Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Dry deposition of gaseous elemental iodine on water  

E-Print Network [OSTI]

DRy DEPOSITION OF GASEOUS ELEMENTAL IODINE ON WATER A Thesis by MICHAEL DANA ALLEN Submitted to the Graduate College of Texas AlkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 19/4 Ma...Jor SubJect: Nuclear Engineering (Health Physics) DRY DEPOSITION OF GASEOUS ELEMENTAL IODINE ON WATER A Thesis MICHAEL DANA ALLEN Approved as to style and content by: irman of C ttee) ( a of Department) (Member) (Member) August 1974 3. 1. 595') 6...

Allen, Michael Dana

2012-06-07T23:59:59.000Z

2

Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements  

DOE Patents [OSTI]

Scavenger compositions are disclosed, which have utility for effecting the sorptive removal of hazardous gases containing Group II-VII elements of the Periodic Table, such as are widely encountered in the manufacture of semiconducting materials and semiconductor devices. Gas sorption processes including the contacting of Group II-VII gaseous compounds with such scavenger compositions are likewise disclosed, together with critical space velocity contacting conditions pertaining thereto. Further described are gas contacting apparatus, including mesh structures which may be deployed in gas contacting vessels containing such scavenger compositions, to prevent solids from being introduced to or discharged from the contacting vessel in the gas stream undergoing treatment. A reticulate heat transfer structure also is disclosed, for dampening localized exothermic reaction fronts when gas mixtures comprising Group II-VII constituents are contacted with the scavenger compositions in bulk sorption contacting vessels according to the invention.

Tom, Glenn M. (New Milford, CT); McManus, James V. (Danbury, CT); Luxon, Bruce A. (Stamford, CT)

1991-08-06T23:59:59.000Z

3

Flammable gas project topical report  

SciTech Connect (OSTI)

The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

Johnson, G.D.

1997-01-29T23:59:59.000Z

4

Influence of steam on the flammability limits of premixed natural gas/oxygen/steam mixtures  

Science Journals Connector (OSTI)

Synthesis gas (Syngas) is an intermediate in a variety of industrial processes. Its production is energy and capital intensive and any improvement of existing technologies allowing simpler and economic production is of great interest. Recently, a new method known as short contact time-catalytic partial oxidation (SCT-CPO) has been developed into a commercial technology [14]. SCT-CPO is an entirely heterogeneous catalytic process converting premixed flammable feedstocks inside a very small reactor. In order to ensure safety and a high selectivity towards CO and H2 it has been important to determine and understand flammability properties of the gaseous reactant mixtures. Here we report on the results obtained within a windowed tube reactor equipped with multiple photodetectors and pressure transducers that has allowed the study of ignition, flame propagation, and explosion characteristics of gas mixtures similar to those used as reactants in the SCT-CPO reactor. The tests were conducted at various pressures with different amounts of steam and two different compositions of natural gas (NG). A flammability boundary for each mixture, based on normalized pressure and mole fraction of steam, was determined. The results conclude that these mixtures flammability could be suppressed in two very different ways. Depending on the adiabatic flame temperature of the mixture, suppression could be caused by steam's chemical influence increasing chain-termination or by a large amount of steam decreasing the reaction zone temperature.

Matthew J. Degges; J. Eric Boyer; Kenneth K. Kuo; Luca Basini

2010-01-01T23:59:59.000Z

5

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

SciTech Connect (OSTI)

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

HU TA

2009-10-26T23:59:59.000Z

6

STEADY-STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

SciTech Connect (OSTI)

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

HU TA

2007-10-26T23:59:59.000Z

7

Flammability of diesel fuels with various compositions  

SciTech Connect (OSTI)

This paper reports on a study of the flammability of a number of fuels and blends, in relation to their physicochemical properties, particularly the volatility; these studies were performed in a specially designed simulator. The following fuels were used in the studies: a hydrotreated straight-run diesel fuel L; a catalytic gas oil; diesel fuel A; blends of diesel fuels L and A with cetaine, alpha-methylnaphthalene, undecane, and docosane; and a blend of fuel L, A-72 gasoline, and the additive TsGN. The physicochemical properties of the test fuels are shown. It is shown that the flammability of fuels with various compositions in a diesel engine is more correctly evaluated on the basis of the ignition delay period, which can be calculated from the cetane number and other physicochemical property indexes of fuels for a particular set of engine operating conditions.

Gureev, A.A.; Kamfer, G.M.; Prigul'skii, G.B.

1986-09-01T23:59:59.000Z

8

The Chemistry of Flammable Gas Generation  

SciTech Connect (OSTI)

The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

ZACH, J.J.

2000-10-30T23:59:59.000Z

9

Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste  

SciTech Connect (OSTI)

This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

HU, T.A.

2000-04-27T23:59:59.000Z

10

FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS  

Office of Scientific and Technical Information (OSTI)

Bulletin 627 Bulletin 627 BUREAU o b MINES FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS By Michael G. Zabetakis DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

11

Gaseous Hydrogen Delivery Breakout  

E-Print Network [OSTI]

or reduce the likelihood of hydrogen embrittlement Test existing high strength steel alloys for use in largeGaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 compression. Safety, integrity, reliability: Metal embrittlement, no H2 odorant, low ignition energy

12

Flammable Gas Detection for the D-Zero Gas System  

SciTech Connect (OSTI)

The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the gas shed. Similarly, if a fire were to break out anywhere in the D-ZERO Hall, fire sensors would stop the output of all flammable gas manifolds within the gas shed, by unpowering electrically controlled solenoid valves that are normally closed in the event of a power failure. Fire sensor contacts have not yet been installed.

Spires, L.D.; Foglesong, J.; /Fermilab

1991-02-11T23:59:59.000Z

13

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

SciTech Connect (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

14

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

15

Flammable gas interlock spoolpiece flow response test report  

SciTech Connect (OSTI)

The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

Schneider, T.C., Fluor Daniel Hanford

1997-03-24T23:59:59.000Z

16

Viscosity Measurements on Gaseous Ethane  

Science Journals Connector (OSTI)

Viscosity Measurements on Gaseous Ethane ... Only the pressures, densities, and viscosities are given in the table with regard to the large number of experimental points. ...

Jrg Wilhelm; Daniel Seibt; Eckhard Vogel; Daniel Buttig; Egon Hassel

2005-11-08T23:59:59.000Z

17

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2  

SciTech Connect (OSTI)

Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail Report in the Tank Waste Information Network System, and the waste temperature data in the Surveillance Analysis Computer System (SACS) (dated July 2003). However, the release rate of methane, ammonia, and nitrous oxide is based on the input data (dated October 1999) as stated in Revision 0 of this report. Scenarios for adding waste to existing waste levels (dated July 2003) have been studied to determine the gas generation rates and the effect of smaller dome space on the flammability limits to address the issues of routine water additions and other possible waste transfer operations. In the flammability evaluation with zero ventilation, the sensitivity to waste temperature and to water addition was calculated for double-shell tanks 241-AY-102, 241-AN-102,241-AZ-101,241-AN-107,241-AY-101 and 241-AZ-101. These six have the least margin to flammable conditions among 28 double-shell tanks.

HU, T.A.

2003-09-30T23:59:59.000Z

18

FLAMMABILITY AND CONSEQUENCE ANALYSIS FOR MCU WASTE TANKS  

SciTech Connect (OSTI)

The Savannah River Site of Department of Energy will use the new Modular Caustic Side Solvent Extraction Unit (MCU) to process the waste stream by removing/reducing Cs-137 using Caustic Side Solvent Extraction (CSSX) technology. The CSSX technology utilizes multicomponent organic solvent and annular centrifugal contactors to extract Cs-137 from waste salt solution. Due to the radiolysis of the aqueous nuclear wastes, hydrogen generation is expected in the MCU holding tanks. The hydrogen from radiolysis and the vapor from the organic component of the solvent, Isopar-L, may form a composite flammable gas mixture, resulting in a shorter time to flammability than that of a pure hydrogen environment. It has been found that the time-to-Lower Flammability Limit (LFL) and stoichiometric concentration (SC) vary greatly from tank to tank, and could be decreased significantly by the presence of the Isopar-L. However, neither the deflagration nor the detonation event would challenge the Evaluation Guideline for any of the tanks at any liquid level.

Knight, J; Mukesh Gupta, M

2007-02-13T23:59:59.000Z

19

Experimental measurements and modeling prediction of flammability limits of binary hydrocarbon mixtures  

E-Print Network [OSTI]

of methane in air using thermal criterion?????..50 4.8 Determination of LFL of ethylene in air using thermal criterion???...??..51 4.9 Lower flammability limits of methane and n-butane mixtures in air at standard conditions...????????????????????..56 4.14 Upper flammability limits of methane and n-butane mixtures in air at standard conditions?????????????..???????57 4.15 Upper flammability limits of methane and ethylene mixtures in air at standard conditions...

Zhao, Fuman

2009-05-15T23:59:59.000Z

20

Inert Gas Dilution Effect on the Flammability Limits of Hydrocarbon Mixtures  

E-Print Network [OSTI]

previous one from U.S. BMs???????....69 5.3 Ethane flammability properties with dilution of nitrogen (25 ?C and 1 atm)??????????????????????..????.. 70 5.4 Propane flammability properties with dilution of nitrogen (25 ?C and 1 atm...)???????????????????????..???.. 72 5.8 Flammability properties of methane and propane at different molar radios (20 %/80%, 40%/60%, 60%/40%, and 80%/20%) with dilution of nitrogen (25 ?C and 1 atm)?..????.?..?????????73 5.9 Flammability properties of ethane and propane...

Zhao, Fuman

2012-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Systems acceptance and operability testing for rotary mode core sampling in flammable gas tanks  

SciTech Connect (OSTI)

This document provides instructions for the system acceptance and operability testing of the rotary mode core sampling system, modified for use in flammable gas tanks.

Corbett, J.E., Westinghouse Hanford

1996-07-29T23:59:59.000Z

22

Overview of the Flammability of Gases Generated in Hanford Waste Tanks  

SciTech Connect (OSTI)

This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

LA Mahoney; JL Huckaby; SA Bryan; GD Johnson

2000-07-21T23:59:59.000Z

23

Viscosity Measurements on Gaseous Propane  

Science Journals Connector (OSTI)

Viscosity Measurements on Gaseous Propane ... However, in that case, the viscosities will have to be re-evaluated too, which also requires the parameters of the wire oscillation, the logarithmic decrement and the frequency. ...

Jrg Wilhelm; Eckhard Vogel

2001-09-25T23:59:59.000Z

24

Is the situation and immediate threat to life and health? Spill/Leak/Release Medical Emergency Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor? Possible Fire / Natural Gas  

E-Print Network [OSTI]

? Possible Fire / Natural Gas (including chemicals and bio agents") (not including chemicals or bio agents Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor

25

Safe Use of Flammable and Explosive Substances: A Guide to DSEAR in the University  

E-Print Network [OSTI]

common organic solvents o Benzoyl peroxide o Ammonia gas o Oxygen gas o Petrol o Varnishes o LPG o Methyl of waste dusts in woodworking shops; · Handling and storage of flammable wastes including fuel oils; · Hot work on tanks or drums that have contained flammable material; · Work activities that could release

Glasgow, University of

26

Automated spray cleaning using flammable solvents in a glovebox environment  

SciTech Connect (OSTI)

The Clean Air Act Amendments that have phased out the use of ozone depleting solvents (ODS) have given the precision cleaning industry a challenge that they must respond to if they are to continuously and economically improve quality of service. The phase out of the ozone depleting solvents has forced industry to look to solvents such as alcohol, terpenes and other flammable solvents to perform the critical cleaning processes. These solvents are not as efficient as their ODS counterparts in terms of soil loading, cleaning time and drying when used in standard cleaning processes such as manual sprays or ultrasonic baths. They also require special equipment designs to meet part cleaning specifications and operator safety requirements. This paper describes a cleaning system that incorporates the automated spraying of flammable solvents to effectively perform precision cleaning processes. The prototype workcell under development uses a robot that sprays Isopropyl Alcohol (IPA) and terpene at pressures ranging to 600 psi in a glovebox environment. Key to the projects success was the development of software that controls the robotic system and automatically generates robotic cleaning paths from three dimensional CAD models of the items to be cleaned. Also key to the success of this prototype development is FM approval of the process and associated hardware which translates directly into operator and facilities safety.

McKee, R.; Meirans, L.; Watterberg, P.; Drotning, W. [Sandia National Labs., Albuquerque, NM (United States)

1997-04-01T23:59:59.000Z

27

Initial parametric study of the flammability of plume releases in Hanford waste tanks  

SciTech Connect (OSTI)

This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results in good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.

Antoniak, Z.I.; Recknagle, K.P.

1997-08-01T23:59:59.000Z

28

Independent Oversight Inspection, Portsmouth Gaseous Diffusion Plant -  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Gaseous Diffusion Portsmouth Gaseous Diffusion Plant - November 2006 Independent Oversight Inspection, Portsmouth Gaseous Diffusion Plant - November 2006 November 2006 Inspection of Emergency Management at the Portsmouth Gaseous Diffusion Plant The Secretary of Energy's Office of Independent Oversight, within the Office of Security and Safety Performance Assurance, conducted an inspection of the emergency management program at the Portsmouth Gaseous Diffusion Plant (PORTS) in August and September 2006. The coordination of emergency plans and procedures among USEC and DOE contractor organizations has successfully integrated the emergency management programs into a single cohesive program for the PORTS site. Other strengths include accurate hazards surveys that identify applicable

29

Laser ignition of flammable mixtures via a solid core optical fiber  

Science Journals Connector (OSTI)

To date no commercial fiber coupled laser systems have reached the irradiance and pulse energy required for flammable mixtures ignition. In this work we report preliminary results on the ignition of two-phase mix...

H. El-Rabii; G. Gaborel

2007-03-01T23:59:59.000Z

30

Generation of gaseous tritium standards  

SciTech Connect (OSTI)

The determination of aqueous and non-aqueous tritium in gaseous samples is one type of determination often requested of radioanalytical laboratories. This determination can be made by introducing the sample as a gas into a sampling train containing two silica gel beds separated by.a catalytic oxidizer bed. The first bed traps tritiated water. The sample then passes into and through the oxidizer bed where non-aqueous tritium containing species are oxidized to water and other products of combustion. The second silica gel bed then traps the newly formed tritiated water. Subsequently, silica gel is removed to plastic bottles, deionized water is added, and the mixture is permitted to equilibrate. The tritium content of the equilibrium mixture is then determined by conventional liquid scintillation counting (LSC). For many years, the moisture content of inert, gaseous samples has been determined using monitors which quantitatively electrolyze the moisture present after that moisture has been absorbed by phosphorous pentoxide or other absorbents. The electrochemical reaction is quantitative and definitive, and the energy consumed during electrolysis forms the basis of the continuous display of the moisture present. This report discusses the experimental evaluation of such a monitor as the basis for a technique for conversion of small quantities of SRMs of tritiated water ({sup 3}HOH) into gaseous tritium standards ({sup 3}HH).

Hohorst, F.A.

1994-09-01T23:59:59.000Z

31

Flammable gas issues in double-contained receiver tanks. Revision 2  

SciTech Connect (OSTI)

Four double-contained receiver tanks (DCRTs) at Hanford will be used to store salt-well pumped liquids from tanks on the Flammable Gas Watch List. This document was created to serve as a reference document describing the current knowledge of flammable gas issues in DCRTs. The document identifies, describes, evaluates, and attempts to quantify potential gas carryover and release mechanisms. It estimates several key parameters needed for these calculations, such as initial aqueous concentrations and ventilation rate, and evaluates the uncertainty in those estimates. It justifies the use of the Schumpe model for estimating vapor-liquid equilibrium constants. It identifies several potential waste compatibility issues (such as mixing and pH or temperature changes) that could lead to gas release and provides a basis for calculating their effects. It evaluates the potential for gas retention in precipitated solids within a DCRT and whether retention could lead to a buoyant displacement instability (rollover) event. It discusses rates of radiolytic, thermal, and corrosive hydrogen generation within the DCRT. It also describes in detail the accepted method of calculating the lower flammability limit (LFL) for mixtures of flammable gases. The report incorporates these analyses into two models for calculating headspace flammability, one based on instantaneous equilibrium between dissolved gases and the headspace and one incorporating limited release rates based on mass-transfer considerations. Finally, it demonstrates the use of both models to estimate headspace flammable gas concentrations and minimum ventilation rates required to maintain concentrations below 25% of the LFL.

Peurrung, L.M.; Mahoney, L.A.; Stewart, C.W.; Gauglitz, P.A.; Pederson, L.R.; Bryan, S.A.; Shepard, C.L.

1998-08-01T23:59:59.000Z

32

Hydrogen and Gaseous Fuel Safety and Toxicity  

SciTech Connect (OSTI)

Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

Lee C. Cadwallader; J. Sephen Herring

2007-06-01T23:59:59.000Z

33

Viscosity of Gaseous HFC245fa  

Science Journals Connector (OSTI)

Viscosity of Gaseous HFC245fa ... The uncertainty of the reported viscosities was estimated to be within 2.0 % with a coverage factor of k = 2. ...

Xiaopo Wang; Jiangtao Wu; Zhigang Liu

2009-07-10T23:59:59.000Z

34

Portsmouth Gaseous Diffusion Plant | Department of Energy  

Energy Savers [EERE]

Gaseous Diffusion Plant. March 26, 2010 Enforcement Letter, Geiger Brothers Mechanical Contractors, INC - March 26, 2010 Issued to Geiger Brothers Mechanical Contractors,...

35

Enforcement Documents - Portsmouth Gaseous Diffusion Plant |...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Diffusion Plant March 26, 2010 Enforcement Letter, Geiger Brothers Mechanical Contractors, INC - March 26, 2010 Issued to Geiger Brothers Mechanical Contractors,...

36

Independent Activity Report, Portsmouth Gaseous Diffusion Plant...  

Broader source: Energy.gov (indexed) [DOE]

2011 August 2011 Orientation Visit to the Portsmouth Gaseous Diffusion Plant HIAR-PORTS-2011-08-03 This Independent Activity Report documents an operational awareness...

37

Muon Capture in Gaseous Deuterium  

Science Journals Connector (OSTI)

We report the results of an experiment performed to measure the muon nuclear capture rate by free deuterons. The muons were slowed down in ultrapure gaseous hydrogen at 7.6 atm and 293 K, containing 5% of deuterium. A special target was used, in which a system of gas proportional counters, working with the (H2 + D2) gaseous mixture itself, was operating. Neutrons from the capture reactions were detected using liquid scintillation counters, and the ?-ray background was eliminated by pulse-shape discrimination. The experimental result is ?exp=(44560) sec-1, which is consistent with muon-electron universality and with the assumption that the nuclear capture proceeds from the doublet spin state of the ?d muonic atoms. Combining the present experimental value with a previous result obtained with a liquid-hydrogen deuterated target, one obtains a ratio between the axial-vector and vector coupling constants given by gA,?gV,?=-1.350.1.

A. Bertin; A. Vitale; A. Placci; E. Zavattini

1973-12-01T23:59:59.000Z

38

Status and perspectives of gaseous photon detectors  

Science Journals Connector (OSTI)

Abstract This article aims at reviewing the state of the art of gaseous photon detectors for RICH applications. Emphasis will be put on THGEM based devices which represent the most advanced development among the various micro-pattern gaseous photon sensors proposed for Cherenkov imaging in very high rate environments.

Antonio Di Mauro

2014-01-01T23:59:59.000Z

39

Independent Oversight Review, Portsmouth Gaseous Diffusion Plant -  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant - November 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - November 2013 November 5, 2013 Review of Preparedness for Severe Natural Phenomena Events at the Portsmouth Gaseous Diffusion Plant This report documents the results of an independent oversight review of the preparedness of the DOE Portsmouth/Paducah Project Office, contractors at the DOE Portsmouth Gaseous Diffusion Plant, and selected non-leased facilities to respond to a severe natural phenomena event (NPE). The review was conducted in July and August 2013 by the U.S. Department of Energy's (DOE) Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security (HSS). The HSS Office of Safety and Emergency Management Evaluations performed this

40

Flammable gas tank safety program: Technical basis for gas analysis and monitoring  

SciTech Connect (OSTI)

Several Hanford waste tanks have been observed to exhibit periodic releases of significant quantities of flammable gases. Because potential safety issues have been identified with this type of waste behavior, applicable tanks were equipped with instrumentation offering the capability to continuously monitor gases released from them. This document was written to cover three primary areas: (1) describe the current technical basis for requiring flammable gas monitoring, (2) update the technical basis to include knowledge gained from monitoring the tanks over the last three years, (3) provide the criteria for removal of Standard Hydrogen Monitoring System(s) (SHMS) from a waste tank or termination of other flammable gas monitoring activities in the Hanford Tank farms.

Estey, S.D.

1998-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Engineering task plan for flammable gas atmosphere mobile color video camera systems  

SciTech Connect (OSTI)

This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and testing of the mobile video camera systems. The color video camera systems will be used to observe and record the activities within the vapor space of a tank on a limited exposure basis. The units will be fully mobile and designed for operation in the single-shell flammable gas producing tanks. The objective of this tank is to provide two mobile camera systems for use in flammable gas producing single-shell tanks (SSTs) for the Flammable Gas Tank Safety Program. The camera systems will provide observation, video recording, and monitoring of the activities that occur in the vapor space of applied tanks. The camera systems will be designed to be totally mobile, capable of deployment up to 6.1 meters into a 4 inch (minimum) riser.

Kohlman, E.H.

1995-01-25T23:59:59.000Z

42

Evaluation of Type B shipping packages used to transport potentially flammable gas mixtures  

SciTech Connect (OSTI)

Using Type B shipping packages to transport radioactive materials within a potentially flammable gas mixture is a bold proposal. The Nuclear Regulatory Commission (NRC) has essentially prohibited such shipments. Furthermore, the NRC requires extensive modeling and/or testing of selective contents (e.g., Transuranic Waste) which are prone to generate hydrogen gas to demonstrate that, in general, a flammable mixture inside the containment vessel will not occur during shipment. Contrary to the NRC position, this paper proposes a rigorous containment vessel evaluation methodology to justify shipment of Type B quantities of radioactive materials in the presence of potentially flammable gas mixtures. The Department of Energy (DOE) is currently reviewing the methodology as applied to the 9975 package for shipment of plutonium oxide which may generate significant quantities of hydrogen gas.

Hensel, S.J.

2000-04-26T23:59:59.000Z

43

Evaluation of high-level nuclear waste tanks having a potential flammable gas hazard  

SciTech Connect (OSTI)

In 1990 the U.S. Department of Energy declared an unreviewed safety question as a result of the behavior of tank 241-SY-101. This tank exhibited episodic releases of flammable gases that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years a considerable amount of knowledge has been gained about the chemical and physical processes that govern the behavior of tank 241-SY-101 and the other tanks associated with a potential flammable gas hazard. This paper presents an overview of the current understanding of gas generation, retention, and release and covers the results of direct sampling of the tanks to determine the gas composition and the amount of stored gas.

Johnson, G.D.; Barton, W.B.; Hill, R.C.; et al, Fluor Daniel Hanford

1997-02-14T23:59:59.000Z

44

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

SciTech Connect (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

45

DOE - Office of Legacy Management -- Oak Ridge Gaseous Diffusion...  

Office of Legacy Management (LM)

Oak Ridge Gaseous Diffusion Plant - TN 02 FUSRAP Considered Sites Site: Oak Ridge Gaseous Diffusion Plant (TN.02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site...

46

DOE - Office of Legacy Management -- Paducah Gaseous Diffusion...  

Office of Legacy Management (LM)

Paducah Gaseous Diffusion Plant - KY 01 FUSRAP Considered Sites Site: Paducah Gaseous Diffusion Plant (KY.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site...

47

Non-Destructive Analysis Calibration Standards for Gaseous Diffusion...  

Broader source: Energy.gov (indexed) [DOE]

Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP)...

48

Combination free electron and gaseous laser  

DOE Patents [OSTI]

A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

49

Muon Capture in Gaseous Hydrogen  

Science Journals Connector (OSTI)

An experiment to measure the muon nuclear capture rate in ultrapure gaseous hydrogen (8 atm, 293K) has been performed using a special target in which a system of gas proportional counters, working with the pure hydrogen of the target itself, were operating. Neutrons from the capture reactions were detected using a scintillation-counter technique, and the ?-ray background was eliminated by pulse-shape discrimination. The working conditions ensured that the captures were taking place in ?p atomic systems in a singlet total-spin state. The experimental result is ?expt=65157 sec-1, which has to be compared with the theoretical rate ?s,theor=62626 sec-1. From the experimental capture rate, and within the framework of the currently accepted theory, we have obtained for the induced pseudoscalar coupling constant gp=(-7.33.7)gV. The results of the present experiment are analyzed, together with results obtained from stopping negative muons in liquid hydrogen.

A. Alberigi Quaranta; A. Bertin; G. Matone; F. Palmonari; G. Torelli; P. Dalpiaz; A. Placci; E. Zavattini

1969-01-25T23:59:59.000Z

50

Flammability of selected heat resistant alloys in oxygen gas mixtures  

SciTech Connect (OSTI)

Within recent years, the use of oxygen has increased in applications where elevated temperatures and corrosion may be significant factors. In such situations, traditional alloys used in oxygen systems will not be adequate. Where alternative alloys must be utilized, based upon environmental requirements, it is essential that they may be characterized with respect to their ignition and combustion resistance in oxygen. Promoted ignition and promoted ignition-combustion are terms which have been used to describe a situation where a substance with low oxygen supports the combustion of a compatibility ignites and more ignition resistant material. In this paper, data will be presented on the promoted ignition-combustion behavior of selected heat resistant engineering alloys that may be considered for gaseous oxygen applications in severe environments. In this investigation, alloys have been evaluated via both flowing and static (fixed volume) approaches using a rod configuration. Oxygen-nitrogen gas mixtures with compositions ranging from approximately 40 to 99.7% oxygen at pressures of 3.55 to 34.6 MPa were used in the comparative studies.

Zawierucha, R.; McIlroy, K.; Million, J.F. [Praxair, Inc., Tonawanda, NY (United States)

1995-12-31T23:59:59.000Z

51

Thermal decomposition and flammability of fire-resistant, UV/visible-sensitive polyarylates, copolymers and blends  

E-Print Network [OSTI]

Thermal decomposition and flammability of fire-resistant, UV/visible- sensitive polyarylates temperature, low notch sensitivity, and good electrical properties. Most of all, these materials show a high resistance to ignition and flame spreading without additives [6]. A high-temperature wholly aromatic poly

52

Flammable gas issues in double-contained receiver tanks. Revision 1  

SciTech Connect (OSTI)

Four double-contained receiver tanks (DCRTs) at Hanford will be used to store salt-well pumped liquids from tanks on the Flammable Gas Watch List. This document was created to serve as a technical basis or reference document for flammable gas issues in DCRTs. The document identifies, describes, evaluates, and attempts to quantify potential gas carryover and release mechanisms. It estimates several key parameters needed for these calculations, such as initial aqueous concentrations and ventilation rate, and evaluates the uncertainty in those estimates. It justifies the use of the Schumpe model for estimating vapor-liquid equilibrium constants. It identifies several potential waste compatibility issues (such as mixing and pH or temperature changes) that could lead to gas release and provides a basis for calculating their effects. It evaluates the potential for gas retention in precipitated solids within a DCRT and whether retention could lead to a buoyant displacement instability (rollover) event. It discusses rates of radiolytic, thermal, and corrosive hydrogen generation within the DCRT. It also describes in detail the accepted method of calculating the lower flammability limit (LFL) for mixtures of flammable gases.

Peurrung, L.M.; Mahoney, L.A.; Stewart, C.W.; Gauglitz, P.A.; Pederson, L.R.; Bryan, S.A.; Shepard, C.L.

1998-06-01T23:59:59.000Z

53

Flammability tests on D0 Run II muon PDT Gas and P-10 Gas  

SciTech Connect (OSTI)

The authors have done a series of measurements with mixtures of Argon, CF4 and CH4 to demonstrate that the mixture chosen for RunII (84% Argon, 8% CH4, 8% CF4) is not flammable. The tests were conducted in the Meson Detector Building in a test cell similar in construction to a cell of a Muon PDT. In order to establish the viability of the test set-up, they first repeated the demonstration that P-10 gas (90% Argon, 10% CH4) is in fact flammable, contrary to the classification by the US DOT. US DOT regulation 173.115 defines flammable gas as: (1) is ignitable (at 14.7 psi) when in a mixture of 13% or less with air; or (2) has a flammability range (at 14.7 psi) with air of at least 12% regardless of the lower explosive limit (LEL). P-10 has a LEL of about 40% and a flammability range of about 10%, so P-10 is not flammable according to the US DOT definition. The point here is that the DOT classifications are to serve the DOT's function to ensure transportation safety, and are not necessarily appropriate for other situations. The first configuration of their test cell, however, apparently failed to ignite P-10. With the guidance of Bill Nuttall of CERN, they modified their test cell to make it more like the standard flammability testing setups, with a large viewing window and a spark gap in the middle of the cell. In this second configuration P-10 was easily and reliably ignitable. After becoming more familiar with the visible indicators of combustion of P-10 (water vapor cloud formation, pressure changes and gas venting) they retested with the initial configuration, and found that the mixture actually had been burning, and that they had just missed all the indications. The data from CERN showed that P-10 burns rather slowly, with about a one second rise time for the pressure to reach the maximum of four atmospheres overpressure. In the tests they saw no signs of any flame, but only a water vapor cloud. Some preliminary tests with the same cell using Argon-Ethane and air had a much more impressive burn, with rapid venting and a red flash clearly visible.

Herman F. Haggerty; James L. Priest and Tom Marshall

2001-07-12T23:59:59.000Z

54

Independent Oversight Review, Portsmouth Gaseous Diffusion Plant November 2013  

Broader source: Energy.gov [DOE]

Review of Preparedness for Severe Natural Phenomena Events at the Portsmouth Gaseous Diffusion Plant.

55

Independent Oversight Review, Portsmouth Gaseous Diffusion Plant- January 2013  

Broader source: Energy.gov [DOE]

Review of the Portsmouth Gaseous Diffusion Plant Work Planning and Control Activities Prior to Work Execution

56

A safety assessment of rotary mode core sampling in flammable gas single shell tanks: Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This safety assessment (SA) addresses each of the required elements associated with the installation, operation, and removal of a rotary-mode core sampling (RMCS) device in flammable-gas single-shell tanks (SSTs). The RMCS operations are needed in order to retrieve waste samples from SSTs with hard layers of waste for which push-mode sampling is not adequate for sampling. In this SA, potential hazards associated with the proposed action were identified and evaluated systematically. Several potential accident cases that could result in radiological or toxicological gas releases were identified and analyzed and their consequences assessed. Administrative controls, procedures and design changes required to eliminate or reduce the potential of hazards were identified. The accidents were analyzed under nine categories, four of which were burn scenarios. In SSTS, burn accidents result in unacceptable consequences because of a potential dome collapse. The accidents in which an aboveground burn propagates into the dome space were shown to be in the ``beyond extremely unlikely`` frequency category. Given the unknown nature of the gas-release behavior in the SSTS, a number of design changes and administrative controls were implemented to achieve these low frequencies. Likewise, drill string fires and dome space fires were shown to be very low frequency accidents by taking credit for the design changes, controls, and available experimental and analytical data. However, a number of Bureau of Mines (BOM) tests must be completed before some of the burn accidents can be dismissed with high confidence. Under the category of waste fires, the possibility of igniting the entrapped gases and the waste itself were analyzed. Experiments are being conducted at the BOM to demonstrate that the drill bit is not capable of igniting the trapped gas in the waste. Laboratory testing and thermal analysis demonstrated that, under normal operating conditions, the drill bit will not create high enough temperatures to initiate a propagating reaction in the waste. However, system failure that coincides in a waste layer with high organic content and low moisture may initiate an exothermic reaction in the waste. Consequently, a conservative approach based on the current state of the knowledge resulted in limiting the drilling process to a subset of the flammable-gas tanks. Accidents from the chemical reactions and criticality category are shown to result in acceptable risk. A number of accidents are shown to potentially result in containment (tank liner) breach below the waste level. Mitigative features are provided for these accidents. Gas-release events without burn also are analyzed, and radiological and toxicological consequences are shown to be within risk guidelines. Finally, the consequences of potential spills are shown to be within the risk guidelines.

Raymond, R.E.

1996-04-15T23:59:59.000Z

57

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels  

SciTech Connect (OSTI)

Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

Gardiner, D.; Bardon, M.; Pucher, G.

2008-10-01T23:59:59.000Z

58

Laboratory flammability studies of mixtures of hydrogen, nitrous oxide, and air  

SciTech Connect (OSTI)

At the request of the Department of Energy and the Westinghouse Hanford Company, the Bureau of Mines has investigated the flammability of mixtures of hydrogen, nitrous oxide, and air. This work is relevant to the possible hazards of flammable gas generation from nuclear waste tanks at Hanford, WA. The tests were performed in a 120-L spherical chamber under both quiescent and turbulent conditions using both electric spark and pyrotechnic ignition sources. The data reported here for binary mixtures of hydrogen in air generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results clarify to a greater extent the complications associated with buoyancy, turbulence, and selective diffusion. The data reported here for ternary mixtures of hydrogen and nitrous oxide in air indicate that small additions of nitrous oxide (relative to the amount of air) have little effect, but that higher concentrations of nitrous oxide (relative to air) significantly increase the explosion hazard.

Cashdollar, K L; Hertzberg, M; Zlochower, I A; Lucci, C E; Green, G M; Thomas, R A [Bureau of Mines, Pittsburgh, PA (United States). Pittsburgh Research Center

1992-06-26T23:59:59.000Z

59

Effects of Inert Dilution and Preheating Temperature on Lean Flammability Limit of Syngas  

Science Journals Connector (OSTI)

Lean flammability limits (LFL) of syngas mixtures were measured at different levels of inert dilution and unburned gas preheating temperatures using a counter-flow flame burner. ... The syngas and air are then premixed within a mixing chamber before being injected into the counter-flow burners. ... (45) Multicomponent transport was used in the calculation to account for the Soret effect, which generally enhance the burning intensity of lean syngas flame. ...

Suhui Li; Yang Zhang; Xiaolong Qiu; Bo Li; Hai Zhang

2014-04-24T23:59:59.000Z

60

Results of gas monitoring of double-shell flammable gas watch list tanks  

SciTech Connect (OSTI)

Tanks 103-SY; 101-AW; 103-, 104-, and 105-AN are on the Flammable Gas Watch List. Recently, standard hydrogen monitoring system (SHMS) cabinets have been installed in the vent header of each of these tanks. Grab samples have been taken once per week, and a gas chromatograph was installed on tank 104-AN as a field test. The data that have been collected since gas monitoring began on these tanks are summarized in this document.

Wilkins, N.E.

1995-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Independent Activity Report, Portsmouth Gaseous Diffusion Plant - July 2011  

Broader source: Energy.gov (indexed) [DOE]

Activity Report, Portsmouth Gaseous Diffusion Plant - Activity Report, Portsmouth Gaseous Diffusion Plant - July 2011 Independent Activity Report, Portsmouth Gaseous Diffusion Plant - July 2011 July 2011 Orientation Visit to the Portsmouth Gaseous Diffusion Plant [HIAR-PAD-2011-07-27] The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and to determine how HSS can carry out its independent oversight and mission support responsibilities. Independent Activity Report, Portsmouth Gaseous Diffusion Plant - July 2011 More Documents & Publications Independent Activity Report, Portsmouth Gaseous Diffusion Plant - August 2011 Independent Activity Report, Argonne National Laboratory - August 2011

62

Equipment design guidance document for flammable gas waste storage tank new equipment  

SciTech Connect (OSTI)

This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

Smet, D.B.

1996-04-11T23:59:59.000Z

63

Pulse Combustion Characteristics of Various Gaseous Fuels  

Science Journals Connector (OSTI)

Pulse combustion performance of fuels with low and high heating values is also compared. ... Selected gaseous fuels such as low molecular weight hydrocarbons, high molecular weight hydrocarbons, biofuels, and mixed fuels are tested for pulse combustion, and their operational properties are presented and compared. ... Heat transfer data for several exptl. ...

Wu Zhonghua; Arun S. Mujumdar

2008-02-06T23:59:59.000Z

64

Independent Oversight Review, Portsmouth Gaseous Diffusion Plant- April 2013  

Broader source: Energy.gov [DOE]

Review of the Integrated Safety Management System Phase I Verification Review at the Portsmouth Gaseous Diffusion Plant

65

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

66

Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

Non-Destructive Analysis Calibration Standards for Gaseous Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning The decommissioning of Gaseous Diffusion Plant facilities requires accurate, non-destructive assay (NDA) of residual enriched uranium in facility components for safeguards and nuclear criticality safety purposes. Current practices used to perform NDA measurements frequently have poorly defined uncertainties due to multiple factors. Working reference material (WRM) standards and container-specific surrogates are required to verify and validate NDA methods used to support characterization of gaseous diffusion equipment within the D&D project. Because working reference

67

Gaseous Diffusion Plant Production Workers Needs Assessment  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Gaseous Diffusion Plants Department of Energy Gaseous Diffusion Plants Phase I: Needs Assessment Robert Wages Oil, Chemical and Atomic Inte national Union Steven Markowitz Mount Sinai School of Medicine Sylvia Kieding Oil, Chemical and Atomic International Union Mark Griffon University of Massachusetts Lowell Elizabeth Averill Samaras Alice Hamilton College October 1, 1997 TABLE OF CONTENTS Page Number Executive Summary 1 J: OVERVIEW 1. Introduction 2-3 2. Methods 3-8 3. Principal Findings 9-16 4. Need for Medical Surveillance and Risk Communication 16-17 PART II: METHODOLOGY AND RESULTS 4. Exposure Assessment Appendix A Appendix B Appendix C 5. Focus Group Results Appendix A Appendix B Appendix C 6. Epidemiology and Other Health Studies EXECUTIVE SUMMARY Purpose We report the results and analysis of a one year needs assessment study evaluating

68

Flammability issues of mixtures: If you hold a match over pure MeOH in air a fire is likely because the MeOH  

E-Print Network [OSTI]

% Methanol and up would produce a combustible vapor above its surface and if there is a source near, For Methanol: Flash point = 12.22 °C Upper Flammability Temperature = 43 °C Lower Flammability Temperature = 7 Temperature = 350 °C (Source: The Methanol Institute, Washington, DC 20006 - http://www.methanol

Sethuraman, Vijay A.

69

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect (OSTI)

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

70

Annual book of ASTM Standards 2005. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect (OSTI)

The first part covers standards for gaseous fuels. The standard part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrographic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2005-09-15T23:59:59.000Z

71

ASSESSMENT OF THE IMPACT OF TOA PARTITIONING ON DWPF MELTER OFF-GAS FLAMMABILITY  

SciTech Connect (OSTI)

An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar? L in the effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.

Daniel, G.

2013-06-18T23:59:59.000Z

72

Synergy Effects of Wood Flour and Fire Retardants in Flammability of Wood-plastic Composites  

Science Journals Connector (OSTI)

Abstract Addition of wood flour improve the mechanical properties of thermoplastics, on the other hand it increases the burning speed of the materials. To modify the flammability of wood-plastic composites(WPC), various fire retardants, such as ammonium polysphosphate (APP), melamine polyphosphate (MPP) and aluminum hydroxide were added to WPCs. Burning tests based on UL94 and cone calorimetry were conducted to evaluate a fire performance of \\{WPCs\\} with fire retardants. The addition of fire retardants could lead to self-extinguishing materials when 10 wt% of APP was used. However, in the case of pure polypropylene, addition of 10 wt% of APP did not improve the flammability. Wood flour accelerates the burning behavior of PP, but it can reduce the use of APP to achieve self-extinguishing materials. Synergy effects between wood flour and APP was confirmed. Wood flour facilitates the forming of foamed char layer by APP during the combustion. This protective char surface can reduce the heat and oxygen diffusion toward the WPCs. The effect of fire retardants of mechanical properties of \\{WPCs\\} was also investigated. Tensile strength and modulus of composites decreased with addition of fire retardants.

Toshikazu Umemura; Yoshihiko Arao; Sakae Nakamura; Yuta Tomita; Tatsuya Tanaka

2014-01-01T23:59:59.000Z

73

K-25 Gaseous Diffusion Process Building | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Operational Management » History » Manhattan Project » Signature Operational Management » History » Manhattan Project » Signature Facilities » K-25 Gaseous Diffusion Process Building K-25 Gaseous Diffusion Process Building K-25 Gaseous Diffusion Process Building The K-25 plant, located on the southwestern end of the Oak Ridge reservation, used the gaseous diffusion method to separate uranium-235 from uranium-238. Based on the well-known principle that molecules of a lighter isotope would pass through a porous barrier more readily than molecules of a heavier one, gaseous diffusion produced through myriads of repetitions a gas increasingly rich in uranium-235 as the heavier uranium-238 was separated out in a system of cascades. Although producing minute amounts of final product measured in grams, gaseous diffusion required a massive

74

Viscosity of gaseous ethyl fluoride (HFC-161)  

Science Journals Connector (OSTI)

Abstract The paper describes an improved Maxwell type oscillating-disk viscometer. The experimental system was calibrated by argon, carbon dioxide, nitrogen, hydrogen and verified by nitrogen. The viscosities of gaseous HFC-161 were measured from 293K to 369K at pressures from 0.1MPa up to the saturated vapor pressure. An empirical viscosity equation is proposed to interpolate the present experimental data as a function of density and temperature. The uncertainty of the reported viscosity was estimated to be within 1%.

Shaohua Lv; Xiaoming Zhao; Chuanqi Yao; Wei Wang; Zhikai Guo

2014-01-01T23:59:59.000Z

75

Thermal conductivity of graphene nanoribbons in noble gaseous environments  

SciTech Connect (OSTI)

We investigate the thermal conductivity of suspended graphene nanoribbons in noble gaseous environments using molecular dynamics simulations. It is reported that the thermal conductivity of perfect graphene nanoribbons decreases with the gaseous pressure. The decreasing is more obvious for the noble gas with large atomic number. However, the gaseous pressure cannot change the thermal conductivity of defective graphene nanoribbons apparently. The phonon spectra of graphene nanoribbons are also provided to give corresponding supports.

Zhong, Wei-Rong, E-mail: wrzhong@hotmail.com; Xu, Zhi-Cheng; Zheng, Dong-Qin [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn [Laboratory of Quantum Information Technology, ICMP and SPTE, South China Normal University, Guangzhou 510006 (China)

2014-02-24T23:59:59.000Z

76

DOE Issues Final Request for Proposal for Portsmouth Gaseous...  

Energy Savers [EERE]

The U.S. Department of Energy today issued a Final Request for Proposal (RFP), for the continued performance of infrastructure support services at the Portsmouth Gaseous Diffusion...

77

Pressure Relief Devices for High-Pressure Gaseous Storage Systems...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology A. Kostival, C. Rivkin, W. Buttner, and R. Burgess National Renewable Energy...

78

Elements & Compounds Atoms (Elements)  

E-Print Network [OSTI]

#12;Elements & Compounds #12;Atoms (Elements) Molecules (Compounds) Cells Elements & Compounds #12;Nucleus Electrons Cloud of negative charge (2 electrons) Fig. 2.5: Simplified model of a Helium (He) Atom He 4.002602 2 Helium Mass Number (~atomic mass) = number of Neutrons + Protons = 4 for Helium Atomic

Frey, Terry

79

Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks  

SciTech Connect (OSTI)

This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

Not Available

1990-07-01T23:59:59.000Z

80

Assessing the flammability of surface fuels beneath ornamental vegetation in wildland urban interfaces in Provence (south-eastern France)  

E-Print Network [OSTI]

characteristics according to the composition of their litter. Hierarchical cluster analysis ranked the sevenAssessing the flammability of surface fuels beneath ornamental vegetation in wildland� urbanA A Irstea UR EMAX, 3275 route de C�zanne, CS 40061, F-13182 Aix-en-Provence, cedex 5, France. B

Boyer, Edmond

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Flammability Limits of Binary Mixtures of 1,2-Ethanediol + Steam and 1,2-Propanediol + Steam  

Science Journals Connector (OSTI)

Flammability Limits of Binary Mixtures of 1,2-Ethanediol + Steam and 1,2-Propanediol + Steam ... In addition, the experimental results were compared with the estimated values based on the adiabatic flame temperature method. ... Shortly before ignition, the stirrer was turned off, and the mixture was left for 1 min to eliminate turbulence. ...

Ke Zhang; Xianyang Meng; Jiangtao Wu

2013-08-13T23:59:59.000Z

82

WAPD-SC-545 HYDROGEN FLAMMABILITY DATA AND APPLICATION TO PWR  

Office of Scientific and Technical Information (OSTI)

WAPD-SC-545 WAPD-SC-545 HYDROGEN FLAMMABILITY DATA AND APPLICATION TO PWR LOSS-OF-COOLANT ACCIDENT CONTRACT A T - I M - G E N - H BETTIS PLANT PITTSBURGH, PENNSYLVANIA Operated for the U.S. ATOMIC ENERGY COMMISSION by WESTINGHOUSE ELECTRIC CORPORATION DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,

83

Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability  

SciTech Connect (OSTI)

An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.

Daniel, W. E.

2013-02-13T23:59:59.000Z

84

Gaseous Detonation-Driven Fracture of Tubes Tong Wa Chao  

E-Print Network [OSTI]

Gaseous Detonation-Driven Fracture of Tubes Thesis by Tong Wa Chao In Partial Fulfillment An experimental investigation of fracture response of aluminum 6061-T6 tubes under internal gaseous detonation on the detonation velocity, strain history, blast pressure from the crack opening, and crack speeds. The curved

85

Gaseous-fuel safety assessment. Status report  

SciTech Connect (OSTI)

The Los Alamos National Laboratory, in support of studies sponsored by the Office of Vehicle and Engine Research and Development in the US Department of Energy, has undertaken a safety assessment of selected gaseous fuels for use in light automotive transportation. The purpose is to put into perspective the hazards of these fuels relative to present day fuels and delineated criteria for their safe handling. Fuels include compressed and liquified natural gas (CNG and LNG), liquefied petroleum gas (LPG), and for reference gasoline and diesel. This paper is a program status report. To date, physicochemical property data and general petroleum and transportation information were compiled; basic hazards defined; alternative fuels were safety-ranked based on technical properties alone; safety data and vehicle accident statistics reviewed; and accident scenarios selected for further analysis. Methodology for such analysis is presently under consideration.

Krupka, M.C.; Edeskuty, F.J.; Bartlit, J.R.; Williamson, K.D. Jr.

1982-01-01T23:59:59.000Z

86

Simulating the Gaseous Halos of Galaxies  

E-Print Network [OSTI]

Observations of local X-ray absorbers, high-velocity clouds, and distant quasar absorption line systems suggest that a significant fraction of baryons may reside in multi-phase, low-density, extended, ~100 kpc, gaseous halos around normal galaxies. We present a pair of high-resolution SPH (smoothed particle hydrodynamics) simulations that explore the nature of cool gas infall into galaxies, and the physical conditions necessary to support the type of gaseous halos that seem to be required by observations. The two simulations are identical other than their initial gas density distributions: one is initialized with a standard hot gas halo that traces the cuspy profile of the dark matter, and the other is initialized with a cored hot halo with a high central entropy, as might be expected in models with early pre-heating feedback. Galaxy formation proceeds in dramatically different fashions in these two cases. While the standard cuspy halo cools rapidly, primarily from the central region, the cored halo is quasi-stable for ~4 Gyr and eventually cools via the fragmentation and infall of clouds from ~100 kpc distances. After 10 Gyr of cooling, the standard halo's X-ray luminosity is ~100 times current limits and the resultant disk galaxy is twice as massive as the Milky Way. In contrast, the cored halo has an X-ray luminosity that is in line with observations, an extended cloud population reminiscent of the high-velocity cloud population of the Milky Way, and a disk galaxy with half the mass and ~50% more specific angular momentum than the disk formed in the low-entropy simulation. These results suggest that the distribution and character of halo gas provides an important testing ground for galaxy formation models and may be used to constrain the physics of galaxy formation.

Tobias Kaufmann; James S. Bullock; Ari Maller; Taotao Fang

2008-01-28T23:59:59.000Z

87

Enforcement Documents - Portsmouth Gaseous Diffusion Plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant Enforcement Documents - Portsmouth Gaseous Diffusion Plant March 26, 2010 Enforcement Letter, Intennech, Inc. - March 26, 2010 Enforcement Letter issued to Intermech, Inc. related to Installation and Inspection of Anchor Bolts and Pipe Supports at the DUF6 Conversion Buildings at the Portsmouth and Paducah Gaseous Diffusion Plants March 26, 2010 Enforcement Letter, Geiger Brothers Mechanical Contractors, INC - March 26, 2010 Enforcement Letter issued to Geiger Brothers Mechanical Contractors, Inc. related to Installation and Inspection of Penetration Fire Seals at the DUF6 Conversion Building at the Portsmouth Gaseous Diffusion Plant March 26, 2010 Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 Consent Order issued to Uranium Disposition Services, LLC related to

88

Orientation Visit to the Paducah Gaseous Diffusion Plant, July 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Orientation Visit to the Paducah Gaseous Diffusion Plant, July 2011 Orientation Visit to the Paducah Gaseous Diffusion Plant, July 2011 Orientation Visit to the Paducah Gaseous Diffusion Plant, July 2011 The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE Paducah Site Office (PAD) from July 25-27, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and to determine how HSS can carry out its independent oversight and mission support responsibilities. Orientation Visit to the Paducah Gaseous Diffusion Plant, July 2011 More Documents & Publications Independent Activity Report, Portsmouth Gaseous Diffusion Plant - August

89

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert  

Open Energy Info (EERE)

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Peak Geothermal Systems, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Peak Geothermal Systems, Nevada Details Activities (3) Areas (3) Regions (0) Abstract: Gaseous emissions from the landscape can be used to explore for geothermal systems, characterize their lateral extent, or map the trends of concealed geologic structures that may provide important reservoir permeability at depth. Gaseous geochemical signatures vary from system to system and utilization of a multi-gas analytical approach to exploration or characterization should enhance the survey's clarity. This paper describes

90

DOE - Office of Legacy Management -- Portsmouth Gaseous Diffusion Plant -  

Office of Legacy Management (LM)

Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant - 026 FUSRAP Considered Sites Site: Portsmouth Gaseous Diffusion Plant (026 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Portsmouth Gaseous Diffusion Plant (PGDP) is located in south central Ohio, approximately 20 miles north of Portsmouth, Ohio and 70 miles south of Columbus, Ohio. Construction of the PGDP began in late 1952 to expand the Federal Government¿s gaseous diffusion program already in place at Oak Ridge, Tennessee and Paducah, Kentucky. The facility was built to increase the production of enriched uranium at rates substantially above the other

91

Property:PotentialBiopowerGaseousGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousGeneration PotentialBiopowerGaseousGeneration Jump to: navigation, search Property Name PotentialBiopowerGaseousGeneration Property Type Quantity Description The estimated potential energy generation from gaseous biopower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialBiopowerGaseousGeneration" Showing 25 pages using this property. (previous 25) (next 25)

92

Property:PotentialBiopowerGaseousMass | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousMass PotentialBiopowerGaseousMass Jump to: navigation, search Property Name PotentialBiopowerGaseousMass Property Type Quantity Description The potential mass of gaseous biopower material for a place. Use this type to express a quantity of magnitude, or an object's resistance to acceleration. The default unit is the kilogram (kg). http://en.wikipedia.org/wiki/Kilogram Acceptable units (and their conversions) are: Kilograms - 1 kg, kilo, kilogram, kilograms, Kilogram, kilogramme, kilos Grams - 1000 g, gram, gramme, grams Tonnes - 0.001 tonnes, metric tons, Tonnes, Metric Tonnes Pounds - 2.205 lbs, pounds, pound, Pounds, Lbs Stone - 0.1575 stones, st, stone Ounces - 35.27 ounces, oz, Ounces, ounce BDT - 0.001 BDT, Bone Dry Tonnes, bdt Pages using the property "PotentialBiopowerGaseousMass"

93

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents [OSTI]

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

1984-01-01T23:59:59.000Z

94

High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures  

DOE Patents [OSTI]

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1982-07-07T23:59:59.000Z

95

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents [OSTI]

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1984-06-19T23:59:59.000Z

96

Property:PotentialBiopowerGaseousCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousCapacity PotentialBiopowerGaseousCapacity Jump to: navigation, search Property Name PotentialBiopowerGaseousCapacity Property Type Quantity Description The nameplate capacity technical potential from gaseous biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

97

Dissolved gaseous mercury behavior in shallow water estuaries  

E-Print Network [OSTI]

The formation of dissolved gaseous mercury (DGM) can be an important pathway for mercury removal from an aquatic environment. DGM evasional fluxes from an aquatic system can account for up to 95% of atmospheric Hg and its deposition pathways. While...

Landin, Charles Melchor

2009-05-15T23:59:59.000Z

98

Collision-Induced Light Scattering in Gaseous Ar and Kr  

Science Journals Connector (OSTI)

Light scattering attributable to a change in polarizability produced in colliding pairs of atoms is observed in gaseous Ar and Kr. The experimental results are qualitatively accounted for by relations between the integrated intensity and the collision-induced polarizability.

J. P. McTague and George Birnbaum

1968-09-02T23:59:59.000Z

99

ON THE PROPAGATION OF ENERGY IN A STRATIFIED GASEOUS MEDIUM  

Science Journals Connector (OSTI)

...MEDIUM Steven Rosencrans MASSACHUSETTS INSTITUTE OF TECHNOLOGY ON...STRATIFIED GASEOUS MEDIUM. | MASSACHUSETTS INSTITUTE OF TECHNOLOGY...MEDIUM* BY STEVEN ROSENCRANS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Communicated...responsible for the heating of the solar corona.6 (The top of our...

Steven Rosencrans

1965-01-01T23:59:59.000Z

100

Texas--State Offshore Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA - No Data...

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Demolition of K-31 gaseous diffusion building begins  

Broader source: Energy.gov [DOE]

OREM begins demolition of the K-31 Building at Oak Ridges East Tennessee Technology Park (ETTP), marking the removal of the fourth of five gaseous diffusion buildings at the former uranium enrichment site.

102

Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 121 116 93 1970's 79 55 70 71 75 68 61 45 64 49 1980's 41 29 40 55 61 145 234 318 272 254 1990's 300 395 604 513 513 582 603 734 732 879 2000's 586 691 566 647 634 700 794 859 1,008 1,295 2010's 4,578 8,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania Natural Gas Plant Processing

103

Energy Department Completes K-25 Gaseous Diffusion Building Demolition |  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Completes K-25 Gaseous Diffusion Building Energy Department Completes K-25 Gaseous Diffusion Building Demolition Energy Department Completes K-25 Gaseous Diffusion Building Demolition December 19, 2013 - 12:00pm Addthis K-25 Demolition - Oak Ridge 2013 K-25 Demolition - Oak Ridge 2013 Media Contacts Ben Williams, DOE, (865) 574-4912 Wayne McKinney, UCOR, (865) 576-6284 Oak Ridge, Tenn. - Today, the Department of Energy announced that its contractor URS|CH2M Oak Ridge, LLC, or UCOR, has completed demolition of the K-25 gaseous diffusion building, the largest facility in the DOE complex. UCOR took over the project in 2011 and has maintained a strong safety record while completing the demolition over one year ahead of its current schedule and approximately $300 million under the current budget. All debris removal is expected to be completed in spring 2014.

104

Dissolved gaseous mercury behavior in shallow water estuaries  

E-Print Network [OSTI]

DISSOLVED GASEOUS MERCURY BEHAVIOR IN SHALLOW WATER ESTUARIES A Thesis by CHARLES MELCHOR LANDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2007 Major Subject: Oceanography DISSOLVED GASEOUS MERCURY BEHAVIOR IN SHALLOW WATER ESTUARIES A Thesis by CHARLES MELCHOR LANDIN Submitted to the Office of Graduate Studies of Texas A...

Landin, Charles Melchor

2008-10-10T23:59:59.000Z

105

Portsmouth Gaseous Diffusion Plant- Quadrant I Groundwater Investigative (5-Unit) Area Plume  

Broader source: Energy.gov [DOE]

Groundwater Database Report - Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) Area Plume

106

Microbial production of energy: gaseous fuels  

SciTech Connect (OSTI)

Although several gaseous fuels could be derived by microbial fermentation, in the near term it will be economical to produce biomethane by anaerobic digestion of readily available heterogeneous feeds that may be obtained free or at low cost. Various wastes and biomass species grown in polluted waters are attractive feeds for commercial methane production. Biomethane could meet significant portions of the energy requirements of a number of countries. The conventional digestion-process configurations used for sewage sludge digestion were developed to ensure fail-safe maximized sludge stabilization, and are not necessarily suitable for maximized energy production. Commercial biomethane energy plants must be designed to optimize the net methane income production rate. Separate process designs are needed to effect optimized conversion of soluble, semisolid and solid feeds. Several approaches to improved process designs may be considered. The approaches include development of innovative fermentation modes, application of novel reactor designs, development of cost-effective pre/post-treatment techniques for feeds and unconverted residues, use of biostimulants, and development of new microbial strains. The last two approaches may not be feasible in the near future. In the near term, the objective of economical biomethane production at short HRT's and high loadings may be realized by applying new fermentation modes, such as two-phase digestion, and by utilizing new reactor designs, such as upflow digesters, the packed-bed reactors, plug-flow digesters, biodisc reactors, and others. The two-phase process has exhibited the highest reported methane yields from several soluble and particulate feeds and holos considerable commercialization potential. A number of new biomethanation processes have been proven feasible within the last decade by pilot- and commercial-scale application. 95 references, 14 figures, 12 tables.

Ghosh, S.

1984-02-01T23:59:59.000Z

107

Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPFs melter operation during the processing of Sludge Batch 8 (SB8). SRNLs support has been in response to technical task requests that have been made by SRRs Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPFs strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.

Edwards, T. B.

2013-03-14T23:59:59.000Z

108

The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite  

E-Print Network [OSTI]

Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... ? Flammability limit data for three actual samples of low-BTU gas obtained from an in-situ coal gasification experiment (Heffington, 1981). The HHC are higher LIST OF TABLES (Cont'd) PAGE hydrocarbons orimarily C H and C H . ----- 34 I 2 6 3 8' TABLE 5...

Gaines, William Russell

2012-06-07T23:59:59.000Z

109

Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - April  

Broader source: Energy.gov (indexed) [DOE]

April 2013 April 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - April 2013 April 2013 Review of the Integrated Safety Management System Phase I Verification Review at the Portsmouth Gaseous Diffusion Plant The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the U.S. Department of Energy (DOE) Portsmouth/Paducah Project Office (PPPO). The objective of the Independent Oversight review was to evaluate PPPO's conduct of the Integrated Safety Management System (ISMS) Phase I verification review at the Portsmouth Gaseous Diffusion Plant (PORTS). The contractor at PORTS is Fluor-Babcock & Wilcox Portsmouth (FBP). The HSS Office of Safety and Emergency Management Evaluations

110

Paducah Gaseous Diffusion Plant, Construction Worker Screening Project |  

Broader source: Energy.gov (indexed) [DOE]

Paducah Gaseous Diffusion Plant, Construction Worker Screening Paducah Gaseous Diffusion Plant, Construction Worker Screening Project Paducah Gaseous Diffusion Plant, Construction Worker Screening Project Project Name: Building Trades National Medical Screening Program Covered DOE Site: Paducah Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (888) 464-0009 Local Outreach Office: Joe Hudson 1930 North 13th Street Paducah, KY 42001 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by

111

Portsmouth Gaseous Diffusion Plant, Former Production Workers Screening  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Gaseous Diffusion Plant, Former Production Workers Portsmouth Gaseous Diffusion Plant, Former Production Workers Screening Projects Portsmouth Gaseous Diffusion Plant, Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered DOE Site: Portsmouth Worker Population Served: Production Workers Principal Investigator: Jim Frederick Co-Principal Investigator: Steven Markowitz, MD Toll-free Telephone: (888) 241-1199 Local Outreach Office: Jeanne Cisco 2288 Wakefield Mound Road Piketon, OH 45661 Website: http://www.worker-health.org/ This project is conducted by the Unitedsteel Workers in conjunction with Queens College of the City University of New York. The program is being offered as a service to both former and current workers. Free of charge, eligible workers can receive a medical exam, including chest X-ray and

112

Development of NF3 Deposit Removal Technology for the Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This paper summarizes the Battelle, Stoller, and WASTREN (BSW) team's efforts, to date, in support of the United States Department of Energy's plans to remove uranium and technetium deposits before decommissioning the Portsmouth Gaseous Diffusion Plant. The BSW team investigated nitrogen trifluoride (NF{sub 3}) as a safer yet effective alternative gaseous treatment to the chlorine trifluoride (ClF{sub 3})-elemental fluorine (F{sub 2}) treatment currently used to remove uranium and technetium deposits from the uranium enrichment cascade. Both ClF{sub 3} and F{sub 2} are highly reactive, toxic, and hazardous gases, while NF{sub 3}, although toxic [1], is no more harmful than moth balls [2]. BSW's laboratory thermo-analytical and laboratory-scale prototype studies with NF{sub 3} established that thermal NF{sub 3} can effectively remove likely and potential uranium (UO{sub 2}F{sub 2} and UF{sub 4}) and technetium deposits (a surrogate deposit material, TcO{sub 2}, and pertechnetates) by conversion to volatile compounds. Our engineering evaluations suggest that NF{sub 3}'s effectiveness could be enhanced by combining with a lesser concentration of ClF{sub 3}. BSW's and other's studies indicate compatibility with Portsmouth materials of construction (aluminum, copper, and nickel). (authors)

Scheele, R.D.; McNamara, B.K.; Rapko, B.M.; Edwards, M.K.; Kozelisky, A.E.; Daniel, R.C. [Battelle Pacific Northwest Division, PO Box 999, Battelle Blvd, Richland, Washington 99352 (United States); McSweeney, T.I.; Maharas, S.J.; Weaver, P.J.; Iwamasa, K.J. [Battelle Columbus Operations, 505 King Avenue, Columbus, Ohio 43201 (United States); Kefgen, R.B. [WASTREN, Inc., 1864 Shyville Road, Piketon, Ohio 45661 (United States)

2006-07-01T23:59:59.000Z

113

The Lattice-Boltzmann Method for Simulating Gaseous Phenomena  

E-Print Network [OSTI]

The Lattice-Boltzmann Method for Simulating Gaseous Phenomena Xiaoming Wei, Student Member, IEEE animation. We introduce the Lattice Boltzmann Model (LBM), which simulates the microscopic movement of fluid in real-time, while still maintaining highly plausible visual details. Index Terms--Lattice Boltzmann

Mueller, Klaus

114

MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1  

E-Print Network [OSTI]

2 MEASURING GASEOUS EMISSIONS FROM STORED PIG SLURRY S. Espagnol1 , L. Loyon2 , F. Guiziou2 , P to measure emissions factors of ammonia (NH3), nitrous oxide (N2O) methane (CH4) and carbon dioxide (CO2) from stored pig slurry and measured the variations of the emissions in time and space. In 2006, dynamic

Boyer, Edmond

115

Energy Department Selects Deactivation Contractor for Paducah Gaseous Diffusion Plant  

Broader source: Energy.gov [DOE]

LEXINGTON, Ky. The U.S. Department of Energy (DOE) today awarded a Task Order under the Nationwide Environmental Management ID/IQ Unrestricted Contract to Fluor Federal Services, Inc. for deactivation activities at the Paducah Gaseous Diffusion Plant (GDP) in Paducah, Kentucky, which is currently leased to the United States Enrichment Corporation (USEC).

116

THE POSSIBILITY OF PRODUCING THERMONUCLEAR REACTIONS IN A GASEOUS DISCHARGE*  

E-Print Network [OSTI]

THE POSSIBILITY OF PRODUCING THERMONUCLEAR REACTIONS IN A GASEOUS DISCHARGE* I.V. Kurchatov of the energy of thermonuclear reactions. Physicists the world over are attracted by the extraordinarily interest- ing and very difficult task of controlling thermonuclear reactiom. Investigations in this field

117

Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,127 971 1,334 1970's 1,270 1,217 1,058 878 679 567 520 367 485 1,146 1980's 553 830 831 633 618 458 463 437 811 380 1990's 445 511 416 395 425 377 340 300 495 5,462 2000's 11,377 15,454 16,477 11,430 13,697 14,308 14,662 13,097 10,846 18,354 2010's 18,405 11,221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent

118

Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,499 3,667 3,475 1970's 3,235 2,563 1,197 1,118 952 899 823 674 883 1,308 1980's 1,351 1,327 1,287 1,258 1,200 1,141 1,318 1,275 1,061 849 1990's 800 290 413 507 553 488 479 554 451 431 2000's 377 408 395 320 254 231 212 162 139 168 2010's 213 268 424 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent

119

Development of a Field Design for In Situ Gaseous Treatment of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Design for In Situ Gaseous Treatment of Sediment Based on Laboratory Column Test Data. Development of a Field Design for In Situ Gaseous Treatment of Sediment Based on...

120

Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report  

SciTech Connect (OSTI)

Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

None

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of a cold-neutron imaging detector based on thick gaseous electron multiplier  

SciTech Connect (OSTI)

We present the results of our recent studies on a cold-neutron imaging detector prototype based on THick Gaseous Electron Multiplier (THGEM). The detector consists of a thin Boron layer, for neutron-to-charged particle conversion, coupled to two THGEM electrodes in cascade for charge amplification and a position-sensitive charge-readout anode. The detector operates in Ne/(5%)CF{sub 4}, at atmospheric pressure, in a stable condition at a gain of around 10{sup 4}. Due to the geometrical structure of the detector elements (THGEM geometry and charge read-out anode), the image of detector active area shows a large inhomogeneity, corrected using a dedicated flat-filed correction algorithm. The prototype provides a detection efficiency of 5% and an effective spatial resolution of the order of 1.3 mm.

Cortesi, M. [Paul Scherrer Institut (PSI), Villigen PSI CH-5234 (Switzerland); Swiss Federal Institute of Technology (ETH), Zurich CH-8092 (Switzerland); Zboray, R.; Kaestner, A. [Paul Scherrer Institut (PSI), Villigen PSI CH-5234 (Switzerland); Prasser, H.-M. [Swiss Federal Institute of Technology (ETH), Zurich CH-8092 (Switzerland)

2013-02-15T23:59:59.000Z

122

Using ethanol for preparation of nanosized TiO2 by gaseous detonation  

Science Journals Connector (OSTI)

A method of preparing nanosized titanium dioxide by gaseous detonation by using ethanol, hydrogen, and oxygen as an explosion...

H. H. Yan; X. C. Huang; S. X. Xi

2014-03-01T23:59:59.000Z

123

if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material!  

E-Print Network [OSTI]

gas leak gas leak if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material! 1. If you discover a Gas Leak, shout and check that the nearest gas isolator switch is off. 4. Evacuate the building immediately, avoiding

Hickman, Mark

124

January 7, 2013, Department letter accepting Board Recommendation 2012-2, Hanford Tank Farms Flammable Gas Safety Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2013 7, 2013 The Honorable PeterS. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana A venue, NW, Suite 700 Washington, DC 20004 Dear Mr. Chairman: The Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board) Recommendation 2012-2, Iianford Tank Fanns Flammable Gas Safety Strategy, issued on September 28, 2012, published in the Federal Register on October 12, 20 12, and accepts the Recommendation. The Board acknowledged in its Recommendation that some improvements had been made to the specific administrative controls used for flamn1able gas monitoring, but noted that more work was needed to make the ventilation systetn a credited safety control. DOE agrees. In developing an Implementation Plan (IP), DOE will take the

125

Orientation Visit to the Portsmouth Gaseous Diffusion Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PORTS-2011-08-03 PORTS-2011-08-03 Site: Portsmouth Gaseous Diffusion Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Orientation Visit to the Portsmouth Gaseous Diffusion Plant Dates of Activity : 08/01/2011 - 08/03/2011 Report Preparer: Joseph P. Drago Activity Description/Purpose: The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE Portsmouth Site Office (PORTS) and the Portsmouth/Paducah Project Office (PPPO) in Lexington, Kentucky, from August 1-3, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's

126

Orientation Visit to the Paducah Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

PAD-2011-07-27 PAD-2011-07-27 Site: Paducah Gaseous Diffusion Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Orientation Visit to the Paducah Gaseous Diffusion Plant Dates of Activity : 07/25/2011 - 07/27/2011 Report Preparer: Joseph P. Drago Activity Description/Purpose: The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE Paducah Site Office (PAD) from July 25-27, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and to determine how HSS can carry out its independent oversight and mission

127

Orientation Visit to the Paducah Gaseous Diffusion Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PAD-2011-07-27 PAD-2011-07-27 Site: Paducah Gaseous Diffusion Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Orientation Visit to the Paducah Gaseous Diffusion Plant Dates of Activity : 07/25/2011 - 07/27/2011 Report Preparer: Joseph P. Drago Activity Description/Purpose: The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE Paducah Site Office (PAD) from July 25-27, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and to determine how HSS can carry out its independent oversight and mission

128

Federal Facility Agreement for the Paducah Gaseous Diffusion Plant Summary  

Broader source: Energy.gov (indexed) [DOE]

Federal Facility Agreement for the Paducah Gaseous Federal Facility Agreement for the Paducah Gaseous Diffusion Plant State Kentucky Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA/RCRA Scope Summary Ensure that the environmental impacts of activities at the Site are investigated and appropriate response actions are taken. Parties U.S. DOE; Kentucky Natural Resources and Environmental Protection Cabinet; U.S. EPA Date 2/01/1998 SCOPE * Ensure all releases of hazardous substances, pollutants, or contaminants are addressed to achieve comprehensive remediation of the site. * Establish a procedural framework and schedule for developing, implementing, and monitoring response actions in accordance with CERCLA, RCRA, and Kentucky Law. * Facilitate cooperation, exchange of information, and participation of the Parties and

129

Orientation Visit to the Portsmouth Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

PORTS-2011-08-03 PORTS-2011-08-03 Site: Portsmouth Gaseous Diffusion Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Orientation Visit to the Portsmouth Gaseous Diffusion Plant Dates of Activity : 08/01/2011 - 08/03/2011 Report Preparer: Joseph P. Drago Activity Description/Purpose: The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE Portsmouth Site Office (PORTS) and the Portsmouth/Paducah Project Office (PPPO) in Lexington, Kentucky, from August 1-3, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's

130

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gaseous Hydrogen Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session Name Targets/Objectives More work is needed to better define delivery target metrics Assumptions about targets for costs and energy efficiency need to be qualified Technology improvements likely to lower costs, but may not have major impact on total cost A significant impact on cost would come through permitting policy changes, e.g., use of public land Breakout Session Name Priority Barriers System Issues: need to assess delivery options in context of total system Materials: corrosion, H2 permeability Construction: welding, joining Maintenance and Operation: leak detection Pipeline Safety: odorants, flame visibility

131

A Numerical Study on Gaseous Reactions in Silane Pyrolysis  

Science Journals Connector (OSTI)

A simple gaseous reaction model involving 11 elementary reactions for 10 chemical species is proposed for silane and disilane pyrolyses at 550750 K; its appropriateness is examined by a calculation based on an one-dimensional nonsteady condition which includes gaseous reactions, diffusional transport and radical adsorptions. The calculated results show that the model can successfully explain the experimental behavior of a gas composition concerning the time lag of hydrogen molecule production as well as the temperature and pressure dependences of the saturated higher silane concentrations. The reaction model is applied to a SiH4H2N2 system; it predicts that dilution with hydrogen or the premixing of c.a. 4% of disilane is useful for obtaining a spatially uniform deposition rate in a flow-type CVD reactor.

Akimasa Yuuki; Yasuji Matsui; Kunihide Tachibana

1987-01-01T23:59:59.000Z

132

Method of producing gaseous products using a downflow reactor  

DOE Patents [OSTI]

Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

2014-09-16T23:59:59.000Z

133

Paducah Gaseous Diffusion Plant environmental report for 1992  

SciTech Connect (OSTI)

This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.

Horak, C.M. [ed.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

1993-09-01T23:59:59.000Z

134

Shipboard Measurements of Gaseous Elemental Mercury along the Coast of Central and Southern California  

E-Print Network [OSTI]

of the nearest oil refineries. In a region north of Monterey Bay known for upwelling, GEM in the air from the land to the sea. GEM and CO concentrations were positively correlated with a slope of 0

135

It's Elemental - The Element Europium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Samarium Samarium Previous Element (Samarium) The Periodic Table of Elements Next Element (Gadolinium) Gadolinium The Element Europium [Click for Isotope Data] 63 Eu Europium 151.964 Atomic Number: 63 Atomic Weight: 151.964 Melting Point: 1095 K (822°C or 1512°F) Boiling Point: 1802 K (1529°C or 2784°F) Density: 5.24 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named after the continent of Europe. Say what? Europium is pronounced as yoo-RO-pee-em. History and Uses: Europium was discovered by Eugène-Antole Demarçay, a French chemist, in 1896. Demarçay suspected that samples of a recently discovered element, samarium, were contaminated with an unknown element. He was able to produce

136

It's Elemental - The Element Potassium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium The Element Potassium [Click for Isotope Data] 19 K Potassium 39.0983 Atomic Number: 19 Atomic Weight: 39.0983 Melting Point: 336.53 K (63.38°C or 146.08°F) Boiling Point: 1032 K (759°C or 1398°F) Density: 0.89 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 1 Group Name: Alkali Metal What's in a name? From the English word potash. Potassium's chemical symbol comes from the Latin word for alkali, kalium. Say what? Potassium is pronounced as poh-TASS-ee-em. History and Uses: Although potassium is the eighth most abundant element on earth and comprises about 2.1% of the earth's crust, it is a very reactive element

137

It's Elemental - The Element Sulfur  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phosphorus Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine The Element Sulfur [Click for Isotope Data] 16 S Sulfur 32.065 Atomic Number: 16 Atomic Weight: 32.065 Melting Point: 388.36 K (115.21°C or 239.38°F) Boiling Point: 717.75 K (444.60°C or 832.28°F) Density: 2.067 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 16 Group Name: Chalcogen What's in a name? From the Sanskrit word sulvere and the Latin word sulphurium. Say what? Sulfur is pronounced as SUL-fer. History and Uses: Sulfur, the tenth most abundant element in the universe, has been known since ancient times. Sometime around 1777, Antoine Lavoisier convinced the rest of the scientific community that sulfur was an element. Sulfur is a

138

It's Elemental - The Element Magnesium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum The Element Magnesium [Click for Isotope Data] 12 Mg Magnesium 24.3050 Atomic Number: 12 Atomic Weight: 24.3050 Melting Point: 923 K (650°C or 1202°F) Boiling Point: 1363 K (1090°C or 1994°F) Density: 1.74 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 3 Group Number: 2 Group Name: Alkaline Earth Metal What's in a name? For Magnesia, a district in the region of Thessaly, Greece. Say what? Magnesium is pronounced as mag-NEE-zhi-em. History and Uses: Although it is the eighth most abundant element in the universe and the seventh most abundant element in the earth's crust, magnesium is never found free in nature. Magnesium was first isolated by Sir Humphry Davy, an

139

Isotropic collision-induced light scattering by gaseous CF4  

Science Journals Connector (OSTI)

The binary isotropic collision-induced scattering spectra of the gaseous tetrafluoromethane has been measured in absolute units in the 50150 cm-1 frequency range. Corresponding theoretical intensities taking into account multipolar polarizabilities have been calculated in a semiclassical way. From a comparison with experiment, the independent components of dipole-quadrupole and dipole-octupole polarizability tensors have been estimated. They have been compared with those previously deduced from depolarized spectrum and with recent theoretical ab initio calculations.

A. Elliasmine; J.-L. Godet; Y. Le Duff; T. Bancewicz

1997-06-01T23:59:59.000Z

140

Origin of gaseous hydrocarbons in east-central Texas groundwaters  

E-Print Network [OSTI]

increases. Calculations suggest addition of isotopically heavy carbon dioxide (as high as +10'%%do), COs probably coproduced with CH4 by acetate dissimilation. The isotopic difference in 5 C of Queen City-Sparta and Yegua-Cook Mountain gaseous.... Thermocatalytic gases form from the alteration of organic matter at an optimum temperature of about 12?C (Philippi, 1965). In general they have a 8' C values greater than -50'%%do and contain appreciable amounts of Cz+ (ethane, propane, butane, etc...

Coffman, Bryan Keith

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908 152,862 152,724 124,955 133,434 103,381 105,236 110,745 94,785 95,359 2010's 102,448 95,630 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

142

Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,351 3,244 2,705 1970's 2,330 2,013 1,912 1,581 1,921 2,879 6,665 11,494 14,641 15,686 1980's 15,933 14,540 14,182 13,537 12,829 11,129 11,644 10,876 10,483 9,886 1990's 8,317 8,103 8,093 7,012 6,371 6,328 6,399 6,147 5,938 5,945 2000's 5,322 4,502 4,230 3,838 4,199 3,708 3,277 3,094 3,921 2,334 2010's 2,943 2,465 2,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013

143

California Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) California Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,803 32,639 30,334 1970's 29,901 27,585 24,156 17,498 17,201 15,221 14,125 13,567 13,288 10,720 1980's 8,583 7,278 14,113 14,943 15,442 16,973 16,203 15,002 14,892 13,376 1990's 12,424 11,786 12,385 12,053 11,250 11,509 12,169 11,600 10,242 10,762 2000's 11,063 11,060 12,982 13,971 14,061 13,748 14,056 13,521 13,972 13,722 2010's 13,244 12,095 12,755 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

144

Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

145

New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,149 48,635 50,484 1970's 52,647 53,810 54,157 55,782 54,986 56,109 61,778 72,484 77,653 62,107 1980's 59,457 60,544 56,857 56,304 58,580 53,953 51,295 65,156 63,355 61,594 1990's 66,626 70,463 75,520 83,193 86,607 85,668 108,341 109,046 106,665 107,850 2000's 110,411 108,958 110,036 111,292 105,412 101,064 99,971 96,250 92,579 94,840 2010's 91,963 90,291 84,562 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

146

Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,126 4,546 4,058 1970's 3,405 4,152 4,114 4,674 6,210 9,620 11,944 13,507 13,094 12,606 1980's 12,651 13,427 12,962 11,314 10,771 11,913 10,441 10,195 11,589 13,340 1990's 13,178 15,822 18,149 18,658 19,612 25,225 23,362 28,851 24,365 26,423 2000's 29,105 29,195 31,952 33,650 35,821 34,782 36,317 38,180 53,590 67,607 2010's 82,637 90,801 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

147

Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 236 1970's 225 281 243 199 501 694 661 933 1,967 4,845 1980's 4,371 4,484 4,727 4,709 5,123 5,236 4,836 4,887 4,774 5,022 1990's 4,939 4,997 5,490 5,589 5,647 5,273 5,361 4,637 4,263 18,079 2000's 24,086 13,754 14,826 11,293 15,133 13,759 21,065 19,831 17,222 17,232 2010's 19,059 17,271 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

148

North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,150 5,428 4,707 1970's 4,490 3,592 3,199 2,969 2,571 2,404 2,421 2,257 2,394 2,986 1980's 3,677 5,008 5,602 7,171 7,860 8,420 6,956 7,859 6,945 6,133 1990's 6,444 6,342 6,055 5,924 5,671 5,327 4,937 5,076 5,481 5,804 2000's 6,021 6,168 5,996 5,818 6,233 6,858 7,254 7,438 7,878 10,140 2010's 11,381 14,182 26,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

149

Onsite Gaseous Centrifuge Enrichment Plant UF6 Cylinder Destructive Analysis  

SciTech Connect (OSTI)

The IAEA safeguards approach for gaseous centrifuge enrichment plants (GCEPs) includes measurements of gross, partial, and bias defects in a statistical sampling plan. These safeguard methods consist principally of mass and enrichment nondestructive assay (NDA) verification. Destructive assay (DA) samples are collected from a limited number of cylinders for high precision offsite mass spectrometer analysis. DA is typically used to quantify bias defects in the GCEP material balance. Under current safeguards measures, the operator collects a DA sample from a sample tap following homogenization. The sample is collected in a small UF6 sample bottle, then sealed and shipped under IAEA chain of custody to an offsite analytical laboratory. Current practice is expensive and resource intensive. We propose a new and novel approach for performing onsite gaseous UF6 DA analysis that provides rapid and accurate assessment of enrichment bias defects. DA samples are collected using a custom sampling device attached to a conventional sample tap. A few micrograms of gaseous UF6 is chemically adsorbed onto a sampling coupon in a matter of minutes. The collected DA sample is then analyzed onsite using Laser Ablation Absorption Ratio Spectrometry-Destructive Assay (LAARS-DA). DA results are determined in a matter of minutes at sufficient accuracy to support reliable bias defect conclusions, while greatly reducing DA sample volume, analysis time, and cost.

Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy) [Amy; Carter, Jennifer C.; McNamara, Bruce K.; O'Hara, Matthew J.; Phillips, Jon R.; Curtis, Michael M.

2012-07-17T23:59:59.000Z

150

Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 433,684 457,117 447,325 1970's 466,016 448,288 470,105 466,143 448,993 435,571 428,635 421,110 393,819 352,650 1980's 350,312 345,262 356,406 375,849 393,873 383,719 384,693 364,477 357,756 343,233 1990's 342,186 353,737 374,126 385,063 381,020 381,712 398,442 391,174 388,011 372,566 2000's 380,535 355,860 360,535 332,405 360,110 355,589 373,350 387,349 401,503 424,042 2010's 433,622 481,308 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

151

It's Elemental - The Element Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen The Element Nitrogen [Click for Isotope Data] 7 N Nitrogen 14.0067 Atomic Number: 7 Atomic Weight: 14.0067 Melting Point: 63.15 K (-210.00°C or -346.00°F) Boiling Point: 77.36 K (-195.79°C or -320.44°F) Density: 0.0012506 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words nitron and genes, which together mean "saltpetre forming." Say what? Nitrogen is pronounced as NYE-treh-gen. History and Uses: Nitrogen was discovered by the Scottish physician Daniel Rutherford in 1772. It is the fifth most abundant element in the universe and makes up

152

It's Elemental - The Element Sodium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium The Element Sodium [Click for Isotope Data] 11 Na Sodium 22.98976928 Atomic Number: 11 Atomic Weight: 22.98976928 Melting Point: 370.95 K (97.80°C or 208.04°F) Boiling Point: 1156 K (883°C or 1621°F) Density: 0.97 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 3 Group Number: 1 Group Name: Alkali Metal What's in a name? From the English word soda and from the Medieval Latin word sodanum, which means "headache remedy." Sodium's chemical symbol comes from the Latin word for sodium carbonate, natrium. Say what? Sodium is pronounced as SO-dee-em. History and Uses: Although sodium is the sixth most abundant element on earth and comprises

153

It's Elemental - The Element Francium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium The Element Francium [Click for Isotope Data] 87 Fr Francium 223 Atomic Number: 87 Atomic Weight: 223 Melting Point: 300 K (27°C or 81°F) Boiling Point: Unknown Density: Unknown Phase at Room Temperature: Solid Element Classification: Metal Period Number: 7 Group Number: 1 Group Name: Alkali Metal Radioactive What's in a name? Named for the country of France. Say what? Francium is pronounced as FRAN-see-em. History and Uses: Francium was discovered by Marguerite Catherine Perey, a French chemist, in 1939 while analyzing actinium's decay sequence. Although considered a natural element, scientists estimate that there is no more than one ounce of francium in the earth's crust at one time. Since there is so little

154

It's Elemental - The Element Phosphorus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur The Element Phosphorus [Click for Isotope Data] 15 P Phosphorus 30.973762 Atomic Number: 15 Atomic Weight: 30.973762 Melting Point: 317.30 K (44.15°C or 111.47°F) Boiling Point: 553.65 K (280.5°C or 536.9°F) Density: 1.82 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek word for light bearing, phosphoros. Say what? Phosphorus is pronounced as FOS-fer-es. History and Uses: In what is perhaps the most disgusting method of discovering an element, phosphorus was first isolated in 1669 by Hennig Brand, a German physician and alchemist, by boiling, filtering and otherwise processing as many as 60

155

It's Elemental - The Element Cerium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lanthanum Lanthanum Previous Element (Lanthanum) The Periodic Table of Elements Next Element (Praseodymium) Praseodymium The Element Cerium [Click for Isotope Data] 58 Ce Cerium 140.116 Atomic Number: 58 Atomic Weight: 140.116 Melting Point: 1071 K (798°C or 1468°F) Boiling Point: 3697 K (3424°C or 6195°F) Density: 6.770 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named for the asteroid Ceres. Say what? Cerium is pronounced as SER-ee-em. History and Uses: Cerium was discovered by Jöns Jacob Berzelius and Wilhelm von Hisinger, Swedish chemists, and independently by Martin Heinrich Klaproth, a German chemist, in 1803. Cerium is the most abundant of the rare earth elements

156

It's Elemental - The Element Indium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cadmium Cadmium Previous Element (Cadmium) The Periodic Table of Elements Next Element (Tin) Tin The Element Indium [Click for Isotope Data] 49 In Indium 114.818 Atomic Number: 49 Atomic Weight: 114.818 Melting Point: 429.75 K (156.60°C or 313.88°F) Boiling Point: 2345 K (2072°C or 3762°F) Density: 7.31 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 13 Group Name: none What's in a name? Named after the bright indigo line in its spectrum. Say what? Indium is pronounced as IN-dee-em. History and Uses: Indium was discovered by the German chemists Ferdinand Reich and Hieronymus Theodor Richter in 1863. Reich and Richter had been looking for traces of the element thallium in samples of zinc ores. A brilliant indigo line in

157

It's Elemental - The Element Neon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium The Element Neon [Click for Isotope Data] 10 Ne Neon 20.1797 Atomic Number: 10 Atomic Weight: 20.1797 Melting Point: 24.56 K (-248.59°C or -415.46°F) Boiling Point: 27.07 K (-246.08°C or -410.94°F) Density: 0.0008999 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 18 Group Name: Noble Gas What's in a name? From the Greek word for new, neos. Say what? Neon is pronounced as NEE-on. History and Uses: Neon was discovered by Sir William Ramsay, a Scottish chemist, and Morris M. Travers, an English chemist, shortly after their discovery of the element krypton in 1898. Like krypton, neon was discovered through the

158

It's Elemental - The Element Technetium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molybdenum Molybdenum Previous Element (Molybdenum) The Periodic Table of Elements Next Element (Ruthenium) Ruthenium The Element Technetium [Click for Isotope Data] 43 Tc Technetium 98 Atomic Number: 43 Atomic Weight: 98 Melting Point: 2430 K (2157°C or 3915°F) Boiling Point: 4538 K (4265°C or 7709°F) Density: 11 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 7 Group Name: none Radioactive and Artificially Produced What's in a name? From the Greek word for artificial, technetos. Say what? Technetium is pronounced as tek-NEE-she-em. History and Uses: Technetium was the first artificially produced element. It was isolated by Carlo Perrier and Emilio Segrè in 1937. Technetium was created by bombarding molybdenum atoms with deuterons that had been accelerated by a

159

It's Elemental - The Element Cobalt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iron Iron Previous Element (Iron) The Periodic Table of Elements Next Element (Nickel) Nickel The Element Cobalt [Click for Isotope Data] 27 Co Cobalt 58.933195 Atomic Number: 27 Atomic Weight: 58.933195 Melting Point: 1768 K (1495°C or 2723°F) Boiling Point: 3200 K (2927°C or 5301°F) Density: 8.86 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 9 Group Name: none What's in a name? From the German word for goblin or evil spirit, kobald and the Greek word for mine, cobalos. Say what? Cobalt is pronounced as KO-bolt. History and Uses: Cobalt was discovered by Georg Brandt, a Swedish chemist, in 1739. Brandt was attempting to prove that the ability of certain minerals to color glass blue was due to an unknown element and not to bismuth, as was commonly

160

It's Elemental - The Element Bromine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Selenium Selenium Previous Element (Selenium) The Periodic Table of Elements Next Element (Krypton) Krypton The Element Bromine [Click for Isotope Data] 35 Br Bromine 79.904 Atomic Number: 35 Atomic Weight: 79.904 Melting Point: 265.95 K (-7.2°C or 19.0°F) Boiling Point: 331.95 K (58.8°C or 137.8°F) Density: 3.11 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Non-metal Period Number: 4 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for stench, bromos. Say what? Bromine is pronounced as BRO-meen. History and Uses: The only nonmetallic element that is a liquid at normal room temperatures, bromine was produced by Carl Löwig, a young chemistry student, the summer before starting his freshman year at Heidelberg. When he showed his

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

It's Elemental - The Element Oxygen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine The Element Oxygen [Click for Isotope Data] 8 O Oxygen 15.9994 Atomic Number: 8 Atomic Weight: 15.9994 Melting Point: 54.36 K (-218.79°C or -361.82°F) Boiling Point: 90.20 K (-182.95°C or -297.31°F) Density: 0.001429 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 16 Group Name: Chalcogen What's in a name? From the greek words oxys and genes, which together mean "acid forming." Say what? Oxygen is pronounced as OK-si-jen. History and Uses: Oxygen had been produced by several chemists prior to its discovery in 1774, but they failed to recognize it as a distinct element. Joseph

162

It's Elemental - The Element Manganese  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chromium Chromium Previous Element (Chromium) The Periodic Table of Elements Next Element (Iron) Iron The Element Manganese [Click for Isotope Data] 25 Mn Manganese 54.938045 Atomic Number: 25 Atomic Weight: 54.938045 Melting Point: 1519 K (1246°C or 2275°F) Boiling Point: 2334 K (2061°C or 3742°F) Density: 7.3 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 7 Group Name: none What's in a name? From the Latin word for magnet, magnes. Say what? Manganese is pronounced as MAN-ge-nees. History and Uses: Proposed to be an element by Carl Wilhelm Scheele in 1774, manganese was discovered by Johan Gottlieb Gahn, a Swedish chemist, by heating the mineral pyrolusite (MnO2) in the presence of charcoal later that year.

163

It's Elemental - The Element Titanium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scandium Scandium Previous Element (Scandium) The Periodic Table of Elements Next Element (Vanadium) Vanadium The Element Titanium [Click for Isotope Data] 22 Ti Titanium 47.867 Atomic Number: 22 Atomic Weight: 47.867 Melting Point: 1941 K (1668°C or 3034°F) Boiling Point: 3560 K (3287°C or 5949°F) Density: 4.5 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 4 Group Name: none What's in a name? From the Greek word Titans, the mythological "first sons of the Earth." Say what? Titanium is pronounced as tie-TAY-nee-em. History and Uses: Titanium was discovered in 1791 by the Reverend William Gregor, an English pastor. Pure titanium was first produced by Matthew A. Hunter, an American metallurgist, in 1910. Titanium is the ninth most abundant element in the

164

It's Elemental - The Element Astatine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Polonium Polonium Previous Element (Polonium) The Periodic Table of Elements Next Element (Radon) Radon The Element Astatine [Click for Isotope Data] 85 At Astatine 210 Atomic Number: 85 Atomic Weight: 210 Melting Point: 575 K (302°C or 576°F) Boiling Point: Unknown Density: about 7 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 6 Group Number: 17 Group Name: Halogen Radioactive What's in a name? From the Greek word for unstable, astatos. Say what? Astatine is pronounced as AS-teh-teen or as AS-teh-ten. History and Uses: Astatine was produced by Dale R. Carson, K.R. MacKenzie and Emilio Segrè by bombarding an isotope of bismuth, bismuth-209, with alpha particles that had been accelerated in a device called a cyclotron. This created

165

It's Elemental - The Element Copper  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc The Element Copper [Click for Isotope Data] 29 Cu Copper 63.546 Atomic Number: 29 Atomic Weight: 63.546 Melting Point: 1357.77 K (1084.62°C or 1984.32°F) Boiling Point: 2835 K (2562°C or 4644°F) Density: 8.933 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 11 Group Name: none What's in a name? From the Latin word cuprum, which means "from the island of Cyprus." Say what? Copper is pronounced as KOP-er. History and Uses: Archaeological evidence suggests that people have been using copper for at least 11,000 years. Relatively easy to mine and refine, people discovered methods for extracting copper from its ores at least 7,000 years ago. The

166

It's Elemental - The Element Gadolinium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Europium Europium Previous Element (Europium) The Periodic Table of Elements Next Element (Terbium) Terbium The Element Gadolinium [Click for Isotope Data] 64 Gd Gadolinium 157.25 Atomic Number: 64 Atomic Weight: 157.25 Melting Point: 1586 K (1313°C or 2395°F) Boiling Point: 3546 K (3273°C or 5923°F) Density: 7.90 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named for the mineral gadolinite which was named after Johan Gadolin, a Finnish chemist. Say what? Gadolinium is pronounced as GAD-oh-LIN-ee-em. History and Uses: Spectroscopic evidence for the existence of gadolinium was first observed by the Swiss chemist Jean Charles Galissard de Marignac in the minerals

167

It's Elemental - The Element Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gold Gold Previous Element (Gold) The Periodic Table of Elements Next Element (Thallium) Thallium The Element Mercury [Click for Isotope Data] 80 Hg Mercury 200.59 Atomic Number: 80 Atomic Weight: 200.59 Melting Point: 234.32 K (-38.83°C or -37.89°F) Boiling Point: 629.88 K (356.73°C or 674.11°F) Density: 13.5336 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Metal Period Number: 6 Group Number: 12 Group Name: none What's in a name? Named after the planet Mercury. Mercury's chemical symbol comes from the Greek word hydrargyrum, which means "liquid silver." Say what? Mercury is pronounced as MER-kyoo-ree. History and Uses: Mercury was known to the ancient Chinese and Hindus and has been found in 3500 year old Egyptian tombs. Mercury is not usually found free in nature

168

It's Elemental - The Element Hafnium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lutetium Lutetium Previous Element (Lutetium) The Periodic Table of Elements Next Element (Tantalum) Tantalum The Element Hafnium [Click for Isotope Data] 72 Hf Hafnium 178.49 Atomic Number: 72 Atomic Weight: 178.49 Melting Point: 2506 K (2233°C or 4051°F) Boiling Point: 4876 K (4603°C or 8317°F) Density: 13.3 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 4 Group Name: none What's in a name? From the Latin word for the city of Copenhagen, Hafnia. Say what? Hafnium is pronounced as HAF-neeem. History and Uses: Hafnium was discovered by Dirk Coster, a Danish chemist, and Charles de Hevesy, a Hungarian chemist, in 1923. They used a method known as X-ray spectroscopy to study the arrangement of the outer electrons of atoms in

169

It's Elemental - The Element Boron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon The Element Boron [Click for Isotope Data] 5 B Boron 10.811 Atomic Number: 5 Atomic Weight: 10.811 Melting Point: 2348 K (2075°C or 3767°F) Boiling Point: 4273 K (4000°C or 7232°F) Density: 2.37 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 2 Group Number: 13 Group Name: none What's in a name? From the Arabic word Buraq and the Persian word Burah, which are both words for the material "borax." Say what? Boron is pronounced as BO-ron. History and Uses: Boron was discovered by Joseph-Louis Gay-Lussac and Louis-Jaques Thénard, French chemists, and independently by Sir Humphry Davy, an English chemist,

170

It's Elemental - The Element Thorium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Actinium Actinium Previous Element (Actinium) The Periodic Table of Elements Next Element (Protactinium) Protactinium The Element Thorium [Click for Isotope Data] 90 Th Thorium 232.03806 Atomic Number: 90 Atomic Weight: 232.03806 Melting Point: 2023 K (1750°C or 3182°F) Boiling Point: 5061 K (4788°C or 8650°F) Density: 11.72 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 7 Group Number: none Group Name: Actinide Radioactive What's in a name? Named for the Scandinavian god of war, Thor. Say what? Thorium is pronounced as THOR-ee-em or as THO-ree-em. History and Uses: Thorium was discovered by Jöns Jacob Berzelius, a Swedish chemist, in 1828. He discovered it in a sample of a mineral that was given to him by the Reverend Has Morten Thrane Esmark, who suspected that it contained an

171

It's Elemental - The Element Chromium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium Vanadium Previous Element (Vanadium) The Periodic Table of Elements Next Element (Manganese) Manganese The Element Chromium [Click for Isotope Data] 24 Cr Chromium 51.9961 Atomic Number: 24 Atomic Weight: 51.9961 Melting Point: 2180 K (1907°C or 3465°F) Boiling Point: 2944 K (2671°C or 4840°F) Density: 7.15 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 6 Group Name: none What's in a name? From the Greek word for color, chroma. Say what? Chromium is pronounced as KROH-mee-em. History and Uses: Chromium was discovered by Louis-Nicholas Vauquelin while experimenting with a material known as Siberian red lead, also known as the mineral crocoite (PbCrO4), in 1797. He produced chromium oxide (CrO3) by mixing

172

It's Elemental - The Element Iron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manganese Manganese Previous Element (Manganese) The Periodic Table of Elements Next Element (Cobalt) Cobalt The Element Iron [Click for Isotope Data] 26 Fe Iron 55.845 Atomic Number: 26 Atomic Weight: 55.845 Melting Point: 1811 K (1538°C or 2800°F) Boiling Point: 3134 K (2861°C or 5182°F) Density: 7.874 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 8 Group Name: none What's in a name? From the Anglo-Saxon word iron. Iron's chemical symbol comes from the Latin word for iron, ferrum. Say what? Iron is pronounced as EYE-ern. History and Uses: Archaeological evidence suggests that people have been using iron for at least 5000 years. Iron is the cheapest and one of the most abundant of all metals, comprising nearly 5.6% of the earth's crust and nearly all of the

173

It's Elemental - The Element Molybdenum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Niobium Niobium Previous Element (Niobium) The Periodic Table of Elements Next Element (Technetium) Technetium The Element Molybdenum [Click for Isotope Data] 42 Mo Molybdenum 95.96 Atomic Number: 42 Atomic Weight: 95.96 Melting Point: 2896 K (2623°C or 4753°F) Boiling Point: 4912 K (4639°C or 8382°F) Density: 10.2 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 6 Group Name: none What's in a name? From the Greek word for lead, molybdos. Say what? Molybdenum is pronounced as meh-LIB-deh-nem. History and Uses: Molybdenum was discovered by Carl Welhelm Scheele, a Swedish chemist, in 1778 in a mineral known as molybdenite (MoS2) which had been confused as a lead compound. Molybdenum was isolated by Peter Jacob Hjelm in 1781. Today,

174

It's Elemental - The Element Cesium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Xenon Xenon Previous Element (Xenon) The Periodic Table of Elements Next Element (Barium) Barium The Element Cesium [Click for Isotope Data] 55 Cs Cesium 132.9054519 Atomic Number: 55 Atomic Weight: 132.9054519 Melting Point: 301.59 K (28.44°C or 83.19°F) Boiling Point: 944 K (671°C or 1240°F) Density: 1.93 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 1 Group Name: Alkali Metal What's in a name? From the Latin word for sky blue, caesius. Say what? Cesium is pronounced as SEE-zee-em. History and Uses: Cesium was discovered by Robert Wilhelm Bunsen and Gustav Robert Kirchhoff, German chemists, in 1860 through the spectroscopic analysis of Durkheim mineral water. They named cesium after the blue lines they observed in its

175

It's Elemental - The Element Iridium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Osmium Osmium Previous Element (Osmium) The Periodic Table of Elements Next Element (Platinum) Platinum The Element Iridium [Click for Isotope Data] 77 Ir Iridium 192.217 Atomic Number: 77 Atomic Weight: 192.217 Melting Point: 2719 K (2446°C or 4435°F) Boiling Point: 4701 K (4428°C or 8002°F) Density: 22.42 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 9 Group Name: none What's in a name? From the Latin word for rainbow, iris. Say what? Iridium is pronounced as i-RID-ee-em. History and Uses: Iridium and osmium were discovered at the same time by the British chemist Smithson Tennant in 1803. Iridium and osmium were identified in the black residue remaining after dissolving platinum ore with aqua regia, a mixture

176

It's Elemental - The Element Platinum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iridium Iridium Previous Element (Iridium) The Periodic Table of Elements Next Element (Gold) Gold The Element Platinum [Click for Isotope Data] 78 Pt Platinum 195.084 Atomic Number: 78 Atomic Weight: 195.084 Melting Point: 2041.55 K (1768.4°C or 3215.1°F) Boiling Point: 4098 K (3825°C or 6917°F) Density: 21.46 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 10 Group Name: none What's in a name? From the Spainsh word for silver, platina. Say what? Platinum is pronounced as PLAT-en-em. History and Uses: Used by the pre-Columbian Indians of South America, platinum wasn't noticed by western scientists until 1735. Platinum can occur free in nature and is sometimes found in deposits of gold-bearing sands, primarily those found in

177

It's Elemental - The Element Arsenic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Germanium Germanium Previous Element (Germanium) The Periodic Table of Elements Next Element (Selenium) Selenium The Element Arsenic [Click for Isotope Data] 33 As Arsenic 74.92160 Atomic Number: 33 Atomic Weight: 74.92160 Melting Point: 1090 K (817°C or 1503°F) Boiling Point: 887 K (614°C or 1137°F) Density: 5.776 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 4 Group Number: 15 Group Name: Pnictogen What's in a name? From the Latin word arsenicum, the Greek word arsenikon and the Arabic word Az-zernikh. Say what? Arsenic is pronounced as AR-s'n-ik. History and Uses: Although arsenic compounds were mined by the early Chinese, Greek and Egyptian civilizations, it is believed that arsenic itself was first identified by Albertus Magnus, a German alchemist, in 1250. Arsenic occurs

178

It's Elemental - The Element Barium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cesium Cesium Previous Element (Cesium) The Periodic Table of Elements Next Element (Lanthanum) Lanthanum The Element Barium [Click for Isotope Data] 56 Ba Barium 137.327 Atomic Number: 56 Atomic Weight: 137.327 Melting Point: 1000 K (727°C or 1341°F) Boiling Point: 2170 K (1897°C or 3447°F) Density: 3.62 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 2 Group Name: Alkaline Earth Metal What's in a name? From the Greek word for heavy, barys. Say what? Barium is pronounced as BAR-ee-em. History and Uses: Barium was first isolated by Sir Humphry Davy, an English chemist, in 1808 through the electrolysis of molten baryta (BaO). Barium is never found free in nature since it reacts with oxygen in the air, forming barium oxide

179

It's Elemental - The Element Gold  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Platinum Platinum Previous Element (Platinum) The Periodic Table of Elements Next Element (Mercury) Mercury The Element Gold [Click for Isotope Data] 79 Au Gold 196.966569 Atomic Number: 79 Atomic Weight: 196.966569 Melting Point: 1337.33 K (1064.18°C or 1947.52°F) Boiling Point: 3129 K (2856°C or 5173°F) Density: 19.282 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 11 Group Name: none What's in a name? From the Sanskrit word Jval and the Anglo-Saxon word gold. Gold's chemical symbol comes from the the latin word for gold, aurum. Say what? Gold is pronounced as GOLD. History and Uses: An attractive and highly valued metal, gold has been known for at least 5500 years. Gold is sometimes found free in nature but it is usually found

180

It's Elemental - The Element Rhenium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium The Element Rhenium [Click for Isotope Data] 75 Re Rhenium 186.207 Atomic Number: 75 Atomic Weight: 186.207 Melting Point: 3459 K (3186°C or 5767°F) Boiling Point: 5869 K (5596°C or 10105°F) Density: 20.8 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 7 Group Name: none What's in a name? From the Latin word for the Rhine River, Rhenus. Say what? Rhenium is pronounced as REE-nee-em. History and Uses: Rhenium was discovered by the German chemists Ida Tacke-Noddack, Walter Noddack and Otto Carl Berg in 1925. They detected rhenium spectroscopically in platinum ores and in the minerals columbite ((Fe, Mn, Mg)(Nb, Ta)2O6),

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

It's Elemental - The Element Osmium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rhenium Rhenium Previous Element (Rhenium) The Periodic Table of Elements Next Element (Iridium) Iridium The Element Osmium [Click for Isotope Data] 76 Os Osmium 190.23 Atomic Number: 76 Atomic Weight: 190.23 Melting Point: 3306 K (3033°C or 5491°F) Boiling Point: 5285 K (5012°C or 9054°F) Density: 22.57 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 8 Group Name: none What's in a name? From the Greek word for a smell, osme. Say what? Osmium is pronounced as OZ-mee-em. History and Uses: Osmium and iridium were discovered at the same time by the British chemist Smithson Tennant in 1803. Osmium and iridium were identified in the black residue remaining after dissolving platinum ore with aqua regia, a mixture

182

It's Elemental - The Element Antimony  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tin Tin Previous Element (Tin) The Periodic Table of Elements Next Element (Tellurium) Tellurium The Element Antimony [Click for Isotope Data] 51 Sb Antimony 121.760 Atomic Number: 51 Atomic Weight: 121.760 Melting Point: 903.78 K (630.63°C or 1167.13°F) Boiling Point: 1860 K (1587°C or 2889°F) Density: 6.685 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 5 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words anti and monos, which together mean "not alone." Antimony's chemical symbol comes from its historic name, Stibium. Say what? Antimony is pronounced as AN-the-MOH-nee. History and Uses: Antimony has been known since ancient times. It is sometimes found free in nature, but is usually obtained from the ores stibnite (Sb2S3) and

183

Modified gaseous atmospheres for storage of beef, lamb and pork  

E-Print Network [OSTI]

MODIFIED G'~. ' . . OUS ATMOSPHERI. S FOR STORAGE OI REEF, I. PMB AND PORK A Thesis by GEORGE THEODORE DAVIS I II Submitted to thc. graduate college of Texas AsM University in partial fulfillment of the rec, u. 'rement fox the degree... of MASTER OF SCIENCE December ' 1979 Major Subject: Animal "" ience MODIF1ED GASEOUS ATMOSPHERES FOR STORAGE OF BEEFi LAMB AND PORK A Thesis GEORGE THEODORE DAVIS III Approved as to style and content. by (Co Chairman of ommittee) (Member) (Member...

Davis, George Theodore

1979-01-01T23:59:59.000Z

184

Ionization and scintillation of nuclear recoils in gaseous xenon  

E-Print Network [OSTI]

Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $\\alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

J. Renner; V. M. Gehman; A. Goldschmidt; H. S. Matis; T. Miller; Y. Nakajima; D. Nygren; C. A. B. Oliveira; D. Shuman; V. lvarez; F. I. G. Borges; S. Crcel; J. Castel; S. Cebrin; A. Cervera; C. A. N. Conde; T. Dafni; T. H. V. T. Dias; J. Daz; R. Esteve; P. Evtoukhovitch; L. M. P. Fernandes; P. Ferrario; A. L. Ferreira; E. D. C. Freitas; A. Gil; H. Gmez; J. J. Gmez-Cadenas; D. Gonzlez-Daz; R. M. Gutirrez; J. Hauptman; J. A. Hernando Morata; D. C. Herrera; F. J. Iguaz; I. G. Irastorza; M. A. Jinete; L. Labarga; A. Laing; I. Liubarsky; J. A. M. Lopes; D. Lorca; M. Losada; G. Luzn; A. Mar; J. Martn-Albo; A. Martnez; A. Moiseenko; F. Monrabal; M. Monserrate; C. M. B. Monteiro; F. J. Mora; L. M. Moutinho; J. Muoz Vidal; H. Natal da Luz; G. Navarro; M. Nebot-Guinot; R. Palma; J. Prez; J. L. Prez Aparicio; L. Ripoll; A. Rodrguez; J. Rodrguez; F. P. Santos; J. M. F. dos Santos; L. Segu; L. Serra; A. Simn; C. Sofka; M. Sorel; J. F. Toledo; A. Toms; J. Torrent; Z. Tsamalaidze; J. F. C. A. Veloso; J. A. Villar; R. C. Webb; J. White; N. Yahlali

2014-09-09T23:59:59.000Z

185

Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production  

DOE Patents [OSTI]

A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

Jujasz, Albert J. (North Olmsted, OH); Burkhart, James A. (Olmsted Falls, OH); Greenberg, Ralph (New York, NY)

1988-01-01T23:59:59.000Z

186

EA-1927: Conveyance of Land and Facilities at the Paducah Gaseous...  

Energy Savers [EERE]

EA-1927: Conveyance of Land and Facilities at the Paducah Gaseous Diffusion Plant for Economic Development Purposes, Paducah, Kentucky EA-1927: Conveyance of Land and Facilities at...

187

Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant- March 2012  

Broader source: Energy.gov [DOE]

Evaluation to determine whether the Infrastructure Support Contract Paducah Gaseous Diffusion Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

188

Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant- May 2013  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Infrastructure Support Contract Paducah Gaseous Diffusion Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

189

A new technology for producing synthetic liquid hydrocarbons from gaseous hydrocarbons  

Science Journals Connector (OSTI)

Conventional technologies of synthetic liquid fuels (SLF) production from gaseous hydrocarbons by producing synthesis ... liquid hydrocarbons are examined. A high-efficiency SLF production technology that allows ...

D. L. Astanovskii; L. Z. Astanovskii; A. L. Lapidus

2012-09-01T23:59:59.000Z

190

Liquid and gaseous waste operations section. Annual operating report CY 1997  

SciTech Connect (OSTI)

This document presents information on the liquid and gaseous wastes operations section for calendar year 1997. Operating activities, upgrade activities, and maintenance activities are described.

Maddox, J.J.; Scott, C.B.

1998-03-01T23:59:59.000Z

191

Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous...  

Broader source: Energy.gov (indexed) [DOE]

at the Paducah Gaseous Diffusion Plant More Documents & Publications Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned Natural Phenomena Hazards (NPH) Workshop...

192

E-Print Network 3.0 - absorbing gaseous medium Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Elperin, Tov - Department of Mechanical Engineering, Ben-Gurion University Collection: Engineering 3 Extending the Photon Mapping Method for Realistic Rendering of Hot Gaseous...

193

Mevva ion source operated in purely gaseous mode  

SciTech Connect (OSTI)

We have operated a vacuum arc ion source in such a way as to form beams of purely gaseous ions. The vacuum arc configuration that is conventionally used to produce intense beams of metal ions was altered so as to form gaseous ion beams, with only minimal changes to the external circuitry and no changes at all internally to the ion source. In our experiments we formed beams from oxygen (O{sup +} and O{sub 2}{sup +}), nitrogen (N{sup +} and N{sub 2}{sup +}), argon (Ar{sup +}) and carbon dioxide (C{sup +}, CO{sub 2}{sup +}, O{sup +} and O{sub 2}{sup +}) at extraction voltage of 2 to 50 kV. We used a pulsed mode of operation, with beam pulses approximately 50 milliseconds long and repetition rate 10 pulses per second, for a duty cycle of about 50%. Downstream ion beam current as measured by a 5 cm diameter Faraday cup was typically 0.5 mA pulse or about 250 {micro}A time averaged. This time averaged beam current is very similar to that obtained for metal ions when the source is operated in the usual vacuum arc mode. Here we describe the modifications made to the source and the results of our investigations.

Yushkov, G.Y.; MacGill, R.A.; Brown, I. G.

2003-03-27T23:59:59.000Z

194

Gridless, very low energy, high-current, gaseous ion source  

SciTech Connect (OSTI)

We have made and tested a very low energy gaseous ion source in which the plasma is established by a gaseous discharge with electron injection in an axially diverging magnetic field. A constricted arc with hidden cathode spot is used as the electron emitter (first stage of the discharge). The electron flux so formed is filtered by a judiciously shaped electrode to remove macroparticles (cathode debris from the cathode spot) from the cathode material as well as atoms and ions. The anode of the emitter discharge is a mesh, which also serves as cathode of the second stage of the discharge, providing a high electron current that is injected into the magnetic field region where the operating gas is efficiently ionized. In this discharge configuration, an electric field is formed in the ion generation region, accelerating gas ions to energy of several eV in a direction away from the source, without the use of a gridded acceleration system. Our measurements indicate that an argon ion beam is formed with an energy of several eV and current up to 2.5 A. The discharge voltage is kept at less than 20 V, to keep below ion sputtering threshold for cathode material, a feature which along with filtering of the injected electron flow, results in extremely low contamination of the generated ion flow.

Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

2010-02-15T23:59:59.000Z

195

Recent gaseous divertor experiments in DIII-D  

SciTech Connect (OSTI)

The expected heat loads at the divertor plates for next generation tokamaks raise concern from the standpoints of both mechanical integrity and erosion rate. The peak heat flux anticipated for the present International Thermonuclear Experimental Reactor (ITER) design are predicted to be as high as {approximately}20 MW/m{sup 2}. High peak heat fluxes can be reduced to more manageable levels by increasing the radiated power in the divertor, which has the additional benefit of reducing divertor plasma temperature and sheath potential, thereby lowering the ion impact energy. Neutral deuterium gas injection into or near the divertor has been suggested as one means of reducing heat flux via radiation and/or momentum transfer and ionization collisions with the neutral gas; this method is often referred to as the gaseous divertor.'' In this paper we report on experiments in which the gaseous divertor approach was used to reduce the heat flux on the divertor tiles of the DIII-D tokamak during ELMing H-mode discharges. 7 refs., 4 figs.

Petrie, T.W.; Lippmann, S.; Mahdavi, M.A. (General Atomics, San Diego, CA (USA)); Hill, D.N.; Futch, A. (Lawrence Livermore National Lab., CA (USA)); Buchenauer, D. (Sandia National Labs., Livermore, CA (USA)); Klepper, C. (Oak Ridge National Lab., TN (USA))

1991-04-01T23:59:59.000Z

196

It's Elemental - The Element Zinc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Copper Copper Previous Element (Copper) The Periodic Table of Elements Next Element (Gallium) Gallium The Element Zinc [Click for Isotope Data] 30 Zn Zinc 65.38 Atomic Number: 30 Atomic Weight: 65.38 Melting Point: 692.68 K (419.53°C or 787.15°F) Boiling Point: 1180 K (907°C or 1665°F) Density: 7.134 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 12 Group Name: none What's in a name? From the German word zink. Say what? Zinc is pronounced as ZINK. History and Uses: Although zinc compounds have been used for at least 2,500 years in the production of brass, zinc wasn't recognized as a distinct element until much later. Metallic zinc was first produced in India sometime in the 1400s by heating the mineral calamine (ZnCO3) with wool. Zinc was rediscovered by

197

It's Elemental - The Element Chlorine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon The Element Chlorine [Click for Isotope Data] 17 Cl Chlorine 35.453 Atomic Number: 17 Atomic Weight: 35.453 Melting Point: 171.65 K (-101.5°C or -150.7°F) Boiling Point: 239.11 K (-34.04°C or -29.27°F) Density: 0.003214 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 3 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for greenish yellow, chloros. Say what? Chlorine is pronounced as KLOR-een or as KLOR-in. History and Uses: Since it combines directly with nearly every element, chlorine is never found free in nature. Chlorine was first produced by Carl Wilhelm Scheele, a Swedish chemist, when he combined the mineral pyrolusite (MnO2) with

198

It's Elemental - The Element Fluorine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Oxygen Previous Element (Oxygen) The Periodic Table of Elements Next Element (Neon) Neon The Element Fluorine [Click for Isotope Data] 9 F Fluorine 18.9984032 Atomic Number: 9 Atomic Weight: 18.9984032 Melting Point: 53.53 K (-219.62°C or -363.32°F) Boiling Point: 85.03 K (-188.12°C or -306.62°F) Density: 0.001696 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 17 Group Name: Halogen What's in a name? From the Latin and French words for flow, fluere. Say what? Fluorine is pronounced as FLU-eh-reen or as FLU-eh-rin. History and Uses: Fluorine is the most reactive of all elements and no chemical substance is capable of freeing fluorine from any of its compounds. For this reason, fluorine does not occur free in nature and was extremely difficult for

199

It's Elemental - The Element Lead  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thallium Thallium Previous Element (Thallium) The Periodic Table of Elements Next Element (Bismuth) Bismuth The Element Lead [Click for Isotope Data] 82 Pb Lead 207.2 Atomic Number: 82 Atomic Weight: 207.2 Melting Point: 600.61 K (327.46°C or 621.43°F) Boiling Point: 2022 K (1749°C or 3180°F) Density: 11.342 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 14 Group Name: none What's in a name? From the Anglo-Saxon word lead. Lead's chemical symbol comes from the Latin word for waterworks, plumbum. Say what? Lead is pronounced as LED. History and Uses: Lead has been known since ancient times. It is sometimes found free in nature, but is usually obtained from the ores galena (PbS), anglesite (PbSO4), cerussite (PbCO3) and minum (Pb3O4). Although lead makes up only

200

It's Elemental - The Element Iodine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tellurium Tellurium Previous Element (Tellurium) The Periodic Table of Elements Next Element (Xenon) Xenon The Element Iodine [Click for Isotope Data] 53 I Iodine 126.90447 Atomic Number: 53 Atomic Weight: 126.90447 Melting Point: 386.85 K (113.7°C or 236.7°F) Boiling Point: 457.55 K (184.4°C or 364.0°F) Density: 4.93 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 5 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for violet, iodes. Say what? Iodine is pronounced as EYE-eh-dine or as EYE-eh-din. History and Uses: Iodine was discovered by the French chemist Barnard Courtois in 1811. Courtois was extracting sodium and potassium compounds from seaweed ash. Once these compounds were removed, he added sulfuric acid (H2SO4) to

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oak Ridge Gaseous Diffusion Plant Biological Monitoring and Abatement Program for Mitchell Branch  

SciTech Connect (OSTI)

A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge Gaseous Diffusion Plant (ORGDP; currently the Oak Ridge K-25 Site) was prepared in December 1986, as required by the modified National Pollutant Discharge Elimination System (NPDES) permit that was issued on September 11, 1986. The effluent discharges to Mitchell Branch are complex, consisting of trace elements, organic chemicals, and radionuclides in addition to various conventional pollutants. Moreover, the composition of these effluent streams will be changing over time as various pollution abatement measures are implemented over the next several years. Although contaminant inputs to the stream originate primarily as point sources from existing plant operations, area sources, such as the classified burial grounds and the K-1407-C holding pond, can not be eliminated as potential sources of contaminants. The proposed BMAP consists of four tasks. These tasks include (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of the benthic invertebrate and fish communities. BMAP will determine whether the effluent limits established for ORGDP protect the designated use of the receiving stream (Mitchell Branch) for growth and propagation of fish and aquatic life. Another objective of the program is to document the ecological effects resulting from various pollution abatement projects, such as the Central Neutralization Facility.

Loar, J.M.; Adams, S.M.; Kszos, L.A.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

1992-01-01T23:59:59.000Z

202

Paducah Gaseous Diffusion Plant, Production Workers Screening Projects |  

Broader source: Energy.gov (indexed) [DOE]

Production Workers Screening Production Workers Screening Projects Paducah Gaseous Diffusion Plant, Production Workers Screening Projects Project Name: Worker Health Protection Program Covered DOE Site: Paducah Worker Population Served: Production Workers Principal Investigator: Jim Frederick Co-Principal Investigator: Steven Markowitz, MD Toll-free Telephone: (888) 241-1199 Local Outreach Office: James Harbison 2525 Cairo Road Paducah, KY 42001 Website: http://www.worker-health.org/ This project is conducted by the United Steelworkers in conjunction with Queens College of the City University of New York. The program is being offered as a service to both former and current workers. Free of charge, eligible workers can receive a medical exam, including chest X-ray and breathing test, and an educational workshop. This program also offers CT

203

Portsmouth Gaseous Diffusion Plant Former Workers, Construction Worker  

Broader source: Energy.gov (indexed) [DOE]

Plant Former Workers, Construction Plant Former Workers, Construction Worker Screening Projects Portsmouth Gaseous Diffusion Plant Former Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Portsmouth Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPh, MHA, MPH Toll-free Telephone: (888) 464-0009 Local Outreach Office: Ron Bush 1236 Gallia Street Portsmouth, OH 45662 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by

204

Gaseous diffusion plant transition from DOE to external regulation  

SciTech Connect (OSTI)

After many years of operation as government-owned/contractor-operated facilities, large portions of the gaseous diffusion plants (GDPs) at Portsmouth, Ohio, and Paducah, Kentucky, were leased to the United States Enrichment Corporation (USEC). These facilities are now certified by the U.S. Nuclear Regulatory Commission (NRC) and subject to oversight by the Occupational Safety and Health Administration (OSHA). The transition from DOE to NRC regulation was more difficult than expected. The original commitment was to achieve NRC certification in October 1995; however, considerably more time was required and transition-related costs escalated. The Oak Ridge Operations Office originally estimated the cost of transition at $60 million; $240 million has been spent to date. The DOE`s experience in transitioning the GDPs to USEC operation with NRC oversight provides valuable lessons (both positive and negative) that could be applied to future transitions.

Dann, R.K.; Crites, T.R.; Rahm-Crites, L.K. [Lawrence Livermore National Lab., CA (United States)

1997-12-01T23:59:59.000Z

205

Spectral modeling of gaseous metal disks around DAZ white dwarfs  

E-Print Network [OSTI]

We report on our attempt for the first non-LTE modeling of gaseous metal disks around single DAZ white dwarfs recently discovered by Gaensicke et al. and thought to originate from a disrupted asteroid. We assume a Keplerian rotating viscous disk ring composed of calcium and hydrogen and compute the detailed vertical structure and emergent spectrum. We find that the observed infrared CaII emission triplet can be modeled with a hydrogen-deficient gas ring located at R=1.2 R_sun, inside of the tidal disruption radius, with Teff about 6000 K and a low surface mass density of about 0.3 g/cm**2. A disk having this density and reaching from the central white dwarf out to R=1.2 R_sun would have a total mass of 7 10**21 g, corresponding to an asteroid with about 160 km diameter.

K. Werner; T. Nagel; T. Rauch

2008-09-30T23:59:59.000Z

206

Fuel elements of thermionic converters  

SciTech Connect (OSTI)

Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

Hunter, R.L. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Environmental Systems Assessment Dept.; Gontar, A.S.; Nelidov, M.V.; Nikolaev, Yu.V.; Schulepov, L.N. [RI SIA Lutch, Podolsk (Russian Federation)

1997-01-01T23:59:59.000Z

207

Probabilistic finite element modeling of waste rollover  

SciTech Connect (OSTI)

Stratification of the wastes in many Hanford storage tanks has resulted in sludge layers which are capable of retaining gases formed by chemical and/or radiolytic reactions. As the gas is produced, the mechanisms of gas storage evolve until the resulting buoyancy in the sludge leads to instability, at which point the sludge ``rolls over`` and a significant volume of gas is suddenly released. Because the releases may contain flammable gases, these episodes of release are potentially hazardous. Mitigation techniques are desirable for more controlled releases at more frequent intervals. To aid the mitigation efforts, a methodology for predicting of sludge rollover at specific times is desired. This methodology would then provide a rational basis for the development of a schedule for the mitigation procedures. In addition, a knowledge of the sensitivity of the sludge rollovers to various physical and chemical properties within the tanks would provide direction for efforts to reduce the frequency and severity of these events. In this report, the use of probabilistic finite element analyses for computing the probability of rollover and the sensitivity of rollover probability to various parameters is described.

Khaleel, M.A. [Pacific Northwest Lab., Richland, WA (United States); Cofer, W.F.; Al-fouqaha, A.A. [Washington State Univ., Pullman, WA (United States). Dept. of Civil and Environmental Engineering

1995-09-01T23:59:59.000Z

208

DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPFs melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. To address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments. Sample calculations of the system are also included in this report. Please note that the system developed and documented in this report is intended as an alternative to the current, analytically-driven system being utilized by DWPF; the proposed system is not intended to eliminate the current system. Also note that the system developed in this report to track antifoam mass in the AMFT, SRAT, and SME will be applicable beyond just Sludge Batch 8. While the model used to determine acceptability of the SME product with respect to melter off-gas flammability controls must be reassessed for each change in sludge batch, the antifoam mass tracking methodology is independent of sludge batch composition and as such will be transferable to future sludge batches.

Edwards, T.; Lambert, D.

2014-08-27T23:59:59.000Z

209

Programmatic Elements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide provides acceptable methods of meeting the requirements of DOE O 151.1C for programmatic elements that sustain the emergency management program and maintain the readiness of the program to respond to an emergency. Cancels DOE G 151.1-1, Volume 5-1, DOE G 151.1-1, Volume 5-2, DOE G 151.1-1, Volume 5-3, DOE G 151.1-1, Volume 5-4, DOE G 151.1-1, Volume 7-1, and DOE G 151.1-1, Volume 7-3.

2007-07-11T23:59:59.000Z

210

,"Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_smt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_smt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

211

,"Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

212

,"Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

213

,"California Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

214

,"Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sok_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sok_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

215

,"Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_soh_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_soh_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

216

,"Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sut_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sut_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

217

,"Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

218

,"Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (MMcf)" Plant Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sin_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sin_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

219

,"Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

220

,"Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

222

,"South Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (MMcf)" Plant Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

223

,"Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

224

,"Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

225

,"Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

226

,"Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sms_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sms_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

227

,"Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_stx_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_stx_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

228

Response Elements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide provides acceptable methods for meeting the requirement of DOE O 151.1C for response elements that respond or contribute to response as needed in an emergency. Cancels DOE G 151.1-1, Volume 3-1, DOE G 151.1-1, Volume 3-2, DOE G 151.1-1, Volume 3-3, DOE G 151.1-1, Volume 3-4, DOE G 151.1-1, Volume 4-1, DOE G 151.1-1, Volume 4-2, DOE G 151.1-1, Volume 4-3, DOE G 151.1-1, Volume 4-4, DOE G 151.1-1, Volume 4-5, and DOE G 151.1-1, Volume 4-6.

2007-07-11T23:59:59.000Z

229

Radiation Tests for a Single-GEM Loaded Gaseous Detector  

E-Print Network [OSTI]

We report on the systematic study of a single-gas-electron-multiplication (GEM) loaded gaseous detector developed for precision measurements of high-energy particle beams and dose-verification measurements. In the present study, a 256-channel prototype detector with an active area of 16$\\times$16 cm$^{2}$, operated in a continuous current-integration-mode signal-processing method, was manufactured and tested with x rays emitted from a 70-kV x-ray generator and 43-MeV protons provided by the MC50 proton cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS). The amplified detector response was measured for the x rays with an intensity of about 5$\\times$10$^{6}$ Hz cm$^{-2}$. The linearity of the detector response to the particle flux was examined and validated by using 43-MeV proton beams. The non-uniform development of the amplification for the gas electrons in space was corrected by applying proper calibration to the channel responses of the measured beam-profile data. We concluded fro...

Lee, Kyong Sei; Kim, Sang Yeol; Park, Sung Keun

2014-01-01T23:59:59.000Z

230

Gaseous fueled vehicles: A role for natural gas and hydrogen  

SciTech Connect (OSTI)

The commercialization of gaseous hydrogen fueled vehicles requires both the development of hydrogen fueled vehicles and the establishment of a hydrogen fueling infrastructure. These requirements create a classic chicken and egg scenario in that manufacturers will not build and consumers will not buy vehicles without an adequate refueling infrastructure and potential refueling station operators will not invest the needed capital without an adequate market to serve. One solution to this dilemma is to create a bridging strategy whereby hydrogen is introduced gradually via another carrier. The only contending alternative fuel that can act as a bridge to hydrogen fueled vehicles is natural gas. To explore this possibility, IGT is conducting emission tests on its dedicated natural gas vehicle (NGV) test platform to determine what, if any, effects small quantities of hydrogen have on emissions and performance. Furthermore, IGT is actively developing an adsorbent based low-pressure natural gas storage system for NGV applications. This system has also shown promise as a storage media for hydrogen. A discussion of our research results in this area will be presented. Finally, a review of IGT's testing facility will be presented to indicate our capabilities in conducted natural gas/hydrogen vehicle (NGHV) research. 3 refs., 10 figs.

Blazek, C.F.; Jasionowski, W.J.

1991-01-01T23:59:59.000Z

231

Effect of gaseous inhibitors on PCDD/F formation  

SciTech Connect (OSTI)

Emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) from municipal waste incineration are currently a subject of considerable public concern because of their extreme toxicity. PCDD/F formation in incineration processes is being studied widely, but studies on inhibition are quite sparse, especially in a pilot-plant scale. In this work, the effect of four gaseous inhibitors (sulfur dioxide, ammonia, dimethylamine, and methyl mercaptan) on PCDD/PCDF formation in the combustion of liquid fuel was studied using a pilot-scale plant. The inhibitors were injected into the flue gas stream after the first economizer at a temperature of 670 C and just before the second economizer at 410 C. Both the chlorophenol and PCDD and PCDF concentrations decreased when inhibitors were added. Particle-phase PCDD/F concentrations in particular decreased by up to 98%. The results suggest that the formation of PCDD/Fs is hindered in the particle phase at the early stages of the PCDD/F formation chain, probably even before precursors such as chlorophenols have been formed.

Ruokojaervi, P.H.; Halonen, I.A.; Tuppurainen, K.A.; Tarhanen, J.; Ruuskanen, J. [Univ. of Kuopio (Finland)] [Univ. of Kuopio (Finland)

1998-10-15T23:59:59.000Z

232

Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation  

SciTech Connect (OSTI)

The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 {micro}g/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields.

Laase, A.D.; Clausen, J.L.

1998-07-01T23:59:59.000Z

233

Hybrid Multi Micropattern Gaseous Photomultiplier for detection of liquid-xenon scintillation  

E-Print Network [OSTI]

Gaseous PhotoMultipliers (GPM) are a very promising alternative of vacuum PMTs especially for large-size noble-liquid detectors in the field of Functional Nuclear Medical Imaging and Direct Dark Matter Detection. We present recent characterization results of a Hybrid-GPM made of three Micropattern Gaseous Structures; a Thick Gaseous Electron Multiplier (THGEM), a Parallel Ionization Multiplier (PIM) and a MICROMesh GAseous Structure (MICROMEGAS),operating in Ne/CF4 (90:10). Gain values close to 10^7 were recorded in this mixture, with 5.9keV x-rays at 1100 mbar, both at room temperature and at that of liquid xenon (T = 171K). The results are discussed in term of scintillation detection. While the present multiplier was investigated without photocathode, complementary results of photoextraction from CsI UV photocathodes are presented in Ne/CH4 (95:5) and CH4 in cryogenic conditions.

Samuel Duval; Lior Arazi; Amos Breskin; Ranny Budnik; Wan-Ting Chen; Herv Carduner; A. E. C. Coimbra; Marco Cortesi; Roy Kaner; Jean-Pierre Cussonneau; Jrme Donnard; Jacob Lamblin; Olivier Lemaire; Patrick Le Ray; J. A. M. Lopes; Abdul-Fattah Mohamad Hadi; Eric Morteau; Tugdual Oger; J. M. F. dos Santos; Luca Scotto Lavina; Jean-Sbastien Stutzmann; Dominique Thers

2011-10-27T23:59:59.000Z

234

DOE Issues Final Request for Proposal for Portsmouth Gaseous Diffusion Plant Support Services  

Broader source: Energy.gov [DOE]

Cincinnati -- The U.S. Department of Energy today issued a Final Request for Proposal (RFP), for the continued performance of infrastructure support services at the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio.

235

DOE Issues Final Request for Proposal for Paducah Gaseous Diffusion Plant Support Services  

Broader source: Energy.gov [DOE]

Cincinnati -- The U.S. Department of Energy (DOE) today issued a Final Request for Proposal (RFP), for the performance of infrastructure support services at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky.

236

Effects of Gaseous Sulphuric Acid on Diesel Exhaust Nanoparticle Formation and Characteristics  

Science Journals Connector (OSTI)

Effects of Gaseous Sulphuric Acid on Diesel Exhaust Nanoparticle Formation and Characteristics ... Diesel exhaust gaseous sulphuric acid (GSA) concentrations and particle size distributions, concentrations, and volatility were studied at four driving conditions with a heavy duty diesel engine equipped with oxidative exhaust after-treatment. ... The submicrometer diesel exhaust particles are typically divided into two separate groups, which are frequently seen in exhaust particle number size distribution as separate modes, usually called as an accumulation or a soot mode and a nucleation mode. ...

Topi Rnkk; Tero Lhde; Juha Heikkil; Liisa Pirjola; Ulrike Bauschke; Frank Arnold; Hans Schlager; Dieter Rothe; Jaakko Yli-Ojanper; Jorma Keskinen

2013-09-17T23:59:59.000Z

237

Collection of gaseous primary amines and analysis by fluorimetric derivativization using fluorescamine  

E-Print Network [OSTI]

COLLECTION OF GASEOUS PRIMARY AMINES AND ANALYSIS 8Y FLUORIMETRIC DER IVATIV IZATION USING FLUORESCAMINE A Thesis by Mark Kennett Mitchell Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1981 Major Subject: Industrial Hygiene COLLECTION OF GASEOUS PRIMARY AMINES AND ANALYSIS BY FLUORIMETRIC DERIVATI V IZATION USING FLUORESCAMINE A Thesis by Mark Kennett Mitchell Approved as to style...

Mitchell, Mark Kennett

1981-01-01T23:59:59.000Z

238

The determination of compressibility factors of gaseous butane-nitrogen mixtures in the gas phase  

E-Print Network [OSTI]

THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS BUTANE-NITROGEN MIXTURES IN THE GAS PHASE A D issertation By Robert Buckner Evans, III Approved as to style and content by: (Chairman of Committee) (Head of^ 'ent Advisor) June 1955... ?-; i'i i ; A R y ? 'A 'Gi- Or- T EX AS THE DETERMINATION OF COMHIESSIBILITI FACTORS OF GASEOUS BUTANE-NITROGEN MIXTURES IN THE GAS PHASE A D issertation By ROBERT BUCKNER EVANS, III Submitted' to the Graduate School of the Agricultural...

Evans, Robert Buckner

1955-01-01T23:59:59.000Z

239

Ultra-High Energy Cosmic Rays from Centaurus A: Jet Interaction with Gaseous Shells  

E-Print Network [OSTI]

Ultra high energy cosmic rays (UHECRs), with energies above ~6 x 10^19 eV, seem to show a weak correlation with the distribution of matter relatively near to us in the universe. It has earlier been proposed that UHECRs could be accelerated in either the nucleus or the outer lobes of the nearby radio galaxy Cen A. We show that UHECR production at a spatially intermediate location about 15 kpc northeast from the nucleus, where the jet emerging from the nucleus is observed to strike a large star-forming shell of gas, is a plausible alternative. A relativistic jet is capable of accelerating lower-energy heavy seed cosmic rays (CRs) to UHECRs on timescales comparable to the time it takes the jet to pierce the large gaseous cloud. In this model many CRs arising from a starburst, with a composition enhanced in heavy elements near the knee region around PeV, are boosted to ultra-high energies by the relativistic shock of a newly oriented jet. This model matches the overall spectrum shown by the Auger data and also makes a prediction for the chemical composition as a function of particle energy. We thus predict an observable anisotropy in the composition at high energy in the sense that lighter nuclei should preferentially be seen toward the general direction of Cen A. Taking into consideration the magnetic field models for the Galactic disk and a Galactic magnetic wind, this scenario may resolve the discrepancy between HiRes and Auger results concerning the chemical composition of UHECRs.

Gopal-Krishna; Peter L. Biermann; Vitor de Souza; Paul J. Wiita

2010-06-25T23:59:59.000Z

240

EA-1856: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio  

Broader source: Energy.gov [DOE]

This EA will evaluate the environmental impacts of conveyance of land and facilities at the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio, for economic development purposes.

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microhotplate for Low Power and Ultra Dense Gaseous Sensor Arrays using Recessed Silica Aerogel for Heat Insulation.  

E-Print Network [OSTI]

?? In the operation of an air pitted gaseous sensors, the microhotplate (HP) consumes almost all the power used by the sensor. The required area (more)

Kumar, Sanjay

2014-01-01T23:59:59.000Z

242

Phyto remediation groundwater trends at the DOE portsmouth gaseous  

SciTech Connect (OSTI)

This paper describes the progress of a phyto-remediation action being performed at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) X-740 Waste Oil Handling Facility to remediate contaminated groundwater under a Resource Conservation and Recovery Act (RCRA) closure action. This action was effected by an Ohio Environmental Protection Agency (OEPA) decision to use phyto-remediation as the preferred remedy for the X-740 groundwater contamination. This remedy was recognized as a cost-effective, low-maintenance, and promising method to remediate groundwater contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). During 1999, prior to the tree installation at the X-740 Phyto-remediation Area, water level measurements in the area were collected from 10 monitoring wells completed in the Gallia Formation. The Gallia is the uppermost water-bearing zone and contains most of the groundwater contamination at PORTS. During the tree installation which took place during the summer of 1999, four new Gallia monitoring wells were installed at the X-740 Area in addition to the 10 Gallia wells which had been installed in the same area during the early 1990's. Manual water level measurements were collected quarterly from these 14 Gallia monitoring wells between 1998 and 2001. These manual water level measurements were collected to monitor the combined impact of the trees on the groundwater prior to root development. Beginning in 2001, water level measurements were collected monthly during the growing season (April-September) and quarterly during the dormant season (October-March). A total of eight water level measurements were collected annually to monitor the phyto-remediation system's effect on the groundwater in the X- 740 Area. The primary function of the X-740 Phyto-remediation Area is to hydraulically prevent further spreading of the TCE plume. This process utilizes deep-rooted plants, such as poplar trees, to extract large quantities of water from the saturated zone. The focus of any phyto-remediation system is to develop a cone of depression under the entire plantation area. This cone of depression can halt migration of the contaminant plume and can create a hydraulic barrier, thereby maintaining plume capture. While a cone of depression is not yet evident at the X-740 Phyto-remediation Area, water level measurements in 2004 and 2005 differed from measurements taken in previous years, indicating that the now mature trees are influencing groundwater flow direction and gradient at the site. Water level measurements taken from 2003 through 2005 indicate a trend whereby groundwater elevations steadily decreased in the X-740 Phyto-remediation System. During this time, an average groundwater table drop of 0.30 feet was observed. Although the time for the phyto-remediation system to mature had been estimated at two to three years, these monitoring data indicate a period of four to five years for the trees to reach maturity. Although, these trends are not apparent from analysis of the potentiometric surface contours, it does appear that the head gradient across the site is higher during the spring and lower during the fall. It is not clear, however, whether this trend was initiated by the installation of the phyto-remediation system. This paper will present the groundwater data collected to date to illustrate the effects of the trees on the groundwater table. (authors)

Lewis, A.C.; Baird, D.R. [CDM, Piketon, OH (United States)

2007-07-01T23:59:59.000Z

243

Portsmouth Gaseous Diffusion Plant Director's Final Findings and Orders, October 4, 1995  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Gaseous Diffusion Plant Director's Final Portsmouth Gaseous Diffusion Plant Director's Final Findings and Orders, October 4, 1995 BEFORE THE OHIO ENVIRONMENTAL PROTECTION AGENCY In the Matter Of: United States Department of Energy : Director's Final Portsmouth Gaseous Diffusion Plant : Findings and Orders P.O. Box 700 : Piketon, Ohio 45661-0700 : Respondent It is hereby agreed by and among the parties hereto as follows: Table of Contents I. Jurisdiction II. Parties Bound III. Definitions IV. Findings of Fact V. Orders VI. Limitations of Director's Approval VII. Notice VIII. Project Managers IX. Dispute Resolution X. Funding XI. Other Applicable Laws XII. Reservation of Rights XIII. Modification XIV. Termination XV. Other Claims XVI. Signatories XVII. Waiver I. Jurisdiction These Director's Final Findings and Orders ("Orders") are issued to the United States

244

Oak Ridge K-25 Gaseous Diffusion Plant, Former Production Workers Screening  

Broader source: Energy.gov (indexed) [DOE]

K-25 Gaseous Diffusion Plant, Former Production Workers K-25 Gaseous Diffusion Plant, Former Production Workers Screening Projects Oak Ridge K-25 Gaseous Diffusion Plant, Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered DOE Site: K-25 Worker Population Served: Production Workers Principal Investigator: Jim Frederick Co-Principal Investigator: Steven Markowitz, MD Toll-free Telephone: (888) 241-1199 Local Outreach Office: Bruce Lawson 133 Raleigh Road Oak Ridge, TN 37830 Local Medical Clinics: ParkMed 110 S. Illinois Avenue Oak Ridge, TN 37380 Website: http://www.worker-health.org/ This project is conducted by the United Steelworkers in conjunction with Queens College of the City University of New York. The program is being offered as a service to both former and current workers. Free of charge,

245

Detonation and deflagration characteristics of p-Xylene/gaseous hydrocarbon fuels/air mixtures  

Science Journals Connector (OSTI)

Abstract p-Xylene is an important intermediate for the production of polyethylene terephthalate, it has growing chemical industrial demand based on the statistics in the last few decades. In the process of producing p-Xylene, gaseous hydrocarbon fuels (e.g., H2, C1C3) are usually involved, which renders p-Xylene highly possible mix with those gaseous hydrocarbon fuels as leaking occurs, this presents fire or explosion/detonation hazard at some specific conditions. To date, very limited data regarding its detonation and deflagration characteristics are available in previous literatures. In this study, experiments of measuring the overpressure and velocity of p-Xylene/gaseous hydrocarbon fuels (i.e., H2, C2H4, C3H8, CO)/air mixtures are carried out in a vertical detonation tube with an inner diameter of 200mm and a length of 6.5m to explore the detonation and deflagration characteristics of p-Xylene. The experimental results indicate that under the same initiation energy of 0.189MJm?2, pure p-Xylene/air and p-Xylene/CO/air cannot achieve detonation, only deflagrations are observed. However, under this same initiation energy, detonations occur in p-Xylene/H2/air, p-Xylene/C2H4/air and p-Xylene/C3H8/air mixtures. By comparing the combinatorial compositions of p-Xylene along with gaseous hydrocarbon fuels that within which detonation observed, the detonation sensitive of the mixtures in increasing order are obtained as following: p-Xylene/H2/air, p-Xylene/C3H8/air and p-Xylene/C2H4/air. The results also indicate the relative ease that p-Xylene/gaseous hydrocarbon fuel/air can be detonated mainly depends on the detonation sensitive of the gaseous fuel, which is supported by the critical energy of direct detonation initiation and chemical kinetic analysis.

Bo Zhang; Guangli Xiu; Jian Chen; Shaopeng Yang

2015-01-01T23:59:59.000Z

246

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network [OSTI]

LIBRARY A A N O'iLLEOE OF 1EXAS THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEIN MIXTURES A Thesis Cecil Herman Dickson Submitted to the Graduate School of the Agricultural and Mechanical College of' Texas in partial... f'ulf'illment of the requirements for the de~ree of MASTER OF SCIENCE Ma]or GubjectI Chemistry May I&55 THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEN MIXTURES A Thesis Cecil Herman Dickson Approved as to style...

Dickson, Cecil Herman

2012-06-07T23:59:59.000Z

247

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network [OSTI]

of thc Beg;voc cf kBSTBACT The propane-nitrogen system has been investigated in the gaseous phase at a temperature of 300 F. and at pressures up to 4/0 atmospheres. Compressibility curves for three mixtures of this system have been determined. A... the pressure corresponding to the "n " expansion ? th? the partial pressure of nitrogen the partial pressure oi' propane the total pressure of a gaseous system the universal gas constant (0. 08206 liter-atmosphere/ gram mole - oK) the absolute...

Hodges, Don

2012-06-07T23:59:59.000Z

248

Method and an apparatus for non-invasively determining the quantity of an element in a body organ  

DOE Patents [OSTI]

An apparatus and a method for determining in a body organ the amount of an element with the aid of a gaseous gamma ray source, where the element and the source are paired in predetermined pairs, and with the aid of at least one detector selected from the group consisting of Ge(Li) and NaI(Tl). Gamma rays are directed towards the organ, thereby resonantly scattering the gamma rays from nuclei of the element in the organ; the intensity of the gamma rays is detected by the detector; and the amount of the element in the organ is then substantially proportional to the detected intensity of the gamma rays.

Vartsky, D.; Ellis, K.J.; Cohn, S.H.

1980-06-27T23:59:59.000Z

249

Development of a Recyclable Remediation System for Gaseous BTEX: Combination of Iron Oxides Nanoparticles Adsorbents and Electrochemistry  

Science Journals Connector (OSTI)

We designed a two-step green technique to remove and recycle selected gaseous air pollutants. The first step includes the assessment of adsorption efficiencies of BTEX (benzene, toluene, ethylbenzene, and xylenes) on magnetite, hematite, and their ...Naturally occurring iron oxides nanoparticles are efficient adsorption interfaces for the removal of gaseous BTEX pollutants and can be effectively regenerated by electrochemistry.

Zhenzhong Hu; Maximilien Beuret; Hassan Khan; Parisa A. Ariya

2014-11-03T23:59:59.000Z

250

Non-Oberbeck-Boussinesq Effects in Gaseous Rayleigh-Benard Convection Guenter Ahlers,1  

E-Print Network [OSTI]

Non-Oberbeck-Boussinesq Effects in Gaseous Rayleigh-Be´nard Convection Guenter Ahlers,1 Francisco December 2006; published 29 January 2007) Non-Oberbeck-Boussinesq (NOB) effects are measured experimentally where the material properties strongly depend on the temperature. Relative to the Oberbeck-Boussinesq

Ahlers, Guenter

251

Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 seepage  

E-Print Network [OSTI]

Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2; accepted 17 June 2008; published 31 July 2008. [1] Claystone caprocks are often the ultimate seal for CO2 underground storage when residual CO2 gas reaches the reservoir top due to buoyancy. Permeability changes

Luquot, Linda

252

Linking drainage front morphology with gaseous diffusion in unsaturated porous media: A lattice Boltzmann study  

E-Print Network [OSTI]

porous media is analyzed using the lattice Boltzmann method LBM . Flow regimes for immiscible in a physical experiment such as a micromodel. In this study, we use the lattice Boltzmann method LBMLinking drainage front morphology with gaseous diffusion in unsaturated porous media: A lattice

Shor, Leslie McCabe

253

Emission and Long-Range Transport of Gaseous Mercury from a  

E-Print Network [OSTI]

Emission and Long-Range Transport of Gaseous Mercury from a Large-Scale Canadian Boreal Forest FireQuebec.Thesemeasurementsindicated significant and highly correlated increases in Hg and CO during the plume event. The Hg:CO emissions ratio emissions and biomass burned to determine a mean area-based Hg emission flux density for boreal forest fires

Lee, Xuhui

254

Method for measuring the effectiveness of gaseous-contaminant removal filters  

SciTech Connect (OSTI)

The report presents a brief review of the gas-adsorption kinetics theory applicable to adsorption of gaseous contaminants by filter media, and an algorithm for assessing the effectiveness of filtering devices with flow bypass. It briefly describes the selected testing technique for measuring the effectiveness of filter media, and presents experimental data for adsorption of n-butane, toluene, and carbon monoxide.

Mahajan, B.M.

1989-08-01T23:59:59.000Z

255

The ebullition of hydrogen, carbon monoxide, methane, carbon dioxide and total gaseous mercury  

E-Print Network [OSTI]

of gaseous species depends of their solubility in the water. Since CH4 is relatively insoluble, ebullition-product of the respiration and is highly soluble in the water, leading ofte h- 1 . Measurements of H2, CO, CH4 and CO2 trapped gas concentrations and fluxes were used

O'Driscoll, Nelson

256

Fracture response of externally flawed aluminum cylindrical shells under internal gaseous detonation loading  

E-Print Network [OSTI]

Fracture response of externally flawed aluminum cylindrical shells under internal gaseous. Experiments were performed to observe the fracture behavior of thin- wall and initially-flawed aluminum tubes to different fracture events are analyzed. Keywords: tube fracture, detonation, crack branching, crack curving

Barr, Al

257

DOE Seeks Small Businesses for Paducah Gaseous Diffusion Plant Infrastructure Support Services  

Broader source: Energy.gov [DOE]

Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (RFP) seeking eligible small businesses under North American Industry Classification System (NAICS) Code 561210, Facilities Support Services, for the performance of infrastructure support services at the Paducah Gaseous Diffusion Plant (PGDP).

258

DOE Seeks Small Businesses for Portsmouth Gaseous Diffusion Plant Infrastructure Support Services  

Broader source: Energy.gov [DOE]

Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (RFP) seeking eligible small businesses under North American Industry Classification System (NAICS) Code 561210, Facilities Support Services, for the performance of infrastructure support services at the Portsmouth Gaseous Diffusion Plant (PORTS), Portsmouth, Ohio.

259

Alignment of molecules in gaseous transport: Alkali dimers in supersonic nozzle beams  

E-Print Network [OSTI]

Alignment of molecules in gaseous transport: Alkali dimers in supersonic nozzle beams M. P. SinhaO) + a.P lcosO), where 0 is the angle between the angular momentum vector J of the molecule and the beam direction. This method is applied to determine the alignment of Na2 molecules in a supersonic nozzle beam

Zare, Richard N.

260

Probing the extended gaseous regions of M31 with quasar absorption lines  

Science Journals Connector (OSTI)

......gaseous regions of M31 with quasar absorption lines Sandhya M. Rao 1 Gendith Sardane 1 David...from high-resolution 21-cm emission-line maps of M31's disc and extended regions...detect both low- and high-ion absorption lines associated with it. The impact parameters......

Sandhya M. Rao; Gendith Sardane; David A. Turnshek; David Thilker; Rene Walterbos; Daniel Vanden Berk; Donald G. York

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

It's Elemental - Isotopes of the Element Magnesium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

262

It's Elemental - Isotopes of the Element Chlorine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon Isotopes of the Element Chlorine [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 35 75.76% STABLE 37 24.24% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 28 No Data Available Proton Emission (suspected) No Data Available 29 < 20 nanoseconds Proton Emission No Data Available 30 < 30 nanoseconds Proton Emission No Data Available 31 150 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.70% 32 298 milliseconds Electron Capture 100.00%

263

It's Elemental - Isotopes of the Element Potassium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium Isotopes of the Element Potassium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 39 93.2581% STABLE 40 0.0117% 1.248×10+9 years 41 6.7302% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 32 No Data Available Proton Emission (suspected) No Data Available 33 < 25 nanoseconds Proton Emission No Data Available 34 < 25 nanoseconds Proton Emission No Data Available 35 178 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.37% 36 342 milliseconds Electron Capture 100.00%

264

It's Elemental - Isotopes of the Element Phosphorus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur Isotopes of the Element Phosphorus [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 31 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 24 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available 25 < 30 nanoseconds Proton Emission 100.00% 26 43.7 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 27 260 milliseconds Electron Capture 100.00% Electron Capture with

265

It's Elemental - Isotopes of the Element Francium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium Isotopes of the Element Francium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Francium has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 199 12 milliseconds Alpha Decay > 0.00% Electron Capture No Data Available 200 49 milliseconds Alpha Decay 100.00% 201 62 milliseconds Alpha Decay 100.00% 201m 19 milliseconds Alpha Decay 100.00% 202 0.30 seconds Alpha Decay 100.00% 202m 0.29 seconds Alpha Decay 100.00% 203 0.55 seconds Alpha Decay <= 100.00% 204 1.8 seconds Alpha Decay 92.00%

266

It's Elemental - Isotopes of the Element Oxygen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine Isotopes of the Element Oxygen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 16 99.757% STABLE 17 0.038% STABLE 18 0.205% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 12 1.139×10-21 seconds Proton Emission No Data Available 13 8.58 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 14 70.620 seconds Electron Capture 100.00% 15 122.24 seconds Electron Capture 100.00% 16 STABLE - - 17 STABLE - - 18 STABLE - - 19 26.88 seconds Beta-minus Decay 100.00%

267

It's Elemental - Isotopes of the Element Gallium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Zinc Zinc Previous Element (Zinc) The Periodic Table of Elements Next Element (Germanium) Germanium Isotopes of the Element Gallium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 69 60.108% STABLE 71 39.892% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 56 No Data Available Proton Emission (suspected) No Data Available 57 No Data Available Proton Emission (suspected) No Data Available 58 No Data Available Proton Emission (suspected) No Data Available 59 No Data Available Proton Emission (suspected) No Data Available 60 70 milliseconds Electron Capture 98.40%

268

It's Elemental - Isotopes of the Element Sodium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium Isotopes of the Element Sodium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 23 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 18 1.3×10-21 seconds Proton Emission 100.00% 19 < 40 nanoseconds Proton Emission No Data Available 20 447.9 milliseconds Electron Capture with delayed Alpha Decay 20.05% Electron Capture 100.00% 21 22.49 seconds Electron Capture 100.00% 22 2.6027 years Electron Capture 100.00% 23 STABLE - - 24 14.997 hours Beta-minus Decay 100.00%

269

It's Elemental - Isotopes of the Element Neon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium Isotopes of the Element Neon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 20 90.48% STABLE 21 0.27% STABLE 22 9.25% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 16 9×10-21 seconds Double Proton Emission 100.00% 17 109.2 milliseconds Electron Capture with delayed Alpha Decay No Data Available Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 18 1.6670 seconds Electron Capture 100.00% 19 17.22 seconds Electron Capture 100.00% 20 STABLE - -

270

It's Elemental - Isotopes of the Element Copper  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc Isotopes of the Element Copper [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 63 69.15% STABLE 65 30.85% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 52 No Data Available Proton Emission No Data Available 53 < 300 nanoseconds Electron Capture No Data Available Proton Emission No Data Available 54 < 75 nanoseconds Proton Emission No Data Available 55 27 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 15.0% 56 93 milliseconds Electron Capture 100.00%

271

It's Elemental - Isotopes of the Element Boron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon Isotopes of the Element Boron [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 10 19.9% STABLE 11 80.1% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 6 No Data Available Double Proton Emission (suspected) No Data Available 7 3.255×10-22 seconds Proton Emission No Data Available Alpha Decay No Data Available 8 770 milliseconds Electron Capture 100.00% Electron Capture with delayed Alpha Decay 100.00% 9 8.439×10-19 seconds Proton Emission 100.00% Double Alpha Decay 100.00%

272

It's Elemental - Isotopes of the Element Tungsten  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tantalum Tantalum Previous Element (Tantalum) The Periodic Table of Elements Next Element (Rhenium) Rhenium Isotopes of the Element Tungsten [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 180 0.12% >= 6.6×10+17 years 182 26.50% STABLE 183 14.31% > 1.3×10+19 years 184 30.64% STABLE 186 28.43% > 2.3×10+19 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 157 275 milliseconds Electron Capture No Data Available 158 1.25 milliseconds Alpha Decay 100.00% 158m 0.143 milliseconds Isomeric Transition No Data Available Alpha Decay No Data Available 159 7.3 milliseconds Alpha Decay ~ 99.90%

273

It's Elemental - Isotopes of the Element Radon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Astatine Astatine Previous Element (Astatine) The Periodic Table of Elements Next Element (Francium) Francium Isotopes of the Element Radon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Radon has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 193 1.15 milliseconds Alpha Decay 100.00% 194 0.78 milliseconds Alpha Decay 100.00% 195 6 milliseconds Alpha Decay 100.00% 195m 5 milliseconds Alpha Decay 100.00% 196 4.4 milliseconds Alpha Decay 99.90% Electron Capture ~ 0.10% 197 53 milliseconds Alpha Decay 100.00% 197m 25 milliseconds Alpha Decay 100.00% 198 65 milliseconds Alpha Decay No Data Available

274

It's Elemental - Isotopes of the Element Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boron Boron Previous Element (Boron) The Periodic Table of Elements Next Element (Nitrogen) Nitrogen Isotopes of the Element Carbon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 12 98.93% STABLE 13 1.07% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 8 1.981×10-21 seconds Proton Emission 100.00% Alpha Decay No Data Available 9 126.5 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 61.60% Electron Capture with delayed Alpha Decay 38.40% 10 19.308 seconds Electron Capture 100.00% 11 20.334 minutes Electron Capture 100.00% 12 STABLE - -

275

It's Elemental - Isotopes of the Element Rhenium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium Isotopes of the Element Rhenium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 185 37.40% STABLE 187 62.60% 4.33×10+10 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 159 No Data Available No Data Available No Data Available 160 0.82 milliseconds Proton Emission 91.00% Alpha Decay 9.00% 161 0.44 milliseconds Proton Emission 100.00% Alpha Decay <= 1.40% 161m 14.7 milliseconds Alpha Decay 93.00% Proton Emission 7.00% 162 107 milliseconds Alpha Decay 94.00% Electron Capture 6.00%

276

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

OH OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the Portsmouth Gaseous Diffusion Plant. Acceptable performance of the proposed OSWDF will depend on interactions between engineered landfill features and operations methods that recognize the unique characteristics of the waste stream and site-

277

Portsmouth Gaseous Diffusion Plant Director's Final Findings and Orders, October 4, 1995 Summary  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Gaseous Diffusion Plant Director's Final Portsmouth Gaseous Diffusion Plant Director's Final Findings and Orders, October 4, 1995 State Ohio Agreement Type Federal Facility Agreement Legal Driver(s) FFCAct Scope Summary Agreement between the Ohio EPA and DOE approving the STP and setting waste treatment milestones Parties DOE; Ohio Department of Environmental Protection Date 10/4/1995 SCOPE * Approve the Compliance Plan Volume of the amended PSTP submitted to Ohio EPA on October 2, 1995, hereafter referred to as "approved STP." * Set forth guidelines for storage and treatment of mixed wastes at the Facility which are not being stored in accordance with the LDR requirements of OAC rule 3745-59- 50. * Establish milestones and target dates for approved STP. ESTABLISHING MILESTONES

278

Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

Paducah, KY Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is evaluating alternatives to dispose of waste generated from the remedial activities at the PGDP. One option is to construct an on-site disposal facility (OSDF) meeting the CERCLA requirements.

279

Nuclear safety procedure upgrade project at USEC/MMUS gaseous diffusion plants  

SciTech Connect (OSTI)

Martin Marietta Utility Services has embarked on a program to upgrade procedures at both of its Gaseous Diffusion Plant sites. The transition from a U.S. Department of Energy government-operated facility to U.S. Nuclear Regulatory Commission (NRC) regulated has necessitated a complete upgrade of plant operating procedures and practices incorporating human factors as well as a philosophy change in their use. This program is designed to meet the requirements of the newly written 10CFR76, {open_quotes}The Certification of Gaseous Diffusion Plants,{close_quotes} and aid in progression toward NRC certification. A procedures upgrade will help ensure increased nuclear safety, enhance plant operation, and eliminate personnel procedure errors/occurrences.

Kocsis, F.J. III

1994-12-31T23:59:59.000Z

280

Risk assessment of gaseous emissions from municipal solid waste landfill: case study Rafah landfill, Palestine  

Science Journals Connector (OSTI)

This article describes the risk assessment of gaseous emissions from the municipal solid waste at Rafah landfill, Palestine. In this study, Gas-Sim model was used to quantify the gaseous emissions from the landfill and the Land-Gem model was used to verify the results. Risk assessment of both carcinogens and non-carcinogens were performed. Two scenarios were conducted namely with plant uptake and without plant uptake. The scenario with plant uptake revealed that the risk to residents is acceptable for non-carcinogens (risk value 0.45 > 1.0), while the risk to residents is not acceptable for carcinogens (risk value 2.69 10?6 risk to residents is acceptable for non-carcinogens (risk value 0.42 > 1.0), while the risk to residents is acceptable for carcinogens (risk value 2.855 10?7 > 10?6).

Ahmad A. Foul; Mazen Abualtayef; Basel Qrenawi

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydraulic Containment of TCE Contaminated Groundwater at the DOE Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This paper will describe the progress of a groundwater remedial action at the Portsmouth Gaseous Diffusion Plant (PORTS), a Department of Energy (DOE) facility that enriched uranium from the early 1950's until 2000. The X-749 southern boundary hydraulic containment system, combining a four-well extraction system with a previously constructed subsurface barrier wall, has been employed at PORTS. The hydraulic containment project has been implemented as part of containment and remediation of the X-749/X-120 area trichloroethylene (TCE) contaminant. The X-749/X-120 groundwater contaminant plume is located in the south central section (Quadrant I) of the PORTS facility. The plume is associated with the former X-120 Goodyear Training Facility and a landfill known as the X-749 Contaminated Materials Disposal Facility. The principal contaminants of concern are chlorinated solvents (primarily TCE) and technetium-99 (Tc-99). A subsurface barrier wall (X-749 South Barrier Wall) was completed in 1994 at the PORTS southern reservation boundary as an interim remedial measure to slow the advancement of the leading edge of the contaminated groundwater plume or to prevent the plume from migrating off DOE property. Remedial measures identified by Ohio Environmental Protection Agency (Ohio EPA) included installation of a barrier wall around the eastern and southern portions of the X-749 landfill to provide source control and installation of a phyto-remediation system to help contain groundwater flow and remove volatile organic compounds. Previous remedial measures that were implemented as elements of 'closures' on the X-749 landfill included a multimedia cap, barrier walls, and a groundwater collection system. Despite these measures, the X-749/X-120 groundwater plume has migrated beyond the southern DOE property boundary. Current TCE concentrations in off-site groundwater monitoring wells are below the preliminary remediation goal and drinking water maximum contaminant level for TCE of 5 {mu}g/kg, but continue to increase. Hydraulic containment was selected as the method for controlling the plume at the southern DOE property boundary. Recent borings and pumping tests indicate that approximately a 400-foot section of the existing subsurface barrier wall near the DOE property boundary may been improperly keyed into the Sunbury Shale bedrock which underlies the unconsolidated uppermost Gallia sand and gravel aquifer (Gallia). This gap is reported to be as much as 4 vertical feet. In addition, the X-749 groundwater plume is migrating around the western end of the X-749 South Barrier Wall. Four groundwater extraction wells were installed at the DOE property boundary to provide hydraulic control of the plume currently flowing under and around the existing subsurface barrier wall. Placement of the new extraction wells was based on groundwater modeling and data collected from pumping tests in the area. The extracted groundwater is being sent to the on-site X-622 Groundwater Treatment Facility via subsurface piping. The hydraulic containment system began operation in June 2007. The preliminary water elevations from monitoring wells in the vicinity of two of the four extraction wells demonstrate a significant decrease in groundwater potentiometric head in the southern boundary area. The current extraction rates should be adequate to contain the leading edge of the contaminant plume. Monitoring wells in the area will continue to be sampled on a quarterly basis. (authors)

Lewis, A.C.; Rieske, D.P.G.; Baird, D.R.P.E. [CDM, Piketon, OH (United States)

2008-07-01T23:59:59.000Z

282

Computational and theoretical analysis of weak and strong transverse-wave structures in gaseous detonations  

SciTech Connect (OSTI)

Two-dimensional simulation results are presented that capture at great detail the temporal evolution of Mach reflection triple point sub-structures intrinsic to gaseous detonation waves. The observed patterns are classified by shock polar analysis for realistic, thermally perfect but nonreactive gases. A diagram of the transition boundaries between possible Mach reflection structures is constructed and found to be in good agreement with the computational results.

Deiterding, Ralf [ORNL] [ORNL

2011-01-01T23:59:59.000Z

283

Microemulsion-Assisted Synthesis of Mesoporous Aluminum Oxyhydroxide Nanoflakes for Efficient Removal of Gaseous Formaldehyde  

Science Journals Connector (OSTI)

Microemulsion-Assisted Synthesis of Mesoporous Aluminum Oxyhydroxide Nanoflakes for Efficient Removal of Gaseous Formaldehyde ... Add to ACS ChemWorx ... (33) Often, aluminum oxyhydroxide was prepared via hydrothermal or solvothermal processes under high pressure in a sealed autoclave at relatively high temperatures (above 100 C), in which different additives such as sodium tartrate, sodium amide, and trisodium citrate were used to control its morphology. ...

Zhihua Xu; Jiaguo Yu; Jingxiang Low; Mietek Jaroniec

2014-01-13T23:59:59.000Z

284

Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

Sheaffer, M.K.; Keeton, S.C.

1993-09-20T23:59:59.000Z

285

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

SciTech Connect (OSTI)

Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

Ghate, Madhav R. (Morgantown, WV); Yang, Ralph T. (Williamsville, NY)

1987-01-01T23:59:59.000Z

286

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

SciTech Connect (OSTI)

Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

Ghate, M.R.; Yang, R.T.

1985-10-03T23:59:59.000Z

287

On the influence of low initial pressure and detonation stochastic nature on Mach reflection of gaseous detonation waves  

Science Journals Connector (OSTI)

The two-dimensional, time-dependent and reactive NavierStokes equations were solved to obtain an insight into Mach reflection of gaseous detonation in a stoichiometric hydrogen-oxygen mixture diluted ... argon. ...

C. J. Wang; C. M. Guo

2014-09-01T23:59:59.000Z

288

Oxyfuel CO2 compression: The gas phase reaction of elemental mercury and \\{NOx\\} at high pressure and absorption into nitric acid  

Science Journals Connector (OSTI)

Abstract Oxyfuel combustion is a technology which combusts coal in oxygen and recycled flue gas, producing a carbon dioxide rich flue gas for sequestration. Oxyfuel flue gas contains trace amounts of elemental mercury, which may corrode brazed aluminium heat exchangers used in the carbon dioxide purification system. International gas vendors have tested the use of the compression system to remove other flue gas impurities such as NOx; however, the reaction mechanism of mercury and its reaction products with \\{NOx\\} and nitric acid formed with condensed water vapour are unclear. This study used lab scale experiments to study the absorption of gaseous elemental mercury into nitric acid and the gas phase reaction between mercury and nitrogen dioxide formed from oxidised NO at pressures up to 25bar. It was observed that mercury has limited absorption into nitric acid and may partially desorb out of solution after depressurisation. On the other hand, mercury reacted readily with nitrogen dioxide (formed from nitric oxide oxidation at high pressure) in the gas phase. These gas phase reactions from the oxidation of nitric oxide to nitrogen dioxide to the subsequent oxidation of elemental mercury by nitrogen dioxide were predicted using existing global kinetic equations. The limited absorption of gaseous elemental mercury in nitric acid and significant oxidation of gaseous elemental mercury by nitrogen dioxide suggests that the primary removal step for elemental mercury is through the gas phase reaction. Oxyfuel compression circuits should therefore allow sufficient residence time for this gas phase reaction to occur.

Timothy Ting; Rohan Stanger; Terry Wall

2014-01-01T23:59:59.000Z

289

Review of the Portsmouth Gaseous Diffusion Plant Integrated Safety Management System Phase I Verification Review, April 2013  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant Integrated Safety Management System Phase I Verification Review April 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background........................................................................................................................................... 1 4.0 Methodology......................................................................................................................................... 1

290

Review of the Portsmouth Gaseous Diffusion Plant Integrated Safety Management System Phase I Verification Review, April 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant Integrated Safety Management System Phase I Verification Review April 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background........................................................................................................................................... 1 4.0 Methodology......................................................................................................................................... 1

291

Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust  

DOE Patents [OSTI]

A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

Wijmans Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

2012-05-15T23:59:59.000Z

292

MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN  

SciTech Connect (OSTI)

The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 800 and 3000 psi. This paper will describe the work performed on four commercially available pipeline steels in the presence of gaseous hydrogen at pressures relevant for transport in pipelines. Microstructures and mechanical property performances will be compared. In addition, recommendations for future work related to gaining a better understanding of steel pipeline performance in hydrogen service will be discussed.

Stalheim, Mr. Douglas [DGS Metallurgical Solutions Inc; Boggess, Todd [Secat; San Marchi, Chris [Sandia National Laboratories (SNL); Jansto, Steven [Reference Metals Company; Somerday, Dr. B [Sandia National Laboratories (SNL); Muralidharan, Govindarajan [ORNL; Sofronis, Prof. Petros [University of Illinois

2010-01-01T23:59:59.000Z

293

It's Elemental - Isotopes of the Element Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen Isotopes of the Element Nitrogen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 14 99.636% STABLE 15 0.364% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 10 No Data Available Proton Emission 100.00% 11 5.49×10-22 seconds Proton Emission 100.00% 12 11.000 milliseconds Electron Capture 100.00% 13 9.965 minutes Electron Capture 100.00% 14 STABLE - - 15 STABLE - - 16 7.13 seconds Beta-minus Decay 100.00% Beta-minus Decay with delayed Alpha Decay 1.2×10-3 % 17 4.173 seconds Beta-minus Decay 100.00%

294

Automation of organic elemental analysis  

Science Journals Connector (OSTI)

Automation of organic elemental analysis ... Describes the development and design of an apparatus for automated organic elemental analysis. ...

Velmer B. Fish

1969-01-01T23:59:59.000Z

295

Josephson junction element  

SciTech Connect (OSTI)

A sandwich-type josephson junction element wherein a counter electrode is made of a mo-re alloy which contains 10-90 atomic-% of re. The josephson junction element has a high operating temperature, and any deterioration thereof attributed to a thermal cycle is not noted.

Kawabe, U.; Tarutani, Y.; Yamada, H.

1982-03-09T23:59:59.000Z

296

Proceedings of transuranium elements  

SciTech Connect (OSTI)

The identification of the first synthetic elements was established by chemical evidence. Conclusive proof of the synthesis of the first artificial element, technetium, was published in 1937 by Perrier and Segre. An essential aspect of their achievement was the prediction of the chemical properties of element 43, which had been missing from the periodic table and which was expected to have properties similar to those of manganese and rhenium. The discovery of other artificial elements, astatine and francium, was facilitated in 1939-1940 by the prediction of their chemical properties. A little more than 50 years ago, in the spring of 1940, Edwin McMillan and Philip Abelson synthesized element 93, neptunium, and confirmed its uniqueness by chemical means. On August 30, 1940, Glenn Seaborg, Arthur Wahl, and the late Joseph Kennedy began their neutron irradiations of uranium nitrate hexahydrate. A few months later they synthesized element 94, later named plutonium, by observing the alpha particles emitted from uranium oxide targets that had been bombarded with deuterons. Shortly thereafter they proved that is was the second transuranium element by establishing its unique oxidation-reduction behavior. The symposium honored the scientists and engineers whose vision and dedication led to the discovery of the transuranium elements and to the understanding of the influence of 5f electrons on their electronic structure and bonding. This volume represents a record of papers presented at the symposium.

Not Available

1992-01-01T23:59:59.000Z

297

Interchangeability of gaseous fuels - The importance of the Wobbe-index  

SciTech Connect (OSTI)

The Wobbe-index is introduced as an important gas quality criterion when interchanging gaseous fuels for engines. Changes in fuel gas composition appear not to induce noticeable changes in air to fuel ratio and combustion velocity when the Wobbe-index remains the same. This implies that no re-adjustment of ignition timing and air to fuel ratio settings is required, then. The volumetric energy content, the explosion limits and the knock resistance of a mixture can vary to a moderate extent when the Wobbe-index is constant and the gas composition varies.

Klimstra, J.

1986-01-01T23:59:59.000Z

298

Replacement of chlorofluorocarbons (CFCs) at the DOE gaseous diffusion plants: An assessment of global impacts  

SciTech Connect (OSTI)

The US Department of Energy (DOE) formerly operated two gaseous diffusion plants (GDPs) for enriching uranium and maintained a third shutdown GDP. These plants maintain a large inventory of dichlorotetrafluorethane (CFC-114), a cholorofluorocarbon (CFC), as a coolant. The paper evaluates the global impacts of four alternatives to modify GDP coolant system operations for a three-year period beginning in 1996. Interim modification of GDP coolant system operations has the potential to reduce stratospheric ozone depletion from GDP coolant releases while a permanent solution is studied.

Socolof, M.L.; Saylor, R.E.; McCold, L.N.

1994-06-01T23:59:59.000Z

299

The Vibration?Rotation Emission Spectrum of Gaseous HZnCl  

Science Journals Connector (OSTI)

The Vibration?Rotation Emission Spectrum of Gaseous HZnCl ... A least-squares fit was performed separately for each of the five observed bands and the lines were fitted using the simple energy level expression15 where G(v1, v2, v3) is the vibrational energy of the (v1, v2, v3) state relative to the zero point energy (ZPE), G(0, 0, 0). ... (16)?Wilson, E. B.; Decius, J. C., Jr.; Cross, P. C. Molecular Vibrations; McGraw-Hill:? New York, 1955. ...

Shanshan Yu; Alireza Shayesteh; Dejian Fu; Peter F. Bernath

2005-04-14T23:59:59.000Z

300

Thematic Questions about Chemical Elements Nature of the chemical elements  

E-Print Network [OSTI]

Be Atomic No. 1 2 3 4 Isotopes 1,2,3 3,4 6,7 9,10 Name Boron Carbon Nitrogen Oxygen Symbol B C N O Atomic No Environment Element Synthesis: Exploration of Chemical Fundamentals Element Synthesis and Isotopes · Elemental Abundance and Isotopes · distribution of elements in the universe · factors that define elemental

Polly, David

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Type B Accident Investigation of the July 12, 2007, Forklift and Pedestrian Accident at the Paducah Gaseous Diffusion Plant, Portsmouth/Paducah Project Office  

Broader source: Energy.gov [DOE]

On July 12, 2007, an employee at the Paducah Gaseous Diffusion Plant (PGDP) was walking alone during her scheduled lunch period.

302

Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report  

SciTech Connect (OSTI)

The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

Not Available

1980-10-01T23:59:59.000Z

303

Using large environmental chamber technique for gaseous contaminant removal equipment test  

SciTech Connect (OSTI)

The US Association of Home Appliance Manufacturers (AHAM) has set a voluntary standard for testing the initial dust-removal capacity of portable air cleaners. In the authors` test of portable air cleaners for the local consumer council, the AHAM method was extended to test the initial removal capacity for gaseous phase pollutants. Also, carbon filters` efficiency change over time in toluene removal on a number of air cleaners was tested. In using a large chamber to carry out these tests, the chamber wall adsorption and re-emission effects were experimentally quantified. These tests indicated that a large chamber, with its wall surface adsorption controlled, is simple and robust to use to quantify the initial cleaning capacity for gaseous phase pollutants. Based on these test results, a large chamber method is proposed to test the performance lifetimes of portable air cleaners. The system advantages of the method over the in-duct performance life test methods are that no continuous air-cleaning system is required and that the chamber`s humidity and temperature can be maintained at the desired values more easily with the combination of a unitary dehumidifier and a bubbler system. This paper will present the trial results with portable air cleaner tests and discuss the large environmental chamber techniques.

Niu, J.; Tung, T.C.W.; Chui, V.W.Y. [Hong Kong Polytechnic Univ. (Hong Kong). Dept. of Building Services Engineering

1998-12-31T23:59:59.000Z

304

Element 103, Lawrencium  

Science Journals Connector (OSTI)

... formed on February 14 by bombarding 3 (Jigm. of californium (element 98) with boron-10 or boron-11 nuclei in a heavy-ion linear accelerator at the Lawrence Radiation Laboratory ...

1961-04-29T23:59:59.000Z

305

Laboratory scale studies on gaseous emissions generated by the incineration of an artificial automotive shredder residue presenting a critical composition  

Science Journals Connector (OSTI)

Car manufacturers must eliminate automotive shredder residues (ASR). Two ways of incineration are of interest: at 850C in municipal waste incinerators or at higher temperatures, above 1100C in cement plants. These processes reduce the mass and the volume of waste to be disposed of in landfills and energy recovery might be possible. Regulations govern the emission of gaseous effluents to control environmental risk. To determine gaseous effluents from a pilot sacle or an industrial incineration plant, an artificial ASR was made by mixing three representative organic polymers present in the real ASR, namely polyvinylchloride, polyurethane and rubber. This mixture was incinerated at 850 and 1100C in laboratory experiments and the analyses of the principal gaseous effluents such as carbon oxides, nitrogen oxides, volatile organic compounds, hydrochloric and hydrocyanic acids and sulphur compounds are presented and discussed. Lastly, in order to simulate artificial ASR behaviour, the composition of the combustion gases at equilibrium was calculated using a Gibbs energy minimisation code.

D. Lanoir; G. Trouv; L. Delfosse

1997-01-01T23:59:59.000Z

306

Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels  

SciTech Connect (OSTI)

A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

2014-12-02T23:59:59.000Z

307

Sandia National Laboratories: CSP: ELEMENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSP: ELEMENTS Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

308

Elemental sulfur recovery process  

DOE Patents [OSTI]

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

309

Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

i i TABLE OF CONTENTS 1. INTRODUCTION 1 2. LINE OF INQUIRY NO. 1 - Future Uses of the Subtitle D Landfill 2 3. LINE OF INQUIRY NO. 2 - OSDF Siting in a Brownfield Area 3 4. LINE OF INQUIRY NO. 3 - Seismic Issues 4 5. LINE OF INQUIRY NO. 4 - Post-Closure Public Use of the OSDF 5 6. LINE OF INQUIRY NO. 5 - Public Communication Plan 7 7. LINE OF INQUIRY NO. 6 - Baseline Schedule 8 8. RECOMMENDATIONS 8 9. ACKNOWLEDGEMENT 10 10. REFERENCES 10 APPENDIX 11 1 1. INTRODUCTION The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that is owned by the US Department of Energy (DOE). Uranium enrichment facilities at PGDP are leased to and operated by the United States Enrichment Corporation. In 1994, PGDP was placed

310

Lessons Learned from Practical Field Experience with High Pressure Gaseous Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5/2010 5/2010 www.cleanvehicle.org 1 Lessons Learned from Practical Field Experience with High Pressure Gaseous Fuels DOE - DOT CNG - H 2 Workshop December 10, 2009 Douglas Horne, PE - CVEF President Rob Adams, P.Eng. - Marathon Technical Services The Facts  NGVs have been used in North America for over 30 years  Codes and Standards (C&S) provide opportunity for safe reliable operation of NGVs  C&S evolve with new technology and field experience  People make mistakes, continuous training is critical for safe operations  Cylinders have a limited life -track your cylinders! 2/25/2010 www.cleanvehicle.org 2 Incidents in North America  Since 1984 CVEF has recorded 97 incidents of which 67 involved CNG vehicles - 37 incidents involve either a CNG leak (15) or a

311

Liquefied gaseous fuels safety and environmental control assessment program: third status report  

SciTech Connect (OSTI)

This Status Report contains contributions from all contractors currently participating in the DOE Liquefied Gaseous Fuels (LG) Safety and Environmental Control Assessment Program and is presented in two principal sections. Section I is an Executive Summary of work done by all program participants. Section II is a presentation of fourteen individual reports (A through N) on specific LGF Program activities. The emphasis of Section II is on research conducted by Lawrence Livermore National Laboratory (Reports A through M). Report N, an annotated bibliography of literature related to LNG safety and environmental control, was prepared by Pacific Northwest Laboratory (PNL) as part of its LGF Safety Studies Project. Other organizations who contributed to this Status Report are Aerojet Energy Conversion Company; Applied Technology Corporation; Arthur D. Little, Incorporated; C/sub v/ International, Incorporated; Institute of Gas Technology; and Massachusetts Institute of Technology. Separate abstracts have been prepared for Reports A through N for inclusion in the Energy Data Base.

Not Available

1982-03-01T23:59:59.000Z

312

Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels  

DOE Patents [OSTI]

An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

2011-11-01T23:59:59.000Z

313

Privatization of the gaseous diffusion plants and impacts on nuclear criticality safety administration  

SciTech Connect (OSTI)

The Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) on July 1, 1993. The USEC is a government-owned business that leases those Gaseous Diffusion Plant (GDP) facilities at the Portsmouth, Ohio, and Paducah, Kentucky, sites from the U.S. Department of Energy (DOE) that are required for enriching uranium. Lockheed Martin Utility Services is the operating contractor for the USEC-leased facilities. The DOE has retained use of, and regulation over, some facilities and areas at the Portsmouth and Paducah sites for managing legacy wastes and environmental restoration activities. The USEC is regulated by the DOE, but is currently changing to regulation under the U.S. Nuclear Regulatory Commission (NRC). The USEC is also preparing for privatization of the uranium enrichment enterprise. These changes have significantly affected the nuclear criticality safety (NCS) programs at the sites.

D`Aquila, D.M.; Holliday, R.T. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States); Dean, J.C. [Lockheed Martin Utility Services, Inc., Paducah, KY (United States)

1996-12-31T23:59:59.000Z

314

Study of technetium uptake in vegetation in the vicinity of the Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

Technetium-99 was measured in vegetation and soil collected on and near the Portsmouth Gaseous Diffusion Plant to obtain an estimate of the soil-to-vegetation concentration factors. The concentration factors appear to be lognormally distributed with a geometric mean of 3.4 (Bq/kg dry wt. tissue per Bq/kg dry wt. soil) and a geometric standard deviation of 4.7. A dose commitment was calculated using a hypothetical 3.7 x 10/sup 10/ Bq Tc-99/year release and the actual CY-1981 concentration release of Tc-99. The radiological significance of Tc-99 in the terrestial food chain is substantially less than previously believed.

Acox, T.A.

1982-01-01T23:59:59.000Z

315

Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback  

E-Print Network [OSTI]

We present an analysis of the galaxy-scale gaseous outflows from the FIRE (Feedback in Realistic Environments) simulations. This suite of hydrodynamic cosmological zoom simulations provides a sample of halos where star-forming giant molecular clouds are resolved to z=0, and features an explicit stellar feedback model on small scales. In this work, we focus on quantifying the gas mass ejected out of galaxies in winds and how this material travels through the halo. We correlate these quantities to star formation in galaxies throughout cosmic history. Our simulations reveal that a significant portion of every galaxy's evolution, particularly at high redshift, is dominated by bursts of star formation, which are followed by powerful gusts of galactic outflow that sweep up a large fraction of gas in the interstellar medium and send it through the circumgalactic medium. The dynamical effect of these outflows can significantly limit the amount of star formation within the affected galaxy. At low redshift, however, su...

Muratov, Alexander L; Faucher-Giguere, Claude-Andre; Hopkins, Philip F; Quataert, Eliot; Murray, Norman

2015-01-01T23:59:59.000Z

316

A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

Boyd, G.J.; Lewis, S.R.; Summitt, R.L. [Safety and Reliability Optimization Services (SAROS), Inc., Knoxville, TN (United States)

1991-12-31T23:59:59.000Z

317

Purex Plant gaseous iodine-129 control capability and process development requirements  

SciTech Connect (OSTI)

This report describes the ability of the Purex Plant to effectively control iodine-129 emissions. Based on historical evidence, the current Purex Plant iodine control system appears capable of meeting the goal of limiting gaseous iodine-129 emissions at the point of discharge to levels stipulated by the Department of Energy (DOE) for an uncontrolled area. Expected decontamination factors (DF`s) with the current system will average about 100 and will be above the calculated DF`s of 2.2 and 87 required to meet DOE yearly average concentration limits for controlled and uncontrolled areas respectively, but below the calculated DF of 352 required for meeting the proposed Environmental Protection Agency (EPA) mass emission limit. Chemical costs for maintaining compliance with the DOE limits will be approximately $166 per metric ton of fuel processed (based on a silver nitrate price of $12.38/oz). Costs will increase in proportion to increases in silver prices.

Evoniuk, C.J.

1981-01-01T23:59:59.000Z

318

Constraints on the microwave opacity of gaseous methane and water vapor in the Jovian atmosphere  

SciTech Connect (OSTI)

Gaseous NH/sub 3/'s microwave absorption in the Jovian atmosphere appears too great to be due to a solar abundance of this gas. The additional capacity of microwave absorption is presently sought in measurements of the microwave absorption of CH/sub 4/ and H/sub 2/O under simulated Jovian conditions at 2.25 GHz, 8.5 GHz, 21.7 GHz; due to large error bars, measurements represent upper limits on the microwave opacity generated by H/sub 2/O and CH/sub 4/. The results obtained are consistent with theoretical expressions for microwave opacity in a Jovian atmosphere at the specified frequencies. The presence of an NH/sub 3/ abundance exceeding the solar level by a factor of 1.5 is indicated by test results. 16 references.

Jenkins, J.M.; Steffes, P.G.

1988-11-01T23:59:59.000Z

319

The performance and the gaseous emissions of two small marine craft diesel engines fuelled with biodiesel  

Science Journals Connector (OSTI)

An experimental investigation of the application of biodiesel (recycled cooking fat and vegetable oil) on small marine craft diesel engines was completed. The tests were performed on Perkins 404C-22 (Marinised) in Boat No. 1 (Fair Countess) and on Nanni Diesel 3.100HE in Boat No. 2 (Aimee 2). The tests were designed and carried out in accordance with the standardised test procedure described in ISO 8178-4 Test Cycle E5. The performance and gaseous emissions of the tested engines were compared and analysed. The test results show that the power output for both trial engines operating with biodiesel were comparable to that fuelled with fossil diesel, but with an increase in fuel consumptions. The \\{NOx\\} emissions were found to be reduced when fuelled with biodiesel. The CO emissions were found to be lower when the engines operated at higher loads using biodiesel.

A.P. Roskilly; S.K. Nanda; Y.D. Wang; J. Chirkowski

2008-01-01T23:59:59.000Z

320

Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates  

DOE Patents [OSTI]

A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

Elliott, Guy R. B. (Los Alamos, NM); Barraclough, Bruce L. (Santa Fe, NM); Vanderborgh, Nicholas E. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Shaping of fuel delivery characteristics for solenoid operated diesel engine gaseous injectors  

SciTech Connect (OSTI)

Solenoid operated gaseous injectors, when compared to conventional liquid fuel diesel injectors, differ in the way the fuel dose and its discharge rate are controlled. While in conventional diesel systems, the fuel dose and its injection rate depends on the fuel injection pump effective stroke and on the plunger diameter and velocity, the solenoid injectors operate in an on-off manner which limits the ability to control the gas discharge rate, resulting in its profile to be basically rectangular in shape. To reduce the gas injection rate at the beginning of the injection process in order to suppress the diesel-knock phenomenon, similar procedures as used in diesel engines could be implemented. One such approach is to use a throttling type pintle nozzle, and another method is to use a double-spring injector with a hole nozzle. The rationale for using such nozzle configurations is that gaseous fuels do not require atomization, and therefore, can be injected at lower discharge velocities than with liquid fuels. The gas delivery characteristics from a solenoid injector has been computer-simulated in order to assess the impact of the investigated three modes of fuel discharge rate control strategies. The simulation results confirmed that the gas dose and its discharge rate can be shaped as required. An experimental set-up is described to measure the gas discharge rate using a special gas injection mass flow rate indicator with a strain-gage sensor installed at the entry to a long tube, similar to that proposed by Bosch for liquid fuel volumetric flow rate measurements.

Hong, H.; Krepec, T.; Kekedjian, H.

1996-09-01T23:59:59.000Z

322

Inverted end-Hall-type low-energy high-current gaseous ion source  

SciTech Connect (OSTI)

A novel approach to low-energy, high-current, gaseous ion beam generation was explored and an ion source based on this technique has been developed. The source utilizes a dc high-current (up to 20 A) gaseous discharge with electron injection into the region of ion generation. Compared to the conventional end-Hall ion source, the locations of the discharge anode and cathode are inverted: the cathode is placed inside the source and the anode outside, and correspondingly, the discharge current is in the opposite direction. The discharge operates in a diverging axial magnetic field, similar to the end-Hall source. Electron generation and injection is accomplished by using an additional arc discharge with a ''cold'' (filamentless) hollow cathode. Low plasma contamination is achieved by using a low discharge voltage (avoidance of sputtering), as well as by a special geometric configuration of the emitter discharge electrodes, thereby filtering (removing) the erosion products stemming from the emitter cathode. The device produces a dc ion flow with energy below 20 eV and current up to 2.5 A onto a collector of 500 cm{sup 2} at 25 cm from the source edge, at a pressure {>=}0.02 Pa and gas flow rate {>=}14 SCCM. The ion energy spread is 2 to 3 eV (rms). The source is characterized by high reliability, low maintenance, and long lifetime. The beam contains less than 0.1% of metallic ions. The specific electric energy consumption is 400 eV per ion registered at the collector. The source operates with noble gases, nitrogen, oxygen, and hydrocarbons. Utilizing biasing, it can be used for plasma sputtering, etching, and other ion technologies.

Oks, E. M.; Vizir, A. V.; Shandrikov, M. V.; Yushkov, G. Yu.; Grishin, D. M.; Anders, A.; Baldwin, D. A. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); 4Wave, Inc., Sterling, Virginia 20166 (United States)

2008-02-15T23:59:59.000Z

323

Reduction of particulate matter and gaseous emission from marine diesel engines using a catalyzed particulate filter  

Science Journals Connector (OSTI)

Diesel engines are used widely as the power sources of coastal ships and international vessels primarily due to their high thermal efficiency, high fuel economy and durable performance. However, the gaseous and solid substances exhausted from diesel engines during the combustion process cause air pollution, in particular around harbor regions. In order to effectively reduce particulate matter and gaseous pollution emissions, a catalyzed particulate filter was equipped in the tail pipe of a marine diesel engine. The engine's performance and emission characteristics under various engine speeds and torques were measured using a computerized engine data control and acquisition system accompanied with an engine dynamometer. The effectiveness of installing a catalyzed particulate filter on the reduction of pollutant emissions was examined. The experimental results show that the exhaust gas temperature, carbon monoxide and smoke opacity were reduced significantly upon installation of the particulate filter. In particular, larger conversion of carbon monoxide to carbon dioxide and thus larger CO2 and lower CO emissions were observed for the marine diesel engine equipped with a catalyzed particulate filter and operated at higher engine speeds. This is presumably due to enhancement of the catalytic oxidation reaction that results from an exhaust gas with stronger stirring motion passing through the filter. The absorption of partial heating energy from the exhaust gas by the physical structure of the particulate filter resulted in a reduction in the exhaust gas temperature. The particulate matter could be burnt to a greater extent due to the effect of the catalyst coated on the surface of the particulate filter. Moreover, the fuel consumption rate was increased slightly while the excess oxygen emission was somewhat decreased with the particulate filter.

Cherng-Yuan Lin

2002-01-01T23:59:59.000Z

324

Selective Gaseous Extraction: Research, Development and Training for Isotope Production, Final Technical Report  

SciTech Connect (OSTI)

General Atomics and the University of Missouri Research Reactor (MURR) completed research and development of selective gaseous extraction of fission products from irradiated fuel, which included training and education of MURR students. The process used porous fuel and after irradiation flowed product gases through the fuel to selectively removed desired fission products with the primary goal of demonstrating the removal of rhodium 105. High removal rates for the ruthenium/rhodium (Ru/Rh), tellurium/iodine (Te/I) and molybdenum/technetium (Mo/Tc) series were demonstrated. The success of this research provides for the reuse of the target for further production, significantly reducing the production of actinide wastes relative to processes that dissolve the target. This effort was conducted under DOE funding (DE-SC0007772). General Atomics objective of the project was to conduct R&D on alternative methods to produce a number of radioactive isotopes currently needed for medical and industry applications to include rhodium-105 and other useful isotopes. Selective gaseous extraction was shown to be effective at removing radioisotopes of the ruthenium/rhodium, tellurium/iodine and molybdenum/technetium decay chains while having trace to no quantities of other fission products or actinides. This adds a new, credible method to the area of certain commercial isotope production beyond current techniques, while providing significant potential reduction of process wastes. Waste reduction, along with reduced processing time/cost provides for superior economic feasibility which may allow domestic production under full cost recovery practices. This provides the potential for improved access to domestically produced isotopes for medical diagnostics and treatment at reduced cost, providing for the public good.

Bertch, Timothy C, [General Atomics

2014-03-31T23:59:59.000Z

325

Trace element behavior in the fluidized bed gasification of solid recovered fuels A thermodynamic study  

Science Journals Connector (OSTI)

Gasification of biomass and recycled fuels is of particular interest for the efficient production of power and heat. Trace elements present as impurities in the product gas should be removed very efficiently. The objective of this work has been to develop and test thermodynamic models for the reactions of trace elements with chlorine and sulfur in the gasification processes of recycled fuels. In particular, the chemical reactions of trace elements with main thermochemical conversion products, main ash components, and bed and sorbent material are implemented into the model. The possibilities of gas cleaning devices in condensing and removing the trace element compounds are studied by establishing the volatilization tendency of trace element compounds in reducing gases. The results obtained with the model are compared with the measured data of trace elements of gasification experiments using solid recovered fuel as feedstock. Some corresponding studies in the literature are also critically reviewed and compared. The observed discrepancies may be attributed to differences in thermodynamic databases applied and experimental arrangements. The method of removing gaseous trace elements by condensation is already in use in the 160MWth waste gasification plant in Lahti, Finland.

Jukka Konttinen; Rainer Backman; M. Hupa; Antero Moilanen; Esa Kurkela

2013-01-01T23:59:59.000Z

326

Review of the Portsmouth Gaseous Diffusion Plant Work Planning and Control Activities Prior to Work Execution, January 2013  

Broader source: Energy.gov (indexed) [DOE]

Review of the Review of the Portsmouth Gaseous Diffusion Plant Work Planning and Control Activities Prior to Work Execution January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background........................................................................................................................................... 1

327

New C-H Stretching Vibrational Spectral Features in the Raman Spectra of Gaseous and Liquid Ethanol  

E-Print Network [OSTI]

New C-H Stretching Vibrational Spectral Features in the Raman Spectra of Gaseous and Liquid Ethanol Traditionally, the Raman spectrum of ethanol in the C-H vibrational stretching region between 2800 cm-1 and 3100, and the -CH3 antisymmetric stretching. In this report, new Raman spectral features were observed for ethanol

Liu, Shilin

328

The Gaseous Electronics Conference radio-frequency reference cell: A defined parallel-plate radio-frequency system for experimental  

E-Print Network [OSTI]

The Gaseous Electronics Conference radio-frequency reference cell: A defined parallel-plate radio-frequency publication 3 September1993) A "referencecell" for generatingradio-frequency(rf) glow dischargesin gasesat a frequencyof 13.56MHz is described.The referencecell provides an experimental platform for comparing plasma

Kushner, Mark

329

Two-dimensional position-sensitive gaseous detectors for high-resolution neutron and X-ray diffraction  

Science Journals Connector (OSTI)

Two-dimensional position-sensitive gaseous detectors have been developed at the Geesthacht Neutron Facility (GeNF) for high-resolution...2, 3He/CF4 and Xe/CO2, respectively. One neutron detector is used at the AR...

M. Marmotti; M. Haese-Seiller; R. Kampmann

2002-12-01T23:59:59.000Z

330

EA-1927: Conveyance of Land and Facilities at the Paducah Gaseous Diffusion Plant for Economic Development Purposes, Paducah, Kentucky  

Broader source: Energy.gov [DOE]

DOEs Portsmouth/Paducah Project Office is preparing an EA for a proposal to convey DOE land and facilities at the Paducah Gaseous Diffusion Plant to the Paducah Area Community Reuse Organization and potentially other parties in furtherance of reindustrialization and reuse for economic development purposes.

331

Rare Earth Elements:  

Science Journals Connector (OSTI)

...were also extracted as by-products of uranium mining from conglomerates at Elliot Lake...toxic waste lakes, acrid air, and high cancer rates in the Bayan Obo area. The environmental...Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary...

Anton R. Chakhmouradian; Frances Wall

332

Delafosse, D. 2012. "Chapter 9 -Hydrogen Effects on the Plasticity of Face Centred Cubic (fcc) Crystals." In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, edited by Richard P Gangloff and B P Somerday,  

E-Print Network [OSTI]

) Crystals." In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, edited by Richard P-11May2014 Author manuscript, published in "Gaseous hydrogen embrittlement of materials in energy) Crystals." In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, edited by Richard P

Paris-Sud XI, Université de

333

Element Crossword Puzzles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crossword Puzzles Crossword Puzzles Welcome to It's Elemental - Element Crossword Puzzles! Use the clues provided to solve each crossword puzzle. To place letters on the puzzle, first select the clue you are answering from the pull-down menu and then enter your answer in the text box. Press the 'return' key on your keyboard when you are done. Correct letters will be green while incorrect letters will be red. Good luck and have fun! If you are reading this, your browser is NOT running JavaScript. JavaScript MUST be enabled for this section of our site to work. Once you have turned JavaScript on, reload this page and this warning will go away. Puzzle 1 - It's a Gas! Puzzle 2 - Easy Symbols Puzzle 3 - Strange Symbols Puzzle 4 - Known to the Ancients Puzzle 5 - The Alkali Metals

334

LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults  

SciTech Connect (OSTI)

The US Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element failure-propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurance expected in the US, USSR, France, UK, Japan, and West Germany is outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission-product monitors are briefly discussed to better realize the operational limits.

Warinner, D.K.

1980-01-01T23:59:59.000Z

335

Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue  

Science Journals Connector (OSTI)

Abstract The thermochemical behaviors during co-combustion of coal gangue (CG), soybean stalk (SS), sawdust (SD) and their blends prepared at different ratios have been determined via thermogravimetric analysis. The simulate experiments in a fixed bed reactor were performed to investigate the partition behaviors of trace elements during co-combustion. The combustion profiles of biomass was more complicated than that of coal gangue. Ignition property and thermal reactivity of coal gangue could be enhanced by the addition of biomass. No interactions were observed between coal gangue and biomass during co-combustion. The volatilization ratios of trace elements decrease with the increasing proportions of biomass in the blends during co-combustion. Based on the results of heating value, activation energy, base/acid ratio and gaseous pollutant emissions, the blending ratio of 2030% biomass content is regarded as optimum composition for blending and could be applied directly at current combustion application with few modifications.

Chuncai Zhou; Guijian Liu; Ting Fang; Paul Kwan Sing Lam

2015-01-01T23:59:59.000Z

336

Decay Energies of Gaseous Fission Products and their Daughters for A=88to93  

Science Journals Connector (OSTI)

A systematic study of ?-decay energies has been made for mass-separated activities of Kr gaseous fission products and their daughters at the TRISTAN on-line separator facility at the Ames Laboratory research reactor. A well-type plastic scintillator was used in coincidence with a Ge(Li) ? detector to determine ?-group end-point energies and deduce Q values. The following ?-decay energies have been determined: Kr88, 2.93 0.03 MeV; Rb88, 5.30 0.06 MeV; Kr89, 4.93 0.06 MeV; Kr90, 4.35 0.05 MeV; Rb90, 6.32 0.07 MeV; Kr91, 6.12 0.07 MeV; Rb91, 5.68 0.04 MeV; Kr92, 5.97 0.08 MeV; Rb92, 7.58 0.15 MeV; Sr92, 1.93 0.03 MeV; Kr93, 8.3 0.5 MeV; and Rb93, 7.23 0.10 MeV. The decay energies are compared with previous measurements, systematics predictions, and two currently accepted mass relations. The energies are used to predict the ?-decay energies for 13 additional nuclei by means of systematics.

J. R. Clifford; W. L. Talbert; Jr.; F. K. Wohn; J. P. Adams; J. R. McConnell

1973-06-01T23:59:59.000Z

337

Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants  

SciTech Connect (OSTI)

Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids, producing a small atomic uranium vapor plume. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement is independent of chemical form and degree of dilution with nuisance dust and other materials. LAARS has high relative precision and detection limits approaching the femtogram range for U-235. The sample is scanned and assayed point-by-point at rates reaching 1 million measurements/hour, enabling LAARS to detect and analyze uranium in trace samples. The spectrometer is assembled using primarily commercially available components and features a compact design and automated analysis.Two specific gaseous centrifuge enrichment plant (GCEP) applications of the spectrometer are currently under development: 1) LAARS-Environmental Sampling (ES), which collects and analyzes aerosol particles for GCEP misuse detection and 2) LAARS-Destructive Assay (DA), which enables onsite enrichment DA sample collection and analysis for protracted diversion detection. The two applications propose game-changing technological advances in GCEP safeguards verification.

Anheier, Norman C.; Cannon, Bret D.; Kulkarni, Gourihar R.; Munley, John T.; Nelson, Danny A.; Qiao, Hong (Amy) [Amy; Phillips, Jon R.

2012-07-17T23:59:59.000Z

338

Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride power  

SciTech Connect (OSTI)

A parametric rate-equation model is described which depicts the time dependent behavior of the isotopic exchange process occurring between the solid and gas phases in gaseous hydrogen (deuterium) flows through packed-powder palladium deuteride (hydride) beds. The exchange mechanism is assumed to be rate-limited by processes taking place on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with recent experimental measurements of isotope exchange in the ..beta..-phase hydrogen/palladium system and, using a literature value of ..cap alpha.. = 2.4, a good description of the experimental data is obtained for p approx. 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of ..cap alpha.. values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

Melius, C F; Foltz, G W

1987-01-01T23:59:59.000Z

339

Gravitational drag on a point mass in hypersonic motion through a gaseous medium  

E-Print Network [OSTI]

We explore a ballistic orbit model to infer the gravitational drag force on an accreting point mass M, such as a black hole, moving at a hypersonic velocity v_{0} through a gaseous environment of density \\rho_{0}. The streamlines blend in the flow past the body and transfer momentum to it. The total drag force acting on the body, including the nonlinear contribution of those streamlines with small impact parameter that bend significantly and pass through a shock, can be calculated by imposing conservation of momentum. In this fully analytic approach, the ambiguity in the definition of the lower cut-off distance $r_{\\rm min}$ in calculations of the effect of dynamical friction is removed. It turns out that $r_{\\rm min}=\\sqrt{e}GM/2v_{0}^{2}$. Using spherical surfaces of control of different sizes, we carry out a successful comparison between the predicted drag force and the one obtained from a high resolution, axisymmetric, isothermal flow simulation. We demonstrate that ballistic models are reasonably success...

Canto, J; Esquivel, A; Sanchez-Salcedo, F J

2011-01-01T23:59:59.000Z

340

Analysis of gaseous-phase stable and radioactive isotopes in the unsaturated zone, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy provides that agency with data for evaluating volcanic tuff beneath Yucca Mountain, Nevada, to determine its suitability for a potential repository of high-level radioactive waste. Thickness of the unsaturated zone, which consists of fractured, welded and nonwelded tuff, is about 1640 to 2460 feet (500 to 750 meters). One question to be resolved is an estimate of minimum ground-water traveltime from the disturbed zone of the potentail repository to the accessible environment. Another issue is the potential for diffusive or convective gaseous transport of radionuclides from an underground facility in the unsaturated zone to the accessible environment. Gas samples were collected at intervals to a depth of 1200 feet from the unsaturated zone at Yucca Mountain, Nevada. Samples were analyzed for major atmospheric gases; carbon dioxide in the samples was analyzed for carbon-14 activity and for {delta}2!{sup 3}C; water vapor in the samples was analyzed for deuterium and oxygen-18. These data could provide insight into the nature of unsaturated zone transport processes. 15 refs., 4 figs., 4 tabs.

Yang, I.C.; Haas, H.H.; Weeks, E.P.; Thorstenson, D.C.

1985-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DYNAMICAL FRICTION IN A GASEOUS MEDIUM WITH A LARGE-SCALE MAGNETIC FIELD  

SciTech Connect (OSTI)

The dynamical friction force experienced by a massive gravitating body moving through a gaseous medium is modified by sufficiently strong large-scale magnetic fields. Using linear perturbation theory, we calculate the structure of the wake generated by, and the gravitational drag force on, a body traveling in a straight-line trajectory in a uniformly magnetized medium. The functional form of the drag force as a function of the Mach number ({identical_to} V{sub 0}/c{sub s} , where V{sub 0} is the velocity of the body and c{sub s} is the sound speed) depends on the strength of the magnetic field and on the angle between the velocity of the perturber and the direction of the magnetic field. In particular, the peak value of the drag force is not near Mach number {approx}1 for a perturber moving in a sufficiently magnetized medium. As a rule of thumb, we may state that for supersonic motion, magnetic fields act to suppress dynamical friction; for subsonic motion, they tend to enhance dynamical friction. For perturbers moving along the magnetic field lines, the drag force at some subsonic Mach numbers may be stronger than at supersonic velocities. We also mention the relevance of our findings to black hole coalescence in galactic nuclei.

Sanchez-Salcedo, F. J., E-mail: jsanchez@astroscu.unam.mx [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico City (Mexico)

2012-02-01T23:59:59.000Z

342

308nm photochemical reaction of gaseous HNO3 and benzene on ?-Fe2O3 surfaces  

Science Journals Connector (OSTI)

Abstract The 308nm photochemical reactions of nitric acid (HNO3) and benzene in the gas phase and on ?-Fe2O3 surface at 298K was investigated by using Fourier transform infrared spectroscopy (FT-IR) combined with high performance liquid chromatography (HPLC). The concentration and yield of HONO and p-nitrophenol (p-NP) had been examined as a function of reaction time, benzene initial concentration and relative humidity on photochemical reaction. The results showed that gaseous HNO3 did not directly react with benzene in the dark, and p-NP was formed irradiation under 308nm UV light. When HNO3 initial concentration was 400Pa and benzene was 300Pa, the illumination time was 100min, the concentration of p-NP produced from the photochemical reaction of HNO3 and benzene on ?-Fe2O3 surface was about 3.08 times higher than that in the gas phase. In the meantime, while reaction time was 40min and relative humidity was 70%, the concentration of HONO and p-NP formed on ?-Fe2O3 surface were about 3.55 and 2.51 times higher than those in the gas phase, and the yield of p-NP was 3.74% and 2.99%, respectively. Surfaces effect played a leading role in photochemical reaction of HNO3 and benzene on ?-Fe2O3 surface.

Jun Zhao; Chengzhu Zhu; Jun Lu; Jiaji Zou; Shuchuan Peng; Tianhu Chen

2014-01-01T23:59:59.000Z

343

Variable Emission from a Gaseous Disc around a Metal-Polluted White Dwarf  

E-Print Network [OSTI]

We present the discovery of strongly variable emission lines from a gaseous disc around the DA white dwarf SDSS J1617+1620, a star previously found to have an infrared excess indicative of a dusty debris disc formed by the tidal disruption of a rocky planetary body. Time-series spectroscopy obtained during the period 2006-2014 has shown the appearance of strong double-peaked Ca II emission lines in 2008. The lines were weak, at best, during earlier observations, and monotonically faded through the remainder of our monitoring. Our observations represent unambiguous evidence for short-term variability in the debris environment of evolved planetary systems. Possible explanations for this extraordinary variability include the impact onto the dusty disc of either a single small rocky planetesimal, or of material from a highly eccentric debris tail. The increase in flux from the emission lines is sufficient that similar events could be detected in the broadband photometry of ongoing and future large-area time domai...

Wilson, David J; Koester, Detlev; Raddi, Roberto; Breedt, Elm; Southworth, John; Parsons, Steven G

2014-01-01T23:59:59.000Z

344

Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

1994-05-24T23:59:59.000Z

345

Paducah Gaseous Diffusion Plant proposed pilot pump-and-treat project. Final report  

SciTech Connect (OSTI)

On March 23, 1992, R.C. Sleeman of the Department of Energy, Oak Ridge Operations Office requested that a Groundwater Corrective Actions Team be assembled to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at the Paducah Gaseous Diffusion Plant. In addition to other suggestions, the Team recommended that further characterization data be obtained for the plume. In the Fall of 1993 additional, temporary well points were installed so that groundwater samples from the shallow groundwater system and the Regional Gravel Aquifer (RGA) could be obtained to provide a three-dimensional view of groundwater contamination in the region of the plume. The results indicate that pure-phase DNAPL (trichloroethylene [TCE]) probably are present in the source area of the plume and extend in depth to the base of the RGA. Because the DNAPL likely will represent a source of a dissolved phase plume for decades it is essential that source containment take place. The Team recommends that although effective hydraulic containment can be achieved, other alternatives should be considered. For example, recent advances in emplacing low permeability barrier walls to depths of 100 to 150 ft make it possible to consider encirclement of the source of the Northwest plume.

Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Huff, D.D.; Jones, K.S.; Nickelson, M.D.; Rightmire, C.T.

1994-01-01T23:59:59.000Z

346

Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

Lee, D.W.; Wang, J.C.; Kocher, D.C.

1995-06-01T23:59:59.000Z

347

Plutonium and Other Transuranium Elements  

Science Journals Connector (OSTI)

Glenn T. Seaborg has assisted at the birth of three of the four new transuranium elements. ... GLENN T. SEABORG ...

GLENN T. SEABORG

1947-02-10T23:59:59.000Z

348

A DUSTY COMPONENT TO THE GASEOUS DEBRIS DISK AROUND THE WHITE DWARF SDSS J1228+1040  

SciTech Connect (OSTI)

We present Infrared Spectrometer And Array Camera (ISAAC) spectroscopy and ISAAC, UKIDSS, and Spitzer Space Telescope broadband photometry of SDSS J1228+1040-a white dwarf for which evidence of a gaseous metal-rich circumstellar disk has previously been found from optical emission lines. The data show a clear excess in the near- and mid-infrared (IR), providing compelling evidence for the presence of dust in addition to the previously identified gaseous debris disk around the star. The IR excess can be modeled in terms of an optically thick but geometrically thin disk. We find that the inner disk temperatures must be relatively high ({approx}1700 K) in order to fit the spectral energy distribution in the near-IR. These data provide the first evidence for the coexistence of both gas and dust in a disk around a white dwarf, and show that their presence is possible even around moderately hot ({approx}22,000 K) stars.

Brinkworth, C. S.; Hoard, D. W. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Gaensicke, B. T.; Marsh, T. R. [Department of Physics and Astronomy, University of Warwick, Warwick CV4 7AL (United Kingdom); Tappert, C. [Dpto de AstronomIa y AstrofIsica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)

2009-05-10T23:59:59.000Z

349

Influence of continuous and discontinuous supplemental lighting on the daily variation in gaseous exchange in greenhouse cucumber  

Science Journals Connector (OSTI)

Stomatal conductance, transpiration, net photosynthesis and internal CO2 concentration were measured on the fifth leaf of 36- to 43-day-old cucumber (Cucumis sativus L.) plants. Three series of measurements followed the variations during a diurnal period in gaseous exchange of plants under three light regimes. One group of plants received supplemental lighting split into two periods (04:0008:00 and 16:0022:00) for a continuous 18-h photoperiod. A second group was illuminated between 19:00 and 05:00 for a discontinuous 18-h photoperiod. The last group received only natural light (control). Supplemental lighting increased the stomatal conductance and transpiration. Extending the photoperiod with supplemental lighting increased the net photosynthesis rate and extended the period of CO2 assimilation. The internal CO2 concentration varied inversely with the CO2 assimilation rate. The continuity or discontinuity of the photoperiod did not affect gaseous exchange.

Gilles Turcotte; Andr Gosselin

1989-01-01T23:59:59.000Z

350

Synthesis of reversible sequential elements  

Science Journals Connector (OSTI)

To construct a reversible sequential circuit, reversible sequential elements are required. This work presents novel designs of reversible sequential elements such as the D latch, JK latch, and T latch. Based on these reversible latches, we construct ... Keywords: Reversible logic, sequential circuits, sequential elements

Min-Lun Chuang; Chun-Yao Wang

2008-01-01T23:59:59.000Z

351

Chemical characterization of element 112  

Science Journals Connector (OSTI)

... directly comparing the adsorption characteristics of 283112 to that of mercury and the noble gas radon, we find that element 112 is very volatile and, unlike ... , we find that element 112 is very volatile and, unlike radon, reveals a metallic interaction with the gold surface. These adsorption characteristics establish element 112 ...

R. Eichler; N. V. Aksenov; A. V. Belozerov; G. A. Bozhikov; V. I. Chepigin; S. N. Dmitriev; R. Dressler; H. W. Gggeler; V. A. Gorshkov; F. Haenssler; M. G. Itkis; A. Laube; V. Ya. Lebedev; O. N. Malyshev; Yu. Ts. Oganessian; O. V. Petrushkin; D. Piguet; P. Rasmussen; S. V. Shishkin; A. V. Shutov; A. I. Svirikhin; E. E. Tereshatov; G. K. Vostokin; M. Wegrzecki; A. V. Yeremin

2007-05-03T23:59:59.000Z

352

The CEBAF Element Database  

SciTech Connect (OSTI)

With the inauguration of the CEBAF Element Database (CED) in Fall 2010, Jefferson Lab computer scientists have taken a step toward the eventual goal of a model-driven accelerator. Once fully populated, the database will be the primary repository of information used for everything from generating lattice decks to booting control computers to building controls screens. A requirement influencing the CED design is that it provide access to not only present, but also future and past configurations of the accelerator. To accomplish this, an introspective database schema was designed that allows new elements, types, and properties to be defined on-the-fly with no changes to table structure. Used in conjunction with Oracle Workspace Manager, it allows users to query data from any time in the database history with the same tools used to query the present configuration. Users can also check-out workspaces to use as staging areas for upcoming machine configurations. All Access to the CED is through a well-documented Application Programming Interface (API) that is translated automatically from original C++ source code into native libraries for scripting languages such as perl, php, and TCL making access to the CED easy and ubiquitous.

Theodore Larrieu, Christopher Slominski, Michele Joyce

2011-03-01T23:59:59.000Z

353

Review of the Portsmouth Gaseous Diffusion Plant Work Planning and Control Activities Prior to Work Execution, January 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Independent Oversight Review of the Independent Oversight Review of the Portsmouth Gaseous Diffusion Plant Work Planning and Control Activities Prior to Work Execution January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background........................................................................................................................................... 1

354

Independent Oversight Review of Preparedness for Severe Natural Phenomena Events at the Portsmouth Gaseous Diffusion Plant, November 2013  

Broader source: Energy.gov (indexed) [DOE]

of of Preparedness for Severe Natural Phenomena Events at the Portsmouth Gaseous Diffusion Plant May 2011 November 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

355

An evaluation of gaseous sterilants under various conditions and their effect upon the heat resistance of Salmonella  

E-Print Network [OSTI]

Gaseous Sterilant Exposure Chamber Environment for Gas Exposure Tests with Formaldehyde Preparation for Heat Treatment Heat Treatment Test with Beta-propiolactone Test with Penn Gas 10 10 10 10 12 IV. RESULTS Test wi. th Formaldehyde Test... with BPL Test with Penn Gas 14 14 17 19 V DISCUSSION 23 iv Chapter VI. SUMMARY AND CONCLUSIONS LITERATURE CITED . . . , ~ ~ ~ . 26 47 LIST OF TABLES Table Page Effect of formaldehyde (conc. 0. 005 ml/L) with subsequent heat treatment (50 C...

Ali, Md. Razzak

1966-01-01T23:59:59.000Z

356

Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine Part 1: Gaseous and Particulate Matter Emissions  

Science Journals Connector (OSTI)

Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine Part 1: Gaseous and Particulate Matter Emissions ... Center of Excellence for Aerospace Particulate Emissions Reduction Research, Missouri University of Science and Technology, Rolla, Missouri 65409, United States ... Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. ...

Prem Lobo; Lucas Rye; Paul I. Williams; Simon Christie; Ilona Uryga-Bugajska; Christopher W. Wilson; Donald E. Hagen; Philip D. Whitefield; Simon Blakey; Hugh Coe; David Raper; Mohamed Pourkashanian

2012-08-22T23:59:59.000Z

357

PAndAS IN THE MIST: THE STELLAR AND GASEOUS MASS WITHIN THE HALOS OF M31 AND M33  

SciTech Connect (OSTI)

Large-scale surveys of the prominent members of the Local Group have provided compelling evidence for the hierarchical formation of massive galaxies, revealing a wealth of substructure that is thought to be the debris from ancient and ongoing accretion events. In this paper, we compare two extant surveys of the M31-M33 subgroup of galaxies: the Pan-Andromeda Archaeological Survey of the stellar structure, and a combination of observations of the H I gaseous content, detected at 21 cm. Our key finding is a marked lack of spatial correlation between these two components on all scales, with only a few potential overlaps between stars and gas. The paucity of spatial correlation significantly restricts the analysis of kinematic correlations, although there does appear to be H I kinematically associated with the Giant Stellar Stream where it passes the disk of M31. These results demonstrate that different processes must significantly influence the dynamical evolution of the stellar and H I components of substructures, such as ram pressure driving gas away from a purely gravitational path. Detailed modeling of the offset between the stellar and gaseous substructures will provide a determination of the properties of the gaseous halos of M31 and M33.

Lewis, Geraint F. [Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006 (Australia)] [Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006 (Australia); Braun, Robert [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)] [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); McConnachie, Alan W. [Dominion Astrophysical Observatory, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)] [Dominion Astrophysical Observatory, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Irwin, Michael J.; Chapman, Scott C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)] [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Ibata, Rodrigo A.; Martin, Nicolas F. [Observatoire de Strasbourg, 11, rue de l'Universite, F-67000 Strasbourg (France)] [Observatoire de Strasbourg, 11, rue de l'Universite, F-67000 Strasbourg (France); Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)] [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Fardal, Mark [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States)] [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Dubinski, John [Department of Astronomy and Astrophysics, 50 St. George Street, University of Toronto, ON M5S 3H4 (Canada)] [Department of Astronomy and Astrophysics, 50 St. George Street, University of Toronto, ON M5S 3H4 (Canada); Widrow, Larry [Department of Physics, Queen's University, 99 University Avenue, Kingston, ON K7L 3N6 (Canada)] [Department of Physics, Queen's University, 99 University Avenue, Kingston, ON K7L 3N6 (Canada); Mackey, A. Dougal [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia)] [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Babul, Arif [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada)] [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Tanvir, Nial R. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)] [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Rich, Michael, E-mail: geraint.lewis@sydney.edu.au [Division of Astronomy, University of California, 8979 Math Sciences, Los Angeles, CA 90095-1562 (United States)] [Division of Astronomy, University of California, 8979 Math Sciences, Los Angeles, CA 90095-1562 (United States)

2013-01-20T23:59:59.000Z

358

Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October, 2001)  

E-Print Network [OSTI]

High Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern to the involved experimenters. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors and related detector types with their own specific aging effects have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. In light of these developments and as detector aging is a notoriously complex field, the goal of the workshop was to provide a forum for interested experimentalists to review the progress in understanding of aging effects and to exchange recent experiences. A brief summary of the main results and experiences reported at the 2001 workshop is presented, with the goal of providing a systematic review of aging effects in state-of-the-art and future gaseous detectors.

M. Titov; M. Hohlmann; C. Padilla; N. Tesch

2002-04-04T23:59:59.000Z

359

Definition: Element | Open Energy Information  

Open Energy Info (EERE)

Element Element Jump to: navigation, search Dictionary.png Element Any electrical device with terminals that may be connected to other electrical devices such as a generator, transformer, circuit breaker, bus section, or transmission line. An element may be comprised of one or more components.[1] View on Wikipedia Wikipedia Definition Electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. Any electrical network can be analysed as multiple, interconnected electrical elements in a schematic diagram or circuit diagram, each of which affects the voltage in the network or current through the network. These ideal electrical elements represent real, physical electrical or electronic components but

360

Photoconductive circuit element reflectometer  

DOE Patents [OSTI]

A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.

Rauscher, C.

1987-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Photoconductive circuit element reflectometer  

DOE Patents [OSTI]

A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

Rauscher, Christen (Alexandria, VA)

1990-01-01T23:59:59.000Z

362

Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1  

SciTech Connect (OSTI)

The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

Becker, D.L.; Green, D.J.; Lindquist, M.R.

1993-07-01T23:59:59.000Z

363

Modifying woody plants for efficient conversion to liquid and gaseous fuels  

SciTech Connect (OSTI)

The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. (Institute of Paper Science and Technology, Atlanta, GA (USA))

1990-07-01T23:59:59.000Z

364

THE NEW ELEMENT CALIFORNIUM (ATOMIC NUMBER 98)  

E-Print Network [OSTI]

shell, as occurs in rare earth elements at the point ofand homologous rare earth elements in high temperaturethe homologous rare earth elements. (2) Its distinctive high

Thompson, S.G.; Street, K.,Jr.; Ghiorso, A.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

365

Resistive hydrogen sensing element  

DOE Patents [OSTI]

Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

Lauf, Robert J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

366

Electronic Structure of the Heaviest Elements  

E-Print Network [OSTI]

well known grou~ 14 rare earth elements of atomic numbersproposed for the rare earth elements because these 14

Seaborg, G.T.

2008-01-01T23:59:59.000Z

367

Gaseous fission product management for molten salt reactors and vented fuel systems  

SciTech Connect (OSTI)

Fission gas disposal is one of the unresolved difficulties for Molten Salt Reactors (MSRs) and advanced reactors with vented fuel systems. As these systems operate, they produce many radioactive isotopes of xenon and krypton (e.g. {sup 135}Xe t{sub 1/2} = 9.14 hours and {sup 85}Kr t{sub 1/2}= 10.73 years). Removing these gases proves vital to the success of such reactor designs for two reasons. First, the gases act as large neutron sinks which decrease reactivity and must be counterbalanced by increasing fuel loading. Second, for MSRs, inert fission product gases naturally separate quickly from high temperature salts, thus creating high vapor pressure which poses safety concerns. For advanced reactors with solid vented fuel, the gases are allowed to escape into an off-gas system and thus must be managed. Because of time delays in transport of fission product gases in vented fuel systems, some of the shorter-lived radionuclides will decay away thereby reducing the fission gas source term relative to an MSR. To calculate the fission gas source term of a typical molten salt reactor, we modeled a 1000 MWe graphite moderated thorium MSR similar to that detailed in Mathieu et al. [1]. The fuel salt used in these calculations was LiF (78 mole percent) - (HN)F 4 (22 mole percent) with a heavy nuclide composition of 3.86% {sup 233}U and 96.14% {sup 232}Th by mass. Before we can remove the fission product gases produced by this reactor configuration, we must first develop an appropriate storage mechanism. The gases could be stored in pressurized containers but then one must be concerned about bottle failure. Methods to trap noble gases in matrices are expensive and complex. Alternatively, there are direct storage/disposal options: direct injection into the Earth or injecting a grout-based product into the Earth. Advances in drilling technologies, hydro fracture technologies, and methods for the sequestration of carbon dioxide from fossil fuel plants are creating new options for disposal of fission gas wastes. In each option, lithostatic pressure, a kilometer or more underground, eliminates the pressure driving force for noble gas release and dissolves any untrapped gas in deep groundwater or into incorporated solid waste forms. The options, challenges, and potential for these methods to dispose of gaseous fission products are described. With this research, we hope to help both MSRs and other advanced reactors come one step closer to commercialization. (authors)

Messenger, S. J. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., 54-1717, Cambridge, MA 02139 (United States); Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., 24-207, Cambridge, MA 02139 (United States); Massie, M. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., NW12-230, Cambridge, MA 02139 (United States)

2012-07-01T23:59:59.000Z

368

Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants  

SciTech Connect (OSTI)

Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energys (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids producing a small plume containing uranium atoms. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement has high relative precision and detection limits approaching the femtogram range for uranium. It is independent of chemical form and degree of dilution with nuisance dust and other materials. High speed sample scanning and pinpoint characterization allow measurements on millions of particles/hour to detect and analyze the enrichment of trace uranium in samples. The spectrometer is assembled using commercially available components at comparatively low cost, and features a compact and low power design. Future designs can be engineered for reliable, autonomous deployment within an industrial plant environment. Two specific applications of the spectrometer are under development: 1) automated unattended aerosol sampling and analysis and 2) on-site small sample destructive assay measurement. The two applications propose game-changing technological advances in gaseous centrifuge enrichment plant (GCEP) safeguards verification. The aerosol measurement instrument, LAARS-environmental sampling (ES), collects aerosol particles from the plant environment in a purpose-built rotating drum impactor and then uses LAARS-ES to quickly scan the surface of the impactor to measure the enrichments of the captured particles. The current approach to plant misuse detection involves swipe sampling and offsite analysis. Though this approach is very robust it generally requires several months to obtain results from a given sample collection. The destructive assay instrument, LAARS-destructive assay (DA), uses a simple purpose-built fixture with a sampling planchet to collect adsorbed UF6 gas from a cylinder valve or from a process line tap or pigtail. A portable LAARS-DA instrument scans the microgram quantity of uranium collected on the planchet and the assay of the uranium is measured to ~0.15% relative precision. Currently, destructive assay samples for bias defect measurements are collected in small sample cylinders for offsite mass spectrometry measurement.

Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy) [Amy; Phillips, Jon R.

2012-07-01T23:59:59.000Z

369

Binary black hole mergers in gaseous environments: 'Binary Bondi' and 'binary Bondi-Hoyle-Lyttleton' accretion  

SciTech Connect (OSTI)

Merging supermassive black hole-black hole binaries produced in galaxy mergers are promising sources of detectable gravitational waves. If such a merger takes place in a gaseous environment, there is a possibility of a simultaneous detection of electromagnetic and gravitational radiation, as the stirring, shock heating, and accretion of the gas may produce variability and enhancements in the electromagnetic flux. Such a simultaneous detection can provide a wealth of opportunities to study gravitational physics, accretion physics, and cosmology. We investigate this scenario by performing fully general-relativistic, hydrodynamic simulations of merging, equal-mass, nonspinning black hole-black hole binaries embedded in gas clouds. We evolve the metric using the Baumgarte-Shapiro-Shibata-Nakamura formulation with standard moving puncture gauge conditions and handle the hydrodynamics via a high-resolution shock-capturing scheme. We consider both 'binary Bondi accretion' in which the binary is at rest relative to the ambient gas cloud, as well as 'binary Bondi-Hoyle-Lyttleton accretion' in which the binary moves relative to the gas cloud. The gas cloud is assumed to be homogeneous far from the binary and governed by a {Gamma}-law equation of state. We vary {Gamma} between 4/3 and 5/3. For each simulation, we compute the gas flow and accretion rate and estimate the electromagnetic luminosity due to bremsstrahlung and synchrotron emission. We find evidence for significant enhancements in both the accretion rate and luminosity over values for a single black hole of the same mass as the binary. We estimate that this luminosity enhancement should be detectable by the Large Synoptic Survey Telescope for a 10{sup 6}M{sub {center_dot}}binary in a hot gas cloud of density n{approx}10 cm{sup -3} and temperature T{approx}10{sup 6} K at z=1, reaching a maximum of L{approx}3x10{sup 43} erg s{sup -1}, with the emission peaking in the visible band, and lasting for {approx}1 hour.

Farris, Brian D.; Liu, Yuk Tung; Shapiro, Stuart L. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

2010-04-15T23:59:59.000Z

370

Design of an Unattended Environmental Aerosol Sampling and Analysis System for Gaseous Centrifuge Enrichment Plants  

SciTech Connect (OSTI)

The resources of the IAEA continue to be challenged by the rapid, worldwide expansion of nuclear energy production. Gaseous centrifuge enrichment plants (GCEPs) represent an especially formidable dilemma to the application of safeguard measures, as the size and enrichment capacity of GCEPs continue to escalate. During the early part of the 1990's, the IAEA began to lay the foundation to strengthen and make cost-effective its future safeguard regime. Measures under Part II of 'Programme 93+2' specifically sanctioned access to nuclear fuel production facilities and environmental sampling by IAEA inspectors. Today, the Additional Protocol grants inspection and environmental sample collection authority to IAEA inspectors at GCEPs during announced and low frequency unannounced (LFUA) inspections. During inspections, IAEA inspectors collect environmental swipe samples that are then shipped offsite to an analytical laboratory for enrichment assay. This approach has proven to be an effective deterrence to GCEP misuse, but this method has never achieved the timeliness of detection goals set forth by IAEA. Furthermore it is questionable whether the IAEA will have the resources to even maintain pace with the expansive production capacity of the modern GCEP, let alone improve the timeliness in reaching current safeguards conclusions. New safeguards propositions, outside of familiar mainstream safeguard measures, may therefore be required that counteract the changing landscape of nuclear energy fuel production. A new concept is proposed that offers rapid, cost effective GCEP misuse detection, without increasing LFUA inspection access or introducing intrusive access demands on GCEP operations. Our approach is based on continuous onsite aerosol collection and laser enrichment analysis. This approach mitigates many of the constraints imposed by the LFUA protocol, reduces the demand for onsite sample collection and offsite analysis, and overcomes current limitations associated with the in-facility misuse detection devices. Onsite environmental sample collection offers the ability to collect fleeting uranium hexafluoride emissions before they are lost to the ventilation system or before they disperse throughout the facility, to become deposited onto surfaces that are contaminated with background and historical production material. Onsite aerosol sample collection, combined with enrichment analysis, provides the unique ability to quickly detect stepwise enrichment level changes within the facility, leading to a significant strengthening of facility misuse deterence. We report in this paper our study of several GCEP environmental sample release scenarios and simulation results of a newly designed aerosol collection and particle capture system that is fully integrated with the Laser Ablation, Absorbance Ratio Spectrometry (LAARS) uranium particle enrichment analysis instrument that was developed at the Pacific Northwest National Laboratory.

Anheier, Norman C.; Munley, John T.; Alexander, M. L.

2011-07-19T23:59:59.000Z

371

Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream  

DOE Patents [OSTI]

The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

2013-07-16T23:59:59.000Z

372

The Search for Heavy Elements  

ScienceCinema (OSTI)

The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

None

2010-01-08T23:59:59.000Z

373

The Search for Heavy Elements  

SciTech Connect (OSTI)

The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

2008-04-17T23:59:59.000Z

374

Trace element emissions. Semi-annual report, October 1994--February 1995  

SciTech Connect (OSTI)

Many trace elements can exist in raw coal gas either in the form of metallic vapors or gaseous compounds which, besides their action on potentially ``very clean`` advanced power generating systems such as fuel cells and gas turbines, can also be detrimental to plant and animal life when released into the atmosphere. Therefore, volatile trace contaminants from coal which can also be toxic must be removed before they become detrimental to both power plant performance/endurance and the environment. Five trace elements were selected in this project based on: abundance in solid coal, volatility during gasification, effects on downstream systems and toxicity to plant and animal life. An understanding was sought in this investigation of the interactions of these five trace elements (and their high temperature species) with the different components in integrated cleanup and power generating systems, as well as the ultimate effects with respect to atmospheric emissions. Utilizing thermodynamic calculations and various experimental techniques, it was determined that a number of trace contaminants that exist in coal may be substantially removed by flyash, and after that by different sorbent systems. High temperature cleanup of contaminants by sorbents such as zinc titanate, primarily to remove sulfur, can also absorb some metallic contaminants such as cadmium and antimony. Further polishing will be required, however, to eliminate trace contaminant species incorporating the elements arsenic, selemium, lead, and mercury.

Pigeaud, A.; Maru, H.; Wilemski, G.; Helble, J.

1995-02-01T23:59:59.000Z

375

Terminological aspects of data elements  

SciTech Connect (OSTI)

The creation and display of data comprise a process that involves a sequence of steps requiring both semantic and systems analysis. An essential early step in this process is the choice, definition, and naming of data element concepts and is followed by the specification of other needed data element concept attributes. The attributes and the values of data element concept remain associated with them from their birth as a concept to a generic data element that serves as a template for final application. Terminology is, therefore, centrally important to the entire data creation process. Smooth mapping from natural language to a database is a critical aspect of database, and consequently, it requires terminology standardization from the outset of database work. In this paper the semantic aspects of data elements are analyzed and discussed. Seven kinds of data element concept information are considered and those that require terminological development and standardization are identified. The four terminological components of a data element are the hierarchical type of a concept, functional dependencies, schematas showing conceptual structures, and definition statements. These constitute the conventional role of terminology in database design. 12 refs., 8 figs., 1 tab.

Strehlow, R.A. (Oak Ridge National Lab., TN (United States)) [Oak Ridge National Lab., TN (United States); Kenworthey, W.H. Jr. (Department of Defense, Washington, DC (United States)) [Department of Defense, Washington, DC (United States); Schuldt, R.E. (Martin Marietta Aerospace, Denver, CO (United States)) [Martin Marietta Aerospace, Denver, CO (United States)

1991-01-01T23:59:59.000Z

376

The Radiochemical Analysis of Gaseous Samples (RAGS) apparatus for nuclear diagnostics at the National Ignition Facility (invited)  

SciTech Connect (OSTI)

The Radiochemical Analysis of Gaseous Samples (RAGS) diagnostic apparatus was recently installed at the National Ignition Facility (NIF). Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of {sup 135}Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched {sup 124}Xe and {sup 126}Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

Shaughnessy, D. A.; Velsko, C. A.; Jedlovec, D. R.; Yeamans, C. B.; Moody, K. J.; Tereshatov, E.; Stoeffl, W.; Riddle, A. [Lawrence Livermore National Laboratory, PO Box 808, L-236, Livermore, California 94551 (United States)

2012-10-15T23:59:59.000Z

377

Performance of a low-cost iron ore as an oxygen carrier for Chemical Looping Combustion of gaseous fuels  

Science Journals Connector (OSTI)

Abstract This work evaluates the performance of an iron ore, mainly composed of Fe2O3, as an oxygen carrier (OC) for Chemical Looping Combustion (CLC) with gaseous fuels. The OC was characterized by TGA and evaluated in a continuous 500Wth CLC unit, using CH4, syngas and a PSA off-gas as fuels. The OC was able to fully convert syngas at 880C. However, lower conversion rates were observed with methane-containing fuels. The addition of a Ni-based OC was evaluated in order to increase the reactivity of the OC with methane. In spite of this, an absence of catalytic effect was observed for the Ni-based OC. A deep analysis was carried out into the reasons for the absence of catalytic effect of the Ni-based OC. The performance of the iron ore with regard to attrition and fluidization behaviour was satisfactory throughout 50h of hot operation in the continuous CLC plant. Thus, this low cost material is a suitable OC for gaseous fuels mainly composed of H2 and CO.

Miguel A. Pans; Pilar Gayn; Luis F. de Diego; Francisco Garca-Labiano; Alberto Abad; Juan Adnez.

2014-01-01T23:59:59.000Z

378

Detection of the primary scintillation light from dense Ar, Kr and Xe with novel photosensitive gaseous detectors  

E-Print Network [OSTI]

The detection of primary scintillation light in combination with the charge or secondary scintillation signals is an efficient technique to determine the events t=0 as well as particle / photon separation in large mass TPC detectors filled with noble gases and/or condensed noble gases. The aim of this work is to demonstrate that costly photo-multipliers could be replaced by cheap novel photosensitive gaseous detectors: wire counters, GEMs or glass capillary tubes coupled with CsI photocathodes. We have performed systematic measurements with Ar, Kr and Xe gas at pressures in the range of 1-50 atm as well as some preliminary measurements with liquid Xe and liquid Ar. With the gaseous detectors we succeeded in detecting scintillation light produced by 22 keV X-rays with an efficiency of close to 100%. We also detected the scintillation light produced by bs (5 keV deposit energy) with an efficiency close to 25%. Successful detection of scintillation from 22 keV gammas open new experimental possibilities not only ...

Periale, L; Carlson, P J; Francke, T; Pavlopoulos, P; Picchi, P; Pietropaolo, F

2002-01-01T23:59:59.000Z

379

The LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults  

SciTech Connect (OSTI)

The U.S. Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element-failure propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurances expected in the United States, USSR, France, UK, Japan, and West Germany are outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission product monitors are briefly discussed to better realize the operational limits.

Warinner, D.K.

1983-07-01T23:59:59.000Z

380

LMFBR operational and experimental local-fault experience, primarily with oxide fuel elements  

SciTech Connect (OSTI)

Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS- and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation.

Warinner, D.K.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

LMFBR operational and experimental in-core local-fault experience, primarily with oxide fuel elements  

SciTech Connect (OSTI)

Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS-and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation.

Warinner, D.K.

1980-08-10T23:59:59.000Z

382

Elemental ABAREX -- a user's manual.  

SciTech Connect (OSTI)

ELEMENTAL ABAREX is an extended version of the spherical optical-statistical model code ABAREX, designed for the interpretation of neutron interactions with elemental targets consisting of up to ten isotopes. The contributions from each of the isotopes of the element are explicitly dealt with, and combined for comparison with the elemental observables. Calculations and statistical fitting of experimental data are considered. The code is written in FORTRAN-77 and arranged for use on the IBM-compatible personal computer (PC), but it should operate effectively on a number of other systems, particularly VAX/VMS and IBM work stations. Effort is taken to make the code user friendly. With this document a reasonably skilled individual should become fluent with the use of the code in a brief period of time.

Smith, A.B.

1999-05-26T23:59:59.000Z

383

The Platinum-Group Elements:  

Science Journals Connector (OSTI)

...higher Pt emissions have been measured for diesel catalysts (Moldovan et al. 2002...1031-1036 Johnson Matthey (2007) Market Data Tables. Online information www...platinum-group elements released from gasoline and diesel engine catalytic converters. Science...

Sebastien Rauch; Gregory M. Morrison

384

Canonical elements for collision orbits  

E-Print Network [OSTI]

I derive a set of canonical elements that are useful for collision orbits (perihelion distance approaching zero at fixed semimajor axis). The coordinates are the mean anomaly and the two spherical polar angles at aphelion.

Scott Tremaine

2000-12-12T23:59:59.000Z

385

Environmental research on actinide elements  

SciTech Connect (OSTI)

The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

1987-08-01T23:59:59.000Z

386

linear-elements-code.scm  

E-Print Network [OSTI]

(o Linear-finite-element-operator)) ;; initialize various fields that depend on the space ;; if coefficients is not defined, we set it to arrays of floating-point ;; zeros...

387

American Elements | Open Energy Information  

Open Energy Info (EERE)

Elements Place: Los Angeles, California Zip: 90024 Product: US-based manufacturer and supplier of PV feedstocks such as silicon, CIS, CIGS-based and Gallium-based materials....

388

Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995  

SciTech Connect (OSTI)

Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

Smyre, J.L.; Moll, B.W.; King, A.L.

1996-06-01T23:59:59.000Z

389

THE NEW ELEMENT BERKELIUM (ATOMIC NUMBER 97)  

E-Print Network [OSTI]

of time from rare earth elements and from the actinidea group from the rare earth elements before using the columnpositions of some rare earth elements was obtained and these

Thompson, S.G.; Ghiorso, A.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

390

On the Combustion of Hydrogen-Rich Gaseous Fuels with Low Calorific Value in a Porous Burner  

Science Journals Connector (OSTI)

It was also observed that, for the Wobbe Index varying from 5 to 44 MJ/Nm3, it is possible to burn stably at ?260 kW/m2, which reveals the fuel interchangeability potential of the present burner design. ... A range of low calorific value gaseous fuel mixtures containing CH4, H2, CO2, CO, and N2 have been burned in a porous radiant burner to analyze the effects of the fuel composition on flame stability and pollutant emissions. ... There are, however, gaps in the fundamental understanding of syngas combustion and emissions, as most previous research has focused on flames burning individual fuel components such as H2 and CH4, rather than syngas mixts. ...

R. W. Francisco, Jr.; F. Rua; M. Costa; R. C. Catapan; A. A. M. Oliveira

2009-12-30T23:59:59.000Z

391

Gaseous Mean Opacities for Giant Planet and Ultracool Dwarf Atmospheres over a Range of Metallicities and Temperatures  

E-Print Network [OSTI]

We present new calculations of Rosseland and Planck gaseous mean opacities relevant to the atmospheres of giant planets and ultracool dwarfs. Such calculations are used in modeling the atmospheres, interiors, formation, and evolution of these objects. Our calculations are an expansion of those presented in Freedman et al. (2008) to include lower pressures, finer temperature resolution, and also the higher metallicities most relevant for giant planet atmospheres. Calculations span 1 microbar to 300 bar, and 75 K to 4000 K, in a nearly square grid. Opacities at metallicities from solar to 50 times solar abundances are calculated. We also provide an analytic fit to the Rosseland mean opacities over the grid in pressure, temperature, and metallicity. In addition to computing mean opacities at these local temperatures, we also calculate them with weighting functions up to 7000 K, to simulate the mean opacities for incident stellar intensities, rather than locally thermally emitted intensities. The chemical equilib...

Freedman, Richard S; Fortney, Jonathan J; Lupu, Roxana E; Marley, Mark S; Lodders, Katharina

2014-01-01T23:59:59.000Z

392

A few new (?) facts about infinite elements  

E-Print Network [OSTI]

Keywords: Helmholtz equation; Infinite element; hp finite elements; Echo Area. 1. .... g : ? ouinc on . ?2.1?. The Sommerfeld radiation condition represents a...

2006-04-24T23:59:59.000Z

393

Element Labs Inc | Open Energy Information  

Open Energy Info (EERE)

Inc. Place: Santa Clara, California Zip: 95054 Product: Element Labs is a developer of LED video technology for entertainment, architectural, and signage. References: Element...

394

Detection of illicit HEU production in gaseous centrifuge enrichment plants using neutron counting techniques on product cylinders  

SciTech Connect (OSTI)

Innovative and novel safeguards approaches are needed for nuclear energy to meet global energy needs without the threat of nuclear weapons proliferation. Part of these efforts will include creating verification techniques that can monitor uranium enrichment facilities for illicit production of highly-enriched uranium (HEU). Passive nondestructive assay (NDA) techniques will be critical in preventing illicit HEU production because NDA offers the possibility of continuous and unattended monitoring capabilities with limited impact on facility operations. Gaseous centrifuge enrichment plants (GCEP) are commonly used to produce low-enriched uranium (LEU) for reactor fuel. In a GCEP, gaseous UF{sub 6} spins at high velocities in centrifuges to separate the molecules containing {sup 238}U from those containing the lighter {sup 235}U. Unfortunately, the process for creating LEU is inherently the same as HEU, creating a proliferation concern. Insuring that GCEPs are producing declared enrichments poses many difficult challenges. In a GCEP, large cascade halls operating thousands of centrifuges work together to enrich the uranium which makes effective monitoring of the cascade hall economically prohibitive and invasive to plant operations. However, the enriched uranium exiting the cascade hall fills product cylinders where the UF{sub 6} gas sublimes and condenses for easier storage and transportation. These product cylinders hold large quantities of enriched uranium, offering a strong signal for NDA measurement. Neutrons have a large penetrability through materials making their use advantageous compared to gamma techniques where the signal is easily attenuated. One proposed technique for detecting HEU production in a GCEP is using neutron coincidence counting at the product cylinder take off stations. This paper discusses findings from Monte Carlo N-Particle eXtended (MCNPX) code simulations that examine the feasibility of such a detector.

Freeman, Corey R [Los Alamos National Laboratory; Geist, William H [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

395

International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 AMMONIA EMISSIONS FROM LAYER HOUSES IN IOWA  

E-Print Network [OSTI]

International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens), hydrogen sulfide (H2S) and carbon dioxide (CO2). Among the air contaminants produced in poultry buildings al. (2003). MATERIALS AND METHODS Housing Description and Management Two types of laying hen houses

Kentucky, University of

396

International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Pennsylvania  

E-Print Network [OSTI]

International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 1 Ammonia Emissions from Broiler Houses in Pennsylvania During Cold of reducing ammonia (NH3) emissions are under study. Ammonia emissions during cold weather conditions from

Kentucky, University of

397

Type B Accident Investigation of the August 22, 2000, Injury Resulting From Violent Exothermic Chemical Reaction at the Portsmouth Gaseous Diffusion Plant, X-701B Site  

Broader source: Energy.gov [DOE]

On August 22, 2000, an accident occurred at the U. S. Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) located in Piketon, Ohio. An employee of the IT Corporation (IT) working on an Environmental Management (EM) Technology Deployment Project received serious burns from a violent chemical reaction.

398

Indirect NMR detection of 235U in gaseous uranium hexafluoride National Center for Physics, P.O. Box MG-6, Bucharest, Romania  

E-Print Network [OSTI]

L-493 Indirect NMR detection of 235U in gaseous uranium hexafluoride I. Ursu National Center provide a method to determine the presence of 23 5U in liquid uranium hexafluoride. The first proposed on physical properties of uranium hexa- fluoride molecule in the gas phase it is possible to predict [9

Paris-Sud XI, Université de

399

Superheavy Elements - Achievements and Challenges  

SciTech Connect (OSTI)

The search for superheavy elements (SHE) has yielded exciting results for both the 'cold fusion' approach with reactions employing Pb and Bi targets and the ''hot fusion'' reactions with {sup 48}Ca beams on actinide targets. The most recent activities at GSI were the successful production of a more neutron rich isotope of element 112 in the reaction {sup 48}Ca+{sup 238}U confirming earlier result from FLNR, and the attempt to synthesize an isotope with Z 120 in the reaction {sup 64}Ni+{sup 238}U. Apart from the synthesis of new elements, advanced nuclear structure studies for heavy and super heavy elements promise a detailed insight in the properties of nuclear matter under the extreme conditions of high Z and A. The means are evaporation residue(ER)-{alpha}-{alpha} and -{alpha}-{gamma} coincidence techniques applied after separation of the reaction products from the beam. Recent examples of interesting physics to be discovered in this region of the chart of nuclides are the investigation of K-isomers observed for {sup 252,254}No and indicated for {sup 270}Ds. Fast chemistry and precision mass measurements deliver in addition valuable information on the fundamental properties of the SHE.

Ackermann, Dieter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

2009-03-04T23:59:59.000Z

400

Single element laser beam shaper  

DOE Patents [OSTI]

A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

2005-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Eric Heinicke Energy Elements LLC  

E-Print Network [OSTI]

and East CTA Snapshots; Cost Effective Energy Saving Measures And Supplemental Issues Benchmarking and FineEric Heinicke Energy Elements LLC 702-683-5067 eric@energyelements.net NW CTA, Burkholder MS Tuning High Performance HYBRID GX Systems Cary Smith Sound Geothermal Corporation 801-942-6100 dcsmith

402

The Transuranium Elements - Present Status: Nobel Lecture  

DOE R&D Accomplishments [OSTI]

The discovery of the transuranium elements and the work done on them up to the present time are reviewed. The properties of these elements, their relationship to other elements, their place in the periodic table, and the possibility of production and identification of other transuranium elements are discussed briefly.

Seaborg, G. T.

1951-12-12T23:59:59.000Z

403

Property:GRR/Elements | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:GRR/Elements Jump to: navigation, search Property Name GRR/Elements Property Type Page Description List of elements included in this section. The value of this property is derived automatically by the portion of the element template that controls the content displayed when elements are embedded in sections. Pages using the property "GRR/Elements" Showing 25 pages using this property. (previous 25) (next 25) G GRR/Elements/ + GRR/Elements/1a.21 to 1a.22 - Proposed Land Use Plan (New Plan) or Final Environmental Impact Statement (Revision) + GRR/Elements/12-FD-a.10 - Written Concurrence with the "No Effect" and/or "No Likely Adverse Effects" Determination + GRR/Elements/12-FD-a.10 - Written Concurrence with the "No Effect" and/or "No Likely Adverse Effects" Determination +

404

Binary mixture flammability characteristics for hazard assessment  

E-Print Network [OSTI]

calculations and UNIFAC, a theoretical model that does not require experimental binary interaction parameters, are employed in the mixture flash point predictions, which are validated with experimental data. MFPB is successfully predicted using the UNIFAC model...

Vidal Vazquez, Migvia del C.

2005-11-01T23:59:59.000Z

405

Material Safety Data Sheet HMIS FLAMMABILITY  

E-Print Network [OSTI]

-87-3 No data No data No data viscosity.0 Extinguishing Media - Use water fog, foam, dry chemical or CO2. Use water spray to cool fire-exposed containers spray. Prevent spill from entering drains, sewers, streams or other bodies of water. If run-off occurs

Rollins, Andrew M.

406

Element Labs | Open Energy Information  

Open Energy Info (EERE)

Element Labs Element Labs Address 3350 Scott Blvd Place Santa Clara, California Zip 95054 Sector Efficiency Product LED Producer Website http://www.elementlabs.com/ Coordinates 37.380364°, -121.9823779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.380364,"lon":-121.9823779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Element Power | Open Energy Information  

Open Energy Info (EERE)

Power Power Jump to: navigation, search Logo: Element Power Name Element Power Address 421 SW Sixth Avenue, Suite 1000 Place Portland, Oregon Zip 97204 Sector Wind energy Product uility-scale solar and wind projects Website http://www.elpower.com/ Coordinates 45.520812°, -122.67791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.520812,"lon":-122.67791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Composite oxygen ion transport element  

SciTech Connect (OSTI)

A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

Chen, Jack C. (Getzville, NY); Besecker, Charles J. (Batavia, IL); Chen, Hancun (Williamsville, NY); Robinson, Earil T. (Mentor, OH)

2007-06-12T23:59:59.000Z

409

Self supporting heat transfer element  

DOE Patents [OSTI]

The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

Story, Grosvenor Cook (Livermore, CA); Baldonado, Ray Orico (Livermore, CA)

2002-01-01T23:59:59.000Z

410

The Origin of the Elements  

ScienceCinema (OSTI)

The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

Murphy, Edward

2014-08-06T23:59:59.000Z

411

Photoconductive circuit element pulse generator  

DOE Patents [OSTI]

A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

Rauscher, Christen (Alexandria, VA)

1989-01-01T23:59:59.000Z

412

Neutrino induced light element synthesis  

SciTech Connect (OSTI)

As the core of a massive star collapses to form a neutron star, the flux of neutrinos in the overlying shells of heavy elements becomes so great that, despite the small cross section, substantial nuclear transmutation is induced. Neutrinos, especially the higher energy {mu}- and {tau}-neutrinos, excite heavy elements and even helium to particle unbound levels. The evaporation of a single neutron or proton, and the back reaction of these nucleons on other species present, significantly alters the outcome of traditional nucleosynthesis calculations leading to a new process: {nu}-nucleosynthesis. The process was first studied by Domogatsky et al. and Woosley. Recent work by Epstein, Colgate, and Haxton and Woosley and Haxton suggested that a large number of elements could owe their existence in nature to {nu}-induced reactions in supernovae. A parametrized study of this process including shock wave propagation was carried out by Woosley et al. for selected zones of a 20 M{sub {circle dot}} star. Here we give preliminary results for a 25 M{sub {circle dot}} star, including all {nu}-reactions in all stellar zones.

Hartmann, D.H.; Mathews, G.; Weaver, T.A. (Lawrence Livermore National Lab., CA (USA)); Haxton, W.C. (Washington Univ., Seattle, WA (USA). Dept. of Physics); Woosley, S.E. (Lawrence Livermore National Lab., CA (USA) California Univ., Santa Cruz, CA (USA). Board of Studies in Astronomy and Astrophysics)

1990-01-01T23:59:59.000Z

413

The New Element Americium (Atomic Number 95)  

DOE R&D Accomplishments [OSTI]

Several isotopes of the new element 95 have been produced and their radiations characterized. The chemical properties of this tripositive element are similar to those of the typical tripositive lanthanide rare-earth elements. Element 95 is different from the latter in the degree and rate of formation of certain compounds of the complex ion type, which makes possible the separation of element 95 from the lanthanide rare-earths. The name americium (after the Americas) and the symbol Am are suggested for the element on the basis of its position as the sixth member of the actinide rare-earth series, analogous to europium, Eu, of the lanthanide series.

Seaborg, G.T.; James, R.A.; Morgan, L.O.

1948-01-00T23:59:59.000Z

414

Investigation of high temperature gaseous species by Knudsen cell mass spectrometry above the condensed systems Au-Ge-Cu and Au-Si / by Joseph Edward Kingcade  

E-Print Network [OSTI]

0), in kJ mol for the Gaseous Molecules AuSi, Ie 24 27 3l 34 TABLE 12. 13. 14. 15. 1 6. 17a 18. 19. 20. 21. 22. 23. Au2Si, AuSi2, CuGe and CuGe2 . . . . . . . . . . . . . . . Summary of Enthalpy Changes: for the Molecule Au..., (HT-H ), in kJ mol for the Gaseous T o Molecules Au2Ge2, AuGe3 and AuGe4 MOLECULE AND STRUCTURE 298 1200 1400 1600 TEMPERATURE ( K) 1800 2000 2200 hu2 Ge2 (Linear) Au2 Gep (Square Planar) FEF HCF FEF HCF 297. 7 18. 69 317. 1 18. 83...

Kingcade, Joseph Edward

2012-06-07T23:59:59.000Z

415

Numerical Simulation of Detonation Initiation by the Space-Time Conservation Element and Solution Element Method.  

E-Print Network [OSTI]

??This dissertation is focused on the numerical simulation of the detonation initiation process. The space-time Conservation Element and Solution Element (CESE) method, a novel numerical (more)

Wang, Bao

2010-01-01T23:59:59.000Z

416

Essential Grid Workflow Monitoring Elements  

SciTech Connect (OSTI)

Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

2005-07-01T23:59:59.000Z

417

Questions and Answers - Who discovered the elements?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Will scientists everfind smaller elements? Will scientists ever<br>find smaller elements? Previous Question (Will scientists ever find smaller elements?) Questions and Answers Main Index Next Question (What are boiling and melting points?) What are boiling and melting points? Who discovered the element gold, silver, copper, neon, etc...? Below is a list of all of the known elements, who they were discovered by and the year they were discovered. Some elements, such as gold, silver and iron, have been known since ancient times, so it is impossible to credit a single person for their discovery. Other elements were discovered around the same time by two or more scientists who were working independently of each other. In these cases, each scientist is listed along with the year they made their discovery. Other elements were discovered by teams of

418

RECENT WORK WITH THE TRANSURANIUM ELEMENTS  

Science Journals Connector (OSTI)

...WITH THE TRANSURANIUM ELEMENTS Glenn T. Seaborg LAWRENCE RADIATION LABORATORY...45, 1959 PHYSICS: G. T. SEABORG 471 RECENT WORK WITH THE TRANS URANIUL'3 ELEMENTS BY GLENN T. SEABORG LAWRENCE RADIATION LABORATORY...

Glenn T. Seaborg

1959-01-01T23:59:59.000Z

419

Die Elemente der 13. Gruppe: die Borgruppe  

Science Journals Connector (OSTI)

Die 13. Gruppe enthlt die Elemente: Bor (B), Aluminium (Al), Gallium (Ga), Indium (In) und Thallium (Tl).

Prof. Dr. Waldemar Ternes

2013-01-01T23:59:59.000Z

420

Climbing elements in finite coxeter groups  

E-Print Network [OSTI]

We define the notion of a climbing element in a finite real reflection group relative to a total order on the reflection set and we characterise these elements in the case where the total order arises from a bipartite Coxeter element.

Brady, Thomas; Watt, And Colum

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Characterization of electrodeposited elemental boron  

SciTech Connect (OSTI)

Elemental boron was produced through electrowinning from potassium fluoroborate dissolved in a mixture of molten potassium fluoride and potassium chloride. The characteristics of the electrodeposited boron (raw boron) as well as the water and acid-leached product (processed boron) were studied. The chemical purity, specific surface area, size distribution of particles and X-ray crystallite size of the boron powders were investigated. The morphology of the deposits was examined using scanning electron microscopy (SEM). The chemical state of the matrix, as well as the impurity phases present in them, was established using X-ray photoelectron spectroscopy (XPS). In order to interpret and understand the results obtained, a thermodynamic analysis was carried out. The gas-phase corrosion in the head space as well as the chemistry behind the leaching process were interpreted using this analysis. The ease of oxidation of these powders in air was investigated using differential thermal analysis (DTA) coupled with thermogravimetry (TG). From the results obtained in this study it was established that elemental boron powder with a purity of 95-99% could be produced using a high temperature molten salt electrowinning process. The major impurities were found to be oxygen, carbon, iron and nickel.

Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India); Anthonysamy, S. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India)], E-mail: sas@igcar.gov.in; Ananthasivan, K.; Ranganathan, R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India); Mittal, Vinit; Narasimhan, S.V. [Water and Steam Chemistry Division, BARC (F), Kalpakkam, 603102 (India); Vasudeva Rao, P.R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 (India)

2008-07-15T23:59:59.000Z

422

Combustion regimes of particle-laden gaseous flames: influences of radiation, molecular transports, kinetic-quenching, stoichiometry  

Science Journals Connector (OSTI)

We study flat flames propagating steadily in a reactive gaseous premixture which is seeded with an inert solid suspension. Our main assumptions are: (i) the two-reactant, one-step overall reaction we choose as the combustion process has a rate which vanishes at and below a prescribed temperature (Tc) and resumes the Arrhenius form at higher temperatures; (ii) both phases are considered as continua and have the same local speed and temperature; (iii) radiation among the particles follows the Eddington approximation specialized to a grey medium and the attenuation length markedly exceeds the conduction - convection length in the gas; (iv) the activation energy is large. The first regimes we consider comprise a thin flame front (dominated by molecular transports, convection and chemistry) embedded in much thicker radiation - convection zones. Jump conditions across the former are derived analytically and then used as targets in a shooting method to analyse the thickest zones and compute the burning speed (U). Such regimes only exist for equivalence ratios () above a load-dependent critical value which corresponds to a turning point of the U() curve. This turning point is due to radiative heat losses from the thin flame front to the cooler adjacent zones, which lead to extinction. Over restricted, well defined ranges of composition other regimes may also exist, which have monotonic temperature profiles culminating slightly above Tc. When they are too thick to be affected by molecular transports and are thus similar to coal-dust -air flames, their structure, domain of existence and speed are investigated analytically and numerically. The corresponding U() curve exhibits an upper limit equivalence ratio * characterized by an end-point, beyond which such regimes cannot exist. The influence of molecular diffusion is then accounted for and shown to modify the results only slightly.

Rodolphe Blouquin; Guy Joulin; Youns Merhari

1997-01-01T23:59:59.000Z

423

Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay  

SciTech Connect (OSTI)

Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

Anheier, Norman C.; Bushaw, Bruce A.

2010-08-11T23:59:59.000Z

424

Data transmission element for downhole drilling components  

DOE Patents [OSTI]

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

425

Renewable Energy Community: Key Elements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Energy of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future A Renewable Energy Community: Key Elements A reinvented community to meet untapped customer needs for shelter and transportation with minimal environmental impacts, stable energy costs, and a sense of belonging N. Carlisle, J. Elling, and T. Penney Technical Report NREL/TP-540-42774 January 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

426

UNIFIED FINITE ELEMENT DISCRETIZATIONS OF COUPLED DARCY-STOKES FLOW  

E-Print Network [OSTI]

by using standard Stokes elements like the MINI element or the Taylor­Hood element in the entire domain elements like the Taylor­Hood element or the MINI element for the Stokes region. The similar approach], to overcome this problem. This finite element space is defined with respect to a rectangular grid. On each

Winther, Ragnar

427

Microwave Plasma Monitoring System For Real-Time Elemental Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

air for the presence of minor amounts of elements, particularly transition metals, rare earth elements, actinides, and alkali and alkaline earth elements. The invention apparatus...

428

Proposed Data Elements for PARS II Web Application | Department...  

Broader source: Energy.gov (indexed) [DOE]

Proposed Data Elements for PARS II Web Application Proposed Data Elements for PARS II Web Application Proposed Data Elements for PARS II Web Application More Documents &...

429

NGPL Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 930,320 953,451 1,024,082 1,066,366 1,134,473 1,250,340 1930-2012 Federal Offshore Gulf of Mexico 0 0 0 0 0 2007-2011 Alabama 19,831 17,222 17,232 19,059 17,271 1969-2011 Alaska 26,332 24,337 22,925 20,835 21,554 21,470 1969-2012 Arkansas 162 139 168 213 268 424 1967-2012 California 13,521 13,972 13,722 13,244 12,095 12,755 1967-2012 Colorado 38,180 53,590 67,607 82,637 90,801 1967-2011 Florida 132 22 0 0 0 0 1968-2012 Illinois 48 42 31 345 1,043 0 1967-2012 Indiana 0 0 0 0 0 0 1979-2012

430

Improved gaseous leak detector  

DOE Patents [OSTI]

In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

Juravic, F.E. Jr.

1983-10-06T23:59:59.000Z

431

Fiber Bulk Gaseous Carriers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CONSUMERS RETAIL CNG REFUELLING CNG VEHICLES ON SITE COMPRESSION AND CONDITIONING MOTHER STATION Modification of "Figure NG-7. Natural Gas for Transportation Supply Chain" to...

432

Element One, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Element One, Element One, Inc. America's Next Top Energy Innovator Challenge 191524 likes Element One, Inc. National Renewable Energy Laboratory Element One's detection products will change the paradigm in the way hydrogen and other hazardous gas leaks are detected, achieving a new level of safety in existing industrial and emerging consumer environments. Element One has patented the only available coatings for the detection of hydrogen that change color reversibly or non-reversibly as desired to give both current and historical information about leaked hydrogen. In 2011, Element One optioned to license three National Renewable Energy Laboratory (NREL) patents that complement its own technologies. Completed and proposed testing of our indicators for different applications

433

Element One, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Element One, Element One, Inc. America's Next Top Energy Innovator Challenge 191524 likes Element One, Inc. National Renewable Energy Laboratory Element One's detection products will change the paradigm in the way hydrogen and other hazardous gas leaks are detected, achieving a new level of safety in existing industrial and emerging consumer environments. Element One has patented the only available coatings for the detection of hydrogen that change color reversibly or non-reversibly as desired to give both current and historical information about leaked hydrogen. In 2011, Element One optioned to license three National Renewable Energy Laboratory (NREL) patents that complement its own technologies. Completed and proposed testing of our indicators for different applications

434

Trace Element Analysis | Open Energy Information  

Open Energy Info (EERE)

Trace Element Analysis Trace Element Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Trace Element Analysis Details Activities (8) Areas (8) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Reconstructing the fluid circulation of a hydrothermal system Thermal: Cost Information Low-End Estimate (USD): 15.001,500 centUSD 0.015 kUSD 1.5e-5 MUSD 1.5e-8 TUSD / element Median Estimate (USD): 18.001,800 centUSD 0.018 kUSD 1.8e-5 MUSD 1.8e-8 TUSD / element High-End Estimate (USD): 106.0010,600 centUSD 0.106 kUSD 1.06e-4 MUSD 1.06e-7 TUSD / element

435

Element One, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Element One, Element One, Inc. America's Next Top Energy Innovator Challenge 191524 likes Element One, Inc. National Renewable Energy Laboratory Element One's detection products will change the paradigm in the way hydrogen and other hazardous gas leaks are detected, achieving a new level of safety in existing industrial and emerging consumer environments. Element One has patented the only available coatings for the detection of hydrogen that change color reversibly or non-reversibly as desired to give both current and historical information about leaked hydrogen. In 2011, Element One optioned to license three National Renewable Energy Laboratory (NREL) patents that complement its own technologies. Completed and proposed testing of our indicators for different applications

436

The History of Element 43Technetium  

Science Journals Connector (OSTI)

The History of Element 43Technetium ... Department of Mining, Metallurgical and Materials Engineering, Laval University, G1K 7P4 Quebec City, Canada ...

Fathi Habashi

2006-02-01T23:59:59.000Z

437

Two position optical element actuator device  

DOE Patents [OSTI]

The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

Holdener, Fred R. (Tracy, CA); Boyd, Robert D. (Livermore, CA)

2002-01-01T23:59:59.000Z

438

The New Element Berkelium (Atomic Number 97)  

DOE R&D Accomplishments [OSTI]

An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

1950-04-26T23:59:59.000Z

439

Bi-stable optical element actuator device  

DOE Patents [OSTI]

The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

Holdener, Fred R. (Tracy, CA); Boyd, Robert D. (Livermore, CA)

2002-01-01T23:59:59.000Z

440

System and process for capture of H.sub.2S from gaseous process streams and process for regeneration of the capture agent  

DOE Patents [OSTI]

A system and process are disclosed for selective removal and recovery of H.sub.2S from a gaseous volume, e.g., from natural gas. Anhydrous organic, sorbents chemically capture H.sub.2S gas to form hydrosulfide salts. Regeneration of the capture solvent involves addition of an anti-solvent that releases the captured H.sub.2S gas from the capture sorbent. The capture sorbent and anti-solvent are reactivated for reuse, e.g., by simple distillation.

Heldenbrant, David J; Koech, Phillip K; Rainbolt, James E; Bearden, Mark D; Zheng, Feng

2014-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optical properties of hierarchical-nanostructured TiO{sub 2} and its time-dependent photo-degradation of gaseous acetaldehyde  

SciTech Connect (OSTI)

The TiO{sub 2} hierarchical nanostructures (HNs) composed of rutile TiO{sub 2} nanowires on anatase TiO{sub 2} nanofibers had higher photocatalytic activities of 62% and 48% than the commercial TiO{sub 2} nanoparticles (?21 nm diameter) in the continuous flow mode and closed-circulation mode, respectively, leading to an efficient degradation of gaseous acetaldehyde under UV-light irradiation. This behavior may be attributed to the effective TiO{sub 2} HNs with specific surface area of 85.1 m{sup 2}/g and lower radiative recombination of self-trapped excitons, enabling an effective electron-hole separation.

Ahn, Kyun; Jeong, Se-Young; Cho, Chae-Ryong [College of Nanoscience and Nanotechnology, Pusan National University, Busan 609-735 (Korea, Republic of)] [College of Nanoscience and Nanotechnology, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Min-Sun; Kim, Soon-Hyun; Hyun Kim, Jae [Division of Nano and Bio Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of)] [Division of Nano and Bio Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of); Kim, Jong-Pil; Sung Jin, Jong [Division of High Technology Materials Research, Korea Basic Science Institute, Busan 618-230 (Korea, Republic of)] [Division of High Technology Materials Research, Korea Basic Science Institute, Busan 618-230 (Korea, Republic of)

2013-12-23T23:59:59.000Z

442

Insertion Preference of Maize and Rice Miniature Inverted Repeat Transposable Elements as Revealed by the Analysis of Nested Elements  

Science Journals Connector (OSTI)

...DNA element. This element (called Midway), initially found as an 850-bp...closer examination indicates that Midway harbors another Stowaway element (Stowaway-Os25). That there are three Midway/Stowaway composite elements in the...

Ning Jiang; Susan R. Wessler

443

Appendix: Some elements of Indian Astronomy  

E-Print Network [OSTI]

. Z Z' N S P' P O W E Q Q' 2 #12;Appendix: Some elements of Indian Astronomy to two pointsChapter 1 Appendix: Some elements of Indian Astronomy 1.1 Generalities The sky is considered) perpendicular to the Celestial axis. Let us imagine an observer (O) on Earth. Since the Earth and thus the point

Paris-Sud XI, Université de

444

The New Element Curium (Atomic Number 96)  

DOE R&D Accomplishments [OSTI]

Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

Seaborg, G. T.; James, R. A.; Ghiorso, A.

1948-00-00T23:59:59.000Z

445

Microcalorimeter Magnetic Sensor Geometries Using Superconducting Elements  

SciTech Connect (OSTI)

We describe a numerical code developed to estimate performance of magnetic microcalorimeter configurations, including superconducting elements and SQUID characteristics. We present results of a preliminary design analysis showing that composite sensors with both superconducting and paramagnetic elements should realize substantial gains in magnetic flux signal per magnetization change of the paramagnet, compared to sensors containing only paramagnet.

Boyd, S. T. P. [University of New Mexico, MSC07 4220, Albuquerque NM 87131-0001 (United States); Cantor, R. H. [STAR Cryoelectronics, 25-A Bisbee Ct., Santa Fe NM 87508-1338 (United States)

2009-12-16T23:59:59.000Z

446

Trace elements found in the fuel and in-furnace fine particles collected from 80MW BFB combusting solid recovered fuel  

Science Journals Connector (OSTI)

The main fine particle (dpSRF) combustion the main elements were found to be: Ba, Br, Cr, Cu, Fe, Pb, Sb, Sn and Zn. Fine particle composition is presented for 6 different furnace heights of a bubbling fluidized bed (BFB) boiler. As the fine particles are formed of vaporized ash species the experimental results are discussed with the support of thermodynamic equilibrium modeling for estimating the forms of the gaseous elements in the furnace. The occurrence of bromine was found to be similar to chlorine as the main forms of bromine in the furnace were estimated to be KBr(g) and NaBr(g) complemented with CuBr3(g). It is proposed that the trace elements mentioned originate mainly from plastics and rubber where they are used as production additives, stabilisers, dyes, colorants and flame retardants. Cr, Cu and Zn may originate to a large extent from alloys and other metallic impurities. SEM-EDS analyses carried out for the SRF supports the postulated origin of the elements.

P. Vainikka; D. Lindberg; A. Moilanen; H. Ollila; M. Tiainen; J. Silvennoinen; M. Hupa

2013-01-01T23:59:59.000Z

447

William Fowler and Elements in the Stars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

William Fowler and Elements in the Stars Resources with Additional Information William A. Fowler Courtesy AIP Emilio Segrè Visual Archives 'William A. Fowler ... shared the 1983 Nobel Prize in physics for his research into the creation of chemical elements inside stars ... . During his career in nuclear physics and nuclear astrophysics, which spanned more that 60 years, Fowler was primarily concerned with studies of fusion reactions--how the nuclei of lighter chemical elements fuse to create the heavier ones in a process known as nucleosynthesis. In 1957, Fowler coauthored ... the seminal paper "Synthesis of the Elements in the Stars", [which] showed that all of the elements from carbon to uranium could be produced by nuclear processes in stars, starting only with the hydrogen and helium produced in the Big Bang.

448

Element 74, the Wolfram Versus Tungsten Controversy  

SciTech Connect (OSTI)

Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

Holden,N.E.

2008-08-11T23:59:59.000Z

449

Zeros in (inverse) bremsstrahlung matrix elements  

Science Journals Connector (OSTI)

We discuss the possibility of zeros in the nonrelativistic radiative continuum-continuum matrix element for electron-atom (inverse) bremsstrahlung. As demonstrated earlier for upward transitions from bound states, the occurrence of different signs for the free-free matrix element in limiting cases, plus the requirement of continuity, implies the existence of zeros. Using knowledge of the sign of the dipole matrix element in the soft- and hard-photon limits with one continuum electron energy held fixed, we show that zeros can occur in the s-p matrix element. We discuss the connection of our results to elastic scattering and to Ramsauer-Townsend minima. We consider the observability of zeros in this (s-p) matrix element manifested as minima in the cross sections.

C. David Shaffer; R. H. Pratt; Sung Dahm Oh

1998-01-01T23:59:59.000Z

450

Questions and Answers - What is an element? How many elements are there?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An example of indirect evidenceused to study atoms? An example of indirect evidence<br>used to study atoms? Previous Question (An example of indirect evidence used to study atoms?) Questions and Answers Main Index Next Question (What is the difference between atoms and elements?) What is the difference betweenatoms and elements? What is an element? How many elements are there? An element is a substance that is made entirely from one type of atom. For example, the element hydrogen is made from atoms containing a single proton and a single electron. If you change the number of protons an atom has, you change the type of element it is. If you had very, very good eyes and could look at the atoms in a sample of hydrogen, you would notice that most of the hydrogen atoms would have no neutrons, some of them would have one neutron and a few of them would have

451

Helioseismic limit on heavy element abundance  

E-Print Network [OSTI]

Primary inversions of accurately measured solar oscillation frequencies coupled with the equations of thermal equilibrium and other input physics, enable us to infer the temperature and hydrogen abundance profiles inside the Sun. These profiles also help in setting constraints on the input physics as well as on heavy element abundance in the solar core. Using different treatments of plasma screening for nuclear reaction rates, limits on the cross-section of proton-proton nuclear reaction as a function of heavy element abundance in the solar core are obtained and an upper limit on heavy element abundance in the solar core is also derived from these results.

H. M. Antia; S. M. Chitre

2002-09-08T23:59:59.000Z

452

Compound and Elemental Analysis | Open Energy Information  

Open Energy Info (EERE)

Compound and Elemental Analysis Compound and Elemental Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Compound and Elemental Analysis Details Activities (104) Areas (69) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Results can aid in the determination of fluid source regions and circulation pathways. Thermal: Certain elements exhibit high spatial correlation with high-temperature geothermal systems. Cost Information Low-End Estimate (USD): 15.001,500 centUSD 0.015 kUSD 1.5e-5 MUSD 1.5e-8 TUSD / compound Median Estimate (USD): 30.003,000 centUSD

453

Ion processing element with composite media  

DOE Patents [OSTI]

An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

Mann, Nick R. (Blackfoot, ID); Tranter, Troy J. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Sebesta, Ferdinand (Prague, CZ)

2009-03-24T23:59:59.000Z

454

Quantitative Elemental Analyses by Plasma Emission Spectroscopy  

Science Journals Connector (OSTI)

...Elemental Analyses by Plasma Emission Spectroscopy...Argon-supported inductively coupled plasmas operated at atmospheric pressures are excellent...HIGH-FREQUENCY ARGON PLASMA FOR OPTICAL EMISSION...EXPERIMENTAL-STUDY OF A 1-KW, 50-MHZ RF INDUCTIVELY COUPLED...

Velmer A. Fassel

1978-10-13T23:59:59.000Z

455

Quantitative Elemental Analyses by Plasma Emission Spectroscopy  

Science Journals Connector (OSTI)

...Elemental Analyses by Plasma Emission Spectroscopy...inductively coupled plasmas operated at atmospheric...INDUCTIVELY-COUPLED HIGH-FREQUENCY ARGON PLASMA FOR OPTICAL EMISSION...1-KW, 50-MHZ RF INDUCTIVELY COUPLED...STUDIES OF A RADIO-FREQUENCY INDUCTIVELY COUPLED...

Velmer A. Fassel

1978-10-13T23:59:59.000Z

456

Perfluorohalogenoorgano Compounds of Main Group 5 Elements  

Science Journals Connector (OSTI)

The compounds of the Main Group 5 elements phosphorus, arsenic, antimony, and bismuth, are covered to the end of 1973 in Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente, Part 3, 1975 (cited here ...

Alois Haas; Michael R. Chr. Gerstenberger

1983-01-01T23:59:59.000Z

457

Transuranium Elements in the Nuclear Fuel Cycle  

Science Journals Connector (OSTI)

Transuranium elements, neptunium, plutonium, americium, and curium, are formed via neutron capture processes of actinides, and are mainly by-products of fuel irradiation during the operation of a nuclear react...

Thomas Fanghnel; Jean-Paul Glatz; Rudy J. M. Konings

2010-01-01T23:59:59.000Z

458

Quantum Algorithms for Element Distinctness Harry Buhrman  

E-Print Network [OSTI]

Quantum Algorithms for Element Distinctness Harry Buhrman Christoph D¨urr Mark Heiligman§ Peter, France. Email: durr@lri.fr. §NSA, Suite 6111, Fort George G. Meade, MD 20755, USA. Email: mheilig

Magniez, Frédéric

459

Quantum Algorithms for Element Distinctness Harry Buhrman  

E-Print Network [OSTI]

Quantum Algorithms for Element Distinctness Harry Buhrman£ Christoph D¨urr? Mark Heiligman? Peter, France. Email: durr@lri.fr. ?NSA, Suite 6111, Fort George G. Meade, MD 20755, USA. Email: mheilig

de Wolf, Ronald

460

The Mutual Adjustment of Meteorological Elements  

Science Journals Connector (OSTI)

The complete set of equations of atmospheric fluid dynamics and thermodynamics contains time derivatives of five elements: u, v, w, p, ? (or T), i.e., it is of the fifth order in time. For initial value (Cauchy) ...

S. Panchev

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

THE NEW ELEMENT CALIFORNIUM (ATOMIC NUMBER 98)  

E-Print Network [OSTI]

No, 66) as the names americium (No, curium (No, andthe production of element 98. Americium, the source for theneutron-irradiated americium in which it was produced as a

Thompson, S.G.; Street, K.,Jr.; Ghiorso, A.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

462

Isotope/element fractionation during surface adsorption  

Science Journals Connector (OSTI)

The adsorption of ions onto mineral surfaces accompanies isotope/element fractionation in planets and asteroids. A model based on simple classical physics is presented to predict these fractionations. The agreement between the experimentally observed isotope/element ratios and their predicted values is found to be excellent. This fractionation can be demonstrated experimentally in advanced physics laboratories using macroscopic particles. The success of the model shows students that even a very complex naturally occurring process can be explained quantitatively with simple physics.

Gamini Seneviratne; Asiri Nanayakkara

2004-01-01T23:59:59.000Z

463

Quadrilateral/hexahedral finite element mesh coarsening  

DOE Patents [OSTI]

A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.

Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E

2012-10-16T23:59:59.000Z

464

Stretchable semiconductor elements and stretchable electrical circuits  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Rogers, John A. (Champaign, IL); Khang, Dahl-Young (Seoul, KR); Menard, Etienne (Durham, NC)

2009-07-07T23:59:59.000Z

465

A new finite element lifting surface technique  

E-Print Network [OSTI]

Element Lifting Surface Technique. (May 1973) James David Kocurek, B. S. , Texas ASM University 1 Directed by: Dr. Balusu M. Rao A numerical lifting surface technique based on discrete vortex loading elements is developed for calculating the steady..., incompress- ; ible, aerodynamic load distribution on a general, nonplanar, ideal- 1 ized body. The method, described as the "Vortex Box" technique, has been applied to general planar wings of arbitrary straight line ' geometry and to annular wings...

Kocurek, James David

2012-06-07T23:59:59.000Z

466

Property:GRR/SubsectionElementNumber | Open Energy Information  

Open Energy Info (EERE)

SubsectionElementNumber SubsectionElementNumber Jump to: navigation, search Property Name GRR/SubsectionElementNumber Property Type Number Description The subsection element number of an element in the Geothermal Regulatory Roadmap. The value of this property is derived automatically by the element template and is used in sorting elements within a section. Pages using the property "GRR/SubsectionElementNumber" Showing 25 pages using this property. (previous 25) (next 25) G GRR/Elements/14-CA-b.1 - NPDES Permit Application + 1 + GRR/Elements/14-CA-b.10 - Did majority of RWQCB approve the permit + 10 + GRR/Elements/14-CA-b.11 - EPA Review of Adopted Permit + 11 + GRR/Elements/14-CA-b.12 - Were all EPA objections resolved + 12 + GRR/Elements/14-CA-b.13 - NPDES Permit issued + 13 +

467

Best Practices: Elements of a Federal Privacy Program  

Broader source: Energy.gov (indexed) [DOE]

Best Practices: Best Practices: Elements of a Federal Privacy Program Version 1.0 Sponsored By: Federal CIO Council Privacy Committee June 2010 Best Practices: Elements of a Federal Privacy Program June 2010 Page i Contents Acknowledgements __________________________________________________________________ ii Purpose ____________________________________________________________________________ 1 Introduction: Privacy Stewardship and Governance _________________________________________ 3 Element 1 -Leadership ________________________________________________________________ 6 Element 2 - Privacy Risk Management and Compliance Documentation _________________________ 9 Element 3 - Information Security _______________________________________________________ 14

468

Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2  

SciTech Connect (OSTI)

Storage of CO{sub 2} in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO{sub 2} leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO{sub 2} can form two-phase mixtures of liquid and gaseous CO{sub 2}, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO{sub 2}, the so-called Joule-Thomson effect. Integrated modeling of CO{sub 2} storage and leakage requires the ability to model non-isothermal flows of brine and CO{sub 2} at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO{sub 2}. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO{sub 2} systems. Our model formulation includes: (1) an accurate description of thermophysical properties of aqueous and CO{sub 2}-rich phases as functions of temperature, pressure, salinity and CO{sub 2} content, including the mutual dissolution of CO{sub 2} and H{sub 2}O; (2) transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO{sub 2}; (3) one-, two-, and three-phase flow of brine-CO{sub 2} mixtures, including heat flow; (4) non-isothermal effects associated with phase change, mutual dissolution of CO{sub 2} and water, and (de-) compression effects; and (5) the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO{sub 2} provide a potential for positive as well as negative feedbacks on leakage rates, with a combination of self-enhancing and self-limiting effects. Lower viscosity and density of CO{sub 2} as compared to aqueous fluids provides a potential for self-enhancing effects during leakage, while strong cooling effects from liquid CO{sub 2} boiling into gas, and from expansion of gas rising towards the land surface, act to self-limit discharges. Strong interference between fluid phases under three-phase conditions (aqueous - liquid CO{sub 2} - gaseous CO{sub 2}) also tends to reduce CO{sub 2} fluxes. Feedback on different space and time scales can induce non-monotonic behavior of CO{sub 2} flow rates.

Pruess, K.

2011-05-15T23:59:59.000Z

469

Homogeneous condensation of gaseous mixtures of Si, Fe, O, N, and C in relative cosmic abundance and implications for astronomical condensation  

SciTech Connect (OSTI)

The pressure versus temperature curves for homogeneous nucleation and condensation of two gaseous mixtures with nearly relative solar abundance of Si, Fe, O, N, and C in an excess of H were determined experimentally. Mixtures of CO, Fe(CO)5, H2, SiH4, and N2O in Ar were heated behind reflected shocks in a shock tube. The nucleation and condensation, which took place in the subsequent gas-dynamic expansion (cooling phase), was monitored by light scattering and turbidity. Grain morphologies and crystalline phases present in the condensates were determined by electron microscopy. These data cast doubt on the validity of both equilibrium and classical nucleation theoretical approaches to predict homogeneous condensation in a solar nebula or stellar atmosphere.

Stephens, J.R.

1984-01-01T23:59:59.000Z

470

Versatile piezoelectric pulsed molecular beam source for gaseous compounds and organic molecules with femtomole accuracy for UHV and surface science applications  

SciTech Connect (OSTI)

This note describes the construction of a piezoelectric pulsed molecular beam source based upon a design presented in an earlier work [D. Proch and T. Trickl, Rev. Sci. Instrum. 60, 713 (1988)]. The design features significant modifications that permit the determination of the number of molecules in a beam pulse with an accuracy of 1x10{sup 11} molecules per pulse. The 21 cm long plunger-nozzle setup allows the molecules to be brought to any point of the UHV chamber with very high intensity. Furthermore, besides typical gaseous compounds, also smaller organic molecules with a vapor pressure higher than 0.1 mbar at room temperature may serve as feed material. This makes the new design suitable for various applications in chemical and surface science studies.

Schiesser, Alexander; Schaefer, Rolf [Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, Technische Universitaet Darmstadt, Petersenstrasse 20, 64287 Darmstadt (Germany)

2009-08-15T23:59:59.000Z

471

Nuclear elements in Banach Jordan pairs Ottmar Loos  

E-Print Network [OSTI]

Nuclear elements in Banach Jordan pairs Ottmar Loos Abstract We introduce nuclear elements in Banach Jordan pairs, generalizing the nuclear elements Jordan pairs and show that the trace form Trintroduced in [3] may be extended to the nuclear

472

Review of Selected Elements of Emergency Management at the Oak...  

Broader source: Energy.gov (indexed) [DOE]

OVERSIGHT REVIEW OF SELECTED ELEMENTS OF EMERGENCY MANAGEMENT AT THE OAK RIDGE NATIONAL LABORATORY July 2011 i INDEPENDENT OVERSIGHT REVIEW OF SELECTED ELEMENTS OF EMERGENCY...

473

OSHA Rulemaking on Basic Program Elements for Federal Employee...  

Energy Savers [EERE]

OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational Safety and Health Programs and Related Matters; 29 CFR 1960 OSHA Rulemaking on Basic Program Elements...

474

Elements of a Federal Privacy Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Elements of a Federal Privacy Program Elements of a Federal Privacy Program This document serves as a best practices guide to help federal organizations implement and sustain...

475

Compound and Elemental Analysis At Rye Patch Area (DOE GTP) ...  

Open Energy Info (EERE)

Compound and Elemental Analysis At Rye Patch Area (DOE GTP) Exploration Activity Details Location Rye Patch Area Exploration Technique Compound and Elemental Analysis Activity Date...

476

3800 Green Series Cost Elements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(formerly EPP) Program 3800 Green Series Cost Elements 06112014 (Rev. 7) 3800 Green Series Cost Elements More Documents & Publications 1 OPAM Policy Acquisition Guides...

477

Compound and Elemental Analysis At Fort Bliss Area (DOE GTP)...  

Open Energy Info (EERE)

Compound and Elemental Analysis At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Compound and Elemental Analysis Activity...

478

An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester  

Science Journals Connector (OSTI)

Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

Agung Sudrajad; Ismail Ali; Khalid Samo; Danny Faturachman

2012-01-01T23:59:59.000Z

479

Rapporteur's Report - workshop on rare earth elements  

Broader source: Energy.gov (indexed) [DOE]

Trans-Atlantic Workshop on Rare Earth Elements and Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Hosted by the MIT Energy Initiative, cambridge, Massachusetts december 3, 2010 Introduction The objective of the workshop was to exchange views and information on the material security challenges of rare earths and other elements critical for clean energy generation and use. This includes the description of current research topics around the supply chain and end uses, and to identify opportunities for Trans-Atlantic research cooperation. The workshop consisted of a series of brief presentations by researchers in the US and Europe, followed by a discussion of possible areas of collaboration proposed by the co-chairs. A list of the presentations and the agenda for the day is appended with this document.

480

Element Labs (Texas) | Open Energy Information  

Open Energy Info (EERE)

Element Labs (Texas) Element Labs (Texas) Jump to: navigation, search Name Element Labs Address 9701 Metric Blvd Place Austin, Texas Zip 78758 Sector Efficiency Product LED Producer Website http://www.elementlabs.com/ Coordinates 30.376797°, -97.715649° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.376797,"lon":-97.715649,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "flammable gaseous element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Catalyst for elemental sulfur recovery process  

DOE Patents [OSTI]

A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

Flytzani-Stephanopoulos, M.; Liu, W.

1995-01-24T23:59:59.000Z

482

Spectroscopy of element 115 decay chains  

SciTech Connect (OSTI)

A high-resolution a, X-ray and -ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum fu r Schwerionenforschung. Thirty correlated a-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z = 115. The data includes first candidates of fingerprinting the decay step Mt --> Bh with characteristic X rays. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z > 112. Comprehensive Monte-Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

Rudolph, Dirk [Lund University, Sweden; Forsberg, U. [Lund University, Sweden; Golubev, P. [Lund University, Sweden; Sarmiento, L. G. [Lund University, Sweden; Yakushev, A. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Andersson, L.-L. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Di Nitto, A. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Duehllmann, Ch. E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Gates, J. M. [Lawrence Berkeley National Laboratory (LBNL); Gregorich, K. E. [Lawrence Berkeley National Laboratory (LBNL); Gross, Carl J [ORNL; Hessberger, F. P. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Herzberg, R.-D [University of Liverpool; Khuyagbaatar, J. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Kratz, J. V. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Rykaczewski, Krzysztof Piotr [ORNL; Schaedel, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Aberg, S. [Lund University, Sweden; Ackermann, D. [GSI-Hemholtzzentrum fur Schwerionenforschung, Darmstadt, Germany; Block, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Brand, H. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Carlsson, B. G. [Lund University, Sweden; Cox, D. [University of Liverpool; Derkx, X. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Eberhardt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Even, J. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Fahlander, C. [Lund University, Sweden; Gerl, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Jaeger, E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kindler, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Krier, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kojouharov, I. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kurz, N. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Lommel, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Mistry, A. [University of Liverpool; Mokry, C. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Nitsche, H. [Lawrence Berkeley National Laboratory (LBNL); Omtvedt, J. P. [Paul Scherrer Institut, Villigen, Switzerland; Papadakis, P. [University of Liverpool; Ragnarsson, I. [Lund University, Sweden; Runke, J. [Gesellschaft fur Schwerionenfor