Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

| Photo: NASA, Troy Cryder Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Space Shuttle Endeavour, which lifted off on its final...

2

Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with Ambitious Technology Aboard Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with Ambitious Technology Aboard May 17, 2011 - 5:15pm Addthis Smoke cloud from Endeavour's Final Launge | Photo: NASA, Troy Cryder Smoke cloud from Endeavour's Final Launge | Photo: NASA, Troy Cryder Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Space Shuttle Endeavour, which lifted off on its final mission Monday, carrying the Alpha Magnetic Spectrometer (AMS) experiment. In addition to measuring how cosmic rays flow and what they are made of, the AMS will also search for cosmic rays made of a special form of matter known as antimatter. By looking for new particles in space via the AMS, scientists might

3

Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with Ambitious Technology Aboard Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with Ambitious Technology Aboard May 17, 2011 - 5:15pm Addthis Smoke cloud from Endeavour's Final Launge | Photo: NASA, Troy Cryder Smoke cloud from Endeavour's Final Launge | Photo: NASA, Troy Cryder Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Space Shuttle Endeavour, which lifted off on its final mission Monday, carrying the Alpha Magnetic Spectrometer (AMS) experiment. In addition to measuring how cosmic rays flow and what they are made of, the AMS will also search for cosmic rays made of a special form of matter known as antimatter. By looking for new particles in space via the AMS, scientists might

4

Space Shuttle Program Status  

E-Print Network (OSTI)

Brigham City, Utah Space Shuttle Main Engines Pratt & Whitney/Rocketdyne Canoga Park, CA NASA JSC Houston

Waliser, Duane E.

5

The Space Shuttle System [and Discussion  

Science Journals Connector (OSTI)

...research-article The Space Shuttle System [and Discussion] C. J...development and subsequent operation of the Shuttle as America's primary space transportation system is the culmination of several...the evolution of the Shuttle system and postulate its future contributions...

1984-01-01T23:59:59.000Z

6

Antimatter Experiment Aboard Friday's Space Shuttle Launch | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Antimatter Experiment Aboard Friday's Space Shuttle Launch Antimatter Experiment Aboard Friday's Space Shuttle Launch Antimatter Experiment Aboard Friday's Space Shuttle Launch April 26, 2011 - 10:41am Addthis A diagram of the RHIC complex at Brookhaven National Lab | Photo Courtesy of Brookhaven National Lab's Flickr A diagram of the RHIC complex at Brookhaven National Lab | Photo Courtesy of Brookhaven National Lab's Flickr Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? According to current theories, the amount of matter and antimatter should be about equal, or at least it should have been when the universe began. Yet we seem to be surrounded by matter, with literally no antimatter in sight -- which is why researchers are searching for signs of antimatter. This Friday, April 29th, the Space Shuttle Endeavour will launch into space

7

E-Print Network 3.0 - airships space shuttles Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Examples 29 February 2006 12;Space Shuttle Program Conclusions Significant... YoungShuttle Integration Ross ... Source: NASA Ames Research Center, Vision Science and...

8

Detection of DNA Damage Induced by Space Radiation in Mir and Space Shuttle  

Science Journals Connector (OSTI)

......American space shuttle for 9 days. After landing, we labeled space-radiation-induced...American space shuttle for 9 days. After landing, we labeled space-radiation-induced...studied in Go human lymphocytes using the comet assay. J. Radiat. Res. 42: 91101......

Takeo Ohnishi; Ken Ohnishi; Akihisa Takahashi; Yoshitaka Taniguchi; Masaru Sato; Tamotsu Nakano; Shunji Nagaoka

2002-12-01T23:59:59.000Z

9

Space radiation shielding analysis and dosimetry for the space shuttle program  

Science Journals Connector (OSTI)

Active and passive radiation dosimeters have been flown on every Space Shuttle mission to measure the naturally?occurring background Van Allen and galactic cosmic radiation doses that astronauts and radiation?sensitive experiments and payloads receive. A review of the various models utilized at the NASA/Johnson Space Center Radiation Analysis and Dosimetry is presented. An analytical shielding model of the Shuttle was developed as an engineering tool to aid in making premission radiation dose calculations and is discussed in detail. The anatomical man models are also discussed. A comparison between the onboard dosimeter measurements for the 24 Shuttle missions to date and the dose calculations using the radiation environment and shielding models is presented.

William Atwell; E. R. Beever; A. C. Hardy; R. G. Richmond; B. L. Cash

1989-01-01T23:59:59.000Z

10

NASA's Implementation Plan for Space Shuttle Return to Flight and Beyond June 3, 2005  

E-Print Network (OSTI)

#12;#12;NASA's Implementation Plan for Space Shuttle Return to Flight and Beyond June 3, 2005 NASA plan is available at www.nasa.gov #12;#12;NASA's Implementation Plan for Space Shuttle Return to Flight and Beyond June 3, 2005 Tenth Edition Summary June 3, 2005 This edition of NASA's Implementation Plan

11

Cathodic protection deployment on space shuttle solid rocket boosters  

SciTech Connect

Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection (anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composite (motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack at coating damage locations due primarily to galvanic coupling with the carbon/carbon nozzle. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper highlights the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information are included regarding the evaluation and application of inorganic zinc rich primers to provide anode area on the aluminum structures.

Zook, L.M.

1999-07-01T23:59:59.000Z

12

National Aeronautics and Space Administration Space Shuttle Era Facts  

E-Print Network (OSTI)

Center in Florida on April 12, 1981.Atlantis flew the final space mission, STS-135, in July 2011 into the Atlantic Ocean, retrieved and reused.The external tank is the only part of the stack not used again, who on May 11, 1792, maneuvered his ship through dangerous inland waters to explore British Columbia

13

Losing shuttle program to hurt Space Coast far worse than Palm Beach County  

E-Print Network (OSTI)

& Whitney Rocketdyne in northwestern Palm Beach County, where workers build and maintain the shuttle. NASA has paid Pratt & Whitney Rocketdyne about $2.3 billion during the past decade for space shuttle work, said Bruce McDavid, a manager at Pratt & Whitney Rocketdyne . The maintenance is performed

Belogay, Eugene A.

14

Derivation of Delaware Bay tidal parameters from space shuttle photography  

SciTech Connect

The tide-related parameters of the Delaware Bay are derived from space shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, the authors calculate the tidal influx of the Delaware Bay, which is 2.76 x 1O[sup 9] m[sup 3]. Furthermore, the velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts.

Zheng, Quanan; Yan, Xiaohai; Klemas, V. (Univ. of Delaware, Newark (United States))

1993-06-01T23:59:59.000Z

15

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cells Shine a Light on the Last Endeavour Space Shuttle Launch Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch May 16, 2011 - 9:35am Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does this mean for me? A new hydrogen fuel cell-powered mobile light tower that has the potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States. They are cleaner and quieter than diesel mobile light towers used today. Energy Department-funded research has helped to reduce the cost of fuel cells by 30% since 2008 and 80% since 2002. This has enabled increased widespread adoption and enabled commercial developments for fuel cell applications. Fuel cell technology will help light the way as the Space Shuttle

16

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch May 16, 2011 - 9:35am Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does this mean for me? A new hydrogen fuel cell-powered mobile light tower that has the potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States. They are cleaner and quieter than diesel mobile light towers used today. Energy Department-funded research has helped to reduce the cost of fuel cells by 30% since 2008 and 80% since 2002. This has enabled increased widespread adoption and enabled commercial developments for fuel cell applications. Fuel cell technology will help light the way as the Space Shuttle

17

Time domain terahertz detection of flaws within space shuttle sprayed on foam insulation  

Science Journals Connector (OSTI)

We demonstrate the detection of voids and disbonds intentionally incorporated within the sprayed on foam insulation of a space shuttle external tank mock-up segment using time domain...

Zimdars, David A; Valdmanis, Janis A; White, Jeffrey S; Winfree, William P; Madaras, Eric I; Stuk, G

18

Space shuttle: costs and technical delays raise political doubts  

Science Journals Connector (OSTI)

... the turbine blades and with the heat exchanger in the Shuttle engine being developed by Rocketdyne-the latter being a com-ponent which the review group singled out for concern. ...

David Dickson

1979-03-22T23:59:59.000Z

19

Assessment of crack growth in a space shuttle main engine first-stage high-pressure fuel turbopump blade  

Science Journals Connector (OSTI)

A two-dimensional finite element fracture mechanics analysis of a space shuttle main engine (SSME) turbine blade firtree was performed using the MARC finite element code. The analysis was conducted under combined effects of thermal and mechanical loads ...

Ali Abdul-Aziz

2002-11-01T23:59:59.000Z

20

Detection of space shuttle insulation foam defects by using a 0.2 THz Gunn diode oscillator and pyroelectric detector  

Science Journals Connector (OSTI)

We report detection of space shuttle insulation foam defects by using a 0.2 THz Gunn diode oscillator as the light source, and a pyroelectric camera as the detector. The size and...

Zhong, Hua; Karpowicz, Nick; Xu, Jingzhou; Deng, Yanqing; Ussery, Warren; Shur, Michael; Zhang, Xi-Cheng

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A Thought of Wrapping Space Shuttle External Tank with Ceramic Fiber Fishnet Stockings  

E-Print Network (OSTI)

The new camera system of the shuttle Discovery on STS-114 that blasted off at 10:39am, Tuesday, July 26, 2005, after 906 days of grounding since the Columbia accident, has produced high resolution data of foam sheddings. The 0.9 lbs piece from the Protuberance Air Load (PAL) ramp on the LH2 tank is believed to be comparable in its potential adversities to the $\\sim 1.67$ lbs BX-250 foam from the $-Y$ bipod ramp that demised shuttle Columbia in 2003. The two known incidences indicate that protuberant foams, possibly in conjunction with the liquid hydrogen temperature, offer lame targets of the aerodynamic forces. Seven other relatively large divots in the STS-114 external tank foam insulation have been reported, and foam shedding remains to be a challenge to be resolved before the next space shuttle launch. The relatively large divots from the newly streamlined foam around the -Y bipod area suggests a potential necessity for a new line of resolution. We suggest an option to wrap the insulated external fuel tank with a grid of high temperature resistant ceramic fibers ({\\it ceramic fiber fishnet stockings}). Assuming fiducial acreage of $20000 ft^2 $, one inch square cell single fiber grid will weigh only $60g$ with fiber cost \\$66. Even with 1500-fiber-equivalent strength, one inch square cell grid will add only $200 lbs$ and "miniscule" \\$100,000.

Sun Hong Rhie

2006-03-14T23:59:59.000Z

22

NATURE PHYSICS | VOL 7 | AUGUST 2011 | www.nature.com/naturephysics 587 With the final flight of the space shuttle  

E-Print Network (OSTI)

is remembered fondly, having met President Kennedy's challenge of putting men on the Moon before the end humankind's impractical space fantasies" (333, 29; 2011). Writing in Technology Review, John M. Logsdon stunning images of the Universe -- a mere handful of which are pictured here. The end of the shuttle

Loss, Daniel

23

Flame Chemistry and Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Details Photoionization Mass Spectrometer Flame Conditions Flame Chemistry Insights (n-butanol flame) Experiment vs. Model Fuel-Consumption Pathways...

24

Beyond the space shuttle  

Science Journals Connector (OSTI)

... CEV. Lockheed Martin will produce one design, while a combination of Northrop Grumman and Boeing will work on the other, with the winning design to be chosen in 2006. ...

Mark Peplow

2005-07-08T23:59:59.000Z

25

SPACE SHUTTLE MISSION Finishing Touches  

E-Print Network (OSTI)

)...................................................................................................................... 81 TRANSATLANTIC ABORT LANDING (TAL

26

Laboratory Shuttle Bus Routes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rear bike rack image Rear bike rack image The Laboratory provides shuttle bus services, contracted through MV Transportation Services. Routes run throughout its 200-acre facility, downtown Berkeley, local off-site facilities, UC Campus, Downtown Berkeley BART, and Rockridge BART stations. Shuttles offer free wifi onboard. Riders are asked to adhere to riding instructions. Active shuttle stops are marked with this sign: Bus sign image Shuttles run Monday through Friday, except Laboratory holidays. There is no weekend service. Special service for tours, group travel, etc. is available for a fee. All shuttles are equipped with Nextbus which uses GPS technology to enable riders to obtain real-time information on bus arrivals. Contact Bus Services at busservices@lbl.gov or 510-486-4165 to provide

27

National Aeronautics and Space Administration Space Launch System  

E-Print Network (OSTI)

was previously designated the space shuttle main engine and is built by Aerojet Rocketdyne of Sacramento, Calif

Waliser, Duane E.

28

Flame front geometry in premixed turbulent flames  

SciTech Connect

Experimental and numerical determinations of flame front curvature and orientation in premixed turbulent flames are presented. The experimental data is obtained from planar, cross sectional images of stagnation point flames at high Damkoehler number. A direct numerical simulation of a constant energy flow is combined with a zero-thickness, constant density flame model to provide the numerical results. The computational domain is a 32{sup 3} cube with periodic boundary conditions. The two-dimensional curvature distributions of the experiments and numerical simulations compare well at similar q{prime}/S{sub L} values with means close to zero and marked negative skewness. At higher turbulence levels the simulations show that the distributions become symmetric about zero. These features are also found in the three dimensional distributions of curvature. The simulations support assumptions which make it possible to determine the mean direction cosines from the experimental data. This leads to a reduction of 12% in the estimated flame surface area density in the middle of the flame brush. 18 refs.

Shepherd, I.G. (Lawrence Berkeley Lab., CA (United States)); Ashurst, W.T. (Sandia National Labs., Livermore, CA (United States))

1991-12-01T23:59:59.000Z

29

Nanoparticle shuttle memory  

DOE Patents (OSTI)

A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

Zettl, Alex Karlwalter (Kensington, CA)

2012-03-06T23:59:59.000Z

30

Electrical probe diagnostics for the laminar flame quenching distance  

SciTech Connect

A simplified theory, previously developed for the general case of weakly ionized gas flow, is used to predict electrical probe response when the flame is quenched on the probe surface. This theory is based on the planar model of space charge sheaths around the measuring electrode. For the flame quenching case, by assuming that the sheath thickness is comparable with the thermal boundary layer thickness, probe current can be related to flame quenching distance. The theoretical assumptions made to obtain the analytical formulation of probe current were experimentally proved by using direct visualization and high-frequency PIV. The direct visualization method was also used to validate the results of flame quenching distance values obtained with electrical probe. The electrical probe diagnostics have been verified for both head-on and sidewall flame quenching regimes and for stoichiometric methane/air and propane/air mixtures in a pressure range of 0.05-0.6 MPa. (author)

Karrer, Maxime; Makarov, Maxime [Renault Technocentre, 78288 Guyancourt Cedex (France); Bellenoue, Marc; Labuda, Sergei; Sotton, Julien [Laboratoire de Combustion et de Detonique, CNRS, 86961 Futuroscope Chasseneuil (France)

2010-02-15T23:59:59.000Z

31

Flame Contact, a New Departure in Water Heating1  

Science Journals Connector (OSTI)

... paper. We can, by a modification of this experiment, measure the depth of the flameless space, as the copper, if placed against the paper before it has time to ... gum, which is liable to swell and force the paper past the limit of the flameless space, and also to allow the paste to dry before applying the flame, as ...

1886-07-08T23:59:59.000Z

32

Space shuttle based microgravity smoldering combustion experiments  

E-Print Network (OSTI)

zone, and smolder heat of combustion (energy per unit massand Q is the smolder heat of combustion. The mass fluxes ofdata. The smolder heat of combustion is not well determined

Walther, David C; Fernandez-Pello, Carlos; Urban, David L

1999-01-01T23:59:59.000Z

33

Engine Troubles Delay the Space Shuttle  

Science Journals Connector (OSTI)

...December 1981 at a plant oper-ated by Rocketdyne, a subsidiary of Rockwell International...turning. Simulta-neously, according to Rocketdyne, the clutch on the machine slipped...tore loose when it struck the machine. Rocketdyne, in consultation with NASA, elected...

R. JEFFREY SMITH

1983-03-11T23:59:59.000Z

34

Dynamics and structure of stretched flames  

SciTech Connect

This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

Law, C.K. [Princeton Univ., NJ (United States)

1993-12-01T23:59:59.000Z

35

Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures  

Science Journals Connector (OSTI)

Abstract In order to investigate oxyfuel combustion characteristics of typical composition of coal gasification syngas connected to CCS systems. Instantaneous flame front structure of turbulent premixed flames of CO/H2/O2/CO2 mixtures which represent syngas oxyfuel combustion was quantitatively studied comparing with CH4/air and syngas/air flames by using a nozzle-type Bunsen burner. Hot-wire anemometer and OH-PLIF were used to measure the turbulent flow and detect the instantaneous flame front structure, respectively. Image processing and statistical analyzing were performed using the Matlab Software. Flame surface density, mean progress variable, local curvature radius, mean flame volume, and flame thickness, were obtained. Results show that turbulent premixed flames of syngas possess wrinkled flame front structure which is a general feature of turbulent premixed flames. Flame surface density for the CO/H2/O2/CO2 flame is much larger than that of CO/H2/O2/air and CH4/air flames. This is mainly caused by the smaller flame intrinsic instability scale, which would lead to smaller scales and less flame passivity response to turbulence presented by Markstain length, which reduce the local flame stretch against turbulence vortex. Peak value of Possibility Density Function (PDF) distribution of local curvature radius, R, for CO/H2/O2/CO2 flames is larger than those of CO/H2/O2/air and CH4/air flames at both positive and negative side and the corresponding R of absolute peak PDF is the smallest. This demonstrates that the most frequent scale is the smallest for CO/H2/O2/CO2 flames. Mean flame volume of CO/H2/O2/CO2 flame is smaller than that of CH4/air flame even smaller than that of CO/H2/O2/air flame. This would be due to the lower flame height and smaller flame wrinkles.

Meng Zhang; Jinhua Wang; Jin Wu; Zhilong Wei; Zuohua Huang; Hideaki Kobayashi

2014-01-01T23:59:59.000Z

36

The Shuttle Record: Risks, Achievements  

Science Journals Connector (OSTI)

...Anders wrote that the high risks should "be brought to the attention ofthe President for his review." * In November 1979, Rocketdyne an-nounced that many shuttle engine welds were too weak because its workers unknow-ingly used the wrong welding wire...

ELIOT MARSHALL

1986-02-14T23:59:59.000Z

37

Space  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Earth Materials Science Technology The Lab All Paul Johnson Unusual light in dark space revealed by Los Alamos, NASA By looking at the dark spaces between visible...

38

National Aeronautics and Space Administration Space Shuttle Era Facts  

E-Print Network (OSTI)

Center in Florida on April 12, 1981. That first mission verified the combined performance of the orbiter into orbit. Its boosters are jettisoned into the Atlantic Ocean, retrieved and reused. The external tank ship through dangerous inland waters to explore British Columbia and what are now the states

39

National Aeronautics and Space Administration SPACE SHUTTLE MISSION  

E-Print Network (OSTI)

)...................................................................................................................... 87 TRANSATLANTIC ABORT LANDING (TAL

40

National Aeronautics and Space Administration SPACE SHUTTLE MISSION  

E-Print Network (OSTI)

................................................................................................................................. 81 TRANSATLANTIC ABORT LANDING

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cal Flame: Order (2015-CE-14015)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Cal Flame to pay a $8,000 civil penalty after finding Cal Flame had failed to certify that refrigerator basic model BBQ09849P-H complies with the applicable energy conservation standards.

42

Shuttle Bus and Couriers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Shuttle Bus and Couriers Shuttle Bus and Couriers Shuttle Bus and Couriers Shuttle Bus Route and Schedule The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific authority for the use of appropriated funds to pay for transportation for official purposes is contained in section 1344(a)(1) of Title 31, U.S. Code. Use of this transportation for any other purpose is inappropriate and against the

43

Production Of Fullerenic Soot In Flames  

DOE Patents (OSTI)

A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

Howard, Jack B. (Winchester, MA); Vander Sande, John B. (Newbury, MA); Chowdhury, K. Das (Cambridge, MA)

2000-12-19T23:59:59.000Z

44

Production of fullerenic nanostructures in flames  

DOE Patents (OSTI)

A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

Howard, Jack B. (Winchester, MA); Vander Sande, John B. (Newbury, MA); Chowdhury, K. Das (Cambridge, MA)

1999-01-01T23:59:59.000Z

45

Premixed-gas flames Paul D. Ronney  

E-Print Network (OSTI)

Premixed-gas flames Paul D. Ronney Department of Aerospace and Mechanical Engineering University of Southern California, Los Angeles, CA 90089-1453 USA ronney@usc.edu Keywords: Microgravity; premixed-gas; cool flames; turbulence. Reference: Ronney, P. D., "Premixed-Gas Flames," in: Microgravity Combustion

46

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells...

47

NU Shuttle Advertising Guidelines University Services  

E-Print Network (OSTI)

NU Shuttle Advertising Guidelines University Services Northwestern University operates several,000 · Average monthly one-way rides during the summer: 40,000 Northwestern offers advertising opportunities on its Evanston shuttle bus fleet. Advertising is currently only available to NU-affiliated departments

Shahriar, Selim

48

Chemical Shuttle Additives in Lithium Ion Batteries  

SciTech Connect

The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

Patterson, Mary

2013-03-31T23:59:59.000Z

49

CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS  

SciTech Connect

The goal of this exploratory research project is to control the pollutant emissions of diffusion flames by modifying the air infusion rate into the flame. The modification was achieved by installing a cascade of venturis around the burning gas jet. The basic idea behind this technique is controlling the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. A natural gas jet diffusion flame at burner-exit Reynolds number of 5100 was examined with a set of venturis of specific sizes and spacing arrangement. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The instantaneous chemistry model was used as the reaction model. The concentration of NO was determined through CFD-POST, a post processing utility program for CFD-ACE+. The numerical results showed that, in the near-burner, midflame and far-burner regions, the venturi-cascaded flame had lower temperature by an average of 13%, 19% and 17%, respectively, and lower CO{sub 2} concentration by 35%, 37% and 32%, respectively, than the baseline flame. An opposite trend was noticed for O{sub 2} concentration; the cascaded flame has higher O{sub 2} concentration by 7%, 26% and 44%, in average values, in the near-burner, mid-flame and far-burner regions, respectively, than in the baseline case. The results also showed that, in the near-burner, mid-flame, and far-burner regions, the venturi-cascaded flame has lower NO concentrations by 89%, 70% and 70%, in average values, respectively, compared to the baseline case. The numerical results substantiate that venturi-cascading is a feasible method for controlling the pollutant emissions of a burning gas jet. In addition, the numerical results were useful to understand the thermo-chemical processes involved. The results showed that the prompt-NO mechanism plays an important role besides the conventional thermal-NO mechanism. The computational results of the present study need to be validated experimentally.

Dr. Ala Qubbaj

2001-12-30T23:59:59.000Z

50

Clothes That Care -- Flame Resistant Protection.  

E-Print Network (OSTI)

.. 8-1272 othes That Care- Flame Resistant Protection" TOoe ZTA245.7 8873 NQ.'2'T2 Texas Agricultural Extension Service . The Texas A&M University System Daniel C. Pfannstiel, Director, College Station, Texas , ? Clothes That Care- Flame... Resistant Protection Claudia Kerbel * Concern for a safer environment has led to changes in many of the everyday products we use , including clothing . In the' past dec ade, flame-resistant (FR) garments and fabrics have become more available than ever...

Kerbel, Claudia

1980-01-01T23:59:59.000Z

51

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

52

High-Pressure Flame Speed Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

addition on flame speeds of hydrocarbon fuels 3. Soot formation and explosive gasification in burning droplets of dieselbiodieselethanol blends C. K. Law Princeton...

53

Flame retardant finishing of cotton fleece.  

E-Print Network (OSTI)

??In this research, an inorganic phosphorus-containing flame retardant system was developed for cotton fleece. The aluminum hydroxyphosphate (AHP) formed in situ on cotton by the… (more)

Wu, Xialing

2008-01-01T23:59:59.000Z

54

DOE HQ Shuttle Bus Route and Schedule  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shuttle Bus Route and Schedule Shuttle Bus Route and Schedule The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific authority for the use of appropriated funds to pay for transportation for official purposes is contained in section 1344(a)(1) of Title 31, U.S. Code. Use of this transportation for any other purpose is

55

Laboratory Shuttle Bus Routes: Instructions for Riders  

NLE Websites -- All DOE Office Websites (Extended Search)

Instructions for Riders Instructions for Riders Shuttle stops are marked with this sign: Bus sign image Tips for riders: When you see a shuttle bus approaching WAVE AT THE DRIVER so the driver knows you want to board the bus For safety reasons, shuttle bus drivers can only pick-up and drop-off passengers at designated stops. Shuttle services are for Berkeley Lab employee and guest use only. All riders are required to show ID when boarding off-site buses. Acceptable ID's are: LBNL badge, UC Berkeley student and faculty ID badge, DOE badge, or UCOP badge. Guests are required to present a visitor bus pass, email, or permission from Lab host, written on official letterhead. See Site Access for more information. As you board, tell the driver the building number of your destination. The driver will be able to assist you with directions.

56

shuttle-based system. Advanced capabilities of the new Rodent Habitat include providing  

E-Print Network (OSTI)

for longer duration studies than the previous system allowed. In the post-shuttle era, the hardware must also Coun- cil's 2011 Decadal Survey Report, "Recaptur- ing a Future for Space Exploration: Life. This hardware development project lever- ages the experience gained from 27 prior flight experiments

Waliser, Duane E.

57

The Cool Flame Combustion of Ethanol  

Science Journals Connector (OSTI)

...research-article The Cool Flame Combustion of Ethanol J. Brown C. F. H. Tipper The kinetics...products of the cool flame combustion of ethanol between about 280 and 330 C have been...much less for a 1 : 2 than for a 1 : 1 ethanol/oxygen mixture at constant T and varied...

1969-01-01T23:59:59.000Z

58

A Hydrogen Singing-Flame Ionization Detector  

Science Journals Connector (OSTI)

......occurs un- der certain hydrogen, air, and sam- ple...which was the fact that methods of increas- ing ion...inverted glass jar over a hydrogen diffusion flame to demonstrate...optimum in the normal hydrogen diffusion flame and...reasons for the higher ion production. Advantages of the......

L. B. Graiff

1965-05-01T23:59:59.000Z

59

Polymer combustion: effects of flame emissivity  

Science Journals Connector (OSTI)

...gas phase. Polymer combustion chemistry is modelled...investigating polymer combustion it has proven advantageous...properties and treat the heat flux from the ignition...luminous flames from hydrocarbon fuels, it is common...A (1999) Polymer combustion: effects of flame emissivity...

1999-01-01T23:59:59.000Z

60

Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Atlanta Airport Atlanta Airport Converts Shuttles to CNG to someone by E-mail Share Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Facebook Tweet about Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Twitter Bookmark Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Google Bookmark Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Delicious Rank Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Digg Find More places to share Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on AddThis.com... Sept. 9, 2012 Atlanta Airport Converts Shuttles to CNG L earn how an Atlanta company saves money and conserves fuel with compressed natural gas airport shuttles.

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames  

SciTech Connect

Large discrepancies among the laminar flame speeds and Markstein lengths of methane/air mixtures measured by different researchers using the same constant-pressure spherical flame method are observed. As an effort to reduce these discrepancies, one linear model (LM, the stretched flame speed changes linearly with the stretch rate) and two non-linear models (NM I and NM II, the stretched flame speed changes non-linearly with the stretch rate) for extracting the laminar flame speed and Markstein length from propagating spherical flames are investigated. The accuracy and performance of the LM, NM I, and NM II are found to strongly depend on the Lewis number. It is demonstrated that NM I is the most accurate for mixtures with large Lewis number (positive Markstein length) while NM II is the most accurate for mixtures with small Lewis number (negative Markstein length). Therefore, in order to get accurate laminar flame speed and Markstein length from spherical flame experiments, different non-linear models should be used for different mixtures. The validity of the theoretical results is further demonstrated by numerical and experimental studies. The results of this study can be used directly in spherical flame experiments measuring the laminar flame speed and Markstein length. (author)

Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

2011-02-15T23:59:59.000Z

62

Model flames in the Boussinesq limit: Rising Natalia Vladimirova  

E-Print Network (OSTI)

Model flames in the Boussinesq limit: Rising bubbles Natalia Vladimirova ASC/Flash Center the Boussinesq buoyancy approximation, we study a bubble of reaction products rising in the reactant fluid under with a specified speed. The flame speed, although known for laminar flame, is #12;Model flames in the Boussinesq

Vladimirova, Natalia

63

Hilton Alexandria Mark Center Shuttle Schedule  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hilton Alexandria Mark Center Shuttle Schedule Hilton Alexandria Mark Center Shuttle Schedule 5000 Seminary Road, Alexandria, VA 22311 703-845-1010 The Hilton Alexandria Mark Center offers complimentary shuttle service every half hour at :00 and :30, 7 days a week. Our first departure from the hotel is 6:00 AM and our last departure from the hotel is 10:30 pm, to Pentagon City Mall/Metro (on the blue and yellow line) and Ronald Reagan Washington National Airport The van arrives at Pentagon City at approximately 10 and 40 minutes after the hour. Our last pick up is at approximately 10:40pm. Upon exiting the metro, exit left, and take the escalator outside. We pick up at the island in front of the Ritz Carlton and Fashion Center Mall. The next stop is Ronald Reagan Washington National Airport The van arrives at the airport at approximately 20 and 50 minutes after the

64

Numerical studies of flames in wide tubes:?Stability limits of curved stationary flames  

Science Journals Connector (OSTI)

Flame dynamics in wide tubes with ideally adiabatical and slip walls is studied by means of direct numerical simulations of the complete set of hydrodynamical equations including thermal conduction, fuel diffusion, viscosity, and chemical kinetics. Stability limits of curved stationary flames in wide tubes and the hydrodynamic instability of these flames (the secondary Darrieus-Landau instability) are investigated. The stability limits found in the present numerical simulations are in a very good agreement with the previous theoretical predictions. It is obtained that close to the stability limits the secondary Darrieus-Landau instability results in an extra cusp at the flame front. It is shown that the curved flames subject to the secondary Darrieus-Landau instability propagate with velocity considerably larger than the velocity of the stationary flames.

O. Yu. Travnikov; V. V. Bychkov; M. A. Liberman

2000-01-01T23:59:59.000Z

65

Alternative Fuels Data Center: Propane Powers Airport Shuttles in New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Powers Airport Propane Powers Airport Shuttles in New Orleans to someone by E-mail Share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Facebook Tweet about Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Twitter Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Google Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Delicious Rank Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Digg Find More places to share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on AddThis.com... Feb. 19, 2011 Propane Powers Airport Shuttles in New Orleans D iscover how the New Orleans airport displaced over 139,000 gallons of

66

Aromatics oxidation and soot formation in flames  

SciTech Connect

This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

1993-12-01T23:59:59.000Z

67

Enol Intermediates Unexpectedly Found in Flames  

NLE Websites -- All DOE Office Websites (Extended Search)

Enol Intermediates Unexpectedly Found in Flames Print Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of American, Chinese, and German researchers has exploited this selectivity to identify chemical compounds known as enols as apparently ubiquitous intermediates in flames burning a variety of fuels. This surprising observation will require combustion modelers to revise their models to account for the presence of these compounds.

68

Enol Intermediates Unexpectedly Found in Flames  

NLE Websites -- All DOE Office Websites (Extended Search)

Enol Intermediates Unexpectedly Found in Flames Print Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of American, Chinese, and German researchers has exploited this selectivity to identify chemical compounds known as enols as apparently ubiquitous intermediates in flames burning a variety of fuels. This surprising observation will require combustion modelers to revise their models to account for the presence of these compounds.

69

Enol Intermediates Unexpectedly Found in Flames  

NLE Websites -- All DOE Office Websites (Extended Search)

Enol Intermediates Unexpectedly Found in Flames Print Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of American, Chinese, and German researchers has exploited this selectivity to identify chemical compounds known as enols as apparently ubiquitous intermediates in flames burning a variety of fuels. This surprising observation will require combustion modelers to revise their models to account for the presence of these compounds.

70

A Simplified Shuttle Irradiation Facility for ATR  

SciTech Connect

During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple "low cost" shuttle irradiation facility for ATR has been developed. Cost were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4-5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations.

A. J. Palmer; S. T. Laflin

1999-08-01T23:59:59.000Z

71

The structure of the carbon black flame  

E-Print Network (OSTI)

THE STRUCTURE OF THE CARBON BLACK FLAME A Dissertation By W1 111 ami Kermit Anderson THEHSR UCOF Approval as to style and content recommended Head of tiie Department of Chemistry A Dissertation Submitted to the Faculty of the Agricultural... and Mechanical College of. Texas in Parti ail Fulfilment of the Requirements for the Degree of Doctor of Philosophy THE STRUCTURE OF THE CARBON BLACK FLAME Major Subject: Chemistry AB William Hermit Anderson:\\ t * August 1945 THE STRUCTURE OF THE. CARBON...

Anderson, W. Kermi

1945-01-01T23:59:59.000Z

72

NO concentration imaging in turbulent nonpremixed flames  

SciTech Connect

The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

73

Characterisation of an oxy-coal flame through digital imaging  

SciTech Connect

This paper presents investigations into the impact of oxy-fuel combustion on flame characteristics through the application of digital imaging and image processing techniques. The characteristic parameters of the flame are derived from flame images that are captured using a vision-based flame monitoring system. Experiments were carried out on a 0.5 MW{sub th} coal combustion test facility. Different flue gas recycle ratios and furnace oxygen levels were created for two different coals. The characteristics of the flame and the correlation between the measured flame parameters and corresponding combustion conditions are described and discussed. The results show that the flame temperature decreases with the recycle ratio for both test coals, suggesting that the flame temperature is effectively controlled by the flue gas recycle ratio. The presence of high levels of CO{sub 2} at high flue gas recycle ratios may result in delayed combustion and thus has a detrimental effect on the flame stability. (author)

Smart, John; Riley, Gerry [RWE npower plc, Windmill Hill Business Park, Whitehill Way, Swindon SN5 6PB (United Kingdom); Lu, Gang; Yan, Yong [Instrumentation, Control and Embedded Systems Research Group, School of Engineering and Digital Arts, University of Kent, Canterbury, Kent CT2 7NT (United Kingdom)

2010-06-15T23:59:59.000Z

74

Blowoff dynamics of bluff body stabilized turbulent premixed flames  

SciTech Connect

This article concerns the flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff. Time resolved chemiluminescence imaging along with simultaneous particle image velocimetry and OH planar laser-induced fluorescence were utilized in an axisymmetric bluff body stabilized, propane-air flame to determine the sequence of events leading to blowoff and provide a quantitative analysis of the experimental results. It was found that as lean blowoff is approached by reduction of equivalence ratio, flame speed decreases and the flame shape progressively changes from a conical to a columnar shape. For a stably burning conical flame away from blowoff, the flame front envelopes the shear layer vortices. Near blowoff, the columnar flame front and shear layer vortices overlap to induce high local stretch rates that exceed the extinction stretch rates instantaneously and in the mean, resulting in local flame extinction along the shear layers. Following shear layer extinction, fresh reactants can pass through the shear layers to react within the recirculation zone with all other parts of the flame extinguished. This flame kernel within the recirculation zone may survive for a few milliseconds and can reignite the shear layers such that the entire flame is reestablished for a short period. This extinction and reignition event can happen several times before final blowoff which occurs when the flame kernel fails to reignite the shear layers and ultimately leads to total flame extinguishment. (author)

Chaudhuri, Swetaprovo; Kostka, Stanislav; Renfro, Michael W.; Cetegen, Baki M. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, U-3139, Storrs, CT 06269 (United States)

2010-04-15T23:59:59.000Z

75

Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Shuttle Buses Offer Free Rides in Maryland to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on AddThis.com... June 18, 2010

76

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame  

E-Print Network (OSTI)

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame S. E of these regions can be supersonic and could initiate a detonation. Subject headings: supernovae: general a late time transition of the thermonuclear burning to a detonation wave (e.g., Hoflich et al. 1995

77

Characterization of syngas laminar flames using the Bunsen burner configuration  

Science Journals Connector (OSTI)

Laminar flame speeds of syngas mixtures (H2/CO/Air) have been studied using the Bunsen flame configuration with both straight and nozzle burners. The flame surface area and flame cone angle methodologies, respectively based on the OH* chemiluminescence and Schlieren imaging techniques, have been performed to extract flame speeds for a wide range of equivalence ratios (0.3 syngas flames with 0.6 < ? < 1.0 and 10% < %H2 < 70% is proposed. A particular attention has been devoted to the development and validation of the OH* chemiluminescence methodology with the identification of important parameters governing the measurement accuracy.

N. Bouvet; C. Chauveau; I. Gökalp; S.-Y. Lee; R.J. Santoro

2011-01-01T23:59:59.000Z

78

Test failures may hold up space shuttle schedule  

Science Journals Connector (OSTI)

... the engine to a level which will allow such blades to be used. However, Rocketdyne Corporation, which is developing the engine under contract, announced at hearings of the Senate ...

David Dickson

1978-04-06T23:59:59.000Z

79

SPACE SHUTTLE MISSION PRESS KIT/April 2010  

E-Print Network (OSTI)

)...................................................................................................................... 93 TRANSATLANTIC ABORT LANDING (TAL

80

SPACE SHUTTLE MISSION A Room with a View  

E-Print Network (OSTI)

)...................................................................................................................... 87 TRANSATLANTIC ABORT LANDING (TAL

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Simplified Shuttle Irradiation Facility for ATR  

SciTech Connect

During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple “low cost” shuttle irradiation facility for ATR has been developed. Costs were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4 – 5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations. The irradiation position selected for this concept is a 1.5 inch “B” hole (B-11). This position provides neutron fluxes of approximately: 1.6 x 1014 (<0.5 eV) and 4.0 x 1013 (>0.8 MeV) n/cm2*sec.

Palmer, Alma Joseph; Laflin, S. T.

1999-09-01T23:59:59.000Z

82

Space Shuttle Main Engine reaches milestoneSpace Shuttle Main Engine reaches milestone One in a million . . .  

E-Print Network (OSTI)

the tail of a comet, landed the Spirit and Opportunity rovers on the surface of Mars, refocused its primary

83

Synergistic effect of nanosilica aerogel with phosphorus flame retardants on improving flame retardancy and leaching resistance of wood  

Science Journals Connector (OSTI)

Nanosilica (Nano-SiO2) sol fabricated by a sol-gel process was introduced into wood modification with phosphorus flame retardants to improve the flame retardancy and leaching resistance of wood. The obtained materials were characterized by ...

Xiaodan Zhu, Yiqiang Wu, Cuihua Tian, Yan Qing, Chunhua Yao

2014-01-01T23:59:59.000Z

84

White Flame Energy switches to backhoes  

SciTech Connect

The mountaintop coal operator, White Flame Energy has switched to different truck-shovel arrangement. Along with many surface mining operations throughout central Appalachia, the company is using hoe-configured hydraulic excavators as opposed to the traditional front-shovel arrangements. Located in Varney, WV, White Flame Energy uses two Terex O & K mining shovels, an RH170 and an RH 200, which have the capacity to move 2 million cu yards per month from five seams, primarily the Coalburg, Stockton, and No 5 Block and associated rider seams. The article records conversations on the operations with Mike Vines, the general manager, and Don Nicewonder, the owner of White Flame Energy. 2 photos.

Fiscor, S.

2005-06-01T23:59:59.000Z

85

A Universal Detector for Liquid Chromatography: The Flame Aerosol Detector  

Science Journals Connector (OSTI)

......a turbu- lent air-hydrogen flame into which the...application of calibration methods similar to those often...of the flame as one method of production of charged droplets...case. In the air-hydrogen flame of a conventional......

Stephen A. Wise; Richard A. Mowery; Jr; Richard S. Juvet; Jr

1979-11-01T23:59:59.000Z

86

Investigations of swirl flames in a gas turbine model combustor  

SciTech Connect

The thermochemical states of three swirling CH{sub 4}/air diffusion flames, stabilized in a gas turbine model combustor, were investigated using laser Raman scattering. The flames were operated at different thermal powers and air/fuel ratios and exhibited different flame behavior with respect to flame instabilities. They had previously been characterized with respect to their flame structures, velocity fields, and mean values of temperature, major species concentrations, and mixture fraction. The single-pulse multispecies measurements presented in this article revealed very rapid mixing of fuel and air, accompanied by strong effects of turbulence-chemistry interactions in the form of local flame extinction and ignition delay. Flame stabilization is accomplished mainly by hot and relatively fuel-rich combustion products, which are transported back to the flame root within an inner recirculation zone. The flames are not attached to the fuel nozzle, and are stabilized approximately 10 mm above the fuel nozzle, where fuel and air are partially premixed before ignition. The mixing and reaction progress in this area are discussed in detail. The flames are short (<50 mm), especially that exhibiting thermoacoustic oscillations, and reach a thermochemical state close to adiabatic equilibrium at the flame tip. The main goals of this article are to outline results that yield deeper insight into the combustion of gas turbine flames and to establish an experimental database for the validation of numerical models.

Meier, W.; Duan, X.R.; Weigand, P. [Institut fuer Verbrennungstechnik, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Pfaffenwaldring 38, D-70569 Stuttgart (Germany)

2006-01-01T23:59:59.000Z

87

Flame Spectra in the Photographic Infra-Red  

Science Journals Connector (OSTI)

...H O bands in the flame of moist carbon monoxide indicates that in this flame the excitation is a result of the combustion processes; this agrees with earlier theories on the formation of vibrationally activated molecules of CO in this flame...

1942-01-01T23:59:59.000Z

88

Argonne-University of Chicago Shuttle | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Visiting Argonne Visiting Argonne Site Access Policy Map Argonne-University of Chicago Shuttle Map of Argonne Download a map of the Argonne site. Access to the site Site Access Policy All visitors to Argonne require appropriate authorization before they are allowed on the Argonne site. Argonne-University of Chicago Shuttle The schedule below is effective August 25, 2010. A free shuttle bus makes round trips between Argonne National Laboratory and The University of Chicago. Shuttle service will be provided on Mondays, Wednesdays and Fridays only from September through April. From May through August, the shuttle will operate every weekday to accommodate the increase in student riders. The shuttle does not run on laboratory holidays. For more information, please contact Tracy Lozano (tlozano@anl.gov or 630/252-9625) at Argonne.

89

Computatonal and experimental study of laminar flames  

SciTech Connect

This research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in counterflow, cylindrical and coflowing axisymmetric configurations. The authors have pursued both computational and experimental aspects of the research in parallel. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the one and two-dimensional nonlinear boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. In particular, spontaneous Raman scattering and laser induced fluorescence were used to measure the temperature, major and minor species profiles.

Smooke, M.D.; Long, M.B. [Yale Univ., New Haven, CT (United States)

1993-12-01T23:59:59.000Z

90

A Numerical Study of the Superadiabatic Flame Temperature Phenomenon in HN3 Flame O. P. Korobeinichev,a  

E-Print Network (OSTI)

@cua.edu #12;2 ABSTRACT The phenomenon of superadiabatic flame temperature (SAFT) was discovered the revised mechanism. The results demonstrate presence of the SAFT phenomenon in the HN3/N2 flame. Analysis of the flame structure and the kinetic mechanism indicates that the cause of SAFT is in the kinetic mechanism

Knyazev, Vadim D.

91

The NASA Shuttle Program Local and Natinal Newspaper Content Analysis.  

E-Print Network (OSTI)

??Little research had been done on the communication of NASA media coverage, especially coverage of the shuttle program. This analysis adds to the mass communication… (more)

Shkolyar, Svetla

2009-01-01T23:59:59.000Z

92

Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barriers * Barriers addressed - D. Abuse Tolerance, Reliability and Ruggedness - A. Cost - E. Life * Technical Target - to employ a redox shuttle molecule in a large format...

93

Power-Law Wrinkling Turbulence-Flame Interaction Model for Astrophysical Flames  

E-Print Network (OSTI)

We extend a model for turbulence-flame interactions (TFI) to consider astrophysical flames with a particular focus on combustion in type Ia supernovae. The inertial range of the turbulent cascade is nearly always under-resolved in simulations of astrophysical flows, requiring the use of a model in order to quantify the effects of subgrid-scale wrinkling of the flame surface. We provide implementation details to extend a well-tested TFI model to low-Prandtl number flames for use in the compressible hydrodynamics code FLASH. A local, instantaneous measure of the turbulent velocity is calibrated for FLASH and verification tests are performed. Particular care is taken to consider the relation between the subgrid rms turbulent velocity and the turbulent flame speed, especially for high-intensity turbulence where the turbulent flame speed is not expected to scale with the turbulent velocity. Finally, we explore the impact of different TFI models in full-star, three-dimensional simulations of type Ia supernovae.

Jackson, Aaron P; Calder, Alan C

2014-01-01T23:59:59.000Z

94

Increased Cytotoxicity of Oxidized Flame Soot  

NLE Websites -- All DOE Office Websites (Extended Search)

Increased Cytotoxicity of Oxidized Flame Soot Increased Cytotoxicity of Oxidized Flame Soot Title Increased Cytotoxicity of Oxidized Flame Soot Publication Type Journal Article Year of Publication 2012 Authors Holder, Amara L., Brietta J. Carter, Regine Goth-Goldstein, Donald Lucas, and Catherine P. Koshland Journal Atmospheric Pollution Research Volume 3 Start Page 25 Issue 1 Pagination 25-31 Date Published 01/2012 Keywords health effects, ozone, soot, toxicity Abstract Combustion-generated particles released into the atmosphere undergo reactions with oxidants, which can change the particles' physiochemical characteristics. In this work, we compare the physical and chemical properties and cellular response of particles fresh from a flame with those oxidized by ozone and nitrogen dioxide. The reaction with ozone and nitrogen dioxide does not significantly modify the physical characteristics of the particles (primary particle size, fractal dimension, and surface area). However, oxidation affects the chemical characteristics of the particles, creating more oxygen and nitrogen containing functional groups, and increases their hydrophilicity. In addition, oxidized soot generates more reactive oxygen species, as measured by the dithiothreitol (DTT) assay. Furthermore, oxidized soot is 1.5-2 times more toxic than soot that was not reacted with ozone, but the inflammatory response, measured by interleukin-8 (IL-8) secretion, is unchanged. These results imply that combustion-generated particles released into the atmosphere will have an increased toxicity on or after high ozone days.

95

Spectrum of the Flame of Ethylene  

Science Journals Connector (OSTI)

1 December 1934 research-article Spectrum of the Flame of Ethylene W. M. Vaidya The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. www.jstor.org

1934-01-01T23:59:59.000Z

96

Redox shuttles for lithium ion batteries  

DOE Patents (OSTI)

Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

2014-11-04T23:59:59.000Z

97

DOE HQ Shuttle Bus Schedule and Route | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HQ Shuttle Bus Schedule and Route DOE HQ Shuttle Bus Schedule and Route DOE HQ Shuttle Bus Schedule and Route The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific authority for the use of appropriated funds to pay for transportation for official purposes is contained in section 1344(a)(1) of Title 31, U.S. Code. Use of this transportation for any other purpose is inappropriate and against the law.

98

Flame quality monitor system for fixed firing rate oil burners  

DOE Patents (OSTI)

A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

Butcher, Thomas A. (Pt. Jefferson, NY); Cerniglia, Philip (Moriches, NY)

1992-01-01T23:59:59.000Z

99

Turbulent Nonpremixed Flames (TNF): Experimental Data Archives and Computational Submodels  

DOE Data Explorer (OSTI)

In the 1990s an international collaboration formed around a series of workshops that became known collectively as the International Workshop on Measurement and Computation of Turbulent Non-Premixed Flames (TNF). An online library, hosted by Sandia National Laboratory (California) was established that provides data sets and submodels or "mechanisms" for the study of turbulence-chemistry interactions in turbulent nonpremixed and partially premixed combustion. Data are organized by flame types: simple jet flames, piloted jet flames, bluff body flames, and swirl flames. These data sets provide a means for collaborative comparisons of both measured and simulated/modeled research results and also assist scientists in determining priorities for further research. More than 20 data sets or databases are available from this website, along with various downloadable files of chemical mechanisms. The website also provides an extensive bibliography and the proceedings of the workshops themselves from 1996 through 2012. Information continues to be added to this collection.

100

New developments in the theory of flame propagation  

SciTech Connect

Two topics in combustion fluid mechanics are discussed. The first is a theory of the outward propagating spherical flame in the regime of well-developed hydrodynamic instability. In a qualitative agreement with experimental observations it is shown that the flame assumes a fractal-like wrinkled structure resulting in the overall burning rate acceleration. In contrast to hydrodynamically unstable flames, the expanding flame subject exclusively to the effect of diffusive instability does not indicate any disposition toward acceleration. The second topic concerns the dynamics of diffusively unstable flames subjected to radiative heat losses. At high enough heat losses the flame breaks up into separate self-propagating cap-like flamelets while a significant portion of the fuel remains unconsumed.

Sivashinsky, G.I. [City College of the City Univ. of New York, NY (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The advanced flame quality indicator system  

SciTech Connect

By combining oil tank monitoring, systems diagnostics and flame quality monitoring in an affordable system that communicates directly with dealers by telephone modem, Insight Technologies offers new revenue opportunities and the capability for a new order of customer relations to oil dealers. With co-sponsorship from New York State Energy Research and Development Authority, we have incorporated several valuable functions to a new product based on the original Flame Quality Indicator concept licensed from the US DOE`s Brookhaven National Laboratory. The new system is the Advanced Flame Quality Indicator, or AFQI. As before, the AFQI monitors and reports the intensity of the burner flame relative to a calibration established when the burner is set up at AFQI installation. Repairs or adjustments are summoned by late-night outgoing telephone calls when limits are exceeded in either direction, indicating an impending contamination or other malfunction. A independently, a pressure transducer for monitoring oil tank level and filter condition, safety lockout alarms and a temperature monitor; all reporting automatically at instructed intervals via an on-board modem to a central station PC computer (CSC). Firmware on each AFQI unit and Insight-supplied software on the CSC automatically interact to maintain a customer database for an oil dealer, an OEM, or a regional service contractor. In addition to ensuring continuously clean and efficient operation, the AFQI offers the oil industry a new set of immediate payoffs, among which are reduced outages and emergency service calls, shorter service calls from cleaner operation, larger oil delivery drops, the opportunity to stretch service intervals to as along as three years in some cases, new selling features to keep and attract customers, and greatly enhanced customer contact, quality and reliability.

Oman, R.; Rossi, M.J.; Calia, V.S.; Davis, F.L.; Rudin, A. [Insight Technologies, Inc., Bohemia, NY (United States)

1997-09-01T23:59:59.000Z

102

Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations  

Science Journals Connector (OSTI)

...gaseous flames in gas turbine combustion chambers...using a flamelet/progress variable approach...flame of natural gas. Combust. Flame...and R Suntz. 2002 Progress in characterization...calculations. Technical report, University of Technology...

2014-01-01T23:59:59.000Z

103

Flame-wall interaction simulation in a turbulent channel flow  

SciTech Connect

The interaction between turbulent premixed flames and channel walls is studied. Combustion is represented by a simple irreversible reaction with a large activation temperature. A low heat release assumption is used, but feedback to the flowfield can be allowed through viscosity changes. The effect of wall distance on local and global flame structure is investigated. Quenching distances and maximum wall heat fluxed computed in laminar cases are compared to DNS results. It is found that quenching distances decrease and maximum heat fluxes increase relative to laminar flame values, scaling with the turbulent strain rate. It is shown that these effects are due to large coherent structures which push flame elements towards the wall. The effect of wall strain in flame-wall interaction is studied in a stagnation line flow; this is used to explain the DNS results. The effects of the flame on the flow through viscosity changes is studied. It is also shown that remarkable flame events are produced by flame interaction with a horseshoe vortex: burned gases are pushed towards the wall at high speed and induce quenching and high wall heat flux while fresh gases are expelled from the wall region and form finger-like structures. Effects of the wall on flame surface density are investigated.

Bruneaux, G.; Akselvoll, K.; Poinsot, T.; Ferziger, J.H.

1996-10-01T23:59:59.000Z

104

Surface wettability studies of PDMS using flame plasma treatment .  

E-Print Network (OSTI)

??The flame plasma treatment studied in this thesis was able to oxidize the surface of Polydimethylsiloxane (PDMS) in a fraction of a second. It was… (more)

Wang, Xin C

2009-01-01T23:59:59.000Z

105

FIELD TEST OF THE FLAME QUALITY INDICATOR  

SciTech Connect

The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion chambers, and poor fuel pump cut-off. Service organizations can use these early indications to reduce problems and service costs. There were also some ''call-for-service'' indications for which problems were not identified. The test program also showed that monitoring of the flame can provide information on burner run times and this can be used to estimate current oversize factors and to determine actual fuel usage, enabling more efficient fuel delivery procedures.

Andrew M. Rudin; Thomas Butcher; Henry Troost

2003-02-04T23:59:59.000Z

106

Effect of Blending on High-Pressure Laminar Flame Speed Measurements, Markstein Lengths, and Flame Stability of Hydrocarbons  

E-Print Network (OSTI)

, 5, and 10 .................................................. 40 Figure 26 Pure CH3OCH3 results for initial pressures of 1, 5, and 10 atm ................................................ 41 Figure 27 Flame speed results for 80/20 CH4/C2H6... .............................................................................................. 44 Figure 30 Flame speed results for 80/20 CH4/CH3OCH3 at initial pressures of 1, 5, and 10 atm compared to modeled results .................................................................................. 45 Figure 31 Flame speed results...

Lowry, William Baugh

2012-02-14T23:59:59.000Z

107

E-Print Network 3.0 - atomic absorption flame Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

flame Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption flame Page: << < 1 2 3 4 5 > >> 1 Appendix 1: Experimental Studies...

108

Planned Changes to the LBNL Shuttle Bus System  

NLE Websites -- All DOE Office Websites (Extended Search)

Planned Changes to the LBNL Shuttle Bus System Planned Changes to the LBNL Shuttle Bus System Speaker(s): Steve Black Date: December 5, 2006 - 12:00pm Location: 90-3122 BACKGROUND: Several recent issues of Today At Berkeley Lab, including for today, December 1, have called our attention to the planned changes to the Lab's shuttle bus system. If you have not yet viewed the description of the planned new system and the maps showing the new routes it is advisable for you to do so as the changes are significant, not just a "fine tuning". Several EETD staff members and shuttle bus riders have expressed serious concerns about the changes, which has prompted us to set up this special seminar. DESCRIPTION: Steve Black, who is fairly new to the Lab, has responsibility for a number of Laboratory support services

109

Introduction HYBRID FLAME: combustion of a combustible gas and  

E-Print Network (OSTI)

in numerous cases (e.g. explosion in coal mines) QUENCHING DISTANCES: narrowest passage through which aflame due to the difficulty of obtaining a hybrid flame. Setup Methodology Dust fed by actuator with methane Future Work Verify data obtained for methane and aluminum flame Run test with constant equivalence ratio

Barthelat, Francois

110

Low-Temperature Oxidation and Cool Flames of Propane  

Science Journals Connector (OSTI)

...1954 research-article Low-Temperature Oxidation and Cool Flames of Propane J. H. Knox R. G. W. Norrish A detailed analytical study of the cool-flame oxidation of propane has been carried out using a continuous-flow technique with a view...

1954-01-01T23:59:59.000Z

111

Author's personal copy Combustion and Flame 151 (2007) 104119  

E-Print Network (OSTI)

Author's personal copy Combustion and Flame 151 (2007) 104­119 www May 2007 Available online 28 June 2007 Abstract Laminar flame speeds of lean H2/CO/CO2 (syngas) fuel but overpredict the measurements at higher temperatures. © 2007 The Combustion Institute. Published by Elsevier

Lieuwen, Timothy C.

112

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

of premixed burners capable of stably burning ultra-lean hydrogen-air fuel mixtures. Such burners couldAnalyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames Peer-Timo Bremer, Member demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different

Pascucci, Valerio

113

Flame propagation and counterflow nonpremixed ignition of mixtures of methane and ethylene  

SciTech Connect

The ignition temperature of nitrogen-diluted mixtures of methane and ethylene counterflowing against heated air was measured up to five atmospheres. In addition, the stretch-corrected laminar flame speeds of mixtures of air, methane and ethylene were determined from outwardly-propagating spherical flames up to 10 atmospheres, for extensive range of the lean-to-rich equivalence ratio. These experimental data, relevant to low- to moderately-high-temperature ignition chemistry and high-temperature flame chemistry, respectively, were subsequently compared with calculations using two detailed kinetic mechanisms. A chemical explosive mode analysis (CEMA) was then conducted to identify the dominant ignition chemistry and the role of ethylene addition in facilitating nonpremixed ignition. Furthermore, the hierarchical structure of the associated oxidation kinetics was examined by comparing the sizes and constituents of the skeletal mechanisms of the pure fuels and their mixtures, derived using the method of directed relation graph (DRG). The skeletal mechanism was further reduced by time-scale analysis, leading to a 24-species reduced mechanism from the detailed mechanism of USC Mech II, validated within the parameter space of the conducted experiments. (author)

Liu, W.; Kelley, A.P.; Law, C.K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

2010-05-15T23:59:59.000Z

114

On the Evolution of Thermonuclear Flames on Large Scales  

Science Journals Connector (OSTI)

The thermonuclear explosion of a massive white dwarf in a Type Ia supernova explosion is characterized by vastly disparate spatial and temporal scales. The extreme dynamic range inherent to the problem prevents the use of direct numerical simulation and forces modelers to resort to subgrid models to describe physical processes taking place on unresolved scales. We consider the evolution of a model thermonuclear flame in a constant gravitational field on a periodic domain. The gravitational acceleration is aligned with the overall direction of the flame propagation, making the flame surface subject to the Rayleigh-Taylor instability. The flame evolution is followed through an extended initial transient phase well into the steady state regime. The properties of the evolution of flame surface are examined. We confirm the form of the governing equation of the evolution suggested by Khokhlov in 1995. The mechanism of vorticity production and the interaction between vortices and the flame surface are discussed. Previously observed periodic behavior of the flame evolution is reproduced and is found to be caused by the turnover of the largest eddies. The characteristic timescales are found to be similar to the turnover time of these eddies. Relations between flame surface creation and destruction processes and basic characteristics of the flow are discussed. We find that the flame surface creation strength is associated with the Rayleigh-Taylor timescale. Also, in fully developed turbulence, the flame surface destruction strength scales as 1/L3, where L is the turbulent driving scale. The results of our investigation provide support for Khokhlov's self-regulating model of turbulent thermonuclear flames. Based on these results, one can revise and extend the original model. The revision uses a local description of the flame surface enhancement and the evolution of the flame surface since the onset of turbulence, rendering it free from the assumption of an instantaneous steady state of turbulence. This new model can be applied to the initial transient phase of the flame evolution, where the self-regulation mechanism yet to be fully established. Details of this new model will be presented in a forthcoming paper.

Ju Zhang; O. E. Bronson Messer; Alexei M. Khokhlov; Tomasz Plewa

2007-01-01T23:59:59.000Z

115

Investigations of swirl flames in a gas turbine model combustor  

SciTech Connect

A gas turbine model combustor for swirling CH{sub 4}/air diffusion flames at atmospheric pressure with good optical access for detailed laser measurements is discussed. Three flames with thermal powers between 7.6 and 34.9 kW and overall equivalence ratios between 0.55 and 0.75 were investigated. These behave differently with respect to combustion instabilities: Flame A burned stably, flame B exhibited pronounced thermoacoustic oscillations, and flame C, operated near the lean extinction limit, was subject to sudden liftoff with partial extinction and reanchoring. One aim of the studies was a detailed experimental characterization of flame behavior to better understand the underlying physical and chemical processes leading to instabilities. The second goal of the work was the establishment of a comprehensive database that can be used for validation and improvement of numerical combustion models. The flow field was measured by laser Doppler velocimetry, the flame structures were visualized by planar laser-induced fluorescence (PLIF) of OH and CH radicals, and the major species concentrations, temperature, and mixture fraction were determined by laser Raman scattering. The flow fields of the three flames were quite similar, with high velocities in the region of the injected gases, a pronounced inner recirculation zone, and an outer recirculation zone with low velocities. The flames were not attached to the fuel nozzle and thus were partially premixed before ignition. The near field of the flames was characterized by fast mixing and considerable finite-rate chemistry effects. CH PLIF images revealed that the reaction zones were thin (=<0.5 mm) and strongly corrugated and that the flame zones were short (h=<50 mm). Despite the similar flow fields of the three flames, the oscillating flame B was flatter and opened more widely than the others. In the current article, the flow field, structures, and mean and rms values of the temperature, mixture fraction, and species concentrations are discussed. Turbulence intensities, mixing, heat release, and reaction progress are addressed. In a second article, the turbulence-chemistry interactions in the three flames are treated.

Weigand, P.; Meier, W.; Duan, X.R.; Stricker, W.; Aigner, M. [Institut fuer Verbrennungstechnik, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Pfaffenwaldring 38, D-70569 Stuttgart (Germany)

2006-01-01T23:59:59.000Z

116

National Aeronautics and Space Administration Michoud Assembly Facility  

E-Print Network (OSTI)

during launch to power the vehicle to space. The final assembly phase of space shuttle lightweight a 36-foot-deep by 250-foot-wide ship channel and an 800-by-800-foot turning basin to serve barges feet of manufacturing space, including open high-bay areas and a 45,000-square-foot Vertical Assembly

Waliser, Duane E.

117

Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames  

SciTech Connect

We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (?g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in ?g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in ?g flames, which reduces the time to gel for nanoparticles by ?10{sup 6}?s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

Chakrabarty, Rajan K., E-mail: rajan.chakrabarty@gmail.com [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130 (United States); Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Novosselov, Igor V. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Enertechnix Inc., Maple Valley, Washington 98068 (United States); Beres, Nicholas D.; Moosmüller, Hans [Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Sorensen, Christopher M. [Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Stipe, Christopher B. [TSI Incorporated, 500 Cardigan Rd, Shoreview, Minnesota 55126 (United States)

2014-06-16T23:59:59.000Z

118

Turbulence-Flame Interactions in Type Ia Supernovae  

E-Print Network (OSTI)

The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to $8 \\times 10^7$ g cm$^{-3}$, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and $3 \\times 10^7$ g cm$^{-3}$ where the nature of the burning changes qualitatively. By $1 \\times 10^7$ g cm$^{-3}$, energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis Number approaches unity. That is, the flame resembles a laminar flame, but is turbulently broadened with an effective diffusion coefficient, $D_T \\sim u' l$, where $u'$ is the turbulent intensity and $l$ is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed.

A. J. Aspden; J. B. Bell; M. S. Day; S. E. Woosley; M. Zingale

2008-11-17T23:59:59.000Z

119

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

SciTech Connect

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

120

REAL TIME FLAME MONITORING OF GASIFIER BURNER AND INJECTORS  

SciTech Connect

This report is submitted to the United States Department of Energy in partial fulfillment of the contractual requirements for Phase I of the project titled, ''Real Time Flame Monitoring of Gasifier Burner and Injectors'', under co-operative agreement number DE-FS26-02NT41585. The project is composed of three one-year budget periods. The work in each year is divided into separate Tasks to facilitate project management, orderly completion of all project objectives, budget control, and critical path application of personnel and equipment. This Topical Report presents results of the Task 1 and 2 work. The 2 D optical sensor was developed to monitor selected UV and visible wavelengths to collect accurate flame characterization information regarding mixing, flame shape, and flame rich/lean characteristic. Flame richness, for example, was determined using OH and CH intensity peaks in the 300 to 500 nanometer range of the UV and visible spectrum. The laboratory burner was operated over a wide range of air to fuel ratio conditions from fuel rich to fuel lean. The sooty oxygen enriched air flames were established to test the sensor ability to characterize flame structures with substantial presence of hot solid particles emitting strong ''black body radiation''. The knowledge gained in these experiments will be very important when the sensor is used for gasifier flame analyses. It is expected that the sensor when installed on the Global Energy gasifier will be exposed to complex radiation patterns. The measured energy will be a combination of spectra emitted by the combusting gases, hot solid particulates, and hot walls of the gasifier chamber. The ability to separate flame emissions from the ''black body emissions'' will allow the sensor to accurately determine flame location relative to the gasifier walls and the injectors, as well as to analyze the flame's structure and condition. Ultimately, this information should enable the gasification processes to be monitored and controlled and as a result increase durability and efficiency of the gasifier. To accomplish goals set for Task 2 GTI will utilize the CANMET Coal Gasification Research facility. The Entrained Coal Gasifier Burner Test Stand has been designed and is currently under construction in the CANMET Energy Technology Center (CETC), the research and technology arm of Natural Resources Canada (NRCan). This Gasifier Burner Stand (GBS) is a scaled-down mock-up of a working gasifier combustion system that can provide the flexible platform needed in the second year of the project to test the flame sensor. The GBS will be capable of simulating combustion and gasification processes occurring in commercial gasifiers, such as Texaco, Shell, and Wabash River.

James Servaites; Serguei Zelepouga; David Rue

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Implementing multi-step chemical kinetics models in opposed-flow flame spread over cellulose and a comparison to single-step chemistry  

SciTech Connect

Multi-step, gas-phase chemical kinetics are introduced into flame spread modeling efforts. An unsteady multi-step, gas-phase kinetics model both with and without steady-state species assumptions, and including nonunit Lewis number, is compared with a model including a single, finite-rate gas-phase reaction, which has been the usual approach in flame spread modeling. Laminar diffusion flames over a thin fuel in an opposing O{sub 2}/N{sub 2} flow are considered with the solution in two-dimensional space of momentum, energy, and 12 gas-phase species. Results for the multi-step models show detailed flame structure in terms of species and heat release distributions throughout the flame and the role of chemical kinetics as a controlling mechanism in flame spread. Of particular interest is the potential of multi-step chemical kinetics in solutions at near-extinction limit conditions. While the incorporation of nonunit Le alone affords more detailed species transport, in high opposing flows it was found to give only minor structural differences form the single-step unit Le model. The multi-step chemistry allows for the gas kinetics to be self-adjusting to environmental conditions. As a result, the distribution of endothermicity and exothermicity throughout the flame and for particular reversible reactions is found to be a function of the flow environment, which overcomes a major drawback of single-step models, namely a fixed heat of combustion independent of environmental conditions, or one that must be determined separately from the model itself.

Wolverton, M.K.; Altenkirch, R.A.; Tang, L. [Mississippi State Univ., MS (United States)] [Mississippi State Univ., MS (United States)

1999-07-01T23:59:59.000Z

122

Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph  

Science Journals Connector (OSTI)

Various Bunsen flame information of premixed syngas/air mixtures was systematically collected. A CCD camera was used to capture the flame images. The OH-PLIF technique was applied to obtain the flame OH distribution and overall flame radiation spectra were measured with a spectrograph. Experiments were conducted on a temperature un-controlled burner and syngas over a wide range of H2/CO ratios (from 0.25 to 4) and equivalence ratios (from 0.5 to 1.2). Results show that increasing hydrogen fraction ( X H 2 ) extends the blow-off limit significantly. The measured laminar flame speed using cone-angle method based on CCD flame imaging and OH-PLIF images increases remarkably with the increase of X H 2 , and these measurements agrees well with kinetic modeling predictions through Li's mechanism when the temperature for computation is corrected. Kinetic study shows that as X H 2 increases, the production of H and OH radicals is accelerated. Additionally, the main H radical production reaction (or OH radical consumption reactions) changes from R29 (CO + OH = CO2 + H) to R3 (H2 + OH = H2O + H) as X H 2 increases. Sensitivity analysis was conducted to access the dominant reactions when X H 2 increases. The difference on flame color for different X H 2 mixtures is due to their difference in radiation spectrum of the intermediate radicals produced in combustion.

Jin Fu; Chenglong Tang; Wu Jin; Luong Dinh Thi; Zuohua Huang; Yang Zhang

2013-01-01T23:59:59.000Z

123

Laboratory Shuttle Bus Routes: Blue Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Blue Route Map (On-Site/Off-Site) Blue Route Map (On-Site/Off-Site) Scroll down or click here for schedule ↓ Printable Map Blue Route map Blue Route Schedule Effective May 3, 2013 Text Box: BLUE SHUTTLE SCHEDULE BLUE Route # 65 DOWNHILL BART 65 UPHILL 62/66 1 6:20 AM 6:30 AM 6:40 AM 6:52 AM 2 6:30 AM 6:40 AM 6:50 AM 7:02 AM 3 6:40 AM 6:50 AM 7:00 AM 7:12 AM 4 6:50 AM 7:00 AM 7:10 AM 7:22 AM 1 7:04 AM 7:16 AM 7:28 AM 7:40 AM 2 7:16 AM 7:28 AM 7:40 AM 7:52 AM 3 7:28 AM 7:40 AM 7:52 AM 8:04 AM 4 7:40 AM 7:52 AM 8:04 AM 8:16 AM 1 7:52 AM 8:04 AM 8:16 AM 8:28 AM 2 8:04 AM 8:16 AM 8:28 AM 8:40 AM 3 8:16 AM 8:28 AM 8:40 AM 8:52 AM 4 8:28 AM 8:40 AM 8:52 AM 9:04 AM 1 8:40 AM 8:52 AM 9:04 AM 9:16 AM 2 8:52 AM 9:04 AM 9:16 AM 9:28 AM 3 9:04 AM 9:16 AM 9:28 AM 9:40 AM 4 9:16 AM 9:28 AM 9:40 AM 9:52 AM 1 9:28 AM 9:40 AM 9:52 AM 10:04 AM 2 9:40 AM 9:52 AM 10:04 AM 10:16 AM 3 9:52 AM 10:04 AM

124

HEXANE : architecting manned space exploration missions beyond low-earth orbit  

E-Print Network (OSTI)

With the end of the Space Shuttle Program and the cancellation of the Constellation Program, NASA's long-term designs for manned spaceflight beyond Earth orbit remain indefinite. Although progress has been made in plans ...

Rudat, Alexander August

2013-01-01T23:59:59.000Z

125

Scaling and efficiency of PRISM in adaptive simulations of turbulent premixed flames  

SciTech Connect

The dominant computational cost in modeling turbulent combustion phenomena numerically with high fidelity chemical mechanisms is the time required to solve the ordinary differential equations associated with chemical kinetics. One approach to reducing that computational cost is to develop an inexpensive surrogate model that accurately represents evolution of chemical kinetics. One such approach, PRISM, develops a polynomial representation of the chemistry evolution in a local region of chemical composition space. This representation is then stored for later use. As the computation proceeds, the chemistry evolution for other points within the same region are computed by evaluating these polynomials instead of calling an ordinary differential equation solver. If initial data for advancing the chemistry is encountered that is not in any region for which a polynomial is defined, the methodology dynamically samples that region and constructs a new representation for that region. The utility of this approach is determined by the size of the regions over which the representation provides a good approximation to the kinetics and the number of these regions that are necessary to model the subset of composition space that is active during a simulation. In this paper, we assess the PRISM methodology in the context of a turbulent premixed flame in two dimensions. We consider a range of turbulent intensities ranging from weak turbulence that has little effect on the flame to strong turbulence that tears pockets of burning fluid from the main flame. For each case, we explore a range of sizes for the local regions and determine the scaling behavior as a function of region size and turbulent intensity.

Tonse, Shaheen R.; Bell, J.B.; Brown, N.J.; Day, M.S.; Frenklach, M.; Grcar, J.F.; Propp, R.M.

1999-12-01T23:59:59.000Z

126

Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Shuttles Save Fuel CNG Shuttles Save Fuel Costs for R&R Limousine and Bus to someone by E-mail Share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Facebook Tweet about Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Twitter Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Google Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Delicious Rank Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Digg Find More places to share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on AddThis.com... June 1, 2013

127

Development of a carotenoid shuttle vector for Lactobacillus  

E-Print Network (OSTI)

biosynthesis aller shuttling. A Lactobacillus replicon and an erythromycin resistance marker was prepared &om plasmid pLP503, a shuttle vector for Lactobacillus and E. cali. This insert was ligated into linearized pCAR16, a plasmid vector which contains a... molecules. . . . 10 2. Biosynthetic pathway for carotenoid biosynthesis in Erwinia uredovora. . . . . 12 3. Restriction map of carotenoid biosynthesis gene cluster insert in plasmid pCAR16. 23 4. Restriction map of pUC19 polycloning site 24 5. Gel...

White, Kevin E

1996-01-01T23:59:59.000Z

128

Theoretical Adiabatic Temperature and Chemical Composition of Sodium Combustion Flame  

SciTech Connect

Sodium fire safety analysis requires fundamental combustion properties, e.g., heat of combustion, flame temperature, and composition. We developed the GENESYS code for a theoretical investigation of sodium combustion flame.Our principle conclusions on sodium combustion under atmospheric air conditions are (a) the maximum theoretical flame temperature is 1950 K, and it is not affected by the presence of moisture; the uppermost limiting factor is the chemical instability of the condensed sodium-oxide products under high temperature; (b) the main combustion product is liquid Na{sub 2}O in dry air condition and liquid Na{sub 2}O with gaseous NaOH in moist air; and (c) the chemical equilibrium prediction of the residual gaseous reactants in the flame is indispensable for sodium combustion modeling.

Okano, Yasushi; Yamaguchi, Akira [O-arai Engineering Center (Japan)

2003-12-15T23:59:59.000Z

129

The effect of fuel composition on flame dynamics  

SciTech Connect

As fuel sources diversify, the gas turbine industry is under increasing pressure to develop fuel-flexible plants, able to use fuels with a variety of compositions from a large range of sources. However, the dynamic characteristics vary considerably with composition, in many cases altering the thermoacoustic stability of the combustor. We compare the flame dynamics, or the response in heat release rate of the flame to acoustic perturbations, of the three major constituents of natural gas: methane, ethane, and propane. The heat release rate is quantified using OH* chemiluminescence and product gas temperature. Gas temperature is measured by tracking the absorption of two high-temperature water lines, via Tunable Diode Laser Absorption Spectroscopy. The flame dynamics of the three fuels differ significantly. The changes in flame dynamics due to variations in fuel composition have the potential to have a large effect on the thermoacoustic stability of the combustor. (author)

Hendricks, Adam G.; Vandsburger, Uri [Department of Mechanical Engineering - 0238, Virginia Tech, Blacksburg, VA 24061 (United States)

2007-10-15T23:59:59.000Z

130

Probing flame chemistry with MBMS, theory, and modeling  

SciTech Connect

The objective is to establish kinetics of combustion and molecular-weight growth in C{sub 3} hydrocarbon flames as part of an ongoing study of flame chemistry. Specific reactions being studied are (1) the growth reactions of C{sub 3}H{sub 5} and C{sub 3}H{sub 3} with themselves and with unsaturated hydrocarbons and (2) the oxidation reactions of O and OH with C{sub 3}`s. This approach combines molecular-beam mass spectrometry (MBMS) experiments on low-pressure flat flames; theoretical predictions of rate constants by thermochemical kinetics, Bimolecular Quantum-RRK, RRKM, and master-equation theory; and whole-flame modeling using full mechanisms of elementary reactions.

Westmoreland, P.R. [Univ. of Massachusetts, Amherst (United States)

1993-12-01T23:59:59.000Z

131

Fuel Properties to Enable Lifted-Flame Combustion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Page 1 E.Kurtz File Name.pptx Fuel Properties to Enable Lifted Flame Combustion Eric Kurtz Ford Motor Company June 19, 2014 FT017 This presentation does not contain any...

132

Stability Regimes of Turbulent Nitrogen-Diluted Hydrogen Jet Flames  

SciTech Connect

One option for combustion in zero-emission Integrated Gasification Combined Cycle (IGCC) power plants is non-premixed combustion of nitrogen-diluted hydrogen in air. An important aspect to non-premixed combustion is flame stability or anchoring, though only a few fundamental stability studies of these flames have taken place to date. The following paper presents the results of experiments investigating the effects of nitrogen diluent fraction, jet diameter, and exit velocity on the static stability limits of a turbulent hydrogen jet flame issuing from a thin-lipped tube into a quiescent atmosphere. Four different stability limits are observed: detachment from the burner lip, reattachment to the burner lip, transition from a laminar lifted flame base to blowout or to a turbulent lifted flame, and transition from a turbulent lifted flame to blowout. The applicability of existing theories and correlations to the stability results is discussed. These results are an important step in assessing the viability of a non-premixed combustion approach using hydrogen diluted with nitrogen as a fuel.

Weiland, N.T.; Strakey, P.A.

2007-03-01T23:59:59.000Z

133

Modeling variable density effects in turbulent flames -- Some basic considerations  

SciTech Connect

The paper discusses the basic physical phenomena involved in pressure-density interactions, and presents models of pressure-velocity, pressure-scalar, baroclinic and dilatation effects for variable density low Mach-number turbulence. Their implementation in the {kappa}-{epsilon} framework is then described and their performance evaluated. The models assume that both scalar transport and turbulence generation arising from pressure-density interactions in flames are caused by the motion of large scale turbulent thermals superposed on the normal turbulence mechanism. The velocity of the thermals is related directly to the mean pressure gradient and local density differences in the flames. It is furthermore assumed that the correction for dilatation effects in the {kappa}-{epsilon} system can be determined from the constraint of conservation of the angular momentum of turbulence per unit mass. Simple corrections of the {kappa}-{epsilon} system are proposed for fast chemistry diffusion and premixed flames subject to variable pressure gradients, which offer substantial improvements in the predictions of the flames. some problems remain, particularly in predictions of turbulence in premixed flames, owing to large scale instabilities of the flames observed in the experiments.

Chomiak, J.; Nisbet, J.R. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics] [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics

1995-08-01T23:59:59.000Z

134

Noise in non?premixed turbulent syngas flames  

Science Journals Connector (OSTI)

A turbulent syngas flame may generate acoustic noise of high acoustic intensity in a combustion chamber. This may lead to the failure of construction components in a gas turbine engine in periods of the order of 1–100 hours. The research as described in the literature has almost exclusively been performed on the generation of noise in premixed methane or propane flames. Syngas fuel is a mixture of hydrogen and carbon monoxide and the burners used are of the non?premixed type. In this research the effect of turbulence and syngas composition on noise generation is investigated. A laboratory is set up to test syngas flames of a thermal power of 50 kW in a cylindrical air?cooled combustion chamber. Experiments are performed at several fuel compositions and burner inlet conditions. The flame sound intensity is measured in the combustion chamber equipped with acoustic dampers. The paper discusses the measured sound spectra. A model is derived for the generation of sound in a turbulent non?premixed flame. In this model it is shown that the sound generation is related to the dependence of density on mixture fraction in a flame with fast chemistry. A fluctuation in mixture fraction will lead to sound generation.

Sikke A. Klein; Jim B. W. Kok

1998-01-01T23:59:59.000Z

135

On the Evolution of Thermonuclear Flames on Large Scales  

E-Print Network (OSTI)

The thermonuclear explosion of a massive white dwarf in a Type Ia supernova explosion is characterized by vastly disparate spatial and temporal scales. The extreme dynamic range inherent to the problem prevents the use of direct numerical simulation and forces modelers to resort to subgrid models to describe physical processes taking place on unresolved scales. We consider the evolution of a model thermonuclear flame in a constant gravitational field on a periodic domain. The gravitational acceleration is aligned with the overall direction of the flame propagation, making the flame surface subject to the Rayleigh-Taylor instability. The flame evolution is followed through an extended initial transient phase well into the steady-state regime. The properties of the evolution of flame surface are examined. We confirm the form of the governing equation of the evolution suggested by Khokhlov (1995). The mechanism of vorticity production and the interaction between vortices and the flame surface are discussed. The results of our investigation provide the bases for revising and extending previous subgrid-scale model.

Ju Zhang; O. E. Bronson Messer; Alexei M. Khokhlov; Tomasz Plewa

2006-10-05T23:59:59.000Z

136

Redox Shuttle Additive, Wins 2014 R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Sandia National Laboratory and the Argonne National Laboratory have developed a chemical solution, known as a redox shuttle additive, a chemical that prevents overcharging by electrochemically “locking in” a maximum voltage that is dependent on the chemical structure of the additive and the nature of the battery material.

137

Service Capacity Design Problems for Mobility Allowance Shuttle Transit Systems  

E-Print Network (OSTI)

and utilizes a non-backtracking nearest-insertion algorithm, we derive closed-form approximate solutions for the service capacity design problem. We show that setting the length of the service area to half the travel service has a fixed base route that covers a specific geographic zone. Shuttles are allowed to deviate

Dessouky, Maged

138

The Freight Shuttle System: Automated-Secure Trade  

E-Print Network (OSTI)

the same volume) #12;HDD Truck vs. FSS (CO2 required to service the same volume) #12;Next Steps · Finalize footprint guide way ­ To be built within existing highway ROW The Freight Shuttle System 24/7 operations transportation #12;#12;#12;#12;Port of Entry Security #12;Ciudad Juarez El Paso Scan-in-motion Scan

139

AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus testing results  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes testing results of the Idaho National Laboratory's demonstration hybrid shuttle bus.

140

NASA FactsNational Aeronautics and Space Administration  

E-Print Network (OSTI)

NASA FactsNational Aeronautics and Space Administration Washington, D.C. 20546 (202) 358-1600 FACT into the solar system. NASA is working to make this transition ­ from the Space Shuttle Program to the Constellation Program ­ seamless and safe. NASA has a vast array of unique and critical resources that have

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Investigation of H2 Concentration and Combustion Instability Effects on the Kinetics of Strained Syngas Flames  

SciTech Connect

The flame extinction limits of syngas (H{sub 2}-CO) flames were measured using a twin-flame-counter-flow burner. Plots of Extinction limits vs. global stretch rates were generated at different mixture compositions and an extrapolation method was used to calculate the flame extinction limit corresponding to an experimentally unattainable zero-stretch condition. The zero-stretch extinction limit of H{sub 2}-CO mixtures decreases (from rich to lean) with the increase in H{sub 2} concentration in the mixture. The average difference between the measured flame extinction limit and the Le Chatelier's calculation is around {approx} 7%. The measured OH{sup -} chemiluminescent data indicates that regardless of mixture compositions the OH radical concentration reduces (within the experimental uncertainties) to an extinction value prior to the flame extinction. Flame extinction limits of H{sub 2}-CO mixtures measured in a flat-flame burner configuration also show a similar relation. Additionally, the measured laminar flame velocity close to the extinction indicates that regardless of fuel composition the premixed flame of hydrogen fuel blends extinguishes when the mixture laminar flame velocity falls below a critical value. The critical laminar flame velocity at extinction for H{sub 2}-CO premixed flames (measured in the flat flame burner configuration) is found to be 3.77({+-}0.38) cm/s. An externally perturbed H{sub 2}-CO twin flame was not experimentally achievable for the mixture conditions used in the present investigation. A slightest perturbation in the flow-field distorts the H{sub 2}-CO twin-flame. The flame becomes highly unstable with the introduction of an externally excited flow oscillation.

Ahsan R. Choudhuri

2006-08-07T23:59:59.000Z

142

Program Title National Aeronautics and Space AdministrationNational Aeronautics and Space Administration  

E-Print Network (OSTI)

, to promote exploration, science, commerce, and United States preeminence in space, and as a stepping human presence across the solar system & beyond · Implement a sustained & affordable human & robotic leveraging existing Shuttle and ISS assets for Exploration programs' safety and mission success A Continuum

143

Turbulent flame speed for syngas at gas turbine relevant conditions  

Science Journals Connector (OSTI)

Modifications of conventional natural-gas-fired burners for operation with syngas fuels using lean premixed combustion is challenging due to the different physicochemical properties of the two fuels. A key differentiating parameter is the turbulent flame velocity, ST, commonly expressed as its ratio to the laminar flame speed, SL. This paper reports an experimental investigation of premixed syngas combustion at gas turbine like conditions, with emphasis on the determination of ST/SL derived as global fuel consumption per unit time. Experiments at pressures up to 2.0 MPa, inlet temperatures and velocities up to 773 K and 150 m/s, respectively, and turbulence intensity to laminar flame speed ratios, u?/SL, exceeding 100 are presented for the first time. Comparisons between different syngas mixtures and methane clearly show much higher ST/SL for the former fuel. It is shown that ST/SL is strongly dependent on preferential diffusive-thermal (PDT) effects, co-acting with hydrodynamic effects, even for very high u?/SL. ST/SL increases with rising hydrogen content in the fuel mixture and with increasing pressure. A correlation for ST/SL valid for all investigated fuel mixtures, including methane, is proposed in terms of turbulence properties (turbulence intensity and integral length scale), combustion properties (laminar flame speed and laminar flame thickness) and operating conditions (pressure and inlet temperature). The correlation captures effects of preferential diffusive-thermal and hydrodynamic instabilities.

S. Daniele; P. Jansohn; J. Mantzaras; K. Boulouchos

2011-01-01T23:59:59.000Z

144

Grid resolution effects on LES of a piloted methane-air flame K. A. Kemenov  

E-Print Network (OSTI)

not only for canonical geome- tries like laboratory jet flames but also for complex ones like gas-turbine in the flame shows some residual grid dependence. Introduction Large Eddy Simulation (LES) has proved

145

Layer-by-Layer Nanocoatings with Flame Retardant and Oxygen Barrier Properties: Moving Toward Renewable Systems  

E-Print Network (OSTI)

) clay to create a renewable flame retardant nanocoating for polyurethane foam. This coating system completely stops the melting of a flexible polyurethane foam when exposed to direct flame from a butane torch, with just 10 bilayers (~ 30 nm thick...

Laufer, Galina 1985-

2012-10-23T23:59:59.000Z

146

The fabrication and properties characterization of wood-based flame retardant composites  

Science Journals Connector (OSTI)

Wood-based flame retardant composites were fabricated based on vacuum-pressure impregnating method after high intensive microwave pretreatment. The effects of ammonium polyphosphate (APP) and modified nano-zinc borate (nZB) addition on flame-retardation ...

Xia He, Xianjun Li, Zhu Zhong, Yongli Yan, Qunying Mou, Chunhua Yao, Chun Wang

2014-01-01T23:59:59.000Z

147

E-Print Network 3.0 - aerosol flame deposition Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

search results for: aerosol flame deposition Page: << < 1 2 3 4 5 > >> 1 Flame aerosol nano-technology has been developed to preparation of thin and defect-free porous membrane...

148

Metrological tool for the characterization of flame fronts based on the coupling of heat  

E-Print Network (OSTI)

° flame inclination angle due to wind [ ]th i W theoretical radiative heat flux received by the ith target

Boyer, Edmond

149

Computer Simulations of Radiation Shielding Materials for Use in the Space Radiation Environment  

E-Print Network (OSTI)

for their time spent in reading about this research and attending the defense. #12;iv Table of Contents Section by the general population has continued to fuel the design of other manned projects such as the Space Shuttle associated with manned space flight. Among these, radiation damage is a very major concern (1). The space

Shepherd, Simon

150

Comparative study of micromixing models in transported scalar PDF simulations of turbulent nonpremixed bluff body flames  

SciTech Connect

Numerical simulation results are presented for turbulent jet diffusion flames with various levels of turbulence-chemistry interaction, stabilized behind a bluff body (Sydney Flames HM1-3). Interaction between turbulence and combustion is modeled with the transported joint-scalar PDF approach. The mass density function transport equation is solved in a Lagrangian manner. A second-moment-closure turbulence model is applied to obtain accurate mean flow and turbulent mixing fields. The behavior of two micromixing models is discussed: the Euclidean minimum spanning tree model and the modified Curl coalescence dispersion model. The impact of the micromixing model choice on the results in physical space is small, although some influence becomes visible as the amount of local extinction increases. Scatter plots and profiles of conditional means and variances of thermochemical quantities, conditioned on the mixture fraction, are discussed both within and downstream of the recirculation region. A distinction is made between local extinction and incomplete combustion, based on the CO species mass fraction. The differences in qualitative behavior between the micromixing models are explained and quantitative comparison to experimental data is made. (author)

Merci, Bart [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Ghent (Belgium); Roekaerts, Dirk [Department of Multi-Scale Physics, Delft University of Technology, Delft (Netherlands); Naud, Bertrand [CIEMAT, Madrid (Spain); Pope, Stephen B. [Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY (United States)

2006-07-15T23:59:59.000Z

151

Effects of radiation on NO kinetics in turbulent hydrogen/air diffusion flames  

SciTech Connect

The authors describe a coupled radiation and NO kinetics calculation of turbulent hydrogen/air diffusion flame properties. Transport equations for mass, momentum, mixture fraction, enthalpy (sensible + chemical) including gas band radiation, and NO mass fraction are solved. NO kinetics is described by a one step thermal production mechanism. The local temperature is obtained by solving the enthalpy equation taking radiation loss from H{sub 2}O into consideration. Radiation/turbulence and chemical kinetics/turbulence interactions are treated using a clipped Gaussian probability density function (PDF) for the mixture fraction, and a delta PDF for the enthalpy. The source terms in the enthalpy and mass fraction of NO equations are treated using assumed PDF integration over the mixture fraction space. The results of the simulation are compared with existing measurements of the Emission Indices of NO (EINO) in turbulent H{sub 2}/air diffusion flames. The major conclusion of the paper is that coupled turbulence/radiation interactions should be taken into account while computing the EINO.

Sivathanu, Y.R.; Gore, J.P.; Laurendeau, N.M.

1997-07-01T23:59:59.000Z

152

Flame Synthesis of One-Dimensional Metal Oxide Nanomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

Synthesis of One-Dimensional Metal Oxide Nanomaterials Synthesis of One-Dimensional Metal Oxide Nanomaterials Alexei V. Saveliev Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA Robust, scalable, and energy efficient methods of nanomaterial synthesis are needed to meet the demands of current and potential applications. Flames have been successfully applied for the synthesis of metal oxide and ceramic nanopowders largely composed of spherical particles and their aggregates. In recent years, premixed and diffusion flames have been employed for the synthesis of 1-D carbon nanoforms such as carbon fibers and carbon nanotubes. The extension of flame methods to gas phase and solid support synthesis of 1-D inorganic nanoforms is of great interest and significance. This talk presents

153

LES/probability density function approach for the simulation of an ethanol spray flame  

E-Print Network (OSTI)

LES/probability density function approach for the simulation of an ethanol spray flame Colin Heye a an experimental pilot-stabilized ethanol spray flame. In this particular flame, droplet evaporation occurs away: Large-eddy simulation; Probability density function; Flamelet/progress variable approach; Ethanol

Raman, Venkat

154

Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments  

E-Print Network (OSTI)

Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments-non-premixed, flame-spread Submitted to Twenty-Ninth International Symposium on Combustion, Sapporo, Japan, July 21 ­ July 26, 2002. #12;Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity

155

Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models  

E-Print Network (OSTI)

Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models and the one Abstract An Eulerian one-dimensional turbulence (ODT) model is applied to simulate oxy-coal combustion temperature and mixing rate on oxy-coal flame is simulated and discussed where flame stand-off is used

156

Turbulent Oxygen Flames in Type Ia Supernovae A. J. Aspden1  

E-Print Network (OSTI)

Turbulent Oxygen Flames in Type Ia Supernovae A. J. Aspden1 , J. B. Bell1 , and S. E. Woosley2 oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen

157

Design of a flux buffer based on the flux shuttle  

SciTech Connect

This paper discusses the design considerations for a flux buffer based on the flux-shuttle concept. Particular attention is given to the issues of flux popping, stability of operation and saturation levels for a large input. Modulation techniques used in order to minimize 1/f noise, in addition to offsets are also analyzed. Advantages over conventional approaches using a SQUID for a flux buffer are discussed. Results of computer simulations are presented.

Gershenson, M. (Naval Coastal Systems Lab., Panama City, FL (United States))

1991-03-01T23:59:59.000Z

158

Real Time Flame Monitoring of Gasifier Burner and Injectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Real Time Flame Monitoring of Gasifier Real Time Flame Monitoring of Gasifier Burner and Injectors Background The Gasification Technologies Program at the National Energy Technology Laboratory (NETL) supports research and development (R&D) in the area of gasification-a process whereby carbon-based materials (feedstocks) such as coal are converted into synthesis gas (syngas), which is separated into hydrogen (H 2 ) and carbon dioxide (CO 2 ) gas streams in a combustion turbine-generator as a way to generate clean electricity while

159

Oxy-fuel Combustion of Ethanol in Premixed Flames  

Science Journals Connector (OSTI)

(11-14) First, measurements using a heat flux setup for liquid fuels were studied on ethanol + air combustion. ... The heat flux method builds on the principle that heat is transferred to the unburnt gas, cooling the plate, while heat transfer from the flame heats the plate. ... A detailed kinetic scheme was compiled using known data on EtOH kinetics and is self-consistent in that it closely predicts laminar flame speed of EtOH, CH4, MeOH, and C2-hydrocarbons. ...

Jenny D. Nauclér; Moah Christensen; Elna J. K. Nilsson; Alexander A. Konnov

2012-06-19T23:59:59.000Z

160

Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape  

Science Journals Connector (OSTI)

Abstract A commercial swirl burner for industrial gas turbine combustors was equipped with an optically accessible combustion chamber and installed in a high-pressure test-rig. Several premixed natural gas/air flames at pressures between 3 and 6 bar and thermal powers of up to 1 MW were studied by using a variety of measurement techniques. These include particle image velocimetry (PIV) for the investigation of the flow field, one-dimensional laser Raman scattering for the determination of the joint probability density functions of major species concentrations, mixture fraction and temperature, planar laser induced fluorescence (PLIF) of OH for the visualization of the flame front, chemiluminescence measurements of OH* for determining the lift-off height and size of the flame and acoustic recordings. The results give insights into important flame properties like the flow field structure, the premixing quality and the turbulence–flame interaction as well as their dependency on operating parameters like pressure, inflow velocity and equivalence ratio. The 1D Raman measurements yielded information about the gradients and variation of the mixture fraction and the quality of the fuel/air mixing, as well as the reaction progress. The OH PLIF images showed that the flame was located between the inflow of fresh gas and the recirculated combustion products. The flame front structures varied significantly with Reynolds number from wrinkled flame fronts to fragmented and strongly corrugated flame fronts. All results are combined in one database that can be used for the validation of numerical simulations.

Ulrich Stopper; Wolfgang Meier; Rajesh Sadanandan; Michael Stöhr; Manfred Aigner; Ghenadie Bulat

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Small-scale Interaction of Turbulence with Thermonuclear Flames in Type Ia Supernovae  

E-Print Network (OSTI)

Microscopic turbulence-flame interactions of thermonuclear fusion flames occuring in Type Ia Supernovae were studied by means of incompressible direct numerical simulations with a highly simplified flame description. The flame is treated as a single diffusive scalar field with a nonlinear source term. It is characterized by its Prandtl number, Pr << 1, and laminar flame speed, S_L. We find that if S_L ~ u', where u' is the rms amplitude of turbulent velocity fluctuations, the local flame propagation speed does not significantly deviate from S_L even in the presence of velocity fluctuations on scales below the laminar flame thickness. This result is interpreted in the context of subgrid-scale modeling of supernova explosions and the mechanism for deflagration-detonation-transitions.

J. C. Niemeyer; W. K. Bushe; G. R. Ruetsch

1999-05-07T23:59:59.000Z

162

NETL: Investigation on Flame Characteristics and Burner Operability Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Project No.: DE-FE0002402 NETL has partnered with the University of Texas at El Paso (UTEP) to investigate the characteristics of oxy-fuel flames and assess their impact on the operability of oxy-fuel combustion systems. The examination of fundamental flame characteristics data and related burner operability parameters are essential for designing and developing oxy-fuel combustion systems for new power plants and retrofitting existing power generation units. In an oxy-fuel system, coal is combusted in an enriched oxygen environment using pure oxygen diluted with recycled CO2 or water vapor (H2O), resulting in a flue stream consisting only of CO2 and H2O (no other co-contaminants) (Figure 1). Oxy-fuel combustion is promising for CCUS applications because water can be condensed out of the CO2/H2O flue stream to produce a relatively pure CO2 end product for capture. Oxy-fuel combustion and subsequent CO2 capture is currently being considered by the DOE's Innovations for Existing Plants Program as having the potential to meet the goal of 90 percent CO2 capture without increasing the cost of electricity more than 35 percent.

163

Ignition and Flame Quenching of Quiescent Fuel Mists  

Science Journals Connector (OSTI)

...Ignition and Flame Quenching of Quiescent Fuel Mists D. R. Ballal A. H. Lefebvre A...the ignition of quiescent multidroplet fuel mists which assumes that chemical reaction...spark, of an adequate concentration of fuel vapour in the ignition zone. From analysis...

1978-01-01T23:59:59.000Z

164

Measurements of Laminar Flame Velocity for Components of Natural Gas  

E-Print Network (OSTI)

gas in combustion engines and power generation systems. The main hydrocarbon included in natural gas, BP 20451, 1 Rue Grandville, 54001 Nancy, France 2 Division of Combustion Physics, Lund University performed by the heat flux method using a newly built flat flame adiabatic burner at atmospheric pressure

Paris-Sud XI, Université de

165

Formation mechanism for polycyclic aromatic hydrocarbons in methane flames  

E-Print Network (OSTI)

aromatic hydrocarbons PAHs up to 788 amu (C64H20) were detected in the combustion gases. Only the most applications including heating systems and gas turbines for electric power generation.62­64 The combustionFormation mechanism for polycyclic aromatic hydrocarbons in methane flames K. Siegmanna) Swiss

Sattler, Klaus

166

Treating Unresolvable Flame Physics in Simulations of Thermonuclear Supernovae  

Science Journals Connector (OSTI)

Due to the small width of the subsonic burning front (flame) in thermonuclear supernovae, micrometers to centimeters, and the influence of turbulence, which adds structure to this front on a broad range of scales, it won't be possible in the foreseeable ... Keywords: Computational astrophysics, combustion, turbulence

Dean M. Townsley

2009-03-01T23:59:59.000Z

167

Paper # A02 Topic: Laminar Flames US Combustion Meeting  

E-Print Network (OSTI)

been focused on synthetic fuel gas (syngas) combustion. Syngas is derived from coal throughPaper # A02 Topic: Laminar Flames 1 5th US Combustion Meeting Organized by the Western States Section of the Combustion Institute and Hosted by the University of California at San Diego March 25

Seitzman, Jerry M.

168

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

- bly burning ultra-lean hydrogen-air fuel mixtures. Such burners could, for example, be used as oneAnalyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames P.-T. Bremer1, G. Weber2 of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen

169

Real Time Flame Monitoring of Gasifier and Injectors  

SciTech Connect

This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or failed gasifier injectors. The sensor developed under previous tasks was used to assess the spectroscopic characteristics of the gasifier flame. The obtained spectral data were successfully translated into flame temperature measurements. It was also demonstrated that the reduced spectral data could be very well correlated with very important gasification process parameters such as the air/fuel and water/fuel ratio. Any of these parameters (temperature, air/fuel, and water/fuel) is sufficient to assess burner wear; however, the tested sensor was capable of monitoring all three of them plus the flame shape as functions of burner wear. This will likely be a very powerful tool which should enable significant improvements in gasifier efficiency, reliability, and availability. The sensor technology was presented to the projectâ??s industrial partner (ConocoPhillips). The partner expressed its strong interest in continuing to participate in the field validation phase of GTI's Flame Monitor Project. Finally the sensor was tested in the PWR (Pratt & Whitney Rocketdyne) gasification plant located at GTIâ??s research campus and at the ConocoPhillips industrial scale gasifier at Wabash River Indiana. The field trials of the GTI Gasifier sensor modified to withstand high temperature and pressure corrosive atmosphere of the industrial entrain flow gasifier. The project team successfully demonstrated the Gasifier Sensor system ability to monitor gasifier interior temperature maintaining unobstructed optical access for in excess of six week without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage and required minor cleanup of the optics.

Zelepouga, Serguei; Saveliev, Alexei

2011-12-31T23:59:59.000Z

170

Regional Super ESPC Saves Energy and Dollars at NASA Johnson Space Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Super ESPC Saves Energy and Dollars at NASA Johnson Space Regional Super ESPC Saves Energy and Dollars at NASA Johnson Space Center Regional Super ESPC Saves Energy and Dollars at NASA Johnson Space Center October 7, 2013 - 1:57pm Addthis Space Shuttle Endeavour, 2002 The NASA Johnson Space Flight Center in Houston is well known for its achievements in the U.S. space program (this 2002 photo shows the Space Shuttle Endeavour on its way to the International Space Station). Overview NASA will save approximately $43 million in facility operations costs over the next 23 years at the Johnson Space Flight Center (JSC) in Houston, Texas, thanks to the largest delivery order signed to date under a Regional Super Energy Savings Performance Contract (Super ESPC). The U. S. Department of Energy's Federal Energy Management Program (FEMP) instituted

171

National Aeronautics and Space Administration Commercial Crew Program  

E-Print Network (OSTI)

different launch vehicles ­ Falcon 9 and Atlas V The portfolio of companies maintains competition for future-toxic propellants ­ Primary Launch Site: Cape Canaveral, Florida ­ Primary Landing Site: Shuttle Landing Facility · Atlas V vehicle launched from the Space Launch Complex 41 launch pad Base Period · $212.5M total NASA

Waliser, Duane E.

172

THE EFFECTS OF FLAME TEMPERATURE, PARTICLE SIZE AND EUROPIUM DOPING CONCENTRATION ON THE PROPERTIES OF Y2O3:EU PARTICLES FORMED IN A FLAME AEROSOL PROCESS  

E-Print Network (OSTI)

ix LIST OF FIGURES FIGURE Page 1 Schematic of flame spray pyrolysis apparatus... 2 O 3 :Eu 9, 10 . A number of methods may be used to synthesize Y 2 O 3 :Eu particles, including colloidal methods 11-13 , combustion in fuel-oxidizer mixture 14 , evaporation? condensation 15, 16 , furnace spray pyrolysis 17 . Flame aerosol...

Yim, Hoon

2010-07-14T23:59:59.000Z

173

Real Time Flame Monitoring of Gasifier Burner and Injectors  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Gasification Technologies contacts Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Jenny tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 jenny.tennant@netl.doe.gov David Rue Principal Investigator Gas Technology Institute 1700 South Mount Prospect Road Des Plaines, IL 60018 847-768-0508 david.rue@gastechnology.org Real Time Flame moniToRing oF gasiFieR BuRneR and injecToRs Description Combustion scientists and engineers have studied radiant emissions of various flames for many years. For some time, technologists have understood the rich potential for

174

REMARKS FOR DEPUTY ADMINISTRATOR LORI GARVER ANNUAL ILAN RAMON INTERNATIONAL SPACE CONFERENCE  

E-Print Network (OSTI)

to be innovative and to work across borders to harness the energies and talents around the world. The U.S. NationalREMARKS FOR DEPUTY ADMINISTRATOR LORI GARVER 6TH ANNUAL ILAN RAMON INTERNATIONAL SPACE CONFERENCE from many countries who have flown on the shuttle and visited the International Space Station are one

175

Fuel effects on flame lift-off under diesel conditions  

SciTech Connect

An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

Persson, Helena; Andersson, Oeivind; Egnell, Rolf [Lund University (Sweden). Dept. of Energy Sciences

2011-01-15T23:59:59.000Z

176

Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O{sub 3}  

SciTech Connect

The thermal and kinetic effects of O{sub 3} on flame propagation were investigated experimentally and numerically by using C{sub 3}H{sub 8}/O{sub 2}/N{sub 2} laminar lifted flames. Ozone produced by a dielectric barrier plasma discharge was isolated and measured quantitatively by using absorption spectroscopy. Significant kinetic enhancement by O{sub 3} was observed by comparing flame stabilization locations with and without O{sub 3} production. Experiments at atmospheric pressures showed an 8% enhancement in the flame propagation speed for 1260 ppm of O{sub 3} addition to the O{sub 2}/N{sub 2} oxidizer. Numerical simulations showed that the O{sub 3} decomposition and reaction with H early in the pre-heat zone of the flame produced O and OH, respectively, from which the O reacted rapidly with C{sub 3}H{sub 8} and produced additional OH. The subsequent reaction of OH with the fuel and fuel fragments, such as CH{sub 2}O, provided chemical heat release at lower temperatures to enhance the flame propagation speed. It was shown that the kinetic effect on flame propagation enhancement by O{sub 3} reaching the pre-heat zone of the flame for early oxidation of fuel was much greater than that by the thermal effect from the energy contained within O{sub 3}. For non-premixed laminar lifted flames, the kinetic enhancement by O{sub 3} also induced changes to the hydrodynamics at the flame front which provided additional enhancement of the flame propagation speed. The present results will have a direct impact on the development of detailed plasma-flame kinetic mechanisms and provided a foundation for the study of combustion enhancement by O{sub 2}(a{sup 1}{delta}{sub g}) in part II of this investigation. (author)

Ombrello, Timothy; Won, Sang Hee; Ju, Yiguang [Department of Mechanical and Aerospace Engineering, Engineering Quadrangle, Olden Street, Princeton, NJ 08544 (United States); Williams, Skip [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson AFB, OH 45433 (United States)

2010-10-15T23:59:59.000Z

177

Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels  

SciTech Connect

This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

2013-09-30T23:59:59.000Z

178

E-Print Network 3.0 - atomic-absorption flame photometry Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic-absorption flame photometry Page: << < 1 2 3 4 5 > >> 1 MICROCHEMICALJOURNAL33,304-...

179

IGNITION PROCESSES AND FLAME SPREADING IN A GRANULAR SOLID PROPELLANT BED.  

E-Print Network (OSTI)

??Understanding the detailed ignition, flame spreading, and combustion processes inside of a granular solid propellant bed is vital for accurate internal ballistic modeling and development… (more)

Colletti, Alexander

2010-01-01T23:59:59.000Z

180

E-Print Network 3.0 - advanced flame quality Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

paper overviews the dynamics of bluff body... stabilized flames and describes the phenomenology of the blowoff process. The first section of the paper Source: Lieuwen, Timothy C....

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Berkeley Lab: Special Bus/Shuttle Service Reservations  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Service Special Service Buses and/or Vans are available for special service by reservation. Costs are: $136.50 required 2 hour minimum $68.25 per vehicle each additional hour Bus image Bus image Buses accommodate: 41 passengers (26 Seated plus 15 Standing) (and up to 2 wheelchair passengers) Vans accommodate: 15 passengers To arrange special service shuttle transportation: Fill out the request form below A valid project id is required for special service requests Complete the form and click on the "send" button The request for special bus service will be sent to busservices@lbl.gov and reviewed. A confirmation will be sent back via email to the requestor regarding the status. For additional information contact: Kori Porter at 486-5112 or email busservices@lbl.gov.

182

Freight Shuttle System: Cross-Border Movement of Goods  

SciTech Connect

The Freight Shuttle System (FSS) is designed to provide freight transportation services between those short and intermediate distance locations (within 600 miles) that are currently handling large volumes of freight traffic. Much like trucks, the FSS's transporters are autonomous: each transporter has its own propulsion and travels independently of other transporters. Inspired by railroads, each FSS transporter has steel wheels operating on a steel running surface and can carry either a standardsize freight container or an over-the-road truck trailer. However, unlike either rail or trucks, the FSS runs on an elevated, dedicated guideway to avoid the interference of other transportation systems. The objective of this report is to examine the potential viability for an alternative transportation system for trailers and containers in a multi-national, cross-border setting. The El Paso-Ciudad Juarez region serves as the environment of this analysis.

None

2011-05-31T23:59:59.000Z

183

Effects of Combustor Geometry on the Flowfields and Flame Properties of A  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Combustor Geometry on the Flowfields and Flame Properties of A Effects of Combustor Geometry on the Flowfields and Flame Properties of A Low-Swirl Injector Title Effects of Combustor Geometry on the Flowfields and Flame Properties of A Low-Swirl Injector Publication Type Journal Article Year of Publication 2008 Authors Cheng, Robert K., and David Littlejohn Journal Proceedings of the Combustion Institute Type of Article Conference Paper Abstract The Low-swirl injector (LSI) is a novel dry-low NOx combustion method that is being developed for gas turbines to burn a variety of gaseous fuels including natural gas, low-Btu fuels, syngases and hydrogen. Its basic principle is described by a top level analytical model that relates the flame position to the flowfield similarity parameters and the turbulent flame speed correlation. The model was based on experimental measurements in open laboratory flames. It has been useful for guiding hardware development. As the LSI is being adapted to different engine configurations, one open question is how the combustor geometry and size affect its basic operating principle. The objective of this paper is to investigate these effects by conducting Particle Image Velocimetry (PIV) measurements in open and enclosed flames produced by a 6.35 cm diameter LSI using two quartz cylinders of 15.5 and 20 cm diameter to simulate the combustor casing. Results from 18 methane-air flames show that the enclosures do not alter the flame properties or the nearfield flow structures. The differences occur mostly in the farfield where the tighter enclosure deters the formation of a weak recirculation zone. The enclosure effects on hydrogen and hydrogen-methane flames were studies using the 20 cm cylinder. The results show that the outer recirculation zone generated at the corner of the dump plane promotes the formation of attached flames. However, the properties and nearfield flow features of the attached flames are similar to those of the lifted flames. At higher stoichiometries, the attached flame collapses to form a compact disc shaped flame that has very different flowfield structures. These results show that the enclosure effects on the LSI are strongly coupled to the fuel type and dump plane geometry but are less dependent on the enclosure size. These observations will provide the basis for developing computational methods that can be used as design tools for LSI adaptation

184

Investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations  

SciTech Connect

Acoustically forced lean premixed turbulent bluff-body stabilized flames are investigated using turbulent combustion CFD. The calculations simulate aspects of the experimental investigation by Balachandran et al. [R. Balachandran, B. Ayoola, C. Kaminski, A. Dowling, E. Mastorakos, Combust. Flame 143 (2005) 37-55] and focus on the amplitude dependence of the flame response. For the frequencies of interest in this investigation an unsteady Reynolds-averaged Navier-Stokes (URANS) approach is appropriate. The combustion is represented using a modified laminar flamelet approach with an algebraic representation of the flame surface density. The predictions are compared with flame surface density (FSD) and OH* chemiluminescence measurements. In the experiments the response of the flame has been quantified by means of a number of single-frequency, amplitude-dependent transfer functions. The predicted flame shape and position are in good agreement with the experiment. The dynamic response of the flame to inlet velocity forcing is also well captured by the calculations. At moderate frequencies nonlinear behavior of the transfer functions is observed as the forcing amplitude is increased. In the experiments this nonlinearity was attributed in part to the rollup of the reacting shear layer into vortices and in part to the collision of the inner and outer flame sheets. This transition to nonlinearity is also observed in the transfer functions obtained from the predictions. Furthermore, the vortex shedding and flame-sheet collapse may be seen in snapshots of the predicted flow field taken throughout the forcing cycle. The URANS methodology successfully predicts the behavior of the forced premixed turbulent flames and captures the effects of saturation in the transfer function of the response of the heat release to velocity fluctuations. (author)

Armitage, C.A.; Mastorakos, E.; Cant, R.S. [Department of Engineering, Trumpington Street, University of Cambridge, Cambridge, CB2 1PZ (United Kingdom); Balachandran, R. [Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)

2006-08-15T23:59:59.000Z

185

Effects of fuel type and equivalence ratios on the flickering of triple flames  

SciTech Connect

An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A. [Department of Power Engineering, Jadavpur University, Salt Lake Campus, Kolkata 700098 (India)

2009-02-15T23:59:59.000Z

186

Making a Low-Cost Soda Can Ethanol Burner for Out-of-Laboratory Flame Test Demonstrations and Experiments  

Science Journals Connector (OSTI)

Making a Low-Cost Soda Can Ethanol Burner for Out-of-Laboratory Flame Test Demonstrations and Experiments ... Video clips for the three flame tests shown in Figure 3, and for turning the burner on and off. ...

Henson L. Lee Yu; Perfecto N. Domingo, Jr.; Elliard Roswell S. Yanza; Armando M. Guidote, Jr.

2014-10-13T23:59:59.000Z

187

THE IMPACT OF VARIOUS OXIDIZERS ON THE OVERALL PERFORMACE OF A DIRECT FLAME SOLID OXIDE FUEL CELL.  

E-Print Network (OSTI)

??The power output of a direct-flame solid oxide fuel cell (SOFC) was studied using hydrogen (H2) as the fuel for the flame and various oxidizers,… (more)

Donadio, Nicholas

2010-01-01T23:59:59.000Z

188

A rotordynamic analysis of the Space Shuttle Main Engine (SSME) High-Pressure Oxygen Turbopump (HPOTP)  

E-Print Network (OSTI)

) are investigated using linear and nonlin- ear modal analysis procedures. The infiuence of proposed modifications in the form of boost-impeller "damper seals, main-impeller shrouded-inducer seals, and a stifFened-rotor configuration are analysed to determine... Dynamic Response of Proposed Seal Modifications Page IV V V1 V 111 x1 1 14 15 19 Predicted Dynamic Response of the StifFened-Rotor Configuration . , 25 Predicted Dynamic Response of the Cal-Tech Impeller Force Coefficients 28 NONLINEAR ANALYSIS...

Moyer, David Scott

1984-01-01T23:59:59.000Z

189

"I Miss Green:" A Comparison of Prison and Space Shuttle Design  

E-Print Network (OSTI)

Company, 1985. Print. Peltier, Leonard. Prison Writings: Myrecollections. Leonard Peltier, a Native American prisonergrinding and slamming” (Peltier 6). Jim Lewis, author of New

Kim, Helen

2011-01-01T23:59:59.000Z

190

Effects of oxygen concentration on radiative loss from normal-gravity and microgravity methane diffusion flames  

SciTech Connect

Laminar diffusion flames of methane, burning in quiescent oxidizing environments at atmospheric pressure, have been studied under both normal-gravity and microgravity conditions. Radiation from these flames is measured using a wide-view-angle, thermopile detector radiometer. The oxidizer was 18, 21, and 30 percent oxygen in nitrogen. 17 refs.

Bahadori, M.Y.; Edelman, R.B.; Stocker, D.P.; Sotos, R.G.; Vaughan, D.F. (Science Applications International Corp., Torrance, CA (United States) Rockwell International Corp., Rocketdyne Div., Canoga Park, CA (United States) NASA, Lewis Research Center, Cleveland, OH (United States))

1992-01-01T23:59:59.000Z

191

A COMPARATIVE STUDY OF THE FORMATION OF AROMATICS IN RICH METHANE FLAMES DOPED BY UNSATURATED COMPOUNDS  

E-Print Network (OSTI)

unsaturated hydrocarbons: allene and propyne, because they are precursors of propargyl radicals which are well as the background gas makes these flames more representative of the combustion of a real fuel compared to a flame by passing through a single pass heat exchanger [14]. Temperature profiles were obtained using a PtRh 3 hal

Boyer, Edmond

192

Large eddy simulation of one diffusion swirling flame European Combustion Meeting 2011  

E-Print Network (OSTI)

.5 7200 75900 Numerical method This research use large eddy simulation (LES) in software ANASYS FLUENT Simulations of Swirling Non-premixed Flames With Flamelet Models: A Comparison of Numerical Methods. FlowLarge eddy simulation of one diffusion swirling flame European Combustion Meeting 2011 Introduction

Berning, Torsten

193

The Effect of the Carrier Gas on Flame lonization Detector Sensitivity  

Science Journals Connector (OSTI)

......fraction of the hydrocarbon converted to CH...ion formation in hydrocarbon flames. The CH...1 ". While no data is presently available...12) that the heats of formation of...chemi-ionization in hydrocarbon flames appears to...International on Combustion, Academic Press......

A.T. Blades

1976-01-01T23:59:59.000Z

194

Combustion and Flame 156 (2009) 771779 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Combustion and Flame 156 (2009) 771­779 Contents lists available at ScienceDirect Combustion Cylindrical chamber Flow correction Hydrogen Syngas High pressure The effect of nonspherical (i.e. cylindrical are measured for hydrogen and syngas mixtures at atmospheric and elevated pressures. Flow-corrected flame

Ju, Yiguang

195

Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits  

E-Print Network (OSTI)

. The prod- ucts of plasma assisted CH4 oxidation were measured using the Two-photon Absorption Laser to understand the role of plasma generated species on ignition, flame speed, and flame stabilization. For ignition studies, the reduction of ignition delay time by non-equilibrium nanosecond pulsed discharges

Ju, Yiguang

196

Gilded Age Travelers: Transatlantic Marriages and the Anglophone Divide in Burnett's The Shuttle.  

E-Print Network (OSTI)

??Frances Hodgson Burnett’s 1907 novel, The Shuttle, is an important contribution to turn-of-the-century transatlantic literature because it offers a unifying perspective on Anglo-American relations. Rather… (more)

Peterson, Rebecca L

2012-01-01T23:59:59.000Z

197

Gilded Age Travelers: Transatlantic Marriages and the Anglophone Divide in Burnett's The Shuttle.  

E-Print Network (OSTI)

??Frances Hodgson Burnett's 1907 novel, The Shuttle, is an important contribution to turn-of-the-century transatlantic literature because it offers a unifying perspective on Anglo-American relations. Rather… (more)

Peterson, Rebecca L.

2012-01-01T23:59:59.000Z

198

Comparison of ultraviolet and ultraviolet-infrared flame detection systems  

E-Print Network (OSTI)

detectors view a s1ngle area and a majority of detectors must sense a fire to signal an alarm) and time delay ci r- cu1ts, sensitivity adjustments, and integral self-test lamps and circuitry. Infrared detectors were improved by the addition of vot1ng... have been improved through an evolutionary process to the point where they have become highly reliable, stable and sensitive detectors of flames. With the recent advances in micro- processor based e'lectronics, it has become possible to combine both...

Dayton, Robert Mark

2012-06-07T23:59:59.000Z

199

Scalar dissipation rate based flamelet modelling of turbulent premixed flames  

E-Print Network (OSTI)

curves of ??+ vs N+c conditioned on the progress variable ? for three cases: (a) methane–air, ? = 0.6, Le = 0.96, (b) propane–air, ? = 0.8, Le = 1.83 and (c) methane–air, ? = 1.4, Le = 1.17 . The ? = 0.7 curve for the propane–air case is shown in (d... closure for two mixtures: stoichiometric methane–air with K = 1.0 (•) and lean propane–air with KLe = 1.0 (?). The experimental data of Abdel- Gayed et al. (1987) for K = 1.0 are also shown (?). . . . . . . . . 111 7.9 The comparisons of flame speeds...

Kolla, Hemanth

2010-03-16T23:59:59.000Z

200

Metal rich stars in omega Cen: preliminary FLAMES GTO results  

E-Print Network (OSTI)

I present preliminary results for a sample of ~700 red giants in omega Cen, observed during the Ital-FLAMES Consortium GTO time in May 2003, for the Bologna Project on omega Cen. Preliminary Fe and Ca abundances confirm previous results: while the metal-poor and intermediate populations show a normal halo alpha-enhancement of [alpha/Fe]=$+0.3, the most metal-rich stars show a significantly lower [alpha/Fe]=+0.1. If the metal-rich stars have evolved within the cluster in a process of self-enrichment, the only way to lower their alpha-enhancement would be SNe type Ia intervention.

Pancino, E

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Metal rich stars in omega Cen: preliminary FLAMES GTO results  

E-Print Network (OSTI)

I present preliminary results for a sample of ~700 red giants in omega Cen, observed during the Ital-FLAMES Consortium GTO time in May 2003, for the Bologna Project on omega Cen. Preliminary Fe and Ca abundances confirm previous results: while the metal-poor and intermediate populations show a normal halo alpha-enhancement of [alpha/Fe]=$+0.3, the most metal-rich stars show a significantly lower [alpha/Fe]=+0.1. If the metal-rich stars have evolved within the cluster in a process of self-enrichment, the only way to lower their alpha-enhancement would be SNe type Ia intervention.

E. Pancino

2004-10-28T23:59:59.000Z

202

Polybrominated diphenyl ether flame retardants in the antarctic environment  

E-Print Network (OSTI)

, the historical record of dioxins, PCBs and DDTs in the same cores showed a decreasing trend. At present, PBDEs are recognized as a worldwide pollution problem since they have reached remote areas such as the deep ocean, the Arctic and Antarctica (de Boer et al... that cheerful and warm Brazilian spirit. You are my Aggie family! viii NOMENCLATURE #1; critical value of a statistical test used to reject the null hypothesis ANOVA Analysis of Variance BDE Brominated Diphenyl Ether BFR Brominated Flame Retardant DC...

Yogui, Gilvan Takeshi

2009-05-15T23:59:59.000Z

203

An analytical model for flame propagation in low-Mach-number, variable-density flow  

SciTech Connect

Flame propagation is relevant in many practical applications involving heat transfer and the conversion of heat into mechanical work. Examples of such applications include spark-ignition engines, turbojets, ramjets, afterburners and rockets, although these devices may exhibit nonlocal and nonpropagating combustion phenomena as well. Here, a simple model problem is formulated to describe the coupling between premixed-flame and flow-field dynamics resulting from gas expansion within the flame. The energy conservation equation is integrated analytically across the flame in order to reduce the number of governing equations for the computational problem. A system of six equations and associated boundary conditions are formulated for computation of the time evolution of an initially prescribed three-dimensional velocity field and the flame surface.

Aldredge, R.C. [Univ. of California, Davis, CA (United States). Dept. of Mechanical and Aeronautical Engineering] [Univ. of California, Davis, CA (United States). Dept. of Mechanical and Aeronautical Engineering

1997-12-01T23:59:59.000Z

204

Dynamics of premixed flames in a narrow channel with a step-wise wall temperature  

SciTech Connect

The effect of channel height, inflow velocity and wall temperature on the dynamics and stability of unity Lewis number premixed flames in channels with specified wall temperature is investigated with steady and transient numerical simulations using a two-dimensional thermo-diffusive model. The simplified model is capable of capturing many of the transitions and the combustion modes observed experimentally and in direct numerical simulations in micro- and meso-scale channels, and indicates that the thermal flame/wall interaction is the mechanism leading to the observed flame instabilities. Finally, an ad-hoc one-dimensional model based on the flame-sheet approximation is tested in its capacity to reproduce some of the flame dynamics of the two-dimensional thermo-diffusive model. (author)

Kurdyumov, Vadim N. [Department of Energy, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Pizza, Gianmarco [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092 (Switzerland); Combustion Research, Paul Scherrer Institute, Villigen CH-5232 (Switzerland); Frouzakis, Christos E. [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092 (Switzerland); Mantzaras, John [Combustion Research, Paul Scherrer Institute, Villigen CH-5232 (Switzerland)

2009-11-15T23:59:59.000Z

205

Characterization of a gas burner to simulate a propellant flame and evaluate aluminum particle combustion  

SciTech Connect

This study details the characterization and implementation of a burner designed to simulate solid propellant fires. The burner was designed with the ability to introduce particles (particularly aluminum) into a gas flame. The aluminized flame conditions produced by this burner are characterized based on temperature and heat flux measurements. Using these results, flame conditions are quantified in comparison to other well-characterized reactions including hydrocarbon and propellant fires. The aluminized flame is also used to measure the burning rate of the particles. This work describes the application of this burner for re-creating small-scale propellant flame conditions and as a test platform for experiments that contribute to the development of a particle combustion model, particularly in propellant fires. (author)

Jackson, Matt [Engineering Department, West Texas A and M University, Canyon, TX 79016 (United States); Pantoya, Michelle L. [Mechanical Engineering Department, Texas Tech University, Lubbock, TX 79409 (United States); Gill, Walt [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

2008-04-15T23:59:59.000Z

206

Effects of copper catalytic reactions on the development of supersonic hydrogen flames  

SciTech Connect

Copper species are present in hydrogen flames in arc heated supersonic ramjet testing facilities. Homogeneous and heterogeneous copper catalytic reactions may affect the flame development by enhancing the recombination of hydrogen atoms. Computer simulation is used to investigate the effects of the catalytic reactions on the reaction and ignition times of the flames. The simulation uses a modified general chemical kinetics computer program to simulate the development of copper-contaminated hydrogen flames under scramjet testing conditions. Reaction times of hydrogen flames are found to be reduced due to the copper catalytic effects, but ignition times are much less sensitive to such effects. The reduction of reaction time depends on copper concentration, particle size (if copper is in the condensed phase), and Mach number (or initial temperature and pressure). As copper concentration increases or the particle size decreases, reaction time decreases. As Mach number increases (or pressure and temperature decrease), the copper catalytic effects are greater.

Chang, S.L.; Lottes, S.A.; Berry, G.F.

1992-10-01T23:59:59.000Z

207

Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.  

SciTech Connect

Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

2010-01-01T23:59:59.000Z

208

Using phase space attractors to evaluate system safety constraint enforcement : case study in space shuttle mission control procedure rework  

E-Print Network (OSTI)

As the complexity and influence of engineering systems in modern society increases, so too does their potential to create counterintuitive and catastrophic accidents. Increasingly, the accidents encountered in these systems ...

Owens, Brandon D. (Brandon Dewain)

2009-01-01T23:59:59.000Z

209

Space Math http://spacemath.gsfc.nasa.gov A Simple Gauge in a Fuel Tank -I 37  

E-Print Network (OSTI)

Space Math http://spacemath.gsfc.nasa.gov A Simple Gauge in a Fuel Tank - I 37 This is a photo of the Space Shuttle main fuel tank just after being jettisoned at an altitude of 50 miles. The liquid hydrogen. Problem 1 ­ To two significant figures, what is the volume of the fuel tank in: A) Cubic meters? B) Cubic

Christian, Eric

210

Statistical errors in the fractal analysis of flame boundaries  

SciTech Connect

A high speed tomographic technique is used to evaluate the effect of spatial resolution, and requirements for statistical convergence on the fractal analysis of a turbulent, premixed, stoichiometric methane/air flame at high Damkoehler number. The gas velocity at the nozzle exit is 5 m/s, the turbulence intensity is 7%, the integral length scale 3 mm and hence the turbulence Reynolds number is 70. The light source is a copper vapor laser which produces 20ns, 5 mJ pulses at a 4KHz repetition rate. Cylindrical lenses transform the 38mm circular laser beam to a sheet 50 mm high and 0.6 mm thick. A high speed Fastax camera is used to record the tomographic images formed by the scattering of light from oil droplets seeded in the reactant flow. The films are digitized and the flame front extracted from the images by a thresholding technique. Digitization noise, which appears in the fractal plots at approximately twice the pixel resolution, can obscure the inner cutoff. Simple smoothing can remove this problem if the spatial resolution is sufficient. At insufficient resolution smoothing produces plausible resolutes are produced which in fact erroneous. If the inner cutoff is ambiguous the range over which the fractal dimension is determined will be unclear. The wide distribution of fractal dimensions obtained from the individual images indicates the necessity of ensemble averaging the fractal plots if reliable statistical results are to be obtained. 8 refs., 6 figs.

Shepherd, I.G.; Cheng, R.K.

1990-10-01T23:59:59.000Z

211

Flame–vortex interaction in a reacting vortex ring  

Science Journals Connector (OSTI)

Direct numerical simulations are used to study the flame–vortex interaction in a laminar reacting vortex ring. The chemical reaction occurs by a one-step Arrhenius-type reaction that mimics the combustion of typical hydrocarbon and air. The ring is generated by an axisymmetric jet that is impulsed to emit a cold fuel through a nozzle. The fuel enters a quiescent ambient at a much higher temperature. By adjusting the ratio of the ambient and fuel temperatures the ignition either occurs during the formation or post-formation phase of the ring. When ignition occurs during the formation phase of the ring the bulk of combustion is by a flame at the front of the vortex bubble. When ignition is delayed until after the formation phase most of the reaction occurs inside the vortex ring. It is found that premixing the fuel and the oxidizer enhances the amount of product formation. The heat released from the reaction significantly affects production redistribution and diffusion of the vorticity throughout the field. The results of the simulations also reveal that the heat of reaction affects the strain rate fields differently depending on when the ignition of the ring occurs.

J. S. Hewett; C. K. Madnia

1998-01-01T23:59:59.000Z

212

Pocket formation and the flame surface density equation  

SciTech Connect

The occurrence and properties of singularities in the equation for the surface density function {sigma} {triple_bond}{vert_bar}{del}{Phi}{vert_bar} are analyzed analytically and numerically using data from two dimensional direct numerical simulation (DNS) of pocket formation in a premixed methane-air flame. The various stages and the relevant time scales associated with pocket formation were determined in a previous study. It was found that isolated pockets form if and only if a nondegenerate critical point of a saddle point type appears. The appearance of a singularity in the isoline representing the flame front may have implications to modeling of the terms in the surface density function (sdf) approach during such transient events as pocket formation. The sink and source terms in sdf are evaluated in the neighborhood of a critical point using DNS data during pocket formation, and an analytic representation of a scalar in the vicinity of the critical point which allows for the computation of all kinematic properties. The analytic and computational results show that the normal restoration and dissipation terms in the sdf become singular at the critical point when the pocket emerges. Furthermore, the analytic results show that the singularities exactly cancel, and therefore, the main conclusion is that it is unnecessary to model the singular behavior of these terms at critical points. However, closure of their sum is recommended.

Kollman, W. [Univ. of California, Davis, CA (United States); Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

1998-03-01T23:59:59.000Z

213

A model of particle nucleation in premixed ethylene flames  

SciTech Connect

A detailed model of particle inception is proposed to delve into the physical structure and chemistry of combustion-formed particles. A sectional method is used, from a previously developed kinetic mechanism of particle formation with a double discretization of the particle phase in terms of C and H atom number. The present model also distinguishes between different particle structures based on their state of aggregation; single high molecular mass molecules, cluster of molecules and aggregates of clusters. The model predicts the mass of particles, hydrogen content and internal structure. It represents a first approach in following the chemical evolution and internal structure of the particles formed in flames, coupled with the main pyrolysis and oxidation of the fuel. The model is tested in atmospheric premixed flat flames of ethylene and the effect of fuel equivalence ratio on particle morphology is analyzed. Molecular weight growth of aromatic compounds and the inception of particles are predicted. The morphology of the particles and the number of molecules in the clusters at particle inception are also indicated. (author)

D'Anna, Andrea; Sirignano, Mariano [Dipartimento di Ingegneria Chimica, Universita di Napoli ''Federico II'', Napoli (Italy); Kent, John [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia)

2010-11-15T23:59:59.000Z

214

Understanding and predicting soot generation in turbulent non-premixed jet flames.  

SciTech Connect

This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including such a radiation model, the LES model predicts mean soot concentrations within 30% in the ethylene jet flame.

Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

2010-10-01T23:59:59.000Z

215

Finite-rate chemistry and transient effects in direct numerical simulations of turbulent nonpremixed flames  

SciTech Connect

Three-dimensional direct numerical simulations (DNS) of turbulent nonpremixed flames including finite-rate chemistry and heat release effects were performed. Two chemical reaction models were considered: (1) a single-step global reaction model in which the heat release and activation energy parameters are typical combustion applications, and (2) a two-step reaction model to stimulate radical production and consumption and to compare against the single-step model. The model problem consists of the interaction between an initially unstained laminar diffusion flame and a three-dimensional field of homogeneous turbulence. Conditions ranging from fast chemistry to the pure mixing limit were studied by varying a global Damkoehler number. Results suggest that turbulence-induced mixing acting along the stoichiometric line leads to a strong modification of the inner structure of the turbulent flame compared with a laminar strained flame, resulting in intermediate species concentrations well above the laminar prediction. This result is consistent the experimental observations. Comparison of the response of the turbulent flame structure due to changes in the scalar dissipation rate with a steady strained laminar flame reveals that unsteady strain rates experienced by the turbulent flame may be responsible for h3e observed high concentrations of reaction intermediates.

Mahalingam, S. [Univ. of Colorado, Boulder, CO (United States). Center for Combustion Research] [Univ. of Colorado, Boulder, CO (United States). Center for Combustion Research; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility] [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Vervisch, L. [CORIA, Rouen (France). Laboratoire de Mechanique des Fluides Numeriques] [CORIA, Rouen (France). Laboratoire de Mechanique des Fluides Numeriques

1995-08-01T23:59:59.000Z

216

Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems  

SciTech Connect

Flame acceleration and deflagration-to-detonation transitions (DDT) in large obstructed channels filled with a stoichiometric methane-air mixture are simulated using a single-step reaction mechanism. The reaction parameters are calibrated using known velocities and length scales of laminar flames and detonations. Calculations of the flame dynamics and DDT in channels with obstacles are compared to previously reported experimental data. The results obtained using the simple reaction model qualitatively, and in many cases, quantitatively match the experiments and are found to be largely insensitive to small variations in model parameters. (author)

Kessler, D.A.; Gamezo, V.N.; Oran, E.S. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC (United States)

2010-11-15T23:59:59.000Z

217

An Inverted Co-Flow Diffusion Flame for Producing Soot  

SciTech Connect

We developed an inverted, co-flow, methane/air/nitrogen burner that generates a wide range of soot particles sizes and concentrations. By adjusting the flow rates of air, methane, and nitrogen in the fuel, the mean electric mobility diameter and number concentration are varied. Additional dilution downstream of the flame allows us to generate particle concentrations spanning those produced by spark-ignited and diesel engines: particles with mean diameters between 50 and 250 nm and number concentrations from 4.7 {center_dot} 10{sup 4} to 10{sup 7} cm{sup -3}. The range of achievable number concentrations, and therefore volume concentrations, can be increased by a factor of 30 by reducing the dilution ratio. These operating conditions make this burner valuable for developing and calibrating diagnostics as well as for other studies involving soot particles.

Stipe, Christopher B.; Higgins, Brian S.; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

2005-06-21T23:59:59.000Z

218

Reaction zone visualisation in swirling spray n-heptane flames  

E-Print Network (OSTI)

process and consumed in the subsequent high temperature oxidation. Formaldehyde LIF was used for autoignition of methane jets [6], methanol, ethanol and acetone spray jet flames [7,8], and diesel fuel [9-11] and n-heptane [11,12] in HCCI engines. Najm... intensifier was 30,000 FL/FC and 80,000 FL/FC for CH2O and OH respectively. The laser powers were 12 mJ/pulse for OH PLIF and 300 mJ/pulse for CH2O PLIF. The intensifiers were triggered off the Q switch of each laser 6 with a gate of 220 ns. The CH2O PLIF...

Yuan, R.; Kariuki, J.; Dowlut, A.; Balachandran, R.; Mastorakos, E.

2014-06-26T23:59:59.000Z

219

Mechanisms governing fine particulate emissions from coal flames  

SciTech Connect

The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

1990-04-01T23:59:59.000Z

220

Mechanisms governing fine particulate emissions from coal flames. Final report  

SciTech Connect

The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

1990-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NO{sub x} control by flame management  

SciTech Connect

In the control of emissions from power generation boilers combustion modification, in the form of low NO{sub x} burner (LNB) design, is recognized as the basic and economic technique for minimising NO{sub x} production. Depending upon the application LNB`s alone may offer sufficient NO{sub x} control or may be used in conjunction with changes in boiler operating techniques to achieve ultra-low NO{sub x} operation. LNB designs are based on well established principles of fuel and air staging which control the mixing of fuel and combustion air in order to establish the flame chemistry and temperature conditions conducive to minimising NO{sub x} formation. These mixing processes need to be considered in conjunction with the fuel characteristics for maximum effectiveness.

Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom)

1995-12-31T23:59:59.000Z

222

Vehicles as big data carriers: Road map space reduction and efficient data assignment  

E-Print Network (OSTI)

Vehicles as big data carriers: Road map space reduction and efficient data assignment Benjamin used mode of transport. We argue in favor of equipping standard electric vehicles with data storage´es Inria, U. de Lyon, INSA-Lyon CITI CNRS Abstract--We advocate the use of a data shuttle service model

Boyer, Edmond

223

A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow  

SciTech Connect

Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.

Yoo, Chun S [Sandia National Laboratories (SNL)

2011-01-01T23:59:59.000Z

224

On The Toxicity of Flame Retardants in Buildings and What Can Be Done About  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Toxicity of Flame Retardants in Buildings and What Can Be Done About On The Toxicity of Flame Retardants in Buildings and What Can Be Done About It Speaker(s): Arlene Blum Date: November 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: William Fisk Polystyrene, polyisocyanurate, and polyurethane are insulation materials that increase energy efficiency and whose use in buildings, especially energy efficient buildings, is growing rapidly. At the same time, the flame retardants currently in use with these materials are often chemicals that are known to be toxic or have not been adequately evaluated for their impact on human health and the environment. For example, all polystyrene foam insulation used in buildings is treated with HBCD, a persistent, bioaccumulative, and toxic flame retardant. The impacts of exposure to

225

Coal Particle Measurement in a Pulverized Coal Flame with Digital Inline Holography  

Science Journals Connector (OSTI)

Digital inline holography with pulse illumination was applied to measure the 3D position and size of the burning coal particles in a laboratory-scale pulverized coal flame under strong...

Wu, Yingchun; Wu, Xuecheng; Zhou, Binwu; Yang, Jing; Chen, Linghong; Peng, Yueyu; Qiu, Kunzan; Grehan, Gerard; Cen, Kefa

226

Investigation of the Syngas Flame Characteristics at Elevated Pressures Using Optical and Laser Diagnostic Methods  

Science Journals Connector (OSTI)

The effect of pressure on the characteristics of syngas flames is investigated under gas turbine relevant...*...chemiluminescence imaging. An optically accessible combustor fitted with a swirl burner was operated...

Rajesh Sadanandan; Peter Kutne; Adam Steinberg…

2012-09-01T23:59:59.000Z

227

Synthesis of Highly Efficient Flame Retardant High-Density Polyethylene Nanocomposites with Inorgano-Layered Double  

E-Print Network (OSTI)

Synthesis of Highly Efficient Flame Retardant High-Density Polyethylene Nanocomposites, Harbin 150080, P. R. China ABSTRACT: High-density polyethylene (HDPE) polymer nanocomposites containing. INTRODUCTION High density polyethylene (HDPE) has good electrical proper- ties, high stiffness, and tensile

Guo, John Zhanhu

228

Method for determining effective flame emissivity in a rotary kiln incinerator burning solid waste  

Science Journals Connector (OSTI)

Temperature is the most important parameter for the improvement of combustion efficiency and the control of pollutants. In order to obtain accurate flame temperatures in a rotary kiln incinerator using non-int...

Jin-cai Du; Qun-xing Huang; Jian-hua Yan

2012-12-01T23:59:59.000Z

229

Effect of Plasma Pretreatment Followed by Nanoclay Loading on Flame Retardant Properties of Cotton Fabric  

Science Journals Connector (OSTI)

In this research work the effect of plasma treatment with nitrogen gas followed by nanoclay treatment on flame retardancy of cotton fabrics ... , nitrogen plasma pretreatment has synergistic effect on nanoclay fo...

Sheila Shahidi; Mahmood Ghoranneviss

2014-02-01T23:59:59.000Z

230

Multifractal detrended fluctuation analysis of combustion flames in four-burner impinging entrained-flow gasifier  

E-Print Network (OSTI)

On a laboratory-scale testing platform of impinging entrained-flow gasifier with four opposed burners, the flame images for diesel combustion and gasification process were measured with a single charge coupled device (CCD) camera. The two-dimensional multifractal detrended fluctuation analysis was employed to investigate the multifractal nature of the flame images. Sound power-law scaling in the annealed average of detrended fluctuations was unveiled when the order $q>0$ and the multifractal feature of flame images were confirmed. Further analyses identified two multifractal parameters, the minimum and maximum singularity $\\alpha_{\\min}$ and $\\alpha_{\\max}$, serving as characteristic parameters of the multifractal flames. These two characteristic multifractal parameters vary with respect to different experimental conditions.

Niu, Miao-Ren; Yan, Zhuo-Yong; Guo, Qing-Hua; Liang, Qin-Feng; Wang, Fu-Chen; Yu, Zun-Hong

2007-01-01T23:59:59.000Z

231

Large eddy simulations of premixed turbulent flame dynamics : combustion modeling, validation and analysis  

E-Print Network (OSTI)

High efficiency, low emissions and stable operation over a wide range of conditions are some of the key requirements of modem-day combustors. To achieve these objectives, lean premixed flames are generally preferred as ...

Kewlani, Gaurav

2014-01-01T23:59:59.000Z

232

The Plasma Flame: Development and Application of a Hybrid Plasma at Atmospheric Pressure.  

E-Print Network (OSTI)

??The focus of this work was to develop a hybrid plasma at atmospheric pressure, which we have deemed the “plasma flame†. This discharge is… (more)

King, Matthew Russell

2009-01-01T23:59:59.000Z

233

Laser induced spark ignition of coaxial methane/oxygen/nitrogen diffusion flames  

Science Journals Connector (OSTI)

We report the laser induced spark ignition (LSI) of coaxial methane/oxygen/nitrogen diffusion flames using the 1064 nm output of a Q-switched Nd:YAG laser. The minimum ignition energy...

Li, Xiaohui; Yu, Yang; Yu, Xin; Liu, Chang; Fan, Rongwei; Chen, Deying

2014-01-01T23:59:59.000Z

234

THE COMBUSTION OF SOLVENT REPINED COAL IN AN OPPOSED FLOW DIFFUSION FLAME  

E-Print Network (OSTI)

R.F. (1977). Combustion of coal in an opposed flow diffusionpulverized, solvent-refined coal. ASME Paper No. 76-WA/FU-6.OF SOLVENT REFINED COAL IN AN OPPOSED FLOW DIFFUSION FLAME*

Chin, W.K.

2011-01-01T23:59:59.000Z

235

Non-adiabatic flamelet modeling for combustion processes of oxy-natural gas flame  

Science Journals Connector (OSTI)

In order to realistically predict the combustion characteristics of the oxy-fuel flame, the present study employs the non-adiabatic flamelet approach. In this combustion model, the detailed equilibrium chemist...

Gunhong Kim; Yongmo Kim

2005-09-01T23:59:59.000Z

236

Space Microbiology  

Science Journals Connector (OSTI)

...2010 ARTICLE REVIEWS Space Microbiology Gerda Horneck...2005. Metagenomic libraries from uncultured microorganisms...environments. Gravit. Space Biol. 18: 85-86...rendering plant process. Public Health Rep. 72: 176...bacteriophage. Life Sci. Space Res. 13: 143-149...

Gerda Horneck; David M. Klaus; Rocco L. Mancinelli

2010-03-01T23:59:59.000Z

237

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety November 6, 2012 - 5:00pm Addthis Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station built, owned, and operated by Clean Energy Fuels, who kept the station running despite widespread shortages of gasoline and diesel elsewhere. | Photo courtesy of Clean Energy Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station

238

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety November 6, 2012 - 5:00pm Addthis Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station built, owned, and operated by Clean Energy Fuels, who kept the station running despite widespread shortages of gasoline and diesel elsewhere. | Photo courtesy of Clean Energy Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station

239

All Other Editions Are Obsolete U.S. Department of Energy Shuttle Bus Passenger List  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

511.1 511.1 (02-94) All Other Editions Are Obsolete U.S. Department of Energy Shuttle Bus Passenger List Date: Time: Bus Number: Driver's Signature: The U.S. Department of Energy (DOE) Shuttle operates Express between the Germantown Building and the Washington Office (Forrestal Building). ICC regulations prohibits en-route stops. The information being collected below is for the purpose of identifying individuals utilizing DOE Shuttle service. It is not retrievable by a personal identifier and is, therefore, not being kept in a Privacy Act system of records. Official Government Travelers I certify that travel on this trip is for Official Government business. (Please print all information) Name: (First/Last) Office Symbol or Agency Duty Station 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

240

EIS-0351: Operation of Flaming Gorge Dam, Colorado River Storage Project, Colorado River, UT  

Energy.gov (U.S. Department of Energy (DOE))

The Secretary of the United States Department of the Interior (Secretary), acting through the Bureau of Reclamation (Reclamation), is considering whether to implement a proposed action under which Flaming Gorge Dam would be operated to achieve the flow and temperature regimes recommended in the September 2000 report Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam (2000 Flow and Temperature Recommendations), published by the Upper Colorado River Endangered Fish Recovery Program (Recovery Program).

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability  

SciTech Connect

Planar flames are intrinsically unstable in open domains due to the thermal expansion across the burning front--the Landau-Darrieus instability. This instability leads to wrinkling and growth of the flame surface, and corresponding acceleration of the flame, until it is stabilized by cusp formation. We look at the Landau-Darrieus in stability for C/O thermonuclear flames at conditions relevant to the late stages of a Type Ia supernova explosion. Two-dimensional direct numerical simulations of both single-mode and multi-mode perturbations using a low Mach number hydrodynamics code are presented. We show the effect of the instability on the flame speed as a function of both the density and domain size, demonstrate the existence of the small scale cutoff to the growth of the instability, and look for the proposed breakdown of the non-linear stabilization at low densities. The effects of curvature on the flame as quantified through measurements of the growth rate and computation of the corresponding Markstein number. While accelerations of a few percent are observed, they are too small to have any direct outcome on the supernova explosion.

Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

2003-11-24T23:59:59.000Z

242

Optical determination of incipient soot particle concentrations in ethene laminar diffusion flames.  

SciTech Connect

Recent studies in premixed flames have shown the existence of ''transparent particles.'' These particles, 2 nm in size and in high number densities are considered to be a phase transitional between the gas phase PAH species and particulate soot. In the present study, various optical diagnostics were evaluated for measuring the concentration of these particles in situ, Through such evaluations, a technique using extinction at two wavelengths was found to be ideal. While employing such a technique, the volume fractions of these particles in an ethene laminar diffusion flame were measured. Low in the flame, these particles were found to be concentrated in the fuel rich core, while at higher locations, they could be found with appreciable volume fractions even in the soot laden regions. Having given due consideration for the errors due to uncertainties in the optical constants, we report the existence of these particles in an ethene flame with volume fractions comparable to those of soot. Also, similar measurements performed in a low sooting ethene/methanol flame show the concentration of these particles to be of the same order of magnitude as in a pure ethene flame.

Gupta, S. B.; Santoro, R. J.

1999-07-06T23:59:59.000Z

243

Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion  

SciTech Connect

Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Kim, K.N.; Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

2009-02-15T23:59:59.000Z

244

Synthesis and thermal studies of flexible polyurethane nanocomposite foams obtained using nanoclay modified with flame retardant compound  

Science Journals Connector (OSTI)

This work presents thermal studies of nanocomposites based on the flexible polyurethane (PU) matrix and filled using montmorillonite organically modified with organophosphorus flame retardant compound. Flexibl...

?ukasz Piszczyk; Magdalena Danowska…

2014-11-01T23:59:59.000Z

245

Development of a New Flame Speed Vessel to Measure the Effect of Steam Dilution on Laminar Flame Speeds of Syngas Fuel Blends at Elevated Pressures and Temperatures  

E-Print Network (OSTI)

, including the H2O. .............................................................................................................................................. 35 Table 6 Standard L9 DOE test matrix for four factors (A-D) at three levels (1-3) (Ross... sensitivity analysis based on the maximum difference between the averaged laminar flame speeds at each DOE level (1, 2, or 3) for four oxygen equivalence ratios. ...................................................................................... 41 Table...

Krejci, Michael

2012-07-16T23:59:59.000Z

246

Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles  

SciTech Connect

This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The images show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)

Gao, Jian; Moon, Seoksu; Nishida, Keiya; Matsumoto, Yuhei [Department of Mechanical System Engineering, University of Hiroshima, Higashi-Hiroshima, 739-8527 (Japan); Zhang, Yuyin [Department of Mechanical Engineering, Tokyo Denki University, Tokyo, 101-8457 (Japan)

2009-06-15T23:59:59.000Z

247

Mobility of Negative Ions in Flames by the Hall Effect Method  

Science Journals Connector (OSTI)

Variation with potential gradient of mobility of negative flame ions.—Using a flat salted flame, previously described by Wilson, between the poles of an electromagnet giving a field of 5000 gauss, the horizontal potential gradient X due to the current sent between two Pt electrodes and also the vertical potential gradient Y due to the Hall effect, were measured by means of two Pt sounding wires which could be rotated about a horizontal axis and which were connected to a quadrant electrometer. For a flame containing potassium carbonate the mobility k2=YHX was found to decrease from 26 m/sec for 1 volt/cm when the potential gradient was 1 volt/cm, to 16 m/sec for a gradient of 30 volts/cm. For a flame free from salt the mobility was some-what greater, decreasing from 26.5 m/sec for 5 volts/cm to 16 m/sec for 50 volts/cm. However, wide variation of concentration produced so little effect on the mobility that it could not be detected with certainty. The magneto-resistance effect which Heaps1 has shown enters into the mobility equation, was so small as to be negligible.Asymmetry of the Hall effect in flames.—The Hall effect was found to vary slightly with the direction of the magnetic field, the asymmetry being greater the greater the amount of salt in the flame. This asymmetry was probably due to the effect of the magnetic field on the upward velocity of the flame gases, which was evident in these experiments.

J. S. Watt

1925-01-01T23:59:59.000Z

248

Study of the performance of three micromixing models in transported scalar PDF simulations of a piloted jet diffusion flame ('Delft Flame III')  

SciTech Connect

Numerical simulation results are presented for a turbulent nonpremixed flame with local extinction and reignition. The transported scalar PDF approach is applied to the turbulence-chemistry interaction. The turbulent flow field is obtained with a nonlinear two-equation turbulence model. A C{sub 1} skeletal scheme is used as the chemistry model. The performance of three micromixing models is compared: the interaction by exchange with the mean model (IEM), the modified Curl's coalescence/dispersion model (CD) and the Euclidean minimum spanning tree model (EMST). With the IEM model, global extinction occurs. With the standard value of model constant C{sub f}=2, the CD model yields a lifted flame, unlike the experiments, while with the EMST model the correct flame shape is obtained. However, the conditional variances of the thermochemical quantities are underestimated with the EMST model, due to a lack of local extinction in the simulations. With the CD model, the flame becomes attached when either the value of C{sub f} is increased to 3 or the pilot flame thermal power is increased by a factor of 1.5. With increased value of C{sub f} better results for mixture fraction variance are obtained with both the CD and the EMST model. Lowering the value of C{sub f} leads to better predictions for mean temperature with EMST, but at the cost of stronger overprediction of mixture fraction variance. These trends are explained as a consequence of variance production by macroscopic inhomogeneity and the specific properties of the micromixing models. Local time stepping is applied so that convergence is obtained more quickly. Iteration averaging reduces statistical error so that the limited number of 50 particles per cell is sufficient to obtain accurate results. (author)

Merci, Bart [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, B-9000 Ghent (Belgium); Roekaerts, Dirk [Department of Multi-Scale Physics, Delft University of Technology, Delft (Netherlands); Naud, Bertrand [CIEMAT, Madrid (Spain)

2006-02-01T23:59:59.000Z

249

A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame  

SciTech Connect

A new two-distribution lattice Boltzmann equation (LBE) algorithm is presented to solve the laminar diffusion flames within the context of Burke-Schumann flame sheet model. One distribution models the transport of the Schvab-Zeldovich coupling function, or the mixture fraction to combine the energy and species equations. The other distribution models the quasi-incompressible Navier-Stokes equations with the low Mach number approximation. In the quasi-incompressible flows, the thermodynamics quantities depend on the coupling function but not on the hydrodynamic pressure, and the fluid components are assumed to be compressible only in the mixing/reaction region. A systematic and consistent approach to deriving LBEs for the general advection-diffusion equation and the quasi-incompressible Navier-Stokes equations are also presented. The streaming step of the LBEs are discretized by the total variation diminishing (TVD) Lax-Wendroff scheme. Numerical simulations are carried out to reproduce the low frequency flame oscillation (or flame flicker) of buoyant jet diffusion flame. Comparison between the quasi-incompressible model and the incompressible model is presented and the role of non-solenoidal velocity is examined.

Lee, T. [Department of Mechanical and Industrial Engineering, IIHR - Hydroscience and Engineering, University of Iowa, Iowa City, IA 52242-1527 (United States)]. E-mail: thlee@ccny.cuny.edu; Lin, C.-L. [Department of Mechanical and Industrial Engineering, IIHR - Hydroscience and Engineering, University of Iowa, Iowa City, IA 52242-1527 (United States)]. E-mail: ching-long-lin@uiowa.edu; Chen, L.-D. [Department of Mechanical and Industrial Engineering, National Advanced Driving Simulator, University of Iowa, Iowa City, IA 52242-1527 (United States)]. E-mail: lea-der-chen@uiowa.edu

2006-06-10T23:59:59.000Z

250

Use of laser-induced ionization to detect soot inception in premixed flames  

SciTech Connect

Experimental measurements of laser-induced ionization were performed for ethene-air premixed flames operated near the soot inception point. Soot was ionized with a pulsed laser operated at 532 nm. The ionization signal was collected with a tungsten electrode located in the postflame region. Ionization signals were collected by use of both single-electrode and dual-electrode configurations. Earlier laser-induced- ionization studies focused on the use of a single biased electrode to generate the electric field, with the burner head serving as the path to ground. In many practical combustion systems, a path to ground is not readily available. To apply the laser-induced- ionization diagnostic to these geometries, a dual-electrode geometry must be employed. The influence of electrode configuration, flame equivalence ratio, and flame height on ionization signal detection was determined. The efficacy of the laser-induced-ionization diagnostic in detecting soot inception in the postflame region of a premixed flame by use of a dual-electrode configuration was investigated. Of the dual-electrode configurations tested, the dual-electrode geometry oriented parallel to the laser beam was observed to be most sensitive for detecting the soot inception point in a premixed flame.

Manzello, Samuel L.; Lee, Eui Ju; Mulholland, George W

2005-08-20T23:59:59.000Z

251

Innovation Spaces  

E-Print Network (OSTI)

Innovation ecosystems today are the lifeblood or the great hope of many major economies, but at the heart of these ecosystems, there are places and spaces. Silicon Valley is not just a place, but a cluster of spaces where ...

Schneider-Sikorsky, Patrick A

2014-01-01T23:59:59.000Z

252

M AT E R I A L S S C I E N C E Making Flame  

E-Print Network (OSTI)

. The best materials showed heat resistance up to 400°C. All the materials tested had little residual charM AT E R I A L S S C I E N C E Making Flame Retardant Polymeric flame-retardant materials after heat- ing to 1200°C, indicating al- most complete decomposi- tion, and produced no toxic materials

Blower, Sally

253

Feature Article Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames  

E-Print Network (OSTI)

with predominantly CO, CO2, and H2O) as a fuel itself as synthetic gas or ``syngas" from coal or biomass gasification of burning rates, analysis of the key reactions and kinetic pathways, and modeling studies were performed and temperature dependence compared to Ar-diluted flames of the same flame temperature. Simulations were performed

Ju, Yiguang

254

Measurement of temperature distributions in large pool fires with the use of directional flame thermometers  

SciTech Connect

Temperatures inside the flame zone of large regulatory pool fires measured during tests of radioactive materials packages vary widely with both time and position. Measurements made with several Directional Flame Thermometers, in which a thermocouple is attached to a thin metal sheet that quickly approaches flame temperatures, have been used to construct fire temperature distributions and cumulative probability distributions. As an aid to computer simulations of these large fires, these distributions are presented. The distributions are constructed by sorting fire temperature data into bins 10 C wide. A typical fire temperature distribution curve has a gradual increase starting at about 600 C, with the number of observations increasing to a peak near 1000 C, followed by an abrupt decrease in frequency, with no temperatures observed above 1200 C.

KOSKI,JORMAN A.

2000-05-09T23:59:59.000Z

255

Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH3-seeded non-premixed methane/air flame  

E-Print Network (OSTI)

non-premixed methane/air flame John B. Bell, Marcus S. Day, Joseph F. Grcar Computing Sciences-induced fluorescence imaging of nitric oxide in a NH3-seeded non-premixed methane/air flame Abstract In this paper we study the formation of NO in laminar, nitrogen diluted methane diffusion flames that are seeded

Bell, John B.

256

Laser-saturated fluorescence of nitric oxide and chemiluminescence measurements in premixed ethanol flames  

SciTech Connect

In this study, nitric oxide laser-saturated fluorescence (LSF) measurements were acquired from premixed ethanol flames at atmospheric pressure in a burner. NO-LSF experimental profiles for fuel-rich premixed ethanol flames ({phi} = 1.34 and {phi} = 1.66) were determined through the excitation/detection scheme of the Q{sub 2}(26.5) rotational line in the A{sup 2}{sigma}{sup +} - X{sup 2}{pi} (0,0) vibronic band and {gamma}(0,1) emission band. A calibration procedure by NO doping into the flame was applied to establish the NO concentration profiles in these flames. Chemiluminescent emission measurements in the (0, 0) vibronic emission bands of the OH{sup *} (A{sup 2}{sigma}{sup +} - X{sup 2}{pi}) and CH{sup *}(A{sup 2}{delta} - X{sup 2}{pi}) radicals were also obtained with high spatial and spectral resolution for fuel-rich premixed ethanol flames to correlate them with NO concentrations. Experimental chemiluminescence profiles and the ratios of the integrated areas under emission spectra (A{sub CH*}/A{sub CH*}(max.) and A{sub CH*}/A{sub OH*}) were determined. The relationships between chemiluminescence and NO concentrations were established along the premixed ethanol flames. There was a strong connection between CH{sup *} radical chemiluminescence and NO formation and the prompt-NO was identified as the governing mechanism for NO production. The results suggest the optimum ratio of the chemiluminescence of two radicals (A{sub CH*}/A{sub OH*}) for NO diagnostic purposes. (author)

Marques, Carla S.T.; Barreta, Luiz G.; Sbampato, Maria E.; dos Santos, Alberto M. [Aerothermodynamic and Hypersonic Division, Institute of Advanced Studies - General Command of Aerospatial Technology, Rodovia dos Tamoios, km 5.5, 12228-001 Sao Jose dos Campos - SP (Brazil)

2010-11-15T23:59:59.000Z

257

Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone  

SciTech Connect

The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)

Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F. [Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139 (United States)

2010-04-15T23:59:59.000Z

258

A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames  

SciTech Connect

The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

2000-12-15T23:59:59.000Z

259

Reduction of Emissions from a Syngas Flame Using Micromixing and Dilution with CO2  

Science Journals Connector (OSTI)

Hydrogen-rich syngas can be burned stably in the designed combustor, and each suite of nozzles forms a flame surface. ... The smaller dilution ratio and the higher fuel heating value means the fuel can be burned quickly after it leaves the nozzles, resulting in strong heat release in the frontal section of the burner. ... There are, however, gaps in the fundamental understanding of syngas combustion and emissions, as most previous research has focused on flames burning individual fuel components such as H2 and CH4, rather than syngas mixts. ...

Yongsheng Zhang; Tianming Yang; Xueqi Liu; Long Tian; Zhongguang Fu; Kai Zhang

2012-10-25T23:59:59.000Z

260

Method for producing flame retardant porous products and products produced thereby  

DOE Patents (OSTI)

A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame. 1 fig.

Salyer, I.O.

1998-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Method for producing flame retardant porous products and products produced thereby  

DOE Patents (OSTI)

A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

Salyer, Ival O. (Dayton, OH)

1998-08-04T23:59:59.000Z

262

Method for Producing Flame Retardant Porous Products and Products Produced Thereby  

DOE Patents (OSTI)

A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

Salyer, Ival O. (Dayton, OH)

1998-08-04T23:59:59.000Z

263

Comparison of the combustion behavior of Orimulsion{trademark} and heavy fuel oil in 70 MW flames  

SciTech Connect

Results of an experimental study are shown in this publication to compare the combustion behavior of heavy fuel oil (HFO) and Orimulsion in 70 MW flames. The investigation was carried out with the use of the combustion test rig at the International Combustion Limited in Derby, UK. The main objective of this test work was to quantify the extent of differences in flame properties, particulate and gaseous emissions of Orimulsion and HFO. Under identical combustion conditions, axial profiles of flame temperature and radiation heat flux were determined at 70 MW thermal input and 1% O{sub 2} for both fuels. Gas compositions at flame tail and furnace exit were obtained to estimate flame length and emission of gaseous pollutants. Stack concentration, carbon content, size and chemical composition of fly ash were also measured. The effect of excess air level on exit NOx and CO concentration were studied. Results of detailed flame measurements and the parametric study have shown that orimulsion fuel can be burnt with 99.97% efficiency at 1% exit O{sub 2} with a modified burner system of Dunamenti Power Station. However, significant implications of Orimulsion firing were observed. Gas temperature data and CO concentrations at flame tail have indicated a 1.5--2 m longer flame for Orimulsion. At flame tail, gas temperature in the Orimulsion flame was higher by 100 C than that for HFO. Lower radiant heat flux was measured in the near burner region for Orimulsion. Higher SO{sub 3}, SO{sub 2} and lower NOx emission were found when firing Orimulsion. Despite the higher ash content of Orimulsion, its combustion resulted in smaller particulate emission, which might be due to fly ash deposition in the furnace.

Barta, L.E. [Inst. for Energy, Budapest (Hungary); Horvath, G. [Hungarian Power Companies, Ltd., Budapest (Hungary); Allen, J.W.; Darar, J.S.; Wright, J.A. [International Combustion Ltd., Derby (United Kingdom). Rolls Royce Industrial Power Group; Szederkenyi, S.

1996-12-31T23:59:59.000Z

264

Continuous daily observation of the marine atmospheric boundary layer over the Kuroshio current by a helicopter shuttle service  

Science Journals Connector (OSTI)

We describe a new initiative in which in-situ observations of the marine atmospheric boundary layer (MABL) are made by a helicopter shuttle connecting six islands south of Tokyo. This observation method aims to make frequent measurements of ...

Youichi Tanimoto; Kou Shimoyama; Shoichi Mori

265

Fat mass and obesity related (FTO) shuttles between the nucleus and cytoplasm  

E-Print Network (OSTI)

Solutions,  Colorado,  USA;  rabbit  anti-­?actin  was  from  Abcam;  rabbit  anti-­?Flag,   rabbit   anti-­?GFP  and  anti-­?Flag  M2  magnetic  beads  were   from  Sigma;  Histone  and   tubulin  antibodies  were  from...   that  mediate   the   shuttling  of  proteins  between  the  nucleus  and  cytoplasm  and  vice  versa  [16].  This  observation  was  then  validated  using  western  blots  on  Flag-­?FTO  pull  down  samples...

Gulati, Pawan; Avezov, Edward; Ma, Marcella; Antrobus, Robin; Lehner, Paul; O'Rahilly, Stephen; Yeo, Giles S. H.

2014-09-22T23:59:59.000Z

266

Fast shuttling of a trapped ion in the presence of noise  

E-Print Network (OSTI)

We theoretically investigate the motional excitation of a single ion caused by spring-constant and position uctuations of a harmonic trap during trap shuttling processes. A detailed study of the sensitivity on noise for several transport protocols and noise spectra is provided. The e?ect of slow spring-constant drifts is also analyzed. Trap trajectories that minimize the excitation are designed combining invariant-based inverse engineering, perturbation theory, and optimal control.

Xiao-Jing Lu; J. G. Muga; Xi Chen; U. G. Poschinger; F. Schmidt-Kaler; A. Ruschhaupt

2014-04-16T23:59:59.000Z

267

Space Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

a "Group Achievement Award" by the National Aeronautics and Space Administration (NASA) for their efforts as part of the New Horizons mission launch in 2006. More....

268

NASA Space Radiobiology Research Takes Off at New Brookhaven Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA Space Radiobiology Research Takes Off NASA Space Radiobiology Research Takes Off at New Brookhaven Facility Because astronauts are spending more and more time in space, the National Aeronautics and Space Administration is working with Brookhaven and others here on Earth to learn about the possible risks to human beings exposed to space radiation. To study the radiobiological effects using proton and ion beams that simulate the cosmic rays found in space, a new $34-million NASA Space Radiation Laboratory was commissioned at Brookhaven this summer. --by Karen McNulty Walsh and Marsha Belford "TO BOLDLY GO WHERE NO ONE HAS GONE BEFORE"- the motto of the science-fiction saga Star Trek - could just as easily be the motto of America's real-life space explorers. Despite the recent Columbia shuttle tragedy, officials of the National Aeronautics and Space Administration (NASA) have a bold vision for future manned space exploration, which includes the completion of the International Space Station now under construction, and possible future missions to build a Moon outpost, explore near-Earth asteroids, and send astronauts to Mars.

269

Flame-driven deflagration-to-detonation transitions in Type Ia supernovae?  

E-Print Network (OSTI)

Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the internal flame structure. Some studies of the burning microphysics indicate that a deflagration-to-detonation transition may be possible here, provided the turbulent intensities are strong enough. Consequently, the magnitude of turbulent velocity fluctuations generated by the deflagration flame is analyzed at the onset of the distributed burning regime in several three-dimensional simulations of deflagrations in thermonuclear supernovae. It is shown that the corresponding probability density functions fall off towards high turbulent velocity fluctuations much more slowly than a Gaussian distribution. Thus, values claimed to be necessary for triggering a detonation are likely to be found in sufficiently large patches of the flame. Although the microphysical evolution of the burning is not followed and a successful deflagration-to-detonation transition cannot be guaranteed from simulations presented here, the results still indicate that such events may be possible in Type Ia supernova explosions.

F. K. Roepke

2007-09-26T23:59:59.000Z

270

Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results  

SciTech Connect

Combustion instability is a resonance phenomenon that arises due to the coupling between the system acoustics and the unsteady heat release. The constructive feedback between the two processes, which is known to occur as a certain phase relationship between the pressure and the unsteady heat release rate is satisfied, depends on many parameters among which is the acoustic mode, the flame holder characteristics, and the dominant burning pattern. In this paper, the authors construct an analytical model to describe the dynamic response of a laminar premixed flame stabilized on the rim of a tube to velocity oscillation. They consider uniform and nonuniform velocity perturbations superimposed on a pipe flow velocity profile. The model results show that the magnitude of heat release perturbation and its phase with respect to the dynamic perturbation dependent primarily on the flame Strohal number, representing the ratio of the dominant frequency times the tube radius to the laminar burning velocity. In terms of this number, high-frequency perturbations pass through the flame while low frequencies lead to a strong response. The phase with respect to the velocity perturbation behaves in the opposite way. Results of this model are shown to agree with experimental observations and to be useful in determining how the combustion excited model is selected among all the acoustic unstable modes. The model is then used to obtain a time-domain differential equation describing the relationship between the velocity perturbation and the heat release response over the entire frequency range.

Fleifil, M.; Annaswamy, A.M.; Ghoneim, A.F. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States); Ghoneim, Z.A. [Ain Shams Univ., Abassia (Egypt)] [Ain Shams Univ., Abassia (Egypt)

1996-09-01T23:59:59.000Z

271

Syngas production from burner-stabilized methane/air flames: The effect of preheated reactants  

Science Journals Connector (OSTI)

The effect of preheated reactants on syngas production from a methane/air flame was investigated over a range of inlet temperatures up to 630 K. In addition to experimental measurements, the results from a burner-stabilized flame and freely-propagating flame models are presented. A comparison of the modeling and experimental results in terms of flame standoff distance, stability limit conditions and species yields show excellent agreement across a broad range of equivalence ratios and preheat temperatures. Preheating of reactants increased the rich limit for stable operation from 1.26 to 1.75 for a given inlet velocity, and syngas yields were shown to increase with equivalence ratio. The preheat temperature of the reactants was shown to have little impact on syngas yields beyond extending the limits of stable operation. The results of this study are useful for the design and analysis of heat recirculating reactors and other reactors that are designed for producing syngas through the combustion of rich mixtures.

Colin H. Smith; Daniel I. Pineda; Janet L. Ellzey

2013-01-01T23:59:59.000Z

272

Heat Transfer from Augmented Flames and Plasma Jets Based on Magnetically Rotated Arcs  

Science Journals Connector (OSTI)

...November 1971 research-article Heat Transfer from Augmented Flames and Plasma...Jones F. J. Weinberg Rates of heat transfer to the inner surface of a surrounding...experimental data on a computer to yield heat transfer coefficients is developed on this...

1971-01-01T23:59:59.000Z

273

Carbon nanotubes grow in combustion flames Issued on March 31, 2014  

E-Print Network (OSTI)

Carbon nanotubes grow in combustion flames Issued on March 31, 2014 Quantum chemical simulations reveal an unprecedented relationship between the mechanism of carbon nanotube growth and hydrocarbon of carbon nanotube (CNT) growth and hydrocarbon combustion actually share many similarities. In studies

Takahashi, Ryo

274

Visualization of Turbulent Flame Fronts with Planar Laser-Induced Fluorescence  

Science Journals Connector (OSTI)

...TWO-DIMENSIONAL GAS CONCENTRATION MEASUREMENTS...flames at atmospheric pressure. More-over, the...carried out at constant pressure and the molecular...win-dows in the combustor. A simple fused...because ofthe often high and rapid-ly fluctuating...made it an ideal natural laboratory for the...

GEORGE KYCHAKOFF; ROBERT D. HOWE; RONALD K. HANSON; MICHAEL C. DRAKE; ROBERT W. PITZ; MARSHALL LAPP; C. MURRAY PENNEY

1984-04-27T23:59:59.000Z

275

Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations  

Science Journals Connector (OSTI)

...147. The pressure is atmospheric. The gas-phase hydrodynamics...formulation is the high-order inter...aeroderivative combustors, while the...fraction is highest (figure-4...scavenging gas-phase precursors...flame of natural gas and air...based on the high Da number...

2014-01-01T23:59:59.000Z

276

VisionGuided Flame Control Using Fuzzy Logic and Neural Networks  

E-Print Network (OSTI)

of the combustion processes are not amenable to mathematical modeling based on simple physical and chemical laws to a vision­guided closed loop control for stationary luminous flames. The image processing technique is used automatically. 2 #12; 1 Introduction Combustion, as one of the most important industrial processes, is a very

277

Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions  

SciTech Connect

High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

2013-07-03T23:59:59.000Z

278

Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames  

E-Print Network (OSTI)

of the hydrocarbon fuel intrinsically provides not only the source of process heat to establish the requisite; Catalytically grown carbon; Combustion; Raman spectroscopy 1. Introduction Since IijimaÃ?s discovery [1] of CNTs-volume production, without the need for expensive starting materi- als. In flame synthesis, combustion

Tse, Stephen D.

279

Numerical simulation of Lewis number effects on lean premixed turbulent flames  

E-Print Network (OSTI)

turbulent flames for lean hydrogen, propane and methane mixtures in two dimensions. Each simulation or syngas, obtained from coal gasification, has sparked interest in the development of burners that can for propane, methane and hydrogen using de- tailed chemistry and transport, corresponding to Le > 1, Le 1

280

Flame-Retardant Epoxy Resin Nanocomposites Reinforced with Polyaniline-Stabilized Silica Nanoparticles  

E-Print Network (OSTI)

, Henry A. Colorado, Suying Wei,*,# and Zhanhu Guo*, Integrated Composites Lab (ICL), Dan F. Smith silsesquioxanes (POSS) reinforced epoxy composites.10 For the third method, the inorganic nanoparticles are often (ATH),13 silica (SiO2),14 nanoclay,15 and newly developed phosphorus- containing flame retardants 9

Guo, John Zhanhu

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PHYSICAL REVIEW E 86, 036314 (2012) ac electric fields drive steady flows in flames  

E-Print Network (OSTI)

PHYSICAL REVIEW E 86, 036314 (2012) ac electric fields drive steady flows in flames Aaron M. Drews June 2012; published 20 September 2012) We show that time-oscillating electric fields applied-averaged force that drives the steady flows observed experimentally. A quantitative model describes the response

Heller, Eric

282

A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames.  

E-Print Network (OSTI)

of these alternate fuels will vary significantly with the type of feedstocks and their treatment processes , Vince Beckner1 and Robert Cheng3 , 1 Center for Computational Sciences and Engineering, Lawrence, and then use the simulation data to further probe the time-dependent, 3D structure of the flames

Bell, John B.

283

Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental and  

E-Print Network (OSTI)

of burners, particularly for alternative fuels, depends on improving our understanding of basic flame. Beckner1, M. J. Lijewski1 1 Center for Computational Science and Engineering, Lawrence Berkeley National for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification

284

Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow  

SciTech Connect

The stabilization characteristics of liftoff and blowoff in nonpremixed laminar jet flames in a coflow have been investigated experimentally for propane fuel by applying AC and DC electric fields to the fuel nozzle with a single-electrode configuration. The liftoff and blowoff velocities have been measured by varying the applied voltage and frequency of AC and the voltage and the polarity of DC. The result showed that the AC electric fields extended the stabilization regime of nozzle-attached flame in terms of jet velocity. As the applied AC voltage increased, the nozzle-attached flame was maintained even over the blowout velocity without having electric fields. In such a case, a blowoff occurred directly without experiencing a lifted flame. While for the DC cases, the influence on liftoff was minimal. There existed three different regimes depending on the applied AC voltage. In the low voltage regime, the nozzle-detachment velocity of either liftoff or blowoff increased linearly with the applied voltage, while nonlinearly with the AC frequency. In the intermediate voltage regime, the detachment velocity decreased with the applied voltage and reasonably independent of the AC frequency. At the high voltage regime, the detachment was significantly influenced by the generation of discharges. (author)

Kim, M.K.; Ryu, S.K.; Won, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea); Chung, S.H. [Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

2010-01-15T23:59:59.000Z

285

Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames.  

E-Print Network (OSTI)

engines and gas turbines where the combustion chamber is at high pressure. Despite the use of catalyticStrategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A combustion systems3�13 and thus develop new schemes to mini- mize NO effluent. The high operating pressure

Lee, Tonghun

286

Copyright 2007 by ASME1 Laminar Flame Speeds and Strain Sensitivities of Mixtures of H2  

E-Print Network (OSTI)

to rich. [Keywords: Syngas, laminar flame speed, reactant preheat, CO2 dilution, N2 dilution] INTRODUCTION Technologies such as integrated gasification combined cycle (IGCC) plants enable combustion of coal, biomass emissions. Synthetic gas (syngas) fuels derived from coal are particularly promising in this regard. Syngas

Seitzman, Jerry M.

287

EFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA Jianbang Liu1,2  

E-Print Network (OSTI)

to electrical energy consumed to produce the discharge.) Consequently, ignition by laser sources has beenEFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA DISCHARGES Jianbang Liu1,2 , Fei Wang1 with air ignited by transient plasma discharge were investigated and compared with spark discharge ignition

288

Flame Front Matching and Tracking in PLIF Images Using Geodesic Paths and Level Sets  

E-Print Network (OSTI)

. Successive images of the combustion process captured in controlled experiments are smoothed by non combustion processes of varying types and turbulence levels. The local intensity in the recorded images) imaging of OH radicals in combustion processes. The data includes both premixed flames subjected

Hamarneh, Ghassan

289

Combustion and Flame 151 (2007) 235244 www.elsevier.com/locate/combustflame  

E-Print Network (OSTI)

Combustion and Flame 151 (2007) 235­244 www.elsevier.com/locate/combustflame Effect of ethanol Available online 26 July 2007 Abstract The effect of fuel-side ethanol addition on the chemical structure of average structural parameters. The results indicate that the ethanol effect on the aromatic components

Utah, University of

290

Stability characteristics of non-premixed turbulent jet flames of hydrogen and syngas blends with coaxial air  

Science Journals Connector (OSTI)

The stability characteristics of attached hydrogen (H2) and syngas (H2/CO) turbulent jet flames with coaxial air were studied experimentally. The flame stability was investigated by varying the fuel and air stream velocities. Effects of the coaxial nozzle diameter, fuel nozzle lip thickness and syngas fuel composition are addressed in detail. The detachment stability limit of the syngas single jet flame was found to decrease with increasing amount of carbon monoxide in the fuel. For jet flames with coaxial air, the critical coaxial air velocity leading to flame detachment first increases with increasing fuel jet velocity and subsequently decreases. This non-monotonic trend appears for all syngas composition herein investigated (50/50 ? 100/0% H2/CO). OH? chemiluminescence imaging was performed to qualitatively identify the mechanisms responsible for the flame detachment. For all fuel compositions, local extinction close to the burner rim is observed at lower fuel velocities (ascending stability limit), while local flame extinction downstream of the burner rim is observed at higher fuel velocities (descending stability limit). Extrema of the non-monotonic trends appear to be identical when the nozzle fuel velocity is normalized by the critical fuel velocity obtained for the single jet cases.

Jeongjae Hwang; Nicolas Bouvet; Kitae Sohn; Youngbin Yoon

2013-01-01T23:59:59.000Z

291

Soot formation in aerodynamically strained methane-air and ethylene-air diffusion flames with chloromethane addition  

SciTech Connect

The effects of chloromethane (CH{sub 3}Cl) addition on soot inception in methane-air and ethylene-air counterflow diffusion flames were investigated by varying the concentrations of chloromethane and nitrogen in the fuel stream. Experiments showed a monotonic increase in the critical sooting stretch rate for methane-air flames when methane was replaced by chloromethane, while ethylene and chloromethane flames exhibited a larger sooting tendency than flames under comparable conditions and burning either ethylene or chloromethane alone. For the conditions investigated, the critical sooting stretch rates of methane-chloromethane-nitrogen flames were shown to be primarily a function of the chloromethane loading in the fuel stream. The structure of these flames was modeled using detailed chemistry and transport. Modeling results suggested that the enhancement of soot formation in ethylene-chloromethane flames may be a combined result of increased concentrations of C{sub 2} species and chlorinated C{sub 1} radicals (CH{sub 2}Cl and CHCl). A large rate of the reactions among these species may be the first steps in the molecular growth processes, which leads to the inception of soot particles. (author)

Leylegian, J.C. [ATK GASL NY Operations, 77 Raynor Avenue, Ronkonkoma, NY 11779-6648 (United States)

2008-01-15T23:59:59.000Z

292

Space Weather  

E-Print Network (OSTI)

magnetic field that enshrouds Earth is subject to a continuing low dose of galactic cosmic radiation. The best available estimates predict that exposure to such radiation for as little as a year may-inducing radiation in space. Eugene N. Parker 18 August 2005 Any space traveler far removed from the protective

Shepherd, Simon

293

Direct conversion nuclear reactor space power systems  

SciTech Connect

This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions.

Britt, E.J.; Fitzpatrick, G.O.

1982-08-01T23:59:59.000Z

294

Space Research  

Science Journals Connector (OSTI)

In the two years since the last SPIE meeting on this topic there has been much activity in both ground and space based interferometry. The author reviews those developments. He also summarizes the Strawman Sci...

G. Burkhardt; U. Esser; H. Hefele; I. Heinrich; W. Hofmann…

1998-01-01T23:59:59.000Z

295

Space Microbiology  

Science Journals Connector (OSTI)

...membranes under conditions of free fall (in a drop tower) and hypergravity (in a centrifuge). This...operation in the International Space Station. SAE technical paper 2006-01-2157. SAE, Warrendale, PA. 225 Rothschild, L., and...

Gerda Horneck; David M. Klaus; Rocco L. Mancinelli

2010-03-01T23:59:59.000Z

296

SPACE SHUTTLEPROGRAMPETITION FOR HCFC 141b Exemption Allowance Appendix A. Shuttle Applications of HCFC 141b Blown Foams  

E-Print Network (OSTI)

and attachments. The aft dome TPS requirement is primarily driven by propellant quality requirements (temperature Insulation Installation I:I' lnsiiliitioii 1.1 I: t Ali Skirt TPS Installation CloscoLlt CloscoLlt t Aft components of the ET has its own TPS requirement based on environments and mission conditions 1) The main

Christian, Eric

297

Ignition of Deflagration and Detonation Ahead of the Flame due to Radiative Preheating of Suspended Micro Particles  

E-Print Network (OSTI)

We study a flame propagating in the gaseous combustible mixture with suspended inert solid micro particles. The gaseous mixture is assumed to be transparent for thermal radiation emitted by the hot combustion products, while particles absorb and reemit the radiation. Thermal radiation heats the particles, which in turn transfer the heat to the surrounding unburned gaseous mixture by means of thermal heat transfer. Different scenarios are possible depending on the spatial distribution of the particles, their size and the number density. In the case of uniform spatial distribution the radiation absorption ahead of the flame causes a modest increase of the combustion wave velocity. On the contrary, in the case of non-uniform distribution of the particles, such that the particles number density increases far ahead of the flame, the preheating caused by the thermal radiation may trigger additional source of ignition. Far enough ahead of the flame, where number density of particles is higher, the temperature due to...

Ivanov, M F; Liberman, M A

2014-01-01T23:59:59.000Z

298

A study of the phenomenon of liquid-flame combustion; I. Visual examinations and high-speed photography  

SciTech Connect

A liquid-flame combustion phenomenon, which has been revealed for pressed mixtures of tetrazole and sodium tetrazolate, was studied using high-speed photography and photography of high spatial resolution. New, previously unknown, peculiarities of the origin and development of the liquid-flame structure, pertinent, in particular, to its external texture and interaction with the melt on the pellet surface, as well as some features of the dispersion of condensed products were found.

Astashinsky, V.M.; Kostyukevich, E.A. (Byelorussian Academy of Science, Minsk (Belarus). Inst. of Molecular and Atomic Physics); Ivashkevich, O.A.; Lesnikovich, A.I.; Krasitsky, V.A. (Byelorussian State Univ., Minsk (Belarus))

1994-02-01T23:59:59.000Z

299

Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study  

SciTech Connect

The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S. [Department of Chemical Engineering, University of Utah, Salt Lake City, UT (United States); D'Anna, Andrea [Dipartimento di Ingegneria Chimica, Universita ''Federico II'' di Napoli, Naples (Italy)

2011-01-15T23:59:59.000Z

300

Refractory metal alloys and composites for space power systems  

SciTech Connect

Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900`s and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites will be discussed.

Stephens, J.R.; Petrasek, D.W.; Titran, R.H.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Three-dimensional simulations of cellular non-premixed jet flames  

SciTech Connect

The formation, dynamics and structure of cellular flames in circular non-premixed jets are examined with three-dimensional numerical simulations incorporating detailed descriptions of chemistry and transport. Similar to past experiments reported in the literature, CO{sub 2}-diluted hydrogen in diluted or pure oxygen co-flowing streams in the proximity of the extinction limit are considered. As in the experiments, several preferred cellular states are found to co-exist with the particular state realized depending on initial conditions as well as on the jet characteristics. The simulations provide additionally the temporal transitions to different stationary or rotating cellular flames, their detailed structure, and the dependence of the scaling of the realized number of cells with the vorticity thickness. (author)

Valaer, A.L.; Frouzakis, C.E.; Boulouchos, K. [Aerothermochemistry and Combustion System Laboratory, Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland); Papas, P. [Division of Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Tomboulides, A.G. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani (Greece)

2010-04-15T23:59:59.000Z

302

Development of flame retarded self-reinforced composites from automotive shredder plastic waste  

Science Journals Connector (OSTI)

Multilayered self-reinforced composites were developed from a density-separated light fraction of automotive shredder waste of high polyolefin content, which can fulfil the current technical, safety and environmental requirements of structural materials. The significantly enhanced mechanical properties of the recycled composites were ensured by polypropylene fabric reinforcement; meanwhile, reduced flammability was obtained by modifying the matrix layers, made of secondary raw materials, with phosphorous-containing flame retardant additive. The results of the new flame retarded composite systems allowed the discussion of a novel mechanistic observation. The mechanical and flammability properties of the prepared self-reinforced composites are compared to conventional glass fabric reinforced composites and to compounds without reinforcement.

Katalin Bocz; Andrea Toldy; Ákos Kmetty; Tamás Bárány; Tamás Igricz; György Marosi

2012-01-01T23:59:59.000Z

303

Development of an energy efficient curtain flame ignition system for sintering of iron ore fines  

Science Journals Connector (OSTI)

Research and Development Centre for Iron and Steel (RDCIS) of Steel Authority of India Limited (SAIL) has developed a 'curtain flame' ignition system for sinter mix ignition. Conventionally, either horizontal fired burners or top fired or a combination of both are used for ignition of sinter mix. These burners big in size but few in number are mounted on a rectangular box type furnace. This is associated with non-uniform heating of sinter mix. In the new system, small capacity burners are installed on the roof across the sinter bed in a single row. Here, the top layer of the sinter bed gets heated by the direct impingement of the flame. This has resulted in reduction in specific fuel gas consumption by more than 30% and savings in refractory consumption. Implementation of the system led to reduction in green house gas (GHG) emission also.

V.T. Selvan; T.S. Reddy; A. Das

2012-01-01T23:59:59.000Z

304

Heat transfer characteristics of laminar methane/air flame impinging normal to a cylindrical surface  

SciTech Connect

An experimental study has been conducted to determine the heat transfer characteristics of methane/air laminar flames impinging normal to a cylindrical surface. Effects of variations in the values of Reynolds number (Re = 600-1300), equivalence ratio ({phi} = 0.8-1.3), dimensionless separation distance (H/d = 1-5), and burner diameter to cylinder diameter ratio (d/D = 0.0538-0.1076) have been investigated. Three important configurations, viz., flame inner reaction zone far away, just touching and intercepted by the impingement surface, were examined in detail. High stagnation point heat fluxes were obtained when tip of the flame inner reaction zone just touched the target surface. Stagnation point heat fluxes were either zero or negative when the inner reaction zone was intercepted by the impingement surface. An off-stagnation peak in heat flux was obtained at moderate separation distances above the flame tip. Both stagnation point and peak heat fluxes increased with Re when the inner reaction zone length was less than the separation distance. Heat fluxes in the wall-jet region were high at high Re. Maximum heat fluxes were obtained for initially fuel-rich mixture conditions due to entrainment of the surrounding air. Smaller burner diameters produced high heat flux at the stagnation region for fixed Reynolds number and opposite trends were seen in the wall-jet region. A secondary rise in stagnation point heat flux was obtained at larger separation distances. This secondary rise in heat flux was quite significant for larger burner diameters and at low flow rates. Correlations were developed for stagnation point heat flux. Results were also compared with flat plate under identical operating conditions. (author)

Chander, Subhash; Ray, Anjan [Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110 016 (India)

2007-11-15T23:59:59.000Z

305

Similarity solutions and applications to turbulent upward flame spread on noncharring materials  

SciTech Connect

The primary achievement in this work has been the discovery that turbulent upward flame spread on noncharring materials (for pyrolysis lengths less than 1.8m) can be directly predicted by using measurable flammability parameters. These parameters are: a characteristic length scale which is proportional to a turbulent combustion and mixing related length scale parameter ({dot q}{double_prime}{sub net}({Delta}H{sub c}/{Delta}H{sub v})){sup 2}, a pyrolysis or ignition time {tau}{sub p}, and a parameter which determines the transient pyrolysis history of a non-charring material: {lambda} = L/c{Delta}T{sub p} = ratio of the latent heat to the sensible heat of the pyrolysis temperature of the material. In the length scale parameter, {dot q}{double_prime}{sub net} is the total net heat flux from the flames to the wall (i.e., total heat flux minus reradiation losses), {Delta}H{sub c} is the heat of combustion and {Delta}H{sub v} is an effective heat of gasification for the material. The pyrolysis or ignition time depends (for thermally thick conditions) on the material thermal inertia, the pyrolysis temperature, and the total heat flux from the flames to the wall, {dot q}{double_prime}{sub fw}. The present discovery was made possible by using both a numerical simulation, developed earlier, and exact similarity solutions, which are developed in this work. The predictions of the analysis have been validated by comparison with upward flame spread experiments on PMMA.

Delichatsios, M.A.; Delichatsios, M.; Chen, Y. [Factory Mutual Research Corporation, Norwood, MA (United States)] [Factory Mutual Research Corporation, Norwood, MA (United States); Hasemi, Y. [Ministry of Construction, Tsukuba (Japan). Building Research Inst.] [Ministry of Construction, Tsukuba (Japan). Building Research Inst.

1995-08-01T23:59:59.000Z

306

Mechanism for Inhibition of Atmospheric-Pressure Syngas/Air Flames by Trimethylphosphate  

Science Journals Connector (OSTI)

Gasification processes allow for a wide range of solid combustibles, including coal, biomass, and municipal solid wastes, to be converted into syngas mixtures that can be burned in gas turbines to generate electricity. ... Burning velocity was measured using a Mache–Hebra nozzle burner(22) and the total area method(23) from flame images, as was performed by Linteris and Truett. ... Recommendations are made as to the most suitable methods of measuring burning velocity for both closed vessels and burners. ...

Vladimir M. Shvartsberg; Andrey G. Shmakov; Tatyana A. Bolshova; Oleg P. Korobeinichev

2012-08-10T23:59:59.000Z

307

Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems  

SciTech Connect

Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

2010-12-12T23:59:59.000Z

308

Molecular Characterization of Organic Content of Soot along the Centerline of a Coflow Diffusion Flame  

SciTech Connect

High-resolution mass spectrometry coupled with nanospray desorption electrospray ionization was used to probe chemical constituents of young soot particles sampled along the centerline of a coflow diffusion flame of a three-component Jet-A1 surrogate. In lower positions where particles are transparent to light extinction (n= 632.8 nm), peri-condensed polycyclic aromatic hydrocarbons (PAHs) are found to be the major components of the particle material. These particles become enriched with aliphatic components as they grow in mass and size. Before carbonization occurs, the constituent species in young soot particles are aliphatic and aromatic compounds 200-600 amu in mass, some of which are oxygenated. Particles dominated by PAHs or mixtures of PAHs and aliphatics can both exhibit liquid-like appearance observed by electron microscopy and be transparent to visible light. The variations in chemical composition observed here indicate that the molecular processes of soot formation in coflow diffusion flames may be more complex than previously thought. For example, the mass growth and enrichment of aliphatic components in an initially, mostly aromatic structure region of the flame that is absent of H atoms or other free radicals indicates that there must exist at least another mechanism of soot mass growth in addition to the hydrogen-abstraction-carbon addition mechanism currently considered in fundamental models of soot formation.

Cain, Jeremy P.; Laskin, Alexander; Kholghy, Mohammad Reza; Thomson, Murray; Wang, Hai

2014-10-29T23:59:59.000Z

309

Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario  

E-Print Network (OSTI)

We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that both our ADR and energy release methods do not generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well-behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia Supernovae.

D. M. Townsley; A. C. Calder; S. M. Asida; I. R. Seitenzahl; F. Peng; N. Vladimirova; D. Q. Lamb; J. W. Truran

2007-06-07T23:59:59.000Z

310

Nanoengineering core/shell structured brucite@polyphosphate@amine hybrid system for enhanced flame retardant properties  

Science Journals Connector (OSTI)

Abstract A novel organic-inorganic hybrid flame retardant consisting of a brucite core and a dodecylamine polyphosphate shell was synthesized by a facile nanoengineering route. The flammability characterization and synergistic flame retardant mechanism of the core/shell flame retardant (CFR) in ethylene-vinyl acetate (EVA) blends had been compared with EVA/physical mixture (PM, with the given proportion of brucite and dodecylamine polyphosphate as well as CFR) and EVA/brucite blends. With the same loading amount (40 wt%) of fillers in EVA, the peak heat release rate and smoke production rate of EVA/CFR blends were significantly reduced to 49% and 48% of that of EVA/PM blends, respectively. Meanwhile, the limiting oxygen index (LOI) was increased up to 32 (14.3% higher than that of EVA/PM blends) and the UL-94 test could achieve the V-0 rating. These remarkable properties were obtained just by nanoengineeing the core/shell structured brucite@polyphosphate@amine hybrid system, facilitating the formation of intact and compact residue with fence structure in process of polymer composite burning.

Xuesong Wang; Hongchang Pang; Wendan Chen; Yuan Lin; Guiling Ning

2013-01-01T23:59:59.000Z

311

Evidence of thermonuclear flame spreading on neutron stars from burst rise oscillations  

E-Print Network (OSTI)

Burst oscillations during the rising phases of thermonuclear X-ray bursts are usually believed to originate from flame spreading on the neutron star surface. However, the decrease of fractional oscillation amplitude with rise time, which provides a main observational support for the flame spreading model, have so far been reported from only a few bursts. Moreover, the non-detection and intermittent detections of rise oscillations from many bursts are not yet understood considering the flame spreading scenario. Here, we report the decreasing trend of fractional oscillation amplitude from an extensive analysis of a large sample of Rossi X-ray Timing Explorer Proportional Counter Array bursts from ten neutron star low-mass X-ray binaries. This trend is 99.99% significant for the best case, which provides, to the best of our knowledge, by far the strongest evidence of such trend. Moreover, it is important to note that an opposite trend is not found from any of the bursts. The concave shape of the fractional ampli...

Chakraborty, Manoneeta

2014-01-01T23:59:59.000Z

312

Rotational effects in thermonuclear Type I Bursts: equatorial crossing and directionality of flame spreading  

E-Print Network (OSTI)

In a previous study on thermonuclear (Type I) Bursts on accreting neutron stars we addressed and demonstrated the importance of the effects of rotation, through the Coriolis force, on the propagation of the burning flame. However, that study only analysed cases of longitudinal propagation, where the Coriolis force coefficient $2\\Omega\\cos\\theta$ was constant. In this paper, we study the effects of rotation on propagation in the meridional (latitudinal) direction, where the Coriolis force changes from its maximum at the poles to zero at the equator. We find that the zero Coriolis force at the equator, while affecting the structure of the flame, does not prevent its propagation from one hemisphere to another. We also observe structural differences between the flame propagating towards the equator and that propagating towards the pole, the second being faster. In the light of the recent discovery of the low spin frequency of burster IGR~J17480-2446 rotating at 11 Hz (for which Coriolis effects should be negligib...

Cavecchi, Yuri; Levin, Yuri; Braithwaite, Jonathan

2014-01-01T23:59:59.000Z

313

Al/Al2O3 Composite Coating Deposited by Flame Spraying for Marine Applications: Alumina Skeleton Enhances Anti-Corrosion and Wear Performances  

Science Journals Connector (OSTI)

Here we report aluminum-alumina composite coatings fabricated by flame spraying for potential marine applications against both corrosion and wear. Microstructure examination suggested dense coating structures and...

Jing Huang; Yi Liu; Jianhui Yuan; Hua Li

2014-04-01T23:59:59.000Z

314

Animated Space  

E-Print Network (OSTI)

activists returning to the Square over thirty years to protest against diverse injustices, including mine closures, nuclear arms escalation, violence against women, Apartheid in South Africa, the war in Iraq and Afghanistan, repression in Palestine... movement, the protests in Southern Europe against austerity, the uprisings in Ukraine, the demonstrations against wasteful state expenditure in Brazil are the emblems of the new politics of insurgency; their rebellious public spaces tangible expression...

Amin, Ash

2014-01-01T23:59:59.000Z

315

Nonlinearity 10 (1997) 12. Printed in the UK PII: S0951-7715(97)79608-7 Cover illustration: Non-premixed hydrocarbon flame  

E-Print Network (OSTI)

by the density difference from the combustion heat release and resulting temperature rise. The Reynolds number Publishing Ltd and LMS Publishing Ltd 1 #12;2 P E Dimotakis Combustion in non-premixed hydrocarbon flames-premixed hydrocarbon flame Paul E Dimotakis Graduate Aeronautical Laboratories, California Institute of Technology

Dimotakis, Paul E.

316

Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames  

SciTech Connect

A large eddy simulation (LES) sub-grid model is developed based on the artificial neural network (ANN) approach to calculate the species instantaneous reaction rates for multi-step, multi-species chemical kinetics mechanisms. The proposed methodology depends on training the ANNs off-line on a thermo-chemical database representative of the actual composition and turbulence (but not the actual geometrical problem) of interest, and later using them to replace the stiff ODE solver (direct integration (DI)) to calculate the reaction rates in the sub-grid. The thermo-chemical database is tabulated with respect to the thermodynamic state vector without any reduction in the number of state variables. The thermo-chemistry is evolved by stand-alone linear eddy mixing (LEM) model simulations under both premixed and non-premixed conditions, where the unsteady interaction of turbulence with chemical kinetics is included as a part of the training database. The proposed methodology is tested in LES and in stand-alone LEM studies of three distinct test cases with different reduced mechanisms and conditions. LES of premixed flame-turbulence-vortex interaction provides direct comparison of the proposed ANN method against DI and ANNs trained on thermo-chemical database created using another type of tabulation method. It is shown that the ANN trained on the LEM database can capture the correct flame physics with accuracy comparable to DI, which cannot be achieved by ANN trained on a laminar premix flame database. A priori evaluation of the ANN generality within and outside its training domain is carried out using stand-alone LEM simulations as well. Results in general are satisfactory, and it is shown that the ANN provides considerable amount of memory saving and speed-up with reasonable and reliable accuracy. The speed-up is strongly affected by the stiffness of the reduced mechanism used for the computations, whereas the memory saving is considerable regardless. (author)

Sen, Baris Ali; Menon, Suresh [School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Drive, Atlanta, GA 30332-0150 (United States)

2010-01-15T23:59:59.000Z

317

On molecular transport effects in real gas laminar diffusion flames at large pressure  

Science Journals Connector (OSTI)

Direct numerical simulations are conducted of unsteady exothermic and one-dimensional laminar diffusionflames at large pressures. The simulations are used to assess the impact of molecular diffusion and real gas effects under high pressure conditions with simplified chemical kinetics. The formulation includes the fully compressible form of the governing equations real gas effects modeled by the cubic Peng–Robinson equation of state and a generalized form of the Soret and Dufour mass and heat diffusion vectors derived from nonequilibrium thermodynamics and fluctuation theory. The cross diffusion fluxes are derived for a ternary species system and include the effects of both heat and mass diffusion in the presence of temperature concentration and pressure gradients (i.e. Soret and Dufour diffusion). The ternary species formulation is applied to a simplified single step reaction elucidating molecular and thermodynamic effects apparent in general combustion. Realistic models for pressure temperature and species dependent heat capacities viscosities thermal conductivities and mass diffusivities are also included. Three different model reactions are simulated both including and neglecting Soret and Dufour cross diffusion. The simulation results show that Soret and Dufour effects are negligible for reactions comprised of species with equal or near equal molecular weights. However Soret diffusion effects are apparent when species with nonequal molecular weights are involved in the reaction and result in reductions of the peak flame temperature. In addition it is shown that neglect of cross diffusion leads to deviations in the predicted flame thicknesses with under predictions for a hydrogen-oxygen system and over predictions for a heavy hydrocarbon reaction. These effects are explained in detail through examinations of the individual heat and mass flux vectors as well as through associated thermodynamic properties. A parametric study addresses the effects of the ambient pressure the initial “flame Reynolds number ” the Damkohler number and the heat release parameter.

Sridhar Palle; Christopher Nolan; Richard S. Miller

2005-01-01T23:59:59.000Z

318

National Aeronautics and Space Administration Commercial Spaceflight  

E-Print Network (OSTI)

Corporation Artist rendition of Dream Chaser and Atlas V on launch pad · Descriptions & Features ­ Dream Landing Site: Shuttle Landing Facility, Florida · Abort

319

Demonstration of triple pump coherent anti-Stokes Raman scattering in a jet diffusion flame  

E-Print Network (OSTI)

. A. Theory 1. Coherent anti-Stokes Raman scattering basics B. Dual-pump and triple-pump CARS processes 1. Dual-pump CARS 2. Triple pump CARS C. Thermometry and species detection EXPERIMENTAL APPARATUS A. Initial experimental system 1. Laser.... Laser Alignment and Performance I . Nd: YAG laser 2. Narrow band dye laser (ND6000) alignment 3. Broad-band dye laser alignment B. Triple-pump CARS set-up 1. CARS phase-matching alignment 2. Diffusion flame burner C. Results I. Results from first...

Velur Natarajan, Viswanathan

2012-06-07T23:59:59.000Z

320

Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring  

DOE Patents (OSTI)

A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

Zelepouga, Serguei A. (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Saveliev, Alexei V. (Chicago, IL)

2011-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Study of Gasification of Municipal Solid Waste Using a Double Inverse Diffusion Flame Burner  

Science Journals Connector (OSTI)

A Study of Gasification of Municipal Solid Waste Using a Double Inverse Diffusion Flame Burner ... Furthermore, the experiences of the waste incineration industry driven in the past by regulatory as well as technical issues may facilitate their commercial potentials outside the common market, especially in highly populated developing countries such as Korea with scarce landfill sites. ... Recently, several new technologies that involve gasification or combinations of pyrolysis, combustion, and gasification processes are currently being brought into the market for energy-efficient, environmentally friendly and economically sound methods of thermal processing of wastes. ...

Tae-Heon Kwak; Seungmoon Lee; Sanjeev Maken; Ho-Chul Shin; Jin-Won Park; Young Done Yoo

2005-08-24T23:59:59.000Z

322

Conditional Moment Closure Modeling for a Three-Dimensional Turbulent Non-premixed Syngas Flame with a Cooling Wall  

Science Journals Connector (OSTI)

Conditional Moment Closure Modeling for a Three-Dimensional Turbulent Non-premixed Syngas Flame with a Cooling Wall ... In the experiment,(13) the burner is mounted to an air-cooled combustion chamber and the burner consists of a central fuel tube and an annular air tube. ... It can be seen that the velocity field at the pure-mixing entrance region is highly deflected by the flame holder, and the burned mixtures are partially impinged on the cooling wall (Tw = 600 K). ...

Gunhong Kim; Sungmo Kang; Yongmo Kim; Kwan-Soo Lee

2008-09-13T23:59:59.000Z

323

Multi-vehicle Mobility Allowance Shuttle Transit (MAST) System - An Analytical Model to Select the Fleet Size and a Scheduling Heuristic  

E-Print Network (OSTI)

The mobility allowance shuttle transit (MAST) system is a hybrid transit system in which vehicles are allowed to deviate from a fixed route to serve flexible demand. A mixed integer programming (MIP) formulation for the static scheduling problem...

Lu, Wei

2012-10-19T23:59:59.000Z

324

Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames  

SciTech Connect

Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–? turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.

Zhao, xinyu; Haworth, D. C.; Huckaby, E. David

2012-01-01T23:59:59.000Z

325

Polymer/clay aerogel composites with flame retardant agents: Mechanical, thermal and fire behavior  

Science Journals Connector (OSTI)

Abstract Aerogel is a class of material characterized by its high void content and extreme lightness. Different polymer/clay aerogels have been prepared by a simply freeze–thaw process from a suspension with poly(vinyl alcohol) (PVOH) and clay (Na+-MMT). Low density polymer/clay aerogels modified with flame retardant agents were prepared using a similar approach. The addition of flame retardant agents slightly increased the apparent density of the final composites whereas the compression properties were reduced due to the decrease in the polymer/clay interfacial bonding. An exception was the sample containing Al(OH)3 that exhibited higher modulus and stress at maximum deformation. Regarding thermal properties, the presence of ammonium polyphosphate (APP) or silica gel (SG) significantly slowed the rate of aerogel decomposition at the temperature range from 250 °C to 500 °C while the onset of polymer decomposition was not affected. Fire behavior was analyzed through cone calorimeter suggesting that either the presence of Al(OH)3 or APP reduced the heat release rate of PVOH/clay systems.

Liang Wang; Miguel Sánchez-Soto; Maria Lluisa Maspoch

2013-01-01T23:59:59.000Z

326

Chemical kinetic considerations for postflame synthesis of carbon nanotubes in premixed flames using a support catalyst  

SciTech Connect

Multiwalled carbon nanotubes (MWCNTs) on a grid supported cobalt nanocatalyst were grown, by exposing it to combustion gases from ethylene/air rich premixed flames. Ten equivalence ratios ({phi}) were investigated, as follows: 1.37, 1.44, 1.47, 1.50, 1.55, 1.57, 1.62, 1.75, 1.82, and 1.91. MWCNT growth could be observed for the range of equivalence ratios between 1.45 and 1.75, with the best yield restricted to the range 1.5-1.6. A one-dimensional premixed flame code with a postflame heat loss model, including detailed chemistry, was used to estimate the gas phase chemical composition that favors MWCNT growth. The results of the calculations show that the mixture, including the water gas shift reaction, is not even in partial chemical equilibrium. Therefore, past discussions of compositional parameters that relate to optimum carbon nanotube (CNT) growth are revised to include chemical kinetic effects. Specifically, rapid departures of the water gas shift reaction from partial equilibrium and changes in mole fraction ratios of unburned C{sub 2} hydrocarbons to hydrogen correlate well with experimentally observed CNT yields. (author)

Gopinath, Prarthana; Gore, Jay [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

2007-11-15T23:59:59.000Z

327

Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites  

Science Journals Connector (OSTI)

This study focused on the flame retardancy of ethylene-vinyl acetate copolymer (EVA) in combination with metal hydroxide and nanoclay. Fire tests, such as limiting oxygen index (LOI), flammability (UL-94), cone calorimeter, and smoke density chamber were employed to evaluate the effect of composition variation for the metal hydroxide and the nanoclay in EVA composites. The experimental results showed that when the nanoclay of 1 or 2 weight per cent was substituted for the aluminum hydroxide or magnesium hydroxide in EVA blends, the LOI value was significantly improved while the V-0 rating was maintained. The data obtained from the cone calorimeter test indicated that the peak heat release rate (pk-HRR) is reduced by about 28%–47%. The smoke density data (maximal smoke density, Dm) showed a reduction by about 16%–25%. The thermogravimetric analysis (TGA) data also showed that the nanoclay increased the thermal stability and char residue of the EVA samples. Hence, it is suggested that the metal oxide layer on the burning surface is reinforced by the formation of silicate layer, which is both structured and compacted and acts as the insulation, and the newly formed layer responds to the synergistic effect of flame retardancy as well as smoke suppression observed in the EVA blends.

Ynh-Yue Yen; Hsin-Ta Wang; Wen-Jen Guo

2012-01-01T23:59:59.000Z

328

Modeling of the formation of short-chain acids in propane flames  

E-Print Network (OSTI)

In order to better understand their potential formation in combustion systems, a detailed kinetic mechanism for the formation of short-chain monocarboxylic acids, formic (HCOOH), acetic (CH3COOH), propionic (C2H5COOH) and propenic (C2H3COOH)) acids, has been developed. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized at atmospheric pressure with nitrogen as diluent have been performed. It was found that amounts up to 25 ppm of acetic acid, 15 ppm of formic acid and 1 ppm of C3 acid can be formed for some positions in the flames. Simulations showed that the more abundant C3 acid formed is propenic acid. A quite acceptable agreement has been obtained with the scarce results from the literature concerning oxygenated compounds, including aldehydes (CH2O, CH3CHO) and acids. A reaction pathways analysis demonstrated that each acid is mainly derived from the aldehyde of similar structure.

Battin-Leclerc, Frédérique; Jaffrezo, J L; Legrand, M

2009-01-01T23:59:59.000Z

329

Proceedings of the international workshop on measurement and computation of turbulent nonpremixed flames  

SciTech Connect

This report documents the proceedings of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, held in Naples, Italy on July 26--27, 1996. Contents include materials that were distributed to participants at the beginning of the workshop, as well as a Summary of Workshop Accomplishments that was generated at the close to this Naples meeting. The Naples workshop involved sixty-one people from eleven countries. The primary objectives were: (1) to select a set of well-documented and relatively simple flames that would be appropriate for collaborative comparisons of model predictions; and (2) to specify common submodels to be used in these predictions, such that models for the coupling of turbulence and chemistry might be isolated and better understood. Studies involve hydrogen and natural gas fuels. These proceedings are also published on the Web and those interested in the ongoing process of data selection and model comparison should consult the workshop page for the most recent and complete information on these collaborative research efforts. The URL is: http://www/ca.sandia/gov/tdf/Workshop.html.

Barlow, R.S. [ed.

1996-10-01T23:59:59.000Z

330

Thermonuclear Flame Spreading on Rapidly Spinning Neutron Stars: Indications of the Coriolis Force?  

E-Print Network (OSTI)

Millisecond period brightness oscillations during the intensity rise of thermonuclear X-ray bursts are likely caused by an azimuthally asymmetric, expanding burning region on the stellar surface. The time evolution of the oscillation amplitude during the intensity rise encodes information on how the thermonuclear flames spread across the stellar surface. This process depends on properties of the accreted burning layer, surface fluid motions, and the surface magnetic field structure, and thus can provide insight into these stellar properties. We present two examples of bursts from different sources that show a decrease in oscillation amplitude during the intensity rise. Using theoretical modeling, we demonstrate that the observed amplitude evolution of these bursts is not well described by a uniformly expanding circular burning region. We further show that by including in our model the salient aspects of the Coriolis force (as described by Spitkovsky, Levin, and Ushomirsky) we can qualitatively reproduce the observed evolution curves. Our modeling shows that the evolutionary structure of burst oscillation amplitude is sensitive to the nature of flame spreading, while the actual amplitude values can be very useful to constrain some source parameters.

Sudip Bhattacharyya; Tod E. Strohmayer

2007-08-27T23:59:59.000Z

331

Current amplifier and flux-buffer designs using an exponential flux shuttle with a Josephson junction synthetic inductor  

SciTech Connect

A current amplifier design based on the principle of fluxon propagation in a multi-junction Exponential Flux Shuttle has been investigated. In this design, the critical current of the junction is increased exponentially and the SQUID inductance is a JJ (Josephson Junction) equivalent inductance. Current gain can be achieved by generating fluxons at the low end and dissipating them at the high end where the load is located. Advantages over other types of linear devices are discussed. Two parallel Exponential Flux Shuttles can be used to duplicate flux from a high inductance input coil t a low inductance output. Device performance of the two circuits are evaluated by computer simulation, noise performance is discussed.

Gershenson, M.

1989-03-01T23:59:59.000Z

332

Graphical Programming: A systems approach for telerobotic servicing of space assets  

SciTech Connect

Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970`s. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle`s robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenges presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability.

Pinkerton, J.T. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science; McDonald, M.J.; Palmquist, R.D. [Sandia National Labs., Albuquerque, NM (United States); Patten, R. [Oceaneering Space Systems, Webster, TX (United States)

1993-08-01T23:59:59.000Z

333

Cellular burning in lean premixed turbulent hydrogen-air flames: Coupling experimental and computational analysis at the laboratory scale  

Science Journals Connector (OSTI)

One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities making robust and reliable systems difficult to design. Low swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next generation combustion devices. In this paper, we present simulations of a lean, premixed hydrogen flame stabilized on a laboratory-scale low swirl burner. The simulations use detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. Here we discuss the overall structure of the flame and compare with experimental data. We also use the simulation data to elucidate the characteristics of the turbulent flame interaction and how this impacts the analysis of experimental measurements.

M S Day; J B Bell; R K Cheng; S Tachibana; V E Beckner; M J Lijewski

2009-01-01T23:59:59.000Z

334

Effects of Fuel-Side Nitrogen Dilution on Structure and NOx Formation of Turbulent Syngas Non-premixed Jet Flames  

Science Journals Connector (OSTI)

In this syngas non-premixed burner, the nozzle inner and outer diameters are 7.72 mm and 9.46 mm, respectively. ... Prathap, C.; Ray, A.; Ravi, M. R.Investigation of nitrogen dilution effects on laminar burning velocity and flame stability of syngas fuel at atmospheric condition Combust. ...

Jeongwon Lee; Sangwoon Park; Yongmo Kim

2012-05-01T23:59:59.000Z

335

OH-PLIF Measurements of High-Pressure, Hydrogen Augmented Premixed Flames in the SimVal Combustor  

SciTech Connect

Planar Laser Induced Fluorescence (PLIF) measurements of the hydroxyl radical in lean, premixed natural gas flames augmented with hydrogen are presented. The experiments were conducted in the SimVal combustor at the National Energy Technology Laboratory (NETL) at operating pressures from 1 to 8 atmospheres. The data, which was collected in a combustor with well controlled boundary conditions, is intended to be used for validating Computational Fluid Dynamics (CFD) models under conditions directly relevant to land-based gas turbine engines. The images, which show significant effects of hydrogen on local flame quenching are discussed in terms of a turbulent premixed combustion regime and non-dimensional parameters such as Karlovitz number. Pressure was found to thin the OH region, but only had a secondary effect on overall flame shape compared to the effects of hydrogen addition which was found to decrease local quenching and shorten the turbulent flame brush. A method to process the individual images based on local gradients of fluorescence intensity is proposed and results are presented. Finally, the results of several Large Eddy Simulations (LES) are presented and compared to the experimental data in an effort to understand the issues related to model validation, especially for simulations that do not include OH as an intermediate species.

Strakey, P.A.; Woodruff, S.D.; Williams, T.C. (Sandia); Schefer, R.W. (Sandia)

2007-01-01T23:59:59.000Z

336

Acoustic near-field characteristics of a conical, premixed flame Doh-Hyoung Lee and Tim C. Lieuwena)  

E-Print Network (OSTI)

system failure. They gener- ally occur at frequencies associated with the combustor's natural it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results processing,1 solid and liquid rockets,2,3 ramjets,4 afterburners, and land-based gas turbines.5

Lieuwen, Timothy C.

337

Assessment of kinetic modeling for lean H2/CH4/O2/diluent flames at high pressures  

E-Print Network (OSTI)

) and HO2 + H with the main branching reactions. Methane addition is shown to influence the pressure: Hydrogen; Methane; Syngas; Flame speed; Chemical mechanism 1. Introduction The H2/O2 reaction system CO, CO2, H2O, CH4 and other small hydrocarbons (synthetic gas or "syngas") from coal or biomass

Ju, Yiguang

338

Detailed investigation of a pulverized fuel swirl flame in CO{sub 2}/O{sub 2} atmosphere  

SciTech Connect

A novel approach to oxycoal flame stabilization has been developed at the Institute of Heat and Mass Transfer at RWTH Aachen University [D. Toporov, M. Foerster, R. Kneer, in: Third Int. Conf. on Clean Coal Technologies for Our Future, Cagliari, Sardinia, Italy, 15-17 May 2007]. The swirl burner design and its operating conditions have been adjusted in order to enforce CO formation thus stabilizing the flame and obtaining a full burnout at levels of O{sub 2} content in the O{sub 2}/CO{sub 2} mixture similar to those in air. The paper presents results of detailed numerical and experimental investigations of a stable oxy-fired pulverized coal swirl flame (type-2) obtained with a 21 vol% O{sub 2} concentration. The combustion tests were performed in a vertical pilot-scale furnace (100 kW{sub th}) in the framework of the OXYCOAL-AC research project aiming to develop a membrane-based oxyfuel process. The experimental results concerning gas velocities, gas and particle temperatures, and gas compositions are presented and discussed, focusing on the underlying mechanisms as well as on the aerodynamics of the oxycoal flame. A comparison between measurements and simulations has shown the validity of the numerical method used. The reported data set can be used for validation of numerical models developed for prediction of oxyfuel combustion. (author)

Toporov, D.; Bocian, P.; Heil, P.; Kellermann, A.; Stadler, H.; Tschunko, S.; Foerster, M.; Kneer, R. [Institute of Heat and Mass Transfer, RWTH Aachen University, Eilfschornsteinstrasse 18, D-52056 Aachen (Germany)

2008-12-15T23:59:59.000Z

339

Lawrence Berkeley National Laboratory report LBNL-725E 1 A New Type of Steady and Stable, Laminar, Premixed Flame  

E-Print Network (OSTI)

, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion Joseph F. Grcara a Center for Computational Science and Engineering Lawrence Berkeley National Laboratory Berkeley, CA 94720-8142, USA Abstract Ultra-lean, hydrogen propagating cells. These cells were the original meaning of the word "flamelet" when they were observed

340

A STUDY ON SPHERICAL EXPANDING FLAME SPEEDS OF METHANE, ETHANE, AND METHANE/ETHANE MIXTURES AT ELEVATED PRESSURES  

E-Print Network (OSTI)

High-pressure experiments and chemical kinetics modeling were performed for laminar spherically expanding flames for methane/air, ethane/air, methane/ethane/air and propane/air mixtures at pressures between 1 and 10 atm and equivalence ratios...

De Vries, Jaap

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Large eddy simulation/conditional moment closure modeling of swirl-stabilized non-premixed flames with local extinction  

E-Print Network (OSTI)

, L. Vervisch, P. Domingo, Combust. Flame 146 (2006), 635-648. 28. S. Navarro-Martinez, A. Kronenburg, F.D. Mare, Flow Turbul. Combust. 75 (2005), 245-274. 29. A. Triantafyllidis, E. Mastorakos, Flow Turbul. Combust. 84 (2010), 481-512. 30. M...

Zhang, Huangwei; Garmory, Andrew; Cavaliere, Davide E.; Mastorakos, Epaminondas

2014-06-25T23:59:59.000Z

342

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PETITIONFORSPACESHUTTLEPROGRAM  

E-Print Network (OSTI)

SHUTTLE TPS REQUIREMENTS I I Shuttle Use of Foam Insulation I4 ET Uses of HCFC I 4 I b Blown Foam I4 environments, prevent formation of ice on exterior surfaces, and maintain structural integrity The TPS is rigid foam using HCFC l l l b as the chemical blowing agent to provide the critical insulation and cell

Christian, Eric

343

Transformational Technologies to Expedite Space Access and Development  

Science Journals Connector (OSTI)

Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power nuclear energy and turbojet engines. At the systems level success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high?temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states?of?the?art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum which summarizes the principles and consequences of StarTram showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon Mars and the outer solar system. StarTram can implement cost?effective solar power from space simple utilization of asteroid material to protect humans from ionizing radiation and effective defense of the Earth from devastating cosmic impacts. Synergistically StarTram technologies will revolutionize ground transportation on the Earth leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

John D. G. Rather

2010-01-01T23:59:59.000Z

344

Multimedia Phase-Spaces  

Science Journals Connector (OSTI)

Dynamic phase-spaces are suggested as a way of designing and implementing interactive multimedia systems. A dynamic phase-space is a space of properties overlayed with dynamics. The space is “decorated” with multimedia resources such ... Keywords: catastrophe theory, dynamics, installation, interactive narrative, museums, phase-space

Peter Bøgh Andersen

1998-05-01T23:59:59.000Z

345

Effect of Nitrogen Additives on Flame Retardant Action of Tributyl Phosphate: Phosphorus – Nitrogen Synergism  

SciTech Connect

The effect of nitrogen additives like urea, guanidine carbonate and melamine formaldehyde on the flame retardant efficacy of tributyl phosphate (TBP) has been investigated. From the LOI tests on treated cotton it is clear that the nitrogen additives have synergistic action. Estimation of activation energy of decomposition of treated cotton indicated that nitrogen additives enhance the thermal stability during the burning process. SEM pictures of chars formed after LOI test showed the formation of protective polymeric coating on the surface. The surface of chars formed were evaluated using FTIR-ATR and XPS analysis which showed that the coating was composed of Phosphorus-Nitrogen-Oxygen containing species. Formation of this coating during the burning process could lead to the synergistic interaction of phosphorus and nitrogen. Based on the experimental data we have further proposed several reaction mechanisms which could contribute to synergistic action and formation of protective coating on the surface of char.

Gaan, Sabyasachi; Sun, Gang; Hutches, Katherine; Engelhard, Mark H.

2008-01-01T23:59:59.000Z

346

CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS  

SciTech Connect

The advanced CFDRC software package was installed on a SUN-SPARC dual processor workstation (UTPA funded). The literature pertinent to the project was collected. The physical model was set and all parameters and variables were identified. Based on the physical model, the geometric modeling and grid generation processes were performed using the CFD-GEOM (Interactive Geometric Modeling and Grid Generation software). A total number of 11160 cells (248 x 45) were generated. The venturis in the cascade were modeled as two-dimensional axisymmetric convergent nozzles around the jet. With the cascade being added to the jet, the geometric complexity of the problem increased; which required multi-domain structured grid systems to be connected and matched on the boundaries. The natural gas/propane jet diffusion flame is being numerically analyzed. The numerical computations are being conducted using the CFDRC-ACE+ (advanced computational environment) software package. The results are expected soon.

Ala Qubbaj

2001-03-30T23:59:59.000Z

347

Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames  

SciTech Connect

Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

2012-03-01T23:59:59.000Z

348

Sculpting space through sound  

E-Print Network (OSTI)

How does one experience space? What kind of information do humans collect in the process of constructing space in their mind? How does one begin to understand volume, light, texture, material, smell and sense of space? The ...

Nakagawa, Junko, 1975-

2002-01-01T23:59:59.000Z

349

Flame pyrolysis – a preparation route for ultrafine pure ?-Fe2O3 powders and the control of their particle size and properties  

Science Journals Connector (OSTI)

Highly dispersed ?-Fe2O3 powders with particle sizes down to 5 nm were directly synthesized by combustion of solutions of iron pentacarbonyl or iron(III) acetylacetonate in toluene in an oxyhydrogen flame. The .....

S GRIMM; M SCHULTZ; S BARTH; R MULLER

350

Enhancements of a Combustion Vessel to Determine Laminar Flame Speeds of Hydrocarbon Blends with Helium Dilution at Elevated Temperatures and Pressures  

E-Print Network (OSTI)

in conjunction with National University of Ireland Galway compared favorably with the data, while the literature data showed discrepancies at stoichiometric to rich conditions. An in-depth flame speed uncertainty analysis yielded a wide range of values from 0...

Plichta, Drew

2013-04-03T23:59:59.000Z

351

The study of flame dynamics and structures in an industrial-scale gas turbine combustor using digital data processing and computer vision techniques  

Science Journals Connector (OSTI)

In this paper, a combined effort has been made to study the flame dynamics and structures in a gas turbine combustor using a range of imaging and digital data processing techniques. The acoustic characteristics of the combustor have been investigated extensively. It is found that there is no straightforward way to alter the peak frequency of one of the peculiar combustion modes of the rig. High speed imaging is applied to investigate the flame dynamics and quantitative analysis of the image database has been demonstrated. The results show that the frequency spectrum of the mean pixel image intensity of seeded flame is in good agreement with the acoustic spectrum. To recover the loss in depth information present in conventional imaging technique, both the optical and digital stereo imaging techniques have been applied. The important flame position relative to the combustion chamber could be resolved.

W.B. Ng; K.J. Syed; Y. Zhang

2005-01-01T23:59:59.000Z

352

Hasty switch for space magnet  

Science Journals Connector (OSTI)

... AMS is the brainchild of Nobel-prizewinning physicist Samuel Ting of the Massachusetts Institute of Technology in Cambridge (Nature 455, 854–857; 2008). Such cosmic rays might be ... July shuttle flight and is instead likely to take off in the autumn. The liquid-helium coolant required to keep the superconducting magnet at its operating temperature of 2 °C ...

Edwin Cartlidge

2010-04-28T23:59:59.000Z

353

A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames  

SciTech Connect

A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T

2008-02-08T23:59:59.000Z

354

In Outer Space without a Space Suit?  

E-Print Network (OSTI)

The author proposes and investigates his old idea - a living human in space without the encumbrance of a complex space suit. Only in this condition can biological humanity seriously attempt to colonize space because all planets of Solar system (except the Earth) do not have suitable atmospheres. Aside from the issue of temperature, a suitable partial pressure of oxygen is lacking. In this case the main problem is how to satiate human blood with oxygen and delete carbonic acid gas (carbon dioxide). The proposed system would enable a person to function in outer space without a space suit and, for a long time, without food. That is useful also in the Earth for sustaining working men in an otherwise deadly atmosphere laden with lethal particulates (in case of nuclear, chemical or biological war), in underground confined spaces without fresh air, under water or a top high mountains above a height that can sustain respiration.

Alexander Bolonkin

2008-06-24T23:59:59.000Z

355

In Outer Space without a Space Suit?  

E-Print Network (OSTI)

The author proposes and investigates his old idea - a living human in space without the encumbrance of a complex space suit. Only in this condition can biological humanity seriously attempt to colonize space because all planets of Solar system (except the Earth) do not have suitable atmospheres. Aside from the issue of temperature, a suitable partial pressure of oxygen is lacking. In this case the main problem is how to satiate human blood with oxygen and delete carbonic acid gas (carbon dioxide). The proposed system would enable a person to function in outer space without a space suit and, for a long time, without food. That is useful also in the Earth for sustaining working men in an otherwise deadly atmosphere laden with lethal particulates (in case of nuclear, chemical or biological war), in underground confined spaces without fresh air, under water or a top high mountains above a height that can sustain respiration.

Bolonkin, Alexander

2008-01-01T23:59:59.000Z

356

Space System Architecture  

E-Print Network (OSTI)

Final Report of SSPARC: the Space Systems, Policy, and Architecture Research Consortium (Thrust II and III)

McManus, Dr. Hugh

357

Turbulence radiation interaction in Reynolds-averaged Navier-Stokes simulations of nonpremixed piloted turbulent laboratory-scale flames  

SciTech Connect

Numerical simulation results are presented for two axisymmetric, nonluminous turbulent piloted jet diffusion flames: Sandia Flame D (SFD) and Delft Flame III (DFIII). Turbulence is represented by a Reynolds stress transport model, while chemistry is modeled by means of steady laminar flamelets. We use the preassumed PDF approach for turbulence-chemistry interaction. A weighted sum of gray gases model is used for the gas radiative properties. The radiative transfer equation is solved using the discrete ordinates method in the conservative finite-volume formulation. The radiative loss leads to a decrease in mean temperature, but does not significantly influence the flow and mixing fields, in terms either of mean values or of rms values of fluctuations. A systematic analysis of turbulence-radiation interaction (TRI) is carried out. By considering five different TRI formulations, and comparing also with a simple optically thin model, individual TRI contributions are isolated and quantified. For both flames, effects are demonstrated of (1) influence of temperature fluctuations on the mean Planck function, (2) temperature and composition fluctuations on the mean absorption coefficient, and (3) correlation between absorption coefficient and Planck function. The strength of the last effect is stronger in DFIII than in SFD, because of stronger turbulence-chemistry interaction and lower mean temperature in DFIII. The impact of the choice of TRI model on the prediction of the temperature-sensitive minor species NO is determined in a postprocessing step with fixed flow and mixing fields. Best agreement for NO is obtained using the most complete representation of TRI. (author)

Habibi, A.; Merci, B. [Department of Flow, Heat and Combustion Mechanics, Ghent University, B-9000 Ghent (Belgium); Roekaerts, D. [Delft University of Technology, Delft (Netherlands)

2007-10-15T23:59:59.000Z

358

Combustion regimes of particle-laden gaseous flames: influences of radiation, molecular transports, kinetic-quenching, stoichiometry  

Science Journals Connector (OSTI)

We study flat flames propagating steadily in a reactive gaseous premixture which is seeded with an inert solid suspension. Our main assumptions are: (i) the two-reactant, one-step overall reaction we choose as the combustion process has a rate which vanishes at and below a prescribed temperature (Tc) and resumes the Arrhenius form at higher temperatures; (ii) both phases are considered as continua and have the same local speed and temperature; (iii) radiation among the particles follows the Eddington approximation specialized to a grey medium and the attenuation length markedly exceeds the conduction - convection length in the gas; (iv) the activation energy is large. The first regimes we consider comprise a thin flame front (dominated by molecular transports, convection and chemistry) embedded in much thicker radiation - convection zones. Jump conditions across the former are derived analytically and then used as targets in a shooting method to analyse the thickest zones and compute the burning speed (U). Such regimes only exist for equivalence ratios () above a load-dependent critical value which corresponds to a turning point of the U() curve. This turning point is due to radiative heat losses from the thin flame front to the cooler adjacent zones, which lead to extinction. Over restricted, well defined ranges of composition other regimes may also exist, which have monotonic temperature profiles culminating slightly above Tc. When they are too thick to be affected by molecular transports and are thus similar to coal-dust -air flames, their structure, domain of existence and speed are investigated analytically and numerically. The corresponding U() curve exhibits an upper limit equivalence ratio * characterized by an end-point, beyond which such regimes cannot exist. The influence of molecular diffusion is then accounted for and shown to modify the results only slightly.

Rodolphe Blouquin; Guy Joulin; Younès Merhari

1997-01-01T23:59:59.000Z

359

Comparative NEXAFS Study on Soot Obtained from an Ethylene/Air Flame, a Diesel Engine, and Graphite  

Science Journals Connector (OSTI)

Comparative NEXAFS Study on Soot Obtained from an Ethylene/Air Flame, a Diesel Engine, and Graphite ... Aerosol and Nanostructures Laboratory, Istituto Motori, CNR, Napoli, Italy, and Department of Chemical and Materials Engineering and Consortium for Fossil Fuel Science, University of Kentucky, Lexington, Kentucky 40515 ... Microstructure and molecular structure properties of different carbonaceous byproducts from combustion are fundamental to evaluate the radiative properties of such materials when combustion aerosols interact with solar radiation in atmosphere. ...

Stefano di Stasio; Artur Braun

2005-11-15T23:59:59.000Z

360

TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR  

SciTech Connect

In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

2008-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Experimental and modeling study of the effect of elevated pressure on lean high-hydrogen syngas flames  

Science Journals Connector (OSTI)

Abstract New laminar burning velocity measurements of 85:15% (by volume) H2–CO and H2–N2 mixtures with O2–He oxidizer are reported at lean conditions and elevated pressures (1–10 atm). Experiments are conducted using the heat flux method at initial temperature of 298 K. In this technique a near adiabatic flame is stabilized by balancing the heat loss from the flame to the burner with heat gain to the unburnt gas mixture such that no net heat loss to the burner is observed. A new facility was designed for such high pressure burner stabilized flame experiments. The results obtained are compared with five chemical kinetic schemes from literature for syngas mixtures at elevated pressures. Large differences are observed between the kinetic schemes and the experiments which can be attributed to certain key chemical reactions. A study of the kinetics is performed through reaction rate and sensitivity analysis which indicate that a high uncertainty still remains in important reactions that drive the production and consumption of species such as H, HO2 and OH. For lean mixtures the reaction H + O2(+M) = HO2(+M) contributes significantly to the deviation of models from the experiments. The present analysis in the lean mixture regime suggests the need for further studies in assessment and modification of rate constants for this reaction.

M. Goswami; J.G.H. van Griensven; R.J.M. Bastiaans; A.A. Konnov; L.P.H. de Goey

2014-01-01T23:59:59.000Z

362

Flame aerosol nano-technology has been developed to preparation of thin and defect-free porous membrane from the gas phase as a one step method in preparation of membrane for gas  

E-Print Network (OSTI)

Abstract Flame aerosol nano-technology has been developed to preparation of thin and defect on deposition of nano particles (-Al2O3, MgO or spinel MgAl2O4), formed in the premixed flame reactor through/or aluminium precursors in the flame to form nano-particles of -Al2O3, MgO or MgAl2O4 spinel. The generated

363

Space: Dreams of the new space race  

Science Journals Connector (OSTI)

... new-space sector has been booming, thanks to a change in its business model. Private spaceflight has always been a business for dreamers, and now one group of dreamers ... , Virginia, pioneered the marketplace for space tourism. Since 2001, it has sent five private individuals into orbit on Russian spacecraft, at US$20 million a trip. Then, ...

David Chandler

2007-08-29T23:59:59.000Z

364

Shadow prediction model for the International Space Station Alpha  

SciTech Connect

A Fortran computer model, SHADOW5, was developed to predict shadows on the solar arrays of the International Space Station Alpha (ISSA) for general flight modes. This shadow model was incorporated into the EPSOP-F (Electrical Power System On-Orbit Performance) program to conduct ISSA power analyses for various operating conditions. This paper describes the mathematical methods of the model and shows the typical results predicted with the model. Vector analyses with coordinate transformations were used to trace the shadows between the potential shadowing and shadowed components of the station during the sun portion of the orbit. Including the space shuttle orbiter, 40 components were modeled. The basic shapes of the components were assumed to be either planar or cylindrical. The elemental areas obtained from the Cartesian grid lines allocated on the component surfaces were projected in the sun vector direction to reconstruct shadows on the shadowed planar surface. Comparison of predicted results with other models showed good agreement. Ease of preparing input data and relatively short CPU time make this model suitable for shadow analyses required for the many design and flight configurations of the space station.

Chung, D.K. [Rockwell International, Canoga Park, CA (United States). Rocketdyne Division

1995-12-31T23:59:59.000Z

365

Refractory metal alloys and composites for space nuclear power systems  

SciTech Connect

Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wire for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites will be discussed. 20 refs., 27 figs., 1 tab.

Titran, R.H.; Stephens, J.R.; Petrasek, D.W.

1988-01-01T23:59:59.000Z

366

Fluorine-supported flames ignited by a pulsed CO2 laser  

Science Journals Connector (OSTI)

The chemistry accompanying pulsed CO2 laser irradiation of fuel—SF6 mixtures was examined using time-integrated visible emission spectroscopy and analysis of the IR absorption spectra of end products. Under suitable conditions of laser energy, gas pressure, mixture ratio and cell geometry, the visible luminescence exhibits characteristics of fluorine-supported flames. Similar emission has been observed in irradiated fuel—S2F10 mixtures. An analysis of ignition delay versus absorbed laser energy is presented for CH4?SF6 mixtures; it accounts for fluence-dependent absorption by these mixtures and models the effects of hydrodynamic motion on the initial pressure, density and temperature profiles in the samples using a computer code for two-dimensional wave propagation. Many of the IR absorption data are consistent with a reaction mechanism involving the formation of small hydrocarbon intermediates followed by efficient hydrogen abstraction to generate end products such as CS2, CF4 and C2F4. Mechanisms for reaction initiation are discussed.

Wayne M. Trott

1984-01-01T23:59:59.000Z

367

{sub p}53-Dependent Adaptive Responses in Human Cells Exposed to Space Radiations  

SciTech Connect

Purpose: It has been reported that priming irradiation or conditioning irradiation with a low dose of X-rays in the range of 0.02-0.1 Gy induces a p53-dependent adaptive response in mammalian cells. The aim of the present study was to clarify the effect of space radiations on the adaptive response. Methods and Materials: Two human lymphoblastoid cell lines were used; one cell line bears a wild-type p53 (wtp53) gene, and another cell line bears a mutated p53 (mp53) gene. The cells were frozen during transportation on the space shuttle and while in orbit in the International Space Station freezer for 133 days between November 15, 2008 and March 29, 2009. After the frozen samples were returned to Earth, the cells were cultured for 6 h and then exposed to a challenging X-ray-irradiation (2 Gy). Cellular sensitivity, apoptosis, and chromosome aberrations were scored using dye-exclusion assays, Hoechst33342 staining assays, and chromosomal banding techniques, respectively. Results: In cells exposed to space radiations, adaptive responses such as the induction of radioresistance and the depression of radiation-induced apoptosis and chromosome aberrations were observed in wtp53 cells but not in mp53 cells. Conclusion: These results have confirmed the hypothesis that p53-dependent adaptive responses are apparently induced by space radiations within a specific range of low doses. The cells exhibited this effect owing to space radiations exposure, even though the doses in space were very low.

Takahashi, Akihisa [Department of Biology, School of Medicine, Nara Medical University, Nara (Japan); Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Ibaraki (Japan); Su Xiaoming [Department of Biology, School of Medicine, Nara Medical University, Nara (Japan); Suzuki, Hiromi [Japan Space Forum, Tokyo (Japan); Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Omori, Katsunori [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Ibaraki (Japan); Seki, Masaya; Hashizume, Toko [Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Advanced Engineering Services Company, Limited, Ibaraki (Japan); Shimazu, Toru [Japan Space Forum, Tokyo (Japan); Ishioka, Noriaki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Ibaraki (Japan); Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Iwasaki, Toshiyasu [Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of the Electric Power Industry of Japan, Tokyo (Japan); Ohnishi, Takeo, E-mail: tohnishi@naramed-u.ac.j [Department of Radiation Oncology, School of Medicine, Nara Medical University, Nara (Japan); Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Ibaraki (Japan)

2010-11-15T23:59:59.000Z

368

Solar Concentration in Space  

Science Journals Connector (OSTI)

Solar concentrators go space. Lens and mirror-based solar concentrators have recently begun to boost photovoltaic power supplies for satellites in space. In 1998, the first mission carrying solar concentrators...

Dr. Ralf Leutz; Dr. Akio Suzuki

2001-01-01T23:59:59.000Z

369

Space-based detectors  

Science Journals Connector (OSTI)

The parallel session C5 on Space-Based Detectors gave a broad overview over the planned space missions related to gravitational wave detection. Overviews of the revolutionary science to be expected from LISA was ...

A. Sesana; W. J. Weber; C. J. Killow…

2014-11-01T23:59:59.000Z

370

Quotients of Metric Spaces  

E-Print Network (OSTI)

the properties of quotient spaces of metric spaces. We will use "iff" as an abbreviation for "if and only if". If f is a function from X onto Y, we will write f: X --->> Y....

Herman, Robert A.

1968-01-01T23:59:59.000Z

371

Architecting space communication networks  

E-Print Network (OSTI)

Reliable communication and navigation services are critical to robotic and human space missions. NASA currently provides them through three independent and uncoordinated network that consist of both Earth-based and space-based ...

Sanchez Net, Marc

2014-01-01T23:59:59.000Z

372

Cubature on Wiener space  

Science Journals Connector (OSTI)

...research-article Cubature on Wiener space Terry Lyons Nicolas Victoir...a cubature formula on Wiener space of degree m.R eferences Ben...M. 1996 CarnotCarath eodory spaces seen from within: sub-Riemannian...North-Holland Mathematical Library. Kloeden, P. E. & Platen...

2004-01-01T23:59:59.000Z

373

Whither design space?  

Science Journals Connector (OSTI)

Design space exploration is a long-standing focus in computational design research. Its three main threads are accounts of designer action, development of strategies for amplification of designer action in exploration, and discovery of computational ... Keywords: Design Space Exploration, Knowledge Representation, Search, State Space, Typed Feature Structures

Robert F. Woodbury; Andrew L. Burrow

2006-04-01T23:59:59.000Z

374

Developments in space engineering and space science  

Science Journals Connector (OSTI)

...geostationary satellite INSAT, which provides both weather observation and...of results in satellite missions monitoring space weather as for those...At that time satellite data were only...on numerical weather predictions...

2003-01-01T23:59:59.000Z

375

Use of a Novel Escherichia coli-Leuconostoc Shuttle Vector for Metabolic Engineering of Leuconostoc citreum To Overproduce d-Lactate  

Science Journals Connector (OSTI)

...Pediococcus. This shuttle vector was used to engineer Leuconostoc citreum 95 to overproduce...Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus...for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25...

Han Seung Chae; Seung Hwan Lee; Ju-Hoon Lee; Si Jae Park; Pyung Cheon Lee

2012-12-14T23:59:59.000Z

376

TANK SPACE OPTIONS REPORT  

SciTech Connect

Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

WILLIS WL; AHRENDT MR

2009-08-11T23:59:59.000Z

377

Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame  

SciTech Connect

Numerical simulation results obtained with a transported scalar probability density function (PDF) method are presented for a piloted turbulent premixed flame. The accuracy of the PDF method depends on the scalar mixing model and the scalar time scale model. Three widely used scalar mixing models are evaluated: the interaction by exchange with the mean (IEM) model, the modified Curl's coalescence/dispersion (CD) model and the Euclidean minimum spanning tree (EMST) model. The three scalar mixing models are combined with a simple model for the scalar time scale which assumes a constant C{sub {phi}}=12 value. A comparison of the simulation results with available measurements shows that only the EMST model calculates accurately the mean and variance of the reaction progress variable. An evaluation of the structure of the PDF's of the reaction progress variable predicted by the three scalar mixing models confirms this conclusion: the IEM and CD models predict an unrealistic shape of the PDF. Simulations using various C{sub {phi}} values ranging from 2 to 50 combined with the three scalar mixing models have been performed. The observed deficiencies of the IEM and CD models persisted for all C{sub {phi}} values considered. The value C{sub {phi}}=12 combined with the EMST model was found to be an optimal choice. To avoid the ad hoc choice for C{sub {phi}}, more sophisticated models for the scalar time scale have been used in simulations using the EMST model. A new model for the scalar time scale which is based on a linear blending between a model for flamelet combustion and a model for distributed combustion is developed. The new model has proven to be very promising as a scalar time scale model which can be applied from flamelet to distributed combustion. (author)

Stoellinger, Michael; Heinz, Stefan [Department of Mathematics, University of Wyoming, Laramie, WY (United States)

2010-09-15T23:59:59.000Z

378

Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .  

SciTech Connect

The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

Wallner, T. (Energy Systems)

2011-08-01T23:59:59.000Z

379

Existence State of Bromine as an Indicator of the Source of Brominated Flame Retardants in Indoor Dust  

Science Journals Connector (OSTI)

We used micro XRFS and gas chromatography-high resolution mass spectrometry (GC-HRMS) to elucidate the exsistence state of bromine as an indicator of the source of BFRs in dust samples collected in Japan from households, offices in universities and other institutions, highly flame-retarded facilities which comply with the Fire Service Law of Japan, and the interior of TVs. ... Our recent research also revealed that household products containing more than 0.01% bromine are present in Japanese households (20) and business hotels (21). ...

Go Suzuki; Akiko Kida; Shin-ichi Sakai; Hidetaka Takigami

2009-02-02T23:59:59.000Z

380

Detection and modelling of the ionospheric perturbation caused by a Space Shuttle launch using a network of ground-based Global Positioning System stations  

Science Journals Connector (OSTI)

......we use a network of GPS stations to study the acoustic...collisions between neutral gas and free electrons in...the motion of neutral gas through collision interactions...from a network of GPS stations in the Caribbean and along...collisions between neutral gas and free electrons in......

Timothy Bowling; Eric Calais; Jennifer S. Haase

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dust Measurement of Two Organophosphorus Flame Retardants, Resorcinol Bis(diphenylphosphate) (RBDPP) and Bisphenol A Bis(diphenylphosphate) (BPA-BDPP), Used as Alternatives for BDE-209  

Science Journals Connector (OSTI)

Dust Measurement of Two Organophosphorus Flame Retardants, Resorcinol Bis(diphenylphosphate) (RBDPP) and Bisphenol A Bis(diphenylphosphate) (BPA-BDPP), Used as Alternatives for BDE-209 ... Resorcinol bis(diphenylphosphate) (RBDPP) and bisphenol A bis(diphenylphosphate) (BPA-BDPP) are two halogen-free organophosphorus flame retardant (PFRs) that are used as an alternative for the decabromodiphenyl ether (Deca-BDE) technical mixture in TV/flatscreen housing and other electronic consumer products. ... In this study, dust samples were collected from various microenvironments in The Netherlands (houses, cars), Greece (houses), and Sweden (apartments, cars, furniture stores, electronics stores) and analyzed for RBDPP and BPA-BDPP. ...

Sicco H. Brandsma; Ulla Sellström; Cynthia A. de Wit; Jacob de Boer; Pim E. G. Leonards

2013-11-21T23:59:59.000Z

382

Space Systems Finland 1 Deployment in the Space Sector  

E-Print Network (OSTI)

© Space Systems Finland 1 Deployment in the Space Sector #12;© Space Systems Finland 2 SW Constraints Design Requirements User Requirements SW Requirements #12;© Space Systems Finland 3 The space, but there is no viable alternative · Many requirements are not testable #12;© Space Systems Finland 4 SSF OBJECTIVES

Southampton, University of

383

Berkeley Lab Space  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Space Committee Charter Articles Presentations Feedback Contact Us ANNOUNCEMENTS Space Planning Advisory Committee (SPAC) The LBNL Space Planning Advisory Committee (SPAC) was chartered in January 2010 to help manage the growth, both in the short term as well as long term. Specifically, SPAC will recommend to senior laboratory management policies and procedures for the allocation and utilization of space and opportunities for increased efficiency. (For the complete charter, click here.)We welcome comments and suggestions. Our email is: SPAC@lbl.gov. SPAC (Space Planning Advisory Committee) SPAC Members Telephone Number Email Rich Diamond 510-486-4459 RCDiamond@lbl.gov Rich McClure 510-486-4486 RMMcClure@lbl.gov Diana Attia 510-486-7399 DMAttia@lbl.gov Rebecca Rishell 510-486-6689

384

NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study #6 „ Toilets and Urinals (Fact Sheet), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the National Aeronautics and Space the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. MSFC's key operations include propulsion and transportation systems for the space shuttle and Ares rockets. MSFC also provides advanced engineering and operations for International Space Station systems. Located in Huntsville, Alabama, adjacent to Redstone Arsenal, MSFC has more than 4.5 million square feet of building space occupied by 7,000 personnel. MSFC consumes approximately 240 million gallons of potable water annually, supplied through the City of Huntsville. MSFC is known for breaking new ground and pushing the

385

NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study #6 „ Toilets and Urinals (Fact Sheet), Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

the National Aeronautics and Space the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. MSFC's key operations include propulsion and transportation systems for the space shuttle and Ares rockets. MSFC also provides advanced engineering and operations for International Space Station systems. Located in Huntsville, Alabama, adjacent to Redstone Arsenal, MSFC has more than 4.5 million square feet of building space occupied by 7,000 personnel. MSFC consumes approximately 240 million gallons of potable water annually, supplied through the City of Huntsville. MSFC is known for breaking new ground and pushing the

386

AB Space Engine  

E-Print Network (OSTI)

On 4 January 2007 the author published the article Wireless Transfer of Electricity in Outer Space in http://arxiv.org wherein he offered and researched a new revolutionary method of transferring electric energy in space. In that same article, he offered a new engine which produces a large thrust without throwing away large amounts of reaction mass (unlike the conventional rocket engine). In the current article, the author develops the theory of this kind of impulse engine and computes a sample project which shows the big possibilities opened by this new AB-Space Engine. The AB-Space Engine gets the energy from ground-mounted power; a planet electric station can transfer electricity up to 1000 millions (and more) of kilometers by plasma wires. Author shows that AB-Space Engine can produce thrust of 10 tons (and more). That can accelerate a space ship to some thousands of kilometers/second. AB-Space Engine has a staggering specific impulse owing to the very small mass expended. The AB-Space Engine reacts not by expulsion of its own mass (unlike rocket engine) but against the mass of its planet of origin (located perhaps a thousand of millions of kilometers away) through the magnetic field of its plasma cable. For creating this plasma cable the AB-Space Engine spends only some kg of hydrogen.

Alexander Bolonkin

2008-03-02T23:59:59.000Z

387

Passive solar space heating  

SciTech Connect

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

388

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

389

Neutron Tomography and Space  

E-Print Network (OSTI)

Kevin Shields, “Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

Egbert, Hal; Walker, Ronald; Flocchini, R.

2007-01-01T23:59:59.000Z

390

Today's Space Weather Space Weather Case Studies  

E-Print Network (OSTI)

tank on Space ShuQle trips alarms Impacts #12;Quebec electrical blackout: "GIC" (ground-induced current) Quebec sits on are large sheet of bedrock [rock shield], and grounding is difficult Hydro-Quebec's power grid is, within 90-sec of storm onset

391

National Aeronautics and Space Administration International Space  

E-Print Network (OSTI)

sustainability and ensure their early incorporation in the architecture ­ Apply a phased approach to exploration Partnerships Strategy · NASA leadership of a sustainable and affordable human space exploration of many costs (not LCC) or obtain funding or resource offsets 2. Enhance sustainability thru interdependent

Waliser, Duane E.

392

Singlet oxygen generation according to flame-sheet and finite-rate chlorine/BHP reaction models. [Basic Hydrogen Peroxide  

SciTech Connect

In a flowing chemical oxygen--iodine laser, the photon energy is emitted by excited iodine atoms. These atoms are produced by energy transfer from O[sub 2]([sup 1][Delta]) after molecular iodine is dissociated upon mixing and reaction with the O[sub 2]([sup 1][Delta]). The generation of singlet delta oxygen, O[sub 2]([sup 1][Delta]), following gaseous chlorine diffusion into and reaction with liquid basic hydrogen peroxide (solution of KOH or NaOH in H[sub 2]O[sub 2] and H[sub 2]O) is investigated. Both flame-sheet and finite-rate reaction models for Cl[sub 2]/BHP are developed. A closed-form solution for the O[sub 2]([sup 1][Delta]) yield is obtained with the flame-sheet analysis, while a solution involving an integral equation is derived with the finite-rate analysis. The models are applied to a rotating disk type O[sub 2]([sup 1][Delta]) generator for illustration. The results do not differ greatly between the two models, and they show favorable agreement with reported experimental data.

Quan, V.; Copeland, D.A.; Blauer, J.A.; Rodriguez, S.E. (Rockwell International, Canoga Park, CA (United States). Rocketdyne Div.)

1994-05-01T23:59:59.000Z

393

Spreading of Thermonuclear Flames on the Neutron Star in SAX J1808.4-3658: An Observational Tool  

Science Journals Connector (OSTI)

We analyze archival Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA) data of thermonuclear X-ray bursts from the 2002 outburst of the accreting millisecond pulsar SAX J1808.4-3658. We present evidence of nonmonotonic variations of oscillation frequency during burst rise, and correlations among the time evolution of the oscillation frequency, amplitude, and the inferred burning region area. We also find that the amplitude and burning region area evolutions are consistent with thermonuclear flames spreading on the neutron star surface. Based on this discussion, we infer that for the 2002 October 15 thermonuclear burst, the ignition likely occurred in the midlatitudes, the burning region took ~0.2 s to nearly encircle the equatorial region of the neutron star, and after that the lower amplitude oscillation originated from the remaining asymmetry of the burning front in the same hemisphere where the burst ignited. Our observational findings and theoretical discussion indicate that studies of the evolution of burst oscillation properties during burst rise can provide a powerful tool to understand thermonuclear flame spreading on neutron star surfaces under extreme physical conditions.

Sudip Bhattacharyya; Tod E. Strohmayer

2006-01-01T23:59:59.000Z

394

Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels  

SciTech Connect

Knowledge of the chemical and physical structure of young soot and its precursors is very useful in understanding the paths leading to soot particle inception. This paper presents chemical and morphological characterization of the products generated in ethylene and benzene inverse diffusion flames (IDF) using different analytical techniques. The trend in the data indicates that the soot precursor material and soot particles generated in the benzene IDF have a higher degree of complexity than the samples obtained in the ethylene IDF, which is reflected by an increase in the aromaticity of the chloroform extracts observed by {sup 1}H NMR and FT-IR, and shape and size of soot particles obtained by TEM and HR-TEM. It is important to highlight that the soot precursor material obtained at the lower positions in the ethylene IDF has a significant contribution of aliphatic groups, which play an important role in the particle inception and mass growth processes during the early stages of soot formation. However, these groups progressively disappear in the samples taken at higher positions in the flame, due to thermal decomposition processes. (author)

Santamaria, Alexander; Mondragon, Fanor [Institute of Chemistry, University of Antioquia, AA 1226, Medellin (Colombia); Yang, Nancy [Sandia National Laboratories, Livermore, CA 94551-0969 (United States); Eddings, Eric [Department of Chemical Engineering, University of Utah, Salt Sake City, UT 84112 (United States)

2010-01-15T23:59:59.000Z

395

Flame kernel characterization of laser ignition of natural gas–air mixture in a constant volume combustion chamber  

Science Journals Connector (OSTI)

In this paper, laser-induced ignition was investigated for compressed natural gas–air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air–fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel–air mixture was investigated under different relative air–fuel ratios (?=1.2?1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas–air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

Dhananjay Kumar Srivastava; Kewal Dharamshi; Avinash Kumar Agarwal

2011-01-01T23:59:59.000Z

396

Spreading of thermonuclear flames on the neutron star in SAX J1808.4-3658: an observational tool  

E-Print Network (OSTI)

We analyse archival Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA) data of thermonuclear X-ray bursts from the 2002 outburst of the accreting millisecond pulsar SAX J1808.4-3658. We present evidence of nonmonotonic variations of oscillation frequency during burst rise, and correlations among the time evolution of the oscillation frequency, amplitude, and the inferred burning region area. We also discuss that the amplitude and burning region area evolutions are consistent with thermonuclear flame spreading on the neutron star surface. Based on this discussion, we infer that for the 2002 Oct. 15 thermonuclear burst, the ignition likely occured in the mid-latitudes, the burning region took ~ 0.2 s to nearly encircle the equatorial region of the neutron star, and after that the lower amplitude oscillation originated from the remaining asymmetry of the burning front in the same hemisphere where the burst ignited. Our observational findings and theoretical discussion indicate that studies of the evolution of burst oscillation properties during burst rise can provide a powerful tool to understand thermonuclear flame spreading on neutron star surfaces under extreme physical conditions.

Sudip Bhattacharyya; Tod E. Strohmayer

2006-04-03T23:59:59.000Z

397

Effects of hydropower operations on recreational use and nonuse values at Glen Canyon and Flaming Gorge Dams  

SciTech Connect

Increases in streamflows are generally positively related to the use values of angling and white-water boating, and constant flows tend to increase the use values more than fluctuating flows. In most instances, however, increases in streamflows beyond some threshold level cause the use values to decrease. Expenditures related to angling and white-water boating account for about $24 million of activity in the local economy around Glen Canyon Dam and $24.8 million in the local economy around flaming Gorge Dam. The range of operational scenarios being considered in the Western Area Power Administration`s Electric Power Marketing Environmental Impact Statement, when use rates are held constant, could change the combined use value of angling and white-water boating below Glen Canyon Dam, increasing it by as much as 50%, depending on prevailing hydrological conditions. Changes in the combined use value below Flaming Gorge Dam could range from a decrease of 9% to an increase of 26%. Nonuse values, such as existence and bequest values, could also make a significant contribution to the total value of each site included in this study; however, methodological and data limitations prevented estimating how each operational scenario could change nonuse values.

Carlson, J.L.

1995-03-01T23:59:59.000Z

398

Space Plasma Physics  

Science Journals Connector (OSTI)

...W.D., BEAM-PLASMA DISCHARGE - BUILDUP...DURING ELECTRON BEAM-PLASMA INTERACTIONS, GEOPHYSICAL...ELECTRON-BEAM IN THE ATMOSPHERE, PLANETARY AND SPACE...1980 ). Space plasma physics: electron...regula' occurred at large pitch angles. Note...in quite different areas. (i) There is...

KLAUS WILHELM; WOLFGANG STÜDEMANN; WILLIBALD RIEDLER

1984-07-13T23:59:59.000Z

399

SPACE RESOURCES ROUNDTABLE IX  

E-Print Network (OSTI)

in developing the resources of space, including the Moon, Mars, asteroids, comets, and other bodies organizations. The ninth Space Resources Roundtable solicits presentations about: · Orbital or landed measurements of the Moon, Mars, and/or asteroids and comets to identify and characterize potential resources

Rathbun, Julie A.

400

Towards interactive smart spaces  

Science Journals Connector (OSTI)

Recently, we have been witnessing how various social applications and networking services are being integrated more deeply into our daily lives. Until now, social interaction has been attributed exclusively to humans, while resources and the smart space ... Keywords: Context-Awareness, Knowledge-Based Systems, Smart Spaces, Social Interaction

Ekaterina Gilman; Oleg Davidyuk; Xiang Su; Jukka Riekki

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

AB Space Engine  

E-Print Network (OSTI)

On 4 January 2007 the author published the article Wireless Transfer of Electricity in Outer Space in http://arxiv.org wherein he offered and researched a new revolutionary method of transferring electric energy in space. In that same article, he offered a new engine which produces a large thrust without throwing away large amounts of reaction mass (unlike the conventional rocket engine). In the current article, the author develops the theory of this kind of impulse engine and computes a sample project which shows the big possibilities opened by this new AB-Space Engine. The AB-Space Engine gets the energy from ground-mounted power; a planet electric station can transfer electricity up to 1000 millions (and more) of kilometers by plasma wires. Author shows that AB-Space Engine can produce thrust of 10 tons (and more). That can accelerate a space ship to some thousands of kilometers/second. AB-Space Engine has a staggering specific impulse owing to the very small mass expended. The AB-Space Engine reacts not b...

Bolonkin, Alexander

2008-01-01T23:59:59.000Z

402

SPACE TECHNOLOGY Actual Estimate  

E-Print Network (OSTI)

SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR

403

Measurement of Turbulent Flame Speeds of Hydrogen and Natural Gas Blends (C1-C5 Alkanes) using a Newly Developed Fan-Stirred Vessel  

E-Print Network (OSTI)

in displacement speeds were observed for blends of NG2/H_(2) and CH_(4)/H_(2), thus validating the newly established experimental technique. Additionally, turbulent flame speeds of hydrogen and a generic, high-hydrogen-content syngas blend (50:50 H_(2):CO) were...

Ravi, Sankaranarayana

2014-05-06T23:59:59.000Z

404

Photometric Investigations of Alkali Metals in Hydrogen Flame Gases. II. The Study of Excess Concentrations of Hydrogen Atoms in Burnt Gas Mixtures  

Science Journals Connector (OSTI)

...Flame Gases. II. The Study of Excess Concentrations of Hydrogen...concentrations are well in excess of those expected from thermodynamic...gases. The amount of free lithium is modified by the balanced...or its compounds (a large excess over the sodium) are added...

1956-01-01T23:59:59.000Z

405

Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 10071014 THREE-SCALAR IMAGING IN TURBULENT NON-PREMIXED FLAMES  

E-Print Network (OSTI)

. Introduction Planar imaging of turbulent flames using laser di- agnostic techniques such as Lorenz­Mie [1], Ray and MARSHALL B. LONG Department of Mechanical Engineering and Center for Laser Diagnostics Yale University New. The present experimental setup requires only a single laser (532 nm) in a high-power intracavity configuration

Long, Marshall B.

406

Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3 Timothy Ombrello a,*, Sang Hee Won a  

E-Print Network (OSTI)

applications that motivate the development of new technologies to enhance combustion are in systems utiliz- ing advanced gas turbines, pulse detonation engines, and other high-speed air-breathing propulsion devices. The present results will have a direct impact on the development of detailed plasma-flame kinetic mechanisms

Ju, Yiguang

407

On globally Symmetric Finsler spaces  

E-Print Network (OSTI)

The paper consider the symmetric of Finsler spaces. We give some conditions about globally symmetric Finsler spaces. Then we prove that these spaces can be written as a coset space of Lie group with an invariant Finsler metric. Finally, we prove that such a space must be Berwaldian

Khatamy, R Chavosh

2011-01-01T23:59:59.000Z

408

Simplified Space Conditioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simplified Space Conditioning Simplified Space Conditioning Duncan Prahl, RA IBACOS, Inc. Building America Technical Update April 29, 2013 Simplified Space Conditioning Rethinking HVAC Design * Traditional Method - Assume envelope losses dictate the load - Room by room load analysis - Pick Equipment and distribute to meet the load in each room * New Method - Consider how the occupants live in the building - Seriously consider internal gains in both heating and cooling - Consider ventilation strategy - Design system Simplified Space Conditioning If you are: * A production builder * Participating in "above code" programs * Following ACCA Manual RS or ASHRAE 55 * Need to prove "delivering heat to each habitable room" * Concerned about litigation * Play it safe, Use Manual J, S & D and condition every

409

Live From Outer Space  

NLE Websites -- All DOE Office Websites (Extended Search)

Live from Outer Space: How Cells Influence the Growth of Nanostructures Live from Outer Space: How Cells Influence the Growth of Nanostructures Far above the heads of Earthlings, arrays of single-cell creatures embedded in nanostructures ride on the International Space Station (courtesy of Sandia National Laboratories and the University of New Mexico, NASA, and the U.S. Air Force) to test whether nanostructures whose formations were directed by yeast and other single cells can create more secure homes for their occupants-even in the vacuum and radiation of outer space-than those created by more standard chemical procedures. Cheap, tiny, and very lightweight sensors of chemical or biological agents could be made from long-lived cells that require no upkeep, yet sense and then communicate effectively with each other and their external

410

Astrophysics and Space Instrumentation  

Science Journals Connector (OSTI)

Instrumentation for particle and high-energy photon measurements in space must provide high levels of performance while meeting the severe constraints imposed by flight. Direct measurements are required spanni...

John W. Mitchell; Thomas Hams; Thomas Hams

2012-01-01T23:59:59.000Z

411

Space Flight Requirements  

E-Print Network (OSTI)

Science Glovebox), SpaceDrums (Levitator), EMCS (European Modular Cultivation System), PCDF (Protein MERLIN, HDPCG, PCF, CVDA, VDA2, DCPCG, PCFVG, PCFLST, CRIMM CRIMM Commercial Refrigerator Incubator Growth GLACIER General Laboratory Active Cryogenic ISS Experiment Refrigerator HDPCG High Density

412

Notes on sexuality & space  

E-Print Network (OSTI)

Very little has been written on sexuality in architectural scholarship. Sexuality & Space (Princeton Architectural Press, 1992) contains the proceedings of an eponymous 1990 conference at Princeton University, and was both ...

Jacobson, Samuel Ray

2013-01-01T23:59:59.000Z

413

Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels  

Science Journals Connector (OSTI)

Abstract In this paper, we reported miscellaneous carbon aerogels prepared by pyrolysis of regenerated cellulose aerogels that were fabricated by dissolution in a mild NaOH/PEG solution, freeze ? thaw treatment, regeneration, and freeze drying. The as-prepared carbon aerogels were subsequently characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), nitrogen adsorption measurements, X-ray diffraction (XRD), Raman spectroscopy, and water contact angle (WCA) tests. The results showed that the carbon aerogels with pore diameters of 1 ? 60 nm maintained interconnected three-dimensional (3D) network after the pyrolysis, and showed type ? IV adsorption isotherm. The pyrolysis process leaded to the decomposition of oxygen-containing functional groups, the destruction of cellulose crystalline structure, and the formation of highly disordered amorphous graphite. Moreover, the carbon aerogels also had strong hydrophobicity, electrical conductivity and flame retardance, which held great potential in the fields of waterproof, electronic devices and fireproofing.

Caichao Wan; Yun Lu; Yue Jiao; Chunde Jin; Qingfeng Sun; Jian Li

2014-01-01T23:59:59.000Z

414

Scope for reducing the concentrations of NO and CH /SUB X/ in forechamber flame ignition of a fuel mixture  

SciTech Connect

This article discusses the reduction of concentrations of toxic components in exhaust gases resulting from using the forechamber ignition method in gasoline engines containing homogeneous mixtures. A method was devised to calculate the pressure and average temperature in the combustion chamber, as well as the temperatures and concentrations for 11 equilibrium combustion products in individual local zones of the combustion chamber with allowance for the Mache effect, and also the true values for the molecular-change coefficients and the loss of heat of combustion due to dissociation, and the NO formation kinetics indicated by Zel'dovich's mechanism. It is concluded that the production of toxic components can be reduced in an engine with forechamber flame ignition and a high compression ratio only by using deliberate stratification and a displacing ring to prevent the fuel from entering peripheral and dead zones of the chamber before and after combustion.

Mekhtiev, R.I.

1983-09-01T23:59:59.000Z

415

Proof of concept for integrating oxy-fuel combustion and the removal of all pollutants from a coal fired flame  

SciTech Connect

The USDOE/Albany Research Center and Jupiter Oxygen Corporation, working together under a Cooperative Research and Development Agreement, have demonstrated proof-of-concept for the integration of Jupiter’s oxy-fuel combustion and an integrated system for the removal of all stack pollutants, including CO2, from a coal-fired flame. The components were developed using existing process technology with the addition of a new oxy-coal combustion nozzle. The results of the test showed that the system can capture SOx, NOx, particulates, and even mercury as a part of the process of producing liquefied CO2 for sequestration. This is part of an ongoing research project to explore alternative methods for CO2 capture that will be applicable to both retrofit and new plant construction.

Ochs, Thomas L.; Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Gross, Alex (Jupiter Oxygen Corp.); Summers, Cathy A.; Simmons, William (CoalTeck LLC); Schoenfield, Mark (Jupiter Oxygen Corp.); Turner, Paul C.

2005-01-01T23:59:59.000Z

416

CO2 Gasification Rates of Petroleum Coke in a Pressurized Flat-Flame Burner Entrained-Flow Reactor  

Science Journals Connector (OSTI)

Two petcoke samples were gasified by CO2 at total pressures of 10 and 15 atm in a high-pressure flat-flame burner reactor at conditions where the bulk phase consisted of either 40 or 90 mol % CO2 with gas temperatures up to 1909 K. Particle diameters of 45–75 ?m were used in the experiments. ... The mass release data caused by CO2 gasification of the petcoke chars were fit to a global first-order model, and the optimal kinetic parameters are reported. ... The CO2 char gasification rates of both petcokes were shown to be higher than Illinois #6 coal when reacted at conditions of high temperature and pressure, even though most reactivity comparisons between petcoke and coal at lower temperature, pressure, and heating rates typically result in coal being more reactive. ...

Aaron D. Lewis; Emmett G. Fletcher; Thomas H. Fletcher

2014-06-05T23:59:59.000Z

417

Earth, Space Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth, Space Sciences Earth, Space Sciences /science-innovation/_assets/images/icon-science.jpg Earth, Space Sciences National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Climate, Ocean and Sea Ice Modeling (COSIM)» Earth A team of scientists is working to understand how local changes in hydrology might bring about major changes to the Arctic landscape, including the possibility of a large-scale carbon release from thawing permafrost. Bryan Travis, an expert in fluid dynamics, is author of the Mars global hydrology numerical computer model, or MAGHNUM, used for calculating heat and fluid transport phenomena. (MAGHNUM was previously

418

Fun in Space  

Science Journals Connector (OSTI)

This after-dinner address attempts to point up in a simplified way the amusing as well as some of the more serious problems which arise in connection with flight into space. Figures are given to challenge some of the more fanciful claims about the value of the moon as a military base noting the very large amounts of fuel required to take weapons up to the moon and then to return them to the earth. Some of the important research problems in physics and astronomy which can be carried out by the use of space vehicles are enumerated. As examples of a space science enterprise the results of the magnetic field measurements by the Pioneer V package are summarized. The impractibility of using the moon and other planets as colonies for the earth's excess population is also demonstrated.

Lee A. DuBridge

1960-01-01T23:59:59.000Z

419

Nonlinear classification of Banach spaces  

E-Print Network (OSTI)

Hilbert space when p> 2. We then build upon the method of this proof to show that a quasi-Banach space coarsely embeds into a Hilbert space if and only if it is isomorphic to a subspace of L0(??) for some probability space (?,B,??)....

Randrianarivony, Nirina Lovasoa

2005-11-01T23:59:59.000Z

420

2011 Confined Space Program Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Confined Space Entry Program Update Confined Space Entry Program Update IMPORTANT: After reading this document, click the "Get Course Credit" link at the bottom of the page. You will then log in to the EHS training system using your LDAP to get course credit. LBNL's confined space entry program was substantially improved this year. Several new features have been included which improve overall safety for Confined Space Entrants and better align the confined space entry program with the OSHA requirements. As an Activity Lead, Confined Space Entrant or Entry Supervisor, you should be aware of the following: We improved the procedures for safely working in confined spaces. Please review the new Chapter 34 in Publication 3000. Additionally, we have a new planning tool known as the confined space inventory which is a registry of LBNL's confined spaces, their potential hazards and safe work procedures unique to a particular confined space.

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Space science and policy  

Science Journals Connector (OSTI)

......research-article Features Space science and policy David Southwood David Southwood is a Senior...Moreover, the ESA industrial return policy produced its own problems, as I'll...science in Europe. The industrial return policy is at the heart of ESA and builds in a......

David Southwood

2014-12-01T23:59:59.000Z

422

Effect of fuel rate and annealing process of LiFePO{sub 4} cathode material for Li-ion batteries synthesized by flame spray pyrolysis method  

SciTech Connect

In this study the effect of fuel rate and annealing on particle formation of LiFePO{sub 4} as battery cathode using flame spray pyrolysis method was investigated numerically and experimentally. Numerical study was done using ANSYS FLUENT program. In experimentally, LiFePO{sub 4} was synthesized from inorganic aqueous solution followed by annealing. LPG was used as fuel and air was used as oxidizer and carrier gas. Annealing process attempted in inert atmosphere at 700°C for 240 min. Numerical result showed that the increase of fuel rate caused the increase of flame temperature. Microscopic observation using Scanning Electron Microscopy (SEM) revealed that all particles have sphere and polydisperse. Increasing fuel rate caused decreasing particle size and increasing particles crystallinity. This phenomenon attributed to the flame temperature. However, all produced particles still have more amorphous phase. Therefore, annealing needed to increase particles crystallinity. Fourier Transform Infrared (FTIR) analysis showed that all particles have PO4 function group. Increasing fuel rate led to the increase of infrared spectrum absorption corresponding to the increase of particles crystallinity. This result indicated that phosphate group vibrated easily in crystalline phase. From Electrochemical Impedance Spectroscopy (EIS) analysis, annealing can cause the increase of Li{sup +} diffusivity. The diffusivity coefficient of without and with annealing particles were 6.84399×10{sup ?10} and 8.59888×10{sup ?10} cm{sup 2} s{sup ?1}, respectively.

Halim, Abdul; Setyawan, Heru; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng [Chemical Engineering, Sepuluh Nopember Institute of Technology, Kampus Sukolilo Surabaya Indonesia 60111 (Indonesia)

2014-02-24T23:59:59.000Z

423

Study of mixture formation and early flame development in a research GDI (gasoline direct injection) engine through numerical simulation and UV-digital imaging  

Science Journals Connector (OSTI)

Abstract The analysis of the mixture formation and early combustion processes in a slightly lean burn gasoline direct injection (GDI) engine is performed by using experimental and numerical techniques. UV–visible natural emission digital imaging is applied in the optically accessible combustion chamber of a research engine. This is equipped with the four-valve head and the same injection system of a commercial turbocharged engine. Optical accessibility is obtained through a quartz window placed on the piston head. Numerical simulations are performed by means of a 3D model developed within the AVL FireTM environment, which exploits an in-house developed sub-model for simulating the spray dynamics. Tests are carried out using commercial gasoline. The cyclic variability of the engine is first analysed in order to properly define a reference average pressure cycle to be used for the validation of the numerical model. This last is then proved as being highly predictive as the start of injection is moved in the working cycle. The main effects of the injection and ignition timing on the characteristic flame development angles, namely on the flame initiation and propagation, are analysed. Flame initiation is visualised both numerically and experimentally.

M. Costa; L. Marchitto; S.S. Merola; U. Sorge

2014-01-01T23:59:59.000Z

424

In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: A novel mechanism of action?  

SciTech Connect

Fire incidents have decreased significantly over the last 20 years due, in part, to regulations requiring addition of flame retardants (FRs) to consumer products. Five major classes of brominated flame retardants (BFRs) are hexabromocyclododecane isomers (HBCDs), tetrabromobisphenol-A (TBBPA) and three commercial mixtures of penta-, octa- and deca-polybrominated diphenyl ether (PBDE) congeners, which are used extensively as commercial FR additives. Furthermore, concentrations of PBDEs have been rapidly increasing during the 1999s in human breast milk and a number of endocrine effects have been reported. We used the H295R human adrenocortical carcinoma cell line to assess possible effects of some of these BFRs (PBDEs and several of their hydroxylated (OH) and methoxylated (CH{sub 3}O) metabolites or analogues), TBBPA and brominated phenols (BPs) on the combined 17{alpha}-hydroxylase and 17,20-lyase activities of CYP17. CYP17 enzyme catalyzes an important step in sex steroidogenesis and is responsible for the biosynthesis of dehydroepiandrosterone (DHEA) and androstenedione in the adrenals. In order to study possible interactions with BFRs, a novel enzymatic method was developed. The precursor substrate of CYP17, pregnenolone, was added to control and exposed H295R cells, and enzymatic production of DHEA was measured using a radioimmunoassay. In order to avoid pregnenolone metabolism via different pathways, specific chemical inhibitor compounds were used. None of the parent/precursor BFRs had a significant effect (P < 0.05) on CYP17 activity except for BDE-183, which showed significant inhibition of CYP17 activity at the highest concentration tested (10 {mu}M), with no signs of cytotoxicity as measured by mitochondrial toxicity tests (MTT). A strong inhibition of CYP17 activity was found for 6-OH-2,2',4,4'-tetrabromoDE (6-OH-BDE47) with a concentration-dependent decrease of almost 90% at 10 {mu}M, but with a concurrent decrease in cell viability at the higher concentrations. Replacement of the 6-OH group by a 6-CH{sub 3}O group eliminated this cytotoxic effect, but CYP17 activity measured as DHEA production was still significantly inhibited. Other OH- or CH{sub 3}O-PBDE analogues were used to elucidate possible structural properties behind this CYP17 inhibition and associated cytotoxicity, but no distinct structure activity relationship could be determined. These in vitro results indicate that OH and CH{sub 3}O-PBDEs have potential to interfere with CYP17 activity for which the in vivo relevance still has to be adequately determined.

Canton, Rocio F. [Institute for Risk Assessment Sciences (IRAS), University of Utrecht, Yalelaan 2, 3508 TD, Utrecht (Netherlands)]. E-mail: r.Fernandezcanton@iras.uu.nl; Sanderson, J. Thomas [Institut National de la Recherche Scientifique, Institut Armand-Frappier (INRS-IAF), Universite du Quebec, Montreal, Quebec, Canada H9R 1G6 (Canada); Nijmeijer, Sandra [Institute for Risk Assessment Sciences (IRAS), University of Utrecht, Yalelaan 2, 3508 TD, Utrecht (Netherlands); Bergman, Ake [Department of Environmental Chemistry and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm (Sweden); Letcher, Robert J. [National Wildlife Research Centre, Canadian Wildlife Service, Environment Canada, Carleton University, Ottawa, Ontario, K1A OH3 (Canada); Berg, Martin van den [Institute for Risk Assessment Sciences (IRAS), University of Utrecht, Yalelaan 2, 3508 TD, Utrecht (Netherlands)

2006-10-15T23:59:59.000Z

425

Hacking Spaces: Place as Interface  

Science Journals Connector (OSTI)

In this article, we analyze the complex rationales—both transparent to us and, at times, made visible—underneath the instructional spaces in which we work and teach. To do so, we first situate space analysis in the larger, national conversations about instructional spaces and then through the work of computers and writing scholars. We conclude with an analysis of instructional spaces at our institution. These are spaces specific to our locale, but spaces we think are quite common at most institutions of higher education. Perhaps more importantly, we situate this space analysis on issues these spaces pose—issues of restricted movement, impaired ability to collaborate, sensory disruption, limited leadership ability, and functional/material constraints. We attempt to return to the roots of hacking and to situate hacking as a particular tool for negotiating and, at times, disrupting the assumptions built under, within, and across instructional spaces.

Douglas M. Walls; Scott Schopieray; Dànielle Nicole DeVoss

2009-01-01T23:59:59.000Z

426

Backscatter x-ray development for space vehicle thermal protection systems  

SciTech Connect

The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony [USA NDE, United Space Alliance, Cape Canaveral, FL 32920 (United States)

2011-06-23T23:59:59.000Z

427

Propagators in Lagrangian space  

SciTech Connect

It has been found recently that propagators, e.g. the cross correlation spectra of the cosmic fields with the initial density field, decay exponentially at large k in an Eulerian description of the dynamics. We explore here similar quantities defined for a Lagrangian space description. We find that propagators in Lagrangian space do not exhibit the same properties: they are found not to be monotonic functions of time, and to track back the linear growth rate at late time (but with a renormalized amplitude). These results have been obtained with a novel method which we describe alongside. It allows the formal resummation of the same set of diagrams as those that led to the known results in Eulerian space. We provide a tentative explanation for the marked differences seen between the Eulerian and the Lagrangian cases, and we point out the role played by the vorticity degrees of freedom that are specific to the Lagrangian formalism. This provides us with new insights into the late-time behavior of the propagators.

Bernardeau, Francis; Valageas, Patrick [Institut de Physique Theorique, CEA/DSM/IPhT, Unite de recherche associee au CNRS, CEA/Saclay, 91191 Gif-sur-Yvette cedex, France and Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 3H8 (Canada); Service de Physique Theorique, CEA/DSM/SPhT, Unite de recherche associee au CNRS, CEA/Saclay, 91191 Gif-sur-Yvette cedex (France)

2008-10-15T23:59:59.000Z

428

National Aeronautics and Space Administration International Space Station  

E-Print Network (OSTI)

and technological endeavor ever undertaken, involving support from five space agencies representing 16 nations. Once's solar panels exceed the wingspan of a Boeing 777 jetliner and harness enough energy from the sunNational Aeronautics and Space Administration NASAfacts International Space Station Clearly

429

Improvement of load-following capacity based on the flame radiation intensity signal in a power plant  

SciTech Connect

The capability to perform fast load changes has been an important issue due to the increasing commercialization of the power market. In the traditional boiler control system, the feedback signals come from the variations of the steam pressure and the steam flow, which leads to a large time delay. Therefore, a new method for the boiler control system based on radiation intensity for improving the load-following capacity of a coal-fired power plant has been developed in this paper. The system is implemented by adding the radiation intensity of the flame to the existing boiler control system as a complement. The radiation intensity obtained by the sensor can directly reflect the input heat in the boiler, with a faster response and higher sensitivity. Field tests on a 300 MW coal-fired power plant reveal that the improved boiler control system increases the load-following capacity. At the same time, the steam pressure variations are smaller as compared with those of the existing control system. 14 refs., 19 figs., 1 tab.

Fei Wang; Qunxing Huang; Dong Liu; Jianhua Yan; Kefa Cen [Zhejiang University, Hangzhou (China). State Key Laboratory of Clean Energy Utilization

2008-05-15T23:59:59.000Z

430

Shuttle Engine Started  

Science Journals Connector (OSTI)

... THREE American companies, the Aerojet Liquid Rocket Company, the Rocketdyne Division of the North American Rockwell Corporation and Pratt and Whitney, have been chosen ...

1970-05-09T23:59:59.000Z

431

The science of space weather  

Science Journals Connector (OSTI)

...magnetic reconnection|space weather| 1. Introduction Fifty...31 January 1958, the satellite Explorer 1 was launched...et al. 2005). (e) Satellite anomalies Space weather can cause a variety of satellite anomalies such as surface...

2008-01-01T23:59:59.000Z

432

Space Contamination and Ecological Problems  

Science Journals Connector (OSTI)

The state-of-the-art theories concerning the problem of pollution by space vehicles are discussed and a variety of mechanical problems’ formulations are considered, as applied to environmental problems in space.

V. M. Fomin; A. M. Kharitonov…

1995-01-01T23:59:59.000Z

433

Europeanizing Territoriality - Towards Soft Spaces?  

E-Print Network (OSTI)

spatial or development planning might provide a way forward. A number of studies across Europe have highlighted and explored the emergence of so called soft spaces as attempts to create hybrids of territorial and relational spaces (see, for example... by creating bespoke spaces for dealing with specific issues such as regeneration, integrating different sectors such as transport, infrastructure, education, etc. in such processes operating at variable scales. Studies of soft spaces have focused upon...

Allmendinger, Phil; Chilla, Tobias; Sielker, Franziska

2014-01-01T23:59:59.000Z

434

Demystifying White Spaces Xuemin Hongl  

E-Print Network (OSTI)

Demystifying White Spaces Xuemin Hongl , Cheng-Xiang Wangl , John Thompson2 , and Yan Zhang3 1Joint.wang@hw.ac.uk.john.thompson@ed.ac.uk. yanzhang@ieee.org Abstract-White spaces refer to the unused frequency voids across time or space. The vast existence of white spaces has been validated by many measurements and is widely regarded as an undesirable

Wang, Cheng-Xiang

435

2012 RAL Space Sarah James  

E-Print Network (OSTI)

are here Chilton Ionosonde #12;© 2012 RAL Space #12;What is the ionosphere? Marconi's transatlantic radio

436

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17, 2011 17, 2011 Smoke cloud from Endeavour's Final Launge | Photo: NASA, Troy Cryder Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with Ambitious Technology Aboard In addition to measuring how cosmic rays flow and what they are made of, the AMS will also search for cosmic rays made of a special form of matter known as antimatter. May 17, 2011 Lipid droplets before (left) and after (right) ultrasonic lysis | Photo courtesy of Los Alamos National Laboratory Innovation at Los Alamos Unlocking a New Source of Domestic Oil... From Algae! We now have an excellent idea of just huge the potential is for algae as a biofuel. May 16, 2011 Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch NASA's Kennedy Space Center is one of several test sites for a new

437

Space, Health and Population Economics  

E-Print Network (OSTI)

Space, Health SHaPE and Population Economics Changing Demographics and Immigration: Implications for IndianaImplications for Indiana Brigitte Waldorf, Purdue University Farm Policy Study Group b 20 07 December 2010 #12;Space, Health SHaPE and Population Economics America is ... ... Aging #12;Space, Health

438

Geodesic spaces : momentum Groups : symmetry  

E-Print Network (OSTI)

Geodesic spaces : momentum :: Groups : symmetry Vaughan Pratt Stanford University BLAST 2010 a · b denoting b rotated 90 degrees about a. End of reprise. 3. This talk; Geodesic spaces At FMCS. as points evenly spaced along a geodesic , right distributivity expresses a symmetry of about an arbitrary

Pratt, Vaughan

439

National Aeronautics and Space Administration  

E-Print Network (OSTI)

really mark the end of outer space as a field for humankind's visions, longings, and projections ccononttiinnuueedd onon nenexxtt ppaagege Berlin Symposium on Outer Space and the End of Utopia in the 1970s By Friederike Mehl, Universiteit van Amsterdam, FriederikeMehl@gmx.de Did the end of the Space Age in the 1970s

440

Policies on Japan's Space Industry  

E-Print Network (OSTI)

as a strategic industry Practical space use in National Security Diplomacy ...etc Policy Administrative Structure on the Basic Space Law legislated in 2008. 1. The government sets space policy as a national strategy utilization environment Develop new markets with small size satellites and rockets Promote the serialization

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

National Aeronautics and Space Administration  

E-Print Network (OSTI)

National Aeronautics and Space Administration Launch Services Program Earth's Bridge to Space 2012 roles, getting rockets and satellites ready for flight, on their way, and all the way to orbit absolutely instrumental for the United States to have access to a dependable and secure Earth-to-space bridge

442

Upgrading Below Grade Spaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patrick H. Huelman, Sam Breidenbach, Steve Schirber Patrick H. Huelman, Sam Breidenbach, Steve Schirber NorthernSTAR Building America Partnership Upgrading Below Grade Spaces Residential Energy Efficiency Stakeholder March 1, 2012 Austin, TX * Act 1: Technical Challenges & Opportunities - Pat Huelman, University of Minnesota * Act 2: Assessing Homeowner Priorities & Risks - Sam Breidenbach, TDS Custom Construction * Act 3: An Industry Perspective - Steve Schirber, Cocoon Act 1. Upgrade Below Grade * Basement Remodeling: It Doesn't Get Any Riskier! - Combustion safety - Foundation moisture - Radon (& other soil gases) - Biologicals (mold, dust mites, etc.) - Garage gases (if attached) * And front and center are uncontrolled... - negative pressures in basements (beyond stack)

443

space booklet_DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

U U C L E A R E N E R G Y DOE/NE-0071 U . S . D e p a r t m e n t o f E n e r g y O f f i c e o f N u c l e a r E n e r g y , S c i e n c e a n d T e c h n o l o g y N UCLEAR Power in Space 2

444

Hyper Space Issue 2  

E-Print Network (OSTI)

University, Indianapolis, Indiana. Ed.: How real is STAR WARS? Nick: I enjoyed seeing the movie, it was funl I found the story reasonable. The models and special effects were terrificI There were a couple of errors such as the misuaaof the concept... space without any sound may be uninteresting to the audience. Ed.: What about faster than light travel? Nick: Hyper drive is impossible if you use conventional physics starting from a finite position. But if you start in a different place hyperdrive...

1977-01-01T23:59:59.000Z

445

SPACE BASED INTERCEPTOR SCALING  

SciTech Connect

Space Based Interceptor (SBI) have ranges that are adequate to address rogue ICBMs. They are not overly sensitive to 30-60 s delay times. Current technologies would support boost phase intercept with about 150 interceptors. Higher acceleration and velocity could reduce than number by about a factor of 3 at the cost of heavier and more expensive Kinetic Kill Vehicles (KKVs). 6g SBI would reduce optimal constellation costs by about 35%; 8g SBI would reduce them another 20%. Interceptor ranges fall rapidly with theater missile range. Constellations increase significantly for ranges under 3,000 km, even with advanced interceptor technology. For distributed launches, these estimates recover earlier strategic scalings, which demonstrate the improved absentee ratio for larger or multiple launch areas. Constellations increase with the number of missiles and the number of interceptors launched at each. The economic estimates above suggest that two SBI per missile with a modest midcourse underlay is appropriate. The SBI KKV technology would appear to be common for space- and surface-based boost phase systems, and could have synergisms with improved midcourse intercept and discrimination systems. While advanced technology could be helpful in reducing costs, particularly for short range theater missiles, current technology appears adequate for pressing rogue ICBM, accidental, and unauthorized launches.

G. CANAVAN

2001-02-01T23:59:59.000Z

446

Magnetic reconnection in space  

SciTech Connect

Models of magnetic reconnection in space plasmas generally consider only a segment of the magnetic field lines. The consideration of only a segment of the lines is shown to lead to paradoxical results in which reconnection can be impossible even in a magnetic field constrained to be curl free or can be at an Alfven rate even when the plasma is a perfect conductor. A model of reconnecting magnetic fields is developed which shows the smallness of the interdiffusion distance {delta}{sub d} of magnetic field lines does not limit the speed of reconnection but does provide a reconnection trigger. When the reconnection region has a natural length L{sub r}, the spatial scale of the gradient of magnetic field across the magnetic field lines must reach L{sub g} Almost-Equal-To 0.3L{sub r}/ln(L{sub r}/{delta}{sub d}) for fast reconnection to be triggered, which implies a current density j Almost-Equal-To B/{mu}{sub 0}L{sub g} that is far lower than that usually thought required for fast reconnection. The relation between magnetic reconnection in space and in toroidal laboratory plasmas is also discussed.

Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

2012-09-15T23:59:59.000Z

447

International Pacific Air and Space Technology Conference and Aircraft Symposium, 29th, Gifu, Japan, Oct. 7-11, 1991, Proceedings  

SciTech Connect

Various papers on air and space technology are presented. Individual topics addressed include: media selection analysis: implications for training design, high-speed challenge for rotary wing aircraft, high-speed VSTOL answer to congestion, next generation in computational aerodynamics, acrobatic airship 'Acrostat', ducted fan VTOL for working platform, Arianespace launch of Lightsats, small particle acceleration by minirailgun, free-wake analyses of a hovering rotor using panel method, update of the X-29 high-angle-of-attack program, economic approach to accurate wing design, flow field around thick delta wing with rounded leading edge, aerostructural integrated design of forward-swept wing, static characteristics of a two-phase fluid drop system, simplfied-model approach to group combustion of fuel spray, avionics flight systems for the 21st century. Also discussed are: Aircraft Command in Emergency Situations, spectrogram diagnosis of aircraft disasters, shock interaction induced by two hemisphere-cylinders, impact response of composite UHB propeller blades, high-altitude lighter-than-air powered platform, integrated wiring system, auxiliary power units for current and future aircraft, Space Shuttle Orbiter Auxiliary Power Unit status, numerical analysis of RCS jet in hypersonic flights, energy requirements for the space frontier, electrical system options for space exploration, aerospace plane hydrogen scramjet boosting, manual control of vehicles with time-varying dynamics, design of strongly stabilizing controller, development of the Liquid Apogee Propulsion System for ETS-VI.

Not Available

1991-01-01T23:59:59.000Z

448

The Nuclear-Cytoplasmic Shuttling of Virion Host Shutoff RNase Is Enabled by pUL47 and an Embedded Nuclear Export Signal and Defines the Sites of Degradation of AU-Rich and Stable Cellular mRNAs  

Science Journals Connector (OSTI)

...Reserved. 15 December 2013 research-article Virus-Cell Interactions The Nuclear-Cytoplasmic Shuttling...pUL47 and an Embedded Nuclear Export Signal and Defines...nucleus and interacts with programmed cell death protein 4...transferase localizes at ND10 nuclear bodies and enables herpes...

Minfeng Shu; Brunella Taddeo; Bernard Roizman

2013-10-09T23:59:59.000Z

449

AERaSPACE CORPORATION  

Office of Legacy Management (LM)

THE ' THE ' AERaSPACE CORPORATION Suite 300, 955 L' &njon~ Pkzza. S. W., Washingvan. D.C. 200242174, Tekphanc (202) 488~6CllO 7117-03.87.cdy.43 23 September 1987 CA CA.Ot M r. Andrew Wallo, III. NE-23 Division of Facility & Site cr.05 Decommissioning Projects FL .0-d U.S. Department of Energy TAl.OL Germantown; Maryland 20545 JA/.OZ 1hJ . o-01 Dear M r. Wallo: flA.05 ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES M /4.0-* 11 D.OF The attached elimination recommendation was prepared in accordance ML.o= with your suggestion during our meeting on 22 September. The recommendation nO.o-02 includes 26 colleges and universities identified,in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated MO.03. 27 May 1987; three institutions (Tufts College, University of Virginia,

450

Machian space quanta  

E-Print Network (OSTI)

A new model for space and matter is obtained by joining every pair of point charges in the observable universe by an ethereal string. Positive gravitational potential energy in each string gives an attractive gravitational force due to the action of an energy conservation constraint. Newton's laws of motion are derived and inertia is explained in accordance with Mach's principle. The Machian string model gives a surprisingly simple way to understand the expansion history of the Universe. The decelerating expansion in the radiation era and the matter era is explained without using General Relativity and the transition from deceleration to acceleration is explained without the need to introduce a separate 'dark energy' component. The interaction between Machian strings gives a physical model for modified Newtonian dynamics (MOND) and is therefore an alternative to 'dark matter'.

Essex, David W

2015-01-01T23:59:59.000Z

451

Machian space quanta  

E-Print Network (OSTI)

A new model for space and matter is obtained by joining every pair of point charges in the observable universe by an ethereal string. Positive gravitational potential energy in each string gives an attractive gravitational force due to the action of an energy conservation constraint. Newton's laws of motion are derived and inertia is explained in accordance with Mach's principle. The Machian string model gives a surprisingly simple way to understand the expansion history of the Universe. The decelerating expansion in the radiation era and the matter era is explained without using General Relativity and the transition from deceleration to acceleration is explained without the need to introduce a separate 'dark energy' component. The interaction between Machian strings gives a physical model for modified Newtonian dynamics (MOND) and is therefore an alternative to 'dark matter'.

David W. Essex

2015-01-25T23:59:59.000Z

452

The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.  

SciTech Connect

Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.

Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

2010-06-25T23:59:59.000Z

453

Passive Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

Passive Solar Space Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titlePassiveSolarSpaceHeat&oldid26718...

454

Radioisotopes: Energy for Space Exploration  

SciTech Connect

Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

Carpenter, Bob; Green, James; Bechtel, Ryan

2011-01-01T23:59:59.000Z

455

Radioisotopes: Energy for Space Exploration  

ScienceCinema (OSTI)

Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

Carpenter, Bob; Green, James; Bechtel, Ryan

2013-05-29T23:59:59.000Z

456

Portfolio Manager Space Type Discussion  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides a discussion about space/type in regards to the Portfolio Manager Initiative.

457

Physics in discrete spaces (A): Space-Time organization  

E-Print Network (OSTI)

We put forward a model of discrete physical space that can account for the structure of space- time, give an interpretation to the postulates of quantum mechanics and provide a possible explanation to the organization of the standard model of particles.

P. Peretto

2010-12-29T23:59:59.000Z

458

Atmospheric,OceanicandSpaceSciences Atmospheric, Oceanic & Space Sciences  

E-Print Network (OSTI)

of Michigan Space Research Building 2455 Hayward Street Ann Arbor, MI 48109-2143 aoss_um@umich.edu http Arbor ©The Regents of the University of Michigan Mark Schlissel, ex officio Sequential Graduate / under/Thermosphere Physics Planetary Magnetospheres Solar & Heliospheric Physics Space Weather Aeronomy For Faculty involved

Eustice, Ryan

459

John C. Stennis Space Center History of Stennis Space Center  

E-Print Network (OSTI)

Laboratory Propulsion Test Lead Center SSME Test Resp. 5/94 Stennis Space Center Estab. (5/88) Stennis Space · Dept. of Marine Science · Major Contractors · Pratt and Whitney Rocketdyne · Jacobs Technology Inc. · A, National Data Buoy Center · NOAA National Marine Fisheries Service · NOAA National Coastal Data Development

Waliser, Duane E.

460

UCL DEPARTMENT OF SPACE & CLIMATE PHYSICS SPACE PLASMA PHYSICS GROUP  

E-Print Network (OSTI)

" miniaturised sensors, · low cost - high return due to development derived from Solar Orbiter EAS and Tech Outline · What is L-DEPP? · How are we involved? · Low-energy Electron and Ion Analyser (LEIA) · Why is LEIA necessary? · Potential UK benefits · Summary #12;UCL DEPARTMENT OF SPACE & CLIMATE PHYSICS SPACE

Anand, Mahesh

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Overview of Space Business Space & Integrated Defense Systems  

E-Print Network (OSTI)

collaboration Fostering of domestic space industry Enhance use space for national security purpose Focusing and Europe by becoming representatives of those foreign entities Launch vehicles Satellites Ground segment provider, SCC, along with other Mitsubishi group companies Further extended into satellite-based earth

462

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

463

Space Telescope Programs Hubble Observatory  

E-Print Network (OSTI)

Assurance/Configuration Management Mr. Christopher Scholz EAG QA Manager #12;Space Telescope Programs Hubble · COS-UCB-002 QA Implementation Plan Released December 1, 1999 · COS-UCB-003 CM Plan released DecemberSpace Telescope Programs Hubble Observatory HST-COS FUV PER 11/8/00 FUV Detector System Quality

Colorado at Boulder, University of

464

The NASA Food Commercial Space  

E-Print Network (OSTI)

The NASA Food Technology Commercial Space Center and How Your Company Can Participate space in a range of food development projects. For more information about NASA FTCSC or to arrange a presentation about the NASA FTCSC program, contact Dr. Anthony L. Pometto III Director NASA Food Technology

Lin, Zhiqun

465

INDUCTION, SPACE AND POSITIVE ETHICS  

E-Print Network (OSTI)

INDUCTION, SPACE AND POSITIVE ETHICS MARVIN E. KIRSH One may purport that ones' awareness of space of it are elemental --i.e. conceptually non reducible and that from which all emanates. The words non-ethical induction, entailing the existence of ethical induction, if compared in a corresponding manner (to

Paris-Sud XI, Université de

466

National Aeronautics and Space Administration  

E-Print Network (OSTI)

Vehicle Mission Concept Review Complete Space Vehicle SRR Complete Partial-Throttle RBS Engine TCA Test Engine Test Completed Subscale Prop Tank Assembly Review March 2014 Space Vehicle Subsystem interim's Commercial Crew Program (CCP) is facilitating the development of safe, reliable and cost-effective human

Waliser, Duane E.

467

National Aeronautics and Space Administration  

E-Print Network (OSTI)

human-made object to enter the vast expanses between the stars. It was hardly the first history. To toast the interstellar event, TV's Stephen Colbert invited Voyager project scientist Ed Stone on his they look into deep space? For Planck, a European space telescope with technology aboard from JPL

Waliser, Duane E.

468

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

469

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

470

University of California, Santa Cruz Space Management Principles  

E-Print Network (OSTI)

for Academic Office Space...................................................... 3 Criteria for Library Space#12;#12;University of California, Santa Cruz Space Management Principles Section Page Space ..................................................................................... 1 3. Space Management Principles

California at Santa Cruz, University of

471

Space Travel Space Travel: Past, Present and Future  

E-Print Network (OSTI)

;#12;NASA's Planetary Exploration Program ...and dropped probes into planet atmospheres, flown through comet tails, landed on 1 planet, two moons, and an asteroid. #12;Space is being opened to the private sector

Shirley, Yancy

472

GSLIS Space Policy September 29, 2011  

E-Print Network (OSTI)

GSLIS Space Policy September 29, 2011 The Graduate School of Library and Information Science. Offices 2. Classrooms and Meeting space 3. LEEP studios 4. Computer Lab space 5. Public space 6. Storage space without keys--for example, cubicles in public areas--cannot be considered private property

Gilbert, Matthew

473

DREAM tool increases space weather predictions  

E-Print Network (OSTI)

and an interactive user interface to support satellite operators and space weather forecasters. For national security- 1 - DREAM tool increases space weather predictions April 13, 2012 Predicting space weather in an article published in Space Weather, a journal of the American Geophysical Union. Space environment and its

474

The Flame Trilogy  

E-Print Network (OSTI)

him and he realized at least a little of the whisky had done its job. It had not obliterated his pain, only anesthetized it a little. It had been his intention to head for home, but his car pulled to a stop outside Starsky's building. He slid... was mad for interrupting his evening, the pain would ease slightly and Hutch could go home and get some sleep. He opened his car door, mind searching for some pretext he could use as his reason for dropping in. As he ascended the stairs, the lights...

Bonds, M.

1999-01-01T23:59:59.000Z

475

flame-fusion process  

Science Journals Connector (OSTI)

...a method of gem synthesis based on Verneuil process (furnace) used in growing synthetic single crystals to distinguish from a melt or flux fusion. Verneuil furnace .

2009-01-01T23:59:59.000Z

476

The Flame Ionization Detector  

Science Journals Connector (OSTI)

......same as most other hydrocarbons. We are therefore...supported only by data from C2H2, the...the shock tube data, while somewhat...Inter- nat.) on Combustion," Academic Press...formation in those hydrocarbons which display the...the transfer of heat and hydrogen atoms......

A. T. Blades

1973-05-01T23:59:59.000Z

477

BNL NASA Space Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Purpose: To use beams of heavy ions provided by the Booster accelerator at Brookhaven to study the effects of simulated space radiation on biological and physical systems, with the goal of developing methods and materials to reduce the risk to human beings on prolonged space missions of the effects of ionizing radiation Sponsor: National Aeronautics and Space Administration (NASA) Project cost $34 million over 4 years Operating costs Nearly $8 million per year in 2007 Features * beams of heavy ions extracted from the Booster accelerator with masses and energies similar to the cosmic rays encountered in space: * 1-billion electron volt (GeV)/nucleon iron-56 * 0.3-GeV/nucleon gold-97 * 0.6-GeV/nucleon silicon-28 * 1-GeV/nucleon protons * 1-GeV/nucleon titanium

478

Insulation For Earth And Space  

Science Journals Connector (OSTI)

According to National Aeronautics & Space Administration scientist Mary Ann B. Meador, before sending people or larger vehicles to Mars, scientists must develop insulating materials to counter the planet’s exotic environment. ...

LAUREN WOLF

2012-09-16T23:59:59.000Z

479

Environmental Design Space model assessment  

E-Print Network (OSTI)

The Environmental Design Space (EDS) is a multi-disciplinary design tool used to explore trade-offs among aircraft fuel burn, emissions, and noise. This thesis uses multiple metrics to assess an EDS model of a Boeing 777 ...

Spindler, Phillip Michael

2007-01-01T23:59:59.000Z

480

Nuclear Propulsion in Space (1968)  

ScienceCinema (OSTI)

Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

None

2014-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "flame space shuttle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

(Nuclear power engineering in space)  

SciTech Connect

The principal purpose of this trip was to participate in the Anniversary Specialist Conference on Nuclear Power Engineering in Space hosted by the USSR Ministry of Atomic Power Engineering and Industry. The conference was held in Obninsk, USSR. A secondary purpose of the trip was to meet with the French Commissariat A L'Energie Atomique in Paris regarding the status of their space power program.

Cooper, R.H. Jr.

1990-06-18T23:59:59.000Z

482

Nuclear Propulsion in Space (1968)  

SciTech Connect

Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

None

2012-06-23T23:59:59.000Z

483

Space Weather and Hazards to Application Satellites  

Science Journals Connector (OSTI)

Space weather” is defined by the US National Space Weather Program as referring to “conditions on the ... health.” From the viewpoint of an application satellite, the space environment is a hostile, ... is thus ...

Dr. Michael J. Rycroft

2013-01-01T23:59:59.000Z

484

Model-Based Estimation of Forest Canopy Height in Red and Austrian Pine Stands Using Shuttle Radar Topography Mission and Ancillary Data: a Proof-of-Concept Study  

SciTech Connect

In this paper, accurate tree stand height retrieval is demonstrated using C-band Shuttle Radar Topography Mission (SRTM) height and ancillary data. The tree height retrieval algorithm is based on modeling uniform tree stands with a single layer of randomly oriented vegetation particles. For such scattering media, the scattering phase center height, as measured by SRTM, is a function of tree height, incidence angle, and the extinction coefficient of the medium. The extinction coefficient for uniform tree stands is calculated as a function of tree height and density using allometric equations and a fractal tree model. The accuracy of the proposed algorithm is demonstrated using SRTM and TOPSAR data for 15 red pine and Austrian pine stands (TOPSAR is an airborne interferometric synthetic aperture radar). The algorithm yields root-mean-square (rms) errors of 2.5-3.6 m, which is a substantial improvement over the 6.8-8.3-m rms errors from the raw SRTM minus National Elevation Dataset Heights.

Brown Jr., C G; Sarabandi, K; Pierce, L E

2007-04-06T23:59:59.000Z

485

Analysis of two alternative organophosphorus flame retardants in electronic and plastic consumer products: Resorcinol bis-(diphenylphosphate) (PBDPP) and bisphenol A bis (diphenylphosphate) (BPA-BDPP)  

Science Journals Connector (OSTI)

Abstract Following the phase-out of polybrominated diphenyl ethers (PBDEs), organophosphorus flame retardants (PFRs) are increasingly used as alternative flame retardants in many products. Data on the presence of two alternative \\{PFRs\\} in consumer products, resorcinol bis (diphenylphosphate) (PBDPP or RDP) and bisphenol A bis (diphenylphosphate) (BPA-BDPP or BDP) is still scarce or non-existing. In this study we propose a simple extraction method and analysis by liquid chromatography–atmospheric pressure chemical ionization (APCI) coupled to a high resolution time-of-flight mass spectrometry (TOF) for plastic consumer products. Detection limits were low enough for trace quantitation in plastic or electronic samples (0.001% and 0.002% w/w for PBDPP and BPA-BDPP, respectively). The APCI source provided better sensitivity and matrix effects than the commonly used ESI source for the analysis of these PFRs. Both PBDPP and BPA-BDPP were detected in 7 of the 12 products purchased in 2012 (at 0.002–0.3% w/w for PBDPP and 0.02–0.18% w/w for BPA-BDPP) while only PBDPP was found in 4 of the 13 products purchased before 2006 (0.005–7.8% w/w). In newly purchased products, PBDPP, BPA-BDPP and triphenyl phosphate (TPHP) were the most frequently detected PFRs. These results support the recent findings of our research group about high concentration levels of PBDPP and BPA-BDPP up to 0.5–1 mg g?1 in house dust collected on electronic equipment and highlights the need for further research on these two novel PFRs.

A. Ballesteros-Gómez; S.H. Brandsma; J. de Boer; P.E.G. Leonards

2014-01-01T23:59:59.000Z

486

Sustainable Spaces Inc | Open Energy Information  

Open Energy Info (EERE)

Spaces Inc Jump to: navigation, search Name: Sustainable Spaces Inc. Place: San Francisco, California Zip: 94103 Sector: Carbon Product: California-based provider of energy audits...

487

The analysis of potential space tourism market.  

E-Print Network (OSTI)

?? In December of 2004, RIT Professor C.J. Wallington and students in the space tourism development course (winter 2004/ 2005) conducted a space tourism market… (more)

Sankovic, Sandra

2007-01-01T23:59:59.000Z

488

The analysis of potential space tourism market.  

E-Print Network (OSTI)

??In December of 2004, RIT Professor C.J. Wallington and students in the space tourism development course (winter 2004/ 2005) conducted a space tourism market survey.… (more)

Sankovic, Sandra

2007-01-01T23:59:59.000Z

489

DREAM tool increases space weather predictions  

NLE Websites -- All DOE Office Websites (Extended Search)

using real-time space weather observations and an interactive user interface to support satellite operators and space weather forecasters. For national security applications,...

490

Integration of space weather into space situational awareness  

SciTech Connect

Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent com plexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbit-dependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which will allow operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather was the cause of anomalous operations, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This allows users to rapidly rule in or out environmental causes of anomalies. The same user interface can also allow users to drill down for more detailed quantitative information. DREAM can be run either from a distributed web-based user interface or as a stand-alone application for secure operations. In this paper we discuss the underlying structure of the DREAM model and demonstrate the user interface that we have developed . We also present some prototype data products and user interfaces for DREAM and discuss how space environment information can be seamlessly integrated into operational SSA systems.

Reeves, Geoffrey D [Los Alamos National Laboratory

2010-11-09T23:59:59.000Z

491

Spacings of Nuclear Energy Levels  

Science Journals Connector (OSTI)

The distribution of spacings of nuclear energy levels in many heavy nuclei at an excitation energy of 5 to 9 Mev is obtained by careful correction of the observed distributions for the effect of failure to observe all levels. Results of transmission measurements on U234 and U236, as measured with the Brookhaven fast chopper, are presented. The experimental spacings of the zero-spin nuclides are considered first since all the levels from slow neutron capture have the same spin. The results show a deficiency of small spacings relative to the exponential distribution, which corresponds to a random occurrence of levels. In the analysis it is shown that there is no local correlation of neutron widths and level spacings. The "level repulsion" effect is also found for the nuclides of nonzero spin, for which the data are more abundant but the analysis is complicated by the presence of two spin systems. The distribution obtained is in agreement with one suggested by Wigner based on a probability of level occurrence proportional to the spacing S. The corrections here de