: News Release - Worldwide Carbon Capture and Storage Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2009 Worldwide Carbon Capture and Storage Projects on the Increase International Efforts to Reduce Greenhouse Gas Emissions Through Carbon Capture and Storage Showcased with DOE...

8

Research Projects to Convert Captured CO2 Emissions to Useful...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 06, 2010 Research Projects to Convert Captured CO2 Emissions to Useful Products Six Projects Selected by DOE Will Further Important Technologies for Helping Reduce CO2...

9

Worldwide Carbon Capture and Storage Projects on the Increase | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Worldwide Carbon Capture and Storage Projects on the Increase Worldwide Carbon Capture and Storage Projects on the Increase Worldwide Carbon Capture and Storage Projects on the Increase November 13, 2009 - 12:00pm Addthis Washington, D.C. -- Worldwide efforts to fund and establish carbon capture and storage (CCS) projects have accelerated, according to a new Department of Energy (DOE) online database, indicating ongoing positive momentum toward achieving the G-8 goal for launching 20 CCS demonstrations by 2010. The database, a project of the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), reveals 192 proposed and active CCS projects worldwide. The projects are located in 20 countries across five continents. The 192 projects globally include 38 capture, 46 storage, and 108 for capture and storage. While most of the projects are still in the

10

Energy Department Investments in Innovative Carbon Capture Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Investments in Innovative Carbon Capture Projects Energy Department Investments in Innovative Carbon Capture Projects Energy Department Investments in Innovative Carbon Capture Projects Post-Combustion CO2 Capture Technologies COMPANY CITY & STATE PROJECT TITLE DOE INVESTMENT PROJECT DESCRIPTION SRI International Menlo Park, CA CO2 Capture Using Advanced Carbon Sorbents at a Slipstream Scale Approx. $10.5 million The project team will test a CO2 sorbent capture process and conduct pilot-scale testing of the sorbent under realistic conditions to validate affordability and opportunities for CO2 use in commercial applications such as enhanced oil recovery or chemical operations. SRI International Menlo Park, CA Development of Mixed-Salt Technology for CO2 Capture from Coal Power Plants Approx. $1.7 million Researchers will develop and test a low-cost, solvent-based technology to extract CO2 from existing or new pulverized coal power plants by combining the benefits of two different solvents.

11

DOE Signs Cooperative Agreement for Carbon Capture Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Signs Cooperative Agreement for Carbon Capture Project Signs Cooperative Agreement for Carbon Capture Project DOE Signs Cooperative Agreement for Carbon Capture Project June 18, 2010 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has signed a cooperative agreement with NRG Energy Inc. (NRG) for the Parish Post-Combustion CO2 Capture and Sequestration Project to design, construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide (CO2) per year. The project, which will be managed by the Office of Fossil Energy's National Energy Technology Laboratory, was selected under DOE's Clean Coal Power Initiative, a collaboration between the federal government and private industry working toward low-emission, coal-based power generation technology. The project team aims to demonstrate that post-combustion carbon capture

12

DOE Signs Cooperative Agreement for Carbon Capture Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Signs Cooperative Agreement for Carbon Capture Project Signs Cooperative Agreement for Carbon Capture Project DOE Signs Cooperative Agreement for Carbon Capture Project June 18, 2010 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has signed a cooperative agreement with NRG Energy Inc. (NRG) for the Parish Post-Combustion CO2 Capture and Sequestration Project to design, construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide (CO2) per year. The project, which will be managed by the Office of Fossil Energy's National Energy Technology Laboratory, was selected under DOE's Clean Coal Power Initiative, a collaboration between the federal government and private industry working toward low-emission, coal-based power generation technology. The project team aims to demonstrate that post-combustion carbon capture

13

A Collaborative Project to Develop Technology to Capture and...  

NLE Websites -- All DOE Office Websites (Extended Search)

900 E. Benson Boulevard Anchorage, AK 99519 A Collaborative Project to Develop Technology to Capture and Store CO 2 from Large Combustion Sources Abstract A major...

14

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

15

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

16

Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation stipulates that the Railroad Commission of Texas automatically acquires the title to any carbon dioxide captured by a clean coal project in the state. The Bureau of Economic...

17

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

NLE Websites -- All DOE Office Websites (Extended Search)

28, 2013 28, 2013 Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization DOE-Supported Project in Texas Demonstrates Viability of CCUS Technology Washington, D.C. - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). MORE INFO Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

18

Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project  

Science Conference Proceedings (OSTI)

The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

Deanna Gilliland; Matthew Usher

2011-12-31T23:59:59.000Z

19

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

20

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Breakthrough Industrial Carbon Capture, Utilization and Storage Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Industrial Carbon Capture, Utilization and Storage Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations May 10, 2013 - 11:36am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department's Acting Assistant Secretary for Fossil Energy Christopher Smith today attended a dedication ceremony at the Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas. Supported by a $284 million Energy Department investment, the company has successfully begun capturing carbon dioxide from industrial operations and is now using that carbon for enhanced oil recovery (EOR) and securely storing it underground. This first-of-a-kind, breakthrough project

22

NETL: Ion Advanced Solvent CO2 Capture Pilot Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Advanced Solvent CO2 Capture Pilot Project Ion Advanced Solvent CO2 Capture Pilot Project Project No.: DE-FE0013303 ION Engineering is conducting small pilot-scale (~ 0.7 MW) testing of an advanced CO2 capture solvent technology that has previously undergone bench-scale testing. The small pilot-scale testing will involve continuous long-term operation in order to gather the necessary data ultimately required for further scale-up. Activities will include the design and fabrication of the 0.5-0.7 MWe (equivalent) slipstream pilot plant; scale-up of solvent manufacturing; testing, data collection, and analysis of solvent performance; degradation and air emission analysis; modeling and simulation for the detailed preliminary and final techno-economic analyses; and decommissioning of pilot plant equipment upon completion of solvent testing. The advanced solvent is anticipated to have significant operating and capital cost advantages over other solvents currently in development. Advantages include significant reductions in parasitic load and liquid flow rates which directly translate to smaller more efficient CO2 capture processes. Make-up water and amine emissions rates will be examined during this project. There is the potential that additional solvent, system, and integration savings will be identified, which could result in further operating and capital cost reductions.

23

Demonstration Development Project: Large-Scale Post-Combustion CO2 Capture Retrofit Demonstration Project Review  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has reviewed proposed demonstration sites for retrofitting post-combustion CO2 capture onto an existing coal-fired plant. This report discusses and reviews this set of demonstration projects to provide background information and the rationale for EPRI to pursue being involved in one or more of these projects.

2010-12-17T23:59:59.000Z

24

A scaled gradient projection method for the X-ray imaging of solar flares  

E-Print Network (OSTI)

In this paper we present a new optimization algorithm for the reconstruction of X-ray images of solar flares by means of the data collected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The imaging concept of the satellite is based of rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade a greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of a scaled gradient projection method for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function, by means of a discrepancy principle accounting for the Poisson nature of the noise affecting th...

Bonettini, S

2013-01-01T23:59:59.000Z

25

CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION  

DOE Green Energy (OSTI)

The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

Dr. Helen Kerr

2003-08-01T23:59:59.000Z

26

Carbon Capture and Storage Projects Overcoming Legal and Regulatory Barriers  

NLE Websites -- All DOE Office Websites (Extended Search)

2006/1236 2006/1236 June 23, 2006 International Carbon Capture and Storage Projects Overcoming Legal Barriers Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

27

CO2 Capture and Storage Project, Education and Training Center...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage. It's the process of capturing and storing or re-using carbon dioxide (CO2) from coal-fired power plants and industrial sources. In Decatur, Illinois, a new carbon capture...

28

EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Lake Charles Carbon Capture and Storage (CCS) Project in 4: Lake Charles Carbon Capture and Storage (CCS) Project in Calcasieu Parish, Louisiana EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project in Calcasieu Parish, Louisiana Summary This EIS will evaluate the environmental impacts of a proposal to provide financial assistance for the construction and operation of a project proposed by Leucadia Energy, LLC. DOE selected this project for an award of financial assistance through a competitive process under the Industrial Carbon Capture and Sequestration Program. Public Comment Opportunities None available at this time. Documents Available for Download November 22, 2013 EIS-0464: EPA Notice of Availability of Final Environmental Impact Statement Lake Charles Carbon Capture and Sequestration Project, Lake Charles,

29

Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase February 4, 2013 - 7:25pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Following the successful completion of the first phase, the Energy Department today announced the beginning of Phase II of project development with a new cooperative agreement between the FutureGen Industrial Alliance and the Department of Energy for an innovative carbon capture and storage (CCS) project in Illinois. "The Department of Energy is committed to the demonstration of carbon capture and storage technologies. We believe FutureGen 2.0 is an important step in making economic, commercial scale CCS a reality," said U.S.

30

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX SUMMARY This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG's proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson

31

Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Aimed at Advancing State-of-the-Art Carbon Capture from Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power Plants Selected for Further Development Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power Plants Selected for Further Development August 15, 2011 - 1:00pm Addthis Washington, DC - Four projects aimed at reducing the energy and cost penalties of advanced carbon capture systems applied to power plants have been selected for further development by the U.S. Department of Energy's Office of Fossil Energy (FE). Valued at approximately $67 million (including $15 million in non-federal cost sharing) over four years, the overall goal of the research is to develop carbon dioxide (CO2) capture and separation technologies that can achieve at least 90 percent CO2 removal at no more than a 35 percent

32

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

73: W.A. Parish Post-Combustion CO2 Capture and Sequestration 73: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX SUMMARY This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG's proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson

33

DOE Awards Cooperative Agreement for Post-Combustion Carbon Capture Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Cooperative Agreement for Post-Combustion Carbon Capture Awards Cooperative Agreement for Post-Combustion Carbon Capture Project DOE Awards Cooperative Agreement for Post-Combustion Carbon Capture Project March 12, 2010 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy has awarded a cooperative agreement to American Electric Power Service Corporation (AEP) for the Mountaineer Commercial Scale Carbon Capture and Storage (CCS) Project to design, construct, and operate a system that will capture and store approximately 1.5 million tons per year of carbon dioxide (CO2). The project was a third round selection under DOE's Clean Coal Power Initiative, a cost-shared collaboration between the federal government and private industry aimed at stimulating investment in low-emission coal-based power generation technology through successful commercial demonstrations.

34

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

35

Research Projects to Convert Captured CO2 Emissions to Useful Products |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects to Convert Captured CO2 Emissions to Useful Projects to Convert Captured CO2 Emissions to Useful Products Research Projects to Convert Captured CO2 Emissions to Useful Products July 6, 2010 - 1:00pm Addthis Washington, DC - Research to help find ways of converting into useful products CO2 captured from emissions of power plants and industrial facilities will be conducted by six projects announced today by the U.S. Department of Energy (DOE). The projects are located in North Carolina, New Jersey, Massachusetts, Rhode Island, Georgia, and Quebec, Canada (through collaboration with a company based in Lexington, Ky.) and have a total value of approximately $5.9 million over two-to-three years, with $4.4 million of DOE funding and $1.5 million of non-Federal cost sharing. The work will be managed by the

36

Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Capture from Coal Power Plants Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Capture from Coal Power Plants July 7, 2010 - 1:00pm Addthis Washington, DC - Ten projects aimed at developing advanced technologies for capturing carbon dioxide (CO2) from coal combustion have been selected by the U.S. Department of Energy (DOE) under its Innovations for Existing Plants (IEP) Program. Valued at approximately $67 million ($15 million in non-federal cost sharing) over three years, the projects are focused on reducing the "energy and efficiency penalties" associated with applying currently available carbon capture and storage (CCS) technologies to existing and new power plants.

37

Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Six Projects to Convert Captured CO2 Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products July 22, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with $106 million from the American Recovery and Reinvestment Act -matched with $156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans

38

Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Six Projects to Convert Captured CO2 Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products July 22, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with $106 million from the American Recovery and Reinvestment Act -matched with $156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans

39

Second Phase of Innovative Technology Project to Capture CO2, Produce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Phase of Innovative Technology Project to Capture CO2, Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio August 9, 2012 - 1:00pm Addthis Washington, DC - A novel method to capture carbon dioxide (CO2) from flue gas and produce biofuels has been formally launched in the second phase of a Department of Energy (DOE) project at a nursery in Ohio. Successful application of the process could eventually help reduce greenhouse gas emissions and provide a source of liquid biofuels and biogas, reducing U.S. dependence on foreign energy sources. Touchstone Research Laboratory in Triadelphia, W.Va., successfully inoculated four biomass production ponds with algae at Cedar Lane Farms in

40

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program:  

Open Energy Info (EERE)

Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Focus Area: Clean Fossil Energy Topics: System & Application Design Website: www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=277910&_user=10&_ Equivalent URI: cleanenergysolutions.org/content/carbon-dioxide-co2-capture-project-ph Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This paper describes results of Phase 2 of the Storage Program of the

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Six Projects to Convert Captured CO2 Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products July 22, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with $106 million from the American Recovery and Reinvestment Act -matched with $156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans

42

Second Phase of Innovative Technology Project to Capture CO2, Produce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Phase of Innovative Technology Project to Capture CO2, Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio August 9, 2012 - 1:00pm Addthis Washington, DC - A novel method to capture carbon dioxide (CO2) from flue gas and produce biofuels has been formally launched in the second phase of a Department of Energy (DOE) project at a nursery in Ohio. Successful application of the process could eventually help reduce greenhouse gas emissions and provide a source of liquid biofuels and biogas, reducing U.S. dependence on foreign energy sources. Touchstone Research Laboratory in Triadelphia, W.Va., successfully inoculated four biomass production ponds with algae at Cedar Lane Farms in

43

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage...  

Open Energy Info (EERE)

Storage Program of the Carbon Dioxide (CO2) Capture Project (CCP), a coalition of eight oil and gas companies and two associate members that are working together to reduce carbon...

44

Research Projects to Convert Captured CO2 Emissions to Useful...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The selected projects are described below: Research Triangle Institute (Durham, N.C.)--RTI will assess the feasibility of producing valuable chemicals, such as carbon monoxide,...

45

DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop Pre-Combustion Carbon Capture Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants June 11, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced the selection of nine projects that will develop pre-combustion carbon capture technologies that can reduce CO2 emissions in future coal-based integrated gasification combined cycle (IGCC) power plants. The projects, totaling nearly $14.4 million, will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. Pre-combustion processes convert fossil fuels into a gaseous mixture of hydrogen and CO2 prior to combustion. The CO2 is then separated and the

46

EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project in Calcasieu Parish, Louisiana  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by Leucadia Energy, LLC. DOE selected this project for an award of financial assistance through a competitive process under the Industrial Carbon Capture and Sequestration Program.

47

Virtual Museum Captures Ohio Plant History: Web-based Project Preserves  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virtual Museum Captures Ohio Plant History: Web-based Project Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy May 21, 2012 - 12:00pm Addthis An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. PIKETON, Ohio - Do you wonder what the interior of a uranium enrichment plant looks like without ever stepping foot in the facility? Now, the public can view photos, watch interviews with current and former workers who share historical accounts and browse old newsletters on the Portsmouth Gaseous Diffusion Plant from as far back as the early 1950s with

48

Virtual Museum Captures Ohio Plant History: Web-based Project Preserves  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virtual Museum Captures Ohio Plant History: Web-based Project Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy May 21, 2012 - 12:00pm Addthis An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. PIKETON, Ohio - Do you wonder what the interior of a uranium enrichment plant looks like without ever stepping foot in the facility? Now, the public can view photos, watch interviews with current and former workers who share historical accounts and browse old newsletters on the Portsmouth Gaseous Diffusion Plant from as far back as the early 1950s with

49

CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION  

DOE Green Energy (OSTI)

The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies have completed their 2003 stagegate review and are reported here. Some will proceed to the next stagegate review in 2004. Some technologies are emerging as preferred over others. Pre-combustion De-carbonization (hydrogen fuel) technologies are showing excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. The workscopes planned for the next key stagegates are under review before work begins based on the current economic assessment of their performance. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options but even so some significant potential reductions in cost have been identified and will continue to be explored. Storage, measurement, and verification studies are moving rapidly forward and suggest that geologic sequestration can be a safe form of long-term CO{sub 2} storage. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along old wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Wells are also easy to monitor and intervention is possible if needed. The project will continue to evaluate and bring in novel studies and ideas within the project scope as requested by the DOE. The results to date are summarized in the attached report and presented in detail in the attached appendices.

Helen Kerr

2004-04-01T23:59:59.000Z

50

Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project  

SciTech Connect

Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

2010-06-16T23:59:59.000Z

51

CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration  

DOE Green Energy (OSTI)

The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre-combustion De-carbonization (hydrogen fuel) technologies showed excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. Post-combustion technologies emerged as higher cost options that may only have niche roles. Storage, measurement, and verification studies suggest that geologic sequestration will be a safe form of long-term CO{sub 2} storage. Economic modeling shows that options to reduce costs by 50% exist. A rigorous methodology for technology evaluation was developed. Public acceptance and awareness were enhanced through extensive communication of results to the stakeholder community (scientific, NGO, policy, and general public). Two volumes of results have been published and are available to all. Well over 150 technical papers were produced. All funded studies for this phase of the CCP are complete. The results are summarized in this report and all final reports are presented in the attached appendices.

Helen Kerr; Linda M. Curran

2005-04-15T23:59:59.000Z

52

Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report  

SciTech Connect

This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

Guy Cerimele

2011-09-30T23:59:59.000Z

53

Citronelle Oil Field north of Mobile, Alabama. The project will capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Citronelle Oil Field north of Mobile, Alabama. The project will capture Citronelle Oil Field north of Mobile, Alabama. The project will capture approximately 150,000 tons of CO 2 per year from Alabama Power's Plant Barry (a total equivalent to the emissions from 25 megawatts of the plant's generating capacity) and inject the CO 2 into a deep saline reservoir 9,000 feet beneath the surface. Under the plan, the CO 2 will be transported by pipeline and injected into the saline formation, which has oil-bearing formations both above and below its location. A monitoring, verification, and accounting (MVA) program will be conducted to track the movement of the injected CO 2 and ensure that it is safely and permanently stored. The project will commence in 2011 and is expected to last up to four years. This test site was selected by

54

EPRI's Pulverized Coal Post-Combustion CO2 Capture Retrofit Study Summary (Supplemental Project Funders' Issue)  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is currently examining the feasibility of retrofitting post-combustion capture (PCC) of CO2 to existing pulverized coal (PC) and/or circulating fluidized-bed (CFB) power plants for five different "host" participants. Knowledge gained from previous CoalFleet ultra-supercritical (USC) PCC design studies is being applied directly to specific site conditions, plant design, and operating data provided by each host utility participant. This overall project intends t...

2011-03-31T23:59:59.000Z

55

Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project  

SciTech Connect

A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

Brian McPherson

2010-08-31T23:59:59.000Z

56

Microsoft PowerPoint - 04CifernoStanford - Capture Project Summary.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program US Perspective on CO 2 Capture and Separation Jared P. Ciferno - National Energy Technology Laboratory Global Climate and Energy Project April 27, 2004 Stanford University GCEP - JPC - 4/27/04 Presentation Outline * Carbon Sequestration Program * Pre-Combustion CO 2 Technologies * Post-Combustion CO 2 Technologies * Oxy-Fuel Technologies * Modeling and Assessment Tools * On-Site NETL R & D GCEP - JPC - 4/27/04 * One of DOE's 17 national labs * Government owned/operated * Sites in Pennsylvania, West Virginia, Oklahoma, Alaska * More than 1,100 federal and support contractor employees * FY 03 budget of $750 million National Energy Technology Laboratory GCEP - JPC - 4/27/04 Carbon Sequestration Program Structure Infrastructure 7 Regional Partnerships * Engage regional, state, local

57

Macroalgae for CO{sub 2} Capture and Renewable Energy - A Pilot Project  

SciTech Connect

The objective of this project was to demonstrate, at a pilot scale, the beneficial use of carbon dioxide (CO{sub 2}) through a technology designed to capture CO2 from fossil-fuel fired power plant stack gas, generating macroalgae and converting the macroalgae at high efficiency to renewable methane that can be utilized in the power plant or introduced into a natural gas pipeline. The proposed pilot plant would demonstrate the cost-effectiveness and CO{sub 2}/ NO{sub x} flue-gas removal efficiency of an innovative ??algal scrubber? technology where seaweeds are grown out of water on specially-designed supporting structures contained within greenhouses where the plants are constantly bathed by recycled nutrient sprays enriched by flue gas constituents. The work described in this document addresses Phase 1 of the project only. The scope of work for Phase 1 includes the completion of a preliminary design package; the collection of additional experimental data to support the preliminary and detailed design for a pilot scale utilization of CO{sub 2} to cultivate macroalage and to process that algae to produce methane; and a technological and economic analysis to evaluate the potential of the system. Selection criteria for macroalgae that could survive the elevated temperatures and potential periodic desiccation of near desert project sites were identified. Samples of the selected macroalgae species were obtained and then subjected to anaerobic digestion to determine conversions and potential methane yields. A Process Design Package (PDP) was assembled that included process design, process flow diagram, material balance, instrumentation, and equipment list, sizes, and cost for the Phase 2 pilot plant. Preliminary economic assessments were performed under the various assumptions made, which are purposely conservative. Based on the results, additional development work should be conducted to delineate the areas for improving efficiency, reducing contingencies, and reducing overall costs.

Kristine Wiley

2010-10-31T23:59:59.000Z

58

Microsoft PowerPoint - 04CifernoStanford - Capture Project Summary...  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature Swing Adsorption Participants: NETL, Carnegie Mellon University, Sud Chemie * Pre-Combustion CO 2 capture * Pressure-Swing Adsorbents - Improved adsorption...

59

CO2 Capture and Storage Project, Education and Training Center Launched in Decatur, Illinois  

Energy.gov (U.S. Department of Energy (DOE))

One of the nations largest carbon capture and storage endeavors includes an education center for students and local residents.

60

Carbon Capture and Storage FutureGen 2.0 Project Moves Forward...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

partners, the Department of Energy is investing in the upgrade of a coal-fired power plant in Meredosia, Ill. with oxy-combustion technology to capture more than 1 million...

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Program on Technology Innovation: National Carbon Capture Center 2012 Project Summary  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) established the National Carbon Capture Center (NCCC) to address the nations need for cost-effective, commercially viable CO2 capture options for coal-based power plants, both combustion and gasification. The NCCC is located at the Power Systems Development Facility (PSDF), an engineering-scale test center in Wilsonville, Alabama. The Transport Gasifier at the original PSDF site provides syngas for pre-combustion testing; and a new test facility, ...

2012-12-31T23:59:59.000Z

62

Fermi Guest Investigator Program Cycle 2 Project Final Report Albedo Polarimetry of Gamma-Ray Bursts and Solar Flares with GBM  

SciTech Connect

Several key properties of GRBs remain poorly understood and are difficult or even impossible to infer with the information currently being collected. Polarization measurements will probe the precise nature of the central engine. For solar flares, high-energy polarization measurements are expected to be useful in determining the beaming (or directivity) of solar flare electrons - a quantity that may provide important clues about electron acceleration and transport. We propose to investigate the viability of using the Fermi Gamma-ray Burst Monitor (GBM) to measure the polarization of GRBs and solar flares using the albedo photon flux. This approach was previously developed for use with BATSE data. We will conduct a careful study of this technique using a modified version of the GRESS simulation tools developed by the GBM team.

Kippen, Richard Marc [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

63

EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California  

Energy.gov (U.S. Department of Energy (DOE))

Draft Environmental Impact Statement: Public Comment Period Extended Until 10/01/13This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC (HECA's) project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

64

Macroalgae for CO{sub 2} Capture and Renewable Energy - A Pilot Project  

DOE Green Energy (OSTI)

Selection criteria for macroalgae that could survive the elevated temperatures and potential periodic desiccation of near desert project sites were identified. Samples of the selected macroalgae species were obtained and then subjected to anaerobic digestion to determine conversions and potential methane yields. A Process Design Package (PDP) was assembled that included process design, process flow diagram, material balance, instrumentation, and equipment list, sizes, and cost for the Phase 2 pilot plant. Preliminary economic assessments were performed under the various assumptions made, which are purposely conservative. Based on the results, additional development work should be conducted to delineate the areas for improving efficiency, reducing contingencies, and reducing overall costs.

Kristine Wiley

2010-10-31T23:59:59.000Z

65

Project_Descriptions_ITP_ARRA_Awards.xls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selections for Industrial Technologies Program Recovery Act Funding Selections for Industrial Technologies Program Recovery Act Funding Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment Award Winners City and State Project Description Total DOE Funding Air Products and Chemicals, Inc. Middletown, OH Waste Energy Project at the AK Steel Corporation Middletown Works. The project will construct a combined cycle power generation plant at the Middletown, OH, works of AK Steel that will capture and process the blast furnace gas (BFG). The BFG, generated in ironmaking operations, is either flared or used to make steam needed for industrial processes . Currently, over 50% of the BFG is flared. This project will utilize

66

Predict flare noise and spectrum  

Science Conference Proceedings (OSTI)

Predicting flare combustion noise is important to ensure the flare is a certain distance from inhabited areas. Generally, it not feasible to increase the stack height to lower the overall noise at a particular point. This article shows how to calculate flare noise including spectrum considerations. Depending on the spectrum, a lower power noise source may sound louder than a higher power source.

Leite, O.C. (Pilgrim Steel Co., Glassboro, NJ (US))

1988-12-01T23:59:59.000Z

67

X-ray Flares in Orion Low Mass Stars  

E-Print Network (OSTI)

Context. X-ray flares are common phenomena in pre-main sequence stars. Their analysis gives insights into the physics at work in young stellar coronae. The Orion Nebula Cluster offers a unique opportunity to study large samples of young low mass stars. This work is part of the Chandra Orion Ultradeep project (COUP), an ~10 day long X-ray observation of the Orion Nebula Cluster (ONC). Aims. Our main goal is to statistically characterize the flare-like variability of 165 low mass (0.1-0.3 M_sun) ONC members in order to test and constrain the physical scenario in which flares explain all the observed emission. Methods. We adopt a maximum likelihood piece-wise representation of the observed X-ray light curves and detect flares by taking into account both the amplitude and time derivative of the count-rate. We then derive the frequency and energy distribution of the flares. Results. The high energy tail of the energy distribution of flares is well described by a power-law with index 2.2. We test the hypothesis that light curves are built entirely by overlapping flares with a single power law energy distribution. We constrain the parameters of this simple model for every single light curve. The analysis of synthetic light curves obtained from the model indicates a good agreement with the observed data. Comparing low mass stars with stars in the mass interval (0.9-1.2M_sun), we establish that, at ~1 Myr, low mass and solar mass stars of similar X-ray luminosity have very similar flare frequencies. Conclusions. Our observational results are consistent with the following model/scenario: the light curves are entirely built by over- lapping flares with a power-law intensity distribution; the intense flares are individually detected, while the weak ones merge and form a pseudo-quiescent level, which we indicate as the characteristic level.

M. Caramazza; E. Flaccomio; G. Micela; F. Reale; S. J. Wolk; E. D. Feigelson

2007-06-11T23:59:59.000Z

68

W.A. Parish Post-Combustion CO2 Capture and Sequestration Project, Final Environmental Impact Statement (DOE/EIS-0473)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W.A. W.A. Parish Post-Combustion CO 2 Capture and Sequestration Project Final Environmental Impact Statement Summary February 2013 DOE/EIS-0473 Office of Fossil Energy National Energy Technology Laboratory INTENTIONALLY LEFT BLANK COVER SHEET Responsible Federal Agency: U.S. Department of Energy (DOE) Title: W.A. Parish Post-Combustion CO 2 Capture and Sequestration Project, Final Environmental Impact Statement (DOE/EIS-0473) Location: Southeastern Texas, including Fort Bend, Wharton, and Jackson counties Contacts: For further information about this Environmental Impact Statement, contact: For general information on the DOE process for implementing the National Environmental Policy Act, contact: Mark W. Lusk U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, WV 26507-0880 (304) 285-4145 or Mark.Lusk@netl.doe.gov

69

IMPACCT: Carbon Capture Technology  

Science Conference Proceedings (OSTI)

IMPACCT Project: IMPACCTs 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for Innovative Materials and Processes for Advanced Carbon Capture Technologies, the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

70

Cryogenic Carbon Capture  

SciTech Connect

IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES capture technology can be readily added to our existing energy infrastructure.

None

2010-07-15T23:59:59.000Z

71

Demonstration Development Project: Oxy-Fired Circulating Fluidized Bed with Carbon Dioxide Capture and Storage at Holland Board of P ublic Works  

Science Conference Proceedings (OSTI)

Oxy-combustion of coal has been proposed as a way of reducing costs of capturing CO2 from coal-fired steam-electric power plants at a purity adequate for geological storage. To date only laboratory and test-stand studies have been conducted, primarily focusing on the combustion process. The next major development step is to field an integrated oxy-coal power plant. Such a project has been proposed and is being developed for deployment at the Holland (MI) Board of Public Works James De Young Power Station...

2009-12-11T23:59:59.000Z

72

SATURATION LEVELS FOR WHITE-LIGHT FLARES OF FLARE STARS: VARIATION OF MINIMUM FLARE DURATION FOR SATURATION  

Science Conference Proceedings (OSTI)

Taking into account results obtained from models and from statistical analyses of obtained parameters, we discuss flare activity levels and flare characteristics of five UV Ceti stars. We present the parameters of unpublished flares detected over two years of observations of V1005 Ori. We compare parameters of the U-band flares detected over several seasons of observations of AD Leo, EV Lac, EQ Peg, V1054 Oph, and V1005 Ori. Flare frequencies calculated for all program stars and maximum energy levels of the flares are compared, and we consider which is the most correct parameter as an indicator of flare activity levels. Using the One Phase Exponential Association function, the distributions of flare equivalent duration versus flare total duration are modeled for each program star. We use the Independent Samples t-Test in the statistical analyses of the parameters obtained from the models. The results reveal some properties of flare processes occurring on the surfaces of UV Ceti type stars. (1) Flare energies cannot be higher than a specific value regardless of the length of the flare total duration. This must be a saturation level for white-light flares occurring in flare processes observed in the U band. Thus, for the first time it is shown that white-light flares have a saturation in a specific energy range. (2) The span values, which are the difference between the equivalent durations of flares with the shortest and longest total durations, are almost equal for each star. (3) The half-life values, minimum flare durations for saturation, increase toward the later spectral types. (4) Both maximum total durations and maximum rise times computed from the observed flares decrease toward the later spectral types among the UV Ceti stars. According to the maximum energy levels obtained from the models, both EV Lac and EQ Peg are more active than the other three program stars, while AD Leo is the most active flare star according to the flare frequencies.

Dal, H. A.; Evren, S., E-mail: ali.dal@ege.edu.tr [Department of Astronomy and Space Sciences, University of Ege, Bornova, 35100 Izmir (Turkey)

2011-02-15T23:59:59.000Z

73

Capturing Undocumented Expert Knowledge  

Science Conference Proceedings (OSTI)

Public Service Electric and Gas Company (PSEG) faces the retirements of skilled, productive experts in the areas of asset management system protection engineering and pipe-type cable design and operations. The project team used the Electric Power Research Institute (EPRI) guidelines and methods, described in the EPRI report Capturing and Using High-Value Undocumented Knowledge in the Nuclear Industry: Guidelines and Methods (1002896) to capture and retain the tacit knowledge held by these key experts. Th...

2005-08-31T23:59:59.000Z

74

Analysis of Field Development Strategies of CO2 EOR/Capture Projects Using a Reservoir Simulation Economic Model  

E-Print Network (OSTI)

A model for the evaluation of CO2-EOR projects has been developed. This model includes both reservoir simulation to handle reservoir properties, fluid flow and injection and production schedules, and a numerical economic model that generates a monthly cash flow stream from the outputs of the reservoir model. This model is general enough to be used with any project and provide a solid common basis to all of them. This model was used to evaluate CO2-EOR injection and production strategies and develop an optimization workflow. Producer constraints (maximum oil and gas production rates) should be optimized first to generate a reference case. Further improvements can then be obtained by optimizing the injection starting date and the injection plateau rate. Investigation of sensitivity of CO2-EOR to the presence of an aquifer showed that CO2 injection can limit water influx in the reservoir and is beneficial to recovery, even with a strong water drive. The influence of some key parameters was evaluated: the producer should be completed in the top part of the reservoir, while the injector should be completed over the entire thickness; it is recommended but not mandatory that the injection should start as early as possible to allow for lower water cut limit. Finally, the sensitivity of the economics of the projects to some key parameters was evaluated. The most influent parameter is by far the oil price, but other parameters such as the CO2 source to field distance, the pipeline cost scenario, the CO2 source type or the CO2 market price have roughly the same influence. It is therefore possible to offset an increase of one of them by reducing another.

Saint-Felix, Martin

2013-05-01T23:59:59.000Z

75

Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)  

SciTech Connect

The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

Dan Kieki

2008-09-30T23:59:59.000Z

76

THE SOLAR FLARE IRON ABUNDANCE  

SciTech Connect

The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

Phillips, K. J. H. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH6 5NT (United Kingdom); Dennis, B. R., E-mail: kjhp@mssl.ucl.ac.uk, E-mail: Brian.R.Dennis@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-03-20T23:59:59.000Z

77

Earth Planets Space, , , Flares and the Chromosphere  

E-Print Network (OSTI)

The radiative energy of a solar flare appears mainly in the optical and UV continuum, which form in the lower,631-14,659 (1997). Obayashi, T., Energy Build-up and Release Mechanisms in Solar and Auro- ral Flares, Solar Phys produces in the photospheric magnetic field. Key words: Solar flares, Solar chromosphere, Solar corona

Hudson, Hugh

78

NETL: 2010 Conference Proceedings - 2010 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 NETL CO2 Capture Technology Meeting 2010 NETL CO2 Capture Technology Meeting September 13-17, 2010 Table of Contents Presentations Monday, September 13 Opening/Overview Post-combustion Sorbent Based Capture Post-combustion Solvent Based Capture Tuesday, September 14 Post-combustion Membrane Based Capture Pulverized Coal Oxy-combustion ARPA-E Projects Wednesday, September 15 National Carbon Capture Center Chemical Looping Processes Systems Studies and Modeling Efforts CO2 Compression New CO2 Capture Projects Thursday, September 16 New CO2 Capture Projects - Cont'd CCPI and ICCS Demonstration Projects Pre-combustion Capture Projects Friday, September 17 Pre-combustion Capture Projects - Cont'd Posters Advanced Research Projects Agency - Energy (ARPA-E) NETL Office of Research and Development Research Projects

79

NETL: Solvents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvents for CO2 Capture Project No.: R&D 048 The most attractive physical solvents for carbon dioxide (CO2) capture are those having such properties as high thermal stability,...

80

Flare system for safe disposal of LNG from a disabled tanker  

SciTech Connect

The feasibility of a flare system for the rapid and safe incineration of the cargo of a disabled LNG tanker is evaluated. The project developed design parameters and proof-of-principle investigations of a system for off-loading and flaring LNG from a disabled LNG tanker. The system described offers enough promise to warrant additional investigation, if cargo burning is desired as a way of reducing other possible hazards.

Not Available

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Detecting Solar Neutrino Flares and Flavors  

E-Print Network (OSTI)

Intense solar flares originated in sun spots produce high energy particles (protons, $\\alpha$) well observable by satellites and ground-based detectors. The flare onset produces signals in different energy bands (radio, X, gamma and neutrons). The most powerful solar flares as the ones occurred on 23 February 1956, 29 September 1989 and the more recent on October 28th, and the 2nd, 4th, 13th of November 2003 released in sharp times the largest flare energies (${E}_{FL} \\simeq {10}^{31}\\div {10}^{32} erg). The high energy solar flare protons scatter within the solar corona and they must be source of a prompt neutrino burst through the production of charged pions. Later on, solar flare particles hitting the atmosphere may marginally increase the atmospheric neutrino flux. The prompt solar neutrino flare may be detected in the largest underground $\

D. Fargion

2003-12-01T23:59:59.000Z

82

Data Capture Form Data capture form  

E-Print Network (OSTI)

Data Capture Form Data capture form Please make use of the data capture form relevant not on the common lists. The data capture form must be printed and used in the field during the census to capture all the data during the BCW. All data captured onto this form must please be submitted by the team

de Villiers, Marienne

83

CAPTURE DOCUMENT ORAUTEAM  

Office of Legacy Management (LM)

DATA DATA CAPTURE DOCUMENT ORAUTEAM ---- Dose Reconstruction ~v~:7 DISCOVERY AND REVIEW dA'~ Project for NIOSH The attached document may contain Privacy Act data. This information is protected by the Privacy Act, 5 U.S.C. §552a; disclosure to any third party without written consent of the individual to whom the information pertains is strictly prohibited. Data Capture Team or Other ORAU Team Member Capturing Data: Complete all information that applies to the data/document being submitted lor uploading to the Site Research Database (SRDB), attach this lonm to the lront olthe document, and send to: ORAU Team, Attention: SRDB Uploading, 4850 Smith Rd., Suite 200, Cincinnati, Ohio 45212. I ~ -!-R"e"guestor and Reviewer 1. Data Requestor: RSET Group 2. Reviewer Name (if different from Requestor): Don Morris 3. Target Data: Document Specified by Requestor Any relevant

84

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Capture & Storage Industrial Capture & Storage Technologies Industrial Capture & Storage The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

85

NETL: 2011 - Carbon Capture Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture Peer Review During July 18 - 21, 2011, a total of 16 projects from NETL's Innovations for Existing Plants and Carbon Sequestration Programs were peer reviewed....

86

NETL: 2013 - Carbon Capture Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

3 - Independent Peer Reviews of NETL Technology Programs NETL: 2013 - Carbon Capture Peer Review Carbon Storage Peer Review During October 22 - 26, 2012, a total of 16 projects...

87

NETL: 2011 Conference Proceedings - 2011 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 NETL CO2 Capture Technology Meeting 2011 NETL CO2 Capture Technology Meeting August 22 - 26, 2011 Previous Proceedings 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting 2010: 2010 NETL CO2 Capture Technology Meeting Proceedings of the 2011 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, August 22 Opening/Overview Post-combustion Sorbent-Based Capture Post-combustion Membrane-Based Capture Tuesday, August 23 Post-combustion Solvent-Based Capture ARPA-E Capture Projects Wednesday, August 24 Oxy-Combustion and Oxygen Production Chemical Looping Process CO2 Compression Thursday, August 25 FutureGen 2.0, CCPI and ICCS Demonstration Projects System Studies and Modeling Pre-Combustion Capture Projects Friday, August 26 Pre-combustion Capture Projects Posters

88

Recovering Flare Gas Energy - A Different Approach  

E-Print Network (OSTI)

Most petrochemical complexes and oil refineries have systems to collect and dispose of waste gases. Usually this is done by burning in a flare. Some installations recover these gases by compressing them into their fuel system. Because SunOlin shares its flare system with a neighboring oil refinery, changes to the flare system operation could have far-reaching impact on both plants. Therefore, a flare gas recovery system was designed and installed so that waste gases can be burned directly in a steam boiler. This was done for both safety and operational reasons. This presented a number of interesting design and operating problems which are discussed in this paper.

Brenner, W.

1987-09-01T23:59:59.000Z

89

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Natural Gas Vented and Flared Ohio Natural Gas Gross Withdrawals and Production Natural Gas Vented and Flared...

90

Texas Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Vented and Flared (Million Cubic Feet) Texas Natural Gas Vented and Flared (Million Cubic Feet) Decade...

91

CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS  

SciTech Connect

Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

Wang Haimin; Liu Chang, E-mail: haimin.wang@njit.edu [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States)

2012-12-01T23:59:59.000Z

92

Solar Flares STFC Advanced Summer School  

E-Print Network (OSTI)

Solar Flares STFC Advanced Summer School in Solar Physics H. S. Hudson Space Sciences Laboratory University of California, Berkeley and University of Glasgow Glasgow Summerschool 2011 Part 1: Introduction · A solar flare is, strictly speaking, the electromagnetic radiation from a coronal magnetic energy release

California at Berkeley, University of

93

FLARES AND THEIR UNDERLYING MAGNETIC COMPLEXITY  

Science Conference Proceedings (OSTI)

SphinX (Solar PHotometer IN X-rays), a full-disk-integrated spectrometer, observed 137 flare-like/transient events with active region (AR) 11024 being the only AR on disk. The Hinode X-Ray Telescope (XRT) and Solar Optical Telescope observe 67 of these events and identified their location from 12:00 UT on July 3 through 24:00 UT 2009 July 7. We find that the predominant mechanisms for flares observed by XRT are (1) flux cancellation and (2) the shearing of underlying magnetic elements. Point- and cusp-like flare morphologies seen by XRT all occur in a magnetic environment where one polarity is impeded by the opposite polarity and vice versa, forcing the flux cancellation process. The shearing is either caused by flux emergence at the center of the AR and separation of polarities along a neutral line or by individual magnetic elements having a rotational motion. Both mechanisms are observed to contribute to single- and multiple-loop flares. We observe that most loop flares occur along a large portion of a polarity inversion line. Point- and cusp-like flares become more infrequent as the AR becomes organized with separation of the positive and negative polarities. SphinX, which allows us to identify when these flares occur, provides us with a statistically significant temperature and emission scaling law for A and B class flares: EM = 6.1 x 10{sup 33} T{sup 1.9{+-}0.1}.

Engell, Alexander J.; Golub, Leon; Korreck, Kelly [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Siarkowski, Marek; Gryciuk, Magda; Sylwester, Janusz; Sylwester, Barbara [Space Research Center, Polish Academy of Sciences, Kopernika 11, 51-622 Wroclaw (Poland); Cirtain, Jonathan, E-mail: aengell@cfa.harvard.edu [Marshall Space Flight Center NASA, Mail Code: VP62, Marshall Space Flight Center, AL 35812 (United States)

2011-01-01T23:59:59.000Z

94

Advanced Telemetry Data Capturing  

SciTech Connect

This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.

Paschke, G.A.

2000-05-16T23:59:59.000Z

95

NETL: 2013 Conference Proceedings - 2013 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 NETL CO2 Capture Technology Meeting 2013 NETL CO2 Capture Technology Meeting July 8-11, 2013 Previous Proceedings 2012: NETL CO2 Capture Technology Meeting 2011: NETL CO2 Capture Technology Meeting 2010: NETL CO2 Capture Technology Meeting 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting Proceedings of the 2013 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, July 8 Opening/Overview Post-Combustion Sorbent-Based Capture Tuesday, July 9 Post-Combustion Solvent-Based Capture CO2 Compression Wednesday, July 10 Post-Combustion Membrane-Based Capture Pre-Combustion Capture Projects Thursday, July 11 ARPA-E Capture Projects System Studies and Modeling Oxy-Combustion and Chemical Looping Posters PRESENTATIONS Monday, July 8, 2013 Opening/Overview Introduction [PDF-MB]

96

Robust automated knowledge capture.  

SciTech Connect

This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

2011-10-01T23:59:59.000Z

97

Capturing the Daylight Dividend  

Science Conference Proceedings (OSTI)

Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

Peter Boyce; Claudia Hunter; Owen Howlett

2006-04-30T23:59:59.000Z

98

FLARING SOLAR HALE SECTOR BOUNDARIES  

SciTech Connect

The sector structure that organizes the magnetic field of the solar wind into large-scale domains has a clear pattern in the photospheric magnetic field as well. The rotation rate, 27-28.5 days, implies an effectively rigid rotation originating deeper in the solar interior than the sunspots. The photospheric magnetic field is known to be concentrated near that portion (the Hale boundary) in each solar hemisphere, where the change in magnetic sector polarity matches that between the leading and following sunspot polarities in active regions in the respective hemispheres. We report here that flares and microflares also concentrate at the Hale boundaries, implying that flux emergence and the creation of free magnetic energy in the corona also have a direct cause in the deep interior.

Svalgaard, L. [HEPL, Stanford University, Stanford, CA 94304 (United States); Hannah, I. G.; Hudson, H. S., E-mail: leif@leif.org [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

2011-05-20T23:59:59.000Z

99

CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158  

SciTech Connect

It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 A channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 Multiplication-Sign 10{sup 20} Mx, 2.0 Multiplication-Sign 10{sup 20} Mx, and 21.0 Multiplication-Sign 10{sup 20} Mx, respectively, resulting in free energy drops of 3.89 Multiplication-Sign 10{sup 30} erg, 2.62 Multiplication-Sign 10{sup 30} erg, and 1.68 Multiplication-Sign 10{sup 32} erg.

Tarr, Lucas; Longcope, Dana; Millhouse, Margaret [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

2013-06-10T23:59:59.000Z

100

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Technologies Industrial Capture & Storage Area 1 Large-Scale Industrial CCS Program The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network (OSTI)

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery fuel gas system. The system consists of liquid knock-out, compression, and liquid seal facilities. Now that the debugging-stage challenges have been dealt with, Shell Canada is more than satisfied with the system performance. A well-thought-out installation can today be safe, trouble-free, and attractive from an economic and environmental viewpoint. This paper highlights general guidelines for the sizing, design and operation of a refinery flare gas recovery facility.

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

102

Feasibility of air capture  

E-Print Network (OSTI)

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

103

Carbon Capture & Sequestration  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the Energy Department's work to capture and transport CO2 into underground geologic formations, also known as carbon capture and sequestration.

104

Capturing carbon and saving coal  

SciTech Connect

Electric utilities face a tangle of choices when figuring how to pull CO{sub 2} from coal-fired plants. The article explains the three basic approaches to capturing CO{sub 2} - post-combustion, oxyfuel combustion and pre-combustion. Researchers at US DOE labs and utilities are investigating new solvents that capture CO{sub 2} more efficiently than amines and take less energy. Ammonium carbonate has been identified by EPRI as one suitable solvent. Field research projects on this are underway in the USA. Oxyfuel combustion trials are also being planned. Pre-combustion, or gasification is a completely different way of pulling energy from coal and, for electricity generation, this means IGCC systems. AEP, Southern Cinergy and Xcel are considering IGCC plants but none will capture CO{sub 2}. Rio Tinto and BP are planning a 500 MW facility to gasify coke waste from petroleum refining and collect and sequester CO{sub 2}. However, TECO recently dropped a project to build a 789 MW IGCC coal fired plant even though it was to receive a tax credit to encourage advanced coal technologies. The plant would not have captured CO{sub 2}. The company said that 'with uncertainty of carbon capture and sequestration regulations being discussed at the federal and state levels, the timing was not right'. 4 figs.

Johnson, J.

2007-10-15T23:59:59.000Z

105

Enclosed ground-flare incinerator  

DOE Patents (OSTI)

An improved ground flare is provided comprising a stack, two or more burner assemblies, and a servicing port so that some of the burner assemblies can be serviced while others remain in operation. The burner assemblies comprise a burner conduit and nozzles which are individually fitted to the stack's burner chamber and are each removably supported in the chamber. Each burner conduit is sealed to and sandwiched between a waste gas inlet port and a matching a closure port on the other side of the stack. The closure port can be opened for physically releasing the burner conduit and supplying sufficient axial movement room for extracting the conduit from the socket, thereby releasing the conduit for hand removal through a servicing port. Preferably, the lower end of the stack is formed of one or more axially displaced lower tubular shells which are concentrically spaced for forming annular inlets for admitting combustion air. An upper tubular exhaust stack, similarly formed, admits additional combustion air for increasing the efficiency of combustion, increasing the flow of exhausted for improved atmospheric dispersion and for cooling the upper stack.

Wiseman, Thomas R. (Calgary, CA)

2000-01-01T23:59:59.000Z

106

FLARES PRODUCING WELL-ORGANIZED POST-FLARE ARCADES (SLINKIES) HAVE EARLY PRECURSORS  

SciTech Connect

Exploding loop systems producing X-ray flares often, but not always, bifurcate into a long-living, well-organized system of multi-threaded loop arcades resembling solenoidal slinkies. The physical conditions that cause or prevent this process are not known. To address this problem, we examined most of the major (X-class) flares that occurred during the last decade and found that the flares that bifurcate into long-living slinky arcades have different signatures than those that do not 'produce' such structures. The most striking difference is that, in all cases of slinky formation, GOES high energy proton flux becomes significantly enhanced 10-24 hr before the flare occurs. No such effect was found prior to the 'non-slinky' flares. This fact may be associated with the difference between energy production by a given active region and the amount of energy required to bring the entire system into the form of well-organized, self-similar loop arcades. As an example illustrating the process of post-flare slinky formation, we present observations taken with the Hinode satellite, in several wavelengths, showing a time sequence of pre-flare and flare activity, followed by the formation of dynamically stable, well-organized structures. One of the important features revealed is that post-flare coronal slinky formation is preceded by scale invariant structure formation in the underlying chromosphere/transition region. We suggest that the observed regularities can be understood within the framework of self-organized critical dynamics characterized by scale invariant structure formation with critical parameters largely determined by energy saturation level. The observed regularities per se may serve as a long-term precursor of strong flares and may help to study predictability of system behavior.

Ryutova, M. P. [Lawrence Livermore National Laboratory/IGPP, Livermore, CA 94550 (United States); Frank, Z.; Hagenaar, H.; Berger, T., E-mail: ryutova1@llnl.gov, E-mail: zoe@lmsal.com, E-mail: hagenaar@lmsal.com, E-mail: berger@lmsal.com [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2011-06-01T23:59:59.000Z

107

W.A. Parish Post-Combustion CO2 Capture and Sequestration Project, Final Environmental Impact Statement (DOE/EIS-0473)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NRG W.A. PARISH PCCS PROJECT NRG W.A. PARISH PCCS PROJECT FINAL ENVIRONMENTAL IMPACT STATEMENT APPENDIX H. BEG MODELING REPORT APPENDIX H BEG MODELING REPORT DOE/EIS-0473 NRG W.A. PARISH PCCS PROJECT FINAL ENVIRONMENTAL IMPACT STATEMENT APPENDIX H. BEG MODELING REPORT INTENTIONALLY LEFT BLANK 1 Reservoir modeling and simulation for estimating migration extents of injectate-CO 2 in support of West Ranch oilfield NEPA/EIS Gulf Coast Carbon Center, Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin May 4, 2012 Summary It is anticipated that anthropogenic carbon dioxide (CO2-A) will be injected into the deep (5,000-6,000 ft below sea level) subsurface for enhanced oil recovery (EOR) at the West Ranch oilfield beginning in early 2015. The purpose of this report is to present reservoir modeling and simulation

108

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Vented and Flared (Million Cubic Feet) Ohio Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0...

109

Illinois Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Illinois Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

110

Solar flares as harbinger of new physics  

E-Print Network (OSTI)

This work provides additional evidence on the involvement of exotic particles like axions and/or other WISPs, following recent measurements during the quietest Sun and flaring Sun. Thus, SPHINX mission observed a minimum basal soft X-rays emission in the extreme solar minimum in 2009. The same scenario (with ~17 meV axions) fits also the dynamical behaviour of white-light solar flares, like the measured spectral components in the visible and in soft X-rays, and, the timing between them. Solar chameleons remain a viable candidate, since they may preferentially convert to photons in outer space.

Zioutas, K; Semertzidis, Y; Papaevangelou, T; Georgiopoulou, E; Gardikiotis, A; Dafni, T

2011-01-01T23:59:59.000Z

111

NETL: CO2 Capture from IGCC Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process Project No.: DE-FE0000896 Batch scale...

112

NETL: Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process Project No.: DE-FE0000646 The Gas Technology Institute is developing a pre-combustion...

113

NETL: News Release - Energy Department Advances Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Advances Carbon Capture and Storage Research on Two Fronts Recovery Act Projects to Provide Student Training, Technology Advancement Washington, D.C. -...

114

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

115

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project...

116

NETL: Carbon Capture FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

How is CO2 captured? How is CO2 captured? Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Carbon dioxide (CO2) capture involves separating CO2 from other gases generated by industrial processes or burning fossil fuels. CO2 capture can remove as much as 95% of the CO2 from these processes. There are two major types of anthropogenic CO2 sources: mobile and stationary. Mobile sources include things like cars, trucks, trains, boats, and aircrafts that burn fossil fuels and generate CO2. Capturing CO2 from mobile sources is currently impractical. Stationary sources include power plants and industrial facilities that burn fossil fuels, as

117

U.S. DEPARTlVIENT OF ENERGY p.GI.G!) EERE PROJECT MAN AG EMENT...  

NLE Websites -- All DOE Office Websites (Extended Search)

gas flare . The microturbine wi" generate mechanical energy which will be converted to electricity for 100% on-site use. The proposed biogas microturbine project would complete...

118

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

119

National Carbon Capture Center: 2010 Report  

Science Conference Proceedings (OSTI)

The Power Systems Development Facility (PSDF), a large-scale test facility located in Wilsonville, Alabama, was established in 1994 to develop coal-based power generation technologies that are reliable, environmentally acceptable, and cost effective. In 2009, the PSDF became the National Carbon Capture Center (NCCC) with the mission of supporting the development of cost-effective, commercially viable CO2 capture technologies for both coal-derived syngas and flue gas. The project continues to be funded pr...

2010-12-31T23:59:59.000Z

120

Glossary Term - Electron Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Electron Previous Term (Electron) Glossary Main Index Next Term (Electron Volt (eV)) Electron Volt (eV) Electron Capture After electron capture, an atom contains one less proton and one more neutron. Electron capture is one process that unstable atoms can use to become more stable. During electron capture, an electron in an atom's inner shell is drawn into the nucleus where it combines with a proton, forming a neutron and a neutrino. The neutrino is ejected from the atom's nucleus. Since an atom loses a proton during electron capture, it changes from one element to another. For example, after undergoing electron capture, an atom of carbon (with 6 protons) becomes an atom of boron (with 5 protons). Although the numbers of protons and neutrons in an atom's nucleus change

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A NEW METHOD FOR CLASSIFYING FLARES OF UV Ceti TYPE STARS: DIFFERENCES BETWEEN SLOW AND FAST FLARES  

SciTech Connect

In this study, a new method is presented to classify flares derived from the photoelectric photometry of UV Ceti type stars. This method is based on statistical analyses using an independent samples t-test. The data used in analyses were obtained from four flare stars observed between 2004 and 2007. The total number of flares obtained in the observations of AD Leo, EV Lac, EQ Peg, and V1054 Oph is 321 in the standard Johnson U band. As a result flares can be separated into two types, slow and fast, depending on the ratio of flare decay time to flare rise time. The ratio is below 3.5 for all slow flares, while it is above 3.5 for all fast flares. Also, according to the independent samples t-test, there is a difference of about 157 s between equivalent durations of slow and fast flares. In addition, there are significant differences between amplitudes and rise times of slow and fast flares.

Dal, H. A.; Evren, S., E-mail: ali.dal@ege.edu.t [Department of Astronomy and Space Sciences, University of Ege, Bornova, 35100 Izmir (Turkey)

2010-08-15T23:59:59.000Z

122

A Statistical Solar Flare Forecast Method  

E-Print Network (OSTI)

A Bayesian approach to solar flare prediction has been developed, which uses only the event statistics of flares already observed. The method is simple, objective, and makes few ad hoc assumptions. It is argued that this approach should be used to provide a baseline prediction for certain space weather purposes, upon which other methods, incorporating additional information, can improve. A practical implementation of the method for whole-Sun prediction of Geostationary Observational Environment Satellite (GOES) events is described in detail, and is demonstrated for 4 November 2003, the day of the largest recorded GOES flare. A test of the method is described based on the historical record of GOES events (1975-2003), and a detailed comparison is made with US National Oceanic and Atmospheric Administration (NOAA) predictions for 1987-2003. Although the NOAA forecasts incorporate a variety of other information, the present method out-performs the NOAA method in predicting mean numbers of event days, for both M-X and X events. Skill scores and other measures show that the present method is slightly less accurate at predicting M-X events than the NOAA method, but substantially more accurate at predicting X events, which are important contributors to space weather.

M. S. Wheatland

2005-05-14T23:59:59.000Z

123

Initial Observations of Sunspot Oscillations Excited by Solar Flare  

E-Print Network (OSTI)

Observations of a large solar flare of December 13, 2006, using Solar Optical Telescope (SOT) on Hinode spacecraft revealed high-frequency oscillations excited by the flare in the sunspot chromosphere. These oscillations are observed in the region of strong magnetic field of the sunspot umbra, and may provide a new diagnostic tool for probing the structure of sunspots and understanding physical processes in solar flares.

Kosovichev, A G

2007-01-01T23:59:59.000Z

124

Capture of Carbon Dioxide Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Utah Massachusetts Institute of Technology University of Connecticut University of Kentucky 9151995 Toxic Substances From Coal Combustion Forms of Occurrence...

125

Flare-gas recovery success at Canadian refineries  

SciTech Connect

It appears that some North American refining companies still cling to an old philosophy that flare gas recovery systems are unsafe, unreliable, uneconomic, or unnecessary. Shell Canada's recent experience with two modern systems has proven otherwise. Two of Shell Canada's refineries, at Sarnia, Ont., and Montreal East, Que., have now logged about 6 years' total operating experience with modern flare gas recovery units. The compression facilities in each utilize a two-stage reciprocating machine, one liquid seal drum per flare stack, and an automated load control strategy. The purpose was to recover the normal continuous flow of refinery flare gas for treatment and use in the refinery fuel gas system.

Allen, G.D.; Chan, H.H.; Wey, R.E.

1983-06-01T23:59:59.000Z

126

TOWARD RELIABLE BENCHMARKING OF SOLAR FLARE FORECASTING METHODS  

Science Conference Proceedings (OSTI)

Solar flares occur in complex sunspot groups, but it remains unclear how the probability of producing a flare of a given magnitude relates to the characteristics of the sunspot group. Here, we use Geostationary Operational Environmental Satellite X-ray flares and McIntosh group classifications from solar cycles 21 and 22 to calculate average flare rates for each McIntosh class and use these to determine Poisson probabilities for different flare magnitudes. Forecast verification measures are studied to find optimum thresholds to convert Poisson flare probabilities into yes/no predictions of cycle 23 flares. A case is presented to adopt the true skill statistic (TSS) as a standard for forecast comparison over the commonly used Heidke skill score (HSS). In predicting flares over 24 hr, the maximum values of TSS achieved are 0.44 (C-class), 0.53 (M-class), 0.74 (X-class), 0.54 ({>=}M1.0), and 0.46 ({>=}C1.0). The maximum values of HSS are 0.38 (C-class), 0.27 (M-class), 0.14 (X-class), 0.28 ({>=}M1.0), and 0.41 ({>=}C1.0). These show that Poisson probabilities perform comparably to some more complex prediction systems, but the overall inaccuracy highlights the problem with using average values to represent flaring rate distributions.

Bloomfield, D. Shaun; Higgins, Paul A.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland); McAteer, R. T. James, E-mail: shaun.bloomfield@tcd.ie [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003-8001 (United States)

2012-03-10T23:59:59.000Z

127

Geomagnetic storm dependence on the solar flare class  

E-Print Network (OSTI)

Content. Solar flares are often used as precursors of geomagnetic storms. In particular, Howard and Tappin (2005) recently published in A&A a dependence between X-ray class of solar flares and Ap and Dst indexes of geomagnetic storms which contradicts to early published results. Aims. We compare published results on flare-storm dependences and discuss possible sources of the discrepancy. Methods. We analyze following sources of difference: (1) different intervals of observations, (2) different statistics and (3) different methods of event identification and comparison. Results. Our analysis shows that magnitude of geomagnetic storms is likely to be independent on X-ray class of solar flares.

Yermolaev, Y I; Yermolaev, Yu. I.

2006-01-01T23:59:59.000Z

128

X-ray Flares in Gamma-Ray Bursts.  

E-Print Network (OSTI)

??Data from the Swift mission have now shown that flares are a common component of Gamma-Ray Burst afterglows, appearing in roughly 50% of GRBs to (more)

Morris, David

2008-01-01T23:59:59.000Z

129

OFF-SITE RADIOLOGICAL SAFETY PROGRAM FOR PROJECT RULISON FLARING...  

Office of Legacy Management (LM)

R W o n Re-EvLttry Po-n 06 Phase 7 7 7 . U. S . Environmental P r o t e c t i o n Agency, National Environmental Research Center-Las Vegas, Nevada. November 1972. Bernhardt, D. E....

130

NETL: Gasification - National Carbon Capture Center at the Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Optimization Main Area Gasifier Optimization Main Area National Carbon Capture Center at the Power Systems Development Facility Southern Company Services, Inc. Project Number: FE0000749 Project Description The objective of this project is to develop technologies under realistic conditions that will reduce the cost of advanced coal-fueled power plants with CO2 capture. This technology development will include the design, procurement, construction, installation, and operation of a flexible facility for the testing of processes for pre-combustion CO2 capture, post-combustion CO2 capture and oxy-combustion. Components and systems that are appropriate for inclusion in the detailed test plan will be identified in collaboration with NETL. In addition to evaluating DOE sponsored projects; projects from industry, universities, and Electric Power Research Institute (EPRI) will be evaluated to assist in accomplishing the project objectives.

131

Carbon Capture, Utilization & Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Carbon capture, utilization and storage (CCUS), also referred to as carbon

132

Capture.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Barriers for Carbon Capture, Storage and Sequestration Barriers for Carbon Capture, Storage and Sequestration Sarah M. Forbes, National Energy Technology Laboratory November, 2002 The success of carbon capture, storage and sequestration as a greenhouse gas mitigation strategy will be, in part, dependent on the regulatory framework used to govern its implementation. Creating a science-based regulatory framework that is designed with enough flexibility to encourage greenhouse gas offset activity, effective means of measuring the costs of taking action to reduce greenhouse gas emissions, and ample protection for human and ecosystem health may prove challenging. For the purposes of this paper we will assume that there is an existing incentive to capture, store and sequester carbon and focus on how to regulate the process. Accounting practices and

133

NETL: Carbon Capture FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

(table below). These include four natural gas processing operations and a synthesis gas (syngas) production facility in which more than 1 million tons of CO2 are captured per...

134

STATISTICAL ANALYSES ON THERMAL ASPECTS OF SOLAR FLARES  

SciTech Connect

The frequency distribution of flare energies provides a crucial diagnostic to calculate the overall energy residing in flares and to estimate the role of flares in coronal heating. It often takes a power law as its functional form. We have analyzed various variables, including the thermal energies E{sub th} of 1843 flares at their peak time. They were recorded by both Geostationary Operational Environmental Satellites and Reuven Ramaty High-Energy Solar Spectroscopic Imager during the time period from 2002 to 2009 and are classified as flares greater than C 1.0. The relationship between different flare parameters is investigated. It is found that fitting the frequency distribution of E{sub th} to a power law results in an index of -2.38. We also investigate the corrected thermal energy E{sub cth}, which represents the flare total thermal energy including the energy loss in the rising phase. Its corresponding power-law slope is -2.35. Compilation of the frequency distributions of the thermal energies from nanoflares, microflares, and flares in the present work and from other authors shows that power-law indices below -2.0 have covered the range from 10{sup 24} to 10{sup 32} erg. Whether this frequency distribution can provide sufficient energy to coronal heatings in active regions and the quiet Sun is discussed.

Li, Y. P.; Gan, W. Q.; Feng, L., E-mail: wqgan@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China)

2012-03-10T23:59:59.000Z

135

YOHKOH remnants: partially occulted flares in hard X-rays  

E-Print Network (OSTI)

Flares being partially occulted by the solar limb, are the best reservoir of our knowledge about hard X-ray loop-top sources. Recently, the survey of partially occulted flares observed by the RHESSI has been published (Krucker & Lin 2008). The extensive YOHKOH database still awaits such activities. This work is an attempt to fill this gap. Among from 1286 flares in the YOHKOH Hard X-ray Telescope Flare Catalogue, for which the hard X-ray images had been enclosed, we identified 98 events that occurred behind the solar limb. We investigated their hard X-ray spectra and spatial structure. We found that in most cases the hard X-ray spectrum of partially occulted flares consists of two components, non-thermal and thermal, which are co-spatial. The photon energy spectra of the partially occulted flares are systematically steeper than spectra of the non-occulted flares. Such a difference we explain as a consequence of intrinsically dissimilar conditions ruling in coronal parts of flares, in comparison with the f...

Tomczak, M

2009-01-01T23:59:59.000Z

136

Geomagnetic storm dependence on the solar flare class  

E-Print Network (OSTI)

We compare published results on flare-storm dependences and discuss possible sources of the discrepancy. We analyze following sources of difference: (1) different intervals of observations, (2) different statistics and (3) different methods of event identification and comparison. Our analysis shows that magnitude of geomagnetic storms is likely to be independent on X-ray class of solar flares.

Yu. I. Yermolaev; M. Yu. Yermolaev

2006-01-01T23:59:59.000Z

137

Summarizing FLARE assay images in colon carcinogenesis  

E-Print Network (OSTI)

Intestinal tract cancer is one of the more common cancers in the United States. While in some individuals a genetic component causes the cancer, the rate of cancer in the remainder of the population is believed to be affected by diet. Since cancer usually develops slowly, the amount of oxidative damage to DNA can be used as a cancer biomarker. This dissertation examines effective ways of analyzing FLARE assay data, which quanti?es oxidative damage. The statistical methods will be implemented on data from a FLARE assay experiment, which examines cells from the duodenum and the colon to see if there is a difference in the risk of cancer due to corn or ?sh oil diets. Treatments of the oxidizing agent dextran sodium sulfate (DSS), DSS with a recovery period, as well as a control will also be used. Previous methods presented in the literature examined the FLARE data by summarizing the DNA damage of each cell with a single number, such as the relative tail moment (RTM). Variable skewness is proposed as an alternative measure, and shown to be as effective as the RTM in detecting diet and treatment differences in the standard analysis. The RTM and skewness data is then analyzed using a hierarchical model, with both the skewness and RTM showing diet/treatment differences. Simulated data for this model is also considered, and shows that a Bayes Factor (BF) for higher dimensional models does not follow guidelines presented by Kass and Raftery (1995). It is hypothesized that more information is obtained by describing the DNA damage functions, instead of summarizing them with a single number. From each function, seven points are picked. First, they are modeled independently, and only diet effects are found. However, when the correlation between points at the cell and rat level is modeled, much stronger diet and treatment differences are shown both in the colon and the duodenum than for any of the previous methods. These results are also easier to interpret and represent graphically, showing that the latter is an effective method of analyzing the FLARE data.

Leyk Williams, Malgorzata

2004-12-01T23:59:59.000Z

138

Flares as fingerprints of inner solar darkness  

E-Print Network (OSTI)

Xray flares and other much weaker solar brightenings have their roots in magnetized regions. Until now, such a solar Xray emission had been discarded as potential axion signature, as it did not match the expectations of the standard axion model: signal must appear exclusively near disk centre and its analog spectrum must peak at 4.2 keV. We argue how to reconcile model with observation. This work is in support of previous claims about the axion origin of specific solar observations.

Zioutas, K; Semertzidis, Y; Papaevangelou, T

2008-01-01T23:59:59.000Z

139

Remote Oscillatory responses to a solar flare  

E-Print Network (OSTI)

The processes governing energy storage and release in the Sun are both related to the solar magnetic field. We demonstrate the existence of a magnetic connection between energy released caused by a flare and increased oscillatory power in the lower solar atmosphere. The oscillatory power in active regions tends to increase in response to explosive events at a different location, but not in the region itself. We carry out timing studies and show that this is probably caused by a large scale magnetic connection between the regions, and not a globally propagating wave. We show that oscillations tend to exist in longer lived wave trains at short periods (Psolar atmosphere.

Andic, Aleksandra

2013-01-01T23:59:59.000Z

140

NETL: Industrial Capture & Storage Area 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Technologies Industrial Capture & Storage Area 2 Innovative Concepts for Beneficial CO2 Use The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Department of Energy Announces $41 Million Investment for Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Million Investment for Carbon 1 Million Investment for Carbon Capture Development Department of Energy Announces $41 Million Investment for Carbon Capture Development August 25, 2011 - 1:36pm Addthis Washington, D.C. - The U.S. Department of Energy announced today the selection of 16 projects aimed at developing advanced post-combustion technologies for capturing carbon dioxide (CO2) from coal-fired power plants. The projects, valued at $41 million over three years, are focused on reducing the energy and cost penalties associated with applying currently available carbon capture technologies to existing and new power plants. The selections announced today will focus on developing carbon capture technologies that can achieve at least 90 percent CO2 removal and reduce the added costs at power plants with carbon capture systems to no more than

142

Department of Energy Announces $41 Million Investment for Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$41 Million Investment for Carbon $41 Million Investment for Carbon Capture Development Department of Energy Announces $41 Million Investment for Carbon Capture Development August 25, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today the selection of 16 projects aimed at developing advanced post-combustion technologies for capturing carbon dioxide (CO2) from coal-fired power plants. The projects, valued at $41 million over three years, are focused on reducing the energy and cost penalties associated with applying currently available carbon capture technologies to existing and new power plants. The selections announced today will focus on developing carbon capture technologies that can achieve at least 90 percent CO2 removal and reduce the added costs at power plants with carbon capture systems to no more than

143

ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES IN FLARING ACTIVE REGIONS  

Science Conference Proceedings (OSTI)

We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65{sup 0} of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of {approx}10 G to as high as {approx}450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65{sup 0} of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

Petrie, G. J. D. [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Sudol, J. J. [West Chester University, West Chester, PA 19383 (United States)

2010-12-01T23:59:59.000Z

144

Carbon Capture Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

145

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

146

Reducing Safety Flaring through Advanced Control  

E-Print Network (OSTI)

An advanced process control application, using DMCplus (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system pressure required changes in C3/C4 make-up gas usage. These changes led, in turn, to some instability in the fuel gas system that sometimes required purge to the safety flare system to stabilize. As the composition of the fuel gas supply changed, so did its heating value, which caused fluctuations in the control of various fuel gas consumers. The DMCplus application now controls fuel gas pressure tightly and also stabilizes the fuel gas heating value. The understanding of each fuel gas provider and user was essential to the success of this application, as was the design of the DMCplus application. SmartStepTM (Aspen Technology, Inc.) - automated testing software - was used to efficiently develop the DMCplus models; however, a number of models were developed prior to the plant test period using long-term plant history data.

Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

2010-01-01T23:59:59.000Z

147

An Experiment to Locate the Site of TeV Flaring in M87  

SciTech Connect

We describe a Chandra X-ray target-of-opportunity project designed to isolate the site of TeV flaring in the radio galaxy M87. To date, we have triggered the Chandra observations only once (2010 April) and by the time of the first of our nine observations, the TeV flare had ended. However, we found that the X-ray intensity of the unresolved nucleus was at an elevated level for our first observation. Of the more than 60 Chandra observations we have made of the M87 jet covering nine years, the nucleus was measured at a comparably high level only three times. Two of these occasions can be associated with TeV flaring, and at the time of the third event, there were no TeV monitoring activities. From the rapidity of the intensity drop of the nucleus, we infer that the size of the emitting region is of order a few light days x the unknown beaming factor; comparable to the same sort of estimate for the TeV emitting region. We also find evidence of spectral evolution in the X-ray band which seems consistent with radiative losses affecting the non-thermal population of the emitting electrons within the unresolved nucleus.

Harris, D.E.; /Harvard-Smithsonian Ctr. Astrophys.; Massaro, F.; /Harvard-Smithsonian Ctr. Astrophys. /KIPAC, Menlo Park /SLAC; Cheung, C.C.; /Natl. Acad. Sci. /Naval Research Lab, Wash., D.C.; Horns, D.; Raue, M.; /Hamburg U.; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; Wagner, S.; /Heidelberg Observ.; Colin, P.; /Munich, Max Planck Inst.; Mazin, D.; /Barcelona, IFAE; Wagner, R.; /Munich, Max Planck Inst.; Beilicke, M.; /McDonnell Ctr. Space Sci.; LeBohec, S.; Hui, M.; /Utah U.; Mukherjee, R.; /Barnard Coll.

2012-05-18T23:59:59.000Z

148

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

149

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

150

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage News Carbon Capture and Storage News FE Carbon Capture and Storage News RSS November 7, 2013 Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution 18 Innovative Carbon Capture Projects Will Help Make Fossil Energy Use Cleaner, Safer and More Sustainable as Part of the Obama Administration's Climate Action Plan August 15, 2013 Historically Black Colleges and Universities Receive Funds for Fossil Energy Research Five fossil energy-related projects that will help maintain the nation's energy portfolio while also providing educational and research training opportunities for tomorrow's scientists and engineers have been selected for funding by the U.S. Department of Energy (DOE). August 14, 2013 DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research

151

NETL: Industrial Capture and Storage (ICCS): Area 1  

NLE Websites -- All DOE Office Websites (Extended Search)

ICCS Area 1 ICCS Area 1 Major Demonstrations Industrial Capture and Storage (ICCS): Area 1 The Large-Scale Industrial CCS Projects (Area 1) are managed by NETL under the Major Demonstrations Program. In October 2009, the U.S. Department of Energy announced the selection of 12 Large-Scale projects intended to capture CO2 from industrial sources for storage or beneficial use. Read more! These Phase I projects were cost-shared collaborations between the government and industry to increase investment in clean industrial technologies and sequestration projects. The Phase I duration of each project selected was approximately seven months. On June 10, 2010, DOE selected three projects from Phase I to enter into Phase 2 for design, construction, and operation. Potential additional applications for funding of large-scale industrial carbon capture and storage projects are pending further clarification and review. Collapse Text

152

Challenge of carbon capture  

SciTech Connect

Finding more-effective, less-expensive ways to capture the CO{sub 2} produced by coal-fired power plants could significantly lower the cost of reducing emissions while preserving coal as a vital energy resource. Several technological approaches have been proposed, but all options currently available would, indeed, impose substantial costs and impact plant efficiencies. Ongoing research promises to provide a suite of improved technologies that will give plant owners viable options to meet their specific needs. The article discusses the options for CO{sub 2} capture by precombustion based on IGCC systems, post combustion, or oxyfuel combustion. EPRI's work to develop a process to capture CO{sub 2} using chilled ammonia (rather than the more usual MEA) as a solvent is described. A 5 MW pilot plant is to be built at the We Energies Pleasant Prairie Power Plant. Other research programs (in Europe and Australia) are also mentioned. Deployment of a new generation of ultrasuperciritcal pulverized coal power plants designed to have greater efficiency and hence lower CO{sub 2} emissions is under development. Efforts to improve precombustion capture are reported in the article. Also noted are two recent studies (one by the IEA Greenhouse Gas R & D Programme and another by CPS Energy) comparing the performance of IGCC and supercritical PC plants incorporating CO{sub 2} capture. 3 figs., 3 photos.

Douglas, J.

2007-04-01T23:59:59.000Z

153

NETL: CO2 Binding Organic Liquids Gas Capture with Polarity-Swing...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Project No.: DE-FE0007466 Battelle Pacific northwest Division is developing a new CO2 capture...

154

NETL: IEP ? Post-Combustion CO2 Emissions Control - CO2 Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP Post-Combustion CO2 Emissions Control CO2 Capture for PC-Boiler Using Flue-Gas Recirculation: Evaluation of CO2 CaptureUtilizationDisposal Options Project No.: FWP49539...

155

LETTER Earth Planets Space, 61, 577580, 2009 Flares and the chromosphere  

E-Print Network (OSTI)

mechanism remains an open problem. Consideration of wave transport of energy in solar flares and CMEs seems. Melrose, D. B., Energy propagation into a flare kernel during a solar flare, ApJ, 387, 403­413, 1992 magnetic field. Key words: Solar flares, solar chromosphere, solar corona, Alfv´en waves. 1. Introduction

California at Berkeley, University of

156

Adiabatic capture and debunching  

Science Conference Proceedings (OSTI)

In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

Ng, K.Y.; /Fermilab

2012-03-01T23:59:59.000Z

157

HEATING OF FLARE LOOPS WITH OBSERVATIONALLY CONSTRAINED HEATING FUNCTIONS  

SciTech Connect

We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Angstrom-Sign observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models.

Qiu Jiong; Liu Wenjuan; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

2012-06-20T23:59:59.000Z

158

RAPID TRANSITION OF UNCOMBED PENUMBRAE TO FACULAE DURING LARGE FLARES  

Science Conference Proceedings (OSTI)

In the past two decades, the complex nature of sunspots has been disclosed with high-resolution observations. One of the most important findings is the 'uncombed' penumbral structure, where a more horizontal magnetic component carrying most of Evershed flows is embedded in a more vertical magnetic background. The penumbral bright grains are locations of hot upflows and dark fibrils are locations of horizontal flows that are guided by a nearly horizontal magnetic field. On the other hand, it was found that flares may change the topology of sunspots in {delta} configuration: the structure at the flaring polarity inversion line becomes darkened while sections of peripheral penumbrae may disappear quickly and permanently associated with flares. The high spatial and temporal resolution observations obtained with the Hinode/Solar Optical Telescope provide an excellent opportunity to study the evolution of penumbral fine structures associated with major flares. Taking advantage of two near-limb events, we found that in sections of peripheral penumbrae swept by flare ribbons the dark fibrils completely disappear, while the bright grains evolve into faculae that are signatures of vertical magnetic flux tubes. The corresponding magnetic fluxes measured in the decaying penumbrae show stepwise changes temporally correlated with the flares. These observations suggest that the horizontal magnetic field component of the penumbra could be straightened upward (i.e., turning from horizontal to vertical) due to magnetic field restructuring associated with flares, which results in the transition of penumbrae to faculae.

Wang Haimin; Deng Na; Liu Chang, E-mail: haimin.wang@njit.edu [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

2012-04-01T23:59:59.000Z

159

SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS  

Science Conference Proceedings (OSTI)

We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast ({>=}1000 km s{sup -1}) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes ({alpha} values) of power-law size distributions of the peak 1-8 A fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes {>=}1 pr cm{sup -2} s{sup -1} sr{sup -1}) and (b) fast CMEs were {approx}1.3-1.4 compared to {approx}1.2 for the peak proton fluxes of >10 MeV SEP events and {approx}2 for the peak 1-8 A fluxes of all SXR flares. The difference of {approx}0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

Cliver, E. W. [Space Vehicles Directorate, Air Force Research Laboratory, Sunspot, NM 88349 (United States); Ling, A. G. [Atmospheric Environmental Research, Lexington, MA 02421 (United States); Belov, A. [IZMIRAN, Troitsk, Moscow Region 142190 (Russian Federation); Yashiro, S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-09-10T23:59:59.000Z

160

ANALYSIS AND MODELING OF TWO FLARE LOOPS OBSERVED BY AIA AND EIS  

Science Conference Proceedings (OSTI)

We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in extreme ultraviolet (EUV) images. The UV 1600 A emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by the Atmospheric Imaging Assembly (AIA) and the EUV Imaging Spectrometer (EIS). Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed, we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops with cross-sectional area of 5'' by 5'', and compute the plasma evolution in the loops using the EBTEL model. We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and in observations.

Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

2012-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PROPERTIES OF SEQUENTIAL CHROMOSPHERIC BRIGHTENINGS AND ASSOCIATED FLARE RIBBONS  

SciTech Connect

We report on the physical properties of solar sequential chromospheric brightenings (SCBs) observed in conjunction with moderate-sized chromospheric flares with associated Coronal mass ejections. To characterize these ephemeral events, we developed automated procedures to identify and track subsections (kernels) of solar flares and associated SCBs using high-resolution H{alpha} images. Following the algorithmic identification and a statistical analysis, we compare and find the following: SCBs are distinctly different from flare kernels in their temporal characteristics of intensity, Doppler structure, duration, and location properties. We demonstrate that flare ribbons are themselves made up of subsections exhibiting differing characteristics. Flare kernels are measured to have a mean propagation speed of 0.2 km s{sup -1} and a maximum speed of 2.3 km s{sup -1} over a mean distance of 5 Multiplication-Sign 10{sup 3} km. Within the studied population of SCBs, different classes of characteristics are observed with coincident negative, positive, or both negative and positive Doppler shifts of a few km s{sup -1}. The appearance of SCBs precedes peak flare intensity by Almost-Equal-To 12 minutes and decay Almost-Equal-To 1 hr later. They are also found to propagate laterally away from flare center in clusters at 45 km s{sup -1} or 117 km s{sup -1}. Given SCBs' distinctive nature compared to flares, we suggest a different physical mechanism relating to their origin than the associated flare. We present a heuristic model of the origin of SCBs.

Kirk, Michael S.; Balasubramaniam, K. S.; Jackiewicz, Jason; McAteer, R. T. James [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Milligan, Ryan O., E-mail: mskirk@nmsu.edu [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, University Road Belfast, BT7 1NN (United Kingdom)

2012-05-10T23:59:59.000Z

162

Methodology for estimating volumes of flared and vented natural gas  

Science Conference Proceedings (OSTI)

The common perception in the United States that natural gas produced with oil is a valuable commodity probably dates from the 1940's. Before that time, most operators regarded natural gas associated with or dissolved in oil as a nuisance. Indeed, most associated/dissolved natural gas produced in the United States before World War II probably was flared or vented to the atmosphere. This situation has changed in the United States, where flaring and venting have decreased dramatically in recent years, in part because of environmental concerns, but also because of the changing view of the value of natural gas. The idea that gas is a nuisance is beginning to change almost everywhere, as markets for gas have developed in Europe, Japan, and elsewhere, and as operators have increasingly utilized or reinjected associated-dissolved gas in their oil-production activities. Nevertheless, in some areas natural gas continues to be flared or vented to the atmosphere. Gas flares in Russia, the Niger Delta, and the Middle East are some of the brightest lights on the nighttime Earth. As we increasingly consider the global availability and utility of natural gas, and the environmental impacts of the consumption of carbon-based fuels, it is important to know how much gas has been flared or vented, how much gas is currently being flared or vented, and the distribution of flaring or venting through time. Unfortunately, estimates of the volumes of flared and vented gas are generally not available. Despite the inconsistency and inavailability of data, the extrapolation method outlined provides a reliable technique for estimating amounts of natural gas flared and vented through time. 36 refs., 7 figs., 6 tabs.

Klett, T.R.; Gautier, D.L. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

163

Project 307  

NLE Websites -- All DOE Office Websites (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

164

New Recovery Act Funding Boosts Industrial Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million from the American Recovery and Reinvestment Act, these R&D projects complement the industrial demonstration projects already being funded through the Recovery Act. Together, these projects represent an unprecedented investment in the development of clean coal technologies. This program supports the President's goal of overcoming the barriers to

165

Energy Department Advances Carbon Capture and Storage Research on Two  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Advances Carbon Capture and Storage Research on Energy Department Advances Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - Forty-three research projects that will advance carbon capture and storage (CCS) technologies while providing graduate and undergraduate student training opportunities at universities across the country will be supported by $12.7 million in U.S. Department of Energy funding announced today. View Project Details Spread over three years, the regional sequestration training projects and funding will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. The projects are funded through the 2009 American Reinvestment and Recovery Act and are aimed at the broad objectives of

166

Energy Department Advances Carbon Capture and Storage Research on Two  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Research on Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - Forty-three research projects that will advance carbon capture and storage (CCS) technologies while providing graduate and undergraduate student training opportunities at universities across the country will be supported by $12.7 million in U.S. Department of Energy funding announced today. View Project Details Spread over three years, the regional sequestration training projects and funding will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. The projects are funded through the 2009 American Reinvestment and Recovery Act and are aimed at the broad objectives of

167

New Recovery Act Funding Boosts Industrial Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million from the American Recovery and Reinvestment Act, these R&D projects complement the industrial demonstration projects already being funded through the Recovery Act. Together, these projects represent an unprecedented investment in the development of clean coal technologies. This program supports the President's goal to overcome the barriers to

168

Terrestrial Response To Eruptive Solar Flares: Geomagnetic  

E-Print Network (OSTI)

During the interval of August 1978- December 1979, 56 unambiguous fast forward shocks were identified using magnetic field and plasma data collected by the spacecraft. Because this is at a solar maximum we assume the streams causing these shocks are associated coronal mass ejections and eruptive solar flares. For these shocks we shall describe the shock- storm relationship for the level of intense storms storms. We will also present for the solar physicist a summary of the interplanetary /magnetosphere functions, based on the reconnection process. We will d by giving an overview of the long-term evolution of geomagnetic storms such those associated with the seasonal and solar cycle distributions. 1. Introduction Because the em...

Walter Gonzalez Instituto; Walter D. Gonzalez; Bruce T. Tsurutani

1989-01-01T23:59:59.000Z

169

Carbon Capture and Transport  

E-Print Network (OSTI)

of careers in the Energy sector including positions within power generation companies, CO2 capture?Fluid?Dynamics The module introduces Computational Fluid Dynamics techniques for modelling, simulating and analysing satisfies approximately 88% of the global commercial primary energy demand and in spite of the significant

170

A Demonstration System for Capturing Geothermal Energy from Mine Waters  

Open Energy Info (EERE)

System for Capturing Geothermal Energy from Mine Waters System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by now-inactive water-filled mines. In Butte's case, over 10,000 miles of underground workings have been documented, but as in many other mining communities these waters are regarded as more of a liability than asset. Mine waters offer several advantages:

171

Application of a Heat Integrated Post-combustion CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant Award Number: DE-FE0007395 DOE Project Manager: José D. Figueroa  

NLE Websites -- All DOE Office Websites (Extended Search)

a Heat Integrated Post- a Heat Integrated Post- combustion CO 2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant University of Kentucky Research Foundation Partnered with U.S. Department of Energy NETL Louisville Gas & Electric and Kentucky Utilities Electric Power Research Institute (with WorleyParsons) Hitachi Power Systems America Smith Management Group July 9, 2013 Goals and Objectives * Objectives 1) To demonstrate a heat-integrated post-combustion CO 2 capture system with an advanced solvent; 2) To collect information/data on material corrosion and identify appropriate materials of construction for a 550 MWe commercial-scale carbon capture plant.  To gather data on solvent degradation kinetics, water management, system dynamic control as well as other information during the long-term

172

WAS AN OUTBURST OF AQUILA X-1 A MAGNETIC FLARE?  

Science Conference Proceedings (OSTI)

I point to an interesting similarity in the radio and the soft X-ray light curves between the 2009 November outburst of the X-ray binary Aquila X-1 and some solar flares. The ratio of the soft X-ray and radio luminosities of Aquila X-1 in that outburst is also similar to some weak solar flares, as is the radio spectrum near 8 GHz. Based on these as well as on some other recent studies that point to some similar properties of accretion disk coronae and stellar flares, such as the ratio of radio to X-ray luminosities, I speculate that the soft X-ray outburst of Aquila X-1 was related to a huge magnetic flare from its disk corona.

Soker, Noam, E-mail: soker@physics.technion.ac.i [Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

2010-10-01T23:59:59.000Z

173

Michigan Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Michigan Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 1,861: 1,120: 808 ...

174

Lifetime of solar flare particles in coronal storage regions  

Science Conference Proceedings (OSTI)

Most discussions of lifetime of flare particles in the solar corona have ... However, it is quite possible that the solar cosmic rays are not imbedded in I0 a K coronal.

175

Interferometric at-wavelength flare characterization of EUV optical systems  

DOE Patents (OSTI)

The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.

Naulleau, Patrick P. (Oakland, CA); Goldberg, Kenneth Alan (Berkeley, CA)

2001-01-01T23:59:59.000Z

176

Flare Noise Reduction Exxon Chemical- Baytown Olefins Plant: 1994 CMA Energy Efficiency Award for "Flare Noise Reduction" in the category of "Public Outreach/Plant Site"  

E-Print Network (OSTI)

Numerous community complaints were received because of what nearby residents perceived as excessive noise from BOP's elevated flares. Representatives from the Baytown Olefins Plant met with community residents to better understand their concerns. This qualitative data helped identify the flare noise problem to which BOP responded. BOP continued to solicit community feedback as various flare noise tests were conducted. Of particular concern to the community were low frequency rumbling noise and a higher frequency noise that resembles the sound of a jet plane passing overhead. To supplement the qualitative data received from the community, quantitative noise data was collected at various flaring conditions, wind conditions, and steam rates. Additional testing was performed to determine optimum steam rates for flaring events that could eliminate smoking and minimize noise. These tests concluded that reducing steam to the flare could reduce flare noise without jeopardizing smokeless operation. High intensity, low frequency rumbling noise (0-10 Hz), was rattling the windows and doors in the nearby community. It is typically generated by flame instability. Flame instability was occurring at BOP at fairly low flaring rates, and has been attributed to changes in the flare gas heating value and flare steam rates. Although a moderate amount of center steam lifts the flame off the top of the flare tip and prevents backburning (another source of flare noise), too much center steam makes a flame even less stable. This instability essentially causes a series of small explosions at the flare tip that generate low frequency noise. Combustion noise and steam injection noise contributed to the jet engine sound that was objectionable to the community. Steam injection noise increases as the amount of hydrocarbon burned in the flare increases, and noise increases as both hydrocarbon and steam injection increase. Although it is difficult to minimize the hydrocarbon to the flare, the steam to hydrocarbon ratio can be controlled to a minimum amount required for smokeless operation. Additionally, BOP can optimize the use of its two flares to reduce noise.

Bradham, S.; Stephan, R.

1996-04-01T23:59:59.000Z

177

Realistic costs of carbon capture  

Science Conference Proceedings (OSTI)

There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

2009-07-01T23:59:59.000Z

178

Department of Energy Announces $67 Million Investment for Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Announces $67 Million Investment for Carbon Department of Energy Announces $67 Million Investment for Carbon Capture Development Department of Energy Announces $67 Million Investment for Carbon Capture Development July 7, 2010 - 12:00am Addthis WASHINGTON, D.C. - The US Department of Energy announced today the selection of ten projects aimed at developing advanced technologies for capturing carbon dioxide (CO2) from coal combustion. The projects, valued at up to $67 million over three years, focus on reducing the energy and efficiency penalties associated with applying currently available carbon capture and storage (CCS) technologies to existing and new power plants. The selections announced today will focus on improving efficiency and reducing the added costs to electricity at power plants with carbon capture

179

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage News Carbon Capture and Storage News FE Carbon Capture and Storage News RSS June 9, 2010 Award-Winning DOE Technology Scores Success in Carbon Storage Project The ability to detect and track the movement of carbon dioxide in underground geologic storage reservoirs -- an important component of carbon capture and storage technology -- has been successfully demonstrated at a U.S. Department of Energy New Mexico test site. April 20, 2010 Research Experience in Carbon Sequestration 2010 Now Accepting Applications Students and early career professionals can gain hands-on experience in areas related to carbon capture and storage by participating in the Research Experience in Carbon Sequestration program. March 15, 2010 Illinois CO2 Injection Project Moves Another Step Forward

180

Department of Energy Announces $67 Million Investment for Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces $67 Million Investment for Carbon Announces $67 Million Investment for Carbon Capture Development Department of Energy Announces $67 Million Investment for Carbon Capture Development July 7, 2010 - 12:00am Addthis WASHINGTON, D.C. - The US Department of Energy announced today the selection of ten projects aimed at developing advanced technologies for capturing carbon dioxide (CO2) from coal combustion. The projects, valued at up to $67 million over three years, focus on reducing the energy and efficiency penalties associated with applying currently available carbon capture and storage (CCS) technologies to existing and new power plants. The selections announced today will focus on improving efficiency and reducing the added costs to electricity at power plants with carbon capture systems to less than 30 percent for a new pulverized coal plant and 10

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AVESTAR® - Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator FutureGen 2.0 is a first-of-its-kind, near-zero emissions coal-fueled power plant using oxy-combustion technology to capture the plant's carbon emissions. To help meet the Nation's ever growing demand for clean energy, the FutureGen Industrial Alliance (Alliance) was formed to test and commercialize advanced coal-based systems fully integrated with carbon capture and geologic storage technologies. In cooperation with the U.S. Department of Energy (DOE), the Alliance and its project partners AirLiquide and Babcock & Wilcox, will upgrade an existing power plant in Meredosia, Illinois with oxy-coal carbon capture (OCCC) technology to capture and permanantly store approximately 1.0 million tonnes of CO2 each year.

182

TRANSITION REGION EMISSION FROM SOLAR FLARES DURING THE IMPULSIVE PHASE  

SciTech Connect

There are relatively few observations of UV emission during the impulsive phases of solar flares, so the nature of that emission is poorly known. Photons produced by solar flares can resonantly scatter off atoms and ions in the corona. Based on off-limb measurements by the Solar and Heliospheric Observatory/Ultraviolet Coronagraph Spectrometer, we derive the O VI {lambda}1032 luminosities for 29 flares during the impulsive phase and the Ly{alpha} luminosities of 5 flares, and we compare them with X-ray luminosities from GOES measurements. The upper transition region and lower transition region luminosities of the events observed are comparable. They are also comparable to the luminosity of the X-ray emitting gas at the beginning of the flare, but after 10-15 minutes the X-ray luminosity usually dominates. In some cases, we can use Doppler dimming to estimate flow speeds of the O VI emitting gas, and five events show speeds in the 40-80 km s{sup -1} range. The O VI emission could originate in gas evaporating to fill the X-ray flare loops, in heated chromospheric gas at the footpoints, or in heated prominence material in the coronal mass ejection. All three sources may contribute in different events or even in a single event, and the relative timing of UV and X-ray brightness peaks, the flow speeds, and the total O VI luminosity favor each source in one or more events.

Johnson, H.; Raymond, J. C.; Murphy, N. A.; Suleiman, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Giordano, S. [INAF-Osservatorio Astronomico di Torino, via Osservatorio 20, 10025 Pino Torinese (Italy); Ko, Y.-K. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Ciaravella, A. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo (Italy)

2011-07-10T23:59:59.000Z

183

ANATOMY OF A SOLAR FLARE: MEASUREMENTS OF THE 2006 DECEMBER 14 X-CLASS FLARE WITH GONG, HINODE, AND RHESSI  

SciTech Connect

Some of the most challenging observations to explain in the context of existing flare models are those related to the lower atmosphere and below the solar surface. Such observations, including changes in the photospheric magnetic field and seismic emission, indicate the poorly understood connections between energy release in the corona and its impact in the photosphere and the solar interior. Using data from Hinode, TRACE, RHESSI, and GONG we study the temporal and spatial evolution of the 2006 December 14 X-class flare in the chromosphere, photosphere, and the solar interior. We investigate the connections between the emission at various atmospheric depths, including acoustic signatures obtained by time-distance and holography methods from the GONG data. We report the horizontal displacements observed in the photosphere linked to the timing and locations of the acoustic signatures we believe to be associated with this flare, their vertical and horizontal displacement velocities, and their potential implications for current models of flare dynamics.

Matthews, S. A.; Zharkov, S. [UCL Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT UK (United Kingdom); Zharkova, V. V. [Horton D Building, Department of Mathematics, University of Bradford, Bradford, BD7 1DP (United Kingdom)

2011-10-01T23:59:59.000Z

184

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

185

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 9, 2012 August 9, 2012 Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio A novel method to capture carbon dioxide from flue gas and produce biofuels has been formally launched in the second phase of a Department of Energy project at a nursery in Ohio. July 26, 2012 Energy Department Announces Awards to Projects Advancing Innovative Clean Coal Technology As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced today the selection of eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-cost carbon dioxide capture from coal-fired power plants. July 26, 2012 Energy Department Announces Awards to Projects Advancing Innovative Clean

186

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 24, 2011 August 24, 2011 Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. July 6, 2011 Confirming CCS Security and Environmental Safety Aim of Newly Selected Field Projects The U.S. Department of Energy's portfolio of field projects aimed at confirming that long-term geologic carbon dioxide storage is safe and environmentally secure has been expanded by three projects selected to collectively receive $34.5 million over four years. June 28, 2011 Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects A wealth of information about worldwide carbon capture and storage technologies and projects is available on the newly launched, updated and

187

NETL: News Release - Secretary Chu Announces Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2010 7, 2010 New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development $575 Million for Projects in 15 States Will Position U.S. as Leader in Clean Coal Technologies Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million from the American Recovery and Reinvestment Act, these R&D projects complement the industrial demonstration projects already being funded through the Recovery Act. Together, these projects represent an unprecedented investment in the development of clean coal technologies. This program supports the President's goal of cost-effective deployment of carbon capture and storage within 10 years and helps to position the U.S. as a leader in the global clean energy race.

188

NETL: Application of A Heat-Integrated Post-combustion CO2 Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant Project No.: DE-FE0007395 The University of Kentucky Research Foundation is...

189

Carbon Capture and Storage from Industrial Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated Recovery Act funds to more than 25 projects that capture and sequester CO2 emissions from industrial sources - such as cement plants, chemical plants, refineries, paper mills, and manufacturing facilities - into underground formations. Large-Scale Projects Three projects are aimed at testing large-scale industrial carbon capture

190

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

191

Update on Enhanced Mercury Capture by SO2 Controls  

Science Conference Proceedings (OSTI)

This report describes the interim results of two projects that focus on understanding and enhancing mercury capture by wet gas desulfurization (FGD) systems. The first project is collecting data from bench scale experiments to determine the reactions and kinetics governing the fate of oxidized memory absorbed by wet FGD liquors. The second project is a 200-MW-scale demonstration of a low-temperature mercury oxidation catalyst at Lower Colorado River Authority's (LCRA's) Fayette Power Project.

2008-03-13T23:59:59.000Z

192

Product transfer service chosen over LPG flaring  

SciTech Connect

Seadrift Pipeline Corp. recently decommissioned its Ella Pipeline, an 108-mile, 8-in. line between the King Ranch and a Union Carbide plant at Seadrift, Texas. The pipeline company opted for the product transfer services of pipeline Dehydrators Inc. to evacuate the ethane-rich LPG mixture from the pipeline instead of flaring the LPG or displacing it with nitrogen at operating pressures into another pipeline. The product transfer system of Pipeline Dehydrators incorporates the use of highly specialized portable compressors, heat exchangers and interconnected piping. The product transfer process of evacuating a pipeline is an economically viable method that safely recovers a very high percentage of the product while maintaining product purity. Using positive-displacement compressors, PLD transferred the LPG from the idled 8-in. Ella line into an adjacent 12-in. ethane pipeline that remained in service at approximately 800 psig. Approximately 4.3 million lb of LPG (97% ethane, 2.7% methane and 0.3% propane) were transferred into the ethane pipeline, lowering the pressure on the Ella Pipeline from 800 psig to 65 psig.

Horn, J.; Powers, M.

1994-07-01T23:59:59.000Z

193

NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES  

Science Conference Proceedings (OSTI)

New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Chamberlin, Phillip C.; Klimchuk, James A. [NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD 20771 (United States); Didkovsky, Leonid; Judge, Darrell [Space Sciences Center, University of Southern California, Los Angeles, CA 90089 (United States); Mariska, John; Warren, Harry [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Schrijver, Carolus J. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Webb, David F. [Institute for Scientific Research, Boston College, Chestnut Hill, MA 02467 (United States); Bailey, Scott [Electrical and Computer Engineering Department, Virginia Tech, Blacksburg, VA 24061 (United States); Tobiska, W. Kent, E-mail: tom.woods@lasp.colorado.edu [Space Environment Technologies, Pacific Palisades, CA 90272 (United States)

2011-10-01T23:59:59.000Z

194

Project311  

NLE Websites -- All DOE Office Websites (Extended Search)

Lang Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov John Bowser Principal Investigator Compact Membrane Systems, Inc. 325 Water Street Wilmington, DE 19804 302-999-7996 john.bowser@compactmembrane.com Sequestration CARBON DIOXIDE CAPTURE FROM LARGE POINT SOURCES Background Capture of carbon dioxide at the source of its emission has been a major focus in greenhouse gas emission control. Current technologies used for capturing CO 2 suffer from inefficient mass transfer and economics. In Phase I, Compact Membrane Systems, Inc. will fabricate and test a membrane-based absorption system for the removal of carbon dioxide from a simulated power-plant flue gas. The stability of the membrane system under various operating conditions

195

Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

196

Outside Projects  

Science Conference Proceedings (OSTI)

... Vecchia, DF, Caldwell, GA, Tryon, PV and Jones, RH (1980). "Logistic regression for solar flare probability forecasting," Solar-Terrestrial Predictions ...

197

OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES  

SciTech Connect

Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures of 2 Multiplication-Sign 10{sup 4} K and observed peak luminosities of M{sub g} = -18.3 and -20.4 ({nu}L{sub {nu}} = 5 Multiplication-Sign 10{sup 42}, 4 Multiplication-Sign 10{sup 43} erg s{sup -1}, in the rest frame); their cooling rates are very low, qualitatively consistent with expectations for tidal disruption flares. The properties of the TDE candidates are examined using (1) SDSS imaging to compare them to other flares observed in the search, (2) UV emission measured by GALEX, and (3) spectra of the hosts and of one of the flares. Our pipeline excludes optically identifiable AGN hosts, and our variability monitoring over nine years provides strong evidence that these are not flares in hidden AGNs. The spectra and color evolution of the flares are unlike any SN observed to date, their strong late-time UV emission is particularly distinctive, and they are nuclear at high resolution arguing against these being first cases of a previously unobserved class of SNe or more extreme examples of known SN types. Taken together, the observed properties are difficult to reconcile with an SN or an AGN-flare explanation, although an entirely new process specific to the inner few hundred parsecs of non-active galaxies cannot be excluded. Based on our observed rate, we infer that hundreds or thousands of TDEs will be present in current and next-generation optical synoptic surveys. Using the approach outlined here, a TDE candidate sample with O(1) purity can be selected using geometric resolution and host and flare color alone, demonstrating that a campaign to create a large sample of TDEs, with immediate and detailed multi-wavelength follow-up, is feasible. A by-product of this work is quantification of the power spectrum of extreme flares in AGNs.

Van Velzen, Sjoert; Farrar, Glennys R. [Center for Cosmology and Particle Physics, New York University, NY 10003 (United States); Gezari, Suvi [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Morrell, Nidia [Carnegie Observatories, Las Campanas Observatory, Casillas 601, La Serena (Chile); Zaritsky, Dennis [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Oestman, Linda [Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Smith, Mathew [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701 (South Africa); Gelfand, Joseph [New York University-Abu Dhabi, Abu Dhabi (United Arab Emirates); Drake, Andrew J., E-mail: s.vanvelzen@astro.ru.nl [Center for Advance Computing Research, California Institute of Technology, Pasadena, CA 91225 (United States)

2011-11-10T23:59:59.000Z

198

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

199

Muon and Tau Neutrinos Spectra from Solar Flares  

E-Print Network (OSTI)

Solar neutrino flares and mixing are considered. Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The observed and estimated total flare energy should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with, gamma,radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold of 113 MeV. The rarest tau appearence will be possible only for hardest solar neutrino energies above 3.471 GeV

D. Fargion; F. Moscato

2004-05-03T23:59:59.000Z

200

The Mississippi CCS Project  

DOE Green Energy (OSTI)

three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

Doug Cathro

2010-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Super-hot (T > 30 MK) Thermal Plasma in Solar Flares  

E-Print Network (OSTI)

MNRAS, 148, 17 Kane, S. R. , et al. 1980, in Solar Flares: AMonograph from SKYLAB Solar Workshop II, ed. P. A.Moore, R. , et al. 1980, in Solar Flares: A Monograph from

Caspi, Amir

2010-01-01T23:59:59.000Z

202

Secretary Chu Announces $3 Billion Investment for Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Billion Investment for Carbon Capture 3 Billion Investment for Carbon Capture and Sequestration Secretary Chu Announces $3 Billion Investment for Carbon Capture and Sequestration December 4, 2009 - 12:00am Addthis Washington, DC - US Energy Secretary Steven Chu announced today the selection of three new projects with a value of $3.18 billion to accelerate the development of advanced coal technologies with carbon capture and storage at commercial-scale. Secretary Chu made today's announcement on a conference call with Governor Joe Manchin, Senator Jay Rockefeller, and President of American Electric Power Company, Inc., Mike Morris. These projects will help to enable commercial deployment to ensure the United States has clean, reliable, and affordable electricity and power. An investment of up to $979 million, including funds from the American

203

Secretary Chu Announces $3 Billion Investment for Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Billion Investment for Carbon Capture 3 Billion Investment for Carbon Capture and Sequestration Secretary Chu Announces $3 Billion Investment for Carbon Capture and Sequestration December 4, 2009 - 12:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the selection of three new projects with a value of $3.18 billion to accelerate the development of advanced coal technologies with carbon capture and storage at commercial-scale. Secretary Chu made today's announcement on a conference call with West Virginia Governor Joe Manchin, Senator Jay Rockefeller, and President of American Electric Power Company, Inc., Mike Morris. These projects will help to enable commercial deployment to ensure the United States has clean, reliable, and affordable electricity and power. An investment of up to $979 million, including funds from the

204

Other States Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Other States Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 408 1992 501 530 501 1993 501 522 515 533 536 531 583 546 1994 533 616 623 620 629 654 1995 667 594 663 634 643 626 643 663 603 553 567 578 1996 549 538 625 620 693 703 709 715 676 708 682 690 1997 133 124 135 142 147 142 149 177 160 150 159 161 1998 147 134 150 148 132 117 126 132 124 121 121 123 1999 754 406 686 588 693 611 708 340 590 811 785 592 2000 147 135 152 163 175 159 187 180 175 179 176 183 2001 166 149 171 206 224 208 221 218 229 222 222 238 2002 172 163 176 196 185 177 191 184 188 180 157 165

205

Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2  

E-Print Network (OSTI)

Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2 and Bruce J; published 17 June 2003) We argue that Earth's short-term temperature anomalies and the solar flare data sets that corresponds to the one that would be induced by the solar flare intermittency. The mean

Scafetta, Nicola

206

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Environmental Regulations Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide...

207

2011 Update on Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on three EPRI-funded flue gas desulfurization (FGD) research and development projects. The three projects are focused on understanding and enhancing how mercury is captured by FGD systems; on how it partitions between the FGD liquor, fine solids, and bulk FGD solid byproduct; and/or on factors that may affect beneficial use of FGD gypsum. The first project is collecting data at bench scale to determine the reactions that control the changes oxidized mercury can und...

2011-12-21T23:59:59.000Z

208

Resource capture by single leaves  

DOE Green Energy (OSTI)

Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

Long, S.P.

1992-05-01T23:59:59.000Z

209

Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare  

E-Print Network (OSTI)

A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.

J. Kasparova; M. Karlicky; E. P. Kontar; R. A. Schwartz; B. R. Dennis

2005-08-30T23:59:59.000Z

210

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

211

Indonesia-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Geothermal, Forestry Topics Background analysis Country Indonesia South-Eastern Asia References World Bank project database[1] Contents 1 World Bank Active Climate Projects in Indonesia 1.1 Pontianak - LFG Recovery Project, Carbon Offset 1.2 Makassar - TPA Tamangapa Landfill Methane Collection and Flaring 1.3 Geothermal Power Generation Development 1.4 Geothermal Clean Energy Investment Project 1.5 ID-PCF-Indonesia Lahendong Geothermal Project 1.6 ID-PCF-Indocement Cement, Carbon Offset 1.7 Bekasi Landfill Gas Flaring, Carbon Offset 2 References World Bank Active Climate Projects in Indonesia Pontianak - LFG Recovery Project, Carbon Offset

212

NETL: Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic  

NLE Websites -- All DOE Office Websites (Extended Search)

Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process Project No.: DE-FE0000646 The Gas Technology Institute is developing a pre-combustion carbon dioxide (CO2) separation technology based on a solvent scrubbing process using a novel gas/liquid membrane contactor concept. The primary goal of the project is to develop a practical and cost-effective technology for CO2 separation and capture from the pre-combustion syngas in coal gasification plants. The specific objective of the project is to (1) develop a membrane contactor module containing a superhydrophobic--extremely difficult to wet--hollow fiber membrane with optimal pore size and surface chemistry, and (2) design the CO2 separation process and conduct an economic evaluation.

213

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 24, 2009 June 24, 2009 New Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program The State of New Jersey is the newest member of the U.S. Department of Energy's Regional Carbon Sequestration Partnership program--the centerpiece of national efforts to validate and deploy carbon sequestration technologies. June 15, 2009 DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use. June 11, 2009 DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants The U.S. Department of Energy today announced the selection of nine

214

Major Projects with Quick Starts & Jobs Creation Office of Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Quick Starts & Jobs Creation Office of Clean Coal Summary of Projects and Job Creation The following table outlines the near-term possibilities for projects that capture...

215

Readout of Secretary Chu Meetings on Carbon Capture and Sequestration and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Meetings on Carbon Capture and Chu Meetings on Carbon Capture and Sequestration and State Grid Readout of Secretary Chu Meetings on Carbon Capture and Sequestration and State Grid July 16, 2009 - 12:00am Addthis BEIJING, CHINA - Additional readouts from Secretary Chu's meetings in China are below, courtesy of Dan Leistikow, Public Affairs Director, U.S. Department of Energy. Secretary Chu and his delegation met Thursday morning with Cao Peixi, Chairman of the Huaneng Group to discuss an innovative carbon capture and sequestration project underway at the company's power plant in Tianjin. This is China's first large-scale integrated carbon capture and sequestration project in China. It relies on post-combustion carbon capture, using solvents to capture the CO2 from power station flue gases

216

Utah Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Utah Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 3,000: 2,906: 2,802 ...

217

OBSERVATIONS OF RECONNECTING FLARE LOOPS WITH THE ATMOSPHERIC IMAGING ASSEMBLY  

SciTech Connect

Perhaps the most compelling evidence for the role of magnetic reconnection in solar flares comes from the supra-arcade downflows that have been observed above many post-flare loop arcades. These downflows are thought to be related to highly non-potential field lines that have reconnected and are propagating away from the current sheet. We present new observations of supra-arcade downflows taken with the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). The morphology and dynamics of the downflows observed with AIA provide new evidence for the role of magnetic reconnection in solar flares. With these new observations we are able to measure downflows originating at larger heights than in previous studies. We find, however, that the initial velocities measured here ({approx}144 km s{sup -1}) are well below the Alfven speed expected in the lower corona, and consistent with previous results. We also find no evidence that the downflows brighten with time, as would be expected from chromospheric evaporation. These observations suggest that simple two-dimensional models cannot explain the detailed observations of solar flares.

Warren, Harry P.; Sheeley, Neil R. Jr. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); O'Brien, Casey M. [Also at Massachusetts Institute of Technology, Cambridge, MA 02139, USA. (United States)

2011-12-01T23:59:59.000Z

218

MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS  

SciTech Connect

Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

Kusano, K.; Bamba, Y.; Yamamoto, T. T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Iida, Y.; Toriumi, S. [Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Asai, A., E-mail: kusano@nagoya-u.jp [Unit of Synergetic Studies for Space, Kyoto University, 17 Kitakazan Ohmine-cho, Yamashina-ku, Kyoto 607-8471 (Japan)

2012-11-20T23:59:59.000Z

219

Electric Field Perturbations in Terrestrial Clouds and Solar Flare Events  

Science Conference Proceedings (OSTI)

Atmospheric electrical data taken on 3744 m high Niwot Ridge, Colorado, during 1966, 1967 and 1968 are reexamined for evidence of a solar-weather link between the earths electric field and solar flare events. The onset of the response of the ...

Doyne Sartor

1980-04-01T23:59:59.000Z

220

Muon capture on Chlorine-35  

E-Print Network (OSTI)

We report measurements of $\\gamma$--ray spectra from muon capture on $^{35}$Cl. For the allowed Gamow--Teller transitions to the $^{35}$S$(2939, 3/2^+)$ state and the $^{35}$S$(3421, 5/2^+)$ state we obtained their capture rates, hyperfine dependences and $\\gamma$--$\

S. Arole; D. S. Armstrong; T. P. Gorringe; M. D. Hasinoff; M. A. Kovash; V. Kuzmin; B. A. Moftah; R. Sedlar; T. J. Stocki; T. Tetereva

2002-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A STATISTICAL STUDY OF THE RELATIONSHIP BETWEEN THE TRANSPORT RATE OF MAGNETIC HELICITY AND SOLAR FLARES  

SciTech Connect

We present a statistical study which is aimed at understanding the fact that some flares (type I flare) are associated with sharp variations of the transport rate of magnetic helicity (dH/dt) while others are not (type II flare). The sample consists of 49 M-class and X-class flares which were produced by nine isolated active regions. Using high temporal magnetograms obtained by the Michelson Doppler Imager instrument on the Solar and Heliospheric Observatory, we calculate the temporal variation of dH/dt during the flaring time, and compare its profile with the soft X-ray flux. We find that type I flares have longer duration and higher peak flux in soft X-ray than type II flares. Furthermore, the ratio of the total unsigned magnetic flux of the host active region to that of the visible solar disk is also higher for type I flares, while the total flux itself is independent of the flare type. Our results show that whether the flare is associated with sharp variations of dH/dt depends on the properties of the flare and of its host active region. The relationship between dH/dt and microwave bursts is also discussed.

Zhang Yin; Tan Baolin; Yan Yihua, E-mail: zhangyin@bao.ac.c [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing, 100012 (China)

2009-10-20T23:59:59.000Z

222

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 22, 2010 July 22, 2010 Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. July 20, 2010 U.S. Partners with Canada to Renew Funding for World's Largest International CO2 Storage Project in Depleted Oil Fields The U.S. Department of Energy and Natural Resources Canada announced today a total of $5.2 million has been committed by the two governments to bring a benchmark carbon dioxide injection project to successful conclusion in 2011. July 9, 2010 Clean Energy Projects Kick Off U.S.-China Collaborative R&D Initiative

223

Today: Live from the Carbon Capture and Storage Forum | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Today: Live from the Carbon Capture and Storage Forum Today: Live from the Carbon Capture and Storage Forum Today: Live from the Carbon Capture and Storage Forum September 8, 2010 - 10:10am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Earlier this week Secretary Chu announced $575 Million dollars in funding for 22 projects across 15 states, projects that will accelerate carbon capture and storage research and development for industrial sources. The selections include projects from four different areas of carbon capture and storage (CCS) research and development: 1) Large scale testing of advanced gasification technologies; 2) advanced turbo-machinery to lower emissions from industrial sources; 3) post-combustion CO2 capture with increased efficiencies and decreased costs; and 4) geologic storage site

224

Capturing Carbon Dioxide From Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

225

Simteche Hydrate CO2 Capture Process  

SciTech Connect

As a result of an August 4, 2005 project review meeting held at Los Alamos National Laboratory (LANL) to assess the project's technical progress, Nexant/Simteche/LANL project team was asked to meet four targets related to the existing project efforts. The four targets were to be accomplished by the September 30, 2006. These four targets were: (1) The CO{sub 2} hydrate process needs to show, through engineering and sensitivity analysis, that it can achieve 90% CO{sub 2} capture from the treated syngas stream, operating at 1000 psia. The cost should indicate the potential of achieving the Sequestration Program's cost target of less than 10% increase in the cost of electricity (COE) of the non-CO{sub 2} removal IGCC plant or demonstrate a significant cost reduction from the Selexol process cost developed in the Phase II engineering analysis. (2) The ability to meet the 20% cost share requirement for research level efforts. (3) LANL identifies through equilibrium and bench scale testing a once-through 90% CO{sub 2} capture promoter that supports the potential to achieve the Sequestration Program's cost target. Nexant is to perform an engineering analysis case to verify any economic benefits, as needed; no ETM validation is required, however, for this promoter for FY06. (4) The CO{sub 2} hydrate once-through process is to be validated at 1000 psia with the ETM at a CO{sub 2} capture rate of 60% without H{sub 2}S. The performance of 68% rate of capture is based on a batch, equilibrium data with H{sub 2}S. Validation of the test results is required through multiple runs and engineering calculations. Operational issues will be solved that will specifically effect the validation of the technology. Nexant was given the primary responsibility for Target No.1, while Simteche was mainly responsible for Target No.2; with LANL having the responsibility of Targets No.3 and No.4.

Nexant and Los Alamos National Laboratory

2006-09-30T23:59:59.000Z

226

Capturing Undocumented Worker-Job-Knowledge: Overview and 2000 Status Report  

Science Conference Proceedings (OSTI)

This report details the end-of-year 2000 status for the "Capturing Undocumented Worker-Job-Knowledge" project under the Strategic Human Performance Program. The project is developing solutions for mitigating negative consequences resulting from the loss of valuable undocumented knowledge as experienced personnel become unavailable due to retirement or other reasons. By the end of 2001, the project will issue practical guidance for capturing valuable undocumented knowledge in a variety of energy industry ...

2001-09-26T23:59:59.000Z

227

DOE Approves Field Test for Promising Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approves Field Test for Promising Carbon Capture Technology Approves Field Test for Promising Carbon Capture Technology DOE Approves Field Test for Promising Carbon Capture Technology November 20, 2012 - 12:00pm Addthis Washington, DC - A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide (CO2) from a pulverized coal plant has been successfully demonstrated and received Department of Energy (DOE) approval to advance to a larger-scale field test. In an $18.75 million project funded by the American Recovery and Reinvestment Act of 2009, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris™ membrane system, which uses a CO2-selective polymeric membrane (micro-porous films which act as semi-permeable barriers to separate two different mediums) material and

228

NETL: Low-Pressure Membrane Contactors for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Pressure Membrane Contactors for CO2 Capture Low-Pressure Membrane Contactors for CO2 Capture Project No.: DE-FE0007553 Membrane Technology and Research, Inc. (MTR) is developing a new type of membrane contactor (or mega-module) to separate carbon dioxide (CO2) from power plant flue gas. This module's membrane area is 500 square meters, 20 to 25 times larger than that of current modules used for CO2 capture. A 500-MWe coal power plant requires 0.5 to 1 million square meters of membrane to achieve 90 percent CO2 capture. The new mega-modules can drastically reduce the cost, complexity, and footprint of commercial-scale membrane module integration. Energy savings due to low-pressure drops for gases circulated through the modules, as well as improved countercurrent flow, are additional benefits. The feasibility of using mega-modules in several different hybrid process designs is being evaluated for future development potential.

229

THE PRODUCTION OF LOW-ENERGY NEUTRONS IN SOLAR FLARES AND THE IMPORTANCE OF THEIR DETECTION IN THE INNER HELIOSPHERE  

Science Conference Proceedings (OSTI)

Neutron detectors on spacecraft in the inner heliosphere can observe the low-energy (production using a computer code incorporating updated neutron-production cross sections for the proton and {alpha}-particle reactions with heavier elements at all ion energies, especially at low energies (E{sub ion} exploration of ion acceleration in weak flares not previously observable and may reveal acceleration at other sites not previously detected where low-energy neutrons could be the only high-energy signature of ion acceleration. Also, a measurement of the low-energy neutron spectrum will provide important information about the accelerated-ion spectrum that is not available from the capture line fluence measurement alone.

Murphy, R. J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Kozlovsky, B. [Department of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel); Share, G. H., E-mail: murphy@ssd5.nrl.navy.mil, E-mail: benz@wise.tau.ac.il, E-mail: share@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

2012-09-15T23:59:59.000Z

230

PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS  

SciTech Connect

The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times of the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) x 10{sup 22} Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) x 10{sup 42} Mx{sup 2} during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.

Park, Sung-hong; Wang Haimin [Space Weather Research Laboratory, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, 101 Tiernan Hall, Newark, NJ 07102 (United States); Chae, Jongchul, E-mail: sp295@njit.ed [Astronomy Program and FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

2010-07-20T23:59:59.000Z

231

The Mississippi CCS Project  

Science Conference Proceedings (OSTI)

The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

Doug Cathro

2010-09-30T23:59:59.000Z

232

Update of Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on three mercury control technology research and development projects. One project is co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL), the second is funded solely by EPRI, and the third is co-funded by EPRI, DOE-NETL, and several EPRI-member companies. All three projects are focused on understanding and/or enhancing mercury capture (co-removal) by wet flue gas desulfurization (FGD) systems. The first project, c...

2007-03-12T23:59:59.000Z

233

NETL: News Release -NETL Hosts Carbon Capture and Storage Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

July 1, 2011 July 1, 2011 NETL Hosts Carbon Capture and Storage Demonstration Series for the 2011 International Pittsburgh Coal Conference What's Happening? Top U.S. and international scientists, technology developers, and business leaders will gather in Pittsburgh this fall to discuss the role of science and business in bringing advanced clean coal technologies to market. In a new series of sessions at the International Pittsburgh Coal Conference (PCC), NETL has assembled a diverse panel of experts in applied energy technology deployment, energy policy, investment and financing, and risk management and insurance. The series, titled Major Carbon Capture and Storage (CCS) Demonstration Projects, will address two sides of large-scale clean coal technology (CCT) projects. In six technical sessions, speakers will review the status of current U.S. and international demonstration projects. In three business sessions, presenters will talk about the financing of CCS and other CCT projects, as well as investment and risk management strategies.

234

Capturing CO2 via reactions in nanopores.  

SciTech Connect

This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z [University of Cincinnati; Dong, J. H. [University of Cincinnati

2008-10-01T23:59:59.000Z

235

Guidelines for carbon dioxide capture, transport and storage  

Science Conference Proceedings (OSTI)

The goal of this effort was to develop a set of preliminary guidelines and recommendations for the deployment of carbon capture and storage (CCS) technologies in the United States. The CCS Guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policymakers. Contents are: Part 1: introduction; Part 2: capture; Part 3: transport; Part 4; storage; Part. 5 supplementary information. Within these parts, eight recommended guidelines are given for: CO{sub 2} capture; ancillary environmental impacts from CO{sub 2}; pipeline design and operation; pipeline safety and integrity; siting CO{sub 2} pipelines; pipeline access and tariff regulation; guidelines for (MMV); risk assessment; financial responsibility; property rights and ownership; site selection and characterisation; injection operations; site closure; and post-closure. 18 figs., 9 tabs., 4 apps.

Hanson, S.

2008-07-01T23:59:59.000Z

236

Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and...

237

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

238

PROTRACTED LOW DOSE PHOTON AND SIMULATED SOLAR FLARE  

NLE Websites -- All DOE Office Websites (Extended Search)

PROTRACTED LOW DOSE PHOTON AND SIMULATED SOLAR FLARE PROTRACTED LOW DOSE PHOTON AND SIMULATED SOLAR FLARE PROTON EFFECTS ON CYTOKINE/CHEMOKINE EXPRESSION AFTER WHOLE-BODY IRRADIATION Asma Rizvi 2 , George Coutrakon 1 , James M. Slater 1 , Michael J. Pecaut 1,2 and Daila S. Gridley 1,2 Departments. of 1 Radiation Medicine and 2 Biochemistry & Microbiology Loma Linda University & Medical Center, Loma Linda, CA 92354 Astronauts are exposed to low dose/low dose rate radiation (LDR) and may also be acutely irradiated during a solar particle event (SPE). The biological effects of LDR alone and when combined with a solar particle event, are not yet clearly understood. Previous studies have shown that irradiation can have adverse effects on T cells. The reactive oxygen species (ROS) that are produced as a result of radiation can alter or damage the

239

The Acceleration of Ions in Solar Flares During Magnetic Reconnection  

E-Print Network (OSTI)

The acceleration of solar flare ions during magnetic reconnection is explored via particle-in-cell simulations that self-consistently follow the motions of both protons and $\\alpha$ particles. We demonstrate that the dominant ion heating during reconnection with a guide field (a magnetic component perpendicular to the reconnection plane) results from pickup behavior during the entry into reconnection exhausts. In contrast with anti-parallel reconnection, the temperature increment is dominantly transverse, rather than parallel, to the local magnetic field. The comparison of protons and alphas reveals a mass-to-charge ($M/Q$) threshold in pickup behavior that favors heating of high $M/Q$ ions over protons, which is consistent with impulsive flare observations.

Knizhnik, Kalman; Drake, James F

2011-01-01T23:59:59.000Z

240

THE ACCELERATION OF IONS IN SOLAR FLARES DURING MAGNETIC RECONNECTION  

Science Conference Proceedings (OSTI)

The acceleration of solar flare ions during magnetic reconnection is explored via particle-in-cell simulations that self-consistently and simultaneously follow the motions of both protons and {alpha} particles. We show that the dominant heating of thermal ions during guide field reconnection, the usual type in the solar corona, results from pickup behavior during the entry into reconnection exhausts. In contrast to anti-parallel reconnection, the temperature increment is dominantly transverse, rather than parallel, to the local magnetic field. A comparison of protons and {alpha} reveals a mass-to-charge (M/Q) threshold in pickup behavior that favors the heating of high-M/Q ions, which is consistent with impulsive flare observations.

Knizhnik, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Swisdak, M.; Drake, J. F., E-mail: kknizhni@pha.jhu.edu, E-mail: swisdak@umd.edu, E-mail: drake@umd.edu [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States)

2011-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

GENERIC MODEL FOR MAGNETIC EXPLOSIONS APPLIED TO SOLAR FLARES  

Science Conference Proceedings (OSTI)

An accepted model for magnetospheric substorms is proposed as the basis for a generic model for magnetic explosions and is applied to solar flares. The model involves widely separated energy-release and particle-acceleration regions, with energy transported Alfvenically between them. On a global scale, these regions are coupled by a large-scale current that is set up during the explosion by redirection of pre-existing current associated with the stored magnetic energy. The explosion-related current is driven by an electromotive force (EMF) due to the changing magnetic flux enclosed by this current. The current path and the EMF are identified for an idealized quadrupolar model for a flare.

Melrose, D. B. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia)

2012-04-10T23:59:59.000Z

242

BISICLES Captures Details of Retreating Antarctic Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

BISICLES Captures Details of Retreating Antarctic Ice BISICLES Captures Details of Retreating Antarctic Ice March 30, 2013 | Tags: Climate Research, Hopper, Math & Computer Science...

243

Carbon Capture Pilots (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture Pilots (Kentucky) Carbon Capture Pilots (Kentucky) Eligibility Commercial Fed. Government StateProvincial Govt Utility Program Information Kentucky Program Type...

244

Speeding Up Zeolite Evaluation for Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Speeding Up Zeolite Evaluation for Carbon Capture Speeding Up Zeolite Evaluation for Carbon Capture Zeolite.png Schematic of an important class of porous materials known as...

245

Better Buildings Neighborhood Program: Massachusetts Captures...  

NLE Websites -- All DOE Office Websites (Extended Search)

Massachusetts Captures Home Energy Waste to someone by E-mail Share Better Buildings Neighborhood Program: Massachusetts Captures Home Energy Waste on Facebook Tweet about Better...

246

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space...

247

COMPTEL Observation of the Flaring Quasar PKS0528+134  

E-Print Network (OSTI)

With a direct demodulation method, we have reanalyzed the data from COMPTEL/CGRO observation of PKS0528+134 during the 1993 March flare in gamma-rays. Our results show that during the flare gamma-rays were detected at a level approximately 2.4-3.8 times greater than the observed intensity in two earlier COMPTEL observations VP 0 and VP 1 in the energy range 3 MeV to 30 MeV. The 3-30 MeV time variability of the flux follows well the trend as observed by EGRET/CGRO at higher energies. No convincing excess can be found around the position of PKS0528+134 in the energy range 0.75 MeV to 3 MeV, which indicates a spectral break around 3 MeV. The detections and non-detections in the four standard COMPTEL energy bands are consistent with the earlier reports given by Collmar et al., while the feature that gamma-rays of the quasar still kept on flaring at energies down to 3 MeV is clearly found.

S. Zhang; T. P. Li; M. Wu

1998-10-08T23:59:59.000Z

248

Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture  

Science Conference Proceedings (OSTI)

IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting todays coal-fired power plants.

None

2010-07-01T23:59:59.000Z

249

A COMPARATIVE STUDY OF CONFINED AND ERUPTIVE FLARES IN NOAA AR 10720  

Science Conference Proceedings (OSTI)

We investigate the distinct properties of two types of flares: eruptive flares associated with coronal mass ejections (CMEs) and confined flares without CMEs. Our study sample includes nine M- and X-class flares, all from the same active region (AR), six of which are confined and three others which are eruptive. The confined flares tend to be more impulsive in the soft X-ray time profiles and show slenderer shapes in the Extreme-ultraviolet Imaging Telescope 195 A images, while the eruptive ones are long-duration events and show much more extended brightening regions. The location of the confined flares is closer to the center of the AR, while the eruptive flares are at the outskirts. This difference is quantified by the displacement parameter, which is the distance between the AR center and the flare location; the average displacement of the six confined flares is 16 Mm, while that of the eruptive ones is as large as 39 Mm. Further, through nonlinear force-free field extrapolation, we find that the decay index of the transverse magnetic field in the low corona ({approx}10 Mm) is larger for eruptive flares than for confined ones. In addition, the strength of the transverse magnetic field over the eruptive flare sites is weaker than it is over the confined ones. These results demonstrate that the strength and the decay index of the background magnetic field may determine whether or not a flare is eruptive or confined. The implication of these results on CME models is discussed in the context of torus instability of the flux rope.

Cheng, X.; Ding, M. D.; Guo, Y. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Zhang, J. [School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Drive, MSN 6A2, Fairfax, VA 22030 (United States); Su, J. T., E-mail: dmd@nju.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2011-05-10T23:59:59.000Z

250

TESTING AUTOMATED SOLAR FLARE FORECASTING WITH 13 YEARS OF MICHELSON DOPPLER IMAGER MAGNETOGRAMS  

Science Conference Proceedings (OSTI)

Flare occurrence is statistically associated with changes in several characteristics of the line-of-sight magnetic field in solar active regions (ARs). We calculated magnetic measures throughout the disk passage of 1075 ARs spanning solar cycle 23 to find a statistical relationship between the solar magnetic field and flares. This expansive study of over 71,000 magnetograms and 6000 flares uses superposed epoch (SPE) analysis to investigate changes in several magnetic measures surrounding flares and ARs completely lacking associated flares. The results were used to seek any flare associated signatures with the capability to recover weak systematic signals with SPE analysis. SPE analysis is a method of combining large sets of data series in a manner that yields concise information. This is achieved by aligning the temporal location of a specified flare in each time series, then calculating the statistical moments of the 'overlapping' data. The best-calculated parameter, the gradient-weighted inversion-line length (GWILL), combines the primary polarity inversion line (PIL) length and the gradient across it. Therefore, GWILL is sensitive to complex field structures via the length of the PIL and shearing via the gradient. GWILL shows an average 35% increase during the 40 hr prior to X-class flares, a 16% increase before M-class flares, and 17% increase prior to B-C-class flares. ARs not associated with flares tend to decrease in GWILL during their disk passage. Gilbert and Heidke skill scores are also calculated and show that even GWILL is not a reliable parameter for predicting solar flares in real time.

Mason, J. P.; Hoeksema, J. T., E-mail: JMason86@sun.stanford.ed, E-mail: JTHoeksema@sun.stanford.ed [W. W. Hansen Experimental Physics Laboratory, Stanford University, 450 Serra Mall, Stanford, CA 94305-4085 (United States)

2010-11-01T23:59:59.000Z

251

Super-hot (T > 30 MK) Thermal Plasma in Solar Flares  

E-Print Network (OSTI)

xi Chapter 1: The Sun and Solarexpress. xi Chapter 1: The Sun and Solar Flares Introductionand release. 1.1 Solar structure The Sun, as any other star,

Caspi, Amir

2010-01-01T23:59:59.000Z

252

Carbon Capture and Storage Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Research Carbon Capture and Storage Research Clean Coal Carbon Capture and Storage Capture Storage Utilization MVA Regional Partnerships Oil & Gas Atlas...

253

Economic modeling of CO 2 capture and sequestration  

E-Print Network (OSTI)

As policy makers look for strategies to reduce greenhouse gas emissions, they need to understand what options are available and under what conditions these technologies could be economically competitive. This paper explores the economics of carbon capture and sequestration technologies using the MIT Emissions Prediction and Policy Analysis (EPPA) model. We model two of the most promising carbon capture and sequestration technologies, one based on a natural gas combined cycle (NGCC) capture plant and one based on an integrated coal gasification combined cycle (IGCC) capture plant. The technologies have been fully specified within the EPPA model by production functions and we simulate how they perform under different policy scenarios. The results show how changing input prices and general equilibrium effects can influence technology choice between the coal and gas capture plants and other technologies for electricity production. BACKGROUND AND MOTIVATION The heightened concern about global change has aroused interest in carbon capture and sequestration technologies as a means of decreasing CO2 concentrations in the atmosphere. Projects are already underway to research and implement such technologies in countries like the

Sean Biggs; Howard Herzog; John Reilly; Henry Jacoby

2001-01-01T23:59:59.000Z

254

Membrane-based systems for carbon capture and hydrogen purification  

DOE Green Energy (OSTI)

This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.

Berchtold, Kathryn A [Los Alamos National Laboratory

2010-11-24T23:59:59.000Z

255

Carbon Capture & Sequestration Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory Battelle Memorial Institute CARBON CAPTURE & SEQUESTRATION TECHNOLOGIES J. Edmonds, J.J. Dooley, and S.H. Kim Battelle Pacific Northwest National Laboratory Battelle Memorial Institute Pacific Northwest National Laboratory Battelle Memorial Institute THE ROADMAP * Greenhouse gas emissions may not control themselves. * Climate policy may happen.--There are smart and dumb ways to proceed. The smart ways involve getting both the policy and the technology right--the GTSP. * There are no silver bullets--Expanding the set of options to include carbon capture and sequestration can help limit the cost of any ceiling on CO 2 concentrations. * Managing greenhouse emissions means managing carbon. * Carbon can be captured, transported, and sequestered in many ways.

256

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and objectives * Carbon gasification * Carbon reactivity studies * Catalyst development * Techno-economic analysis * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

257

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project benefits and objectives * Carbon reactivity studies * Catalyst mechanism studies * Catalyst development * Test results * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

258

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

FE/NETL CTS Cost Models and FE/NETL CTS Cost Models and Benefits Assessment of Carbon Storage R&D Program David Morgan Benefits Division Office of Program Planning and Analysis National Energy Technology Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 OFFICE OF FOSSIL ENERGY 2 Presentation Outline * Overview of benefits assessment * Overview of FE/NETL models used to assess benefits of CO 2 capture and storage * Benefits evaluation of Storage Program's R&D projects using a model to estimate costs of CO 2 storage in a saline aquifer * Description of model used to estimate costs of

259

a beneficial manner. The three projects wi  

NLE Websites -- All DOE Office Websites (Extended Search)

beneficial manner. The three projects will demonstrate technologies beneficial manner. The three projects will demonstrate technologies that: (1) make progress toward DOE's target CO 2 capture efficiency of 90 percent; (2) make progress toward DOE's capture and sequestration goal of less than 10 percent increase in the cost of electricity for gasification systems and less than 35 percent for combustion and oxy-combustion systems; and (3) capture and sequester, or put to

260

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon Capture and Storage Project in Texas Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon Capture and Storage Project in Texas March 9, 2010 - 12:00pm Addthis Washington, DC - U.S. Secretary of Energy Steven Chu announced today that a project with NRG Energy has been selected to receive up to $154 million, including funding from the American Recovery and Reinvestment Act. Located in Thompsons, TX, the post-combustion capture and sequestration project will demonstrate advanced technology to reduce emissions of the greenhouse gas carbon dioxide. It will also assist with enhanced oil recovery efforts from a nearby oil field. "Advancing our carbon capture and storage technology will create new jobs

262

Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon Capture and Storage Project in Texas Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon Capture and Storage Project in Texas March 9, 2010 - 12:00am Addthis Washington - U.S. Secretary of Energy Steven Chu announced today that a project with NRG Energy has been selected to receive up to $154 million, including funding from the American Recovery and Reinvestment Act. Located in Thompsons, TX, the post-combustion capture and sequestration project will demonstrate advanced technology to reduce emissions of the greenhouse gas carbon dioxide. It will also assist with enhanced oil recovery efforts from a nearby oil field. "Advancing our carbon capture and storage technology will create new jobs

263

NETL - Low-Energy Solvents for CO2 Capture Enabled by a Combination...  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP Post-Combustion CO2 Emissions Control Low-Energy Solvents for CO2 Capture Enabled by a Combination of Enzymes and Ultrasonics Project No.: DE-FE0007741 Novozymes North...

264

NETL: IEP - Post-Combustion CO2 Emissions Control - CO2 Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Operation Project No.: DE-FE0004278 American Air Liquide, Inc. will develop a system for CO2 capture based on sub-ambient temperature operation of a hollow fiber membrane. The...

265

Appendix B: CArBon dioxide CApture teChnology SheetS  

NLE Websites -- All DOE Office Websites (Extended Search)

teChnology uPDate, may 2013 eleCtroChemiCal membrane for Carbon DioxiDe CaPture & Power generation primary project goals FuelCell Energy, Inc. (FCE) is developing an...

266

NETL: Optimizing the Costs of Solid Sorbent-Based CO2 Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing the Costs of Solid Sorbent-Based CO2 Capture Process through Heat Integration Project No.: DE-FE0012914 ADA-ES is conducting bench scale testing and computer modeling of...

267

TIME DELAYS IN QUASI-PERIODIC PULSATIONS OBSERVED DURING THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15  

Science Conference Proceedings (OSTI)

We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on timescale 1-30 s and find different time lags between different wavebands. During the impulsive phase, the Reuven Ramaty High Energy Solar Spectroscopic Imager channels in the range 25-100 keV lead all the other channels. They are followed by the Nobeyama RadioPolarimeters at 9 and 17 GHz and the extreme-ultraviolet (EUV) channels of the Euv SpectroPhotometer (ESP) on board the Solar Dynamic Observatory. The zirconium and aluminum filter channels of the Large Yield Radiometer on board the Project for On-Board Autonomy satellite and the soft X-ray (SXR) channel of ESP follow. The largest lags occur in observations from the Geostationary Operational Environmental Satellite, where the channel at 1-8 A leads the 0.5-4 A channel by several seconds. The time lags between the first and last channels is up to Almost-Equal-To 9 s. We identified at least two distinct time intervals during the flare impulsive phase, during which the QPPs were associated with two different sources in the Nobeyama RadioHeliograph at 17 GHz. The radio as well as the hard X-ray channels showed different lags during these two intervals. To our knowledge, this is the first time that time lags are reported between EUV and SXR fluctuations on these timescales. We discuss possible emission mechanisms and interpretations, including flare electron trapping.

Dolla, L.; Marque, C.; Seaton, D. B.; Dominique, M.; Berghmans, D.; Cabanas, C.; De Groof, A.; Verdini, A.; West, M. J.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Van Doorsselaere, T. [Centrum voor Plasma-Astrofysica, Department of Mathematics, KULeuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Schmutz, W. [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos Dorf (Switzerland); Zender, J., E-mail: dolla@sidc.be [European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

2012-04-10T23:59:59.000Z

268

Image capture system colors transforms  

Science Conference Proceedings (OSTI)

The goal of this paper is to simulate the colors transforms of the reflected light from an illuminated object that passes trough an image capture system. We are interested to see the colors differences at the output of each component from which the light ... Keywords: CIE standards, human eye response, lenses and filters transmittance, spectral images

Toadere Florin

2010-02-01T23:59:59.000Z

269

The consequences of failure should be considered in siting geologic carbon sequestration projects  

E-Print Network (OSTI)

2007. Geologic Carbon Sequestration Strategies forfor carbon capture and sequestration. Environmental Sciencein Siting Geologic Carbon Sequestration Projects Phillip N.

Price, P.N.

2009-01-01T23:59:59.000Z

270

Program on Technology Innovation: Evaluation of Potential Improvements in IGCC Pre-Combustion CO2 Capture  

Science Conference Proceedings (OSTI)

This overall project is aimed at experimental proof-of-concept testing and validation of high-risk, early-stage ideas for CO2 capture. If successful, such processes are likely to reduce the energy penalty of CO2 capture processes significantly, or in other cases, they will increase our understanding of the practical limits of CO2 capture. This particular report focuses on potential improvements that are under research and development for the pre-combustion capture of CO2 in integrated-gasification-combin...

2010-12-31T23:59:59.000Z

271

Making Carbon Capture and Storage Efficient and Cost Competitive |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Efficient and Cost Competitive Carbon Capture and Storage Efficient and Cost Competitive Making Carbon Capture and Storage Efficient and Cost Competitive July 26, 2012 - 6:32pm Addthis Ohio State University (OSU) Professor Liang-Shih Fan shows Assistant Secretary for Fossil Energy Charles McConnell OSU's coal direct chemical looping reactor. | Photo by Niranjani Deshpande Ohio State University (OSU) Professor Liang-Shih Fan shows Assistant Secretary for Fossil Energy Charles McConnell OSU's coal direct chemical looping reactor. | Photo by Niranjani Deshpande Amanda Scott Amanda Scott Former Managing Editor, Energy.gov What are the key facts? These projects will build on the important progress made by this Administration in promoting innovative technologies that help make coal-fired energy cleaner and more cost-competitive.

272

Prospective Life-Cycle Modeling of Novel Carbon Capture Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Prospective Life-Cycle Modeling of Novel Carbon Capture Materials Prospective Life-Cycle Modeling of Novel Carbon Capture Materials Speaker(s): Roger Sathre Date: December 5, 2011 - 3:30pm Location: 90-4133 Seminar Host/Point of Contact: Anita Estner Barbara Adams In this presentation we describe the prospective life-cycle modeling of metal-organic frameworks (MOF), a novel type of material with the potential for efficiently capturing CO2. Life-cycle modeling of emerging technologies, conducted early in the innovation process, can generate knowledge that can feed back to inform scientific discovery and development. We discuss the challenges of credibly modeling a system that does not yet exist, and describe methodological approaches including parametric system modeling (quantifying relations between system elements), scenario projections (defining plausible pathways for system scale-up),

273

Detecting giant solar flares based on sunspot parameters using bayesian networks  

Science Conference Proceedings (OSTI)

This paper presents the use of Bayesian Networks (BN) in a new area, the detection of solar flares. The paper describes how to learn a Bayesian Network (BN) using a set of variables representing sunspots parameters such that the BN can detect and classify ... Keywords: bayesian networks, forecast systems, fusion of information, solar flares, sunspot

Tatiana Raffaelli; Adriana V. R. Silva; Maurcio Marengoni

2006-12-01T23:59:59.000Z

274

Quasi-periodic flares in EXO 2030+375 observed with INTEGRAL  

E-Print Network (OSTI)

Context: Episodic flaring activity is a common feature of X-ray pulsars in HMXBs. In some Be/X-ray binaries flares were observed in quiescence or prior to outbursts. EXO 2030+375 is a Be/X-ray binary showing "normal" outbursts almost every ~46 days, near periastron passage of the orbital revolution. Some of these outbursts were occasionally monitored with the INTEGRAL observatory. Aims: The INTEGRAL data revealed strong quasi-periodic flaring activity during the rising part of one of the system's outburst. Such activity has previously been observed in EXO 2030+375 only once, in 1985 with EXOSAT. (Some indications of single flares have also been observed with other satellites.) Methods: We present the analysis of the flaring behavior of the source based on INTEGRAL data and compare it with the flares observed in EXO 2030+375 in 1985. Results: Based on the observational properties of the flares, we argue that the instability at the inner edge of the accretion disk is the most probable cause of the flaring activ...

Klochkov, D; Santangelo, A; Staubert, R; Kretschmar, P; Caballero, I; Postnov, K; Wilson-Hodge, C A

2011-01-01T23:59:59.000Z

275

High-Energy Aspects of Solar Flares: Overview of the Volume  

E-Print Network (OSTI)

In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23

Dennis, Brian R; Hudson, Hugh S

2011-01-01T23:59:59.000Z

276

Reducing flare emissions from chemical plants and refineries through the application of fuzzy control system  

Science Conference Proceedings (OSTI)

Increasing legislative requirements on a global basis are driving the development of solutions to reduce emission. Flaring and venting of waste hydrocarbon gases is a known contributor to pollution and increasing pressure is being exerted onto operators ... Keywords: air assist, combustion, combustion efficiency, emissions, flare, fuzzy control, member ship function, steam injection, toxic gas

A. Alizadeh-Attar; H. R. Ghoohestani; I. Nasr Isfahani

2007-04-01T23:59:59.000Z

277

Reducing flare emissions from chemical plants and refineries through the application of fuzzy control system  

Science Conference Proceedings (OSTI)

Increasing legislative requirements on a global basis are driving the development of solutions to reduce emission. Flaring and venting of waste hydrocarbon gases is a known contributor to pollution and increasing pressure is being exerted onto operators ... Keywords: air assist, combustion, combustion efficiency, emissions, flare, fuzzy control, member ship function, steam injection, toxic gas

A. Alizadeh-Attar; H. R. Ghoohestani; I. Nasr Isfahani

2007-06-01T23:59:59.000Z

278

capture  

E-Print Network (OSTI)

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Workshop On Gasification; Jared Ciferno; Subcritical Pc; Supercritical Pc; F Cop

2007-01-01T23:59:59.000Z

279

Topological changes of the photospheric magnetic field inside active regions: a prelude to flares  

E-Print Network (OSTI)

The observations of magnetic field variations as a signature of flaring activity is one of the main goal in solar physics. Some efforts in the past give apparently no unambiguous observations of changes. We observed that the scaling laws of the current helicity inside a given flaring active region change clearly and abruptly in correspondence with the eruption of big flares at the top of that active region. Comparison with numerical simulations of MHD equations, indicates that the change of scaling behavior in the current helicity, seems to be associated to a topological reorganization of the footpoint of the magnetic field loop, namely to dissipation of small scales structures in turbulence. It is evident that the possibility of forecasting in real time high energy flares, even if partially, has a wide practical interest to prevent the effects of big flares on Earth and its environment.

L. Sorriso-Valvo; V. Carbone; V. Abramenko; V. Yurchyshyn; A. Noullez; H. Politano; A. Pouquet; P. Veltri

2002-07-11T23:59:59.000Z

280

PLASMA HEATING IN THE VERY EARLY AND DECAY PHASES OF SOLAR FLARES  

SciTech Connect

In this paper, we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 September 20 and 2002 March 17, respectively. For both investigated flares we derived the energy fluxes contained in NTE beams from the RHESSI observational data constrained by observed GOES light curves. We showed that energy delivered by NTEs was fully sufficient to fulfill the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad hoc heating mechanisms other than heating by NTEs.

Falewicz, R.; Rudawy, P. [Astronomical Institute, University of Wroclaw, 51-622 Wroclaw, ul. Kopernika 11 (Poland); Siarkowski, M., E-mail: falewicz@astro.uni.wroc.pl, E-mail: rudawy@astro.uni.wroc.pl, E-mail: ms@cbk.pan.wroc.pl [Space Research Centre, Polish Academy of Sciences, 51-622 Wroclaw, ul. Kopernika 11 (Poland)

2011-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture by Absorption with Potassium Carbonate Carbon Dioxide Capture by Absorption with Potassium Carbonate Project No.: FC26-02NT41440 Pilot Plant at the University of Texas Pilot Plant at the University of Texas The University of Texas at Austin investigated an improved process for CO2 capture by alkanolamine absorption that uses an alternative solvent, aqueous potassium carbonate (K2CO3) promoted by piperazine (PZ). If successful, this process would use less energy for CO2 capture than the conventional monoethanolamine (MEA) scrubbing process. An improved capture system would mean a relative improvement in overall power plant efficiency. The project developed models to predict the performance of absorption/stripping of CO2 using the improved solvent and perform a pilot plant study to validate the process models and define the range of feasible

282

CO2 Capture with Liquid-to-Solid Absorbents: CO2 Capture Process Using Phase-Changing Absorbents  

SciTech Connect

IMPACCT Project: GE and the University of Pittsburgh are developing a unique CO2 capture process in which a liquid absorbent, upon contact with CO2, changes into a solid phase. Once in solid form, the material can be separated and the CO2 can be released for storage by heating. Upon heating, the absorbent returns to its liquid form, where it can be reused to capture more CO2. The approach is more efficient than other solventbased processes because it avoids the heating of extraneous solvents such as water. This ultimately leads to a lower cost of CO2 capture and will lower the additional cost to produce electricity for coal-fired power plants that retrofit their facilities to include this technology.

None

2010-10-01T23:59:59.000Z

283

Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture  

Science Conference Proceedings (OSTI)

IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

None

2010-07-01T23:59:59.000Z

284

Solar X-ray Flare Hazards on the Surface of Mars  

E-Print Network (OSTI)

Putative organisms on the Martian surface would be exposed to potentially high doses of ionizing radiation during strong solar X-ray flares. We extrapolate the observed flare frequency-energy release scaling relation to releases much larger than seen so far for the sun, an assumption supported by observations of flares on other solar- and subsolar-mass main sequence stars. We calculate the surficial reprocessed X-ray spectra using a Monte Carlo code we have developed. Biological doses from indirect genome damage are calculated for each parameterized flare spectrum by integration over the X-ray opacity of water. We estimate the mean waiting time for solar flares producing a given biological dose of ionizing radiation on Mars and compare with lethal dose data for a wide range of terrestrial organisms. These timescales range from decades for significant human health risk to 0.5 Myr for D. radiodurans lethality. Such doses require total flare energies of 10^33--10^38 erg, the lower range of which has been observed for other stars. Flares are intermittent bursts, so acute lethality will only occur on the sunward hemisphere during a sufficiently energetic flare, unlike low-dose-rate, extended damage by cosmic rays. We estimate the soil and CO_2 ice columns required to provide 1/e shielding as 4--9 g cm^-2, depending on flare mean energy and atmospheric column density. Topographic altitude variations give a factor of two variation in dose for a given flare. Life in ice layers that may exist ~ 100 g cm^-2 below the surface would be well protected.

David S. Smith; John M. Scalo

2006-10-03T23:59:59.000Z

285

SIMULATING THE EFFECTS OF INITIAL PITCH-ANGLE DISTRIBUTIONS ON SOLAR FLARES  

SciTech Connect

In this work, we model both the thermal and non-thermal components of solar flares. The model we use, HYLOOP, combines a hydrodynamic equation solver with a non-thermal particle tracking code to simulate the thermal and non-thermal dynamics and emission of solar flares. In order to test the effects of pitch-angle distribution on flare dynamics and emission, a series of flares is simulated with non-thermal electron beams injected at the loop apex. The pitch-angle distribution of each beam is described by a single parameter and allowed to vary from flare to flare. We use the results of these simulations to generate synthetic hard and soft X-ray emissions (HXR and SXR). The light curves of the flares in Hinode's X-ray Telescope passbands show a distinct signal that is highly dependent on pitch-angle distribution. The simulated HXR emission in the 3-6 keV bandpass shows the formation and evolution of emission sources that correspond well to the observations of pre-impulsive flares. This ability to test theoretical models of thermal and non-thermal flare dynamics directly with observations allows for the investigation of a wide range of physical processes governing the evolution of solar flares. We find that the initial pitch-angle distribution of non-thermal particle populations has a profound effect on loop top HXR and SXR emission and that apparent motion of HXR is a natural consequence of non-thermal particle evolution in a magnetic trap.

Winter, Henry D.; Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); Martens, Petrus, E-mail: hwinter@cfa.harvard.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

2011-07-10T23:59:59.000Z

286

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options  

E-Print Network (OSTI)

Capture Ready is a design concept enabling fossil fuel plants to be retrofitted more economically with carbon dioxide capture and storage (CCS) technologies, however financing the cost of capture ready can be problematic, especially...

Liang, Xi; Reiner, David; Gibbons, Jon; Li, Jia

287

NETL-Developed Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

2, Issue 26 2, Issue 26 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award page 2 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society page 4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs page 5 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award _____________________________2 Field-proven Meter Rapidly Determines Carbon Dioxide Levels in Groundwater ____________________________3 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society _______4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs ______________________________5 NETL Issued Patent for Novel Catalyst Technology ______6

288

HAWC Observatory captures first image  

NLE Websites -- All DOE Office Websites (Extended Search)

April » April » HAWC Observatory captures first image HAWC Observatory captures first image The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. April 30, 2013 The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. HAWC is under construction inside the Parque Nacional Pico de Orizaba, a Mexican national park. An international team of researchers, including scientists from Los Alamos, has taken the first image of the High-Altitude Water Cherenkov Observatory, or HAWC. The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. HAWC is under

289

Natural materials for carbon capture.  

Science Conference Proceedings (OSTI)

Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

2010-11-01T23:59:59.000Z

290

Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

291

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

292

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

293

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

294

Kentucky Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

295

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

296

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

297

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

298

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

299

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

300

New waste-heat refrigeration unit cuts flaring, reduces pollution  

Science Conference Proceedings (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SLOW MAGNETOACOUSTIC OSCILLATIONS IN THE MICROWAVE EMISSION OF SOLAR FLARES  

Science Conference Proceedings (OSTI)

Analysis of the microwave data, obtained in the 17 GHz channel of the Nobeyama Radioheliograph during the M1.6 flare on 2010 November 4, revealed the presence of 12.6 minute oscillations of the emitting plasma density. The oscillations decayed with the characteristic time of about 15 minutes. Similar oscillations with the period of about 13.8 minutes and the decay time of 25 minutes are also detected in the variation of EUV emission intensity measured in the 335 A channel of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed properties of the oscillations are consistent with the oscillations of hot loops observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) in the EUV spectra in the form of periodic Doppler shift. Our analysis presents the first direct observations of the slow magnetoacoustic oscillations in the microwave emission of a solar flare, complementing accepted interpretations of SUMER hot loop oscillations as standing slow magnetoacoustic waves.

Kim, S.; Shibasaki, K. [Nobeyama Solar Radio Observatory/NAOJ, Nagano 384-1305 (Japan); Nakariakov, V. M., E-mail: sjkim@nro.nao.ac.jp [Physics Department, University of Warwick, Coventry, CV4 7AL (United Kingdom)

2012-09-10T23:59:59.000Z

302

SLOW MAGNETOACOUSTIC WAVES IN TWO-RIBBON FLARES  

Science Conference Proceedings (OSTI)

We demonstrate that disturbances observed to propagate along the axis of the arcade in two-ribbon solar flares at the speed of a few tens of km s{sup -1}, well below the Alfven and sound speeds, can be interpreted in terms of slow magnetoacoustic waves. The waves can propagate across the magnetic field, parallel to the magnetic neutral line, because of the wave-guiding effect due to the reflection from the footpoints. The perpendicular group speed of the perturbation is found to be a fraction of the sound speed, which is consistent with observations. The highest value of the group speed grows with the increase in the ratio of the sound and Alfven speeds. For a broad range of parameters, the highest value of the group speed corresponds to the propagation angle of 25 deg. - 28 deg. to the magnetic field. This effect can explain the temporal and spatial structure of quasi-periodic pulsations observed in two-ribbon flares.

Nakariakov, V. M. [Physics Department, University of Warwick, Coventry, CV4 7AL (United Kingdom); Zimovets, I. V., E-mail: V.Nakariakov@warwick.ac.uk [Space Research Institute, Russian Academy of Sciences, Profsoyuznaya Street 84/32, Moscow 117997 (Russian Federation)

2011-04-01T23:59:59.000Z

303

The emission measure distribution of impulsive phase flare footpoints  

E-Print Network (OSTI)

The temperature distribution of the emitting plasma is a crucial constraint when studying the heating of solar flare footpoints. However, determining this for impulsive phase footpoints has been difficult in the past due to insufficient spatial resolution to resolve the footpoints from the loop structures, and a lack of spectral and temporal coverage. We use the capabilities of Hinode/EIS to obtain the first emission measure distributions (EMDs) from impulsive phase footpoints in six flares. Observations with good spectral coverage were analysed using a regularized inversion method to recover the EMDs. We find that the EMDs all share a peak temperature of around 8 MK, with lines formed around this temperature having emission measures peaking between 10^28 and 10^29 cm^-5, indicating a substantial presence of plasma at very high temperatures within the footpoints. An EMD gradient of EM(T) ~ T is found in all events. Previous theoretical work on emission measure gradients shows this to be consistent with a scen...

Graham, D R; Fletcher, L; Milligan, R O

2013-01-01T23:59:59.000Z

304

Interruption of Tidal Disruption Flares By Supermassive Black Hole Binaries  

E-Print Network (OSTI)

Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $\\propto t^{-5/3}$, would stop at a time $T_{\\rm tr} \\simeq \\eta T_{\\rm b}$. Here, $\\eta \\sim0.25$ and $T_{\\rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{\\rm r} \\simeq \\xi T_b$, where $\\xi \\sim 1$. Both $\\eta$ and $\\xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.

F. K. Liu; S. Li; Xian Chen

2009-10-21T23:59:59.000Z

305

Illinois Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

306

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

307

The Lake Charles CCS Project  

SciTech Connect

The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

Doug Cathro

2010-06-30T23:59:59.000Z

308

Secretary Chu Announces Six Projects to Convert Captured CO2...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of bottles, films, laminates, coatings on food and beverage cans, and in other wood and metal surface applications. Novomer has secured site commitments in Rochester,...

309

JGI - Green Alga Genome Project Catalogs Carbon Capture Machinery  

NLE Websites -- All DOE Office Websites (Extended Search)

opportunities for improving efficiencies for this conversion process and ultimately biofuels production. "Chlamy's code helps us describe the ancient ancestor of plants and...

310

NETL: News Release - Worldwide Carbon Capture and Storage Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

of slagging gasifiers, where a carbon-based feedstock (such as coal, petroleum, coke, andor biomass) is converted at high temperatures in an oxygen short atmosphere into...

311

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2. OSU reports that the CDCL plant's 200+ hours of operation, using metallurgical coke and subbituminous and lignite coals, shows the robustness of its novel moving-bed...

312

Ohio State Develops Game-Changing CO2 Capture Membranes in DOE-Funded  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio State Develops Game-Changing CO2 Capture Membranes in Ohio State Develops Game-Changing CO2 Capture Membranes in DOE-Funded Project Ohio State Develops Game-Changing CO2 Capture Membranes in DOE-Funded Project November 15, 2012 - 12:00pm Addthis Washington, DC - In a project funded by the U.S. Department of Energy's Office of Fossil Energy (FE), researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that combines the separation performance of inorganic membranes with the cost-effectiveness of polymer membranes. The breakthrough technology has vast commercial potential for use at coal-fired power plants with carbon capture, utilization, and storage (CCUS), a key element in national efforts to mitigate climate change. Before the carbon dioxide (CO2) generated at a power plant can be securely

313

CO2 Capture and Storage Newsletter Issue 5  

Science Conference Proceedings (OSTI)

Issue 5 of EPRI's CO2 Capture and Storage Newsletter includes the highlights of these meetings: The 3rd Annual Algae Energy Summit, held in San Diego, California in October 2009 The 10th Annual MIT Carbon Sequestration Forum, held in Cambridge, Massachusetts in October 2009 Stanford's Global Climate and Energy Project (GCEP), 5th Energy Research Symposium, held in Stanford, California in late September early October 2009 The 36th IEA GHG Executive Committee Meeting, held in Zurich, Switzerland in October...

2009-12-03T23:59:59.000Z

314

Project 278  

NLE Websites -- All DOE Office Websites (Extended Search)

Karen Cohen Karen Cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Ken Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org Sequestration SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB) Background The U.S. Department of Energy has selected the seven partnerships of state agencies, universities, and private companies that will form the core of a nationwide network that will help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. All together, the partnerships include more than 240 organizations, spanning 40 states, three Indian nations, and

315

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

© 2012 Paulsson, Inc. (PI) Development of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration DE-FE0004522 Björn N.P. Paulsson Paulsson, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 ® © 2012 Paulsson, Inc. (PI) © 2012 Paulsson, Inc. (PI) * Goals: Design, build, and test a high performance borehole seismic receiver system to allow cost effective geologic Carbon Capture and Storage (CCS) * Objectives: A: Develop technology to allow deployment of a 1,000 level drill pipe deployed 3C Fiber Optic Geophone (FOG) receiver array for deep

316

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Geodesy and Geochemistry Space Geodesy and Geochemistry Applied to Monitoring and Verification of Carbon Capture and Storage Award # DE-FE0002184 Peter Swart University of Miami Tim Dixon University of South Florida U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * What is the Award For? * What Research Work is being Supported? * Geochemical Research What is the Award For? * Provides Support for the Training of Two Graduate Students - Student 1: Involved in analysis of SAR images - Student 2: Involved in modeling of sub-surface geochemistry and application of models for policy decisions

317

Survey on solar X-ray flares and associated coherent radio emissions  

E-Print Network (OSTI)

The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.

Arnold O. Benz; Paolo Grigis; Andre Csillagy; Pascal Saint-Hilaire

2004-10-19T23:59:59.000Z

318

Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem  

E-Print Network (OSTI)

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

L. Fletcher; H. S. Hudson

2007-12-20T23:59:59.000Z

319

ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES  

Science Conference Proceedings (OSTI)

We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lag the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.

Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J. [Department of Physics, West Chester University, West Chester, PA 19383 (United States)

2012-11-20T23:59:59.000Z

320

CO2 Capture Project: An Integrated, Collaborative Technology Development Project For CO2 Separation, Capture And Geologic Sequestration  

Science Conference Proceedings (OSTI)

This report (which forms part of the requirements of the Statement of Work Task 0, subtask 0.4) records progress towards defining a detailed Work Plan for the CCP 30 days after contract initiation. It describes the studies planned, workscope development and technology provider bid evaluation status at that time. Business sensitive information is provided separately in Appendix 1. Contract negotiations are on hold pending award of patent waiver status to the CCP.

Helen Kerr

2002-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS  

Science Conference Proceedings (OSTI)

Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

Ryan, Daniel F.; Gallagher, Peter T. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-10-15T23:59:59.000Z

322

Energy Department Announces Awards to Projects Advancing Innovative...  

NLE Websites -- All DOE Office Websites (Extended Search)

the selection of eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-cost carbon dioxide capture from...

323

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provideend-use energy efficiency, or avoid methane emissions...

324

Department of Energy Awards $20 Million for Project to Advance...  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2009 Department of Energy Awards 20 Million for Project to Advance Industrial Carbon Capture and Storage Recovery Act Funds to Accelerate Commercial Deployment of Breakthrough...

325

Regularized energy-dependent solar flare hard x-ray spectral index  

E-Print Network (OSTI)

The deduction from solar flare X-ray photon spectroscopic data of the energy dependent model-independent spectral index is considered as an inverse problem. Using the well developed regularization approach we analyze the energy dependency of spectral index for a high resolution energy spectrum provided by Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The regularization technique produces much smoother derivatives while avoiding additional errors typical of finite differences. It is shown that observations imply a spectral index varying significantly with energy, in a way that also varies with time as the flare progresses. The implications of these findings are discussed in the solar flare context.

Eduard P. Kontar; Alexander L. MacKinnon

2005-06-05T23:59:59.000Z

326

A NEW CORRELATION BETWEEN GRB X-RAY FLARES AND THE PROMPT EMISSION  

Science Conference Proceedings (OSTI)

From a sample of gamma-ray bursts (GRBs) detected by the Fermi and Swift missions, we have extracted the minimum variability timescales for temporal structures in the light curves associated with the prompt emission and X-ray flares. A comparison of this variability timescale with pulse parameters such as rise times, determined via pulse-fitting procedures, and spectral lags, extracted via the cross-correlation function, indicates a tight correlation between these temporal features for both the X-ray flares and the prompt emission. These correlations suggest a common origin for the production of X-ray flares and the prompt emission in GRBs.

Sonbas, E. [Department of Physics, University of Adiyaman, 02040 Adiyaman (Turkey); MacLachlan, G. A.; Shenoy, A.; Dhuga, K. S.; Parke, W. C., E-mail: edasonbas@yahoo.com [Department of Physics, George Washington University, Washington, DC 20052 (United States)

2013-04-20T23:59:59.000Z

327

Capturing Carbon Dioxide from Power Plants  

Science Conference Proceedings (OSTI)

The purpose of this report is to review the current state of CO2 capture technologies in order to provide input into the design of a CO2 capture and storage test facility. First, an overview of the three major approaches to CO2 capture is provided, noting that only one of these options, post-combustion capture, is compatible with the design criteria for the test facility. Second, current research efforts for post-combustion capture are reviewed, giving examples of technologies that may be appropriate for...

2004-12-16T23:59:59.000Z

328

NREL: Distributed Grid Integration - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects Photo of two NREL engineers sitting in front of two computer monitors, discussing a project. NREL engineers work on data capture for micro-grid synchronization waveforms. Photo by Dennis Schroeder, NREL. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our projects: Codes and standards Data collection and visualization Hawaii Clean Energy Initiative Microgrids Power systems modeling Solar Distributed Grid Integration (SunShot) Technology development Vehicle-to-Grid (V2G) Wind2Battery Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards

329

Filament and Flare Detection in H{\\alpha} image sequences  

E-Print Network (OSTI)

Solar storms can have a major impact on the infrastructure of the earth. Some of the causing events are observable from ground in the H{\\alpha} spectral line. In this paper we propose a new method for the simultaneous detection of flares and filaments in H{\\alpha} image sequences. Therefore we perform several preprocessing steps to enhance and normalize the images. Based on the intensity values we segment the image by a variational approach. In a final postprecessing step we derive essential properties to classify the events and further demonstrate the performance by comparing our obtained results to the data annotated by an expert. The information produced by our method can be used for near real-time alerts and the statistical analysis of existing data by solar physicists.

Riegler, Gernot; Ptzi, Werner; Veronig, Astrid

2013-01-01T23:59:59.000Z

330

Observing Lense-Thirring Precession in Tidal Disruption Flares  

E-Print Network (OSTI)

When a star is tidally disrupted by a supermassive black hole (SMBH), the streams of liberated gas form an accretion disk after their return to pericenter. We demonstrate that Lense-Thirring precession in the spacetime around a rotating SMBH can produce significant time evolution of the disk angular momentum vector, due to both the periodic precession of the disk and the nonperiodic, differential precession of the bound debris streams. Jet precession and periodic modulation of disk luminosity are possible consequences. The persistence of the jetted X-ray emission in the Swift J164449.3+573451 flare suggests that the jet axis was aligned with the spin axis of the SMBH during this event.

Nicholas Stone; Abraham Loeb

2011-09-29T23:59:59.000Z

331

DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Proposals to Increase Investment in Industrial Carbon DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects June 15, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use. The successful development of advanced technologies and innovative concepts to prevent CO2 from being emitted into the atmosphere is a key component of national efforts to mitigate climate change. DOE anticipates making multiple awards under this FOA. The projects will be cost-shared, with the award recipients providing at least 20 percent of the

332

Workshop on neutron capture therapy  

SciTech Connect

Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

Fairchild, R.G.; Bond, V.P. (eds.)

1986-01-01T23:59:59.000Z

333

Appendix B: CArBon dioxide CApture teChnology SheetS  

NLE Websites -- All DOE Office Websites (Extended Search)

membranes membranes B-370 Post-Combustion membranes u.s. DePartment of energy aDvanCeD Carbon DioxiDe CaPture r&D Program: teChnology uPDate, may 2013 eleCtroChemiCal membrane for Carbon DioxiDe CaPture & Power generation primary project goals FuelCell Energy, Inc. (FCE) is developing an electrochemical membrane (ECM)-based Combined Electric Power and Carbon Dioxide Separation (CEPACS) system for carbon dioxide (CO 2 ) capture that also provides additional electrical power generation. The project includes bench-scale testing of an 11.7 m 2 -area ECM (molten carbonate fuel cell) system for CO 2 capture, purification, and compression. technical goals * Perform contaminant effect testing to establish maximum permissible concentrations of

334

Secretary Chu Announces $2.4 billion in Funding for Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces $2.4 billion in Funding for Carbon Capture Secretary Chu Announces $2.4 billion in Funding for Carbon Capture and Storage Projects Secretary Chu Announces $2.4 billion in Funding for Carbon Capture and Storage Projects May 15, 2009 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today announced at the National Coal Council that $2.4 billion from the American Recovery and Reinvestment Act will be used to expand and accelerate the commercial deployment of carbon capture and storage (CCS) technology. The funding is part of the Obama Administration's ongoing effort to develop technologies to reduce the emission of carbon dioxide, a major greenhouse gas and contributor to global climate change, into the atmosphere while creating new jobs. "To prevent the worst effects of climate change, we must accelerate our

335

DOE to Provide $36 Million to Advance Carbon Dioxide Capture | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$36 Million to Advance Carbon Dioxide Capture $36 Million to Advance Carbon Dioxide Capture DOE to Provide $36 Million to Advance Carbon Dioxide Capture July 31, 2008 - 2:40pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) announced today that it will provide $36 million for 15 projects aimed at furthering the development of new and cost-effective technologies for the capture of carbon dioxide (CO2) from the existing fleet of coal-fired power plants. "Currently, the existing U.S. coal fleet accounts for over half of all electricity generated in this country," U.S. Secretary of Energy Samuel W. Bodman said. "The projects announced today will combat climate change and help meet current and future energy needs by curbing CO2 emissions from existing coal-fired plants."

336

Secretary Chu Announces $2.4 Billion in Funding for Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$2.4 Billion in Funding for Carbon Capture $2.4 Billion in Funding for Carbon Capture and Storage Projects Secretary Chu Announces $2.4 Billion in Funding for Carbon Capture and Storage Projects May 15, 2009 - 1:00pm Addthis Washington, DC - U.S. Secretary of Energy Steven Chu today announced at the National Coal Council that $2.4 billion from the American Recovery and Reinvestment Act will be used to expand and accelerate the commercial deployment of carbon capture and storage (CCS) technology. The funding is part of the Obama Administration's ongoing effort to develop technologies to reduce the emission of carbon dioxide, a major greenhouse gas and contributor to global climate change, into the atmosphere while creating new jobs. "To prevent the worst effects of climate change, we must accelerate our

337

Evaluation of options for CO sub 2 capture/utilization/disposal  

SciTech Connect

The primary objective of this project is to develop in-depth engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}).This project emphasizes CO{sub 2} capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations will address CO{sub 2} transportation, CO{sub 2} use, and options for the longterm sequestration of unused Co{sub 2}. Commercially available CO{sub 2}-capture technology will provide performance and economic baselines for comparing innovative technologies. These results will then support recommendations for research and development to improve C0{sub 2} capture and use, new process concepts, and optimized energy balances for C0{sub 2} mitigation. Limited experimental research will provide data for evaluating new concepts.

Livengood, C.D.; Doctor, R.D.

1992-01-01T23:59:59.000Z

338

High-temperature phase transition in a plasma and the mechanism of powerful solar flares  

E-Print Network (OSTI)

It is shown that the high- temperature phase transition in a plasma gives the mechanism of transition from the highly conductive state to the highly resistive state of a plasma in the `electric circuit' model of solar flares which was first introduced by H.Alfven and P.Carlqvist in 1967. With this addendum, the modern version of the electric circuit model can explain both the fast dissipation of energy and the acceleration of particles in a solar flare.

Fedor V. Prigara

2006-05-04T23:59:59.000Z

339

A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES  

Science Conference Proceedings (OSTI)

We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.

Masson, S.; Antiochos, S. K. [Space Weather Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); DeVore, C. R., E-mail: sophie.masson@nasa.gov [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

2013-07-10T23:59:59.000Z

340

Correction of SOHO CELIAS/SEM EUV Measurements saturated by extreme solar flare events  

E-Print Network (OSTI)

The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 sec cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1 -- 50.0 nm) by the flare soft X-ray and EUV flux. The first order EUV channel (26 -- 34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEM EUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Earth atmosphere response. A simple and effective correction technique based on analysis of SEM count-rate profiles, GOES X-ray, and GOES proton data has been developed and used for correcting EUV measurements for the five extreme solar flare events of July 14, 2000, October 28, November 2, November 4, 2003, and January 20, 2005. Although none of the 2000 and 2003 flare peaks were contaminated by the presence of SEPs, the January 20, 2005 SEPs were unusually prompt and contaminated the peak. The estimated accuracy of the correction is about 7.5% for large X-class events.

L. V. Didkovsky; D. L. Judge; A. R. Jones; S. Wieman; B. T. Tsurutani; D. McMullin

2006-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)  

DOE Data Explorer (OSTI)

NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. As of April 2011, the database contained 254 CCS projects worldwide. The 254 projects include 65 capture, 61 storage, and 128 for capture and storage in more than 27 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 20 are actively capturing and injecting CO2. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.[copied from http://www.netl.doe.gov/technologies/carbon_seq/global/database/index.html

342

A STATISTICAL STUDY OF SPECTRAL HARDENING IN SOLAR FLARES AND RELATED SOLAR ENERGETIC PARTICLE EVENTS  

SciTech Connect

Using hard X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we investigate the reliability of spectral hardening during solar flares as an indicator of related solar energetic particle (SEP) events at Earth. All RHESSI data are analyzed, from 2002 February through the end of Solar Cycle 23, thereby expanding upon recent work on a smaller sample of flares. Previous investigations have found very high success when associating soft-hard-harder (SHH) spectral behavior with energetic proton events, and confirmation of this link would suggest a correlation between electron acceleration in solar flares and SEPs seen in interplanetary space. In agreement with these past findings, we find that of 37 magnetically well-connected flares (W30-W90), 12 of 18 flares with SHH behavior produced SEP events and none of 19 flares without SHH behavior produced SEPs. This demonstrates a statistically significant dependence of SHH and SEP observations, a link that is unexplained in the standard scenario of SEP acceleration at the shock front of coronal mass ejections and encourages further investigation of the mechanisms which could be responsible.

Grayson, James A.; Krucker, Saem [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Lin, R. P., E-mail: jgrayson@berkeley.ed, E-mail: krucker@ssl.berkeley.ed, E-mail: rlin@ssl.berkeley.ed [Also at Department of Physics, University of California, Berkeley, CA 94720-7300 (United States)

2009-12-20T23:59:59.000Z

343

Survey on solar X-ray flares and associated coherent radio emissions  

E-Print Network (OSTI)

The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them w...

Benz, A O; Csillagy, A; Saint-Hilaire, P; Benz, Arnold O.; Grigis, Paolo; Csillagy, Andre; Saint-Hilaire, Pascal

2004-01-01T23:59:59.000Z

344

Correction of SOHO CELIAS/SEM EUV Measurements saturated by extreme solar flare events  

E-Print Network (OSTI)

The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 sec cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1 -- 50.0 nm) by the flare soft X-ray and EUV flux. The first order EUV channel (26 -- 34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEM EUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Ea...

Didkovsky, L V; Jones, A R; Wieman, S; Tsurutani, B T; McMullin, D

2006-01-01T23:59:59.000Z

345

FE Carbon Capture and Storage News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

carbon-capture-storage-news Office of Fossil Energy carbon-capture-storage-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution http://energy.gov/articles/energy-department-invests-drive-down-costs-carbon-capture-support-reductions-greenhouse-gas capture-support-reductions-greenhouse-gas" class="title-link">Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution

346

IGCC Design Considerations for CO2 Capture  

Science Conference Proceedings (OSTI)

This report contains technical design, plant performance, cost estimates, and economic analysis of IGCC power plants designed with future retrofit for full CO2 capture in mind. The gasification technologies supplied by General Electric, Shell, and Siemens studied in the report were designed to initially produce power without CO2 capture; but their designs included moderate pre-investment to economically accommodate retrofit of full CO2 capture at a later date. The base plant designs include deep sulfur r...

2009-03-31T23:59:59.000Z

347

An Integrated Modeling Framework for Carbon Capture and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Karen L. cohen Karen L. cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Edward s. Rubin Carnegie Mellon University 5000 Forbes Avenue 128A Baker Hall Pittsburgh, PA 15213 412-268-5897 rubin@cmu.edu An IntegrAted ModelIng FrAMework For CArbon CApture And StorAge teChnologIeS Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is developing safe, lower-cost methods of carbon dioxide (CO 2 ) capture and storage (CCS) as a potential option for climate change mitigation. In addition to technology development, there is a need for modeling and assessment tools to evaluate and compare the cost and effectiveness of CCS methods. Analytical

348

New Materials Make Methane Capture Possible  

Science Conference Proceedings (OSTI)

May 8, 2013... SBN, captured enough medium source methane to turn it to high purity methane, which in turn could be used to generate efficient electricity.

349

Capturing Latino Students in the Academic Pipeline  

E-Print Network (OSTI)

The Latino Educational Pipeline Why Latino Students are atSTUDENTS IN THE ACADEMIC PIPELINE CAPTURING LATINO STUDENTSIN THE ACADEMIC PIPELINE Patricia Gcindara, Editor Katherine

Gndara, Patricia; Larson, Katherine; Mehan, Hugh; Rumberger, Russell

1998-01-01T23:59:59.000Z

350

More Efficient Carbon Capture Material Developed  

Science Conference Proceedings (OSTI)

Mar 11, 2013 ... The previously underused materialknown as SIFSIX-1-Cuhas been found to offer a highly efficient mechanism for carbon capture.

351

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Provide Web Site Feedback: info@es.net Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space...

352

NETL: Gasification Project Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Project Information Gasification Systems Reference Shelf - Project Information Active Projects | Archived Projects | All NETL Fact Sheets Feed Systems A Cost-Effective Oxygen Separation System Based on Open Gradient Magnetic Field by Polymer Beads [SC0010151] Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications [FE0012065] Dry Solids Pump Coal Feed Technology [FE0012062] Coal-CO2 Slurry Feeding System for Pressurized Gasifiers [FE0012500] National Carbon Capture Center at the Power Systems Development Facility [FE0000749] Modification of the Developmental Pressure Decoupled Advanced Coal (PDAC) Feeder [NT0000749] Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems [DE-FC26-98FT40343]

353

Carbon Sequestration Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

354

THE ABRUPT CHANGES IN THE PHOTOSPHERIC MAGNETIC AND LORENTZ FORCE VECTORS DURING SIX MAJOR NEUTRAL-LINE FLARES  

SciTech Connect

We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.

Petrie, G. J. D. [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

2012-11-01T23:59:59.000Z

355

2 Solar flare signatures of the ionospheric GPS total electron content 3 J. Y. Liu,1,2  

E-Print Network (OSTI)

2 Solar flare signatures of the ionospheric GPS total electron content 3 J. Y. Liu,1,2 C. H. Lin,1, ionospheric solar flare effects on the total electron content (TEC) and 7 associated time rate of change (r. The occurrence times and 9 locations of 11 solar flares are isolated from the 1­8 A° X-ray radiations of the 10

Chen, Yuh-Ing

356

NETL: News Release - Energy Department to Study New Ways to Capture, Store  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department to Study New Ways To Capture, Store Greenhouse Gases Energy Department to Study New Ways To Capture, Store Greenhouse Gases New Projects Follow President Bush's Endorsement Of Carbon Sequestration in Climate Change Policy WASHINGTON, DC - With President Bush citing the promise of new cutting-edge technology as a way to counter the buildup of greenhouse gases, Energy Secretary Spencer Abraham announced today that the U.S. Department of Energy will help co-fund eight new exploratory projects to study ways to capture and store carbon gases. The eight projects emerged from a nationwide competition that attracted 62 proposals from private companies, universities, local governments, and environmental organizations. The winning proposals came from BP, Alstom Power, Praxair, Consol, Dakota Gasification, Advanced Resources International, The Nature Conservancy, and Yolo County, California.

357

The evolution of the width of X-ray flares with time in Gamma-ray bursts  

SciTech Connect

We present one of the most intriguing results obtained with an updated catalog of 113 early time (i.e. t{sub pk} < or approx. 1000 s) and 36 late time (i.e. t{sub pk} > or approx. 1000 s) X-ray flares detected by Swift in the afterglows of Gamma-Ray Bursts (GRB): the evolution of the width of the flares with time. This result, together with other properties investigated on early and late time flares and bright flares, provides a clear observational property that every model aiming at explaining the GRB emission has to face.

Bernardini, Maria Grazia [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); ICRANet, P.le della Repubblica 10, I-65100 Pescara (Italy); Chincarini, Guido; Margutti, Raffaella [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); University of Milano Bicocca, Physics Dept., P.zza della Scienza 3, I-20126 Milano (Italy)

2010-10-15T23:59:59.000Z

358

CORONAL ELECTRON DISTRIBUTION IN SOLAR FLARES: DRIFT-KINETIC MODEL  

SciTech Connect

Using a model of particle acceleration and transport in solar flares, we investigate the height distribution of coronal electrons by focusing on the energy-dependent pitch-angle scattering. When pitch-angle scattering is not included, the peak heights of loop-top electrons are constant, regardless of their energy, owing to the continuous acceleration and compression of the electrons via shrinkage of magnetic loops. On the other hand, under pitch-angle scattering, the electron heights are energy-dependent: intermediate-energy electrons are at a higher altitude, whereas lower and higher energy electrons are at lower altitudes. This implies that the intermediate-energy electrons are inhibited from following the shrinking field lines to lower altitudes because pitch-angle scattering causes efficient precipitation of these electrons into the footpoint and their subsequent loss from the loop. This result is qualitatively consistent with the position of the above-the-loop-top hard X-ray (HXR) source that is located above coronal HXR loops emitted by lower energy electrons and microwaves emitted by higher energy electrons. Quantitative agreement with observations might be achieved by considering primary acceleration before the onset of loop shrinkage and additional pitch-angle scattering via wave-particle interactions.

Minoshima, Takashi; Kusano, Kanya [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25, Syowa-machi, Kanazawaku, Yokohama 236-0001 (Japan); Masuda, Satoshi; Miyoshi, Yoshizumi, E-mail: minoshim@jamstec.go.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

2011-05-10T23:59:59.000Z

359

THE SOLAR FLARE SULFUR ABUNDANCE FROM RESIK OBSERVATIONS  

SciTech Connect

The RESIK instrument on CORONAS-F spacecraft observed several sulfur X-ray lines in three of its four channels covering the wavelength range 3.8-6.1 A during solar flares. The fluxes are analyzed to give the sulfur abundance. Data are chosen for when the instrument parameters were optimized. The measured fluxes of the S XV 1s{sup 2}-1s4p (w4) line at 4.089 A gives A(S) = 7.16 {+-} 0.17 (abundances on a logarithmic scale with A(H) = 12) which we consider to be the most reliable. Estimates from other lines range from 7.13 to 7.24. The preferred S abundance estimate is very close to recent photospheric abundance estimates and to quiet-Sun solar wind and meteoritic abundances. This implies no fractionation of sulfur by processes tending to enhance the coronal abundance from the photospheric that depend on the first ionization potential (FIP), or that sulfur, though its FIP has an intermediate value of 10.36 eV, acts like a 'high-FIP' element.

Sylwester, J.; Sylwester, B. [Space Research Centre, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Phillips, K. J. H. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Kuznetsov, V. D., E-mail: js@cbk.pan.wroc.pl, E-mail: bs@cbk.pan.wroc.pl, E-mail: kjhp@mssl.ucl.ac.uk, E-mail: kvd@izmiran.ru [Institute of Terrestrial Magnetism and Radiowave Propagation (IZMIRAN), Troitsk, Moscow (Russian Federation)

2012-06-01T23:59:59.000Z

360

FLARES IN THE CRAB NEBULA DRIVEN BY UNTWISTING MAGNETIC FIELDS  

Science Conference Proceedings (OSTI)

The recent discovery of PeV electrons from the Crab Nebula, produced on rapid timescales of one day or less with a sharply peaked gamma-ray spectrum without hard X-rays, challenges traditional models of diffusive shock acceleration followed by synchrotron radiation. Here, we outline an acceleration model involving a DC electric field parallel to the magnetic field in a twisted toroidal field around the pulsar. Sudden developments of resistivity in localized regions of the twisted field are thought to drive the particle acceleration, up to PeV energies, resulting in flares. This model can reproduce the observed timescales of T Almost-Equal-To 1 day, the peak photon energies of U{sub {Phi},rr} Almost-Equal-To 1 MeV, maximum electron energies of U{sub e,rr} Almost-Equal-To 1 PeV, and luminosities of L Almost-Equal-To 10{sup 36} erg s{sup -1}.

Sturrock, Peter [Center of Space Science and Astrophysics, Stanford University, Stanford, CA 94305 (United States); Aschwanden, Markus J., E-mail: sturrock@stanford.edu, E-mail: aschwanden@lmsal.com [Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Org. ADBS, Bldg. 252, 3251 Hanover St., Palo Alto, CA 94304 (United States)

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SUPPRESSION OF ENERGETIC ELECTRON TRANSPORT IN FLARES BY DOUBLE LAYERS  

SciTech Connect

During flares and coronal mass ejections, energetic electrons from coronal sources typically have very long lifetimes compared to the transit times across the systems, suggesting confinement in the source region. Particle-in-cell simulations are carried out to explore the mechanisms of energetic electron transport from the corona to the chromosphere and possible confinement. We set up an initial system of pre-accelerated hot electrons in contact with ambient cold electrons along the local magnetic field and let it evolve over time. Suppression of transport by a nonlinear, highly localized electrostatic electric field (in the form of a double layer) is observed after a short phase of free-streaming by hot electrons. The double layer (DL) emerges at the contact of the two electron populations. It is driven by an ion-electron streaming instability due to the drift of the back-streaming return current electrons interacting with the ions. The DL grows over time and supports a significant drop in temperature and hence reduces heat flux between the two regions that is sustained for the duration of the simulation. This study shows that transport suppression begins when the energetic electrons start to propagate away from a coronal acceleration site. It also implies confinement of energetic electrons with kinetic energies less than the electrostatic energy of the DL for the DL lifetime, which is much longer than the electron transit time through the source region.

Li, T. C.; Drake, J. F.; Swisdak, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States)

2012-09-20T23:59:59.000Z

362

A CLASSIFICATION SCHEME FOR TURBULENT ACCELERATION PROCESSES IN SOLAR FLARES  

SciTech Connect

We establish a classification scheme for stochastic acceleration models involving low-frequency plasma turbulence in a strongly magnetized plasma. This classification takes into account both the properties of the accelerating electromagnetic field, and the nature of the transport of charged particles in the acceleration region. We group the acceleration processes as either resonant, non-resonant, or resonant-broadened, depending on whether the particle motion is free-streaming along the magnetic field, diffusive, or a combination of the two. Stochastic acceleration by moving magnetic mirrors and adiabatic compressions are addressed as illustrative examples. We obtain expressions for the momentum-dependent diffusion coefficient D(p), both for general forms of the accelerating force and for the situation when the electromagnetic force is wave-like, with a specified dispersion relation {omega} = {omega}(k). Finally, for models considered, we calculate the energy-dependent acceleration time, a quantity that can be directly compared with observations of the time profile of the radiation field produced by the accelerated particles, such as those occuring during solar flares.

Bian, Nicolas; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: eduard@astro.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

2012-08-01T23:59:59.000Z

363

Capture Effect of Randomly Addressed Polling Protocol  

Science Conference Proceedings (OSTI)

The capture effect, discussed in this paper, is generally considered to enhance the systems performance in a wireless network. This paper also considers the Randomly Addressed Polling (RAP) protocol in the presence of a fading mobile radio ... Keywords: capture effect, noiseless, randomly addressed polling protocol

Jiang-Whai Dai

1999-06-01T23:59:59.000Z

364

Neutron capture in the r-process  

Science Conference Proceedings (OSTI)

Recently we have shown that neutron capture rates on nuclei near stability significantly influence the r-process abundance pattern. We discuss the different mechanisms by which the abundance pattern is sensitive to the capture rates and identify key nuclei whose rates are of particular im- portance. Here we consider nuclei in the A = 130 and A = 80 regions.

Surman, Rebecca [Union College; Mclaughlin, Gail C [North Carolina State University; Mumpower, Matthew [North Carolina State University; Hix, William Raphael [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK)

2010-01-01T23:59:59.000Z

365

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options  

E-Print Network (OSTI)

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options Xi Liang, Jia Li, Jon Gibbons and David Reiner December 2007 EPRG 0728 & CWPE 0761 #12;FINANCING CAPTURE READY COAL supercritical pulverized coal power plant in China, using a cash flow model with Monte-Carlo simulations

Aickelin, Uwe

366

Applications and misapplications of the channel-capture formalism of direct neutron capture  

Science Conference Proceedings (OSTI)

We discuss the channel-capture approximation of slow neutron direct-capture theory. We show that this approximation gives a generally good representation of the neutron capture cross sections for several electric dipole transitions in a broad range of nuclides from A = 9 to A = 136; these are mostly near-spherical nuclei. Despite this body of agreement, we examine the accuracy we can expect from the simple channel-capture theory. Comparison with calculations of the potential-capture cross section from physically more realistic optical model calculations show that, in general, the channel-capture cross section can be up to approx. =40% in error. In cases where the expected channel-capture cross section is much smaller than the ''hard-sphere'' capture cross-section estimate, the disagreement with potential capture can be much worse than this. Also, in these cases, compound-nucleus capture can be of comparable or greater magnitude. These effects have been shown to completely undermine recent attempts to determine nuclear interaction radii for targets, such as /sup 12/C and /sup 9/Be, by application of the channel-capture formula to capture cross-section data. 20 refs.

Raman, S.; Lynn, J.E.

1985-01-01T23:59:59.000Z

367

Carbon Capture Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This information is taken from DOE's information on Carbon Capture Carbon Capture Research Before carbon dioxide (CO2) gas can be sequestered from power plants and other point sources, it must be captured as a relatively pure gas. On a mass basis, CO2 is the 19th largest commodity chemical in the United States, and CO2 is routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H2 production, and limestone calcination. Existing capture technologies, however, are not cost-effective when considered in the context of sequestering CO2 from power plants. Most power plants and other large point sources use air-fired combustors, a process that exhausts CO2 diluted with nitrogen. Flue gas from coal-fired power

368

CO2 Capture Using Electric Fields: Low-Cost Electrochromic Film on Plastic for Net-Zero Energy Building  

SciTech Connect

Broad Funding Opportunity Announcement Project: Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh Universitys approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize the energy needed for the process.

2010-01-01T23:59:59.000Z

369

Capturing Process Knowledge for Facility Deactivation and Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech Assistance Tech Assistance Savannah River National Laboratory- Assess Adequacy of Process Knowledge for D&D Guidance for Determining Adequacy of Process Knowledge Page 1 of 2 Savannah River National Laboratory South Carolina Capturing Process Knowledge for Facility Deactivation and Decommissioning Challenge The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. When such excess facilities are scheduled for deactivation and decommissioning (D&D), among the tasks the responsible project team is faced with include the evaluation and planning for the removal, characterization, and disposition of all legacy

370

Plasma heating in the very early and decay phases of solar flares  

E-Print Network (OSTI)

In this paper we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons are the only source of plasma heating during all phases of both events. The flares were observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Geostationary Operational Environmental Satellite (GOES) on September 20, 2002 and March 17, 2002, respectively. For both investigated flares we derived the energy fluxes contained in non-thermal electron beams from the RHESSI observational data constrained by observed GOES light-curves. We showed that energy delivered by non-thermal electrons was fully sufficient to fulfil the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad-hoc heating mechanisms other than heating by non-thermal electrons.

Falewicz, R; Rudawy, P

2011-01-01T23:59:59.000Z

371

HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES  

SciTech Connect

We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

2012-03-10T23:59:59.000Z

372

OBSERVATIONAL EVIDENCE OF CHANGING PHOTOSPHERIC VECTOR MAGNETIC FIELDS ASSOCIATED WITH SOLAR FLARES  

Science Conference Proceedings (OSTI)

Recent observations have provided evidence that the solar photospheric magnetic fields could have rapid and permanent changes in both longitudinal and transverse components associated with major flares. As a result, the Lorentz force (LF) acting on the solar photosphere and solar interior could be perturbed, and the change of LF is always nearly in the downward direction. However, these rapid and permanent changes have not been systematically investigated, yet, using vector magnetograms. In this paper, we analyze photospheric vector magnetograms covering five flares to study the evolution of photospheric magnetic fields. In particular, we investigate two-dimensional spatial distributions of the changing LF. Around the major flaring polarity inversion line, the net change of the LF is directed downward in an area of {approx}10{sup 19} cm{sup 2} for X-class flares. For all events, the white-light observations show that sunspots darken in this location after flares, and magnetic fields become more inclined, which is consistent with the ideas put forward by Hudson et al. and Fisher et al., and observations.

Su, J. T.; Jing, J.; Wang, H. M. [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Mao, X. J.; Wang, X. F.; Zhang, H. Q.; Deng, Y. Y.; Guo, J.; Wang, G. P., E-mail: sjt@bao.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2011-06-01T23:59:59.000Z

373

PRIOR FLARING AS A COMPLEMENT TO FREE MAGNETIC ENERGY FOR FORECASTING SOLAR ERUPTIONS  

Science Conference Proceedings (OSTI)

From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1300 sunspot active regions across the 30 Degree-Sign radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days; (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions; and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.

Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F. [ZP13 MSFC/NASA, Huntsville, AL 35812 (United States); Khazanov, Igor [CSPAR, Cramer Hall/NSSTC, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2012-09-20T23:59:59.000Z

374

step toward the project's planned early 2011 startup. The project  

NLE Websites -- All DOE Office Websites (Extended Search)

step toward the project's planned early 2011 startup. The project step toward the project's planned early 2011 startup. The project will capture CO 2 from the Archer Daniels Midland (ADM) Ethanol Production Facility and inject it into a deep saline reservoir more than one mile underground. Beginning in early 2011, up to 1 million metric tons of the captured CO 2 will be compressed into a dense, liquid-like state and injected over a three-year period. The Mt. Simon Sandstone, which is the rock formation targeted for the injection, is the thickest and most widespread saline reservoir in the Illinois Basin, with an estimated CO 2 storage capacity as high as 110 billion metric tons. Analysis of the survey data is a key component in the comprehensive monitoring program that will be implemented to ensure the injected

375

NETL: Alstom's Chemical Looping Combustion Technology with CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Alstom's Chemical Looping Combustion Technology with CO2 Capture for New and Existing Coal-Fired Power Plants Alstom's Chemical Looping Combustion Technology with CO2 Capture for New and Existing Coal-Fired Power Plants Project No.: DE-FE0009484 Alstom is advancing the development of Limestone Chemical Looping Combustion (LCL-C(tm)) technology. Chemical looping has no direct contact between air and fuel. The looping process usually utilizes oxygen from a metal carrier, but in this case, limestone is used. Economic evaluations will be made of four LCL-C plant configurations. The base configuration plant has already been completed and will be updated from previous reports. A second case will compare the effects of designing the reducer reactor using CFB sizing standards. A third case will investigate the effects of using a pressurized reducer reactor. Pressurizing the reducer reduces the reactor size and reduces the amount of compression required for the CO2 outlet gas stream. A fourth case will investigate the use of an advanced ultra-supercritical (USC) steam cycle. The advanced USC steam cycle should increase overall plant efficiency and lower the cost of electricity. Mass and energy balances will be done for each case. The four LCL-CTM cases will be compared against a supercritical pulverized coal-fired plant without CO2 capture.

376

Soot and SO[subscript 2] contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery  

E-Print Network (OSTI)

This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order ...

Molina, Luisa Tan

377

A new solar flare heavy ion model and its implementation through MACREE, an improved modeling tool to calculate single event effect rates in space  

Science Conference Proceedings (OSTI)

A new solar flare heavy ion model has been developed to support Space Station Single Event Effects (SEE) evaluations. It shows good agreement with previous flare data, and is implemented through an improved version of the CREME code.

Majewski, P.P.; Normand, E.; Oberg, D.L. [Boeing Defense and Space Group, Seattle, WA (United States)] [Boeing Defense and Space Group, Seattle, WA (United States)

1995-12-01T23:59:59.000Z

378

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

Stevens, C.G.

1978-08-29T23:59:59.000Z

379

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

Stevens, Charles G. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

380

Spots, plages, and flares on lambda Andromedae and II Pegasi  

E-Print Network (OSTI)

We present the results of a contemporaneous photometric and spectroscopic monitoring of lambda And and II Peg aimed at investigating the behavior of surface inhomogeneities in the atmospheres of these active stars which have nearly the same temperature but different gravity. The light curves and the modulation of the surface temperature, as recovered from LDRs, are used to map the photospheric spots, while the H-alpha emission has been used as an indicator of chromospheric inhomogeneities. The spot temperatures and sizes were derived from a spot model applied to the contemporaneous light and temperature curves. We find larger and cooler spots on II Peg (T_sp ~ 3600 K) compared to lambda And (T_sp ~ 3900 K); this could be the result of both the different gravity and the higher activity level of the former. Moreover, we find a clear anti-correlation between the H-alpha emission and the photospheric diagnostics. We have also detected a modulation of the intensity of the HeI D_3 line with the star rotation. A rough reconstruction of the 3D structure of their atmospheres has been also performed by applying a spot/plage model to the light and temperature curves and to the H-alpha flux modulation. A close spatial association of photospheric and chromospheric active regions has been found in both stars. Larger and cooler spots have been found on II Peg, the system with the active component of higher gravity and higher activity level. The area ratio of plages to spots seems to decrease when the spots get bigger. Moreover, with the present and literature data, a correlation between the temperature difference Delta_T = T_ph - T_sp and the surface gravity has been also suggested. In addition, a strong flare affecting the H-alpha, the HeI D_3, and the cores of NaI D_1,2 lines has been observed on II Peg.

A. Frasca; K. Biazzo; G. Tas; S. Evren; A. C. Lanzafame

2007-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Scientific and Technical Posters from the 2010 NETL Carbon Dioxide Capture Technology Meeting  

DOE Data Explorer (OSTI)

NETL hosted the 2010 CO2 Capture Technology Meeting on September 13-17, 2010 in Pittsburgh, PA. The Meeting provided a public forum to present carbon dioxide (CO2) capture technology development status and accomplishments made under NETL's Innovations for Existing Plants, Carbon Sequestration and Demonstration Programs. In addition, ARPA-E Program Director Mark Hartney highlighted the Agency's CO2 capture portfolio. Both ARPA-E and NETL projects were featured in the poster session, and these posters are now available online. ARPA-E posters are:

  • Low-Cost Biocatalyst for Acceleration of Energy Efficient CO2 Capture Solvents, James Lalonde (Codexis Inc.)
  • A Solvent/Membrane Hybrid Post-Combustion CO2 Capture Process for Existing Coal-Fired Power Plants, Kunlei Liu (University of Kentucky, Center for Applied Energy Research)
  • High-Throughput Discovery of Robust Metal-Organic Frameworks for Carbon Dioxide Capture, Jeffrey Long (LBNL)
  • CO2 Capture with Ionic Liquids Involving Phase Change, Joan Brennecke (Univ of Notre Dame)
  • Cryogenic Carbon Capture, Larry Baxter (Sustainable Energy Solutions, BYU)
  • Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage Technology, Edward Swanson and Tushar Patel (Columbia University)
  • CO2 Binding Organic Liquids for Post-Combustion CO2 Capture, Aqil Jamal (RTI International)
  • Development of Stimuli Responsive Metal-Organic Frameworks for Energy-Efficient Post-Combustion CO2 Capture, Hongcai Zhou (Texas A&M)
  • Electrochemically Mediated Separation for Carbon Capture and Mitigation, Fritz Simeon (MIT)
  • Phase Changing Absorbents for CO2 Capture, Teresa Grocela (GE Global Research)
  • Bio-Mimetic Catalysts for Carbon Capture with Optimized System Placement, Joshuah Stolaroff (LLNL)
  • MOF Polymer Composite Membranes for CO2 Capture From Flue Gas, David Sholl (Georgia Tech)
  • Achieving a 10,000 GPU Permenace for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes, Kathyrn A. Berchtold (LANL)
  • A High Efficiency Inertial CO2 Extraction System ICES, Vladmir Balepin (ATK)
  • Carbon Nanotube Membranes for Carbon Sequestration, Aleksandr Noy (Porifera Inc.)
  • CO2 Capture with Enzyme Synthetic Analogue, Harry Cordatos (United Technologies Research Center)
  • Resin Wafer Electrodeionization for Flue Gas Carbon Dioxide Capture, Wayne M. Carson and Jitendra T. Shah (Nalco Co.)
  • Electric Field Swing Adsorption (EFSA) for Carbon Capture Applications, David Moore and Kai Landskron (Lehigh University)
  • Pilot Scale Testing of the Syngas Chemical Looping Process, Fanxing Li (Ohio State University)

Posters featured from NETL are:

  • Lab Scale & Computational Studies of Chemical Looping Combustion (CLC) for Efficient Carbon Capture, Douglas Straub (NETL)
  • Novel Warm Gas Temperature Sorbent Development for CO2 Removal from Synthesis Gas Streams, James Fisher II (URS/NETL)
  • An Investigation into Molecular Electron Density Relationships to Amine CO2 Capture Reaction Energy, Anita Lee (Carnegie Mellon)
  • Using Hydrophobic CO2-philic Polymers to Design CO2-selective Liquid Solvents and High Permeability CO2-selective Crosslinked Membranes, Robert Enrick (University of Pittsburgh)
  • Investigation of Amino Acids for Dry Sorbents, Bingyun Li (West Virginia University)
  • Radiative Heat Transfer in Oxy-Combustion, Clint Bedick and Kent Casleton (NETL)

382

Retrofitting CO{sub 2} capture  

SciTech Connect

Retrofitting existing fossil-fueled plants with the first available carbon dioxide capture technologies could play an important role in paving the way for development of lower-cost, reliable carbon capture and storage systems. EPRI research is helping utilities better understand the engineering challenges and economic consequences. Studies are being conducted on retrofitting five different plants with advanced amine PCC technologies. Other studies include: process optimization studies; valuing operating flexibility; CO{sub 2} capture for CTCC plants; and assessing the impact of climate policy on retrofitting investment.

Weisel, J.

2009-07-01T23:59:59.000Z

383

Benchmarking a surrogate reaction for neutron capture  

Science Conference Proceedings (OSTI)

{sup 171,173}Yb(d,p{gamma}) reactions are measured, with the goal of extracting the neutron capture cross-section ratio as a function of the neutron energy using the external surrogate ratio method. The cross-section ratios obtained are compared to the known neutron capture cross sections. Although the Weisskopf-Ewing limit is demonstrated not to apply for these low neutron energies, a prescription for deducing surrogate cross sections is presented. The surrogate cross-section ratios deduced from the {sup 171,173}Yb(d,p{gamma}) measurements agree with the neutron capture results within 15%.

Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D. [Rutgers University, New Brunswick, New Jersey 08903 (United States); Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Escher, J. E.; Lesher, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gibelin, J.; Phair, L.; Rodriguez-Vieitez, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Goldblum, B. L. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nuclear Engineering Department, University of California, Berkeley, California 94720 (United States); Swan, T. [Rutgers University, New Brunswick, New Jersey 08903 (United States); University of Surrey, Guildford GU2 7XH, Surrey (United Kingdom); Wiedeking, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2010-01-15T23:59:59.000Z

384

NETL: Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst Delivery System Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst Delivery System Project No.: DE-FE0012862 Akermin is conducting laboratory and integrated bench-scale pilot testing to validate the performance of their next generation Biocatalyst Delivery System (BDS). This effort builds upon work conducted under a previous project. The novel system enables on-stream replacement of the catalyst and enables integration with an advanced process flow scheme. Akermin is exploring an enzyme-enabled advanced process flow scheme with non-volatile capture solutions, AKM-24 and potassium carbonate. The advanced process flow scheme is projected to have lower parasitic energy requirements and lower capital costs resulting in greater than 30 percent reduction in the cost of capture. The novel flow sheet enabled by the biocatalyst permits regeneration at lower temperatures allowing heat integration with the lowest grade steam from the power plant and minimizing water consumption. The existing 500 standard liters per minute (SLPM) bench unit will be modified to incorporate the next-generation BDS, accommodate the new process flow scheme, and reduce heat loss for better quantification of energy performance. The modified bench unit will be operated at the National Carbon Capture Center on actual flue gas.

385

NETL: IEP - Bench-Scale Silicone Process for Low-Cost CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench-Scale Silicone Process for Low-Cost CO2 Capture Bench-Scale Silicone Process for Low-Cost CO2 Capture Project No.: FE0007502 GE Global Research and their project partners are conducting research on the use of a novel silicone solvent to capture CO2 with a continuous bench-scale system. The project will utilize both computational and experimental methods. Previously measured experimental data from a continuous laboratory-scale CO2 capture system will be used to design this bench-scale system. Data from the bench-scale system, such as kinetics and mass transfer information, will be used to determine scale-up effects and needed design parameters to develop a scale-up strategy, update cost of electricity (COE) calculations and perform a technical and economic feasibility study. A manufacturing plan for the aminosilicone solvent and a price model will be used for optimization. The final objective of the program is to demonstrate, at the bench-scale, a process that achieves 90 percent CO2 capture efficiency with less than a 35 percent increase in the COE. Development of this scalable bench-scale process combined with a rigorous process model and thorough manufacturability analysis for the solvent, will enable a practical technology path to later development at larger scales and commercialization. The technology will eventually be retrofittable to coal-based power plants.

386

2013 NETL CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL CO2 Capture Technology Meeting NETL CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 8 - 11, 2013 ION Novel Solvent System for CO 2 Capture FE0005799 Nathan Brown ION Engineering Presentation Outline 2  ION Advanced Solvent Background  Project Overview  Technology Fundamentals  Progress & Current Status  Plans for Future Commercialization  Acknowledgements ION Engineering Background 3 Mission Statement: Develop new solvents and processes for economic removal of CO 2 from industrial emissions. Markets:  Coal-fired flue gas  NGCC-fired flue gas  Sour gas processing 1 st & 2 nd Generation CO 2 Capture 4 Aqueous MEA Commercial Use Existing Commercial Technology Lateral Transfer of Existing Technology Aqueous MEA

387

Energy Department Invests to Drive Down Costs of Carbon Capture, Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invests to Drive Down Costs of Carbon Capture, Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to research innovative, second-generation technologies that will help improve the efficiency and drive down costs of carbon capture processes for new and existing coal-fired power plants. "In the past four years we've more than doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels

388

EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Demonstration of Carbon Dioxide Capture and Sequestration 46: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas Overview DOE completed a final environmental assessment (EA) for a project under Area I of the Industrial Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use . Based on the analyses in the EA DOE determined that its proposed action - awarding a grant to Air Products and Chemicals, Inc. to design and demonstrate a state-of-the-art system to concentrate carbon dioxide (CO,) from two steam

389

Energy Department Invests to Drive Down Costs of Carbon Capture, Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Invests to Drive Down Costs of Carbon Capture, Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to research innovative, second-generation technologies that will help improve the efficiency and drive down costs of carbon capture processes for new and existing coal-fired power plants. "In the past four years we've more than doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels

390

Carbon Pollution Being Captured, Stored and Used to Produce More Domestic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Pollution Being Captured, Stored and Used to Produce More Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil May 10, 2013 - 11:38am Addthis Learn more about how the Office of Fossil Energy's carbon capture, utilization and storage program is benefiting the economy and the environment. Acting Assistant Secretary Smith Acting Assistant Secretary Smith Principal Deputy Assistant Secretary and Acting Assistant Secretary for Fossil Energy What does this project do? More than 90% of the CO2 at the facility (approx. 1M metric tons of CO2 per year) will be delivered for sequestration and enhanced oil recovery. Oil production at a Texas oil field will increase from 1.6 to 3.1 million barrels annually, and the CO2 will be stored underground.

391

Renewable Energy Policy Project | Open Energy Information  

Open Energy Info (EERE)

Policy Project Policy Project Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Policy Project Agency/Company /Organization: Renewable Energy Policy Project Sector: Energy Focus Area: Renewable Energy, Industry Topics: Co-benefits assessment, Policies/deployment programs Website: www.repp.org/ References: http://www.repp.org/ The Renewable Energy Policy Project is an initiative to capture the manufacturing benefits of renewable energy. They have several detailed reports of the economic benefits found in renewable energy for over 20 states. They also offer additional information about technologies and projects currently underway. Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Policy_Project&oldid=383512"

392

Detection of a proton beam during the impulsive phase of a stellar flare  

SciTech Connect

A transient event consistent with the predicted temporal and spectral signatures of an energetic proton beam was detected in the impulsive phase of a small flare on the red dwarf star AU Microscopii. It consisted of a prominent increase in the flux in the red wing of Lyman-alpha near 1223 A, simultaneously with the peak of a flare observed in the 1206 A transition region line of Si III. The probability that the red wing event was a chance fluctuation is one chance in 2.5 x 10 exp 4. This observation represents a confirmation of the prediction by Orrall and Zirker (1976) in which downstreaming protons accelerated during the impulsive phase of a flare charge exchange with ambient neutral hydrogen and emit Lyman-alpha radiation from 1 to 15 A redward of line center. 22 refs.

Woodgate, B.E.; Robinson, R.D.; Carpenter, K.G.; Maran, S.P.; Shore, S.N. (NASA, Goddard Space Flight Center, Greenbelt, MD (United States))

1992-10-01T23:59:59.000Z

393

TIME-DEPENDENT DENSITY DIAGNOSTICS OF SOLAR FLARE PLASMAS USING SDO/EVE  

SciTech Connect

Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 10{sup 4} and 10{sup 7} K, including transitions from highly ionized iron ({approx}>10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 10{sup 11.2}-10{sup 12.1} cm{sup -3} were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to be determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.

Milligan, Ryan O.; Kennedy, Michael B.; Mathioudakis, Mihalis; Keenan, Francis P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN (United Kingdom)

2012-08-10T23:59:59.000Z

394

GAMMA-RAY ACTIVITY IN THE CRAB NEBULA: THE EXCEPTIONAL FLARE OF 2011 APRIL  

SciTech Connect

The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab Nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of Almost-Equal-To 11 lt-yr across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 {+-} 6) Multiplication-Sign 10{sup -7} cm{sup -2} s{sup -1} above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 {+-} 26) MeV at flare maximum. The observations imply that the emission region was likely relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.

Buehler, R.; Blandford, R. D.; Charles, E.; Chiang, J.; Funk, S.; Kerr, M.; Massaro, F.; Romani, R. W. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Scargle, J. D. [Space Sciences Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Baldini, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Belfiore, A.; Saz Parkinson, P. M. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); D'Ammando, F. [IASF Palermo, 90146 Palermo (Italy); Dermer, C. D.; Grove, J. E. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Harding, A. K.; Hays, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mazziotta, M. N. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari (Italy); Tennant, A. F., E-mail: buehler@stanford.edu, E-mail: rdb3@stanford.edu, E-mail: Jeffrey.D.Scargle@nasa.gov [NASA, Marshall Space Flight Center, Huntsville, AL 35812 (United States); and others

2012-04-10T23:59:59.000Z

395

NETL: Electrochemical Membranes for Carbon Dioxide Capture and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Project No.: DE-FE0007634 FuelCell Energy, Inc. has developed a novel system concept for the separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane. The proposed membrane has its genesis from the company's patented Direct FuelCell® (DFC®) technology. The prominent feature of the DFC membrane is its capability to produce power while capturing CO2 from the flue gas from a pulverized coal (PC) plant. The DFC membrane does not require flue gas compression as it operates on the principles of electrochemistry, resulting in net efficiency gains. The membrane utilizes a fuel (different from the plant flue gas, such as coal-derived syngas, natural gas, or a renewable resource) as the driver for the combined carbon capture and electric power generation. The electrochemical membrane consists of ceramic-based layers filled with carbonate salts, separating CO2 from the flue gas. Because of the electrode's high reaction rates, the membrane does not require a high CO2 concentration in its feed gas. The planar geometry of the membrane offers ease of scalability to large sizes suitable for deployment in PC plants, which is an important attribute in membrane design. The membrane has been tested at the laboratory scale, verifying the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Fuel Cell Energy, Inc. is advancing the technology to a maturity level suitable for adaption by industry for pilot-scale demonstration and subsequent commercial deployment.

396

Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes  

E-Print Network (OSTI)

We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

2005-08-24T23:59:59.000Z

397

PARTICLE ACCELERATION AT A FLARE TERMINATION SHOCK: EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE  

Science Conference Proceedings (OSTI)

We investigate the acceleration of charged particles (both electrons and protons) at collisionless shocks predicted to exist in the vicinity of solar flares. The existence of standing termination shocks has been examined by flare models and numerical simulations. We study electron energization by numerically integrating the equations of motion of a large number of test-particle electrons in the time-dependent two-dimensional electric and magnetic fields generated from hybrid simulations (kinetic ions and fluid electron) using parameters typical of the solar flare plasma environment. The shock is produced by injecting plasma flow toward a rigid piston. Large-scale magnetic fluctuations-known to exist in plasmas and known to have important effects on the nonthermal electron acceleration at shocks-are also included in our simulations. For the parameters characteristic of the flaring region, our calculations suggest that the termination shock formed in the reconnection outflow region (above post-flare loops) could accelerate electrons to a kinetic energy of a few MeV within 100 ion cyclotron periods, which is of the order of a millisecond. Given a sufficient turbulence amplitude level ({delta}B{sup 2}/B 2{sub 0} {approx} 0.3), about 10% of thermal test-particle electrons are accelerated to more than 15 keV. We find that protons are also accelerated, but not to as high energy in the available time and the energy spectra are considerably steeper than that of the electrons for the parameters used in our simulations. Our results are qualitatively consistent with the observed hard X-ray emissions in solar flares.

Guo Fan; Giacalone, Joe, E-mail: guofan@lpl.arizona.edu [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)

2012-07-01T23:59:59.000Z

398

SMALL-SCALE MICROWAVE BURSTS IN LONG-DURATION SOLAR FLARES  

SciTech Connect

Solar small-scale microwave bursts (SMBs), including microwave dot, spike, and narrow-band type III bursts, are characterized by very short timescales, narrow frequency bandwidth, and very high brightness temperatures. Based on observations of the Chinese Solar Broadband Radio Spectrometer at Huairou with superhigh cadence and frequency resolution, this work presents an intensive investigation of SMBs in several flares that occurred in active region NOAA 10720 during 2005 January 14-21. Especially for long-duration flares, the SMBs occurred not only in the early rising and impulsive phase, but also in the flare decay phase and even after the end of the flare. These SMBs are strong bursts with inferred brightness temperatures of at least 8.18 Multiplication-Sign 10{sup 11}-1.92 Multiplication-Sign 10{sup 13} K, very short lifetimes of 5-18 ms, relative frequency bandwidths of 0.7%-3.5%, and superhigh frequency drifting rates. Together with their obviously different polarizations from background emission (the quiet Sun, and the underlying flaring broadband continuum), such SMBs should be individual, independent strong coherent bursts related to some non-thermal energy release and the production of energetic particles in a small-scale source region. These facts show the existence of small-scale strong non-thermal energy releasing activities after the flare maxima, which is meaningful for predicting space weather. Physical analysis indicates that a plasma mechanism may be the most favorable candidate for the formation of SMBs. From the plasma mechanism, the velocities and kinetic energy of fast electrons can be deduced and the region of electron acceleration can also be tracked.

Tan Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

2013-08-20T23:59:59.000Z

399

He I D3 OBSERVATIONS OF THE 1984 MAY 22 M6.3 SOLAR FLARE  

SciTech Connect

The He I D3 line has a unique response to a flare impact on the low solar atmosphere and can be a powerful diagnostic tool for energy transport processes. Using images obtained from the recently digitized films of the Big Bear Solar Observatory, we report D3 observations of the M6.3 flare on 1984 May 22, which occurred in an active region with a circular magnetic polarity inversion line (PIL). The impulsive phase of the flare starts with a main elongated source that darkens in D3, inside of which bright emission kernels appear at the time of the initial small peak in hard X-rays (HXRs). These flare cores subsequently evolve into a sharp emission strand lying within the dark halo; this evolution occurs at the same time as the main peak in HXRs, reversing the overall source contrast from -5% to 5%. The radiated energy in D3 during the main peak is estimated to be about 10{sup 30} erg, which is comparable to that carried by nonthermal electrons above 20 keV. Afterward, the flare proceeds along the circular PIL in the counterclockwise direction to form a dark circular ribbon in D3, which apparently mirrors the bright ribbons in H{alpha} and He I 10830 A. All of these ribbons last for over one hour in the late gradual phase. We suggest that the present event resembles the so-called black-light flare that was proposed based on continuum images, and that D3 darkening and brightening features herein may be due to thermal conduction heating and the direct precipitation of high-energy electrons, respectively.

Liu Chang; Xu Yan; Deng Na; Lee, Jeongwoo; Zhang Jifeng; Wang Haimin [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Prasad Choudhary, Debi, E-mail: chang.liu@njit.edu [Physics and Astronomy Department, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-0001 (United States)

2013-09-01T23:59:59.000Z

400

Center-to-Limb Variation of Radio Emissions from Thermal-Rich and Thermal-Poor Solar Flares  

E-Print Network (OSTI)

A statistical analysis of radio flare events was performed by using the event list of Nobeyama Radioheliograph in 1996-2009. We examined center-to-limb variations of 17GHz and 34GHz flux by dividing the flare events into different groups with respect to the 'thermal plasma richness' (ratio of the peak flux of soft X-ray to non-thermal radio emissions) and the duration of radio bursts. It is found that peak flux of 17 and 34GHz tend to be higher toward the limb for thermal-rich flares with short durations. We propose that the thermal-rich flares, which are supposed to be associated with an efficient precipitation of high energy particles into the chromosphere, have a pitch angle distribution of non-thermal electrons with a higher population along the flare loop.

Kawate, Tomoko; Kiyoshi, Ichimoto

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cosmic GRB energy-redshift relation and Primordial flares as possible energy source for the central engine  

E-Print Network (OSTI)

By considering similar observed properties of gamma ray bursts (GRB) and solar flares with the prevailing physical conditions in the cosmic environment, the following study suggests that most likely and promising energy source for the central engine which triggers GRB may be due to primordial flares, solar flare like phenomena, at the sites of inter galactic or inter galactic clusters in the early universe. The derived energy-redshift relation, E = E_{0}{(1+z)}^3 (where E is the amount of energy released, z is the redshift of GRB and E_{0} is a constant which is estimated to be ~ 10^{52} ergs), from the simple flare mechanism, is confirmed from the least square fit with the observed energy-redshift relation. Some of the physical parameters like length scale, strength of magnetic field, etc., of the flaring region of the GRB are estimated.

Hiremath, K M

2009-01-01T23:59:59.000Z

402

Determination of thermal neutron capture gamma yields.  

E-Print Network (OSTI)

A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

Harper, Thomas Lawrence

1969-01-01T23:59:59.000Z

403

Shock Capturing with Discontinuous Galerkin Method  

E-Print Network (OSTI)

Shock capturing has been a challenge for computational fluid dynamicists over the years. This article deals with discontinuous Galerkin method to solve the hyperbolic equations in which solutions may develop discontinuities ...

Nguyen, Vinh Tan

404

Economic assessment of CO? capture and disposal  

E-Print Network (OSTI)

A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

405

Computer simulation of neutron capture therapy.  

E-Print Network (OSTI)

Analytical methods are developed to simulate on a large digital computer the production and use of reactor neutron beams f or boron capture therapy of brain tumors. The simulation accounts for radiation dose distributions ...

Olson, Arne Peter

1967-01-01T23:59:59.000Z

406

Regulating carbon dioxide capture and storage  

E-Print Network (OSTI)

This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

De Figueiredo, Mark A.

2007-01-01T23:59:59.000Z

407

Converting Captured CO2 into Useful Materials  

Science Conference Proceedings (OSTI)

Aug 2, 2010... algae production technology that can capture at least 60 percent of flue gas CO2 from an industrial coal-fired source to produce biofuel and...

408

Lag-luminosity relation in gamma-ray burst X-ray flares  

Science Conference Proceedings (OSTI)

In strict analogy to prompt pulses, X-ray flares observed by Swift-XRT in long Gamma-Ray Bursts define a lag-luminosity relation: L{sub p,iso}{sup 0.3-10} k{sup eV} {infinity}t{sub lag}{sup -0.95{+-}0.23}. The lag-luminosity is proven to be a fundamental law extending {approx}5 decades in time and {approx}5 in energy. This is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism.

Margutti, R.

2010-10-15T23:59:59.000Z

409

Search for correlations between solar flares and decay rate of radioactive nuclei  

E-Print Network (OSTI)

The deacay rate of three different radioactive sources 40K, 137Cs and natTh has been measured with NaI and Ge detectors. Data have been analyzed to search for possible variations in coincidence with the two strongest solar flares of the years 2011 and 2012. No significant deviations from standard expectation have been observed, with a few 10-4 sensitivity. As a consequence, we could not find any effect like that recently reported by Jenkins and Fischbach: a few per mil decrease in the decay rate of 54Mn during solar flares in December 2006.

E. Bellotti; C. Broggini; G. Di Carlo; M. Laubenstein; R. Menegazzo

2013-02-05T23:59:59.000Z

410

Novel Solvent System for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvent System for CO Solvent System for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

411

Appendix B: CArBon dioxide CApture teChnology SheetS  

NLE Websites -- All DOE Office Websites (Extended Search)

solvents solvents B-198 Post-Combustion solvents u.s. DePartment of energy aDvanCeD Carbon DioxiDe CaPture r&D Program: teChnology uPDate, may 2013 DeveloPment anD Demonstration of Waste heat integration With solvent ProCess for more effiCient Co 2 removal from Coal-fireD flue gas primary project goals Southern Company Services is developing viable heat integration methods for the capture of carbon dioxide (CO 2 ) produced from pulverized coal (PC) combustion. The project will quantify energy-efficiency improvements to the CO 2 capture process by utilizing a waste heat recovery technology, High-Efficiency System (HES). technical goals * Reduction of the amount of extraction steam required for sensible heat load in the

412

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart: project timeline - Project Milestones - Budget - Bibliography * Thank you 29 30 Organization Chart * Project team: Purdue University - Dr. Brenda B. Bowen: PI, student...

413

Carbon Capture and Storage (CCS) Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage (CCS) Studies Carbon Capture and Storage (CCS) Studies Fossil Energy Studies for the next 6 months,December 2008-June 2009, Carbon Capture and Storage...

414

Noise-optimal capture for high dynamic range photography  

E-Print Network (OSTI)

Taking multiple exposures is a well-established approach both for capturing high dynamic range (HDR) scenes and for noise reduction. But what is the optimal set of photos to capture? The typical approach to HDR capture ...

Hasinoff, Samuel William

415

Analysis of Carbon Dioxide Capture Retrofit Options: Duke Edwardsport Integrated-Gasification Combined-Cycle Plant  

Science Conference Proceedings (OSTI)

This report summarizes the results of a project supported by Duke Energy using tailored collaboration funds to study the potential impact to plant performance of retrofitted carbon dioxide (CO2) capture on the Duke Edwardsport integrated-gasificationcombined-cycle (IGCC) plant. The Duke Edwardsport IGCC plant is under construction and scheduled to begin operation in September 2012. Details on the project have been published in a 2010 Electric Power Research Institute (EPRI) report, Duke Edwardsport Gener...

2011-09-27T23:59:59.000Z

416

Assessment of Groundwater Vulnerability to Contamination Using Capture Zone Delineation in Shenzhen City, China  

Science Conference Proceedings (OSTI)

As a result of the large risk associated with the contamination of aquifers, it becomes imperative to protect groundwater supply areas. One of the practical methods that is projected for the protection of aquifers is to zone a boundary around current ... Keywords: MODPATH, capture zones, delineation, groundwater contamination, vulnerability

Chiha Aida; Aiguo Zhou; Jianwei Zhou; ShaoGang Dong

2009-07-01T23:59:59.000Z

417

Appendix B: CArBon dioxide CApture teChnology SheetS  

NLE Websites -- All DOE Office Websites (Extended Search)

DioxiDe CaPture teChnology sheets national energy teChnology laboratory aDvanCeD aCiD gas seParation teChnology for the utilization of low-rank Coals primary project goals Air...

418

Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare  

E-Print Network (OSTI)

Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel and engineers w

Williams, C.

2004-01-01T23:59:59.000Z

419

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network (OSTI)

and HB 90:Carbon capture and sequestration, http://legisweb.conference on carbon capture and sequestration, Pittsburgh,The DOEs Regional Carbon Sequestration Partnerships are

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

420

Secretary Chu Announces $3 Billion Investment for Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Billion Investment for Carbon Capture and Sequestration Secretary Chu Announces 3 Billion Investment for Carbon Capture and Sequestration December 4, 2009 - 12:00am Addthis...

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

422

Better Buildings Neighborhood Program: Step 10: Capture Lessons...  

NLE Websites -- All DOE Office Websites (Extended Search)

10: Capture Lessons Learned to someone by E-mail Share Better Buildings Neighborhood Program: Step 10: Capture Lessons Learned on Facebook Tweet about Better Buildings Neighborhood...

423

Ohio State Develops Breakthrough Membranes for Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage...

424

New Recovery Act Funding Boosts Industrial Carbon Capture and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and...

425

Changes related to "Cost and Performance of Carbon Dioxide Capture...  

Open Energy Info (EERE)

icon Changes related to "Cost and Performance of Carbon Dioxide Capture from Power Generation" Cost and Performance of Carbon Dioxide Capture from Power Generation...

426

Post-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Post-Combustion Carbon Capture Research Post-Combustion Carbon Capture Research Fossil fuel fired electric generating plants are the cornerstone of America's central power system....

427

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a...

428

Energy Department Invests to Drive Down Costs of Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in...

429

2013 NETL CO2 Capture Technology Meeting Sheraton Station Square...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 8 - 11, 2013 ION Novel Solvent System for CO 2 Capture FE0005799 Nathan Brown ION Engineering...

430

Spatially-explicit impacts of carbon capture and sequestration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spatially-explicit impacts of carbon capture and sequestration on water supply and demand Title Spatially-explicit impacts of carbon capture and sequestration on water supply and...

431

CO2 Capture Poject CCP | Open Energy Information  

Open Energy Info (EERE)

companies and government organisations that are undertaking research and development of carbon capture and storage technologies. References CO2 Capture Poject (CCP)1 LinkedIn...

432

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Eligibility Commercial Industrial Utility Program...

433

Capture, Separation and Triggered Release of CO2 with Metal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Capture, Separation and Triggered Release of CO2 with Metal ... pores can be tailored to act as high capacity sites for carbon dioxide capture.

434

Membrane Materials for Carbon Capture from Power Processes  

Science Conference Proceedings (OSTI)

Symposium, Materials for CO2 Capture and Conversion. Presentation Title, Membrane Materials for Carbon Capture from Power Processes. Author(s), Tim...

435

Lab captures five Society for Technical Communication awards  

NLE Websites -- All DOE Office Websites (Extended Search)

captures five Society for Technical Communication awards Lab captures five Society for Technical Communication awards Reducing Global Threats through Innovative Science and...

436

Strategies for demonstration and early deployment of carbon capture and storage : a technical and economic assessment of capture percentage  

E-Print Network (OSTI)

Carbon capture and storage (CCS) is a critical technology for reducing greenhouse gas emissions from electricity production by coal-fired power plants. However, full capture (capture of nominally 90% of emissions) has ...

Hildebrand, Ashleigh Nicole

2009-01-01T23:59:59.000Z

437

Header with Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

5NT42646 Zero Emissions Coal Syngas-Oxygen Turbo Machinery 5NT42646 Zero Emissions Coal Syngas-Oxygen Turbo Machinery FACT SHEET (42646) Oct. 2006 I. PROJECT PARTICIPANTS A. Siemens Power Generation, Inc. B. Florida Turbine Technologies, Inc. C. Clean Energy Systems, Inc. II. PROJECT DESCRIPTION A. Objective(s) - To develop a cost effective and highly efficient turbo machinery system that will work with an oxy-fuel combustor that generates very high temperature CO2 and steam mixture as the working fluid. After expansion of the working fluid, the CO2 is captured allowing near-zero emissions of NOx and carbon. The project will complete conceptual designs of alternate steam cycles and select one cycle for detailed design based on cost and feasibility studies. B. Relevancy - 1. Background: CES, Inc. has an operational oxy-fuel combustor that generates

438

Helioseismic response to X2.2 solar flare of February 15, 2011  

E-Print Network (OSTI)

The X2.2-class solar flare of February 15, 2011, produced a powerful sunquake event, representing a helioseismic response to the flare impact in the solar photosphere, which was observed with the HMI instrument on the Solar Dynamics Observatory (SDO). The impulsively excited acoustic waves formed a compact wavepacket traveling through the solar interior and appearing on the surface as expanding wave ripples. The initial flare impacts were observed in the form of compact and rapid variations of the Doppler velocity, line-of-sight magnetic field and continuum intensity. These variations formed a typical two-ribbon flare structure, and are believed to be associated with thermal and hydrodynamic effects of high-energy particles heating the lower atmosphere. The analysis of the SDO/HMI and X-ray data from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) shows that the helioseismic waves were initiated by the photospheric impact in the early impulsive phase, observed prior to the hard X-ray (50-100 keV) i...

Kosovichev, Alexander G

2011-01-01T23:59:59.000Z

439

A giant radio flare from Cygnus X-3 with associated Gamma-ray emission  

E-Print Network (OSTI)

With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emis...

Corbel, S; Tomsick, J A; Szostek, A; Corbet, R H D; Miller-Jones, J C A; Richards, J L; Pooley, G; Trushkin, S; Dubois, R; Hill, A B; Kerr, M; Max-Moerbeck, W; Readhead, A C S; Bodaghee, A; Tudose, V; Parent, D; Wilms, J; Pottschmidt, K

2012-01-01T23:59:59.000Z

440

COMPARISON OF SEISMIC SIGNATURES OF FLARES OBTAINED BY SOHO/MICHELSON DOPPLER IMAGER AND GONG INSTRUMENTS  

Science Conference Proceedings (OSTI)

The first observations of seismic responses to solar flares were carried out using time-distance (TD) and holography techniques applied to SOHO/Michelson Doppler Imager (MDI) Dopplergrams obtained from space and unaffected by terrestrial atmospheric disturbances. However, the ground-based network GONG is potentially a very valuable source of sunquake observations, especially in cases where space observations are unavailable. In this paper, we present an updated technique for pre-processing of GONG observations for the application of subjacent vantage holography. Using this method and TD diagrams, we investigate several sunquakes observed in association with M- and X-class solar flares and compare the outcomes with those reported earlier using MDI data. In both GONG and MDI data sets, for the first time, we also detect the TD ridge associated with the 2001 September 9 flare. Our results show reassuringly positive identification of sunquakes from GONG data that can provide further information about the physics of seismic processes associated with solar flares.

Zharkov, S.; Matthews, S. A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT (United Kingdom); Zharkova, V. V. [Horton D Building, Department of Mathematics, University of Bradford, Bradford, BD7 1DP (United Kingdom)

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "flare capture project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CHARGE-EXCHANGE LIMITS ON LOW-ENERGY {alpha}-PARTICLE FLUXES IN SOLAR FLARES  

Science Conference Proceedings (OSTI)

This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Ly{alpha} line of He II at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary {alpha} particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon{sup -1}. We study 10 events in total, including the {gamma}-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism.

Hudson, H. S. [SSL, UC Berkeley, CA 94720 (United States); Fletcher, L.; MacKinnon, A. L. [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Woods, T. N., E-mail: hhudson@ssl.berkeley.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Dr., Boulder, CO 80303 (United States)

2012-06-20T23:59:59.000Z

442

The short gamma-ray burst SGR giant flare connection Kevin Hurley  

E-Print Network (OSTI)

SOLAR SUBMILLIMETER AND GAMMA-RAY BURST EMISSION P. Kaufmann,1,2 J.-P. Raulin,1 A. M. Melo,1 E headings: gamma rays: bursts -- Sun: flares 1. INTRODUCTION The interaction of ultrarelativistic electrons observations of a burst in the submillimeter and gamma-ray ranges were obtained for the first time on 2001

California at Berkeley, University of

443

NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE  

Science Conference Proceedings (OSTI)

Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

2013-08-10T23:59:59.000Z

444

POST-FLARE ULTRAVIOLET LIGHT CURVES EXPLAINED WITH THERMAL INSTABILITY OF LOOP PLASMA  

Science Conference Proceedings (OSTI)

In the present work, we study the C8 flare that occurred on 2000 September 26 at 19:49 UT and observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation spectrometer from the beginning of the impulsive phase to well beyond the disappearance in the X-rays. The emission first decayed progressively through equilibrium states until the plasma reached 2-3 MK. Then, a series of cooler lines, i.e., Ca X, Ca VII, Ne VI, O IV, and Si III (formed in the temperature range log T = 4.3-6.3 under equilibrium conditions), are emitted at the same time and all evolve in a similar way. Here, we show that the simultaneous emission of lines with such a different formation temperature is due to thermal instability occurring in the flaring plasma as soon as i