Sample records for flammable gaseous element

  1. The effect of time of exposure to elevated temperatures on the flammability limits of some common gaseous fuels in air

    SciTech Connect (OSTI)

    Wierzba, I.; Ale, B.B. [Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering

    1999-01-01T23:59:59.000Z

    The flammability limits of methane, ethylene, propane, and hydrogen were experimentally determined at elevated initial mixture temperatures up to 350 C at atmospheric pressure for upward flame propagation in a steel test tube apparatus. The existence of preignition reactions at these levels of temperatures that may influence the value of the flammability limits was also investigated. The fuel-air mixtures were exposed to elevated temperatures over different periods of time before spark ignition (up to 2 h). It was shown that the flammability limits for methane widened approximately linearly with an increase in the initial mixture temperature over the entire range of temperatures tested and were not affected by the length of the exposure time to these temperatures before spark ignition. However, different behavior was observed for the flammability limits of the other tested fuels--ethylene, propane, and hydrogen. At higher temperatures the flammability limits narrowed and were very significantly affected by the exposure time. The longer was the exposure time of fuel-air mixtures to the elevated temperatures, the narrower were their flammability limits.

  2. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements

    DOE Patents [OSTI]

    Tom, Glenn M. (New Milford, CT); McManus, James V. (Danbury, CT); Luxon, Bruce A. (Stamford, CT)

    1991-08-06T23:59:59.000Z

    Scavenger compositions are disclosed, which have utility for effecting the sorptive removal of hazardous gases containing Group II-VII elements of the Periodic Table, such as are widely encountered in the manufacture of semiconducting materials and semiconductor devices. Gas sorption processes including the contacting of Group II-VII gaseous compounds with such scavenger compositions are likewise disclosed, together with critical space velocity contacting conditions pertaining thereto. Further described are gas contacting apparatus, including mesh structures which may be deployed in gas contacting vessels containing such scavenger compositions, to prevent solids from being introduced to or discharged from the contacting vessel in the gas stream undergoing treatment. A reticulate heat transfer structure also is disclosed, for dampening localized exothermic reaction fronts when gas mixtures comprising Group II-VII constituents are contacted with the scavenger compositions in bulk sorption contacting vessels according to the invention.

  3. On the possible environmental effect in distributing heavy elements beyond individual gaseous halos

    E-Print Network [OSTI]

    Johnson, Sean D; Mulchaey, John S

    2015-01-01T23:59:59.000Z

    We present a study of extended galaxy halo gas through HI and OVI absorption over two decades in projected distance at $z\\approx0.2$. The study is based on a sample of $95$ galaxies from a highly complete ($ > 80\\%$) survey of faint galaxies ($L > 0.1L_*$) with archival quasar absorption spectra and $53$ galaxies from the literature. A clear anti-correlation is found between HI (OVI) column density and virial radius normalized projected distance, $d/R_{\\rm h}$. Strong HI (OVI) absorption systems with column densities greater than $10^{14.0}$ ($10^{13.5}$) cm$^{-2}$ are found for $48$ of $54$ ($36$ of $42$) galaxies at $d R_{\\rm h}$ compared to isolated galaxies ($\\kappa_{\\rm OVI}\\approx0.13$ versus $0.04$) but no excess HI absorption. These findings suggest that environmental effects play a role in distributing heavy elements beyond the enriched gaseous halos of individual galaxies. Finally, we find that differential HI and OVI absorption between early- and late-type galaxies continues from $d < R_{\\rm h}$...

  4. Methodology for flammable gas evaluations

    SciTech Connect (OSTI)

    Hopkins, J.D., Westinghouse Hanford

    1996-06-12T23:59:59.000Z

    There are 177 radioactive waste storage tanks at the Hanford Site. The waste generates flammable gases. The waste releases gas continuously, but in some tanks the waste has shown a tendency to trap these flammable gases. When enough gas is trapped in a tank`s waste matrix, it may be released in a way that renders part or all of the tank atmosphere flammable for a period of time. Tanks must be evaluated against previously defined criteria to determine whether they can present a flammable gas hazard. This document presents the methodology for evaluating tanks in two areas of concern in the tank headspace:steady-state flammable-gas concentration resulting from continuous release, and concentration resulting from an episodic gas release.

  5. Prevention of Porosity Formation and Other Effects of Gaseous Elements in Iron Castings

    SciTech Connect (OSTI)

    Albany Research Center

    2005-04-01T23:59:59.000Z

    Iron foundries have observed porosity primarily as interdendritic porosity in large freezing range alloys such as Ni-Hard I and hypoeutectic high Cr alloys or pinholes and fissure defects in gray and ductile irons. For most iron foundries, porosity problems occur sporadically, but even occasional outbreaks can be costly since even a very small amount of porosity can significantly reduce the mechanical properties of the castings. As a result when porosity is detected, the castings are scrapped and remelted, or when the porosity is undetected, defective parts are shipped to the consumer. Neither case is desirable. This project was designed to examine various factors contributing to the porosity formation in iron castings. Factors such as solubility of gases in liquid and solid iron alloys, surface tension of liquid iron alloys, and permeability of dendritic structures were investigated in terms of their effect on the porosity formation. A method was developed to predict how much nitrogen the molten alloy picks up from air after a given amount of holding time for a given melting practice. It was shown that small batches of iron melts in an induction furnace can end up with very high concentration of nitrogen (near solubility limit). Surface tension of liquid iron alloys was measured as a function of temperature. Effect of minor additions of S, Ti, and Al on the surface tension of liquid iron alloys was investigated. Up to 18% change in surface tension was detected by minor element additions. This translates to the same amount of change in gas pressure required in a bubble of a given size to keep the bubble stable. A new method was developed to measure the permeability of dendritic structures in situ. The innovative aspect of these experiments, with respect to previous interdendritic permeability measurements, was the fact that the dendritic structure was allowed to form in situ and was not cooled and re-heated for permeability tests. A permeability model was developed and tested using the results of the permeability experiments. The permeability model for flow parallel to the columnar dendrites predicted the experimental permeability results closely when the liquid volume fraction data from equilibrium calculations were used. The permeability gradient model was constructed in order to test the impact of interdendritic channel constriction on the flow of liquid through the mushy zone of a casting. The model examines two different regimes: (i) Dendritic solidification regime where the permeability is dominated by changes in liquid volume fraction and dendrite arm spacing, and (ii) Eutectic solidification regime where the permeability is dominated by changes in viscosity of eutectic mixture. It is assumed that the eutectic mixture behaves like a slurry whose viscosity increases with increasing solid fraction. It is envisioned that this model can be developed into a tool that can be very useful for metal casters.

  6. Flammable gas project topical report

    SciTech Connect (OSTI)

    Johnson, G.D.

    1997-01-29T23:59:59.000Z

    The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

  7. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2005-03-03T23:59:59.000Z

    This document describes the qualitative evaluation of frequency and consequences for DST and SST representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant structures, systems and components (SSCs) and/or technical safety requirements (TSRs) were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support WP-13033, Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  8. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2005-02-18T23:59:59.000Z

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  9. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2003-10-09T23:59:59.000Z

    This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSC and/or TSR-level controls.

  10. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect (OSTI)

    Sherburne, Carol [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Remediation, LLC; Osterberg, Paul [Fauske and Associates, LLC, Burr Ridge, IL (United States); Johnson, Tom [Fauske and Associates, LLC, Burr Ridge, IL (United States); Frawely, Thomas [Fauske and Associates, LLC, Burr Ridge, IL (United States)

    2013-01-23T23:59:59.000Z

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since information was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.

  11. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    HU, T.A.

    2005-10-27T23:59:59.000Z

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  12. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    HU TA

    2009-10-26T23:59:59.000Z

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  13. STEADY-STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    HU TA

    2007-10-26T23:59:59.000Z

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

  14. THE FLAMMABILITY ANALYSIS AND TIME TO REACH LOWER FLAMMABILITY LIMIT CALCULATIONS ON THE WASTE EVAPORATION AT 242-A EVAPORATOR

    SciTech Connect (OSTI)

    HU TA

    2007-10-31T23:59:59.000Z

    This document describes the analysis of the waste evaporation process on the flammability behavior. The evaluation calculates the gas generation rate, time to reach 25% and 100% of the lower flammability limit (LFL), and minimum ventilation rates for the 242-A Evaporator facility during the normal evaporation process and when vacuum is lost. This analysis performs flammability calculations on the waste currently within all 28 double-shell tanks (DST) under various evaporation process conditions to provide a wide spectrum of possible flammable gas behavior. The results of this analysis are used to support flammable gas control decisions and support and upgrade to Documented Safety Analysis for the 242-A Evaporator.

  15. Estimation of Flammability Limits of Selected Fluorocarbons with F(sub 2) and CIF(sub3)

    SciTech Connect (OSTI)

    Trowbridge, L.D.

    1999-09-01T23:59:59.000Z

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F(sub 2) and CIF(sub 3). Replacement of CFC-114 with non-ozone-depleting substitutes such as c-C(sub 4)F(sub 8) and C(sub 4)F(sub 10) is planned. Consequently, in the future, these too must be considered potential ''fuels'' in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should ignite? Experimental data on these systems are limited. To assist in answering these questions, a literature search for relevant data was conducted, and mathematical models were developed to serve as tools for predicting potential detonation pressures and estimating (based on empirical correlations between gas mixture thermodynamics and flammability for known systems) the composition limits of flammability for these systems. The models described and documented in this report are enhanced versions of similar models developed in 1992.

  16. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    MEACHAM JE

    2009-10-26T23:59:59.000Z

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

  17. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    MEACHAM JE

    2008-11-17T23:59:59.000Z

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).

  18. The Chemistry of Flammable Gas Generation

    SciTech Connect (OSTI)

    ZACH, J.J.

    2000-10-30T23:59:59.000Z

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  19. Binary mixture flammability characteristics for hazard assessment

    E-Print Network [OSTI]

    Vidal Vazquez, Migvia del C.

    2005-11-01T23:59:59.000Z

    Page 1. Classification of Flammability According to DOT and NFPA.......................5 2. Some Activity Coefficient (G ex Energy) Models..........................................21 3. Input Data Used for COSMO-RS Calculations... MKOPSC Mary Kay O?Connor Process Safety Center NFPA National Fire Protection Association NRTL Non-Random Two Liquids OSHA Occupational Safety and Health Administration PVAMU Prairie View A&M University QM Quantum Mechanics QSPR...

  20. Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste

    SciTech Connect (OSTI)

    HU, T.A.

    2000-04-27T23:59:59.000Z

    This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

  1. Sample Lesson Plan Flammable and Combustible Liquids 1 Lesson Plan

    E-Print Network [OSTI]

    Homes, Christopher C.

    . Explain at least 2 ways to avoid explosion or fire from flammable or combustible liquids. Possible 2000 F. There are two primary hazards associated with flammable and combustible liquids: explosion and fire. In order to prevent these hazards, this standard addresses the primary concern of design

  2. Flammability limits of dusts: Minimum inerting concentrations

    SciTech Connect (OSTI)

    Dastidar, A.G.; Amyotte, P.R. [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Chemical Engineering] [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Chemical Engineering; Going, J.; Chatrathi, K. [Fike Corp., Blue Springs, MO (United States)] [Fike Corp., Blue Springs, MO (United States)

    1999-05-01T23:59:59.000Z

    A new flammability limit parameter has been defined as the Minimum Inerting Concentration (MIC). This is the concentration of inertant required to prevent a dust explosion regardless of fuel concentration. Previous experimental work at Fike in a 1-m{sup 3} spherical chamber has shown this flammability limit to exist for pulverized coal dust and cornstarch. In the current work, inerting experiments with aluminum, anthraquinone and polyethylene dusts as fuels were performed, using monoammonium phosphate and sodium bicarbonate as inertants. The results show that an MIC exists only for anthraquinone inerted with sodium bicarbonate. The other combustible dust and inertant mixtures did not show a definitive MIC, although they did show a strong dependence between inerting level and suspended fuel concentration. As the fuel concentration increased, the amount of inertant required to prevent an explosion decreased. Even though a definitive MIC was not found for most of the dusts an effective MIC can be estimated from the data. The use of MIC data can aid in the design of explosion suppression schemes.

  3. Assessment of gas flammability in transuranic waste container

    SciTech Connect (OSTI)

    Connolly, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Loehr, C.A.; Djordjevic, S.M.; Spangler, L.R. [Benchmark Environmental Corp., Albuquerque, NM (United States)

    1995-12-01T23:59:59.000Z

    The Safety Analysis Report for the TRUPACT-II Shipping Package [Transuranic Package Transporter-II (TRUPACT-II) SARP] set limits for gas generation rates, wattage limits, and flammable volatile organic compound (VOC) concentrations in transuranic (TRU) waste containers that would be shipped to the Waste Isolation Pilot Plant (WIPP). Based on existing headspace gas data for drums stored at the Idaho National Engineering Laboratory (INEL) and the Rocky Flats Environmental Technology Site (RFETS), over 30 percent of the contact-handled TRU waste drums contain flammable VOC concentrations greater than the limit. Additional requirements may be imposed for emplacement of waste in the WIPP facility. The conditional no-migration determination (NMD) for the test phase of the facility required that flame tests be performed if significant levels of flammable VOCs were present in TRU waste containers. This paper describes an approach for investigating the potential flammability of TRU waste drums, which would increase the allowable concentrations of flammable VOCS. A flammability assessment methodology is presented that will allow more drums to be shipped to WIPP without treatment or repackaging and reduce the need for flame testing on drums. The approach includes experimental work to determine mixture lower explosive limits (MLEL) for the types of gas mixtures observed in TRU waste, a model for predicting the MLEL for mixtures of VOCS, hydrogen, and methane, and revised screening limits for total flammable VOCs concentrations and concentrations of hydrogen and methane using existing drum headspace gas data and the model predictions.

  4. Flammability Assessment Methodology Program Phase I: Final Report

    SciTech Connect (OSTI)

    C. A. Loehr; S. M. Djordjevic; K. J. Liekhus; M. J. Connolly

    1997-09-01T23:59:59.000Z

    The Flammability Assessment Methodology Program (FAMP) was established to investigate the flammability of gas mixtures found in transuranic (TRU) waste containers. The FAMP results provide a basis for increasing the permissible concentrations of flammable volatile organic compounds (VOCs) in TRU waste containers. The FAMP results will be used to modify the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (TRUPACT-II SARP) upon acceptance of the methodology by the Nuclear Regulatory Commission. Implementation of the methodology would substantially increase the number of drums that can be shipped to the Waste Isolation Pilot Plant (WIPP) without repackaging or treatment. Central to the program was experimental testing and modeling to predict the gas mixture lower explosive limit (MLEL) of gases observed in TRU waste containers. The experimental data supported selection of an MLEL model that was used in constructing screening limits for flammable VOC and flammable gas concentrations. The MLEL values predicted by the model for individual drums will be utilized to assess flammability for drums that do not meet the screening criteria. Finally, the predicted MLEL values will be used to derive acceptable gas generation rates, decay heat limits, and aspiration time requirements for drums that do not pass the screening limits. The results of the program demonstrate that an increased number of waste containers can be shipped to WIPP within the flammability safety envelope established in the TRUPACT-II SARP.

  5. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect (OSTI)

    MEACHAM, J.E.

    2003-11-10T23:59:59.000Z

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  6. Gaseous Hydrogen Delivery Breakout

    E-Print Network [OSTI]

    Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 detection Pipeline Safety: odorants, flame visibility Compression: cost, reliability #12;Breakout Session goal of a realistic, multi-energy distribution network model Pipeline Technology Improved field

  7. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    2011-07-01T23:59:59.000Z

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

  8. Inert Gas Dilution Effect on the Flammability Limits of Hydrocarbon Mixtures

    E-Print Network [OSTI]

    Zhao, Fuman

    2012-02-14T23:59:59.000Z

    Flammability limit is a most significant property of substances to ensure safety of chemical processes and fuel application. Although there are numerous flammability literature data available for pure substances, for fuel mixtures...

  9. Measurement of flammability in a closed cylindrical vessel with thermal criteria

    E-Print Network [OSTI]

    Wong, Wun K.

    2007-04-25T23:59:59.000Z

    Accurate flammability limit information is necessary for safe handling of gas and liquid mixtures, and safe operation of processes using such mixtures. The flammability limit is the maximum or minimum fuel concentration at which a gas mixture...

  10. Gaseous Hydrogen Delivery Breakout - Strategic Directions for...

    Broader source: Energy.gov (indexed) [DOE]

    Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

  11. Flammability Control In A Nuclear Waste Vitrification System

    SciTech Connect (OSTI)

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25T23:59:59.000Z

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  12. Flammable gas interlock spoolpiece flow response test report

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24T23:59:59.000Z

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  13. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Huckaby, James L.; Bryan, Samuel A.; Johnson, Gerald D.

    2000-07-19T23:59:59.000Z

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, flammability and detonability limits of the gas constituents, and availability of ignition sources. The intrinsic flammability (or non-flammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, and volume of the release and the tank ventilation rate, which are not covered in this report.

  14. Industrial and natural sources of gaseous elemental mercury in the Almadén district (Spain): An updated report on this issue after the ceasing of mining and metallurgical activities in 2003 and major land reclamation works

    SciTech Connect (OSTI)

    Higueras, Pablo, E-mail: pablo.higueras@uclm.es [Departamento de Ingeniería Geológica y Minera, Escuela Universitaria Politécnica de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén (Spain) [Departamento de Ingeniería Geológica y Minera, Escuela Universitaria Politécnica de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén (Spain); Instituto de Geología Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén (Spain); María Esbrí, José [Departamento de Ingeniería Geológica y Minera, Escuela Universitaria Politécnica de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén (Spain) [Departamento de Ingeniería Geológica y Minera, Escuela Universitaria Politécnica de Almadén, Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén (Spain); Instituto de Geología Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén (Spain); Oyarzun, Roberto; Llanos, Willans [Instituto de Geología Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén (Spain) [Instituto de Geología Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén (Spain); Departamento de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense, 28040 Madrid (Spain); Martínez-Coronado, Alba [Instituto de Geología Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén (Spain)] [Instituto de Geología Aplicada (IGeA), Universidad de Castilla-La Mancha, Plaza M. Meca 1, 13400 Almadén (Spain); and others

    2013-08-15T23:59:59.000Z

    Two events during the last decade had major environmental repercussions in Almadén town (Spain). First it was the ceasing of activities in the mercury mine and metallurgical facilities in 2003, and then the finalization of the restoration works on the main waste dump in 2008. The combination of both events brought about a dramatic drop in the emissions of gaseous elemental mercury (GEM) to the atmosphere. Although no one would now call the Almadén area as ‘mercury-free’, the GEM levels have fallen beneath international reference safety levels for the first time in centuries. This has been a major breakthrough because in less than one decade the site went from GEM levels in the order of “tens of thousands” to mere “tens” nanogram per cubic meter. Although these figures are per se a remarkable achievement, they do not mark the end of the environmental concerns in the Almadén district. Two other sites remain as potential environmental hazards. (1) The Las Cuevas mercury storage complex, a partially restored ex-mining site where liquid mercury is being stored. The MERSADE Project (LIFE—European Union) has tested the Las Cuevas complex as a potential site for the installation of a future European prototype safe deposit of surplus mercury from industrial activities. Despite restoration works carried out in 2004, the Las Cuevas complex can still be regarded as hotspot of mercury contamination, with high concentrations above 800 ?g g{sup ?1} Hg{sub soil} and 300 ng m{sup ?3} Hg{sub gas}. However, as predicted by air contamination modeling using the ISC-AERMOD software, GEM concentrations fade away in a short distance following the formation of a NW–SE oriented narrow plume extending for a few hundred meters from the complex perimeter. (2) Far more dangerous from the human health perspective is the Almadenejos area, hosting the small Almadenejos village, the so-called Cerco de Almadenejos (CDA; an old metallurgical precinct), and the mines of La Nueva Concepción, La Vieja Concepción and El Entredicho. The CDA is an old metallurgical site that operated between 1794 and 1861, leaving behind a legacy of extremely contaminated soils (mean concentration=4220 ?g g{sup ?1} Hg) and GEM emissions that in summer can reach levels up to 4,000–5,000 ng m{sup ?3}. Thus the CDA remains the sole ‘urban’ site in the district surpassing GEM international reference safety levels. In order to prevent these emissions, the CDA requires immediate action regarding restoration works. These could involve the full removal of soils or their permanent capping to create an impermeable barrier.

  15. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2

    SciTech Connect (OSTI)

    HU, T.A.

    2003-09-30T23:59:59.000Z

    Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail Report in the Tank Waste Information Network System, and the waste temperature data in the Surveillance Analysis Computer System (SACS) (dated July 2003). However, the release rate of methane, ammonia, and nitrous oxide is based on the input data (dated October 1999) as stated in Revision 0 of this report. Scenarios for adding waste to existing waste levels (dated July 2003) have been studied to determine the gas generation rates and the effect of smaller dome space on the flammability limits to address the issues of routine water additions and other possible waste transfer operations. In the flammability evaluation with zero ventilation, the sensitivity to waste temperature and to water addition was calculated for double-shell tanks 241-AY-102, 241-AN-102,241-AZ-101,241-AN-107,241-AY-101 and 241-AZ-101. These six have the least margin to flammable conditions among 28 double-shell tanks.

  16. Retained Gas Sampling Results for the Flammable Gas Program

    SciTech Connect (OSTI)

    J.M. Bates; L.A. Mahoney; M.E. Dahl; Z.I. Antoniak

    1999-11-18T23:59:59.000Z

    The key phenomena of the Flammable Gas Safety Issue are generation of the gas mixture, the modes of gas retention, and the mechanisms causing release of the gas. An understanding of the mechanisms of these processes is required for final resolution of the safety issue. Central to understanding is gathering information from such sources as historical records, tank sampling data, tank process data (temperatures, ventilation rates, etc.), and laboratory evaluations conducted on tank waste samples.

  17. Solid and gaseous fuels

    SciTech Connect (OSTI)

    Schultz, H.; Wells, A.W.; Frommell, E.A.; Flenory, P.B.

    1987-06-15T23:59:59.000Z

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids covered during the period of October 1984 through Sept 30, 1986. Energy Research Abstracts and Chemical Abstracts were used as the reference sources. In most categories the volume of material available made it necessary to limit the number of publications in the review. This review also surveys publications concerned with methods for the chemical, physical, and instrumental analyses of gaseous fuels and related materials. Articles of significance appearing in foreign journals and the patent literature that were not available at the time of the last review are also included. Chemical Abstracts and Energy Research Abstracts were used extensively as reference sources. Some selectivity was necessary in order to include the most pertinent publications in preparing this review.

  18. Gaseous Flows in Galaxies

    E-Print Network [OSTI]

    F. Combes

    2007-09-02T23:59:59.000Z

    The gas component plays a major role in the dynamics of spiral galaxies, because of its dissipative character, and its ability to exchange angular momentum with stars in the disk. Due to its small velocity dispersion, it triggers gravitational instabilities, and the corresponding non-axisymmetric patterns produce gravity torques, which mediate these angular momentum exchanges. When a srong bar pattern develops with the same pattern speed all over the disk, only gas inside corotation can flow towards the center. But strong bars are not long lived in presence of gas, and multiple-speed spiral patterns can develop between bar phases, and help the galaxy to accrete external gas flowing from cosmic filaments. The gas is then intermittently driven to the galaxy center, to form nuclear starbursts and fuel an active nucleus. The various time-scales of these gaseous flows are described.

  19. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    January 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - January 2013 January 2013 Review of the Portsmouth Gaseous Diffusion Plant Work Planning and Control...

  20. Independent Activity Report, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    Portsmouth Gaseous Diffusion Plant - August 2011 Independent Activity Report, Portsmouth Gaseous Diffusion Plant - August 2011 August 2011 Orientation Visit to the Portsmouth...

  1. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    SciTech Connect (OSTI)

    LA Mahoney; JL Huckaby; SA Bryan; GD Johnson

    2000-07-21T23:59:59.000Z

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

  2. Is the situation and immediate threat to life and health? Spill/Leak/Release Medical Emergency Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor? Possible Fire / Natural Gas

    E-Print Network [OSTI]

    ? Possible Fire / Natural Gas (including chemicals and bio agents") (not including chemicals or bio agents Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor

  3. Benzene/nitrous oxide flammability in the precipitate hydrolysis process

    SciTech Connect (OSTI)

    Jacobs, R A [Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.

    1989-09-18T23:59:59.000Z

    The HAN (hydroxylamine nitrate) process for destruction of nitrite in precipitate hydrolysis produces nitrous oxide (N2O) gas as one of the products. N2O can form flammable mixtures with benzene which is also present due to radiolysis and hydrolysis of tetraphenylborate. Extensive flame modeling and explosion testing was undertaken to define the minimum oxidant for combustion of N2O/benzene using both nitrogen and carbon dioxide as diluents. The attached memorandum interprets and documents the results of the studies.

  4. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures 

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13T23:59:59.000Z

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  5. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13T23:59:59.000Z

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  6. Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate Heat Exchanger Sheila C ........................................................... 8 3. Average relative difference (%) in calculated heat transfer rates for refrigerants and HTF

  7. Flammable gas tank waste level reconciliation for 241-S-111

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.

    1997-06-23T23:59:59.000Z

    Fluor Daniel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-S-111. The trapped gas evaluation document states that Tank S-111 exceeds the 25% of the lower flammable-limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank S-111 transfers. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of the unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank S-111 initially received waste from REDOX in 1952, and after April 1974, primarily received processed waste slurry from the 242-S Evaporator/Crystallizer and transferred supernatant waste to Tank S-102. From the FDNW review and comparisons of the Welty Report versus other daily records for Tank S-111, FDNW determined that the majority of the time, the Welty Report is consistent with daily records. Surface level decreases that occurred following saltwell pumping were identified as unaccounted for decreases in the Welty Report, however they were probably a continued settlement caused by saltwell pumping of the interstitial liquids. Because the flammable/trapped gas issue is linked to the unexplained increase in the surface level, FDNW recommends that all occurrence reports, concerning tank waste level increases or decreases from 1970 through 1980, be reevaluated for acceptability of the evaluation as to the root cause of the occurrence.

  8. Flammable gas tank safety program: Technical basis for gas analysis and monitoring

    SciTech Connect (OSTI)

    Sherwood, D.J.

    1995-09-08T23:59:59.000Z

    Flammable gases generated in radioactive liquids. Twenty-five high level radioactive liquid waste storage tanks located underground at the Hanford Site are on a Flammable Gas Watch List because they contain waste which tends to retain the gases generated in it until rather large quantities are available for sudden release to the tank head space; if a tank is full it has little dome space, and a flammable concentration of gases could be produced--even if the tank is ventilated. If the waste has no tendency to retain gas generated in it then a continual flammable gas concentration in the tank dome space is established by the gas production rate and the tank ventilation rate (or breathing rate for unventilated tanks); this is also a potential problem for Flammable Gas Watch List tanks, and perhaps other Hanford tanks too. All Flammable Gas Watch List tanks will be fitted with Standard Hydorgen Monitoring Systems so that their behavior can be observed. In some cases, such as tank 241-SY-101, the data gathered from such observations will indicate that tank conditions need to be mitigated so that gas release events are either eliminated or rendered harmless. For example, a mixer pump was installed in tank 241-SY-101; operating the pump stirs the waste, replacing the large gas release events with small releases of gas that are kept below twenty-five percent of the lower flammability limit by the ventilation system. The concentration of hydrogen measured in Hanford waste tanks is greater than that of any other flammable gas. Hydrogen levels measured with a Standard Hydrogen Monitoring System in excess of 0.6 volume percent will cause Westinghouse Hanford Company to consider actions which will decrease the amount of flammable gas in the tank

  9. Fuel Cells and Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsFuel Cells and Renewable Gaseous FuelsSarah Studer, ORISE Fellow—Fuel Cell Technologies Office, U.S. Department of Energy

  10. The Promise of Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsThe Promise of Renewable Gaseous FuelsJeffrey Reed, Director of Business Strategy and Development, Southern California Gas Company/San Diego Gas &...

  11. Flammable gas tank waste level reconciliation for 241-SX-105

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23T23:59:59.000Z

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980.

  12. Flammable gas tank waste level reconcilliation for 241-SX-102

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23T23:59:59.000Z

    Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ``Wallet Report`` is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980.

  13. WAPD-SC-545 HYDROGEN FLAMMABILITY DATA AND APPLICATION TO PWR

    Office of Scientific and Technical Information (OSTI)

    WAPD-SC-545 HYDROGEN FLAMMABILITY DATA AND APPLICATION TO PWR LOSS-OF-COOLANT ACCIDENT CONTRACT A T - I M - G E N - H BETTIS PLANT PITTSBURGH, PENNSYLVANIA Operated for the U.S....

  14. High Flash-point Fluid Flow System Aerosol Flammability Study and Combustion Mechanism Analysis

    E-Print Network [OSTI]

    Huang, Szu-Ying

    2013-12-02T23:59:59.000Z

    The existence of flammable aerosols creates fire and explosion hazards in the process industry. Due to the operation condition of high pressure circumstances, heat transfer fluids tend to form aerosols when accidental leaking occurs on pipelines...

  15. Predicting flammable gas mixtures in Hanford double-contained receiver tanks

    SciTech Connect (OSTI)

    Hedengren, D.C.

    1998-05-13T23:59:59.000Z

    This study presents a methodology to estimate the maximum concentrations of flammable gases (ammonia, hydrogen, and methane) which could exist in the vapor space of a double-contained receiver tank (DCRT). DCRTs are temporary storage tanks which receive highly radioactive liquid wastes from salt well pumping of Hanford single-shell tanks (SST). The methodology of this study could be used in other applications involving the storage and transfer of radioactive liquid wastes which generate or contain various dissolved flammable gases.

  16. Summary of flammable gas hazard and potential consequences in tank waste remediation system facility at the Hanford site

    SciTech Connect (OSTI)

    Van Vleet, R.J., Westinghouse Hanford

    1996-12-11T23:59:59.000Z

    This document provides a summary of the flammable gas program since 1992. It provides the best understanding of generation, retention, release of flammable gases. It gives a composition for each of the flammable gas tanks, calculates postulated concentrations in the event of a release, calculates the pressure obtained during a burn, and provides radiological and toxicological consequences. Controls from the analysis are found in WHC-SD-WM-SAR-067.

  17. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect (OSTI)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01T23:59:59.000Z

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  18. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    Plant - November 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - November 2013 November 5, 2013 Review of Preparedness for Severe Natural Phenomena Events...

  19. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - April 2013 April 2013 Review of the Integrated Safety Management System Phase I Verification Review at...

  20. Gaseous Detectors: recent developments and applications

    E-Print Network [OSTI]

    Maxim Titov

    2010-08-24T23:59:59.000Z

    Since long time, the compelling scientific goals of future high energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multiwire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volume with low mass budget, have been playing an important role in many fields of physics. Advances in photo-lithography and micro-processing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high energy physics, MPGD applications has expanded to nuclear physics, UV and visible photon detection, astroparticle and neutrino physics, neutron detection and medical physics.

  1. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

    2010-04-01T23:59:59.000Z

    Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

  2. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

    1980-08-12T23:59:59.000Z

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  3. Solid and gaseous fuels. [Review

    SciTech Connect (OSTI)

    Schultz, H.; Wells, A.W.; Mima, M.J.

    1985-04-01T23:59:59.000Z

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids. Energy Research Abstracts and Chemical Abstracts were used as reference sources. The volume of material available made it necessary to limit the number of publications in the review. This review also surveys publications concerned with methods for the chemical, physical, and instrumental analyses of gaseous fuels and related materials. Articles of significance appearing in foreign journals and the patent literature that were not available at the time of the last review are also included. Chemical Abstracts and Energy Research Abstracts were used extensively as reference sources. Some selectivity was necessary in order to include the most pertinent publications in preparing this review. 386 references.

  4. Effects of Initial Pressure on the Flammability Limit of OX-Air Mixture with 20-L-Appartus

    E-Print Network [OSTI]

    Chen, Shu-Ching

    information on the reaction behaviors of the specific substance and possible fire and explosion hazards hazards may be encountered within the flammability limits. A fire or an explosion might occur if a flame limits, minimum oxygen concentration, maximum explosion overpressure, flammability zone), which were

  5. Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigat...

    Office of Environmental Management (EM)

    Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) Area Plume Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit)...

  6. Combination free electron and gaseous laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  7. Flammability of selected heat resistant alloys in oxygen gas mixtures

    SciTech Connect (OSTI)

    Zawierucha, R.; McIlroy, K.; Million, J.F. [Praxair, Inc., Tonawanda, NY (United States)

    1995-12-31T23:59:59.000Z

    Within recent years, the use of oxygen has increased in applications where elevated temperatures and corrosion may be significant factors. In such situations, traditional alloys used in oxygen systems will not be adequate. Where alternative alloys must be utilized, based upon environmental requirements, it is essential that they may be characterized with respect to their ignition and combustion resistance in oxygen. Promoted ignition and promoted ignition-combustion are terms which have been used to describe a situation where a substance with low oxygen supports the combustion of a compatibility ignites and more ignition resistant material. In this paper, data will be presented on the promoted ignition-combustion behavior of selected heat resistant engineering alloys that may be considered for gaseous oxygen applications in severe environments. In this investigation, alloys have been evaluated via both flowing and static (fixed volume) approaches using a rod configuration. Oxygen-nitrogen gas mixtures with compositions ranging from approximately 40 to 99.7% oxygen at pressures of 3.55 to 34.6 MPa were used in the comparative studies.

  8. Dry deposition of gaseous elemental iodine on water

    E-Print Network [OSTI]

    Allen, Michael Dana

    1974-01-01T23:59:59.000Z

    after they strike the surface. Aerodynamic mechanisms of mass transport have previously been listed; processes by which particles or gases "stick" to a collection medium are vagueIy reported as impaction, adsorption, electrostatic forces, snd... and vapors. The height at which the (4) volumetric concentration is measured should 'be reported in conJunction with an experimental value of V, but, in geners1, except for very close to the surface, the concentration does not change appreciably...

  9. EFFECTS OF HYDROGEN ADDITION ON THE MARKSTEIN LENGTH AND FLAMMABILITY LIMIT

    E-Print Network [OSTI]

    Im, Hong G.

    combustion at lean mixture conditions. In the case of natural gas engines, enriching the fuel with hydrogenEFFECTS OF HYDROGEN ADDITION ON THE MARKSTEIN LENGTH AND FLAMMABILITY LIMIT OF STRETCHED METHANE, Ann Arbor, MI, USA A computational study is performed to investigate the effects of hydrogen addition

  10. Effect of Hydrogen Addition on the Flammability Limit of Stretched Methane/Air Premixed Flames

    E-Print Network [OSTI]

    Im, Hong G.

    ], thereby enabling stable combustion at lean mixture conditions. In the case of natural gas engines, enriching the fuel with hydrogen has the proven benefits of improving the combustion stability and reducingEffect of Hydrogen Addition on the Flammability Limit of Stretched Methane/Air Premixed Flames

  11. MESERAN Test Results for Elimination of Flammable Solvents in Wipe Applications at Pantex

    SciTech Connect (OSTI)

    M. G. Benkovich

    2005-03-30T23:59:59.000Z

    In recent years, efforts have been made within the nuclear weapons complex (National Nuclear Security Administration) of the Department of Energy (DOE) to replace Resource Conservation and Recovery Act (RCRA) regulated solvents (i.e., flammable, toxic, corrosive, and reactive) and ozone-depleting chemicals (ODC) with more benign alternatives. Within the National Nuclear Security Administration (NNSA) and the Department of Defense (DoD) sectors, these solvents are used for cleaning hardware during routine maintenance operations. A primary goal of this study is to replace flammable solvents for wiping applications. Two cleaners, including a hydrofluoroether (HFE) and an azeotrope of the HFE and isopropyl alcohol (IPA), have been studied as potential replacements for flammable solvents. Cleaning efficacy, short-term and longterm materials compatibility, corrosion, drying times, flammability, environment, safety and health (ES&H) issues and accelerated aging studies are among the tests that are being conducted and that are used to screen candidate solvents by the interagency team performing this work. The results are compared to the traditionally used isopropyl alcohol, which serves as the baseline cleaner. This report details the results of MESERAN (Measurement and Evaluation of Surfaces by Evaporative Rate ANalysis) testing performed at the Kansas City Plant (KCP) to quantify the cleaning efficacy on samples contaminated with the various contaminants and cleaned by wiping with the various solvents being evaluated.

  12. A safety assessment of rotary mode core sampling in flammable gas single shell tanks: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Raymond, R.E.

    1996-04-15T23:59:59.000Z

    This safety assessment (SA) addresses each of the required elements associated with the installation, operation, and removal of a rotary-mode core sampling (RMCS) device in flammable-gas single-shell tanks (SSTs). The RMCS operations are needed in order to retrieve waste samples from SSTs with hard layers of waste for which push-mode sampling is not adequate for sampling. In this SA, potential hazards associated with the proposed action were identified and evaluated systematically. Several potential accident cases that could result in radiological or toxicological gas releases were identified and analyzed and their consequences assessed. Administrative controls, procedures and design changes required to eliminate or reduce the potential of hazards were identified. The accidents were analyzed under nine categories, four of which were burn scenarios. In SSTS, burn accidents result in unacceptable consequences because of a potential dome collapse. The accidents in which an aboveground burn propagates into the dome space were shown to be in the ``beyond extremely unlikely`` frequency category. Given the unknown nature of the gas-release behavior in the SSTS, a number of design changes and administrative controls were implemented to achieve these low frequencies. Likewise, drill string fires and dome space fires were shown to be very low frequency accidents by taking credit for the design changes, controls, and available experimental and analytical data. However, a number of Bureau of Mines (BOM) tests must be completed before some of the burn accidents can be dismissed with high confidence. Under the category of waste fires, the possibility of igniting the entrapped gases and the waste itself were analyzed. Experiments are being conducted at the BOM to demonstrate that the drill bit is not capable of igniting the trapped gas in the waste. Laboratory testing and thermal analysis demonstrated that, under normal operating conditions, the drill bit will not create high enough temperatures to initiate a propagating reaction in the waste. However, system failure that coincides in a waste layer with high organic content and low moisture may initiate an exothermic reaction in the waste. Consequently, a conservative approach based on the current state of the knowledge resulted in limiting the drilling process to a subset of the flammable-gas tanks. Accidents from the chemical reactions and criticality category are shown to result in acceptable risk. A number of accidents are shown to potentially result in containment (tank liner) breach below the waste level. Mitigative features are provided for these accidents. Gas-release events without burn also are analyzed, and radiological and toxicological consequences are shown to be within risk guidelines. Finally, the consequences of potential spills are shown to be within the risk guidelines.

  13. Flammable Gas Refined Safety Analysis Tool Software Verification and Validation Report for Resolve Version 2.5

    SciTech Connect (OSTI)

    BRATZEL, D.R.

    2000-09-28T23:59:59.000Z

    The purpose of this report is to document all software verification and validation activities, results, and findings related to the development of Resolve Version 2.5 for the analysis of flammable gas accidents in Hanford Site waste tanks.

  14. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels

    SciTech Connect (OSTI)

    Gardiner, D.; Bardon, M.; Pucher, G.

    2008-10-01T23:59:59.000Z

    Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

  15. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01T23:59:59.000Z

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

  16. Flammability and Combustion Behaviors in Aerosols Formed by Industrial Heat Transfer Fluids Produced by the Electrospray Method

    E-Print Network [OSTI]

    Lian, Peng

    2012-10-19T23:59:59.000Z

    The existence of flammable aerosols presents a high potential for fire hazards in the process industry. Various industrial fluids, most of which operate at elevated temperatures and pressures, can be atomized when released under high pressure...

  17. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    SciTech Connect (OSTI)

    Bratzel, D.R.

    1998-04-17T23:59:59.000Z

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.

  18. Cleaning and materials compatibility test results for elimination of flammable solvents in wipe applications.

    SciTech Connect (OSTI)

    Lopez, Edwin Paul

    2005-06-01T23:59:59.000Z

    In recent years, efforts have been made within the nuclear weapons complex (National Nuclear Security Administration) of the Department of Energy (DOE) to replace Resource Conservation and Recovery Act (RCRA) regulated solvents (i.e., flammable, toxic, corrosive, and reactive) and ozone-depleting chemicals (ODC) with more benign alternatives. Within the National Nuclear Security Administration (NNSA) and the Department of Defense (DoD) sectors, these solvents are used for cleaning hardware during routine maintenance operations. A primary goal of this study is to replace flammable solvents used in wiping applications. Two cleaners, including a hydrofluoroether (HFE) and an azeotrope of the HFE and isopropyl alcohol (IPA), have been studied as potential replacements for flammable solvents. Cleaning efficacy, short-term and long-term materials compatibility, corrosion, drying times, flammability, environment, safety and health (ES&H) and accelerated aging issues were among the experiments used to screen candidate solvents by the interagency team performing this work. This report presents cleaning efficacy results as determined by the contact angle Goniometer as well as materials compatibility results of various metal alloys and polymers. The results indicate that IPA (baseline cleaner) and the HFE/IPA azeotrope are roughly equivalent in their ability to remove fluorinated grease, silicone grease, and a simulated finger print contaminant from various metal alloys. All of the ASTM sandwich and immersion corrosion tests with IPA, HFE or the HFE/IPA azeotrope on metal alloys showed no signs of corrosion. Furthermore, no deleterious effects were noted for polymeric materials immersed in IPA, HFE, or the HFE/IPA azeotrope.

  19. Experimental measurements and modeling prediction of flammability limits of binary hydrocarbon mixtures

    E-Print Network [OSTI]

    Zhao, Fuman

    2009-05-15T23:59:59.000Z

    Page 4.5 Temperature (top) and pressure (bottom) profiles for violently continuous flame propagation???????????????????..47 4.6 Flame propagation profiles with different methane concentrations in air???48 4.7 Determination of LFL... of methane in air using thermal criterion?????..50 4.8 Determination of LFL of ethylene in air using thermal criterion???...??..51 4.9 Lower flammability limits of methane and n-butane mixtures in air at standard conditions...

  20. Gaseous insulators for high voltage electrical equipment

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

    1981-01-01T23:59:59.000Z

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  1. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    SciTech Connect (OSTI)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21T23:59:59.000Z

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  2. Methods and systems for deacidizing gaseous mixtures

    DOE Patents [OSTI]

    Hu, Liang

    2010-05-18T23:59:59.000Z

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  3. Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop

    Broader source: Energy.gov [DOE]

    Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

  4. Gaseous modification of MCrAlY coatings

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01T23:59:59.000Z

    The present invention generally describes methods for modifying MCrAlY coatings by using gaseous carburization, gaseous nitriding or gaseous carbonitriding. The modified MCrAlY coatings are useful in thermal barrier coating systems, which may be used in gas turbine engines.

  5. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    SciTech Connect (OSTI)

    DOUGLAS, J.G.

    2006-07-06T23:59:59.000Z

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating agent overestimate the value of the VOCs in a sample. By overestimating the VOC content of a sample, we want to minimize false negatives. A false negative is defined as incorrectly estimating the VOC content of the sample to be below programmatic action limits when, in fact, the sample,exceeds the action limits. The disadvantage of overestimating the flammable VOC content of a sample is that additional cost may be incurred because additional sampling and GC-MS analysis may be required to confirm results over programmatic action limits. Therefore, choosing an appropriate calibration standard for the Ar-PDHID is critical to avoid false negatives and to minimize additional analytical costs.

  6. Report on ignitability testing of flammable gasses in a core sampling drill string

    SciTech Connect (OSTI)

    Witwer, K.S., Westinghouse Hanford

    1996-12-01T23:59:59.000Z

    This document describes the results from testing performed at the Pittsburgh Research Center to determine the effects of an ignition of flammable gasses contained in a core sampling drill string. Testing showed that 1) An ignition of stoichiometric hydrogen and air in a vented 30 or 55 ft length of drill string will not force 28`` or more of water out the bottom of the drill string, and 2) An ignition of this same gas mixture will not rupture a vented or completely sealed drill string.

  7. Software digitizer for high granular gaseous detector

    E-Print Network [OSTI]

    Haddad, Y; Boudry, V

    2015-01-01T23:59:59.000Z

    A sampling calorimeter using gaseous sensor layers with digital readout [1] is near perfect for ``Particle Flow Algorithm'' [2,3] approach, since it is homogeneous over large surfaces, robust, cost efficient, easily segmentable to any readout pad dimension and size and almost insensitive to neutrons. Monte-Carlo (MC) programs such as GEANT4 [4] simulate with high precision the energy deposited by particles. The sensor and electronic response associated to a pad are calculated in a separate ``digitization'' process. We develop a general method for simulating the pad response using the spatial information from a simulation done at high granularity. The digitization method proposed here has been applied to gaseous detectors including Glass Resistive Plate Chambers (GRPC) and MicroMegas, and validated on test beam data. Experimental observable such as pad multiplicity and mean number of hits at different thresholds have been reproduced with high precision.

  8. Uranium enrichment export control guide: Gaseous diffusion

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  9. Diffusion method of seperating gaseous mixtures

    DOE Patents [OSTI]

    Pontius, Rex B. (Rochester, NY)

    1976-01-01T23:59:59.000Z

    A method of effecting a relatively large change in the relative concentrations of the components of a gaseous mixture by diffusion which comprises separating the mixture into heavier and lighter portions according to major fraction mass recycle procedure, further separating the heavier portions into still heavier subportions according to a major fraction mass recycle procedure, and further separating the lighter portions into still lighter subportions according to a major fraction equilibrium recycle procedure.

  10. Gaseous and particulate emissions from a DC arc melter

    SciTech Connect (OSTI)

    Overcamp, T.J.; Speer, M.P.; Griner, S.J.; Cash, D.M. [Clemson Univ., Anderson, SC (United States)

    1997-12-31T23:59:59.000Z

    This paper presents the results of the gaseous and particulate emissions from eight experimental tests of a DC arc melter to treat simulated Savannah River soils contaminated with metals, surrogates for radionuclides, and organic debris. The gaseous analyses reported on the concentrations of oxygen, hydrogen, carbon monoxide, carbon dioxide, hydrogen, methane, nitric oxide, and nitrogen dioxide. The carbon dioxide concentration was high for all runs. For the runs with an air purge, the carbon monoxide concentration ranged up to 10% in the runs with the debris and 2% in the runs without debris. Hydrogen ranged up to 5% by with debris and up to 1% without debris. The methane concentration ranged up to 7,000 ppm{sub v} for the runs with debris and 2,000 ppm for the runs without debris. With a nitrogen purge, oxygen concentrations were less than 1%. The carbon dioxide concentrations ranged from 3 to 15%. Much of this carbon dioxide was probably due the carbonates added to the feed material. The carbon monoxide concentration ranged up to 20% with the debris and 7% without debris. Hydrogen was above 6% in with debris and up to 6% without debris. The methane concentration ranged up to 10,000 ppm{sub v} with debris and 4,000 ppm{sub v} without debris. The particulate concentrations exiting ranged from 32 to 145 g/m{sup 3}. From the chemical analyses, the primary elements were silicon and calcium. The CHN analyses indicated that carbon, probably as carbonates, are an additional component in the particulate matter. The estimated emissions were at a level of 3% or less for cerium, up to 7% for nickel, and 11 to 30% for cesium.

  11. ASSESSMENT OF THE IMPACT OF TOA PARTITIONING ON DWPF MELTER OFF-GAS FLAMMABILITY

    SciTech Connect (OSTI)

    Daniel, G.

    2013-06-18T23:59:59.000Z

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar? L in the effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.

  12. Band Formation during Gaseous Diffusion in Aerogels

    E-Print Network [OSTI]

    M. A. Einarsrud; F. A. Maao; A. Hansen; M. Kirkedelen; J. Samseth

    1997-06-18T23:59:59.000Z

    We study experimentally how gaseous HCl and NH_3 diffuse from opposite sides of and react in silica aerogel rods with porosity of 92 % and average pore size of about 50 nm. The reaction leads to solid NH_4Cl, which is deposited in thin sheet-like structures. We present a numerical study of the phenomenon. Due to the difference in boundary conditions between this system and those usually studied, we find the sheet-like structures in the aerogel to differ significantly from older studies. The influence of random nucleation centers and inhomogeneities in the aerogel is studied numerically.

  13. Gaseous Hydrogen Delivery | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion StudyForecasting. |October 3,andDepartmentGaseous hydrogen

  14. NGPL Production, Gaseous Equivalent at Processing Plants

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPL Production, Gaseous

  15. Thermal conductivity of graphene nanoribbons in noble gaseous environments

    SciTech Connect (OSTI)

    Zhong, Wei-Rong, E-mail: wrzhong@hotmail.com; Xu, Zhi-Cheng; Zheng, Dong-Qin [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn [Laboratory of Quantum Information Technology, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China)

    2014-02-24T23:59:59.000Z

    We investigate the thermal conductivity of suspended graphene nanoribbons in noble gaseous environments using molecular dynamics simulations. It is reported that the thermal conductivity of perfect graphene nanoribbons decreases with the gaseous pressure. The decreasing is more obvious for the noble gas with large atomic number. However, the gaseous pressure cannot change the thermal conductivity of defective graphene nanoribbons apparently. The phonon spectra of graphene nanoribbons are also provided to give corresponding supports.

  16. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  17. Flammability of some ornamental species in wildland-urban interfaces in Southeastern France: laboratory assessment at particle level.

    E-Print Network [OSTI]

    Boyer, Edmond

    ) expected under climate change, together with the high flammability of Mediterranean fuels, implies higher for controlling wildfire (Stephens 2005). In the Mediterranean region, the incidence of fire is often higher incidence of extreme climate events (very high summer temperatures, strong winds and drought periods

  18. Elements & Compounds Atoms (Elements)

    E-Print Network [OSTI]

    Frey, Terry

    #12;Elements & Compounds #12;Atoms (Elements) Molecules (Compounds) Cells Elements & Compounds #12 #12;First shell Second shell Third shell Hydrogen 1H Lithium 3Li Sodium 11Na Beryllium 4Be Magnesium energy Higher energy (a) A ball bouncing down a flight of stairs provides an analogy for energy levels

  19. Orientation Visit to the Portsmouth Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    Analysis (DSA) and Technical Safety Requirements (TSR) for Portsmouth Gaseous Diffusion Plant Category 2 Non-leased Facilities: X-345 Special Nuclear Material Storage Facility;...

  20. The Thermodynamics of Gaseous, Cuprous Chloride Monomer and Trimer

    E-Print Network [OSTI]

    Brewer, Leo

    2010-01-01T23:59:59.000Z

    No.W-7405-eng~48B TIiE THERMODYNAMICS OF GASEOUS" CUPROUSCu(s) + HCl::= I Thermodynamics of Vaporization to Monomeric

  1. Non-Destructive Analysis Calibration Standards for Gaseous Diffusion...

    Energy Savers [EERE]

    surrogates are required to verify and validate NDA methods used to support characterization of gaseous diffusion equipment within the D&D project. Because working reference...

  2. Software digitizer for high granular gaseous detector

    E-Print Network [OSTI]

    Y. Haddad; M. Ruan; V. Boudry

    2014-05-06T23:59:59.000Z

    A sampling calorimeter equipped with gaseous sensor layers with digital readout is near perfect for "Particle Flow Algorithm" approach, since it is homogeneous over large surfaces, robust, cost efficient, easily segmentable to any readout pad dimension and size and almost insensitive to neutrons. The response of a finely segmented digital calorimeter is characterized by track efficiency and multiplicity. Monte Carlo (MC) programs such as GEANT4 simulate with high precision the energy deposited by particles. The sensor and electronic response associated to a pad are calculated in a separate "digitization" process. We developed a general method for simulating the pad response, a digitization, reproducing efficiency and multiplicity, using the spatial information from a simulation done at higher granularity. The digitization method proposed here has been applied to gaseous detectors including Glass Resistive Plate Chambers (GRPC) and MicroMegas. Validating the method on test beam data, experimental observables such as efficiency, multiplicity and mean number of hits at different thresholds have been reproduced with high precision.

  3. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-09-28T23:59:59.000Z

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  4. The Transuranium Elements

    E-Print Network [OSTI]

    Hyde, Earl K.; Seaborg, Glenn T.

    1956-01-01T23:59:59.000Z

    uranium hexa- fluoride, can be made by the reaction of pure gaseous fluorine on plutonium tetrafluoride

  5. Spectral modeling of gaseous metal disks around DAZ white dwarfs

    E-Print Network [OSTI]

    Barnstedt, Jürgen

    been found at G29-38, the hypothesis was put forward that a dust cloud around the white dwarf causesSpectral modeling of gaseous metal disks around DAZ white dwarfs Klaus Werner, Thorsten Nagel for the first non-LTE modeling of gaseous metal disks around single DAZ white dwarfs recently discovered by G

  6. 2011 GASEOUS IONS GORDON RESEARCH CONFERENCE

    SciTech Connect (OSTI)

    Scott Anderson

    2011-03-04T23:59:59.000Z

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The conference will cover theory and experiments, and systems ranging from molecular to biological to clusters to materials. The meeting goal continues to be bringing together scientists interested in fundamentals, with those applying fundamental phenomena to a wide range of practical problems. Each of the ten conference sessions will focus on a topic within this spectrum, and there will also be poster sessions for contributed papers, with sufficient space and time to allow all participants to present their latest results. To encourage active participation by young investigators, about ten of the poster abstracts will be selected for 15 minute 'hot topic' talks during the conference sessions. Hot topic selection will be done about a month before the meeting. Funds should be available to offset the participation cost for young investigators.

  7. Simulating the Gaseous Halos of Galaxies

    E-Print Network [OSTI]

    Tobias Kaufmann; James S. Bullock; Ari Maller; Taotao Fang

    2008-01-28T23:59:59.000Z

    Observations of local X-ray absorbers, high-velocity clouds, and distant quasar absorption line systems suggest that a significant fraction of baryons may reside in multi-phase, low-density, extended, ~100 kpc, gaseous halos around normal galaxies. We present a pair of high-resolution SPH (smoothed particle hydrodynamics) simulations that explore the nature of cool gas infall into galaxies, and the physical conditions necessary to support the type of gaseous halos that seem to be required by observations. The two simulations are identical other than their initial gas density distributions: one is initialized with a standard hot gas halo that traces the cuspy profile of the dark matter, and the other is initialized with a cored hot halo with a high central entropy, as might be expected in models with early pre-heating feedback. Galaxy formation proceeds in dramatically different fashions in these two cases. While the standard cuspy halo cools rapidly, primarily from the central region, the cored halo is quasi-stable for ~4 Gyr and eventually cools via the fragmentation and infall of clouds from ~100 kpc distances. After 10 Gyr of cooling, the standard halo's X-ray luminosity is ~100 times current limits and the resultant disk galaxy is twice as massive as the Milky Way. In contrast, the cored halo has an X-ray luminosity that is in line with observations, an extended cloud population reminiscent of the high-velocity cloud population of the Milky Way, and a disk galaxy with half the mass and ~50% more specific angular momentum than the disk formed in the low-entropy simulation. These results suggest that the distribution and character of halo gas provides an important testing ground for galaxy formation models and may be used to constrain the physics of galaxy formation.

  8. Approaches for preventing and mitigating accidental gaseous chemical releases

    SciTech Connect (OSTI)

    Fthenakis, V.M.

    1996-12-31T23:59:59.000Z

    This paper presents a review of approaches to prevent and mitigate accidental releases of toxic and flammable gases. The prevention options are related to: choosing safer processes and materials, preventing initiating events, preventing or minimizing releases, and preventing human exposures. the mitigation options include: secondary confinement, de-inventory, vapor barriers, and water sprays/monitors. Guidelines for the design and operation of effective post-release mitigation systems are also presented.

  9. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

    1984-01-01T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  10. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  11. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  12. Combustion characteristics of alternative gaseous fuels

    SciTech Connect (OSTI)

    Park, O.; Veloo, Peter S.; Liu, N.; Egolfopoulos, Fokion N.

    2011-01-01T23:59:59.000Z

    Fundamental flame properties of mixtures of air with hydrogen, carbon monoxide, and C{sub 1}–C{sub 4} saturated hydrocarbons were studied both experimentally and numerically. The fuel mixtures were chosen in order to simulate alternative gaseous fuels and to gain insight into potential kinetic couplings during the oxidation of fuel mixtures. The studies included the use of the counterflow configuration for the determination of laminar flame speeds, as well as extinction and ignition limits of premixed flames. The experiments were modeled using the USC Mech II kinetic model. It was determined that when hydrocarbons are added to hydrogen flames as additives, flame ignition, propagation, and extinction are affected in a counterintuitive manner. More specifically, it was found that by substituting methane by propane or n-butane in hydrogen flames, the reactivity of the mixture is reduced both under pre-ignition and vigorous burning conditions. This behavior stems from the fact that propane and n-butane produce higher amounts of methyl radicals that can readily recombine with atomic hydrogen and reduce thus the rate of the H + O{sub 2} ? O + OH branching reaction. The kinetic model predicts closely the experimental data for flame propagation and extinction for various fuel mixtures and pressures, and for various amounts of carbon dioxide in the fuel blend. On the other hand, it underpredicts, in general, the ignition temperatures.

  13. Method for removing acid gases from a gaseous stream

    DOE Patents [OSTI]

    Gorin, Everett (San Rafael, CA); Zielke, Clyde W. (McMurray, PA)

    1981-01-01T23:59:59.000Z

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  14. absorbing gaseous medium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2001-01-01 17 Gravitational drag on a point mass in hypersonic motion through a gaseous medium CERN Preprints Summary: We explore a ballistic orbit model to infer the...

  15. Dissolved gaseous mercury behavior in shallow water estuaries

    E-Print Network [OSTI]

    Landin, Charles Melchor

    2009-05-15T23:59:59.000Z

    The formation of dissolved gaseous mercury (DGM) can be an important pathway for mercury removal from an aquatic environment. DGM evasional fluxes from an aquatic system can account for up to 95% of atmospheric Hg and its deposition pathways. While...

  16. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect (OSTI)

    Munday, E.B.; Simmons, D.W.

    1993-02-01T23:59:59.000Z

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF[sub 6]), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF[sub 3]) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF[sub 6] and other gases are evacuated. The UF[sub 6] is recovered by chemical trapping. The lab results demonstrated that ClF[sub 3] gas at subatmospheric pressure and at [approx] 75[degree]F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  17. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect (OSTI)

    Munday, E.B.; Simmons, D.W.

    1993-02-01T23:59:59.000Z

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF{sub 6}), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF{sub 3}) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF{sub 6} and other gases are evacuated. The UF{sub 6} is recovered by chemical trapping. The lab results demonstrated that ClF{sub 3} gas at subatmospheric pressure and at {approx} 75{degree}F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  18. Dissolved gaseous mercury behavior in shallow water estuaries

    E-Print Network [OSTI]

    Landin, Charles Melchor

    2008-10-10T23:59:59.000Z

    of dissolved gaseous mercury (DGM) can be an important pathway for mercury removal from an aquatic environment. DGM evasional fluxes from an aquatic system can account for up to 95% of atmospheric Hg and its deposition pathways. While this makes DGM.... Based on information obtained in freshwater systems, one can hypothesize that processes affecting DGM cycling are similar in estuarine systems. The hypothesis that was tested in this research is as follows: Dissolved gaseous mercury concentrations...

  19. Nuclear fuel element

    DOE Patents [OSTI]

    Armijo, Joseph S. (Saratoga, CA); Coffin, Jr., Louis F. (Schenectady, NY)

    1983-01-01T23:59:59.000Z

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  20. Nuclear fuel element

    DOE Patents [OSTI]

    Armijo, Joseph S. (Saratoga, CA); Coffin, Jr., Louis F. (Schenectady, NY)

    1980-04-29T23:59:59.000Z

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

  1. MELTER OFF-GAS FLAMMABILITY ASSESSMENT FOR DWPF ALTERNATE REDUCTANT FLOWSHEET OPTIONS

    SciTech Connect (OSTI)

    Choi, A.

    2011-07-08T23:59:59.000Z

    Glycolic acid and sugar are being considered as potential candidates to substitute for much of the formic acid currently being added to the Defense Waste Processing Facility (DWPF) melter feed as a reductant. A series of small-scale melter tests were conducted at the Vitreous State Laboratory (VSL) in January 2011 to collect necessary data for the assessment of the impact of these alternate reductants on the melter off-gas flammability. The DM10 melter with a 0.021 m{sup 2} melt surface area was run with three different feeds which were prepared at SRNL based on; (1) the baseline formic/nitric acid flowsheet, (2) glycolic/formic/nitric acid flowsheet, and (3) sugar/formic/nitric acid flowsheet - these feeds will be called the baseline, glycolic, and sugar flowsheet feeds, respectively, hereafter. The actual addition of sugar to the sugar flowsheet feed was made at VSL before it was fed to the melter. For each feed, the DM10 was run under both bubbled (with argon) and non-bubbled conditions at varying melter vapor space temperatures. The goal was to lower its vapor space temperature from nominal 500 C to less than 300 C at 50 C increments and maintain steady state at each temperature at least for one hour, preferentially for two hours, while collecting off-gas data including CO, CO{sub 2}, and H{sub 2} concentrations. Just a few hours into the first test with the baseline feed, it was discovered that the DM10 vapor space temperature would not readily fall below 350 C simply by ramping up the feed rate as the test plan called for. To overcome this, ambient air was introduced directly into the vapor space through a dilution air damper in addition to the natural air inleakage occurring at the operating melter pressure of -1 inch H{sub 2}O. A detailed description of the DM10 run along with all the data taken is given in the report issued by VSL. The SRNL personnel have analyzed the DM10 data and identified 25 steady state periods lasting from 32 to 92 minutes for all six melter runs (bubbled and non-bubbled runs for each of the three feeds). The steady state selection was made by limiting the standard deviation of the average vapor space temperature readings from two bare thermocouples (TT-03 and TT-05) to less than 5 C in most cases at a constant feed rate. The steady state data thus selected were mass and heat balanced and the off-gas data were re-baselined to assess the flammability potential of each feed under the DWPF melter operating conditions. Efforts were made to extract as much information out of the data as possible necessary to extend the applicability of the existing baseline cold cap and off-gas combustion models to the glycolic and sugar flowsheet feeds. This report details the outcome of these activities.

  2. Magnitude and spatial distribution of urban flammable materials in the San Jose Area, California

    SciTech Connect (OSTI)

    Simonett, D.S.; Barrett, T.N.; Gopal, S.; Holsmuller, F.J.; G.Q. Sun

    1986-02-01T23:59:59.000Z

    The distribution and quantity of flammable materials in urban areas is of importance for any study of the fire spread and plume dynamics which may result from a nuclear attack. This study presents a methodology which uses aerial photographs and a 1000 feet sample grid to collect this information for San Jose and adjoining urban areas in California. A detailed literature search was carried out to develop estimates of the fuel loading of the major building types in an urban environment. Due to the ambiguities in this literature, the values as used here are approximations, but are supported by details of sources and assumptions. Some straightforward calculations using the results from the air photo interpretation and the literature search, yield information about the fire load and also urban characteristics per grid cell, including information on fire breaks which are important features with respect to fire spread. The results yield an average preliminary and partial fuel value of 9.2 kg/m/sup 2/. This value is less than fuel loads estimated in the literature using different methods of obtaining data and is certainly less than the actual fuel loading for San Jose. However, we doubt that with further work we will find the average San Jose value to be any higher than 13 kg/m/sup 2/. Additional sources of fuel which remain to be accounted for both in aggregate magnitude, and expected burnable fractions, include asphalt of roofs, streets, sidewalks, and parking lots, fuel storage facilities, fuel and natural gas in pipelines, natural vegetation, and external storage of lumber, construction, commercial and industrial-process materials.

  3. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    SciTech Connect (OSTI)

    Edwards, T. B.

    2013-03-14T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF’s melter operation during the processing of Sludge Batch 8 (SB8). SRNL’s support has been in response to technical task requests that have been made by SRR’s Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF’s strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.

  4. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect (OSTI)

    Johnson, G.D. (comp.)

    1991-08-01T23:59:59.000Z

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  5. An introduction to technetium in the gaseous diffusion cascades

    SciTech Connect (OSTI)

    Simmons, D.W.

    1996-09-01T23:59:59.000Z

    The radioisotope technetium-99 ({sup 99}Tc) was introduced into the gaseous diffusion plants (GDP) as a contaminant in uranium that had been reprocessed from spent nuclear reactor fuel. {sup 99}Tc is a product of the nuclear fission of uranium-235 ({sup 235}U). The significantly higher emitted radioactivity of {sup 99}Tc generates concern in the enrichment complex and warrants increased attention (1) to the control of all site emissions, (2) to worker exposures and contamination control when process equipment requires disassembly and decontamination, and (3) to product purity when the enriched uranium hexafluoride (UF{sub 6}) product is marketed to the private sector. A total of 101,268 metric tons of RU ({approximately}96% of the total) was fed at the Paducah Gaseous Diffusion Plant (PGDP) between FY1953 and FY1976. An additional 5600 metric tons of RU from the government reactors were fed at the Oak Ridge Gaseous Diffusion Plant (ORGDP), plus an approximate 500 tons of foreign reactor returns. Only a small amount of RU was fed directly at the Portsmouth Gaseous Diffusion Plant (PORTS). The slightly enriched PGDP product was then fed to either the ORGDP or PORTS cascades for final enrichment. Bailey estimated in 1988 that of the 606 kg of Tc received at PGDP from RU, 121 kg was subsequently re-fed to ORGDP and 85 kg re-fed to PORTS.

  6. MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1

    E-Print Network [OSTI]

    Boyer, Edmond

    2 MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1 , L. Loyon2 , F. Guiziou2 , P to measure emissions factors of ammonia (NH3), nitrous oxide (N2O) methane (CH4) and carbon dioxide (CO2) from stored pig slurry and measured the variations of the emissions in time and space. In 2006, dynamic

  7. Separation phenomenon in the Windowless Gaseous Tritium Source of KATRIN

    E-Print Network [OSTI]

    Sharipov, Felix

    Separation phenomenon in the Windowless Gaseous Tritium Source of KATRIN experiment. Ternary separa- tion. In the KATRIN experiment, in order to analyze the spectrum of electrons emmited by Tritium decay, it is very important to know the concentration distribution of Tritium along the source

  8. Test of potential homogeneity in the KATRIN gaseous tritium source

    E-Print Network [OSTI]

    M. Rysavy

    2005-06-02T23:59:59.000Z

    83mKr is supposed to be used to study the properties of the windowless gaseous tritium source of the experiment KATRIN. In this work we deduce the amount of 83mKr which is necessary to determine possible potential inhomogeneities via conversion-electron-line broadening.

  9. THE POSSIBILITY OF PRODUCING THERMONUCLEAR REACTIONS IN A GASEOUS DISCHARGE*

    E-Print Network [OSTI]

    THE POSSIBILITY OF PRODUCING THERMONUCLEAR REACTIONS IN A GASEOUS DISCHARGE* I.V. Kurchatov of the energy of thermonuclear reactions. Physicists the world over are attracted by the extraordinarily interest- ing and very difficult task of controlling thermonuclear reactiom. Investigations in this field

  10. Methods for deacidizing gaseous mixtures by phase enhanced absorption

    DOE Patents [OSTI]

    Hu, Liang

    2012-11-27T23:59:59.000Z

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  11. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

  12. Flammable gas/slurry growth unreviewed safety question:justification for continued operation for the tank farms at the Hanford site

    SciTech Connect (OSTI)

    Leach, C.E., Westinghouse Hanford

    1996-07-31T23:59:59.000Z

    This Justification for Continued Operation (JCO) provides a basis for continued operation in 176 high level waste tanks, double contained receiver tanks (DCRTs), catch tanks, 244-AR Vault, 242-S and 242-T Evaporators and inactive miscellaneous underground storage tanks (IMUSTs) relative to flammable gas hazards. Required controls are specified.

  13. Paducah Gaseous Diffusion Plant environmental report for 1992

    SciTech Connect (OSTI)

    Horak, C.M. [ed.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1993-09-01T23:59:59.000Z

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.

  14. Method of producing gaseous products using a downflow reactor

    DOE Patents [OSTI]

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16T23:59:59.000Z

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  15. Paducah Gaseous Diffusion Plant Environmental report for 1990

    SciTech Connect (OSTI)

    Counce-Brown, D. (ed.)

    1991-09-01T23:59:59.000Z

    This two-part report, Paducah Gaseous Diffusion Plant Site Environmental Report for 1990, is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials.

  16. Paducah Gaseous Diffusion Plant Annual Site Environmental Report for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The purpose of this document is to summarize effluent monitoring and environmental surveillance results and compliance with environmental laws, regulations, and orders at the Paducah Gaseous Diffusion Plant (PGDP). Environmental monitoring at PGDP consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is direct measurement or the collection and analysis of samples of liquid and gaseous discharges to the environment. Environmental surveillance is direct measurement or the collection and analysis of samples of air, water, soil, foodstuff, biota, and other media. Environmental monitoring is performed to characterize and quantify contaminants, assess radiation exposures of members of the public, demonstrate compliance with applicable standards and permit requirements, and detect and assess the effects (if any) on the local environment. Multiple samples are collected throughout the year and are analyzed for radioactivity, chemical content, and various physical attributes.

  17. Chapter 4 The Gaseous State Chemistry of Gases

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    .15 V = V0[1+(t/273.15oC)] Kelvin T = 273.15 + t(Celsius) #12;Boyle's Law · The stirling engine, a heatChapter 4 The Gaseous State NO2 #12;AIR #12;Chemistry of Gases SO3 .. corrosive gas SO2...burning) ~1760 Charle The definition of the Temperature All gases expand with increasing temperature by the same

  18. Origin of gaseous hydrocarbons in east-central Texas groundwaters

    E-Print Network [OSTI]

    Coffman, Bryan Keith

    1988-01-01T23:59:59.000Z

    ; Follett, 1974). The high transmissivity and sandy lithology of the Sparta are much like those of the Queen City, as is the quality of water. 40 LIGNITE STREAKS 30 Laminated and discontinuous lenticular. Trough cross bedded siltstones. 20 ROAD l... hydrocarbons simply reflects a difference in the 5 C of the substrate. Sparta lignite is about 7%%do enriched in ' C relative to Yegua lignite, comparable to the difference seen in the gaseous hydrocarbons. ACKNOWLEDGMENTS I would like to thank Dr. Steven...

  19. Method and apparatus for analyzing particle-containing gaseous suspensions

    DOE Patents [OSTI]

    Solomon, Peter R. (West Hartford, CT); Carangelo, Robert M. (Coventry, CT); Best, Philip E. (Mansfield, CT)

    1987-01-01T23:59:59.000Z

    The method and apparatus permit analyses, by optical means, of properties of gaseous suspensions of particles, by measuring radiation that is emitted, transmitted or scattered by the particles. Determinations of composition, size, temperature and spectral emittance can be performed either in-situ or by sampling, and Fourier-transform infrared spectrometric techniques are most effectively used. Apparatus specifically adapted for performing radiation scattering analyses, and for collecting radiation from different sources, are provided.

  20. Method and apparatus for analyzing particle-containing gaseous suspensions

    DOE Patents [OSTI]

    Solomon, P.R.; Carangelo, R.M.; Best, P.E.

    1987-03-24T23:59:59.000Z

    The method and apparatus permit analyses, by optical means, of properties of gaseous suspensions of particles, by measuring radiation that is emitted, transmitted or scattered by the particles. Determinations of composition, size, temperature and spectral emittance can be performed either in-situ or by sampling, and Fourier-transform infrared spectrometric techniques are most effectively used. Apparatus specifically adapted for performing radiation scattering analyses, and for collecting radiation from different sources, are provided. 51 figs.

  1. Overview of seismic considerations at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Hunt, R.J.; Stoddart, W.C.; Burnett, W.A.; Beavers, J.E.

    1992-10-01T23:59:59.000Z

    This paper presents an overview of seismic considerations at the Paducah Gaseous Diffusion Plant (PGDP), which is managed by Martin Marietta Energy Systems, Inc., for the Department of Energy (DOE). The overview describes the original design, the seismic evaluations performed for the Safety Analysis Report (SAR) issued in 1985, and current evaluations and designs to address revised DOE requirements. Future plans to ensure changes in requirements and knowledge are addressed.

  2. Process and composition for drying of gaseous hydrogen halides

    DOE Patents [OSTI]

    Tom, Glenn M. (New Milford, CT); Brown, Duncan W. (Wilton, CT)

    1989-08-01T23:59:59.000Z

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  3. ELEMENT 98

    E-Print Network [OSTI]

    Thompson, S.G.; Street, K.,Jr.; Ghiorso, A.; Seaborg, G.T.

    2008-01-01T23:59:59.000Z

    W-7405-eng-48 Element 98 S. G. Thompson, K. Street, Jr. , A.3 ELliMENT 98 So Go Thompson, K. street, Jr. , A. Ghiorso

  4. Infrared scintillation yield in gaseous and liquid argon

    E-Print Network [OSTI]

    A. Buzulutskov; A. Bondar; A. Grebenuk

    2011-04-19T23:59:59.000Z

    The study of primary and secondary scintillations in noble gases and liquids is of paramount importance to rare-event experiments using noble gas media. In the present work, the scintillation yield in gaseous and liquid Ar has for the first time been measured in the near infrared (NIR) and visible region, both for primary and secondary (proportional) scintillations, using Geiger-mode avalanche photodiodes (G-APDs) and pulsed X-ray irradiation. The primary scintillation yield of the fast component was measured to be 17000 photon/MeV in gaseous Ar in the NIR, in the range of 690-1000 nm, and 510 photon/MeV in liquid Ar, in the range of 400-1000 nm. Proportional NIR scintillations (electroluminescence) in gaseous Ar have been also observed; their amplification parameter at 163 K was measured to be 13 photons per drifting electron per kV. Possible applications of NIR scintillations in high energy physics experiments are discussed.

  5. Onsite Gaseous Centrifuge Enrichment Plant UF6 Cylinder Destructive Analysis

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy) [Amy; Carter, Jennifer C.; McNamara, Bruce K.; O'Hara, Matthew J.; Phillips, Jon R.; Curtis, Michael M.

    2012-07-17T23:59:59.000Z

    The IAEA safeguards approach for gaseous centrifuge enrichment plants (GCEPs) includes measurements of gross, partial, and bias defects in a statistical sampling plan. These safeguard methods consist principally of mass and enrichment nondestructive assay (NDA) verification. Destructive assay (DA) samples are collected from a limited number of cylinders for high precision offsite mass spectrometer analysis. DA is typically used to quantify bias defects in the GCEP material balance. Under current safeguards measures, the operator collects a DA sample from a sample tap following homogenization. The sample is collected in a small UF6 sample bottle, then sealed and shipped under IAEA chain of custody to an offsite analytical laboratory. Current practice is expensive and resource intensive. We propose a new and novel approach for performing onsite gaseous UF6 DA analysis that provides rapid and accurate assessment of enrichment bias defects. DA samples are collected using a custom sampling device attached to a conventional sample tap. A few micrograms of gaseous UF6 is chemically adsorbed onto a sampling coupon in a matter of minutes. The collected DA sample is then analyzed onsite using Laser Ablation Absorption Ratio Spectrometry-Destructive Assay (LAARS-DA). DA results are determined in a matter of minutes at sufficient accuracy to support reliable bias defect conclusions, while greatly reducing DA sample volume, analysis time, and cost.

  6. Portsmouth Gaseous Diffusion Plant environmental report for 1991

    SciTech Connect (OSTI)

    Williams, M.F. (ed.)

    1992-10-01T23:59:59.000Z

    This calendar year (CY) 1991 annual report on environmental surveillance of the US Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: narrative, summaries, and conclusions (Part 1), and data presentation (Part 2). Environmental-monitoring systems at PORTS include emission-monitoring networks for air and surface water discharges; waste sampling and characterization; and ambient-sampling networks for air, surface water, groundwater, drinking water, vegetation (cattle forage), food crops, fish, soil, creek and river sediments, and direct (gamma) radiation levels.

  7. Portsmouth Gaseous Diffusion Plant Environmental report for 1990

    SciTech Connect (OSTI)

    Counce-Brown, D. (ed.)

    1991-09-01T23:59:59.000Z

    This calendar year 1990 annual report on environmental surveillance of the US Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the summary, discussion, and conclusions (Part 1) and the data presentation (Part 2). The objectives of this report are as follows: report 1990 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (when appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance.

  8. Modified gaseous atmospheres for storage of beef, lamb and pork

    E-Print Network [OSTI]

    Davis, George Theodore

    1979-01-01T23:59:59.000Z

    ) ( Member ) (He d of Depar ent) December 1979 ABSTRACT Modified Gaseous Atmospheres for Storage of Bee f, Pork and Lamb (December 1979) George Theodore Davis III, B. S. , Texas AsM University Co-Chairmen of Advisory Committee: Dr. Z. L. Carpenter...MODIFIED G'~. ' . . OUS ATMOSPHERI. S FOR STORAGE OI REEF, I. PMB AND PORK A Thesis by GEORGE THEODORE DAVIS I II Submitted to thc. graduate college of Texas AsM University in partial fulfillment of the rec, u. 'rement fox the degree...

  9. NGPL Production, Gaseous Equivalent at Processing Plants (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPL Production, Gaseous2,408

  10. Property:PotentialBiopowerGaseousGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformationMarine/RiverlinePotentialBiopowerGaseousGeneration Jump

  11. Property:PotentialBiopowerGaseousMass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformationMarine/RiverlinePotentialBiopowerGaseousGeneration

  12. Test of a Multilayer Dose-Verification Gaseous Detector with Raster Scan Mode Proton Beams

    E-Print Network [OSTI]

    Lee, Kyong Sei; Han, Youngyih; Hong, Byungsik; Kang, Minho; Kim, Sang Yeol; Lee, Seunkyung; Park, Sung Keun

    2015-01-01T23:59:59.000Z

    A multilayer gaseous detector has been developed for the fast dose-verification measurements of raster-scan-mode therapeutic beams in particle therapy.

  13. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOE Patents [OSTI]

    Jujasz, Albert J. (North Olmsted, OH); Burkhart, James A. (Olmsted Falls, OH); Greenberg, Ralph (New York, NY)

    1988-01-01T23:59:59.000Z

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  14. Kinetics of Heterogeneous Reaction of CaCO3 Particles with Gaseous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Humidity. Abstract: Heterogeneous reaction kinetics of gaseous nitric acid (HNO3) with calcium carbonate (CaCO3) particles was investigated using the Particle-on-Substrate...

  15. Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant- March 2012

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Infrastructure Support Contract Paducah Gaseous Diffusion Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  16. Application of gaseous disinfectants ozone and chlorine dioxide for inactivation of Bacillus subtilis spores

    E-Print Network [OSTI]

    Aydogan, Ahmet

    2006-01-01T23:59:59.000Z

    of gaseous ozone for MRSA decontamination of hospital side-H. ; Kamiki, T. , “Ozone decontamination of bioclean rooms”,Nelson, P.E. , “Decontamination of bacillus thuringiensis

  17. Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant- May 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Infrastructure Support Contract Paducah Gaseous Diffusion Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  18. Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit

    SciTech Connect (OSTI)

    Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2010-12-15T23:59:59.000Z

    Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)

  19. Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. Part 1. Flammability and Toxicity

    SciTech Connect (OSTI)

    Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian; Elliott, Douglas C.; Springer, David L.; Peacocke, Cordner; Chiaramonti, David

    2012-05-04T23:59:59.000Z

    An alternative sustainable fuel, biomass-derived fast pyrolysis oil or 'bio-oil', is coming into the market. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for specifications and supporting documentation. Bio-oil is different from conventional liquid fuels, and therefore must overcome both technical and marketing hurdles for its acceptability in the fuels market. A comprehensive Material Safety Data Sheet (MSDS) is required, backed with independent testing and certification. In order to standardise bio-oil quality specifications are needed. The first bio-oil burner fuel standard in ASTM (D7544) was approved in 2009. CEN standardisation has been initiated in Europe. In the EU a new chemical regulation system, REACH (Registration, Evaluation and Authorisation of Chemicals) is being applied. Registration under REACH has to be made if bio-oil is produced or imported to the EU. In the USA and Canada, bio-oil has to be filed under TOSCA (US Toxic Substances Control Act). In this paper the state of the art on standardisation is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.

  20. THE EFFECT OF THE PRESENCE OF OZONE ON THE LOWER FLAMMABILITY LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect (OSTI)

    Sherburne, C.

    2012-01-12T23:59:59.000Z

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen is flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of energy to a fuse wire. A gas combination is considered flammable when a pressure rise of 7% of the initial absolute pressure is observed. The specified testing methodology is consistent with guidelines established in ASTM E-918-83 (2005) 'Standard Practices for Determining Limits of Flammability of Chemicals at Elevated Temperature and Pressure'.

  1. An In-Situ Ion Mobility Spectrometer Sensor System for Detecting Gaseous VOCs in Unsaturated Soils

    E-Print Network [OSTI]

    Baker, R. Jacob

    An In-Situ Ion Mobility Spectrometer Sensor System for Detecting Gaseous VOCs in Unsaturated Soils and will be ultimately equipped with water content, temperature, and pressure sensors. The proposed system is designed knowledge, an in-situ IMS for detection of subsurface gaseous VOCs has not been previously developed. VOCs

  2. Effect of gaseous cement industry effluents on four species of Amlie Talec a, b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of gaseous cement industry effluents on four species of microalgae Amélie Talec a, b , Myrvline Philistin a the possibility to grow microalgae with CO2 from gaseous effluent of cement industry. Four microalgal species the composition of a typical Cement Flue Gas (CFG). In a second stage, the culture submitted to the CFG received

  3. Design and reliability optimization of a MEMS micro-hotplate for combustion of gaseous fuel

    SciTech Connect (OSTI)

    Manginell, R. P.

    2012-03-01T23:59:59.000Z

    This report will detail the process by which the silicon carbide (SiC) microhotplate devices, manufactured by GE, were imaged using IR microscopy equipment available at Sandia. The images taken were used as inputs to a finite element modeling (FEM) process using the ANSYS software package. The primary goal of this effort was to determine a method to measure the temperature of the microhotplate. Prior attempts to monitor the device's temperature by measuring its resistance had proven to be unreliable due to the nonlinearity of the doped SiC's resistance with temperature. As a result of this thermal modeling and IR imaging, a number of design recommendations were made to facilitate this temperature measurement. The lower heating value (LHV) of gaseous fuels can be measured with a catalyst-coated microhotplate calorimeter. GE created a silicon carbide (SiC) based microhotplate to address high-temperature survivability requirements for the application. The primary goal of this effort was to determine a method to measure the temperature of the microhotplate. Prior attempts to monitor the device's temperature by measuring its resistance had proven to be unreliable due to the non-linearity of the doped SiC's resistance with temperature. In this work, thermal modeling and IR imaging were utilized to determine the operation temperature as a function of parameters such as operation voltage and device sheet resistance. A number of design recommendations were made according to this work.

  4. Oak Ridge Gaseous Diffusion Plant Biological Monitoring and Abatement Program for Mitchell Branch

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Kszos, L.A.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    1992-01-01T23:59:59.000Z

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge Gaseous Diffusion Plant (ORGDP; currently the Oak Ridge K-25 Site) was prepared in December 1986, as required by the modified National Pollutant Discharge Elimination System (NPDES) permit that was issued on September 11, 1986. The effluent discharges to Mitchell Branch are complex, consisting of trace elements, organic chemicals, and radionuclides in addition to various conventional pollutants. Moreover, the composition of these effluent streams will be changing over time as various pollution abatement measures are implemented over the next several years. Although contaminant inputs to the stream originate primarily as point sources from existing plant operations, area sources, such as the classified burial grounds and the K-1407-C holding pond, can not be eliminated as potential sources of contaminants. The proposed BMAP consists of four tasks. These tasks include (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of the benthic invertebrate and fish communities. BMAP will determine whether the effluent limits established for ORGDP protect the designated use of the receiving stream (Mitchell Branch) for growth and propagation of fish and aquatic life. Another objective of the program is to document the ecological effects resulting from various pollution abatement projects, such as the Central Neutralization Facility.

  5. Tiger Team Assessment of the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    This document contains findings and concerns identified during the Tiger Team Assessment of the Department of Energy's (DOE) Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The assessment was directed by the Department's Office of Environment, Safety and Health (ES H) and was conducted from June 18 to July 20, 1990. The PGDP Tiger Team Assessment is comprehensive in scope. It covers the Environmental, Safety and Health (including OSHA Compliance), and Management areas and determines the site's compliance with applicable federal (including DOE), state, and local regulations and requirements. The objective of the assessment program is to provide the Secretary with information on the current ES H compliance status of DOE facilities, root causation for noncompliance, adequacy of DOE and site contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  6. Seismic issues at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Fricke, K.E. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA))

    1989-11-01T23:59:59.000Z

    A seismic expert workshop was held at the Paducah Gaseous Diffusion Plant (PGDP) on March 13--15, 1989. the PGDP is operated by Martin Marietta Energy Systems, Inc. for the United States Department of Energy (DOE). During the last twenty years the design criteria for natural phenomenon hazards has steadily become more demanding at all of the DOE Oak Ridge Operations (ORO) sites. The purpose of the two-day workshop was to review the seismic vulnerability issues of the PGDP facilities. Participants to the workshop included recognized experts in the fields of seismic engineering, seismology and geosciences, and probabilistic analysis, along with engineers and other personnel from Energy Systems. A complete list of the workshop participants is included in the front of this report. 29 refs.

  7. Spiral density waves in the outer galactic gaseous discs

    E-Print Network [OSTI]

    Khoperskov, S A

    2015-01-01T23:59:59.000Z

    Deep HI observations of the outer parts of disc galaxies demonstrate the frequent presence of extended, well-developed spiral arms far beyond the optical radius. To understand the nature and the origin of such outer spiral structure, we investigate the propagation in the outer gaseous disc of large-scale spiral waves excited in the bright optical disc. Using hydrodynamical simulations, we show that non-axisymmetric density waves, penetrating in the gas through the outer Lindblad resonance, can exhibit relatively regular spiral structures outside the bright optical stellar disc. For low-amplitude structures, the results of numerical simulations match the predictions of a simple WKB linear theory. The amplitude of spiral structure increases rapidly with radius. Beyond $\\approx 2$ optical radii, spirals become nonlinear (the linear theory becomes quantitatively and qualitatively inadequate) and unstable to Kelvin-Helmholtz instability. In numerical simulations, in models for which gas is available very far out, ...

  8. Spectral modeling of gaseous metal disks around DAZ white dwarfs

    E-Print Network [OSTI]

    K. Werner; T. Nagel; T. Rauch

    2008-09-30T23:59:59.000Z

    We report on our attempt for the first non-LTE modeling of gaseous metal disks around single DAZ white dwarfs recently discovered by Gaensicke et al. and thought to originate from a disrupted asteroid. We assume a Keplerian rotating viscous disk ring composed of calcium and hydrogen and compute the detailed vertical structure and emergent spectrum. We find that the observed infrared CaII emission triplet can be modeled with a hydrogen-deficient gas ring located at R=1.2 R_sun, inside of the tidal disruption radius, with Teff about 6000 K and a low surface mass density of about 0.3 g/cm**2. A disk having this density and reaching from the central white dwarf out to R=1.2 R_sun would have a total mass of 7 10**21 g, corresponding to an asteroid with about 160 km diameter.

  9. Paducah Gaseous Diffusion Plant environmental report for 1991

    SciTech Connect (OSTI)

    Williams, M.F. (ed.) (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States))

    1992-10-01T23:59:59.000Z

    This two-part report is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population from the Paducah Gaseous Diffusion Plant (PGDP). PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the generation of waste, and to minimize hazardous waste by substitution of materials. Environmental-monitoring systems at PGDP include emission-monitoring networks for airborne and aqueous discharges, groundwater monitoring, solid waste characterization, and ambient-sampling networks for air, surface water, groundwater, vegetation, food crops, fish, wildlife, soil, and surface stream sediments.

  10. Tiger Team Assessment of the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    This document contains findings and concerns identified during the Tiger Team Assessment of the Department of Energy's (DOE's) Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The assessment was directed by the Department's Office of Environment, Safety and Health (ES H) and was conducted from June 18 to July 20, 1990. The PGDP Tiger Team Assessment is comprehensive in scope. It covers the Environmental, Safety and Health (including OSHA Compliance), and Management areas and determines the site's compliance with applicable federal (including DOE), state, and local regulations and requirements. The objective of the assessment program is to provide the Secretary with information on the current ES H compliance status of DOE facilities, root causation for noncompliance, adequacy of DOE and site contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes. This volume contains appendices.

  11. Gaseous diffusion plant transition from DOE to external regulation

    SciTech Connect (OSTI)

    Dann, R.K.; Crites, T.R.; Rahm-Crites, L.K. [Lawrence Livermore National Lab., CA (United States)

    1997-12-01T23:59:59.000Z

    After many years of operation as government-owned/contractor-operated facilities, large portions of the gaseous diffusion plants (GDPs) at Portsmouth, Ohio, and Paducah, Kentucky, were leased to the United States Enrichment Corporation (USEC). These facilities are now certified by the U.S. Nuclear Regulatory Commission (NRC) and subject to oversight by the Occupational Safety and Health Administration (OSHA). The transition from DOE to NRC regulation was more difficult than expected. The original commitment was to achieve NRC certification in October 1995; however, considerably more time was required and transition-related costs escalated. The Oak Ridge Operations Office originally estimated the cost of transition at $60 million; $240 million has been spent to date. The DOE`s experience in transitioning the GDPs to USEC operation with NRC oversight provides valuable lessons (both positive and negative) that could be applied to future transitions.

  12. Paducah Gaseous Diffusion Plant environmental report for 1989

    SciTech Connect (OSTI)

    Turner, J.W. (ed.) (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA))

    1990-10-01T23:59:59.000Z

    This two-part environmental report is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials. 36 refs.

  13. Paducah Gaseous Diffusion Plant environmental report for 1991. Volume 3

    SciTech Connect (OSTI)

    Williams, M.F. [ed.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1992-10-01T23:59:59.000Z

    This two-part report is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population from the Paducah Gaseous Diffusion Plant (PGDP). PGDP`s overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the generation of waste, and to minimize hazardous waste by substitution of materials. Environmental-monitoring systems at PGDP include emission-monitoring networks for airborne and aqueous discharges, groundwater monitoring, solid waste characterization, and ambient-sampling networks for air, surface water, groundwater, vegetation, food crops, fish, wildlife, soil, and surface stream sediments.

  14. METAL TRANSPORT TO THE GASEOUS OUTSKIRTS OF GALAXIES

    SciTech Connect (OSTI)

    Werk, J. K. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Putman, M. E.; Santiago-Figueroa, N. [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Meurer, G. R., E-mail: jwerk@ucolick.org [ICRAR/University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2011-07-10T23:59:59.000Z

    We present a search for outlying H II regions in the extended gaseous outskirts of nearby (D < 40 Mpc) galaxies and subsequent multi-slit spectroscopy used to obtain the H II region nebular oxygen abundances. The galaxies in our sample have extended H I disks and/or interaction-related H I features that extend well beyond their primary stellar components. We report oxygen abundance gradients out to 2.5 times the optical radius for these galaxies which span a range of morphologies and masses. We analyze the underlying stellar and neutral H I gas distributions in the vicinity of the H II regions to understand the physical processes that give rise to the observed metal distributions in galaxies. These measurements, for the first time, convincingly show flat abundance distributions out to large radii in a wide variety of systems and have broad implications for galaxy chemodynamical evolution.

  15. Portsmouth Gaseous Diffusion Plant annual site environmental report for 1993

    SciTech Connect (OSTI)

    Horak, C.M. [ed.

    1994-11-01T23:59:59.000Z

    This calendar year (CY) 1993 annual report on environmental monitoring of the US Department of Energy`s (DOE`s) Portsmouth Gaseous Diffusion Plant (Portsmouth) and its environs consists of three separate documents: a summary pamphlet for the general public; a more detail discussion and of compliance status, data, and environmental impacts (this document); and a volume of detailed data that is available on request. The objectives of this report are to report compliance status during 1993; provide information about the plant site and plant operations; report 1993 monitoring data for the installation and its environs that may have been affected by operations on the plant site; document information on input and assumptions used in calculations; provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on quality assurance for the environmental monitoring program.

  16. Jupiter and Super-Earth embedded in a gaseous disc

    E-Print Network [OSTI]

    E. Podlewska; E. Szuszkiewicz

    2007-12-19T23:59:59.000Z

    In this paper we investigate the evolution of a pair of interacting planets - a Jupiter mass planet and a Super-Earth with the 5.5 Earth masses - orbiting a Solar type star and embedded in a gaseous protoplanetary disc. We focus on the effects of type I and II orbital migrations, caused by the planet-disc interaction, leading to the Super-Earth capture in first order mean motion resonances by the Jupiter. The stability of the resulting resonant system in which the Super-Earth is on the internal orbit relatively to the Jupiter has been studied numerically by means of full 2D hydrodynamical simulations. Our main motivation is to determine the Super-Earth behaviour in the presence of the gas giant in the system. It has been found that the Jupiter captures the Super-Earth into the interior 3:2 or 4:3 mean motion resonances and the stability of such configurations depends on the initial planet positions and eccentricity evolution. If the initial separation of planet orbits is larger or close to that required for the exact resonance than the final outcome is the migration of the pair of planets with the rate similar to that of the gas giant at least for time of our simulations. Otherwise we observe a scattering of the Super-Earth from the disc. The evolution of planets immersed in the gaseous disc has been compared with their behaviour in the case of the classical three-body problem when the disc is absent.

  17. Fuel elements of thermionic converters

    SciTech Connect (OSTI)

    Hunter, R.L. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Environmental Systems Assessment Dept.; Gontar, A.S.; Nelidov, M.V.; Nikolaev, Yu.V.; Schulepov, L.N. [RI SIA Lutch, Podolsk (Russian Federation)

    1997-01-01T23:59:59.000Z

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

  18. TREATMENT OF GASEOUS EFFLUENTS ISSUED FROM RECYCLING – A REVIEW OF THE CURRENT PRACTICES AND PROSPECTIVE IMPROVEMENTS

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; William Kerlin; Steven Bakhtiar

    2010-11-01T23:59:59.000Z

    The objectives of gaseous waste management for the recycling of nuclear used fuel is to reduce by best practical means (ALARA) and below regulatory limits, the quantity of activity discharged to the environment. The industrial PUREX process recovers the fissile material U(VI) and Pu(IV) to re-use them for the fabrication of new fuel elements e.g. recycling plutonium as a Mixed Oxide (MOX) fuel or recycling uranium for new enrichment for Pressurized Water Reactor (PWR). Meanwhile the separation of the waste (activation and fission product) is performed as a function of their pollution in order to store and avoid any potential danger and release towards the biosphere. Raffinate, that remains after the extraction step and which contains mostly all fission products and minor actinides is vitrified, the glass package being stored temporarily at the recycling plant site. Hulls and end pieces coming from PWR recycled fuel are compacted by means of a press leading to a volume reduced to 1/5th of initial volume. An organic waste treatment step will recycle the solvent, mainly tri-butyl phosphate (TBP) and some of its hydrolysis and radiolytic degradation products such as dibutyl phosphate (HDPB) and monobutyl phosphate (H2MBP). Although most scientific and technological development work focused on high level waste streams, a considerable effort is still under way in the area of intermediate and low level waste management. Current industrial practices for the treatment of gaseous effluents focusing essentially on Iodine-129 and Krypton-85 will be reviewed along with the development of novel technologies to extract, condition, and store these fission products. As an example, the current industrial practice is to discharge Kr-85, a radioactive gas, entirely to the atmosphere after dilution, but for the large recycling facilities envisioned in the near future, several techniques such as 1) cryogenic distillation and selective absorption in solvents, 2) adsorption on activated charcoal, 3) selective sorption on chemical modified zeolites, or 4) diffusion through membranes with selective permeability are potential technologies to retain the gas.

  19. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    SciTech Connect (OSTI)

    Edwards, T.; Lambert, D.

    2014-08-27T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. To address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments. Sample calculations of the system are also included in this report. Please note that the system developed and documented in this report is intended as an alternative to the current, analytically-driven system being utilized by DWPF; the proposed system is not intended to eliminate the current system. Also note that the system developed in this report to track antifoam mass in the AMFT, SRAT, and SME will be applicable beyond just Sludge Batch 8. While the model used to determine acceptability of the SME product with respect to melter off-gas flammability controls must be reassessed for each change in sludge batch, the antifoam mass tracking methodology is independent of sludge batch composition and as such will be transferable to future sludge batches.

  20. Programmatic Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11T23:59:59.000Z

    The Guide provides acceptable methods of meeting the requirements of DOE O 151.1C for programmatic elements that sustain the emergency management program and maintain the readiness of the program to respond to an emergency. Cancels DOE G 151.1-1, Volume 5-1, DOE G 151.1-1, Volume 5-2, DOE G 151.1-1, Volume 5-3, DOE G 151.1-1, Volume 5-4, DOE G 151.1-1, Volume 7-1, and DOE G 151.1-1, Volume 7-3.

  1. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    SciTech Connect (OSTI)

    Huffer, J.E. [Parallax, Inc., Atlanta, GA (United States)

    1997-04-01T23:59:59.000Z

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  2. Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection

    SciTech Connect (OSTI)

    Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

    2010-12-03T23:59:59.000Z

    A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

  3. Response Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11T23:59:59.000Z

    The Guide provides acceptable methods for meeting the requirement of DOE O 151.1C for response elements that respond or contribute to response as needed in an emergency. Cancels DOE G 151.1-1, Volume 3-1, DOE G 151.1-1, Volume 3-2, DOE G 151.1-1, Volume 3-3, DOE G 151.1-1, Volume 3-4, DOE G 151.1-1, Volume 4-1, DOE G 151.1-1, Volume 4-2, DOE G 151.1-1, Volume 4-3, DOE G 151.1-1, Volume 4-4, DOE G 151.1-1, Volume 4-5, and DOE G 151.1-1, Volume 4-6.

  4. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-09-01T23:59:59.000Z

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  5. Portsmouth Gaseous Diffusion Plant environmental report for 1989

    SciTech Connect (OSTI)

    Turner, J.W. (ed.) (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA))

    1990-10-01T23:59:59.000Z

    This calendar year 1989 annual report on environmental surveillance of the US Department of Energy's (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the Summary, Discussion, and Conclusions (Part 1) and the Data Presentation (Part 2). The objectives of this report are the following: report 1989 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance. Routine monitoring and sampling for radiation, radioactive materials, and chemical substances on and off the DOE site are used to document compliance with appropriate standards, to identify trends, to provide information for the public, and to contribute to general environmental knowledge. The surveillance program assists in fulfilling the DOE policy of protecting the public, employees, and environment from harm that could be caused by its activities and reducing negative environmental impacts to the greatest degree practicable. Environmental-monitoring information complements data on specific releases, trends, and summaries. 26 refs.

  6. GASEOUS CO ABUNDANCE-AN EVOLUTIONARY TRACER FOR MOLECULAR CLOUDS

    SciTech Connect (OSTI)

    Liu Tie; Wu Yuefang; Zhang Huawei, E-mail: liutiepku@gmail.com, E-mail: ywu@pku.edu.cn [Department of Astronomy, Peking University, Beijing 100871 (China)

    2013-09-20T23:59:59.000Z

    Planck cold clumps are among the most promising objects to investigate the initial conditions of the evolution of molecular clouds. In this work, by combing the dust emission data from the survey of the Planck satellite with the molecular data of {sup 12}CO/{sup 13}CO/C{sup 18}O (1-0) lines from observations with the Purple Mountain Observatory 13.7 m telescope, we investigate the CO abundance, CO depletion, and CO-to-H{sub 2} conversion factor of 674 clumps in the early cold cores sample. The median and mean values of the CO abundance are 0.89 Multiplication-Sign 10{sup -4} and 1.28 Multiplication-Sign 10{sup -4}, respectively. The mean and median of CO depletion factor are 1.7 and 0.9, respectively. The median value of X{sub CO-to-H{sub 2}} for the whole sample is 2.8 Multiplication-Sign 10{sup 20} cm{sup -2} K{sup -1} km{sup -1} s. The CO abundance, CO depletion factor, and CO-to-H{sub 2} conversion factor are strongly (anti-)correlated to other physical parameters (e.g., dust temperature, dust emissivity spectral index, column density, volume density, and luminosity-to-mass ratio). To conclude, the gaseous CO abundance can be used as an evolutionary tracer for molecular clouds.

  7. Technique to study corrosion in fluctuating gaseous atmospheres

    SciTech Connect (OSTI)

    Ficalora, P.J.; Godfrey, T.G.

    1983-07-01T23:59:59.000Z

    The hot metal surfaces in a combustion system operating with an imperfect air-to-fuel mix experience a variation of corrosion potential. For example, the corrosion conditions can vary from reducing to oxidizing as the combustion conditions vary from rich to lean. This variation of conditions is particularly important in combustion systems utilizing sulfur-containing fuels since small variations in the sulfur partial pressure can cause catastrophic corrosion conditions. In an atmospheric fluidized-bed combustor (AFBC), coal is burned in the presence of a sulfur sorber, CaO or MgO. The alkaline oxide reacts with sulfur dioxide, the combustion product of the sulfur in the coal, to form the corresponding sulfate. Hence, the oxygen and sulfur dioxide partial pressures are controlled by the input conditions (air-coal ratio) as well as the sorption process. Figure 1 shows the observed variation of the oxygen partial pressure in an AFBC as a function of time and bed position. Clearly, fluctuations occur in a time interval of seconds, and the oxygen partial pressure can vary over approximately ten orders of magnitude. Corrosion in these fluctuating gaseous environments is being studied by measuring the resistance change of a heated metal filament specimen while it reacts with alternating oxidizing and sulfidizing gas pulses.

  8. Combustion characteristics of hydrogen - carbon monoxide-based gaseous fuels

    SciTech Connect (OSTI)

    White, D.J.; Kubasco, A.J.; Lecren, R.T.; Notardonato, J.J.

    1983-01-01T23:59:59.000Z

    An experimental rig program has been conducted with the objective of evaluating the combustion performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Bluewater gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an ''optimum'' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit low NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  9. Partnering efforts at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Warren, C.B. [Environmental Protection Agency, Atlanta, GA (United States)

    1995-12-31T23:59:59.000Z

    Before individuals or agencies can effectively work together to solve common problems, they must first agree on exactly what those problems are and establish common goals and methods that will lead to mutually acceptable solutions. Then, they must make a conscientious effort to form a cohesive team that focuses on the established goals and deemphasize traditional roles, which may in some instances be considered adversarial. This kind of teamwork/partnering process can be more difficult, though not impossible, to achieve in cases where there are traditional (real or imagined) adversarial relationships between the parties, i.e. regulator vs. regulated. The US Department of Energy Site Office (DOE) at Paducah, Kentucky, the Kentucky Department of Environmental Protection (KDEP) and the US Environmental Protection Agency, Region IV (EPA) have made t strides toward teamwork and partnering at DOE`s Paducah Gaseous Diffusion Plant. They have accomplished this in a number of ways, which will be discussed in greater detail but first and foremost, the agencies agreed up front that they had mutual goals and interests. These goals are to protect public health and the environment in a cost-effective and timely manner, taking care to make the wisest use of public resources (tax dollars); to evaluate and minimize risks, and to achieve ``Win-Win`` for all parties concerned.

  10. Bioavailability study for the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Phipps, T.L.; Kszos, L.A.

    1996-08-01T23:59:59.000Z

    The overall purpose of this plan is to assess the bioavailability of metals in the continuous and intermittent outfalls. The results may be used to determine alternative metal limits that more appropriately measure the portion of metal present necessary for toxicity to aquatic life. These limits must remain protective of in-stream aquatic life; thus, the highest concentration of metal in the water will be determined concurrently with an assessment of acute or chronic toxicity on laboratory tests. Using the method developed by the Kentucky Division of Water (KDOW), biomonitoring results and chemical data will be used to recommend alternative metal limits for the outfalls of concern. The data will be used to meet the objectives of the study: (1) evaluate the toxicity of continuous outfalls and intermittent outfalls at Paducah Gaseous Diffusion Plant; (2) determine the mean ratio of dissolved to Total Recoverable metal for Cd, Cr, Cu, Pb, Ni, and Zn in the continuous and intermittent outfalls; (3) determine whether the concentration of total recoverable metal discharged causes toxicity to fathead minnows and /or Ceriodaphnia; and (4) determine alternative metal limits for each metal of concern (Cd, Cr, Cu, Pb, Ni, and Zn).

  11. Radiation monitoring during criticality at a gaseous diffusion plant

    SciTech Connect (OSTI)

    Goebel, G.R.; Hines, T.W.; Carver, A.M.

    1994-12-31T23:59:59.000Z

    The Paducah gaseous diffusion plant (PGDP) has two systems of radiation detection units that monitor radiation associated with a nuclear criticality accident (NCA). The primary system, the criticality accident alarm system (CAAS), is composed of several detection units that alarm when gamma-radiation levels exceed 10 mR/h. The CAAS provides the means to initiate emergency-evacuation procedures in the event of an NCA. This system is augmented with a second system of radiation detectors, which is referred to as the argon gamma graph (AGG) system. The AGG system is utilized specifically for the remote monitoring of radiation during an NCA and is a primary tool used by emergency response personnel. The remote radiation readings supplied by the AGG system provide the means to quickly locate and characterize an NCA. The centralized remote monitoring of radiation during an NCA permits important data to be collected efficiently without subjecting personnel to unknown and unquantified radiation fields. Calculations of the expected radiation readings on the AGG system were performed for a postulated NCA at four different locations at PGDP.

  12. Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation

    SciTech Connect (OSTI)

    Laase, A.D.; Clausen, J.L.

    1998-07-01T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 {micro}g/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields.

  13. Dispersal of Gaseous Circumstellar Discs around High-Mass Stars

    E-Print Network [OSTI]

    Yue Shen; Yu-Qing Lou

    2006-05-19T23:59:59.000Z

    We study the dispersal of a gaseous disc surrounding a central high-mass stellar core once this circumstellar disc becomes fully ionized. If the stellar and surrounding EUV and X-ray radiations are so strong as to rapidly heat up and ionize the entire circumstellar disc as further facilitated by disc magnetohydrodynamic (MHD) turbulence, a shock can be driven to travel outward in the fully ionized disc, behind which the disc expands and thins. For an extremely massive and powerful stellar core, the ionized gas pressure overwhelms the centrifugal and gravitational forces in the disc. In this limit, we construct self-similar shock solutions for such an expansion and depletion phase. As a significant amount of circumstellar gas being removed, the relic disc becomes vulnerable to strong stellar winds and fragments into clumps. We speculate that disc disappearance happens rapidly, perhaps on a timescale of $\\sim 10^3-10^4\\hbox{yr}$ once the disc becomes entirely ionized sometime after the onset of thermal nuclear burning in a high-mass stellar core.

  14. MATERIAL SAFETY Flammability: 0

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Respiratory Protection : N/A Ventilation : Local Exhaust : N/A Mechanical : N/A Special : N/A Other : N

  15. Liquid and Gaseous Waste Operations Department annual operating report, CY 1995

    SciTech Connect (OSTI)

    Maddox, J.J.; Scott, C.B.

    1996-03-01T23:59:59.000Z

    This report describes the operating activities, upgrade activities, maintenance, and other activities regarding liquid and gaseous low level radioactive waste management at the Oak Ridge National Laboratory. Miscellaneous activities include training, audits, tours, and environmental restoration support.

  16. Gaseous effluents from the combustion of nanocomposites in controlled-ventilation conditions

    E-Print Network [OSTI]

    Boyer, Edmond

    Gaseous effluents from the combustion of nanocomposites in controlled-ventilation conditions D on the combustion of nanocomposite samples under various ventilation conditions. Tests have been performed ammonium polyphosphate in equal proportions. During testing, the ventilation-controlled conditions were

  17. EA-1927: Conveyance of Land and Facilities at the Paducah Gaseous...

    Broader source: Energy.gov (indexed) [DOE]

    Office is preparing an EA for a proposal to convey DOE land and facilities at the Paducah Gaseous Diffusion Plant, to the Paducah Area Community Reuse Organization and potentially...

  18. Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993

    SciTech Connect (OSTI)

    Maddox, J.J.; Scott, C.B.

    1994-02-01T23:59:59.000Z

    This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered.

  19. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF.sub.6

    DOE Patents [OSTI]

    Jones, Robert L. (Paducah, KY); Otey, Milton G. (Melber, KY); Perkins, Roy W. (Mayfield, KY)

    1982-01-01T23:59:59.000Z

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF.sub.6. The contaminants include fluorine and fluorides which are more reactive with CaCO.sub.3 than is UF.sub.6. The method comprises contacting the contaminant-carrying UF.sub.6 with particulate CaCO.sub.3 at a temperature effecting reaction of the contaminant and the CaCO.sub.3.

  20. Advanced Laser Diagnostics Development for the Characterization of Gaseous High Speed Flows

    E-Print Network [OSTI]

    Sanchez-Gonzalez, Rodrigo

    2012-07-16T23:59:59.000Z

    ADVANCED LASER DIAGNOSTICS DEVELOPMENT FOR THE CHARACTERIZATION OF GASEOUS HIGH SPEED FLOWS A Dissertation by RODRIGO SANCHEZ-GONZALEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2012 Major Subject: Chemistry Advanced Laser Diagnostics Development for the Characterization of Gaseous High Speed Flows Copyright 2012 Rodrigo...

  1. Influences of Water Vapor on Cr(VI) Reduction by Gaseous Hydrogen

    E-Print Network [OSTI]

    Deng, Baolin

    Columbia, Columbia, Missouri 65211 In Situ Gaseous Reduction (ISGR) using hydrogen sulfide (H2S) is a technology the contaminants, H2S, and various soil components. In this study, Cr(VI) reduction by gaseous H2S was examined under various relative humidities (0-96.7%), concentrations of Cr(VI) (127-475 µg/g of solid), and H2S

  2. Development of a test facility for the experimental evaluation of liquid and gaseous automotive engine fuels

    E-Print Network [OSTI]

    McCanlies, John Michael

    1983-01-01T23:59:59.000Z

    for comparison of gaseous fuels. A 2. 3 liter, 4-cylinder engine was instrumented to obtain engine performance in terms of power output, efficiency, and exhaust emissions. Fuel supply systems were constructed to deliver and measure the f'lowrates of both... the liquid and gaseous fuels. Electrical signals proport onal to the ma?'or dependent and independent va, iables (except emissions) were input to a microcomputer based data acquisition system to provide con- tInuous display and recording. Stationary...

  3. Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

  4. The Effects of Gaseous Ozone and Nitric Acid Deposition on two Crustose Lichen Species From Joshua Tree National Park

    E-Print Network [OSTI]

    Hessom, Elizabeth Curie

    2012-01-01T23:59:59.000Z

    photosynthetic rate responses to ozone in some foliose andof gaseous nitric acid and ozone on lichens. Dissertations &with nitric acid and ozone. Environmental Pollution, In

  5. EA-1856: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of conveyance of land and facilities at the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio, for economic development purposes.

  6. Method and an apparatus for non-invasively determining the quantity of an element in a body organ

    DOE Patents [OSTI]

    Vartsky, D.; Ellis, K.J.; Cohn, S.H.

    1980-06-27T23:59:59.000Z

    An apparatus and a method for determining in a body organ the amount of an element with the aid of a gaseous gamma ray source, where the element and the source are paired in predetermined pairs, and with the aid of at least one detector selected from the group consisting of Ge(Li) and NaI(Tl). Gamma rays are directed towards the organ, thereby resonantly scattering the gamma rays from nuclei of the element in the organ; the intensity of the gamma rays is detected by the detector; and the amount of the element in the organ is then substantially proportional to the detected intensity of the gamma rays.

  7. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2003-09-09T23:59:59.000Z

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  8. Transient model of an intermediate surge system for the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Beard, B.; Blankenship, J.G.; McGrady, P.W.

    1989-09-01T23:59:59.000Z

    Engineering design work (Reference 1) is underway for intermediate surge systems to be added to the Paducah Gaseous Diffusion Plant (PGDP) cascade as part of the Process Inventory Control System (PICS) project. These systems would be located between 000 buildings and lower half 00 buildings and would remove or add inventory during cascade transients in order to protect cascade compressors from overload and surge. Similar systems were operated in the Oak Ridge Gaseous Diffusion Plant cascade and are operated in the Portsmouth Gaseous Diffusion Plant cascade. A steady state flow analysis of the system to be installed at the PGDP has been made. The flow analysis did not address response of the surge system to the cascade transients, nor did it address automatic control of the system. The need to address these issues prompted development of the transient model described in this report. 2 refs., 8 figs., 2 tabs.

  9. On-line vibration and analysis system at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Herricks, D.M.; Strunk, W.D.

    1988-02-01T23:59:59.000Z

    The enrichment facility in Paducah, KY uses a unique hard-wired vibration monitoring and analysis system for gaseous diffusion equipment. The axial flow and centrifugal flow compressors used in uranium enrichment range in size from 6 feet in diameter to less than one foot in diameter. These compressors must operate smoothly and safely, without breech of containment, since the working fluid of gaseous diffusion is gaseous UF/sub 6/. The condition of 1925 compressors is monitored by use of the 2500 point vibration analysis system. Since the failure mechanisms of the compressors are well known and documented, only one accelerometer per machine is needed for most machines. The system is completely automated and can generate spectra or broadband levels in either acceleration or velocity units. Levels are stored for historical review. The analyst can, via a custom telecommunications link, view and analyze data from all monitored points with an office PC. 4 figs.

  10. The determination of compressibility factors of gaseous propane-nitrogen mixtures 

    E-Print Network [OSTI]

    Hodges, Don

    1952-01-01T23:59:59.000Z

    of thc Beg;voc cf kBSTBACT The propane-nitrogen system has been investigated in the gaseous phase at a temperature of 300 F. and at pressures up to 4/0 atmospheres. Compressibility curves for three mixtures of this system have been determined. A... the pressure corresponding to the "n " expansion ? th? the partial pressure of nitrogen the partial pressure oi' propane the total pressure of a gaseous system the universal gas constant (0. 08206 liter-atmosphere/ gram mole - oK) the absolute...

  11. The determination of compressibility factors of gaseous propane-nitrogen mixtures 

    E-Print Network [OSTI]

    Dickson, Cecil Herman

    1955-01-01T23:59:59.000Z

    LIBRARY A A N O'iLLEOE OF 1EXAS THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEIN MIXTURES A Thesis Cecil Herman Dickson Submitted to the Graduate School of the Agricultural and Mechanical College of' Texas in partial... f'ulf'illment of the requirements for the de~ree of MASTER OF SCIENCE Ma]or GubjectI Chemistry May I&55 THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEN MIXTURES A Thesis Cecil Herman Dickson Approved as to style...

  12. The determination of compressibility factors of gaseous propane-nitrogen mixtures

    E-Print Network [OSTI]

    Dickson, Cecil Herman

    1955-01-01T23:59:59.000Z

    LIBRARY A A N O'iLLEOE OF 1EXAS THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEIN MIXTURES A Thesis Cecil Herman Dickson Submitted to the Graduate School of the Agricultural and Mechanical College of' Texas in partial... f'ulf'illment of the requirements for the de~ree of MASTER OF SCIENCE Ma]or GubjectI Chemistry May I&55 THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEN MIXTURES A Thesis Cecil Herman Dickson Approved as to style...

  13. The determination of compressibility factors of gaseous propane-nitrogen mixtures

    E-Print Network [OSTI]

    Hodges, Don

    1952-01-01T23:59:59.000Z

    of thc Beg;voc cf kBSTBACT The propane-nitrogen system has been investigated in the gaseous phase at a temperature of 300 F. and at pressures up to 4/0 atmospheres. Compressibility curves for three mixtures of this system have been determined. A... the pressure corresponding to the "n " expansion ? th? the partial pressure of nitrogen the partial pressure oi' propane the total pressure of a gaseous system the universal gas constant (0. 08206 liter-atmosphere/ gram mole - oK) the absolute...

  14. Discrete Element Modeling

    SciTech Connect (OSTI)

    Morris, J; Johnson, S

    2007-12-03T23:59:59.000Z

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  15. Nonlinear signal contamination effects for gaseous plume detection in hyperspectral imagery

    E-Print Network [OSTI]

    Theiler, James

    Nonlinear signal contamination effects for gaseous plume detection in hyperspectral imagery James-plume pixels are inadvertently included, then that background characterization will be contaminated. In broad in the scene are off- plume, so some contamination is inevitable. In general, the contaminated background

  16. Fracture response of externally flawed aluminum cylindrical shells under internal gaseous detonation loading

    E-Print Network [OSTI]

    Barr, Al

    , there is a lack of standard guidance in designing and testing pressure vessels and piping under explosive-mechanics driven design and safety criteria for pressure vessels under gaseous detonation load- ing. At this time pipelines, nuclear plant, and petrochemical piping. This study may also guide forensic analysis

  17. Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants

    E-Print Network [OSTI]

    Garfunkel, Eric

    Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However- cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations

  18. Emission and Long-Range Transport of Gaseous Mercury from a

    E-Print Network [OSTI]

    Lee, Xuhui

    Emission and Long-Range Transport of Gaseous Mercury from a Large-Scale Canadian Boreal Forest FireQuebec.Thesemeasurementsindicated significant and highly correlated increases in Hg and CO during the plume event. The Hg:CO emissions ratio emissions and biomass burned to determine a mean area-based Hg emission flux density for boreal forest fires

  19. Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 seepage

    E-Print Network [OSTI]

    Luquot, Linda

    reactivate pre-existing weaknesses inherited from reservoir production periods and create new fracturesChanges in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 underground storage when residual CO2 gas reaches the reservoir top due to buoyancy. Permeability changes

  20. Origin of gaseous hydrocarbons from Upper Cretaceous and Tertiary strata in the Piceance basin, western Colorado

    E-Print Network [OSTI]

    Katz, David Jonathan

    1997-01-01T23:59:59.000Z

    by the Douglas Creek arch. The Piceance basin contains commercial quantities of both liquid and gaseous hydrocarbons in Tertiary-age oil shales and in tight Cretaceous-age sandstone reservoirs (Rice, 1993). Iles and Williams Fork strata deeper in the basin...

  1. Superfund record of decision (EPA Region 4): Paducah Gaseous Diffusion Plant Site, Paducah, KY, March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The decision document presents the selected interim action for the North-South Diversion Ditch (NSDD) at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The primary objective of this interim remedial action is to initiate control of the source of continued contaminant releases into the NSDD and mitigate the spread of contamination from the NSDD.

  2. Extending the Photon Mapping Method for Realistic Rendering of Hot Gaseous Fluids

    E-Print Network [OSTI]

    Texas at Austin, University of

    sophistication and use of heated gas, fire, and explosion simulations in computer graphics applications gaseous fluids, ranging from simple smoke and gas to fire flames and explosions, abound in the real world, simulated flames and explosion were visualized using color maps, obtained from reference im- ages [1, 2, 3

  3. Numerical assessment of stability criteria from disturbance energies in gaseous combustion

    E-Print Network [OSTI]

    Nicoud, Franck

    Numerical assessment of stability criteria from disturbance energies in gaseous combustion A, which corresponds to a ducted, laminar premixed propane-air flame, is used to assess the different terms a contribution from the unsteady heat flux-pressure correlation, allows a better agreement with the numerical

  4. Elucidating the solid, liquid and gaseous products from batch pyrolysis of cotton-gin trash.

    E-Print Network [OSTI]

    Aquino, Froilan Ludana

    2009-05-15T23:59:59.000Z

    Cotton-gin trash (CGT) was pyrolyzed at different temperatures and reaction times using an externally-heated batch reactor. The average yields of output products (solid/char, liquid/bio-oil, and gaseous) were determined. The heating value (HV...

  5. Environmental Restoration Site-Specific Plan for the Portsmouth Gaseous Diffusion Plant, FY 93

    SciTech Connect (OSTI)

    Not Available

    1993-01-15T23:59:59.000Z

    The purpose of this Site-Specific Plan (SSP) is to describe past, present, and future activities undertaken to implement Environmental Restoration and Waste Management goals at the Portsmouth Gaseous Diffusion Plant (PORTS). The SSP is presented in sections emphasizing Environmental Restoration description of activities, resources, and milestones.

  6. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    SciTech Connect (OSTI)

    Emrich, William J. Jr. [NASA--Marshall Space Flight Center, M.S. ER24, Huntsville, Alabama 35812 (United States)

    2008-01-21T23:59:59.000Z

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  7. A Possible Anisotropy in Blackbody Radiation Viewed through Non-uniform Gaseous Matter

    E-Print Network [OSTI]

    Ray-Dastidar, T K

    1999-01-01T23:59:59.000Z

    A non-local gauge symmetry of a complex scalar field, which can be trivially extended to spinor fields, was demonstrated in a recent paper (Mod.Phys.Lett. A13, 1265 (1998) ; hep-th/9902020). The corresponding covariant Lagrangian density yielded a new, non-local Quantum Electrodynamics. In the present paper it is shown that as a consequence of this new QED, a blackbody radiation viewed through gaseous matter appears to show a slight deviation from the Planck formula, and we propose an experimental test to check this effect. We also show that a non-uniformity in this gaseous matter distribution leads to an (apparent) spatial anisotropy in the blackbody radiation.

  8. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1995-12-31T23:59:59.000Z

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  9. Process and system for removing sulfur from sulfur-containing gaseous streams

    DOE Patents [OSTI]

    Basu, Arunabha (Aurora, IL); Meyer, Howard S. (Hoffman Estates, IL); Lynn, Scott (Pleasant Hill, CA); Leppin, Dennis (Chicago, IL); Wangerow, James R. (Medinah, IL)

    2012-08-14T23:59:59.000Z

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  10. Supplementary Information for Depletion of gaseous polycyclic aromatic hydrocarbons by a forest

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    , Toronto, Ontario, Canada, M3H 5T4 *now at: Worsfold Water Quality Centre, Trent University, Peterborough of gaseous PAHs S5­S6 Table S4 Concentrations of particulate PAHs S7­S8 Fig. S3 Back trajectories and wind-rose diagrams S9­S11 Fig. S4 Vertical profiles of PAHs S12­S13 Table S5 Particle-bound percentages of PAHs S14­S

  11. Environmental Restoration Site-Specific Plan for the Paducah Gaseous Diffusion Plant, FY 93

    SciTech Connect (OSTI)

    Not Available

    1993-01-15T23:59:59.000Z

    This report provides an overview of the major Environmental Restoration (ER) concerns at Paducah Gaseous Diffusion Plant (PGDP). The identified solid waste management units at PGDP are listed. In the Department of Energy (DOE) Five Year Plan development process, one or more waste management units are addressed in a series of activity data sheets (ADSs) which identify planned scope, schedule, and cost objectives that are representative of the current state of planned technical development for individual or multiple sites.

  12. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.

    1993-08-16T23:59:59.000Z

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation.

  13. Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.

    1993-09-20T23:59:59.000Z

    This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

  14. The development of a sensitive method to study volatile organic compounds in gaseous emissions of lung cancer cell lines 

    E-Print Network [OSTI]

    Maroly, Anupam

    2005-08-29T23:59:59.000Z

    The ultimate objective of this research was to develop a low cost, reliable system that would lead to early detection of lung cancer. Tests involved the quantitation of gaseous metabolic emissions from immortalized lung ...

  15. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  16. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Hill, W T; Wang, Jyhpyng; Chen, Shih-Hung

    2015-02-01T23:59:59.000Z

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO2 laser pulse with a wavelength of 10 ?m—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore »laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  17. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOE Patents [OSTI]

    Ghate, Madhav R. (Morgantown, WV); Yang, Ralph T. (Williamsville, NY)

    1987-01-01T23:59:59.000Z

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  18. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOE Patents [OSTI]

    Ghate, M.R.; Yang, R.T.

    1985-10-03T23:59:59.000Z

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  19. United States Department of Energy Paducah Gaseous Diffusion Plant. Environmental monitoring report, calendar year 1984

    SciTech Connect (OSTI)

    Not Available

    1985-07-01T23:59:59.000Z

    Air, water, soil, sediments, grass, and groundwater in the vicinity of the Paducah Gaseous Diffusion Plant were continuously or periodically sampled during 1984. Analyses for materials known to be in plant effluents were made to provide effluent control information and to determine compliance with applicable environmental standards. Low sulfur coal is burned in the steam plant to meet Kentucky emission limits for sulfur dioxide. Air analyses for radioactivity indicated concentrations at each off-site sampling station averaged less than 1% of the DOE Radioactivity Concentration Guide (RCG). Offsite analyses for fluorides in grass met the Kentucky Air Quality Requirements. All onsite and offsite airborne fluoride samples met the Kentucky one-week and one-month standards for gaseous HF. Soil samples were analyzed for uranium and showed no significant deviation from normal background concentrations. There was no detectable change in chemical, physical, or radioactive characteristics of the Ohio River attributable to Paducah Gaseous Diffusion Plant operations. The results of water sample analyses of the Ohio River show the chromium and fluoride concentrations to be in compliance with the requirements of the applicable Kentucky regulations. 7 figs., 26 tabs.

  20. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOE Patents [OSTI]

    Wijmans Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

    2012-05-15T23:59:59.000Z

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  1. The development of a sensitive method to study volatile organic compounds in gaseous emissions of lung cancer cell lines

    E-Print Network [OSTI]

    Maroly, Anupam

    2005-08-29T23:59:59.000Z

    THE DEVELOPMENT OF A SENSITIVE METHOD TO STUDY VOLATILE ORGANIC COMPOUNDS IN GASEOUS EMISSIONS OF LUNG CANCER CELL LINES A Thesis by ANUPAM MAROLY Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2005 Major Subject: Biomedical Engineering THE DEVELOPMENT OF A SENSITIVE METHOD TO STUDY VOLATILE ORGANIC COMPOUNDS IN GASEOUS EMISSIONS OF LUNG CANCER CELL...

  2. STAR FORMATION IN THE EXTENDED GASEOUS DISK OF THE ISOLATED GALAXY CIG 96

    SciTech Connect (OSTI)

    Espada, D.; Sabater, J.; Verdes-Montenegro, L.; Sulentic, J. [Instituto de Astrofisica de AndalucIa, CSIC, Apdo. 3004, 18080 Granada (Spain); Munoz-Mateos, J. C.; Gil de Paz, A. [Departamento de Astrofisica y CC. de la Atmosfera, Universidad Complutense de Madrid, Avda. de la Complutense, s/n, E-28040 Madrid (Spain); Boissier, S.; Athanassoula, E.; Bosma, A. [Laboratoire d'Astrophysique de Marseille, OAMP, Universite Aix-Marseille and CNRS UMR 6110, 38 rue Frederic Joliot-Curie, 13388 Marseille Cedex 13 (France); Verley, S. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain); Leon, S. [Joint ALMA Observatory/ESO, Av. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Yun, M., E-mail: daniel.espada@nao.ac.jp, E-mail: despada@cfa.harvard.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2011-07-20T23:59:59.000Z

    We study the Kennicutt-Schmidt star formation law and efficiency in the gaseous disk of the isolated galaxy CIG 96 (NGC 864), with special emphasis on its unusually large atomic gas (H I) disk (r{sub Hmathsci}/r{sub 25} = 3.5, r{sub 25} = 1.'85). We present deep Galaxy Evolution Explorer near- and far-UV observations, used as a recent star formation tracer, and we compare them with new, high-resolution (16''or 1.6 kpc) Very Large Array H I observations. The UV and H I maps show good spatial correlation outside the inner 1', where the H I phase dominates over H{sub 2}. Star-forming regions in the extended gaseous disk are mainly located along the enhanced H I emission within two (relatively) symmetric, giant gaseous spiral arm-like features, which emulate an H I pseudo-ring at r {approx_equal} 3'. Inside this structure, two smaller gaseous spiral arms extend from the northeast and southwest of the optical disk and connect to the previously mentioned H I pseudo-ring. Interestingly, we find that the (atomic) Kennicutt-Schmidt power-law index systematically decreases with radius, from N {approx_equal} 3.0 {+-} 0.3 in the inner disk (0.'8-1.'7) to N = 1.6 {+-} 0.5 in the outskirts of the gaseous disk (3.'3-4.'2). Although the star formation efficiency (SFE), the star formation rate per unit of gas, decreases with radius where the H I component dominates as is common in galaxies, we find that there is a break of the correlation at r = 1.5r{sub 25}. At radii 1.5r{sub 25} < r < 3.5r{sub 25}, mostly within the H I pseudo-ring structure, regions exist whose SFE remains nearly constant, SFE {approx_equal} 10{sup -11} yr{sup -1}. We discuss possible mechanisms that might be triggering the star formation in the outskirts of this galaxy, and we suggest that the constant SFE for such large radii (r > 2r{sub 25}) and at such low surface densities might be a common characteristic in extended UV disk galaxies.

  3. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas [DGS Metallurgical Solutions Inc; Boggess, Todd [Secat; San Marchi, Chris [Sandia National Laboratories (SNL); Jansto, Steven [Reference Metals Company; Somerday, Dr. B [Sandia National Laboratories (SNL); Muralidharan, Govindarajan [ORNL; Sofronis, Prof. Petros [University of Illinois

    2010-01-01T23:59:59.000Z

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 800 and 3000 psi. This paper will describe the work performed on four commercially available pipeline steels in the presence of gaseous hydrogen at pressures relevant for transport in pipelines. Microstructures and mechanical property performances will be compared. In addition, recommendations for future work related to gaining a better understanding of steel pipeline performance in hydrogen service will be discussed.

  4. Design considerations for instrumentation to monitor the enrichment of gaseous UF{sub 6}

    SciTech Connect (OSTI)

    Close, D.A.

    1999-07-01T23:59:59.000Z

    The measurement of the enrichment of gaseous UF{sub 6} presents unique measurement problems. The well-known uranium enrichment meter is not applicable. For solid samples of uranium, including metal, and oxide and fluoride compounds, the infinite thickness is {approximately}1 cm. Gaseous UF{sub 6}, at a pressure of tens of Torr, has an infinite thickness on the order of 350 m. This is a physically and operationally unrealistic situation for an operating facility. Pipe dimensions and composition also strongly influence the applicable measurement technique. Fundamentally, the definition of enrichment is the ratio of {sup 235}U to total uranium. The amount of {sup 235}U is determined by measuring the intensity of the 185.7-keV gamma ray from the decay of {sup 235}U. There are two methods that have been implemented to determine the amount of total uranium in the gas: X-ray fluorescence (XRF) and gamma-ray transmission. The technique used to measure the amount of total uranium is dependent on the pressure of the gas in the header pipe. The transmission measurement is applicable for higher pressures, generally pressures {lt}40 Torr. The XRF measurement can be used for pressures greater than a few Torr. An XRF measurement at pressures lower than a few Torr becomes very difficult. Two other constraints strongly influence the implementation of the measurement technique--pipe diameter and material composition. These two techniques have been implemented. The XRF technique is an approved measurement by the International Atomic Energy Agency (IAEA) for inspections at gaseous centrifuge facilities. The XRF technique has also been implemented at the Portsmouth Gaseous Diffusion Plant for the IAEA verification experiment during the period December 1997 to October 1998 to verify the downblending of US highly enriched uranium (HEU) to low-enriched uranium (LEU). The transmission technique was originally developed to verify the downblending of Russian HEU to LEU. This instrument was demonstrated at the Paducah Gaseous Diffusion Plant from April 1998 to July 1998 and installed at the Urals Electrochemical Integrated Plant, Novouralsk, Russia, during January 1999.

  5. Finite Volume Element Method

    E-Print Network [OSTI]

    2003-12-06T23:59:59.000Z

    FVE is closely related to the control volume finite element method ... simple stencils, to apply to a fairly wide range of fluid flow equations, to effectively treat.

  6. Process for oxidation of hydrogen halides to elemental halogens

    DOE Patents [OSTI]

    Lyke, Stephen E. (Middleton, WI)

    1992-01-01T23:59:59.000Z

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  7. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.

    1991-01-01T23:59:59.000Z

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  8. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in fiscal Year (FY)-1979 and early FY-1980. Volume 3 contains reports from 6 government contractors on LPG, anhydrous ammonia, and hydrogen energy systems. Report subjects include: simultaneous boiling and spreading of liquefied petroleum gas (LPG) on water; LPG safety research; state-of-the-art of release prevention and control technology in the LPG industry; ammonia: an introductory assessment of safety and environmental control information; ammonia as a fuel, and hydrogen safety and environmental control assessment.

  9. The Stability of an Isentropic Model for a Gaseous Relativistic Star

    E-Print Network [OSTI]

    P. S. Negi

    2007-02-01T23:59:59.000Z

    We show that the isentropic subclass of Buchdahl's exact solution for a gaseous relativistic star is stable and gravitationally bound for all values of the compactness ratio $u [\\equiv (M/R)$, where $M$ is the total mass and $R$ is the radius of the configuration in geometrized units] in the range, $0 < u \\leq 0.20$, corresponding to the {\\em regular} behaviour of the solution. This result is in agreement with the expectation and opposite to the earlier claim found in the literature.

  10. Measurement of the cross section for scattering of p. mu. atoms in gaseous hydrogen

    SciTech Connect (OSTI)

    Bystritskii, V.M.; Dzhelepov, V.P.; Petrukhin, V.I.; Rudenko, A.I.; Suvorov, V.M.; Fil'chenkov, V.V.; Khovanskii, N.N.; Khomenko, B.A.

    1984-08-01T23:59:59.000Z

    The muon beam of the synchrocyclotron at the Joint Institute for Nuclear Research has been used in an experiment with gaseous hydrogen at a pressure of 41 atm to measure the cross section for scattering of p..mu.. atoms by hydrogen molecules sigma(p..mu..+H/sub 2/) = (42 +- 8) x 10/sup -21/ cm/sup 2/, which corresponds to a cross section for scattering by free protons sigma(p..mu..+p) = (17.4 +- 3.3) x 10/sup -21/ cm/sup 2/.

  11. Fire protection review revisit No. 2, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Dobson, P.H.; Keller, D.R.; Treece, S.D.

    1990-02-01T23:59:59.000Z

    A fire protection survey was conducted for the Department of Energy at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, from October 30--November 4, November 6--10, and December 4--8, 1989. The purpose of the survey was to review the facility fire protection program and to make recommendations. Surveys of other facilities resulted in a classification system for buildings which provide an indication of the importance of the building to the fulfillment of the mission of the facility. Recommendations in this report reflect to some degree the relative importance of the facility and the time to restore it to useful condition in the event a loss were to occur.

  12. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  13. 2013 GASEOUS IONS GORDON RESEARCH CONFERENCE, FEBRUARY 24 - MARCH 1, 2013

    SciTech Connect (OSTI)

    Williams, Evan

    2013-03-01T23:59:59.000Z

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The long-standing goal of our community is to develop new strategies for capturing complex molecular architectures as gas phase ions where they can be isolated, characterized and manipulated with great sensitivity. Emergent areas of interest include catalytic mechanisms, cryogenic processing of ions extracted from solution, ion fragmentation mechanisms, and new methods for ion formation and structural characterization. The conference will cover theoretical and experimental advances on systems ranging from model studies at the molecular scale to preparation of nanomaterials and characterization of large biological molecules.

  14. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George (Cincinnati, OH)

    2004-02-24T23:59:59.000Z

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  15. FLAMMABILITY OF UPHOLSTERED FURNITURE USING

    E-Print Network [OSTI]

    Hickman, Mark

    .4 Specimen codes. 9 4 OXYGEN CONSUMPTION CALORIMETRY 10 4.1 Introduction 10 4.2 Calculation of Heat Release combustion products, these fires usually lead to hazardous conditions and uncontrollable fires. The heat the cone calorimeter to provide data to predict full scale furniture fires. The major results that were

  16. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  17. The Radiochemical Analysis of Gaseous Samples (RAGS) Apparatus for Nuclear Diagnostics at the National Ignition Facility

    SciTech Connect (OSTI)

    Shaughnessy, D A; Velsko, C A; Jedlovec, D R; Yeamans, C B; Moody, K J; Tereshatov, E; Stoeffl, W; Riddle, A

    2012-05-11T23:59:59.000Z

    The RAGS (Radiochemical Analysis of Gaseous Samples) diagnostic apparatus was recently installed at the National Ignition Facility. Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of {sup 135}Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched {sup 124}Xe and {sup 126}Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

  18. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

  19. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  20. A multispectral scanner survey of the United States Department of Energy's Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    Airborne multispectral scanner data of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area were acquired during late spring 1990. This survey was conducted by the Remote Sensing Laboratory (RSL) which is operated by EG G Energy Measurements (EG G/EM) for the US Department of Energy (DOE) Nevada Operations Office. It was requested by the US Department of Energy (DOE) Environmental Audit Team which was reviewing environmental conditions at the facility. The objectives of this survey were to: (1) Acquire 12-channel, multispectral scanner data of the PGDP from an altitude of 3000 feet above ground level (AGL); (2) Acquire predawn, digital thermal infrared (TIR) data of the site from the same altitude; (3) Collect color and color-infrared (CIR) aerial photographs over the facilities; and (4) Illustrate how the analyses of these data could benefit environmental monitoring at the PGDP. This report summarizes the two multispectral scanner and aerial photographic missions at the Paducah Gaseous Diffusion Plant. Selected examples of the multispectral data are presented to illustrate its potential for aiding environmental management at the site. 4 refs., 1 fig., 2 tabs.

  1. The Blend Down Monitoring System Demonstration at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Benton, J.; Close, D.; Johnson, W., Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-07-25T23:59:59.000Z

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor {sup 235}U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF{sub 6} flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities.

  2. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOE Patents [OSTI]

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02T23:59:59.000Z

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  3. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Yule, D.E.

    1996-04-01T23:59:59.000Z

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program.

  4. Nuclear fuel element

    DOE Patents [OSTI]

    Zocher, Roy W. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  5. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07T23:59:59.000Z

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  6. Indirect NMR detection of 235U in gaseous uranium hexafluoride National Center for Physics, P.O. Box MG-6, Bucharest, Romania

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    dans le UF6 gazeux. L'examen de la raie d'absorption du 19F appartenant au UF6 gazeux isotopiquement in indirect detection of the 235U nucleus in gaseous UF6 is discussed. The 19F absorption spectra linewidths in gaseous UF6 was investigated as a function of 235U enrichment, revealing a dependence on the isotope

  7. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Houk, T. [Lockheed Martin Energy Systems, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant] [Lockheed Martin Energy Systems, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant

    1998-08-01T23:59:59.000Z

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  8. Perspectives of Micro-Pattern Gaseous Detector Technologies for Future Physics Projects

    E-Print Network [OSTI]

    Titov, Maxim

    2013-01-01T23:59:59.000Z

    A centenary after the invention of the basic principle of gas amplification, gaseous detectors - are still the first choice whenever the large area coverage with low material budget is required. Advances in photo-lithography and micro-processing techniques in the chip industry during the past two decades triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the frontiers of research. The design of the new micro-pattern devices appears suitable for industrial production. In 2008, the RD51 collaboration at CERN has been established to further advance technological developments of MPGDs and associated electronic-readout systems, for applications in basic and applied research. This review provides an overview of the state-of-the...

  9. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates

    DOE Patents [OSTI]

    Elliott, Guy R. B. (Los Alamos, NM); Barraclough, Bruce L. (Santa Fe, NM); Vanderborgh, Nicholas E. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  10. A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Boyd, G.J.; Lewis, S.R.; Summitt, R.L. [Safety and Reliability Optimization Services (SAROS), Inc., Knoxville, TN (United States)

    1991-12-31T23:59:59.000Z

    A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

  11. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOE Patents [OSTI]

    Hobson, David O. (Oak Ridge, TN); Alexeff, Igor (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

    1988-01-01T23:59:59.000Z

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.

  12. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOE Patents [OSTI]

    Hobson, D.O.; Alexeff, I.; Sikka, V.K.

    1987-08-10T23:59:59.000Z

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.

  13. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback

    E-Print Network [OSTI]

    Muratov, Alexander L; Faucher-Giguere, Claude-Andre; Hopkins, Philip F; Quataert, Eliot; Murray, Norman

    2015-01-01T23:59:59.000Z

    We present an analysis of the galaxy-scale gaseous outflows from the FIRE (Feedback in Realistic Environments) simulations. This suite of hydrodynamic cosmological zoom simulations provides a sample of halos where star-forming giant molecular clouds are resolved to z=0, and features an explicit stellar feedback model on small scales. In this work, we focus on quantifying the gas mass ejected out of galaxies in winds and how this material travels through the halo. We correlate these quantities to star formation in galaxies throughout cosmic history. Our simulations reveal that a significant portion of every galaxy's evolution, particularly at high redshift, is dominated by bursts of star formation, which are followed by powerful gusts of galactic outflow that sweep up a large fraction of gas in the interstellar medium and send it through the circumgalactic medium. The dynamical effect of these outflows can significantly limit the amount of star formation within the affected galaxy. At low redshift, however, su...

  14. Local drainage analyses of the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm

    SciTech Connect (OSTI)

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1993-11-01T23:59:59.000Z

    Local drainage analyses have been performed for the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm having an approximate 10,000-yr recurrence interval. This review discusses the methods utilized to accomplish the analyses in accordance with US Department of Energy (DOE) design and evaluation guidelines, and summarizes trends, results, generalizations, and uncertainties applicable to other DOE facilities. Results indicate that some culverts may be undersized, and that the storm sewer system cannot drain the influx of precipitation from the base of buildings. Roofs have not been designed to sustain ponding when the primary drainage system is clogged. Some underground tunnels, building entrances, and ground level air intakes may require waterproofing.

  15. Regional flood hazard assessment of the Paducah and Portsmouth Gaseous Diffusion Plants

    SciTech Connect (OSTI)

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1991-01-01T23:59:59.000Z

    Regional flood-hazard assessments performed for the Paducah and Portsmouth Gaseous Diffusion Plants are reviewed, compared, and contrasted to determine the relationship of probable maximum flood methodology with respect to US Department of Energy design and evaluation guidelines. The Paducah assessment was carried out using probable maximum flood methodology, while the Portsmouth assessment utilized probabilistic techniques. Results indicated that regional flooding along nearby rivers would not inundate either plant, and that the guidelines were satisfied. A comparison of results indicated that the probable maximum flood recurrence interval associated with the Paducah assessment exceeded the 10,000 years depending on the choice of the probabilistic model used to perform the assessment. It was concluded, based on an analysis of two data points, that smaller watersheds driven by single event storms could be assessed using probabilistic techniques, while probable maximum flood methodology could be applied to larger drainage basins flooded by storm sequences. 32 refs., 3 figs.

  16. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    SciTech Connect (OSTI)

    Kszos, L.A. [ed.

    1994-03-01T23:59:59.000Z

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.

  17. Privatization of the gaseous diffusion plants and impacts on nuclear criticality safety administration

    SciTech Connect (OSTI)

    D`Aquila, D.M.; Holliday, R.T. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States); Dean, J.C. [Lockheed Martin Utility Services, Inc., Paducah, KY (United States)

    1996-12-31T23:59:59.000Z

    The Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) on July 1, 1993. The USEC is a government-owned business that leases those Gaseous Diffusion Plant (GDP) facilities at the Portsmouth, Ohio, and Paducah, Kentucky, sites from the U.S. Department of Energy (DOE) that are required for enriching uranium. Lockheed Martin Utility Services is the operating contractor for the USEC-leased facilities. The DOE has retained use of, and regulation over, some facilities and areas at the Portsmouth and Paducah sites for managing legacy wastes and environmental restoration activities. The USEC is regulated by the DOE, but is currently changing to regulation under the U.S. Nuclear Regulatory Commission (NRC). The USEC is also preparing for privatization of the uranium enrichment enterprise. These changes have significantly affected the nuclear criticality safety (NCS) programs at the sites.

  18. Paducah Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals.

  19. Seismically-induced soil amplification at the DOE Paducah Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Sykora, D.W.; Haynes, M.E. (Army Engineer Waterways Experiment Station, Vicksburg, MS (United States). Geotechnical Lab.); Brock, W.R.; Hunt, R.J.; Shaffer, K.E. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States))

    1991-01-01T23:59:59.000Z

    A site-specific earthquake site response (soil amplification) study is being conducted for the Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP). This study is pursuant to an upgraded Final Safety Analysis Report in accordance with requirements specified by DOE. The seismic hazard at PGDP is dominated by the New Madrid Seismic Zone. Site-specific synthetic earthquake records developed by others were applied independently to four soil columns with heights above baserock of about 325 ft. The results for the 1000-year earthquake event indicate that the site period is between 1.0 and 1.5 sec. Incident shear waves are amplified at periods of motion greater than 0.15 sec. The peak free-field horizontal acceleration, occurring at very low periods, is 0.28 g. 13 refs., 13 figs.

  20. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    SciTech Connect (OSTI)

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1995-06-01T23:59:59.000Z

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.

  1. Portsmouth Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals.

  2. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02T23:59:59.000Z

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  3. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

    2011-11-01T23:59:59.000Z

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  4. Liquefied gaseous fuels safety and environmental control assessment program: third status report

    SciTech Connect (OSTI)

    Not Available

    1982-03-01T23:59:59.000Z

    This Status Report contains contributions from all contractors currently participating in the DOE Liquefied Gaseous Fuels (LG) Safety and Environmental Control Assessment Program and is presented in two principal sections. Section I is an Executive Summary of work done by all program participants. Section II is a presentation of fourteen individual reports (A through N) on specific LGF Program activities. The emphasis of Section II is on research conducted by Lawrence Livermore National Laboratory (Reports A through M). Report N, an annotated bibliography of literature related to LNG safety and environmental control, was prepared by Pacific Northwest Laboratory (PNL) as part of its LGF Safety Studies Project. Other organizations who contributed to this Status Report are Aerojet Energy Conversion Company; Applied Technology Corporation; Arthur D. Little, Incorporated; C/sub v/ International, Incorporated; Institute of Gas Technology; and Massachusetts Institute of Technology. Separate abstracts have been prepared for Reports A through N for inclusion in the Energy Data Base.

  5. Selective Gaseous Extraction: Research, Development and Training for Isotope Production, Final Technical Report

    SciTech Connect (OSTI)

    Bertch, Timothy C, [General Atomics

    2014-03-31T23:59:59.000Z

    General Atomics and the University of Missouri Research Reactor (MURR) completed research and development of selective gaseous extraction of fission products from irradiated fuel, which included training and education of MURR students. The process used porous fuel and after irradiation flowed product gases through the fuel to selectively removed desired fission products with the primary goal of demonstrating the removal of rhodium 105. High removal rates for the ruthenium/rhodium (Ru/Rh), tellurium/iodine (Te/I) and molybdenum/technetium (Mo/Tc) series were demonstrated. The success of this research provides for the reuse of the target for further production, significantly reducing the production of actinide wastes relative to processes that dissolve the target. This effort was conducted under DOE funding (DE-SC0007772). General Atomics objective of the project was to conduct R&D on alternative methods to produce a number of radioactive isotopes currently needed for medical and industry applications to include rhodium-105 and other useful isotopes. Selective gaseous extraction was shown to be effective at removing radioisotopes of the ruthenium/rhodium, tellurium/iodine and molybdenum/technetium decay chains while having trace to no quantities of other fission products or actinides. This adds a new, credible method to the area of certain commercial isotope production beyond current techniques, while providing significant potential reduction of process wastes. Waste reduction, along with reduced processing time/cost provides for superior economic feasibility which may allow domestic production under full cost recovery practices. This provides the potential for improved access to domestically produced isotopes for medical diagnostics and treatment at reduced cost, providing for the public good.

  6. Inverted end-Hall-type low-energy high-current gaseous ion source

    SciTech Connect (OSTI)

    Oks, E. M.; Vizir, A. V.; Shandrikov, M. V.; Yushkov, G. Yu.; Grishin, D. M.; Anders, A.; Baldwin, D. A. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); 4Wave, Inc., Sterling, Virginia 20166 (United States)

    2008-02-15T23:59:59.000Z

    A novel approach to low-energy, high-current, gaseous ion beam generation was explored and an ion source based on this technique has been developed. The source utilizes a dc high-current (up to 20 A) gaseous discharge with electron injection into the region of ion generation. Compared to the conventional end-Hall ion source, the locations of the discharge anode and cathode are inverted: the cathode is placed inside the source and the anode outside, and correspondingly, the discharge current is in the opposite direction. The discharge operates in a diverging axial magnetic field, similar to the end-Hall source. Electron generation and injection is accomplished by using an additional arc discharge with a ''cold'' (filamentless) hollow cathode. Low plasma contamination is achieved by using a low discharge voltage (avoidance of sputtering), as well as by a special geometric configuration of the emitter discharge electrodes, thereby filtering (removing) the erosion products stemming from the emitter cathode. The device produces a dc ion flow with energy below 20 eV and current up to 2.5 A onto a collector of 500 cm{sup 2} at 25 cm from the source edge, at a pressure {>=}0.02 Pa and gas flow rate {>=}14 SCCM. The ion energy spread is 2 to 3 eV (rms). The source is characterized by high reliability, low maintenance, and long lifetime. The beam contains less than 0.1% of metallic ions. The specific electric energy consumption is 400 eV per ion registered at the collector. The source operates with noble gases, nitrogen, oxygen, and hydrocarbons. Utilizing biasing, it can be used for plasma sputtering, etching, and other ion technologies.

  7. Ecosystem element cycling Introduction

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Ecosystem element cycling Introduction An ecosystem consists of all the biological organisms and the physical environments they occupy together within a defined area [1]. The actual boundaries of an ecosystem are generally defined by researchers studying the ecosystem, who are usually interested in understanding

  8. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17T23:59:59.000Z

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  9. The Effect of Debris on Collector Optics, its Mitigation and Repair: Next-Step a Gaseous Sn EUV DPP Source

    E-Print Network [OSTI]

    Spila, Timothy P.

    The Effect of Debris on Collector Optics, its Mitigation and Repair: Next-Step a Gaseous Sn EUV DPP to advanced fuel plasma EUV sources is collector lifetime. The Illinois Debris-mitigation EUV Applications based on this work. Keywords: EUV source, debris, optics, collector lifetime, mitigation, plasma

  10. Finite Element Analysis Skateboard Truck

    E-Print Network [OSTI]

    De, Suvranu

    Finite Element Analysis Of a Skateboard Truck #12;2 Executive Summary: Engineering is and always is an element of the `truck,' which holds the wheels. Finite Element analysis will be conducted on this piece a combination of SolidWorks (for modeling) and ABAQUS (for finite element analysis). It is evident from

  11. DOLFIN: Automated Finite Element Computing

    E-Print Network [OSTI]

    Logg, Anders; Wells, G N

    2009-01-01T23:59:59.000Z

    ´de´lec 1980]. (4) L2-conforming finite elements: (a) DGq, arbitrary degree discontinuous Lagrange elements; and (b) CR1, first degree Crouzeix–Raviart5 elements [Crouzeix and Raviart 1973]. Arbitrary combinations of the above elements may be used to define...

  12. Delafosse, D. 2012. "Chapter 9 -Hydrogen Effects on the Plasticity of Face Centred Cubic (fcc) Crystals." In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, edited by Richard P Gangloff and B P Somerday,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) Crystals." In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, edited by Richard P-11May2014 Author manuscript, published in "Gaseous hydrogen embrittlement of materials in energy) Crystals." In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, edited by Richard P

  13. LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    SciTech Connect (OSTI)

    Warinner, D.K.

    1980-01-01T23:59:59.000Z

    The US Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element failure-propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurance expected in the US, USSR, France, UK, Japan, and West Germany is outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission-product monitors are briefly discussed to better realize the operational limits.

  14. Thematic Questions about Chemical Elements Nature of the chemical elements

    E-Print Network [OSTI]

    Polly, David

    Environment Element Synthesis: Exploration of Chemical Fundamentals Element Synthesis and Isotopes · Elemental thorium uranium Relativeabundance(Si=106)Relative Abundance in the Sun · non-uniform trend G302.protons 90 234Th 145 #12;5 Alpha Decay - Loss of He Atom · Decay of Uranium-238 to Thorium-234 G302

  15. Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1

    SciTech Connect (OSTI)

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1985-04-01T23:59:59.000Z

    This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

  16. Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell

    SciTech Connect (OSTI)

    Tallec, G.; Bureau, C. [Cemagref, UR HBAN, Parc de Tourvoie, BP44, F-92163 Antony (France); Peu, P.; Benoist, J.C. [Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Lemunier, M. [Suez-Environnement, CIRADE, 38 Av. Jean Jaures, 78440 Gargenville (France); Budka, A.; Presse, D. [SITA France, 132 Rue des 3 Fontanot, 92000 Nanterre Cedex (France); Bouchez, T. [Cemagref, UR HBAN, Parc de Tourvoie, BP44, F-92163 Antony (France)], E-mail: theodore.bouchez@cemagref.fr

    2009-07-15T23:59:59.000Z

    This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N{sub 2}O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effect on the biogas concentrations (CO{sub 2}, CH{sub 4} and N{sub 2}O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N{sub 2}O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N{sub 2}O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N{sub 2}O releases: 8.1 {+-} 0.16 mg m{sup -2} d{sup -1} (n = 384), 4.2 {+-} 0.14 mg m{sup -2} d{sup -1} (n = 132) and 1.9 {+-} 0.10 mg m{sup -2} d{sup -1} (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N{sub 2}O gaseous surface releases and recirculation events were evidenced. Estimated N{sub 2}O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.

  17. Environmental restoration and waste management site specific plan for Oak Ridge Operation Office Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Not Available

    1990-07-18T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP) occupies 748 security-fenced acres located on a 3,400-acre tract in McCracken County, Kentucky, which was previously part of the Kentucky Ordnance Works. The principle objective on-site process at PGDP is the separation of uranium isotopes through gaseous diffusion. The process produces enriched uranium, which is used for nuclear fuel in commercial power plants and for military purposes. This document provides an overview of the major environmental and waste management concerns at PGDP, requirements for implementation, organization/management, corrective activities, environmental restoration, waste management options, compliance with National Environmental Policy Act (NEPA), reporting and data management, quality assurance and federal, state and local interactions. 12 refs., 6 figs., 5 tabs.

  18. Postplasma particle dynamics in a Gaseous Electronics Conference RF Reference Cell

    SciTech Connect (OSTI)

    Collins, S.M. [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States)] [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States); Brown, D.A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); O`Hanlon, J.F.; Carlile, R.N. [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States)] [Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721 (United States)

    1995-11-01T23:59:59.000Z

    Particle contamination in plasma tools used for the manufacture of very large scale integrated semiconductor devices on silicon wafers is a major cause of yield loss. Understanding the dynamics of particle movement in the postplasma regime is important to explain the process of their transport to the wafer. The movement of particle contamination in a Gaseous Electronics Conference RF Reference Cell in the postplasma regime was investigated using a novel technique. Particle clouds were observed using laser light scattering together with an image intensifier and a monochromator. This technique allowed particle clouds of low density, that could not otherwise be detected, to be seen. Video analysis of the particles showed movement of the cloud front during the first second after the plasma was extinguished. Using the particle terminal velocity to estimate particle size, we estimate diameters of 0.11 {mu}m in argon and 0.05 {mu}m in krypton. The role of the thermophoretic force on particles during the postplasma was shown to be larger than gravitational forces and to dominate particle transport for small particles under the conditions investigated. A temperature gradient of 12 {degree}C/cm was observed to move these particles away from a warm electrode as the plasma was extinguished and the particles were released from the electrostatic confinement forces generated by the plasma. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  19. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Kulkarni, Gourihar R.; Munley, John T.; Nelson, Danny A.; Qiao, Hong (Amy) [Amy; Phillips, Jon R.

    2012-07-17T23:59:59.000Z

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids, producing a small atomic uranium vapor plume. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement is independent of chemical form and degree of dilution with nuisance dust and other materials. LAARS has high relative precision and detection limits approaching the femtogram range for U-235. The sample is scanned and assayed point-by-point at rates reaching 1 million measurements/hour, enabling LAARS to detect and analyze uranium in trace samples. The spectrometer is assembled using primarily commercially available components and features a compact design and automated analysis.Two specific gaseous centrifuge enrichment plant (GCEP) applications of the spectrometer are currently under development: 1) LAARS-Environmental Sampling (ES), which collects and analyzes aerosol particles for GCEP misuse detection and 2) LAARS-Destructive Assay (DA), which enables onsite enrichment DA sample collection and analysis for protracted diversion detection. The two applications propose game-changing technological advances in GCEP safeguards verification.

  20. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  1. Environmental Survey preliminary report, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy's (DOE) Oak Ridge Gaseous Diffusion Plant (ORGDP) conducted March 14 through 25, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental risk associated with ORGDP. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORGDP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during is on-site activities. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory (INEL). When completed, the results will be incorporated into the ORGDP Survey findings for in inclusion into the Environmental Survey Summary Report. 120 refs., 41 figs., 74 tabs.

  2. The effect of stellar feedback on a Milky Way-like galaxy and its gaseous halo

    E-Print Network [OSTI]

    Marasco, Antonino; Fraternali, Filippo; van der Hulst, Thijs; Wadsley, James; Quinn, Thomas; Roškar, Rok

    2015-01-01T23:59:59.000Z

    We present the study of a set of N-body+SPH simulations of a Milky Way-like system produced by the radiative cooling of hot gas embedded in a dark matter halo. The galaxy and its gaseous halo evolve for 10 Gyr in isolation, which allows us to study how internal processes affect the evolution of the system. We show how the morphology, the kinematics and the evolution of the galaxy are affected by the input supernova feedback energy E$_{\\rm SN}$, and we compare its properties with those of the Milky Way. Different values of E$_{\\rm SN}$ do not significantly affect the star formation history of the system, but the disc of cold gas gets thicker and more turbulent as feedback increases. Our main result is that, for the highest value of E$_{\\rm SN}$ considered, the galaxy shows a prominent layer of extra-planar cold (log(T)<4.3) gas extended up to a few kpc above the disc at column densities of $10^{19}$ cm$^{-2}$. The kinematics of this material is in agreement with that inferred for the HI halos of our Galaxy ...

  3. Radiation Heat Transfer in Particle-Laden Gaseous Flame: Flame Acceleration and Triggering Detonation

    E-Print Network [OSTI]

    Liberman, M A; Kiverin, A D

    2015-01-01T23:59:59.000Z

    In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase due to the radiation preheating becomes larger for a flame with lower velocity. For a flame with small enough velocity temperature of the radiation preheating may exceed the crossover temperature, so that the radiation heat transfer may become a dominant mechanism of the flame propagation. In the case of non-uniform distribution of particles, the temperature gradient formed due to the radiation preheating can initiate either deflagration or detonation ahead of the original flame via the Zel'dovich's gradient mechanism. Th...

  4. Assessment and interpretation of cross- and down-hole seismograms at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Staub, W.P.; Wang, J.C. (Oak Ridge National Lab., TN (United States)); Selfridge, R.J. (Automated Sciences Group, (United States))

    1991-09-01T23:59:59.000Z

    This paper is an assessment and interpretation of cross-and down-hole seismograms recorded at four sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP). Arrival times of shear (S-) and compressional (P-) waves are recorded on these seismograms in milliseconds. Together with known distances between energy sources and seismometers lowered into boreholes, these arrival times are used to calculate S- and P-wave velocities in unconsolidated soils and sediments that overlie bedrock approximately 320 ft beneath PGDP. The soil columns are modified after an earlier draft by ERC Environmental and Energy Services Company (ERCE), 1990. In addition to S- and P- wave velocity estimates from this paper, the soil columns contain ERCE's lithologic and other geotechnical data for unconsolidated soils and sediments from the surface to bedrock. Soil columns for Sites 1 through 4 and a site location map are in Plates 1 through 5 of Appendix 6. The velocities in the four columns are input parameters for the SHAKE computer program, a nationally recognized computer model that simulates ground response of unconsolidated materials to earthquake generated seismic waves. The results of the SHAKE simulation are combined with predicted ground responses on rock foundations (caused by a given design earthquake) to predict ground responses of facilities with foundations placed on unconsolidated materials. 3 refs.

  5. Dynamical Decoupling of Nested Bars: Self-Gravitating Gaseous Nuclear Bars

    E-Print Network [OSTI]

    Peter Englmaier; Isaac Shlosman

    2004-10-11T23:59:59.000Z

    A substantial fraction of barred galaxies host additional nuclear bars which tumble with pattern speeds exceeding those of the large-scale (primary) stellar bars. We have investigated the mechanism of formation and dynamical decoupling in such nested bars which include gaseous (secondary) nuclear bars within the full size galactic disks, hosting a double inner Lindblad resonance. Becoming increasingly massive and self-gravitating, the nuclear bars lose internal (circulation) angular momentum to the primary bars and increase their strength. Developing chaos within these bars triggers a rapid gas collapse -- bar contraction. During this time period, the secondary bar pattern speed Omega_s~a^{-1}, where "a" stands for the bar size. As a result, Omega_s increases dramatically until a new equilibrium is reached (if at all), while the gas specific angular momentum decreases -- demonstrating the dynamical decoupling of nested bars. Viscosity, and therefore the gas presence, appears to be a necessary condition for the prograde decoupling of nested bars. This process maintains an inflow rate of ~1 M_o/yr over ~10^8 yrs across the central 200 pc and has important implications for fueling the nuclear starbursts and AGN.

  6. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    SciTech Connect (OSTI)

    Not Available

    1990-02-28T23:59:59.000Z

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky. The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: an emergency management plan, with emphasis on the catastrophic earthquake; an Emergency Operations Center Duty Roster Manual; an Integrated Automated Emergency Management Information System (IAEMIS); and a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6, Volume III -- Chapter 7, and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a stand alone'' document numbered as Volume III. This document, Volume I, provides an introduction, summary and recommendations, and the emergency operations center direction and control.

  7. Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

    1994-05-24T23:59:59.000Z

    The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

  8. Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C. [Oak Ridge National Lab., TN (United States)

    1994-12-31T23:59:59.000Z

    The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The primary advantages of establishing such operating limits include (a) technically defensible screening criteria for landfill-destined solid wastes, (b) significant reductions in the required capacity of radioactive waste storage and disposal facilities, and (c) reductions in costs associated with storage and disposal of radioactive materials. The approach was based on analyses of potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (a) a source model describing the disposal of waste and the release of radionuclides from waste to groundwater, (b) site-specific groundwater flow and contaminant transport calculations, and (c) calculations of operating limits from the dose objective and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted.

  9. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    SciTech Connect (OSTI)

    Kszos, L.A. [ed.

    1996-05-01T23:59:59.000Z

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate.

  10. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    SciTech Connect (OSTI)

    Not Available

    1990-02-28T23:59:59.000Z

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP -- Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: an emergency management plan, with emphasis on the catastrophic earthquake; an Emergency Operations Center Duty Roster Manual; an Integrated Automated Emergency Management Information System (IAEMIS); and a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6, Volume III -- Chapter 7, and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a stand alone'' document numbered as Volume III. This document, Volume II, discusses methodology, engineering and environmental analyses, and operational procedures.

  11. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1996

    SciTech Connect (OSTI)

    Kszos, L.A. [ed.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01T23:59:59.000Z

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.

  12. Seismic hazard evaluation for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    The study presents the results of an investigation of seismic hazard at the site of the Paducah Gaseous Diffusion Plant. Paducah is located near the northern end of the Reelfoot Rift -- a large feature of the earth's crust that is believed to be associated with the New Madrid earthquakes of 1811 and 1812. Results from three separate seismic hazard analyses are presented here. The EPRI/SOG analysis uses the input data and methodology developed by the Electric Power Research Institute, under the sponsorship of several electric utilities, for the evaluation of seismic hazard in the central and eastern United States. Section 2 of this report documents the application of the EPRI/SOG methodology to the Paducah site (for both rock and soil conditions). The LLNL analysis uses the input data and methodology developed by the Lawrence Livermore National Laboratory for the Nuclear Regulatory Commission. This analysis was performed by LLNL and results were transmitted to us. Section 3 of this report contains a summary of LLNL inputs and results (for both rock and soil conditions, and considering 4 and 5 LLNL ground motion experts). 29 refs., 118 figs., 24 tabs.

  13. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01T23:59:59.000Z

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  14. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1997

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01T23:59:59.000Z

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997.

  15. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    SciTech Connect (OSTI)

    Not Available

    1990-02-28T23:59:59.000Z

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc, initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP--Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: (1) an emergency management plan, with emphasis on the catas trophic earthquake, (2) an Emergency Operations Center Duty Roster Manual, (3) an Integrated Automated Emergency Management Information System (IAEMIS), and (4) a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I--Chapters 1--3; Volume II--Chapters 4--6, Volume III--Chapter 7, and Volume IV--23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a stand alone'' document numbered as Volume III. This document, Volume IV contains the appendices to this report.

  16. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    SciTech Connect (OSTI)

    Not Available

    1990-02-28T23:59:59.000Z

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP -- Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: (1) an emergency management plan with emphasis on the catas trophic earthquake; (2) an Emergency Operations Center Duty Roster Manual; (3) an Integrated Automated Emergency Management Information System (IAEMIS); and (4) a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6; Volume III -- Chapter 7; and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is this document numbered as Volume III.

  17. Paducah Gaseous Diffusion Plant proposed pilot pump-and-treat project. Final report

    SciTech Connect (OSTI)

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Huff, D.D.; Jones, K.S.; Nickelson, M.D.; Rightmire, C.T.

    1994-01-01T23:59:59.000Z

    On March 23, 1992, R.C. Sleeman of the Department of Energy, Oak Ridge Operations Office requested that a Groundwater Corrective Actions Team be assembled to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at the Paducah Gaseous Diffusion Plant. In addition to other suggestions, the Team recommended that further characterization data be obtained for the plume. In the Fall of 1993 additional, temporary well points were installed so that groundwater samples from the shallow groundwater system and the Regional Gravel Aquifer (RGA) could be obtained to provide a three-dimensional view of groundwater contamination in the region of the plume. The results indicate that pure-phase DNAPL (trichloroethylene [TCE]) probably are present in the source area of the plume and extend in depth to the base of the RGA. Because the DNAPL likely will represent a source of a dissolved phase plume for decades it is essential that source containment take place. The Team recommends that although effective hydraulic containment can be achieved, other alternatives should be considered. For example, recent advances in emplacing low permeability barrier walls to depths of 100 to 150 ft make it possible to consider encirclement of the source of the Northwest plume.

  18. Ices in the Galactic Centre : solid ice and gaseous CO in the central parsec

    E-Print Network [OSTI]

    Moultaka, Jihane; Sabha, Nadeen

    2015-01-01T23:59:59.000Z

    For the past few years, we have observed the central half parsec of our Galaxy in the mid-infrared from 2.8 to 5.1 micron. Our aim is to improve our understanding of the direct environment of SgrA*, the supermassive blackhole at the centre of the Milky Way. This work is described in the present paper and by Moultaka et al. 2015 (submitted). Here, we focus on the study of the spatial distribution of the 12CO ice and gas-phase absorptions. We observed the central half parsec with ISAAC spectrograph located at the UT3/VLT ESO telescope in Chile. The slit was placed along 22 positions arranged parallel to each other to map the region. We built the first data cube in this wavelength range covering the central half parsec. The wavelength interval of the used M-band filter ranges from 4.6 to 5.1 micron. It hosts the P- and R- branches of the ro-vibrational transitions of the gaseous 12CO and 13CO, as well as the absorption band attributed to the 12CO ice at 4.675 micron. Using two calibrators, we could disentangle t...

  19. Infrared absorption strengths of potential gaseous diffusion plant coolants and related reaction products

    SciTech Connect (OSTI)

    Trowbridge, L.D.; Angel, E.C.

    1993-05-01T23:59:59.000Z

    The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is scheduled for production curtailment within the next few years, a search for substitutes is underway, and apparently workable alternatives have been found and are under testing. The presently favored substitutes, FC-c3l8 and FC-3110, satisfy ozone depletion and operational chemical compatibility concerns, but will be long-lived greenhouse gases, and thus may be regulated on that basis in the future. A further search is therefore underway for compounds with shorter atmospheric lifetimes which could otherwise satisfy operational physical and chemical requirements. A number of such candidates are in the process of being screened for chemical compatibility in a fluorinating environment. This document presents infrared spectral data developed and used in that study for candidates recently examined, and also for many of their fluorination reaction products. The data include gas-phase infrared spectra, quantitative peak intensities as a function of partial pressure, and integrated absorbance strength in the IR-transparent atmospheric window of interest to global warming modeling. Combining this last property with literature or estimated atmospheric lifetimes, rough estimates of global warming potential for these compounds are also presented.

  20. The CEBAF Element Database

    SciTech Connect (OSTI)

    Theodore Larrieu, Christopher Slominski, Michele Joyce

    2011-03-01T23:59:59.000Z

    With the inauguration of the CEBAF Element Database (CED) in Fall 2010, Jefferson Lab computer scientists have taken a step toward the eventual goal of a model-driven accelerator. Once fully populated, the database will be the primary repository of information used for everything from generating lattice decks to booting control computers to building controls screens. A requirement influencing the CED design is that it provide access to not only present, but also future and past configurations of the accelerator. To accomplish this, an introspective database schema was designed that allows new elements, types, and properties to be defined on-the-fly with no changes to table structure. Used in conjunction with Oracle Workspace Manager, it allows users to query data from any time in the database history with the same tools used to query the present configuration. Users can also check-out workspaces to use as staging areas for upcoming machine configurations. All Access to the CED is through a well-documented Application Programming Interface (API) that is translated automatically from original C++ source code into native libraries for scripting languages such as perl, php, and TCL making access to the CED easy and ubiquitous.

  1. Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October, 2001)

    E-Print Network [OSTI]

    M. Titov; M. Hohlmann; C. Padilla; N. Tesch

    2002-04-04T23:59:59.000Z

    High Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern to the involved experimenters. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors and related detector types with their own specific aging effects have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. In light of these developments and as detector aging is a notoriously complex field, the goal of the workshop was to provide a forum for interested experimentalists to review the progress in understanding of aging effects and to exchange recent experiences. A brief summary of the main results and experiences reported at the 2001 workshop is presented, with the goal of providing a systematic review of aging effects in state-of-the-art and future gaseous detectors.

  2. The Central Kiloparsec of Seyfert and Inactive Host Galaxies: a Comparison of Two-Dimensional Stellar and Gaseous Kinematics

    E-Print Network [OSTI]

    Gaelle Dumas; Carole Mundell; Eric Emsellem; Neil Nagar

    2007-05-29T23:59:59.000Z

    We investigate the properties of the two-dimensional distribution and kinematics of ionised gas and stars in the central kiloparsecs of a matched sample of nearby active (Seyfert) and inactive galaxies, using the SAURON Integral Field Unit on the William Herschel Telescope. The ionised gas distributions show a range of low excitation regions such as star formation rings in Seyferts and inactive galaxies, and high excitation regions related to photoionisation by the AGN. The stellar kinematics of all galaxies in the sample show regular rotation patterns typical of disc-like systems, with kinematic axes which are well aligned with those derived from the outer photometry and which provide a reliable representation of the galactic line of nodes. After removal of the non-gravitational components due to e.g. AGN-driven outflows, the ionised gas kinematics in both the Seyfert and inactive galaxies are also dominated by rotation with global alignment between stars and gas in most galaxies. This result is consistent with previous findings from photometric studies that the large-scale light distribution of Seyfert hosts are similar to inactive hosts. However, fully exploiting the two-dimensional nature of our spectroscopic data, deviations from axisymmetric rotation in the gaseous velocity fields are identified that suggest the gaseous kinematics are more disturbed at small radii in the Seyfert galaxies compared with the inactive galaxies, providing a tentative link between nuclear gaseous streaming and nuclear activity.

  3. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF/sub 6/. [ClF/sub 3/

    DOE Patents [OSTI]

    Jones, R.L.; Otey, M.G.; Perkins, R.W.

    1980-11-24T23:59:59.000Z

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF/sub 6/. The contaminants include fluorine and fluorides which are more reactive with CaCO/sub 3/ than is UF/sub 6/. The method comprises contacting the contaminant-carrying UF/sub 6/ with particulate CaCO/sub 3/ at a temperature effecting reaction of the contaminant and the CaCO/sub 3/.

  4. Photoconductive circuit element reflectometer

    DOE Patents [OSTI]

    Rauscher, Christen (Alexandria, VA)

    1990-01-01T23:59:59.000Z

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

  5. Photoconductive circuit element reflectometer

    DOE Patents [OSTI]

    Rauscher, C.

    1987-12-07T23:59:59.000Z

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.

  6. A GENERAL CIRCULATION MODEL FOR GASEOUS EXOPLANETS WITH DOUBLE-GRAY RADIATIVE TRANSFER

    SciTech Connect (OSTI)

    Rauscher, Emily [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2012-05-10T23:59:59.000Z

    We present a new version of our code for modeling the atmospheric circulation on gaseous exoplanets, now employing a 'double-gray' radiative transfer scheme, which self-consistently solves for fluxes and heating throughout the atmosphere, including the emerging (observable) infrared flux. We separate the radiation into infrared and optical components, each with its own absorption coefficient, and solve standard two-stream radiative transfer equations. We use a constant optical absorption coefficient, while the infrared coefficient can scale as a power law with pressure; however, for simplicity, the results shown in this paper use a constant infrared coefficient. Here we describe our new code in detail and demonstrate its utility by presenting a generic hot Jupiter model. We discuss issues related to modeling the deepest pressures of the atmosphere and describe our use of the diffusion approximation for radiative fluxes at high optical depths. In addition, we present new models using a simple form for magnetic drag on the atmosphere. We calculate emitted thermal phase curves and find that our drag-free model has the brightest region of the atmosphere offset by {approx}12 Degree-Sign from the substellar point and a minimum flux that is 17% of the maximum, while the model with the strongest magnetic drag has an offset of only {approx}2 Degree-Sign and a ratio of 13%. Finally, we calculate rates of numerical loss of kinetic energy at {approx}15% for every model except for our strong-drag model, where there is no measurable loss; we speculate that this is due to the much decreased wind speeds in that model.

  7. Feedback from galactic stellar bulges and hot gaseous haloes of galaxies

    E-Print Network [OSTI]

    Shikui Tang; Q. Daniel Wang; Yu Lu; H. J. Mo

    2008-10-30T23:59:59.000Z

    We demonstrate that the feedback from stellar bulges can play an essential role in shaping the halo gas of galaxies with substantial bulge components by conducting 1-D hydrodynamical simulations. The feedback model we consider consists of two distinct phases: 1) an early starburst during the bulge formation and 2) a subsequent long-lasting mass and energy injection from stellar winds of low-mass stars and Type Ia SNe. An energetic outward blastwave is initiated by the starburst and is maintained and enhanced by the long-lasting stellar feedback. For a MW-like galactic bulge, this blastwave sweeps up the halo gas in the proto-galaxy and heats up the surrounding medium to a scale much beyond the virial radius of the halo, thus the accretion of the halo hot gas can be completely stopped. In addition, the long-lasting feedback in the later phase powers a galactic bulge wind that is reverse-shocked at a large radius in the presence of surrounding intergalactic medium and hence maintains a hot gaseous halo. As the mass and energy injection decreases with time, the feedback evolves to a subsonic and quasi-stable outflow, which is enough to prevent halo gas from cooling. The two phases of the feedback thus re-enforce each-other's impact on the gas dynamics. The simulation results demonstrate that the stellar bulge feedback may provide a plausible solution to the long-standing problems in understanding the MW type galaxies, such as the "missing stellar feedback" problem and the "over-cooling" problem. The simulations also show that the properties of the hot gas in the subsonic outflow state depend sensitively on the environment and the formation history of the bulge. This dependence and variance may explain the large dispersion in the X-ray to B-band luminosity ratio of the low $L_X/L_B$ Es.

  8. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    SciTech Connect (OSTI)

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. (Institute of Paper Science and Technology, Atlanta, GA (USA))

    1990-07-01T23:59:59.000Z

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  9. TIME-DEPENDENT PHOTOIONIZATION OF GASEOUS NEBULAE: THE PURE HYDROGEN CASE

    SciTech Connect (OSTI)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Kallman, T. R., E-mail: javier@head.cfa.harvard.edu, E-mail: manuel.bautista@wmich.edu, E-mail: ehab.elhoussieny@wmich.edu, E-mail: timothy.r.kallman@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-09-20T23:59:59.000Z

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full time-dependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionization/thermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IF/thermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal fronts/IFs and equilibration times.

  10. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology]|[Oak Ridge National Lab., TN (United States); Doll, W.E. [Oak Ridge National Lab., TN (United States); Phillips, B.E. [Paducah Gaseous Diffusion Plant, KY (United States)

    1994-09-01T23:59:59.000Z

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  11. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Moore, G.K. [Tennessee Univ., Knoxville, TN (United States)

    1995-03-01T23:59:59.000Z

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  12. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  13. Short-term effects of gaseous pollutants on cause-specific mortality in Wuhan, China

    SciTech Connect (OSTI)

    Zhengmin Qian; Qingci He; Hung-Mo Lin (and others) [Pennsylvania State College of Medicine, Hershey, PA (United States)

    2007-07-15T23:59:59.000Z

    This study was to determine the acute mortality effects of the gaseous pollutants in Wuhan, China a city with 7.5 million permanent residents during the period from 2000 to 2004. The major sources of air pollution in the city are motor vehicles and the use of coal for domestic cooking, heating, and industrial processes. In recent years, combustion of gas has been the most common method for domestic cooking. There is a large coal-combustion smelter in the district. There are approximately 4.5 million residents in Wuhan who live in the city's core area of 201 km{sup 2}, where air pollution levels are highest, and pollution ranges are wider than the majority of the cities in the published literature. We used the generalized additive model to analyze pollution, mortality, and covariate data. We found consistent NO{sub 2} effects on mortality with the strongest effects on the same day. Every 10-{mu}g/m{sup 3} increase in NO{sub 2} daily concentration on the same day was associated with an increase in nonaccidental cardiovascular, stroke, cardiac, respiratory, and cardiopulmonary mortality. These effects were stronger among the elderly than among the young. Formal examination of exposure-response curves suggests no-threshold linear relationships between daily mortality and NO{sub 2}, where the NO{sub 2} concentrations ranged from 19.2 to 127.4 {mu}g/m{sup 3}. SO{sub 2} and O{sub 3} were not associated with daily mortality. The exposure response relationships demonstrated heterogeneity, with some curves showing nonlinear relationships for SO{sub 2} and O{sub 3}. We conclude that there is consistent evidence of acute effects of NO{sub 2} on mortality and suggest that a no-threshold linear relationship exists between NO{sub 2} and mortality. 36 refs., 7 tabs.

  14. Neutral Current Coherent Cross Sections- Implications on Gaseous Spherical TPC's for detecting SN and Earth neutrinos

    E-Print Network [OSTI]

    J. D. Vergados

    2011-11-27T23:59:59.000Z

    The detection of galactic supernova (SN) neutrinos represents one of the future frontiers of low-energy neutrino physics and astrophysics. The neutron coherence of neutral currents (NC) allows quite large cross sections in the case of neutron rich targets, which can be exploited in detecting earth and sky neutrinos by measuring nuclear recoils. A core-collapse supernova represents one of the most powerful source of (anti)neutrinos in the Universe. These (NC) cross sections are not dependent on flavor conversions and, thus, their measurement will provide useful information about the neutrino source. In particular the case of SN they will yield information about the primary neutrino fluxes, i.e. before flavor conversions in neutrino sphere. The advantages of large gaseous low threshold and high resolution time projection counters (TPC) detectors TPC detectors will be discussed. These are especially promising since they are expected to be relatively cheap and easy to maintain. The information thus obtained can also be useful to other flavor sensitive detectors, e.g. the large liquid scintillation detectors like LENA. All together such detectors will provide invaluable information on the astrophysics of core-collapse explosion and on the neutrino mixing parameters. In particular, neutrino flavor transitions in SN envelope might be sensitive to the value of theta-{13} and to the unknown neutrino mass hierarchy. Till a real SN explosion is detected, one can use available earth neutrino sources with similar energy spectra to test the behavior of these detectors. Among them, the ORNL Neutron Spallation source (SNS) and boosted radioactive neutrino beams are good candidates.

  15. Modeling and analyses of postulated UF{sub 6} release accidents in gaseous diffusion plant

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W. [Oak Ridge National Lab., TN (United States); Carter, J.C. [J.C. Carter Associates, Inc., Oak Ridge, TN (United States); Dyer, R.H. [Dyer Enterprises, Oak Ridge, TN (United States)

    1995-10-01T23:59:59.000Z

    Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant. UF{sub 6} undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO{sub 2}F{sub 2}). As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO{sub 2}F{sub 2} as well as HF during a postulated UF{sub 6} release accident in a process building. In the postulated accident scenario, {approximately}7900 kg (17,500 lb) of hot UF{sub 6} vapor is released over a 5 min period from the process piping into the atmosphere of a large process building. UO{sub 2}F{sub 2} mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO{sub 2}F{sub 2} aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO{sub 2}F{sub 2} are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. MELCOR model was first used to develop a single volume representation of a process building and its results were compared with those from past lumped parameter models specifically developed for studying UF{sub 6} release accidents. Preliminary results indicate that MELCOR predicted results (using a lumped formulation) are comparable with those from previously developed models.

  16. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  17. ME 872 -Finite Element Methods Spring 2014

    E-Print Network [OSTI]

    Diaz, Alejandro

    Element Method: Linear Static and Dynamic Finite Element Analysis (Dover Civil and Mechanical Engineering problems Special topics: Lagrange multipliers, adaptive finite elements, sensitivity analysis, nonlinearME 872 - Finite Element Methods Spring 2014 Catalog Description: Theory and application

  18. Trace element emissions. Semi-annual report, October 1994--February 1995

    SciTech Connect (OSTI)

    Pigeaud, A.; Maru, H.; Wilemski, G.; Helble, J.

    1995-02-01T23:59:59.000Z

    Many trace elements can exist in raw coal gas either in the form of metallic vapors or gaseous compounds which, besides their action on potentially ``very clean`` advanced power generating systems such as fuel cells and gas turbines, can also be detrimental to plant and animal life when released into the atmosphere. Therefore, volatile trace contaminants from coal which can also be toxic must be removed before they become detrimental to both power plant performance/endurance and the environment. Five trace elements were selected in this project based on: abundance in solid coal, volatility during gasification, effects on downstream systems and toxicity to plant and animal life. An understanding was sought in this investigation of the interactions of these five trace elements (and their high temperature species) with the different components in integrated cleanup and power generating systems, as well as the ultimate effects with respect to atmospheric emissions. Utilizing thermodynamic calculations and various experimental techniques, it was determined that a number of trace contaminants that exist in coal may be substantially removed by flyash, and after that by different sorbent systems. High temperature cleanup of contaminants by sorbents such as zinc titanate, primarily to remove sulfur, can also absorb some metallic contaminants such as cadmium and antimony. Further polishing will be required, however, to eliminate trace contaminant species incorporating the elements arsenic, selemium, lead, and mercury.

  19. The Search for Heavy Elements

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  20. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy) [Amy; Phillips, Jon R.

    2012-07-01T23:59:59.000Z

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy’s (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids producing a small plume containing uranium atoms. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement has high relative precision and detection limits approaching the femtogram range for uranium. It is independent of chemical form and degree of dilution with nuisance dust and other materials. High speed sample scanning and pinpoint characterization allow measurements on millions of particles/hour to detect and analyze the enrichment of trace uranium in samples. The spectrometer is assembled using commercially available components at comparatively low cost, and features a compact and low power design. Future designs can be engineered for reliable, autonomous deployment within an industrial plant environment. Two specific applications of the spectrometer are under development: 1) automated unattended aerosol sampling and analysis and 2) on-site small sample destructive assay measurement. The two applications propose game-changing technological advances in gaseous centrifuge enrichment plant (GCEP) safeguards verification. The aerosol measurement instrument, LAARS-environmental sampling (ES), collects aerosol particles from the plant environment in a purpose-built rotating drum impactor and then uses LAARS-ES to quickly scan the surface of the impactor to measure the enrichments of the captured particles. The current approach to plant misuse detection involves swipe sampling and offsite analysis. Though this approach is very robust it generally requires several months to obtain results from a given sample collection. The destructive assay instrument, LAARS-destructive assay (DA), uses a simple purpose-built fixture with a sampling planchet to collect adsorbed UF6 gas from a cylinder valve or from a process line tap or pigtail. A portable LAARS-DA instrument scans the microgram quantity of uranium collected on the planchet and the assay of the uranium is measured to ~0.15% relative precision. Currently, destructive assay samples for bias defect measurements are collected in small sample cylinders for offsite mass spectrometry measurement.

  1. Design of an Unattended Environmental Aerosol Sampling and Analysis System for Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Munley, John T.; Alexander, M. L.

    2011-07-19T23:59:59.000Z

    The resources of the IAEA continue to be challenged by the rapid, worldwide expansion of nuclear energy production. Gaseous centrifuge enrichment plants (GCEPs) represent an especially formidable dilemma to the application of safeguard measures, as the size and enrichment capacity of GCEPs continue to escalate. During the early part of the 1990's, the IAEA began to lay the foundation to strengthen and make cost-effective its future safeguard regime. Measures under Part II of 'Programme 93+2' specifically sanctioned access to nuclear fuel production facilities and environmental sampling by IAEA inspectors. Today, the Additional Protocol grants inspection and environmental sample collection authority to IAEA inspectors at GCEPs during announced and low frequency unannounced (LFUA) inspections. During inspections, IAEA inspectors collect environmental swipe samples that are then shipped offsite to an analytical laboratory for enrichment assay. This approach has proven to be an effective deterrence to GCEP misuse, but this method has never achieved the timeliness of detection goals set forth by IAEA. Furthermore it is questionable whether the IAEA will have the resources to even maintain pace with the expansive production capacity of the modern GCEP, let alone improve the timeliness in reaching current safeguards conclusions. New safeguards propositions, outside of familiar mainstream safeguard measures, may therefore be required that counteract the changing landscape of nuclear energy fuel production. A new concept is proposed that offers rapid, cost effective GCEP misuse detection, without increasing LFUA inspection access or introducing intrusive access demands on GCEP operations. Our approach is based on continuous onsite aerosol collection and laser enrichment analysis. This approach mitigates many of the constraints imposed by the LFUA protocol, reduces the demand for onsite sample collection and offsite analysis, and overcomes current limitations associated with the in-facility misuse detection devices. Onsite environmental sample collection offers the ability to collect fleeting uranium hexafluoride emissions before they are lost to the ventilation system or before they disperse throughout the facility, to become deposited onto surfaces that are contaminated with background and historical production material. Onsite aerosol sample collection, combined with enrichment analysis, provides the unique ability to quickly detect stepwise enrichment level changes within the facility, leading to a significant strengthening of facility misuse deterence. We report in this paper our study of several GCEP environmental sample release scenarios and simulation results of a newly designed aerosol collection and particle capture system that is fully integrated with the Laser Ablation, Absorbance Ratio Spectrometry (LAARS) uranium particle enrichment analysis instrument that was developed at the Pacific Northwest National Laboratory.

  2. Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream

    DOE Patents [OSTI]

    Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

    2013-07-16T23:59:59.000Z

    The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

  3. Health risk from earthquake caused releases of UF{sub 6} at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Brown, N.W; Lu, S.; Chen, J.C.; Roehnelt, R.; Lombardi, D.

    1998-05-01T23:59:59.000Z

    The health risk to the public and workers from potential exposure to the toxic materials from earthquake caused releases of uranium hexafluoride from the Paducah gaseous Diffusion Plant are evaluated. The results of the study show that the health risk from earthquake caused releases is small, and probably less than risks associated with the transportation of hydrogen fluoride and other similar chemicals used by industry. The probability of more than 30 people experiencing health consequences (injuries) from earthquake damage is less than 4xlO{sup 4}/yr.

  4. Superfund record of decision (EPA Region 4): Paducah Gaseous Diffusion Plant, Northwest Plume, Paducah, KY, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This decision document presents the selected remedial action for the Northwest Plume at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The primary objective of this interim remedial action is to initiate a first phase remedial action, as an interim action to initiate control of the source and mitigate the spread of contamination in the Northwest plume. This operable unit addresses a portion of the contaminated ground water. Additional interim actions associated with this integrator operable unit are being considered, as well as for other areas of contaminated ground water.

  5. Superfund record of decision (EPA Region 4): Paducah Gaseous Diffusion Plant (USDOE), Operable Unit 15, Paducah, KY, August 10, 1998

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    This decision document presents the remedial action for the Solid Waste Management Unit (SWMU) 91 of the Waste Area Group (WAG) 27 at the Paducah Gaseous Diffusion Plant (PGDP) near Paducah, Kentucky. The primary objective of this remedial action is to reduce the level of TCE-contaminated soil thereby reducing the potential future concentrations in ground water that could pose a threat to human health and the environment at the POE (i.e., the DOE property boundary). The potential for migration of the contamination from the soil of the off-site aquifer is the concern associated with the SWMU.

  6. LMFBR operational and experimental local-fault experience, primarily with oxide fuel elements

    SciTech Connect (OSTI)

    Warinner, D.K.

    1980-01-01T23:59:59.000Z

    Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS- and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation.

  7. LMFBR operational and experimental in-core local-fault experience, primarily with oxide fuel elements

    SciTech Connect (OSTI)

    Warinner, D.K.

    1980-08-10T23:59:59.000Z

    Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS-and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation.

  8. Method for detecting an element

    DOE Patents [OSTI]

    Blackwood, Larry G.; Reber, Edward L.; Rohde, Kenneth W.

    2007-02-06T23:59:59.000Z

    A method for detecting an element is disclosed and which includes the steps of providing a gamma-ray spectrum which depicts, at least in part, a test region having boundaries, and which has a small amount of the element to be detected; providing a calculation which detects the small amount of the element to be detected; and providing a moving window and performing the calculation within the moving window, and over a range of possible window boundaries within the test region to determine the location of the optimal test region within the gamma-ray spectrum.

  9. Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October, 2001)

    E-Print Network [OSTI]

    Titov, M L; Padilla, C; Tesch, N

    2002-01-01T23:59:59.000Z

    High Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern to the involved experimenters. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors and related detector types with their own specific aging effects have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. In light of these developments and as detector aging is a notoriously complex field, the goal of the workshop was to provide a forum for interested experimentalists to review the progress in understanding of aging effects and to exchange recent experiences. A brief summary of the main results and experiences reported at the 2001 workshop is presented, with the goal of providing a systematic review of aging effects in ...

  10. Pattern recognition techniques to reduce backgrounds in the search for the {sup 136}Xe double beta decay with gaseous TPCs

    SciTech Connect (OSTI)

    Iguaz, F. J.; Cebrián, S.; Dafni, T.; Gómez, H.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Segui, L.; Tomas, A. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza (Spain)] [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza (Spain)

    2013-08-08T23:59:59.000Z

    The observation of the neutrinoless double beta decay may provide essential information on the nature of neutrinos. Among the current experimental approaches, a high pressure gaseous TPC is an attractive option for the search of double beta decay due to its good energy resolution and the detailed topological information of each event. We present in this talk a detailed study of the ionization topology of the {sup 136}Xe double beta decay events in a High Pressure Xenon TPC, as well as that of the typical competing backgrounds. We define some observables based on graph theory concepts to develop automated discrimination algorithms. Our criteria are able to reduce the background level by about three orders of magnitude in the region of interest of the {sup 136}Xe Q{sub ??} for a signal acceptance of 40%. This result provides a quantitative assessment of the benefit of topological information offered by gaseous TPCs for double beta decay search, and proves that it is a promising feature in view of future experiments in the field. Possible ideas for further improvement in the discrimination algorithms and the dependency of these results with the gas diffusion and readout granularity will be also discussed.

  11. APPLICATION OF THE LASAGNA{trademark} SOIL REMEDIATION TECHNOLOGY AT THE DOE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Swift, Barry D.; Tarantino, Joseph J., P. E.

    2003-02-27T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the Department of Energy (DOE), has been enriching uranium since the early 1950s. The enrichment process involves electrical and mechanical components that require periodic cleaning. The primary cleaning agent was trichloroethene (TCE) until the late 1980s. Historical documentation indicates that a mixture of TCE and dry ice were used at PGDP for testing the integrity of steel cylinders, which stored depleted uranium. TCE and dry ice were contained in a below-ground pit and used during the integrity testing. TCE seeped from the pit and contaminated the surrounding soil. The Lasagna{trademark} technology was identified in the Record of Decision (ROD) as the selected alternative for remediation of the cylinder testing site. A public-private consortium formed in 1992 (including DOE, the U.S. Environmental Protection Agency, and the Kentucky Department for Environmental Protection, Monsanto, DuPont, and General Electric) developed the Lasagna{trademark} technology. This innovative technology employs electrokinetics to remediate soil contaminated with organics and is especially suited to sites with low permeability soils. This technology uses direct current to move water through the soil faster and more uniformly than hydraulic methods. Electrokinetics moves contaminants in soil pore water through treatment zones comprised of iron filings, where the contaminants are decomposed to basic chemical compounds such as ethane. After three years of development in the laboratory, the consortium field tested the Lasagna{trademark} process in several phases. CDM installed and operated Phase I, the trial installation and field test of a 150-square-foot area selected for a 120-day run in 1995. Approximately 98 percent of the TCE was removed. CDM then installed and operated the next phase (IIa), a year-long test on a 600-square-foot site. Completed in July 1997, this test removed 75 percent of the total volume of TCE down to a depth of 45 feet. TCE in the test sites. Based on the successful field tests (Phases I and IIa), the ROD was prepared and the Lasagna{trademark} alternative was selected for remediation of TCE contaminated soils at the cylinder testing site Solid Waste Management Unit 91(SWMU 91). Bechtel Jacobs Company LLC contracted CDM to construct and operate a full-scale Lasagna{trademark} remediation system at the site (Phase IIb). Construction began in August 1999 and the operational phase was initiated in December 1999. The Lasagna{trademark} system was operated for two years and reduced the average concentration of TCE in SWMU 91 soil from 84 ppm to less than 5.6 ppm. Verification sampling was conducted during May, 2002. Results of the verification sampling indicated the average concentration of TCE in SWMU 91 soil was 0.38 ppm with a high concentration of 4.5 ppm.

  12. Elemental ABAREX -- a user's manual.

    SciTech Connect (OSTI)

    Smith, A.B.

    1999-05-26T23:59:59.000Z

    ELEMENTAL ABAREX is an extended version of the spherical optical-statistical model code ABAREX, designed for the interpretation of neutron interactions with elemental targets consisting of up to ten isotopes. The contributions from each of the isotopes of the element are explicitly dealt with, and combined for comparison with the elemental observables. Calculations and statistical fitting of experimental data are considered. The code is written in FORTRAN-77 and arranged for use on the IBM-compatible personal computer (PC), but it should operate effectively on a number of other systems, particularly VAX/VMS and IBM work stations. Effort is taken to make the code user friendly. With this document a reasonably skilled individual should become fluent with the use of the code in a brief period of time.

  13. Environmental research on actinide elements

    SciTech Connect (OSTI)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

    1987-08-01T23:59:59.000Z

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  14. Investigation of high temperature gaseous species by Knudsen cell mass spectrometry above the condensed systems Au-Ge-Cu and Au-Si / by Joseph Edward Kingcade

    E-Print Network [OSTI]

    Kingcade, Joseph Edward

    1978-01-01T23:59:59.000Z

    : Chemistry INVESTIGATION OF HIGH TEMPERATURE GASEOUS SPECIES BY KNUDSEN CELL MASS SPECTROMETRY ABOVE THE CONDENSED SYSTEMS Au-Ge-Cu AND Au-Si A Thesis by Joseph Edward Kingcade Jr. Approved as to style and content by: ( Chairman of omittee ) ( Head... of Department ) /& I) au~ ( Member ) ( Member ) May 1 978 ABS TRAC T Investigation of High Temperature Gaseous Species by Knudsen Cell Mass Spectrometry Above the Condensed Systems Au-Ge-Cu and Au-Si. ( May 1978 ) Joseph Edward Kingcade Jr. , B. Sc...

  15. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect (OSTI)

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01T23:59:59.000Z

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  16. Studies on discharges in Micro Pattern Gaseous Detectors, towards a spark resistant THGEM detector

    E-Print Network [OSTI]

    Cantini, Cosimo; De Oliveira, Rui

    The problem afflicting any of MPGDs is the phenomenon of discharging which might be destructive in some highly energetic cases, at least being responsible of a slow aging of the detector. So far one solution has been cascading several gain elements (GEM, THGEM detectors) reducing the gain of each one; this method, spreading the charges along their path, reduce effectively the likelihood of a discharge but introduce more material due to the multiple stages of amplification. Our goal is developing a single stage THGEM detector which could withstand discharges, not reducing the gain, hence being still able to amplify low level ionizing particles while implementing some methodologies to reduce the damages due to discharge induced by high rate of particles’ flux and/or highly ionizing particles. This report describes the test bench set up to study discharges between simple structures, which are actually models of the bigger detector. The idea behind this approach is to reduce the complexity of the whole phenomen...

  17. The Heaviest Elements in the Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    keep finding new elements. Where are they? Where are they? Where are they? Ytterby, Sweden is the namesake of four elements: ytterbium, yttrium, erbium, and terbium. The...

  18. An interim report to the manager of the Paducah Gaseous Diffusion Plant from the Paducah Environmental Advisory Committee

    SciTech Connect (OSTI)

    Jackson, G.D.

    1987-10-01T23:59:59.000Z

    The Paducah Environmental Advisory Committee was formed as: (1) an outgrowth of other Environmental Advisory Committees already in existence at Oak Ridge and other Martin Marietta Energy Systems plants; (2) a result of public concern following significant nuclear incidents at Bhopal and Chernobyl; (3) a result of the new direction and commitment of the management of the Paducah Gaseous Diffusion Plant following contract acquisition by Martin Marietta Energy Systems; and (4) a means of reducing and/or preventing local and/or public concern regarding the activities of and potential risks created by PGDP. This report discusses the following issues and concerns of the Committee arrived at through a series of meetings: (1) groundwater monitoring; (2) long-range tails storage; C-404, scrap yrads, and PCB and TCE cleanup; nuclear criticality plan and alarm systems; documentation of historical data regarding hazardous waste burial grounds; dosimeter badges; and asbestos handling and removal.

  19. Apparatus and method for generating continuous wave 16. mu. m laser radiation using gaseous CF/sub 4/

    DOE Patents [OSTI]

    Telle, J.M.

    1984-05-01T23:59:59.000Z

    Apparatus and method for generating continuous wave 16 ..mu..m laser radiation using gaseous CF/sub 4/. Laser radiation at 16 ..mu..m has been observed in a cooled static cell containing low pressure CF/sub 4/ optically pumped by an approximately 3 W output power c-w CO/sub 2/ laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF/sub 4/ laser output power at 615 cm/sup -1/ exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 ..mu..m might be obtained.

  20. Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4

    DOE Patents [OSTI]

    Telle, John M. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4. Laser radiation at 16 .mu.m has been observed in a cooled static cell containing low pressure CF.sub.4 optically pumped by an approximately 3 W output power cw CO.sub.2 laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF.sub.4 laser output power at 615 cm.sup.-1 exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 .mu.m might be obtained.

  1. Utilization of 4-Dimensional Data Visualization Modeling to Evaluate Burial Ground Contaminants at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Brindley, T. L.; Tarantino, J. J.; Locke, A. L. [CDM, 325 Kentucky Ave., Kevil, Kentucky 42053 (United States); Dollins, D. W. [Department of Energy, Paducah Gaseous Diffusion Plant, Paducah Kentucky 42001 (United States)

    2006-07-01T23:59:59.000Z

    This paper describes how 4-Dimensional (4D) Data Visualization Modeling was used to evaluate historical data and to help guide the decisions for the sampling necessary to complete a Remedial Investigation/Feasibility Study (RI/FS) for the burial ground sites at the Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP). DOE at the Paducah Site is primarily involved in environmental cleanup and landlord activities. The scope of this project was to prepare a work plan for identifying the data available and the data required to conduct an RI/FS for the Burial Ground Operable Unit (BGOU) located within and near PGDP. The work plan focuses on collecting existing information about contamination in and around the burial grounds and determining what additional data are required to support an assessment of risks to human health and the environment and to support future decisions regarding actions to reduce these risks. (authors)

  2. The Mailbox Computer System for the IAEA verification experiment on HEU downlending at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Aronson, A.L.; Gordon, D.M.

    2000-07-31T23:59:59.000Z

    IN APRIL 1996, THE UNITED STATES (US) ADDED THE PORTSMOUTH GASEOUS DIFFUSION PLANT TO THE LIST OF FACILITIES ELIGIBLE FOR THE APPLICATION OF INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) SAFEGUARDS. AT THAT TIME, THE US PROPOSED THAT THE IAEA CARRY OUT A ''VERIFICATION EXPERIMENT'' AT THE PLANT WITH RESPECT TO DOOWNBLENDING OF ABOUT 13 METRIC TONS OF HIGHLY ENRICHED URANIUM (HEU) IN THE FORM OF URANIUM HEXAFLUROIDE (UF6). DURING THE PERIOD DECEMBER 1997 THROUGH JULY 1998, THE IAEA CARRIED OUT THE REQUESTED VERIFICATION EXPERIMENT. THE VERIFICATION APPROACH USED FOR THIS EXPERIMENT INCLUDED, AMONG OTHER MEASURES, THE ENTRY OF PROCESS-OPERATIONAL DATA BY THE FACILITY OPERATOR ON A NEAR-REAL-TIME BASIS INTO A ''MAILBOX'' COMPUTER LOCATED WITHIN A TAMPER-INDICATING ENCLOSURE SEALED BY THE IAEA.

  3. Detection of illicit HEU production in gaseous centrifuge enrichment plants using neutron counting techniques on product cylinders

    SciTech Connect (OSTI)

    Freeman, Corey R [Los Alamos National Laboratory; Geist, William H [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Innovative and novel safeguards approaches are needed for nuclear energy to meet global energy needs without the threat of nuclear weapons proliferation. Part of these efforts will include creating verification techniques that can monitor uranium enrichment facilities for illicit production of highly-enriched uranium (HEU). Passive nondestructive assay (NDA) techniques will be critical in preventing illicit HEU production because NDA offers the possibility of continuous and unattended monitoring capabilities with limited impact on facility operations. Gaseous centrifuge enrichment plants (GCEP) are commonly used to produce low-enriched uranium (LEU) for reactor fuel. In a GCEP, gaseous UF{sub 6} spins at high velocities in centrifuges to separate the molecules containing {sup 238}U from those containing the lighter {sup 235}U. Unfortunately, the process for creating LEU is inherently the same as HEU, creating a proliferation concern. Insuring that GCEPs are producing declared enrichments poses many difficult challenges. In a GCEP, large cascade halls operating thousands of centrifuges work together to enrich the uranium which makes effective monitoring of the cascade hall economically prohibitive and invasive to plant operations. However, the enriched uranium exiting the cascade hall fills product cylinders where the UF{sub 6} gas sublimes and condenses for easier storage and transportation. These product cylinders hold large quantities of enriched uranium, offering a strong signal for NDA measurement. Neutrons have a large penetrability through materials making their use advantageous compared to gamma techniques where the signal is easily attenuated. One proposed technique for detecting HEU production in a GCEP is using neutron coincidence counting at the product cylinder take off stations. This paper discusses findings from Monte Carlo N-Particle eXtended (MCNPX) code simulations that examine the feasibility of such a detector.

  4. Dispersion of UO{sub 2}F{sub 2} aerosol and HF vapor in the operating floor during winter ventilation at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W. [Oak Ridge National Lab., TN (United States); Carter, J.C. [J.C. Carter Associates, Inc., Knoxville, TN (United States)

    1996-12-30T23:59:59.000Z

    The gaseous diffusion process is currently employed at two plants in the US: the Paducah Gaseous Diffusion Plant and the Portsmouth Gaseous Diffusion Plant. As part of a facility-wide safety evaluation, a postulated design basis accident involving large line-rupture induced releases of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant (GDP) is evaluated. When UF{sub 6} is released into the atmosphere, it undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form vaporized hydrogen fluoride (HF) and aerosolized uranyl fluoride (UO{sub 2}F{sub 2}). These reactants disperse in the process building and transport through the building ventilation system. The ventilation system draws outside air into the process building, distributes it evenly throughout the building, and discharges it to the atmosphere at an elevated temperature. Since air is recirculated from the cell floor area to the operating floor, issues concerning in-building worker safety and evacuation need to be addressed. Therefore, the objective of this study is to evaluate the transport of HF vapor and UO{sub 2}F{sub 2} aerosols throughout the operating floor area following B-line break accident in the cell floor area.

  5. Type B Accident Investigation of the August 22, 2000, Injury Resulting From Violent Exothermic Chemical Reaction at the Portsmouth Gaseous Diffusion Plant, X-701B Site

    Broader source: Energy.gov [DOE]

    On August 22, 2000, an accident occurred at the U. S. Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) located in Piketon, Ohio. An employee of the IT Corporation (IT) working on an Environmental Management (EM) Technology Deployment Project received serious burns from a violent chemical reaction.

  6. Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle Microalgae are currently considered as a renewable source of liquid and gaseous biofuels and

    E-Print Network [OSTI]

    Collins, Gary S.

    are currently considered as a renewable source of liquid and gaseous biofuels and a practical technology of the most sustainable and promising of biofuel feedstock, demonstrating particularly high growth rates, and their entrained lipids, can offer several different types of biofuel and bioenergy production options including

  7. PGDP (Paducah Gaseous Diffusion Plant)-UF/sub 6/ handling, sampling, analysis and associated QC/QA and safety related procedures

    SciTech Connect (OSTI)

    Harris, R.L. (comp.)

    1987-05-22T23:59:59.000Z

    This document is a compilation of Paducah Gaseous Diffusion Plant procedures on UF/sub 6/ handling, sampling, and analysis, along with associated QC/QA and safety related procedures. It was assembled for transmission by the US Department of Energy to the Korean Advanced Energy Institute as a part of the US-Korea technical exchange program.

  8. International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter

    E-Print Network [OSTI]

    Kentucky, University of

    International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter Kenneth D a comprehensive database of ammonia emission rates (ER) from US poultry facilities. The influence of common

  9. International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 AMMONIA EMISSIONS FROM LAYER HOUSES IN IOWA

    E-Print Network [OSTI]

    Kentucky, University of

    International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 1 AMMONIA EMISSIONS FROM LAYER HOUSES IN IOWA Y. Liang1 , H. Xin2 , A. Casey10 ABSTRACT An ongoing project of monitoring ammonia (NH3) emissions from U.S. layer houses

  10. International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Pennsylvania

    E-Print Network [OSTI]

    Kentucky, University of

    International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 1 Ammonia Emissions from Broiler Houses in Pennsylvania During Cold of reducing ammonia (NH3) emissions are under study. Ammonia emissions during cold weather conditions from

  11. Spent graphite fuel element processing

    SciTech Connect (OSTI)

    Holder, N.D.; Olsen, C.W.

    1981-07-01T23:59:59.000Z

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  12. Element

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4DimitriJuneEnergy(FebruaryDepartmental

  13. Thesis and Dissertation Required Elements

    E-Print Network [OSTI]

    Texas at Arlington, University of

    /dissertation documents have a uniform appearance and are suitable for archiving. The requirements follow the guidelines to the following guidelines are acceptable. · All margins must be at least 1.25" and may not be more than 1/dissertation should be double-spaced. #12;Thesis and Dissertation Required Elements 2012 version Paragraph Indentation

  14. Single element laser beam shaper

    DOE Patents [OSTI]

    Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

    2005-09-13T23:59:59.000Z

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  15. Fast acting multiple element valve

    DOE Patents [OSTI]

    Yang, Jefferson Y. S. (Orange, CA); Wada, James M. (Torrance, CA)

    1991-01-01T23:59:59.000Z

    A plurality of slide valve elements having plural axial-spaced annular parts and an internal slide are inserted into a bulkhead in a fluid conduit from a downstream side of the bulkhead, locked in place by a bayonet coupling and set screw, and project through the bulkhead into the upstream conduit. Pneumatic lines connecting the slide valve element actuator to pilot valves are brought out the throat of the valve element to the downstream side. Pilot valves are radially spaced around the exterior of the valve to permit the pneumatic lines to be made identical, thereby to minimize adverse timing tolerances in operation due to pressure variations. Ring manifolds surround the valve adjacent respective pilot valve arrangements to further reduce adverse timing tolerances due to pressure variations, the manifolds being directly connected to the respective pilot valves. Position sensors are provided the valve element slides to signal the precise time at which a slide reaches or passes through a particular point in its stroke to initiate a calibrated timing function.

  16. The Uranium Processing Facility Finite Element Meshing Discussion

    Office of Environmental Management (EM)

    more nodes and elements (1 element 9 elements) - Changed from GTStrudl to SAP 2000. - Linear elastic computer model * DOE Project 2 - 15'-20' element size deemed...

  17. Material Safety Data Sheet HMIS FLAMMABILITY

    E-Print Network [OSTI]

    Rollins, Andrew M.

    .0 Extinguishing Media - Use water fog, foam, dry chemical or CO2. Use water spray to cool fire-exposed containers spray. Prevent spill from entering drains, sewers, streams or other bodies of water. If run-off occurs shield, bunker coats, gloves and rubber boots), including a positive pressure NIOSH approved self

  18. FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS

    Office of Scientific and Technical Information (OSTI)

    1939, pp. International Acetylene Association. Acetylene Transmission for Chemical Synthesis. Internat. Acetylene ASSOC., New York (no date), 40 pp. Jackson, J. L., and R....

  19. Binary mixture flammability characteristics for hazard assessment 

    E-Print Network [OSTI]

    Vidal Vazquez, Migvia del C.

    2005-11-01T23:59:59.000Z

    can be estimated using a computational method and available information. The information needed for mixture flash point predictions are flashpoints, vapor pressures, and activity coefficients as functions of temperature for each mixture component...

  20. FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal ColumbiaASCR2FOR THE COMBINEDBulletin 627

  1. The Origin of the Elements

    ScienceCinema (OSTI)

    Murphy, Edward

    2014-08-06T23:59:59.000Z

    The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

  2. Element of an inductive coupler

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2006-08-15T23:59:59.000Z

    An element for an inductive coupler in a downhole component comprises magnetically conductive material, which is disposed in a recess in annular housing. The magnetically conductive material forms a generally circular trough. The circular trough comprises an outer generally U-shaped surface, an inner generally U-shaped surface, and two generally planar surfaces joining the inner and outer surfaces. The element further comprises pressure relief grooves in at least one of the surfaces of the circular trough. The pressure relief grooves may be scored lines. Preferably the pressure relief grooves are parallel to the magnetic field generated by the magnetically conductive material. The magnetically conductive material is selected from the group consisting of soft iron, ferrite, a nickel iron alloy, a silicon iron alloy, a cobalt iron alloy, and a mu-metal. Preferably, the annular housing is a metal ring.

  3. Composite oxygen ion transport element

    DOE Patents [OSTI]

    Chen, Jack C. (Getzville, NY); Besecker, Charles J. (Batavia, IL); Chen, Hancun (Williamsville, NY); Robinson, Earil T. (Mentor, OH)

    2007-06-12T23:59:59.000Z

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  4. Self supporting heat transfer element

    DOE Patents [OSTI]

    Story, Grosvenor Cook (Livermore, CA); Baldonado, Ray Orico (Livermore, CA)

    2002-01-01T23:59:59.000Z

    The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

  5. Photoconductive circuit element pulse generator

    DOE Patents [OSTI]

    Rauscher, Christen (Alexandria, VA)

    1989-01-01T23:59:59.000Z

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  6. The elements of nuclear power

    SciTech Connect (OSTI)

    Bennet, D.J.; Thomson, J.R.

    1989-01-01T23:59:59.000Z

    An introduction to the principles of nuclear fission power generation. Describes the physical processes which occur in a nuclear reactor and discusses the theory behind the calculations. Also covers heat transfer in reactors, thermodynamic power cycles, reactor operators, and radiation shielding. Material covered includes topics on the effects of nuclear radiation on humans, the safety of nuclear reactors and of those parts of the nuclear fuel cycle which deal with fuel element manufacture and the reprocessing of irradiated fuel.

  7. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    E-Print Network [OSTI]

    Nakajima, Y; Matis, H S; Nygren, D; Oliveira, C; Renner, J

    2015-01-01T23:59:59.000Z

    Liquid Xe TPCs are among the most popular choices for double beta decay and WIMP dark matter searches. Gaseous Xe has intrinsic advantages when compared to Liquid Xe, specifically, tracking capability and better energy resolution for double beta decay searches. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which are expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). These features may provide better tracking and energy resolution for double-beta decay searches. They are also expected to enhance columnar recombination for nuclear recoils, which can be used for searches for WIMP dark matter with directional sensitivity. We constructed a test ionization chamber and successfully measured scintillation and ionization yields at high precision with various Xe and TMA mixtu...

  8. Source term evaluation for UF{sub 6} release event in feed facility at gaseous diffusion plants

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.

    1997-01-30T23:59:59.000Z

    An assessment of UF{sub 6} release accidents was conducted for the feed facility of a gaseous diffusion plant (GDP). Release rates from pig-tail connections were estimated from CYLIND code predictions, whereas, MELCOR was utilized for simulating reactions of UF{sub 6} with moisture and consequent transport of UO{sub 2}F{sub 2} aerosols and HF vapor through the building and to the environment. Two wind speeds were utilized. At the high end (Case 1) a wind speed of {approximately} 1 m/s (200 fpm) was assumed to flow parallel to the building length. At the low end (Case 2) to represent stagnant conditions a corresponding wind speed of 1 cm/s (2 fpm) was utilized. A further conservative assumption was made to specify no closure of crane and train doors at either end of the building. Relaxation of this assumption should provide for additional margins. Results indicated that, for the high (200 fpm) wind speed, close to 66% of the UO{sub 2}F{sub 2} aerosols and 100% of the HF gas get released to the environment over a 10-minute period. However, for the low (2 fpm) wind speed, negligible amount ({approximately} 1% UO{sub 2}F{sub 2}) of aerosols get released even over a 2 hour period.

  9. Super-Altro 16: a Front-End System on Chip for DSP Based Readout of Gaseous Detectors

    E-Print Network [OSTI]

    Aspell, P.; Franca, H.; Garcia Garcia, E.; Musa, L.

    2013-01-01T23:59:59.000Z

    This paper presents the architecture, design and test results of an ASIC specifically designed for the readout of gaseous detectors. The primary application is the readout of the Linear Collider Time Projection Chamber. The small area available (4mm2/channel) requires an innovative design, where sensitive analog components and massive digital functionalities are integrated on the same chip. Moreover, shut down (power pulsing) features are necessary in order to reduce the power consumption. The Super-Altro is a 16-channel demonstrator ASIC involving analog and digital signal processing. Each channel contains a low noise Pre-Amplifier and Shaping Amplifier (PASA), a pipeline ADC, and a Digital Signal Processor (DSP). The PASA is programmable in terms of gain and shaping time and can operate with both positive and negative polarities of input charge. The 10-bit ADC samples the output of the PASA at a frequency up to 40MHz before providing the digitized signal to the DSP which performs baseline subtraction, signa...

  10. Prediction of external corrosion for steel cylinders at the Paducah Gaseous Diffusion Plant: Application of an empirical method

    SciTech Connect (OSTI)

    Lyon, B.F.

    1996-02-01T23:59:59.000Z

    During the summer of 1995, ultrasonic wall thickness data were collected for 100 steel cylinders containing depleted uranium (DU) hexafluoride located at Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The cylinders were selected for measurement to assess the condition of the more vulnerable portion of the cylinder inventory at PGDP. The purpose of this report is to apply the method used in Lyon to estimate the effects of corrosion for larger unsampled populations as a function of time. The scope of this report is limited and is not intended to represent the final analyses of available data. Future efforts will include continuing analyses of available data to investigate defensible deviations from the conservative assumptions made to date. For each cylinder population considered, two basic types of analyses were conducted: (1) estimates were made of the number of cylinders as a function of time that will have a minimum wall thickness of either 0 mils (1 mil = 0.00 1 in.) or 250 mils and (2) the current minimum wall thickness distributions across cylinders were estimated for each cylinder population considered. Additional analyses were also performed investigating comparisons of the results for F and G yards with the results presented in Lyon (1995).

  11. Superfund record of decision (EPA Region 4): Paducah Gaseous Diffusion Plant (USDOE) Operable Unit 5, Paducah, KY, August 10, 1998

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    This Record of Decision (ROD) presents the final remedial action decisions selected for soils and sediments in each of the solid waste management units (SWMUs) of Waste Area Groups (WAGs) 1 and 7 at the Paducah Gaseous Diffusion Plant (PGDP) near Paducah, Kentucky. Waste Area Group 1 consists of SWMUs 100 and 136. Waste Area Group 7 consists of SWMUs 8 and 130 through 134. By mutual consent among the United States Environmental Protection Agency (EPA), the Kentucky Department for Environmental Protection (KDEP), the United States Department of Defense (DOD), the United States Army Corps of Engineers (COE), and the DOE, it was agreed that the evaluation and implementation of any remedial actions required for the Kentucky Ordnance Works (KOW) SWMUs (SWMU 94 (KOW Sewage Treatment Plant), SWMU 95 (KOW Burn Area), and SWMU 157 (KOW Toluene Spill Site)), formerly included in WAGs 1 and 7, would be the responsibility of the DOD and conducted on behalf of the DOD by the COE. Due to the agreements reached among these entities, remedial technologies for the KOW SWMUs are not discussed further in this ROD and will be evaluated as part of the WAG 10 investigation by the COE. Additionally, by written mutual consent, the EPA, the DKEP, and the DOE agreed that an evaluation of remedial alternatives for SWMU 38, the C-615 Sewage Treatment Plant, would be deferred until the unit ceases operation. Consequently, no remedial actions are discussed for these SWMUs in this ROD.

  12. Essential Grid Workflow Monitoring Elements

    SciTech Connect (OSTI)

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01T23:59:59.000Z

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  13. Element Partners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation,Electrosolar Jump to:Element Energy Ltd

  14. Stacked Switchable Element and Diode Combination

    DOE Patents [OSTI]

    Branz, H. M.; Wang, Q.

    2006-06-27T23:59:59.000Z

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

  15. Stacked switchable element and diode combination

    DOE Patents [OSTI]

    Branz, Howard M.; Wang, Qi

    2006-06-27T23:59:59.000Z

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

  16. Probabilistic finite element analysis of marine risers

    E-Print Network [OSTI]

    Leder, H. Vern

    1990-01-01T23:59:59.000Z

    Review 1. 2 Research Study 10 2 FORMULATION OF THE SECOND ? MOMENT ANALYSIS METHOD 13 2. 1 Finite Element Equations 2. 2 Random Vector Formulation 2. 3 The Correlation Function 2. 4 Random Field Discretization 2. 5 Taylor Series Expansion 2. 6... ILLUSTRATIVE EXAMPLE. . . . . . . . . . . . . . . . . . 4 APPLICATION OF PROBABILISTIC FINITE ELEMENT METHODS TO MARINE RISER ANALYSES 4. 1 Finite Element Model . 4. 1. 1 Formulation of the Equation of Motion 4. 1. 2 Finite Element Discretization 4. 1. 3...

  17. Diffractive optical elements for spectroscopy Hallvard Angelskar

    E-Print Network [OSTI]

    Johansen, Tom Henning

    Diffractive optical elements for spectroscopy by Hallvard Angelsk°ar Submitted in partial;Abstract Diffractive optical elements can be used in spectroscopy instruments to fulfill several tasks to precisely fabricate complex diffractive optical elements with feature sizes below the micrometer scale

  18. Deformation Expression for Elements of Algebra

    E-Print Network [OSTI]

    H. Omori; Y. Maeda; N. Miyazaki; A. Yoshioka

    2011-04-09T23:59:59.000Z

    The purpose of this paper is to give a notion of deformation of expressions for elements of algebra. Deformation quantization (cf.[BF]) deforms the commutative world to a non-commutative world. However, this involves deformation of expression of elements of algebras even from a commutative world to another commutative world. This is indeed a deformation of expressions for elements of algebra.

  19. Medial Techniques for Automating Finite Element Analysis

    E-Print Network [OSTI]

    Whitton, Mary C.

    Medial Techniques for Automating Finite Element Analysis by Jessica Renee Crawford Crouch Analysis. (Under the direction of Stephen M. Pizer.) Finite element analysis provides a principled method the simulation of tissue deformation. The drawback to using finite element analysis for imaging problems

  20. Finite Element Analysis in Vertebrate Biomechanics

    E-Print Network [OSTI]

    Finite Element Analysis in Vertebrate Biomechanics CALLUM F. ROSS* Department of Organismal Biology presents a series of papers that apply the method of finite element analysis (FEA) to questions ontogenetic or phylogenetic transformations. © 2005 Wiley-Liss, Inc. Key words: finite-element analysis

  1. Construction of Higher Order Finite Element with

    E-Print Network [OSTI]

    Kern, Michel

    ' & $ % Construction of Higher Order Finite Element with Mass Lumping Using Computer Algebra. (3D, combinatorial analysis, new third order element) 2 #12; ' & $ % Guidelines for the construction of nodes must be ~ P k unisolvent. 2. Finite element must be continuous. 3. Quadrature formula must satisfy

  2. Characterization of electrodeposited elemental boron

    SciTech Connect (OSTI)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India); Anthonysamy, S. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India)], E-mail: sas@igcar.gov.in; Ananthasivan, K.; Ranganathan, R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India); Mittal, Vinit; Narasimhan, S.V. [Water and Steam Chemistry Division, BARC (F), Kalpakkam, 603102 (India); Vasudeva Rao, P.R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India)

    2008-07-15T23:59:59.000Z

    Elemental boron was produced through electrowinning from potassium fluoroborate dissolved in a mixture of molten potassium fluoride and potassium chloride. The characteristics of the electrodeposited boron (raw boron) as well as the water and acid-leached product (processed boron) were studied. The chemical purity, specific surface area, size distribution of particles and X-ray crystallite size of the boron powders were investigated. The morphology of the deposits was examined using scanning electron microscopy (SEM). The chemical state of the matrix, as well as the impurity phases present in them, was established using X-ray photoelectron spectroscopy (XPS). In order to interpret and understand the results obtained, a thermodynamic analysis was carried out. The gas-phase corrosion in the head space as well as the chemistry behind the leaching process were interpreted using this analysis. The ease of oxidation of these powders in air was investigated using differential thermal analysis (DTA) coupled with thermogravimetry (TG). From the results obtained in this study it was established that elemental boron powder with a purity of 95-99% could be produced using a high temperature molten salt electrowinning process. The major impurities were found to be oxygen, carbon, iron and nickel.

  3. Coherent coupling of optical gain elements

    SciTech Connect (OSTI)

    Ury, I.; Yariv, A

    1989-05-23T23:59:59.000Z

    A coherent light source is described comprising: a non-linear photorefractive medium; a laser for illuminating the photorefractive medium; a mirror on the opposite side of the photorefractive medium from the laser and aligned for retroreflecting light back toward the laser; and optical gain elements. Each optical gain element has its optical axis aligned with the photo-refractive medium, each optical gain element having a reflective end remote from the photorefractive medium, the laser and optical gain elements being sufficiently aligned that laser light scattered from the photorefractive medium illuminates all of the optical gain elements for amplification and producing a coherent output beam.

  4. PetrovGalerkin Spectral Elements 1 A PetrovGalerkin Spectral Element Technique for Heterogeneous Porous

    E-Print Network [OSTI]

    in spirit to a mixed finite element method or a Petrov­Galerkin scheme. If the sequence of orthogonal commonly used for finite element approximations [14]. The technique proceeds by integrating against ``testPetrov­Galerkin Spectral Elements 1 A Petrov­Galerkin Spectral Element Technique for Heterogeneous

  5. Submitted to: Finite Elements in Analysis and Design Finite Element Analysis over Tangled Simplicial Meshes

    E-Print Network [OSTI]

    Suresh, Krishnan

    Submitted to: Finite Elements in Analysis and Design 1 Finite Element Analysis over Tangled In modern finite element analysis (FEA), a mesh is said to be `tangled' if it contains one or more inverted are also illustrated. 1. INTRODUCTION In modern finite element analysis (FEA), the underlying mesh

  6. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2006-01-31T23:59:59.000Z

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  7. Element Abundances at High Redshifts

    E-Print Network [OSTI]

    Max Pettini

    1999-02-11T23:59:59.000Z

    I review measurements of element abundances in different components of the high redshift universe, including the Lyman alpha forest, damped Lyman alpha systems, and Lyman break galaxies. Although progress is being made in all three areas, recent work has also produced some surprises and shown that established ideas about the nature of the damped Lyman alpha systems in particular may be too simplistic. Overall, our knowledge of metal abundances at high z is still very sketchy. Most significantly, there seems to be an order of magnitude shortfall in the comoving density of metals which have been measured up to now compared with those produced by the star formation activity seen in Lyman break galaxies. At least some of the missing metals are likely to be in hot gas in galactic halos and proto-clusters.

  8. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11T23:59:59.000Z

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  9. Microwave Plasma Monitoring System For Real-Time Elemental Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air for the presence of minor amounts of elements, particularly transition metals, rare earth elements, actinides, and alkali and alkaline earth elements. The invention...

  10. Proposed Data Elements for PARS II Web Application | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Proposed Data Elements for PARS II Web Application Proposed Data Elements for PARS II Web Application Proposed Data Elements for PARS II Web Application More Documents &...

  11. Three key elements necessary for successful testing

    SciTech Connect (OSTI)

    Ehlig-Economides, C.A.; Hegeman, P. (Schlumberger Oilfield Services, Houston, TX (United States)); Clark, G. (Schlumberger Oilfield Services, Aberdeen (United Kingdom))

    1994-07-25T23:59:59.000Z

    Real-time surface readout during data acquisition, downhole shutting, and appropriate pressure gauges are three key elements for successful well tests. These elements are often overlooked in designing and implementing a successful well test. This second in a series of three articles on well testing shows how these elements affected the testing of an example well. Also reviewed are the capabilities of several new testing tools and techniques.

  12. Trace element analysis of Texas lignite

    E-Print Network [OSTI]

    Mahar, Sean

    1982-01-01T23:59:59.000Z

    or in the planning stages, Near surface lignite re- sources are estimated to be 21 billion metric tons in Texas, while deep basin reserves are estimated at 31 billion metric tons. Near (3] surface reserves alone could fulfill Texas' electrical needs for 100 years... for environmental and health concerns trace element characterization of lignites is important. A needed avenue of research is charact- erization of trace element pathways in lignite fired power plants. :hat is to say what percentage of a certain element...

  13. Finite element approximation of coupled seismic and ...

    E-Print Network [OSTI]

    zyserman

    layer, having a thickness of about 10 nm. Finite element approximation of coupled seismic and electromagnetic waves in gas hydrate-bearing sediments – p.

  14. Electronic Structure of the Heaviest Elements

    E-Print Network [OSTI]

    Seaborg, G.T.

    2008-01-01T23:59:59.000Z

    uranium resemble those of these 4d and 5d elements and for this reason most of the textbooks and standard works on chemistry

  15. Low exchange element for nuclear reactor

    DOE Patents [OSTI]

    Brogli, Rudolf H. (Aarau, CH); Shamasunder, Bangalore I. (Encinitas, CA); Seth, Shivaji S. (Encinitas, CA)

    1985-01-01T23:59:59.000Z

    A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.

  16. Rapporteur's Report - workshop on rare earth elements

    Broader source: Energy.gov (indexed) [DOE]

    Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Hosted by the MIT Energy Initiative, cambridge, Massachusetts december 3, 2010...

  17. Finite Element Modeling of Drilling Using DEFORM

    E-Print Network [OSTI]

    Gardner, Joel D.; Dornfeld, David

    2006-01-01T23:59:59.000Z

    Vijayaraghavan, A. (2005), “Drilling of Fiber- ReinforcedFINITE ELEMENT MODELING OF DRILLING USING DEFORM J. Gardner,of Comprehensive Drilling Simulation Tool” ABSTRACT DEFORM-

  18. Method of lightening radiation darkened optical elements

    DOE Patents [OSTI]

    Reich, Frederich R. (Richland, WA); Schwankoff, Albert R. (W. Richland, WA)

    1980-01-01T23:59:59.000Z

    A method of lightening a radiation-darkened optical element in wich visible optical energy or electromagnetic radiation having a wavelength in the range of from about 2000 to about 20,000 angstroms is directed into the radiation-darkened optical element; the method may be used to lighten radiation-darkened optical element in-situ during the use of the optical element to transmit data by electronically separating the optical energy from the optical output by frequency filtering, data cooling, or interlacing the optic energy between data intervals.

  19. Two position optical element actuator device

    DOE Patents [OSTI]

    Holdener, Fred R. (Tracy, CA); Boyd, Robert D. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

  20. Spectral analysis method for detecting an element

    DOE Patents [OSTI]

    Blackwood, Larry G [Idaho Falls, ID; Edwards, Andrew J [Idaho Falls, ID; Jewell, James K [Idaho Falls, ID; Reber, Edward L [Idaho Falls, ID; Seabury, Edward H [Idaho Falls, ID

    2008-02-12T23:59:59.000Z

    A method for detecting an element is described and which includes the steps of providing a gamma-ray spectrum which has a region of interest which corresponds with a small amount of an element to be detected; providing nonparametric assumptions about a shape of the gamma-ray spectrum in the region of interest, and which would indicate the presence of the element to be detected; and applying a statistical test to the shape of the gamma-ray spectrum based upon the nonparametric assumptions to detect the small amount of the element to be detected.

  1. PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHODS ...

    E-Print Network [OSTI]

    2015-01-05T23:59:59.000Z

    each interface element, it uses IFE functions constructed with piecewise ...... strate this, we plot errors of a classic bilinear IFE solution and a NPP IFE solution in.

  2. Gaseous reactor control system

    SciTech Connect (OSTI)

    Abdel-Khalik, S.

    1991-09-03T23:59:59.000Z

    This paper describes a nuclear reactor control system for controlling the reactivity of the core of a nuclear reactor. It includes a control gas having a high neutron cross-section; a first tank containing a first supply of the control gas; a first conduit providing a first fluid passage extending into the core, the first conduit being operatively connected to communicate with the first tank; a first valve operatively connected to regulate the flow of the control gas between the first tank and the first conduit; a second conduit concentrically disposed around the first conduit such that a second fluid passage is defined between the outer surface of the first conduit and the inner surface of the second conduit; a second tank containing a second supply of the control gas, the second tank being operatively connected to communicate with the second fluid passage; a second supply valve operatively connected to regulate the flow of the control gas between the second tank and the second fluid passage.

  3. Gaseous leak detector

    DOE Patents [OSTI]

    Juravic, Jr., Frank E. (Aurora, IL)

    1988-01-01T23:59:59.000Z

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  4. Improved gaseous leak detector

    DOE Patents [OSTI]

    Juravic, F.E. Jr.

    1983-10-06T23:59:59.000Z

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  5. Gaseous Diffusion Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. population. The study found significantly lower death rates from all causes and cancer in general when compared to the overall U.S. population. However, slight increases...

  6. Gaseous dark matter detectors

    E-Print Network [OSTI]

    Martoff, C. J.

    Dark matter (DM) detectors with directional sensitivity have the potential of yielding an unambiguous positive observation of WIMPs as well as discriminating between galactic DM halo models. In this paper, we introduce the ...

  7. Aging of gaseous detectors

    SciTech Connect (OSTI)

    Va'Vra, J.

    1990-03-01T23:59:59.000Z

    This paper makes an overview of developments in the wire chamber aging field since the wire chamber aging workshop held at the Lawrence Berkeley Laboratory, Berkeley, California on January 16--17, 1986. The author discusses new techniques to analyze the gas impurities and the wire aging products, wire nonaging'' in clean systems, wire aging in systems containing various impurities, various examples of problems which can prime'' surfaces prior to the occurrence of the aging, and some recent aging experience with the SSC micro-straw tubes.'' 35 refs., 10 figs., 2 tabs.

  8. NGPL Production, Gaseous Equivalent

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year

  9. Fiber Bulk Gaseous Carriers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting Federal RegisterCoal1IntoFermiDon Baldwin,

  10. NGPL Production, Gaseous Equivalent

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 (MillionCommercialYear50 42 74 59 9593 2.316

  11. NGPL Production, Gaseous Equivalent

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet) Year Jan Feb Mar AprWyomingThousand894NGPL Production,

  12. Source term evaluation for postulated UF{sub 6} release accidents in gaseous diffusion plants -- Summer ventilation mode (non-seismic cases)

    SciTech Connect (OSTI)

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Wendel, M.W.; Keith, K.D.; Schmidt, R.W. [Oak Ridge National Lab., TN (United States); Carter, J.C. [J.C. Carter Associates, Inc., Knoxville, TN (United States); Dyer, R.H. [Dyer Enterprises, Harriman, TN (United States)

    1996-12-30T23:59:59.000Z

    Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant. For the current study, gaseous UF{sub 6} is assumed to get released in the cell housing atmosphere through B-line break at 58.97 kg/s for 10 min and 30 min duration at the Paducah and Portsmouth Gaseous Diffusion Plants. The released UF{sub 6} undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO{sub 2}F{sub 2}) while it disperses throughout the process building. As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO{sub 2}F{sub 2} as well as HF during a postulated UF{sub 6} release accident in a process building. UO{sub 2}F{sub 2} mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO{sub 2}F{sub 2} aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO{sub 2}F{sub 2} are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. To characterize leakage flow through the cell housing wall, 3-D CFD tool (CFDS-FLOW3D) was used. About 57% of UO{sub 2}F{sub 2} was predicted to be released into the environment. Since HF was treated as vapor, close to 100% was estimated to get released into the environment.

  13. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01T23:59:59.000Z

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  14. Office of Enterprise Assessments Review of Field Element Line...

    Energy Savers [EERE]

    action management, and continuous improvement (lessons learnedoperating experiencebest practices). For each assurance element, SFO defined sub-elements and associated...

  15. Investigation of high temperature gaseous species by Knudsen cell mass spectrometry above the condensed systems Au-Ge-Cu and Au-Si / by Joseph Edward Kingcade 

    E-Print Network [OSTI]

    Kingcade, Joseph Edward

    1978-01-01T23:59:59.000Z

    ) and Li2Si2 ( 33 ). The primary intent of the following reported experimental inves- tigation was the identification and thermodynamic characterization of polyatomic intermetallic molecules containing gold and germanium, for none have been previously... for PAGE the Gaseous Molecules Au2Ge2, AuGe3 and AuGe4 . . 29 The Second Law Plots for the Molecule AuGe ~ The Second Law Plots for the Molecule Au2Ge ~ The Second Law Plots for the Molecule AuGe2 ~ 41 43 47 I. INTRODUCTION The thermodynamic...

  16. System and process for capture of H.sub.2S from gaseous process streams and process for regeneration of the capture agent

    DOE Patents [OSTI]

    Heldenbrant, David J; Koech, Phillip K; Rainbolt, James E; Bearden, Mark D; Zheng, Feng

    2014-02-18T23:59:59.000Z

    A system and process are disclosed for selective removal and recovery of H.sub.2S from a gaseous volume, e.g., from natural gas. Anhydrous organic, sorbents chemically capture H.sub.2S gas to form hydrosulfide salts. Regeneration of the capture solvent involves addition of an anti-solvent that releases the captured H.sub.2S gas from the capture sorbent. The capture sorbent and anti-solvent are reactivated for reuse, e.g., by simple distillation.

  17. OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN

    SciTech Connect (OSTI)

    Whittet, D. C. B. [New York Center for Astrobiology, and Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States)

    2010-02-20T23:59:59.000Z

    This paper assesses the implications of a recent discovery that atomic oxygen is being depleted from diffuse interstellar gas at a rate that cannot be accounted for by its presence in silicate and metallic oxide particles. To place this discovery in context, the uptake of elemental O into dust is considered over a wide range of environments, from the tenuous intercloud gas and diffuse clouds sampled by the depletion observations to dense clouds where ice mantles and gaseous CO become important reservoirs of O. The distribution of O in these contrasting regions is quantified in terms of a common parameter, the mean number density of hydrogen (n{sub H}). At the interface between diffuse and dense phases (just before the onset of ice-mantle growth) as much as {approx}160 ppm of the O abundance is unaccounted for. If this reservoir of depleted oxygen persists to higher densities it has implications for the oxygen budget in molecular clouds, where a shortfall of the same order is observed. Of various potential carriers, the most plausible appears to be a form of O-bearing carbonaceous matter similar to the organics found in cometary particles returned by the Stardust mission. The 'organic refractory' model for interstellar dust is re-examined in the light of these findings, and it is concluded that further observations and laboratory work are needed to determine whether this class of material is present in quantities sufficient to account for a significant fraction of the unidentified depleted oxygen.

  18. A multiresolution finite element method based on a new locking-free rectangular Mindlin plate element

    E-Print Network [OSTI]

    Xia, Yi-Ming

    2015-01-01T23:59:59.000Z

    A locking-free rectangular Mindlin plate element with a new multi-resolution analysis (MRA) is proposed and a multireolution finite element method is hence presented. The MRA framework is formulated out of a mutually nesting displacement subspace sequence. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. As a result, the traditional 4-node rectangular Mindlin plate element and method is a mono-resolution one and also a special case of the proposed element and method. The meshing for the monoresolution plate element model is based on the empiricism while the RL adjusting for the multiresolution is laid on the rigorous mathematical basis. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The rational MRA enables the implementation of the multiresolution Mindlin plate element method to be more rational and efficient than that of the conventional monoresolution or o...

  19. 3-D Finite Element Electromagnetic and Stress Analyses of the JET LB-SRP Divertor Element (Tungsten Lamella Design)

    E-Print Network [OSTI]

    3-D Finite Element Electromagnetic and Stress Analyses of the JET LB-SRP Divertor Element (Tungsten Lamella Design)

  20. Modeling and Driving Piezoelectric Resonant Blade Elements

    E-Print Network [OSTI]

    for extracting the parameters of the PRB equivalent circuit model: two are direct methods and one is basedrf rjf Figure 3. Equivalent circuit model of the PRB element. Cin is the dielectric capacitance element will bend the van attached to it and the whole structure will vibrate. Optimum operation

  1. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00T23:59:59.000Z

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  2. The Superheavy Elements and Anti-Gravity

    SciTech Connect (OSTI)

    Anastasovski, Petar K. [Department of Physics, Faculty of Technology and Metallurgy, Saints Cyril and Methodius University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2004-02-04T23:59:59.000Z

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.

  3. Finite element decomposition of the human neocortex

    E-Print Network [OSTI]

    Chow, Seeling

    1998-01-01T23:59:59.000Z

    Relationships between iso-parametric curves and principal curvature directions, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . ?. ???, . ?. . . . . . . . . . ??. ?. 25 Reparameterizing macro elements for finite element decomposition... visualization and functional analysis, building 3D surface models through serial reconstruction has received much attention in biomedical research [3], [8], [50]. Surface reconstruction techniques include volume rendering, iso-surface algorithms, parametric...

  4. INTRODUCTION TO THE FINITE ELEMENT METHOD

    E-Print Network [OSTI]

    California at Berkeley, University of

    in popularity with the finite difference method in the areas of heat transfer and fluid mechanics. 1DRAFT Chapter 1 INTRODUCTION TO THE FINITE ELEMENT METHOD 1.1 Historical perspective: the origins of the finite el- ement method The finite element method constitutes a general tool for the numerical solution

  5. Element 74, the Wolfram Versus Tungsten Controversy

    SciTech Connect (OSTI)

    Holden,N.E.

    2008-08-11T23:59:59.000Z

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

  6. Control volume finite element method with multidimensional edge element Scharfetter-Gummel upwinding. Part 1, formulation.

    SciTech Connect (OSTI)

    Bochev, Pavel Blagoveston

    2011-06-01T23:59:59.000Z

    We develop a new formulation of the Control Volume Finite Element Method (CVFEM) with a multidimensional Scharfetter-Gummel (SG) upwinding for the drift-diffusion equations. The formulation uses standard nodal elements for the concentrations and expands the flux in terms of the lowest-order Nedelec H(curl; {Omega})-compatible finite element basis. The SG formula is applied to the edges of the elements to express the Nedelec element degree of freedom on this edge in terms of the nodal degrees of freedom associated with the endpoints of the edge. The resulting upwind flux incorporates the upwind effects from all edges and is defined at the interior of the element. This allows for accurate evaluation of integrals on the boundaries of the control volumes for arbitrary quadrilateral elements. The new formulation admits efficient implementation through a standard loop over the elements in the mesh followed by loops over the element nodes (associated with control volume fractions in the element) and element edges (associated with flux degrees of freedom). The quantities required for the SG formula can be precomputed and stored for each edge in the mesh for additional efficiency gains. For clarity the details are presented for two-dimensional quadrilateral grids. Extension to other element shapes and three dimensions is straightforward.

  7. Probabilistic finite element analysis of a craniofacial finite element model Michael A. Berthaume a,b

    E-Print Network [OSTI]

    Probabilistic finite element analysis of a craniofacial finite element model Michael A. Berthaume a s t r a c t We employed a probabilistic finite element analysis (FEA) method to determine how 2011 Accepted 18 January 2012 Available online 27 January 2012 Keywords: Probabilistic analysis Finite

  8. Photocatalytic degradation of gaseous toluene over TiO{sub 2}-SiO{sub 2} composite nanotubes synthesized by sol-gel with template technique

    SciTech Connect (OSTI)

    Zou, Xuejun [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China)] [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China) [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China); Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Qu, Zhenping; Zhao, Qidong; Shi, Yong; Chen, Yongying [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China)] [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China); Tade, Moses [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Liu, Shaomin, E-mail: shaomin.liu@curtin.edu.au [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)

    2012-02-15T23:59:59.000Z

    Graphical abstract: TiO{sub 2}-SiO{sub 2} nanotubes (b) were fabricated by sol-gel method using ZnO nanowires (a) as template. Highlights: Black-Right-Pointing-Pointer A simple method to prepare TiO{sub 2}-SiO{sub 2} nanotubes for photocatalytic toluene removal. Black-Right-Pointing-Pointer The TiO{sub 2}-SiO{sub 2} nanotubes have a small blue shift and higher absorption intensity. Black-Right-Pointing-Pointer The TiO{sub 2}-SiO{sub 2} nanotubes have an enhanced photoactivity in degrading gaseous toluene. -- Abstract: TiO{sub 2}-SiO{sub 2} composite nanotubes were successfully synthesized by a facile sol-gel technique utilizing ZnO nanowires as template. The nanotubes were well characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, N{sub 2} adsorption-desorption analysis and UV-vis diffuse reflectance spectroscopy. The nanotubular TiO{sub 2}-SiO{sub 2} composite photocatalysts showed diameter of 300-325 nm, fine mesoporous structure and high specific surface area. The results indicated that the degradation efficiency of gaseous toluene could get 65% after 4 h reaction using the TiO{sub 2}-SiO{sub 2} composite as the photocatalyst under UV light illumination, which was higher than that of P25.

  9. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28T23:59:59.000Z

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU 7. The available soil and groundwater data indicate that the some of the waste disposed in this facility contacted and/or were contaminated by TCE. In our assessment, the relatively small amount of TCE associated with SWMU 7 is not contributing detectable TCE to the groundwater and does not represent a significant threat to the environment, particularly in an area where remediation and/or management of TCE in the NW plume will be required for an extended timeframe. If determined to be necessary by the PGDP team and regulators, additional TCE characterization or cleanup activities could be performed. Consistent with the limited quantity of TCE in SWMU 7, we identify a range of low cost approaches for such activities (e.g., soil gas surveys for characterization or SVE for remediation). We hope that this information is useful to the Paducah team and to their regulators and stakeholders to develop a robust environmental management path to address the groundwater and soil contamination associated with the burial ground areas.

  10. COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect (OSTI)

    Miller, Peter T.; Starmer, R. John

    2003-02-27T23:59:59.000Z

    The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR survey used a 200 megahertz (MHz) antenna to provide the maximum depth penetration and subsurface detail yielding usable signals to a depth of about 6 to 10 feet in this environment and allowed discrimination of objects that were deeper, particularly useful in the southern area of the site where shallow depth metallic debris (primarily roof flashing) complicated interpretation of the EM and magnetic data. Several geophysical anomalies were defined on the contour plots that indicated the presence of buried metal. During the first phase of the project, nine anomalies or anomalous areas were detected. The sizes, shapes, and magnitudes of the anomalies varied considerably, but given the anticipated size of the primary target of the investigation, only the most prominent anomalies were considered as potential caches of 30 to 60 buried drums. After completion of a second phase investigation, only two of the anomalies were of sufficient magnitude, not identifiable with existing known metallic objects such as monitoring wells, and in positions that corresponded to the location of alleged dumping activities and were recommended for further, intrusive investigation. Other important findings, based on the variable frequency EM method and its combination with total field magnetic and GPR data, included the confirmation of the position of the old NSDD, the ability to differentiate between ferrous and non-ferrous anomalies, and the detection of what may be plumes emanating from the landfill cell.

  11. Ion processing element with composite media

    DOE Patents [OSTI]

    Mann, Nick R. (Blackfoot, ID); Tranter, Troy J. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Sebesta, Ferdinand (Prague, CZ)

    2009-03-24T23:59:59.000Z

    An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

  12. Magnetic bearing element with adjustable stiffness

    DOE Patents [OSTI]

    Post, Richard F

    2013-11-12T23:59:59.000Z

    A compact magnetic bearing element is provided which is made of permanent magnet discs configured to be capable of the adjustment of the bearing stiffness and levitation force over a wide range.

  13. Transition Matrix Elements for Pion Photoproduction

    E-Print Network [OSTI]

    Mohamed E. Kelabi

    2007-03-20T23:59:59.000Z

    We have obtained the transition matrix elements for pion photoproduction by considering the number of gamma matrices involved. The approach based on the most general conditions of gauge invariance, current conservation and transversality. The approach is fairly consistent with literatures.

  14. Proton decay matrix elements from lattice QCD 

    E-Print Network [OSTI]

    Cooney, Paul

    2010-01-01T23:59:59.000Z

    We present results for the matrix elements relevant for proton decay in Grand Unified Theories (GUTs), using two methods. In the indirect method, we rely on an effective field theory description of proton decay, where ...

  15. Magnetostatics of synthetic ferrimagnet elements Olivier Fruchart

    E-Print Network [OSTI]

    coupled antiferromagnetically thanks to the RKKY interaction present in an ultrathin metal spacer layer in flat elements as dipolar field are very short-ranged in two dimensions12 . In this Letter we re- port

  16. Quadrilateral/hexahedral finite element mesh coarsening

    DOE Patents [OSTI]

    Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E

    2012-10-16T23:59:59.000Z

    A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.

  17. Finite Element Analysis of the Schroedinger Equation

    E-Print Network [OSTI]

    Avtar S. Sehra

    2007-04-17T23:59:59.000Z

    The purpose of this work is to test the application of the finite element method to quantum mechanical problems, in particular for solving the Schroedinger equation. We begin with an overview of quantum mechanics, and standard numerical techniques. We then give an introduction to finite element analysis using the diffusion equation as an example. Three numerical time evolution methods are considered: the (tried and tested) Crank-Nicolson method, the continuous space-time method, and the discontinuous space-time method.

  18. Stretchable semiconductor elements and stretchable electrical circuits

    DOE Patents [OSTI]

    Rogers, John A. (Champaign, IL); Khang, Dahl-Young (Seoul, KR); Menard, Etienne (Durham, NC)

    2009-07-07T23:59:59.000Z

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  19. A Family of Uniform Strain Tetrahedral Elements and a Method for Connecting Dissimilar Finite Element Meshes

    SciTech Connect (OSTI)

    Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.

    1999-01-01T23:59:59.000Z

    This report documents a collection of papers on a family of uniform strain tetrahedral finite elements and their connection to different element types. Also included in the report are two papers which address the general problem of connecting dissimilar meshes in two and three dimensions. Much of the work presented here was motivated by the development of the tetrahedral element described in the report "A Suitable Low-Order, Eight-Node Tetrahedral Finite Element For Solids," by S. W. Key {ital et al.}, SAND98-0756, March 1998. Two basic issues addressed by the papers are: (1) the performance of alternative tetrahedral elements with uniform strain and enhanced uniform strain formulations, and (2) the proper connection of tetrahedral and other element types when two meshes are "tied" together to represent a single continuous domain.

  20. Stacked switchable element and diode combination with a low breakdown switchable element

    DOE Patents [OSTI]

    Wang, Qi (Littleton, CO); Ward, James Scott (Englewood, CO); Hu, Jian (Englewood, CO); Branz, Howard M. (Boulder, CO)

    2012-06-19T23:59:59.000Z

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship. The semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a low-density forming current and/or a low voltage.

  1. Nuclear elements in Banach Jordan pairs Ottmar Loos

    E-Print Network [OSTI]

    Nuclear elements in Banach Jordan pairs Ottmar Loos Abstract We introduce nuclear elements in Banach Jordan pairs, generalizing the nuclear elements Jordan pairs and show that the trace form Trintroduced in [3] may be extended to the nuclear

  2. 12.479 Trace-Element Geochemistry, Fall 2006

    E-Print Network [OSTI]

    Frey, Frederick August

    Focuses on element distribution in rocks and minerals using data obtained from natural and experimental systems. Emphasizes models describing trace-element partitioning and applications of trace-element geochemistry to ...

  3. 3.3 Construction of vector edge elements

    E-Print Network [OSTI]

    2011-10-05T23:59:59.000Z

    Figure 3.1: Linear tetrahedral element. 3.3 Construction of vector edge elements. Let us first consider the linear tetrahedral element, as seen in Figure 3.1. Within.

  4. Element-based concrete design with three-dimensional finite element models

    SciTech Connect (OSTI)

    O'Leary, M.; Huberty, K.; Winch, S. [Nuclear Power Technologies Div., Sargent and Lundy, 55 East Monroe, Chicago, IL 60603 (United States)

    2012-07-01T23:59:59.000Z

    A shell element based design of a typical shear wall using analytical results from a three-dimensional finite element model subjected to a combination of vertical and lateral loads is evaluated. The axial and flexural force resultants from each element for every load combination are used to calculate the required reinforcing for each element. Strength for axial loads (P) and out-of-plane flexure (M) in structural walls is determined according to the same P-M interaction procedures used for columns. After each element has been evaluated, a required reinforcing map for each face of each element in the wall is presented along with a constructible reinforcement pattern enveloping the required reinforcing. In order to determine whether the element-based approach meets the requirements of the section cut approach to design, which is typically employed in manual calculations, the total in-plane moment (M) and total vertical axial force (P) across the entire length of the wall is calculated and the P-M points are plotted on an in-plane P-M interaction diagram. It is concluded that element-based design for a structural wall ensures that reinforcement is provided where required by the three-dimensional finite element analysis while still providing sufficient reinforcing to satisfy the section cut approach to design. (authors)

  5. Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2

    SciTech Connect (OSTI)

    Pruess, K.

    2011-05-15T23:59:59.000Z

    Storage of CO{sub 2} in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO{sub 2} leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO{sub 2} can form two-phase mixtures of liquid and gaseous CO{sub 2}, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO{sub 2}, the so-called Joule-Thomson effect. Integrated modeling of CO{sub 2} storage and leakage requires the ability to model non-isothermal flows of brine and CO{sub 2} at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO{sub 2}. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO{sub 2} systems. Our model formulation includes: (1) an accurate description of thermophysical properties of aqueous and CO{sub 2}-rich phases as functions of temperature, pressure, salinity and CO{sub 2} content, including the mutual dissolution of CO{sub 2} and H{sub 2}O; (2) transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO{sub 2}; (3) one-, two-, and three-phase flow of brine-CO{sub 2} mixtures, including heat flow; (4) non-isothermal effects associated with phase change, mutual dissolution of CO{sub 2} and water, and (de-) compression effects; and (5) the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO{sub 2} provide a potential for positive as well as negative feedbacks on leakage rates, with a combination of self-enhancing and self-limiting effects. Lower viscosity and density of CO{sub 2} as compared to aqueous fluids provides a potential for self-enhancing effects during leakage, while strong cooling effects from liquid CO{sub 2} boiling into gas, and from expansion of gas rising towards the land surface, act to self-limit discharges. Strong interference between fluid phases under three-phase conditions (aqueous - liquid CO{sub 2} - gaseous CO{sub 2}) also tends to reduce CO{sub 2} fluxes. Feedback on different space and time scales can induce non-monotonic behavior of CO{sub 2} flow rates.

  6. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media. [CO/sub 2/ laser oscillator and pulse smoother

    DOE Patents [OSTI]

    McLellan, E.J.

    1980-10-17T23:59:59.000Z

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  7. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01T23:59:59.000Z

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 ?g/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 ?g/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 ?g/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is China’s 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.

  8. Environmental investigations at the Paducah Gaseous Diffusion Plant and surrounding area, McCracken County, Kentucky: Volume 1 -- Executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1994-05-01T23:59:59.000Z

    This report details the results of four studies into environmental and cultural resources on and near the Department of Energy`s (DOE) Paducah Gaseous Diffusion Plant (PGDP) located in Western Kentucky in McCracken County, approximately 10 miles west of Paducah, KY. The area investigated includes the PGDP facility proper, additional area owned by DOE under use permit to the Western Kentucky Wildlife Management Area (WKWMA), area owned by the Commonwealth of Kentucky that is administered by the WKWMA, area owned by the Tennessee Valley Authority (TVA), the Metropolis Lake State Nature preserve and some privately held land. DOE requested the assistance and support of the US Army Engineer District, Nashville (CEORN) in conducting various environmental investigations of the area. The US Army Engineer Waterways Experiment Station (WES) provided technical support to the CEORN for environmental investigations of (1) wetland resources, (2) threatened or endangered species and habitats, and (3) cultural resources. A floodplain investigation was conducted by CEORN.

  9. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect (OSTI)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01T23:59:59.000Z

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  10. Influences of gaseous environment on low growth-rate fatigue crack propagation in steels. Annual report No. 1, January 1980. Report No. FPL/R/80/1030

    SciTech Connect (OSTI)

    Ritchie, R.O.; Suresh, S.; Toplosky, J.

    1980-01-01T23:59:59.000Z

    The influence of gaseous environment is examined on fatigue crack propagation behavior in steels. Specifically, a fully martensitic 300-M ultrahigh strength steel and a fully bainitic 2-1/4Cr-1Mo lower strength steel are investigated in environments of ambient temperature moist air and low pressure dehumidified hydrogen and argon gases over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, with particular emphasis given to behavior near the crack propagation threshold ..delta..K/sub 0/. It is found that two distinct growth rate regimes exist where hydrogen can markedly accelerate crack propagation rates compared to air, (1) at near-threshold levels below (5 x 10/sup -6/ mm/cycle) and (2) at higher growth rates, typically around 10/sup -5/ mm/cycle above a critical maximum stress intensity K/sub max//sup T/. Hydrogen-assisted crack propagation at higher growth rates is attributed to a hydrogen embrittlement mechanism, with K/sub max//sup T/ nominally equal to K/sub Iscc/ (the sustained load stress corrosion threshold) in high strength steels, and far below K/sub Iscc/ in the strain-rate sensitive lower strength steels. Hydrogen-assisted crack propagation at near-threshold levels is attributed to a new mechanism involving fretting-oxide-induced crack closure generated in moist (or oxygenated) environments. The absence of hydrogen embrittlement mechanisms at near-threshold levels is supported by tests showing that ..delta..K/sub 0/ values in dry gaseous argon are similar to ..delta..K/sub 0/ values in hydrogen. The potential ramifications of these results are examined in detail.

  11. Properties of Group Five and Group Seven transactinium elements

    E-Print Network [OSTI]

    Wilk, Philip A.

    2001-01-01T23:59:59.000Z

    of Group Five and Group Seven Transactinium Elementsof Group Five and Group Seven Transactinium Elements byof Group Five and Group Seven Transactinium Elements by

  12. adaptive finite element: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties and performance of the adaptive finite element approach to the design of nano-photonic components. Central issues are the construction of vectorial finite elements...

  13. adaptive finite elements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties and performance of the adaptive finite element approach to the design of nano-photonic components. Central issues are the construction of vectorial finite elements...

  14. Feasibility of the detection of trace elements in particulate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry. Feasibility of the detection of trace elements in particulate matter using online...

  15. Status of Segmented Element Thermoelectric Generator for Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Discusses progress...

  16. 3800 Green Series Cost Elements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (formerly EPP) Program 3800 Green Series Cost Elements 06112014 (Rev. 7) 3800 Green Series Cost Elements More Documents & Publications 1 OPAM Policy Acquisition Guides...

  17. The Impacts of Commercial Electric Utility Rate Structure Elements...

    Office of Environmental Management (EM)

    The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems The Impacts of Commercial Electric Utility Rate Structure Elements on...

  18. axial element protein: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ser-142 (14). Ser-129 is believed to be a substrate for glycogen synthase kinase 3 Brownfield, Mark S. 84 Elements & Compounds Atoms (Elements) Biology and Medicine Websites...

  19. EIS-0423: Storage and Management of Elemental Mercury | Department...

    Office of Environmental Management (EM)

    23: Storage and Management of Elemental Mercury EIS-0423: Storage and Management of Elemental Mercury Summary This EIS evaluates the environmental impacts associated with the...

  20. A fast multipole boundary element method for modeling 2-D multiple crack problems with constant elements

    E-Print Network [OSTI]

    Liu, Yijun

    A fast multipole boundary element method for modeling 2-D multiple crack problems with constant 3 April 2014 Accepted 20 May 2014 Keywords: Fast multipole BEM 2-D multi-crack problems Constant elements Crack opening displacements Stress intensity factors a b s t r a c t A fast multipole boundary

  1. Spectroscopy of element 115 decay chains

    SciTech Connect (OSTI)

    Rudolph, Dirk [Lund University, Sweden; Forsberg, U. [Lund University, Sweden; Golubev, P. [Lund University, Sweden; Sarmiento, L. G. [Lund University, Sweden; Yakushev, A. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Andersson, L.-L. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Di Nitto, A. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Duehllmann, Ch. E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Gates, J. M. [Lawrence Berkeley National Laboratory (LBNL); Gregorich, K. E. [Lawrence Berkeley National Laboratory (LBNL); Gross, Carl J [ORNL; Hessberger, F. P. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Herzberg, R.-D [University of Liverpool; Khuyagbaatar, J. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Kratz, J. V. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Rykaczewski, Krzysztof Piotr [ORNL; Schaedel, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Aberg, S. [Lund University, Sweden; Ackermann, D. [GSI-Hemholtzzentrum fur Schwerionenforschung, Darmstadt, Germany; Block, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Brand, H. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Carlsson, B. G. [Lund University, Sweden; Cox, D. [University of Liverpool; Derkx, X. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Eberhardt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Even, J. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Fahlander, C. [Lund University, Sweden; Gerl, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Jaeger, E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kindler, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Krier, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kojouharov, I. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kurz, N. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Lommel, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Mistry, A. [University of Liverpool; Mokry, C. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Nitsche, H. [Lawrence Berkeley National Laboratory (LBNL); Omtvedt, J. P. [Paul Scherrer Institut, Villigen, Switzerland; Papadakis, P. [University of Liverpool; Ragnarsson, I. [Lund University, Sweden; Runke, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Schaffner, H. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Schausten, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Thoerle-Pospiech, P. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Torres, T. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Traut, T. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Tuerler, A. [Paul Scherrer Institut, Villigen, Switzerland; Ward, A. [University of Liverpool; Ward, D. E. [Lund University, Sweden; Wiehl, N. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany

    2013-01-01T23:59:59.000Z

    A high-resolution a, X-ray and -ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum fu r Schwerionenforschung. Thirty correlated a-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z = 115. The data includes first candidates of fingerprinting the decay step Mt --> Bh with characteristic X rays. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z > 112. Comprehensive Monte-Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  2. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24T23:59:59.000Z

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  3. Trace element analysis of Texas lignite 

    E-Print Network [OSTI]

    Mahar, Sean

    1982-01-01T23:59:59.000Z

    . Gluskoter, and N. F. Shimp: Occurence and Distribution of Potentiall Volatile Trace Elements in Coal. Illinois State Geological Survey. Urbana, IL. (July, 1974). 39 [26] Andren, A. W. , D. H. Klein, and Y. Talmi: Selenium in Coal- Fired Plant Emissions.... Envir. Sci. and Tech. , 9:856, (Sept. , 1975). [27] Gluskoter, H. J. , R. R. Ruch, W. G. Miller, R. A. Cahill, G. B. Breher and J, K. Kuhn: Trace Elements in Coal: Occur- rence and Distribution. Illinois State Geological Sur- vey. Urbane, Illinois...

  4. Broadband diffractive lens or imaging element

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA); London, Richard A. (Oakland, CA); Seppala, Lynn G. (Livermore, CA)

    1991-01-01T23:59:59.000Z

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  5. Broadband diffractive lens or imaging element

    DOE Patents [OSTI]

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26T23:59:59.000Z

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  6. Broadband diffractive lens or imaging element

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA); London, Richard A. (Oakland, CA); Seppala, Lynn G. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  7. Strange matrix elements of the nucleon

    E-Print Network [OSTI]

    Lewis, R; Woloshyn, R M; Lewis, Randy

    2002-01-01T23:59:59.000Z

    Results for the disconnected contributions to matrix elements of the vector current and scalar density have been obtained for the nucleon from the Wilson action at beta=6 using a stochastic estimator technique and 2000 quenched configurations. Various methods for analysis are employed and chiral extrapolations are discussed.

  8. Generalized finite element method for Helmholtz equation 

    E-Print Network [OSTI]

    Hidajat, Realino Lulie

    2009-05-15T23:59:59.000Z

    reduces the pollution effect due to wave number and we are able to obtain a highly accurate solution with a much smaller number of degrees-of-freedom compared with the classical Finite Element Method. The q-convergence of the handbook functions...

  9. Rare Earth Element Mines, Deposits, and Occurrences

    E-Print Network [OSTI]

    Torgersen, Christian

    Rare Earth Element Mines, Deposits, and Occurrences by Greta J. Orris1 and Richard I. Grauch2 Open Table 1. Rare earth mineral codes and associated mineral names.......................................................................................6 Table 2. Non-rare earth mineral codes and associated mineral names

  10. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect (OSTI)

    NA

    2004-11-22T23:59:59.000Z

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  11. Two-element free-electron lasers

    SciTech Connect (OSTI)

    Shih, C.; Yariv, A.

    1980-02-01T23:59:59.000Z

    The interaction between the electrons and the radiation in a free-electrons laser leads to a shift and a spread of the electron velocity distribution. The electron dynamics of a two-element system are studied in the small signal region. It is found that the efficiency and gain can be increased through introduction of an adjustable drift distance between two identical wigglers.

  12. The New Element Californium (Atomic Number 98)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

    1950-06-19T23:59:59.000Z

    Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

  13. Trace elements and Polycyclic Aromatic Hydrocarbons (PAHs)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Trace elements and Polycyclic Aromatic Hydrocarbons (PAHs) in snow and ice sampled at Colle designed, built and tested. Melt water from inner part of ice core section was pumped to an ICP-SFMS and ICP-OES. Melt water from outer section was on-line extracted by solid-phase cartridges for semi

  14. Neutron based elemental characterization of coal

    SciTech Connect (OSTI)

    Dep, L.; Vourvopoulos, G. [Western Kentucky Univ., Bowling Green, KY (United States)

    1996-12-31T23:59:59.000Z

    An elemental characterization system based on a 14 MeV neutron generator is described. The results of sulfur content measurement in coal with a precision acceptable to the coal industry are presented. The preliminary results of measuring carbon, oxygen, and sodium are shown.

  15. Plutonium-the element of surprise

    E-Print Network [OSTI]

    Short, Daniel

    Plutonium-the element of surprise G.R.ChoppinandB.E.Stout This year marked the soth annivrsary ol the original isolation o{ plutonium, making ita relativenewcomerto the PeriodicTable.Ovrthe past 50 years plutonium has become more familiar to tho generslpublic than manyothor,olderelem6nts

  16. Finite Element Analysis in Functional BRIAN G. RICHMOND,1

    E-Print Network [OSTI]

    Finite Element Analysis in Functional Morphology BRIAN G. RICHMOND,1 * BARTH W. WRIGHT,1 IAN GROSSE element analysis. © 2005 Wiley-Liss, Inc. Key words: finite-element analysis; mastication; primates; biome This article reviews the fundamental principles of the finite element method and the three basic steps (model

  17. Modeling Elastic Properties in Finite-Element Analysis: How Much

    E-Print Network [OSTI]

    Modeling Elastic Properties in Finite- Element Analysis: How Much Precision Is Needed to Produce analysis was investigated using a finite-element model of a Macaca fascicularis skull. Four finite-element realistically using the orthotropic elastic properties employed in analysis 4. Results suggest that finite-element

  18. Techniques for Modeling Muscle-Induced Forces in Finite Element

    E-Print Network [OSTI]

    Dumont, Elizabeth R.

    program was written to interface with a commercial finite element analysis tool to automatically apply: finite element analysis; muscle force; skull; muscle loading alogorithm, biting Finite element analysisTechniques for Modeling Muscle- Induced Forces in Finite Element Models of Skeletal Structures IAN

  19. Scalability Analysis of Partitioning Strategies for Finite Element Graphs. \\Lambda

    E-Print Network [OSTI]

    Kumar, Vipin

    Scalability Analysis of Partitioning Strategies for Finite Element Graphs. \\Lambda Grama Y. Ananth Y. Grama ananth@cs:umn:edu Abstract Issues of partitioning Finite Element Graphs are central for implementing the Finite Element Method (FEM). Parallel formulations of finite element techniques require

  20. Math/AMath 595: Finite Element Methods (Winter 2001)

    E-Print Network [OSTI]

    Stein, William

    for Elliptic Problems by Philippe G. Ciarlet (1978). 3. An Analysis of the Finite Element Method by GilbertMath/AMath 595: Finite Element Methods (Winter 2001) Lectures: MW 3:30{4:50, room 121 RAI Professor Element Methods by Susanne C. Brenner and L. Ridgway Scott (1994). 2. The Finite Element Method