National Library of Energy BETA

Sample records for flame ionization detector

  1. Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .

    SciTech Connect (OSTI)

    Wallner, T.

    2011-08-01

    The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of

  2. Using a flame ionization detector (FID) to continuously measure toxic organic vapors in a paint spray booth. Rept. for Jul 91-Jan 92

    SciTech Connect (OSTI)

    Whitfield, J.K.; Howe, G.B.; Pate, B.A.; Wander, J.D.

    1992-01-01

    The paper reports the demonstration of linear and similar responses of a Ratfisch RS-55CA flame ionization detector (FID) to a solvent mixture identical to the volatile organic compounds (VOCs) in the coating and catalyst (NSN 8010-01-336-3036) and to the calibrating gas (propane) used in field calibrations of the FID. Sensitivity and linearity have been shown to extend from 715 to 45 mg/cu m, which brackets the calculated short-term exposure limit (STEL) and lower action thresholds. Monitoring is maintained constantly and, under field conditions, equilibration occurs rapidly (analysis and output transpire in milliseconds). As a trigger for fail-safe conversion from recirculation mode to a straight-through paint spray booth configuration, the FID may confidently be expected to initiate a corrective response before a transient elevation of VOC concentrations overexposes area personnel.

  3. Alkali metal ionization detector

    DOE Patents [OSTI]

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  4. Alkali ionization detector

    DOE Patents [OSTI]

    Hrizo, John (Monroeville, PA); Bauerle, James E. (Plum Borough, PA); Witkowski, Robert E. (West Mifflin, PA)

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  5. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  6. Optical ionization detector

    DOE Patents [OSTI]

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  7. Optical ionization detector

    DOE Patents [OSTI]

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  8. Light collection device for flame emission detectors

    DOE Patents [OSTI]

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  9. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  10. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  11. Ionizing Radiation Detector

    DOE Patents [OSTI]

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-11-18

    A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.

  12. Gas amplified ionization detector for gas chromatography

    DOE Patents [OSTI]

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  13. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  14. High-resolution ionization detector and array of such detectors

    DOE Patents [OSTI]

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  15. FLame

    Energy Science and Technology Software Center (OSTI)

    1995-03-03

    FLAME is data processing software explicitly written to support the ACAP software of DSP Technologies, Inc., of Fremont, CA. ACAP acquires and processes in-cylinder pressure data for reciprocating engines. However, it also has the capability to acquire data for two Sandia-developed technologies, ionization-probe instrumented head gaskets and fiber-optic instrumented spark plugs. FLAME post processes measurements of flame arrival from data files aquired with ACAP. Flame arrival time is determined from analog ionization-probe or visible-emission signals.more » The resulting data files are integrated with the standard ACAP files, providing a common data base for engine development.« less

  16. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  17. High pressure xenon ionization detector

    DOE Patents [OSTI]

    Markey, John K. (New Haven, CT)

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  18. Ionization-chamber smoke detector system

    DOE Patents [OSTI]

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  19. Variable pressure ionization detector for gas chromatography

    DOE Patents [OSTI]

    Buchanan, Michelle V.; Wise, Marcus B.

    1988-01-01

    Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.

  20. PDID: Pulsed-Discharge Ionization Detector A new detector for medical analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDID: Pulsed-Discharge Ionization Detector A New Detector for Medical Diagnosis Matthew Moorman mmoorma@sandia.gov MicroSystems Enabled Detection Department 01716 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-1387C Sandia's Volatile Organic Compound (VOC) Biomarker

  1. Multiplexed electronically programmable multimode ionization detector for chromatography

    DOE Patents [OSTI]

    Wise, M.B.; Buchanan, M.V.

    1988-05-19

    Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electronically programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity. 6 figs.

  2. Multiplexed electronically programmable multimode ionization detector for chromatography

    DOE Patents [OSTI]

    Wise, Marcus B.; Buchanan, Michelle V.

    1989-01-01

    Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electroncially programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity.

  3. Comparative study of ionization chamber detectors vis-a-vis a CCD detector for dispersive XAS measurement in transmission geometry

    SciTech Connect (OSTI)

    Poswal, A. K.; Agrawal, A.; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.

    2013-02-05

    We have designed and fabricated parallel plate ionization chamber detectors and voltage vs. current characteristics (V-I curve) of the detectors were recorded with synchrotron radiation to qualify for use in X-ray Absorption Spectroscopy (XAS) measurements. After qualifying the ionization chambers, the detectors were used in the dispersive EXAFS beamline (BL-08) at INDUS-2 SRS in Turbo-XAS geometry. Using the same setup and under the same setting, XAS spectra were also recorded with a CCD detector and the observation on relative performance of the ionization chamber vis-a-vis the CCD detector is presented in this paper.

  4. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect (OSTI)

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  5. Ionization detector, electrode configuration and single polarity charge detection method

    DOE Patents [OSTI]

    He, Z.

    1998-07-07

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

  6. Ionization detector, electrode configuration and single polarity charge detection method

    DOE Patents [OSTI]

    He, Zhong

    1998-01-01

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge.

  7. Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector

    SciTech Connect (OSTI)

    Eseller, Kemal E.; Yueh, Fang Y.; Singh, Jagdish P

    2008-11-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to measure the equivalence ratio of CH4/air flames using gated detection. In this work, we have developed an ungated, miniature LIBS-based sensor for studying CH4/air and biodiesel flames. We have used this sensor to characterize the biodiesel flame. LIBS spectra of biodiesel flames were recorded with different ethanol concentrations in the biodiesel and also at different axial locations within the flame. The sensor performance was evaluated with a CH4/air flame. LIBS signals of N, O, and H from a CH4/air flame were used to determine the equivalence ratio. A linear relationship between the intensity ratio of H and O lines and the calculated equivalence ratio were obtained with this sensor.

  8. Electrode configuration and signal subtraction technique for single polarity charge carrier sensing in ionization detectors

    DOE Patents [OSTI]

    Luke, P.

    1996-06-25

    An ionization detector electrode and signal subtraction apparatus and method provide at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector. 9 figs.

  9. High resolution resonance ionization imaging detector and method

    DOE Patents [OSTI]

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  10. Cryogenic argon ionization chamber detector for analysis of radioactive noble gases. Master's thesis

    SciTech Connect (OSTI)

    Berggren, S.R.

    1982-03-01

    Two ionization chamber detectors, using liquid or solid argon as their medium were designed, constructed and tested as an improved means of analyzing quantitatively xenon 131m and xenon 133. Problems with the first detector, including vibrational noise and inadequate temperature control, limited its use to studies using solid argon. In the second design, many operating problems of the first detector were corrected. Properties of the detectors were studied using external gamma sources and xenon 131m dispersed inside the detector medium. The xenon sample and argon were purified and cryogenically pumped into the detector for spectral analysis. Both the purity of the argon and bias voltages affected resolution by changing the trapping distance of the electrons in the medium. Lower temperatures increased detection efficiency by condensing more of the sample into the cell. No clearly recognizable energy peak could be found in spectra from external or internal sources.

  11. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    DOE Patents [OSTI]

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  12. The iQID Camera An Ionizing-Radiation Quantum Imaging Detector

    SciTech Connect (OSTI)

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Barber, Bradford H.; Furenlid, Lars R.

    2014-06-11

    Abstract We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. We present the latest results and discuss potential applications.

  13. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Barber, Bradford H.; Furenlid, Lars R.

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  14. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    SciTech Connect (OSTI)

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Barber, Bradford H.; Furenlid, Lars R.

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.

  15. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOE Patents [OSTI]

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  16. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOE Patents [OSTI]

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  17. CNEEC - Flame Synthesis Tutorial by Xiaolin Zheng

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flame Synthesis of Nanomaterials

  18. Detectors

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  19. Flame Chemistry and Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flame Conditions Flame Chemistry Insights (n-butanol flame) Experiment vs. ... Molecular beam sampling "freezes" chemistry Time-of-flight mass spectrometry ...

  20. Search for lightly ionizing particles using CDMS-II data and fabrication of CDMS detectors with improved homogeneity in properties

    SciTech Connect (OSTI)

    Prasad, Kunj Bihari

    2013-12-01

    Fundamental particles are always observed to carry charges which are integral multiples of one-third charge of electron, e/3. While this is a well established experimental fact, the theoretical understanding for the charge quantization phenomenon is lacking. On the other hand, there exist numerous theoretical models that naturally allow for existence of particles with fractional electromagnetic charge. These particles, if existing, hint towards existence of physics beyond the standard model. Multiple high energy, optical, cosmological and astrophysical considerations restrict the allowable mass-charge parameter space for these fractional charges. Still, a huge unexplored region remains. The Cryogenic Dark Matter Search (CDMS-II), located at Soudan mines in northern Minnesota, employs germanium and silicon crystals to perform direct searches for a leading candidate to dark matter called Weakly Interacting Massive Particles (WIMPs). Alternately, the low detection threshold allows search for fractional electromagnetic-charged particles, or Lightly Ionizing Particles (LIPs), moving at relativistic speed. Background rejection is obtained by requiring that the magnitude and location of energy deposited in each detector be consistent with corresponding \\signatures" resulting from the passage of a fractionally charged particle. In this dissertation, the CDMS-II data is analyzed to search for LIPs, with an expected background of 0.078 0.078 events. No candidate events are observed, allowing exclusion of new parameter space for charges between e/6 and e/200.

  1. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  2. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  3. Electrical probe diagnostics for the laminar flame quenching distance

    SciTech Connect (OSTI)

    Karrer, Maxime; Makarov, Maxime; Bellenoue, Marc; Labuda, Sergei; Sotton, Julien

    2010-02-15

    A simplified theory, previously developed for the general case of weakly ionized gas flow, is used to predict electrical probe response when the flame is quenched on the probe surface. This theory is based on the planar model of space charge sheaths around the measuring electrode. For the flame quenching case, by assuming that the sheath thickness is comparable with the thermal boundary layer thickness, probe current can be related to flame quenching distance. The theoretical assumptions made to obtain the analytical formulation of probe current were experimentally proved by using direct visualization and high-frequency PIV. The direct visualization method was also used to validate the results of flame quenching distance values obtained with electrical probe. The electrical probe diagnostics have been verified for both head-on and sidewall flame quenching regimes and for stoichiometric methane/air and propane/air mixtures in a pressure range of 0.05-0.6 MPa. (author)

  4. Flame Arrival Measurement By Instrumented Spark Plug or Head Gasket

    Energy Science and Technology Software Center (OSTI)

    1995-04-10

    PLUGBIN was developed to support Sandia technologies involving instrumented head gaskets and spark plugs for engine research and development. It acquires and processes measurements of flame arrival and pressure from a spark ignition. Flame arrival is determined from analog ionization-probe or visible-emission signals, and/or digitial signals from a dedicated flame arrival measurement processor. The pressure measurements are analyzed to determine the time of peak pressure and the time to burn 10 and 90 percent ofmore » the charge. Histograms are then calculated and displayed for each measurement.« less

  5. Optical ionization detector (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. ...

  6. Extremely weak hydrogen flames

    SciTech Connect (OSTI)

    Lecoustre, V.R.; Sunderland, P.B. [Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742 (United States); Chao, B.H. [Department of Mechanical Engineering, University of Hawaii, Honolulu, HI 96822 (United States); Axelbaum, R.L. [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  7. Structure of hydrogen triple flames and premixed flames compared

    SciTech Connect (OSTI)

    Owston, Rebecca; Abraham, John

    2010-08-15

    Triple flames consisting of lean, stoichiometric, and rich reaction zones may be produced in stratified mixtures undergoing combustion. Such flames have unique characteristics that differ from premixed flames. The present work offers a direct comparison of the structure and propagation behavior between hydrogen/air triple and premixed flames through a numerical study. Important similarities and differences are highlighted. Premixed flames are generated by spark-igniting initially quiescent homogeneous mixtures of hydrogen and air in a two-dimensional domain. Triple flame results are also generated in a two-dimensional domain by spark-igniting initially quiescent hydrogen/air stratified layers. Detailed flame structure and chemical reactivity information is collected along isocontours of equivalence ratio 0.5, 1.0, and 3.0 in the triple flame for comparison with premixed flames at the same equivalence ratios. Full chemistry and effective binary diffusion coefficients are employed for all computations. (author)

  8. Strained flamelets for turbulent premixed flames II: Laboratory flame results

    SciTech Connect (OSTI)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-07-15

    The predictive ability of strained flamelets model for turbulent premixed flames is assessed using Reynolds Averaged Navier Stokes (RANS) calculations of laboratory flames covering a wide range of conditions. Reactant-to-product (RtP) opposed flow laminar flames parametrised using the scalar dissipation rate of reaction progress variable are used as strained flamelets. Two turbulent flames: a rod stabilised V-flame studied by Robin et al. [Combust. Flame 153 (2008) 288-315] and a set of pilot stabilised Bunsen flames studied by Chen et al. [Combust. Flame 107 (1996) 223-244] are calculated using a single set of model parameters. The V-flame corresponds to the corrugated flamelets regime. The strained flamelet model and an unstrained flamelet model yield similar predictions which are in good agreement with experimental measurements for this flame. On the other hand, for the Bunsen flames which are in the thin reaction zones regime, the unstrained flamelet model predicts a smaller flame brush compared to experiment. The predictions of the strained flamelets model allowing for fluid-dynamics stretch induced attenuation of the chemical reaction are in good agreement with the experimental data. This model predictions of major and minor species are also in good agreement with experimental data. The results demonstrate that the strained flamelets model using the scalar dissipation rate can be used across the combustion regimes. (author)

  9. Direct Flame Impingement

    SciTech Connect (OSTI)

    2005-09-01

    During the DFI process, high velocity flame jets impinge upon the material being heated, creating a high heat transfer rate. As a result, refractory walls and exhaust gases are cooler, which increases thermal efficiency and lowers NOx emissions. Because the jet nozzles are located a few inches from the load, furnace size can be reduced significantly.

  10. Resonance ionization detection of combustion radicals

    SciTech Connect (OSTI)

    Cool, T.A.

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  11. Ionization detection system for aerosols

    DOE Patents [OSTI]

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  12. Dynamics and structure of stretched flames

    SciTech Connect (OSTI)

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  13. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  14. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  15. Improved gaseous leak detector

    DOE Patents [OSTI]

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  16. Gaseous leak detector

    DOE Patents [OSTI]

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  17. SU-E-T-96: Demonstration of a Consistent Method for Correcting Surface Dose Measurements Using Both Solid State and Ionization Chamber Detectors

    SciTech Connect (OSTI)

    Reynolds, T; Gerbi, B; Higgins, P

    2014-06-01

    Purpose: To compare the surface dose (SD) measured using a PTW 30-360 extrapolation chamber with different commonly used dosimeters (Ds): parallel plate ion chambers (ICs): RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial; TLD chips (cTLD), TLD powder (pTLD), optically stimulated (OSLs), radiochromic (EXR2) and radiographic (EDR2) films, and to provide an intercomparison correction to Ds for each of them. Methods: Investigations were performed for a 6 MV x-ray beam (Varian Clinac 2300, 10x10 cm{sup 2} open field, SSD = 100 cm). The Ds were placed at the surface of the solid water phantom and at the reference depth dref=1.7cm. The measurements for cTLD, OSLs, EDR2 and EXR2 were corrected to SD using an extrapolation method (EM) indexed to the baseline PTW 30-360 measurements. A consistent use of the EM involved: 1) irradiation of three Ds stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. An additional measurement was performed with externally exposed OSLs (eOSLs), that were rotated out of their protective housing. Results: All single Ds measurements overestimated the SD compared with the extrapolation chamber, except for Attix IC. The closest match to the true SD was measured with the Attix IC (− 0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EXR2 (14%), EDR2 (14.8%) and OSL (26%). The EM method of correction for SD worked well for all Ds, except the unexposed OSLs. Conclusion: This EM cross calibration of solid state detectors with an extrapolation or Attix chamber can provide thickness corrections for cTLD, eOSLs, EXR2, and EDR2. Standard packaged OSLs were not found to be simply corrected.

  18. Ionization chamber

    DOE Patents [OSTI]

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  19. Ionization chamber

    DOE Patents [OSTI]

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  20. Semiconductor radiation detector

    SciTech Connect (OSTI)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  1. IONIZATION CHAMBER

    DOE Patents [OSTI]

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  2. Investigations into the chemical structure based selectivity of the microfabricated nitrogen-phosphorus detector

    SciTech Connect (OSTI)

    Brocato, Terisse A.; Hess, Ryan F.; Moorman, Matthew; Simonson, Robert J.

    2015-10-28

    The nitrogen and phosphorus atoms are constituents of some of the most toxic chemical vapors. Nitrogen-phosphorus gas chromatograph detectors (NPDs) rely on selective ionization of such compounds using ionization temperatures typically greater than 600 C. NPDs have previously been reported to be 7*104 and 105 more sensitive for nitrogen and phosphorus, respectively, than for carbon. Presented here is an investigation of the structure-based selectivity of a microfabricated nitrogen-phosphorus detector (?NPD). The ?NPD presented here is smaller than a dime and can be placed in a system that is 1/100th the size of a commercial NPD. Comparison of responses of such devices to homologous anilines (p-methoxyaniline, p-fluoroaniline, and aniline) revealed that detection selectivity, determined by the ratio of ?NPD to nonselective flame ionization detector (FID) peak areas, is correlated with acid disassociation pKa values for the respective analine. Selectivity was determined to be greatest for p-methoxyaniline, followed by p-fluoroaniline, with aniline having the smallest response. The limit of detection for a nitrogen containing chemical, p-methoxyaniline, using the ?NPD was determined to be 0.29 ng compared to 59 ng for a carbon chemical containing no nitrogen or phosphorus, 1,3,5-trimethybenzene. The ?NPD presented here has increased detection for nitrogen and phosphorus compared to the FID and with a slight increase in detection of carbon compounds compared to commercial NPD's sensitivity to nitrogen and carbon.

  3. Investigations into the chemical structure based selectivity of the microfabricated nitrogen-phosphorus detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brocato, Terisse A.; Hess, Ryan F.; Moorman, Matthew; Simonson, Robert J.

    2015-10-28

    The nitrogen and phosphorus atoms are constituents of some of the most toxic chemical vapors. Nitrogen-phosphorus gas chromatograph detectors (NPDs) rely on selective ionization of such compounds using ionization temperatures typically greater than 600 °C. NPDs have previously been reported to be 7*104× and 105× more sensitive for nitrogen and phosphorus, respectively, than for carbon. Presented here is an investigation of the structure-based selectivity of a microfabricated nitrogen-phosphorus detector (μNPD). The μNPD presented here is smaller than a dime and can be placed in a system that is 1/100th the size of a commercial NPD. Comparison of responses of suchmore » devices to homologous anilines (p-methoxyaniline, p-fluoroaniline, and aniline) revealed that detection selectivity, determined by the ratio of μNPD to nonselective flame ionization detector (FID) peak areas, is correlated with acid disassociation pKa values for the respective analine. Selectivity was determined to be greatest for p-methoxyaniline, followed by p-fluoroaniline, with aniline having the smallest response. The limit of detection for a nitrogen containing chemical, p-methoxyaniline, using the μNPD was determined to be 0.29 ng compared to 59 ng for a carbon chemical containing no nitrogen or phosphorus, 1,3,5-trimethybenzene. The μNPD presented here has increased detection for nitrogen and phosphorus compared to the FID and with a slight increase in detection of carbon compounds compared to commercial NPD's sensitivity to nitrogen and carbon.« less

  4. Cal Flame: Order (2015-CE-14015)

    Broader source: Energy.gov [DOE]

    DOE ordered Cal Flame to pay a $8,000 civil penalty after finding Cal Flame had failed to certify that refrigerator basic model BBQ09849P-H complies with the applicable energy conservation standards.

  5. CEFRC_Egolfopoulos_Flames_Kinetics_Web.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laminar flame speed, ,cms Equivalence Ratio, Laminar flame speed, ,cms Equivalence Ratio, Methanol Ethanol n-Propanol n-Butanol n-Butanol sec-Butanol iso-Butanol ...

  6. Production Of Fullerenic Soot In Flames

    DOE Patents [OSTI]

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    2000-12-19

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  7. Production of fullerenic nanostructures in flames

    DOE Patents [OSTI]

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    1999-01-01

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  8. Laser controlled flame stabilization

    DOE Patents [OSTI]

    Early, James W.; Thomas, Matthew E.

    2001-01-01

    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  9. Improved ion detector

    DOE Patents [OSTI]

    Tullis, A.M.

    1986-01-30

    An improved ion detector device of the ionization detection device chamber type comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  10. PDID: Pulsed-Discharge Ionization Detector A new detector for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VOC Biomarker Diagnosis Advantages Radical shift in diagnosis methodology * Non-invasive diagnosis from breath or the headspace of biological fluids. * VOC biomarkers are...

  11. Flame stabilizer for stagnation flow reactor

    DOE Patents [OSTI]

    Hahn, David W.; Edwards, Christopher F.

    1999-01-01

    A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.

  12. Flex-flame burner and combustion method

    DOE Patents [OSTI]

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  13. Glow discharge detector

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2002-01-01

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.

  14. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames

    SciTech Connect (OSTI)

    Kelley, A.P.; Law, C.K.

    2009-09-15

    Various factors affecting the determination of laminar flames speeds from outwardly propagating spherical flames in a constant-pressure combustion chamber were considered, with emphasis on the nonlinear variation of the stretched flame speed to the flame stretch rate, and the associated need to nonlinearly extrapolate the stretched flame speed to yield an accurate determination of the laminar flame speed and Markstein length. Experiments were conducted for lean and rich n-butane/air flames at 1atm initial pressure, demonstrating the complex and nonlinear nature of the dynamics of flame evolution, and the strong influences of the ignition transient and chamber confinement during the initial and final periods of the flame propagation, respectively. These experimental data were analyzed using the nonlinear relation between the stretched flame speed and stretch rate, yielding laminar flame speeds that agree well with data determined from alternate flame configurations. It is further suggested that the fidelity in the extraction of the laminar flame speed from expanding spherical flames can be facilitated by using small ignition energy and a large combustion chamber. (author)

  15. Long range alpha particle detector

    DOE Patents [OSTI]

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  16. Long range alpha particle detector

    DOE Patents [OSTI]

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  17. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Enol Intermediates Unexpectedly Found in Flames Print Wednesday, 27 July 2005 00:00 For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With

  18. The interaction of high-speed turbulence with flames: Global properties and internal flame structure

    SciTech Connect (OSTI)

    Poludnenko, A.Y.; Oran, E.S. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375 (United States)

    2010-05-15

    We study the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system. Direct numerical simulations are performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive flow code. A simplified reaction-diffusion model represents a stoichiometric H{sub 2}-air mixture. The system being modeled represents turbulent combustion with the Damkoehler number Da=0.05 and with the turbulent velocity at the energy injection scale 30 times larger than the laminar flame speed. The simulations show that flame interaction with high-speed turbulence forms a steadily propagating turbulent flame with a flame brush width approximately twice the energy injection scale and a speed four times the laminar flame speed. A method for reconstructing the internal flame structure is described and used to show that the turbulent flame consists of tightly folded flamelets. The reaction zone structure of these is virtually identical to that of the planar laminar flame, while the preheat zone is broadened by approximately a factor of two. Consequently, the system evolution represents turbulent combustion in the thin reaction zone regime. The turbulent cascade fails to penetrate the internal flame structure, and thus the action of small-scale turbulence is suppressed throughout most of the flame. Finally, our results suggest that for stoichiometric H{sub 2}-air mixtures, any substantial flame broadening by the action of turbulence cannot be expected in all subsonic regimes. (author)

  19. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    output, high-concentration intermediates, and major products. However, for improving combustion efficiency and controlling pollution, it is necessary to understand flame...

  20. Design, Modeling, and Validation of a Flame Reformer for LNT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration ...

  1. Jet flames of a refuse derived fuel

    SciTech Connect (OSTI)

    Weber, Roman; Kupka, Tomasz; Zajac, Krzysztof

    2009-04-15

    This paper is concerned with combustion of a refuse derived fuel in a small-scale flame. The objective is to provide a direct comparison of the RDF flame properties with properties of pulverized coal flames fired under similar boundary conditions. Measurements of temperature, gas composition (O{sub 2}, CO{sub 2}, CO, NO) and burnout have demonstrated fundamental differences between the coal flames and the RDF flames. The pulverized coals ignite in the close vicinity of the burner and most of the combustion is completed within the first 300 ms. Despite the high volatile content of the RDF, its combustion extends far into the furnace and after 1.8 s residence time only a 94% burnout has been achieved. This effect has been attributed not only to the larger particle size of fluffy RDF particles but also to differences in RDF volatiles if compared to coal volatiles. Substantial amounts of oily tars have been observed in the RDF flames even though the flame temperatures exceeded 1300 C. The presence of these tars has enhanced the slagging propensity of RDF flames and rapidly growing deposits of high carbon content have been observed. (author)

  2. RADIATION DETECTOR

    DOE Patents [OSTI]

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  3. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames

    SciTech Connect (OSTI)

    Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2011-02-15

    Large discrepancies among the laminar flame speeds and Markstein lengths of methane/air mixtures measured by different researchers using the same constant-pressure spherical flame method are observed. As an effort to reduce these discrepancies, one linear model (LM, the stretched flame speed changes linearly with the stretch rate) and two non-linear models (NM I and NM II, the stretched flame speed changes non-linearly with the stretch rate) for extracting the laminar flame speed and Markstein length from propagating spherical flames are investigated. The accuracy and performance of the LM, NM I, and NM II are found to strongly depend on the Lewis number. It is demonstrated that NM I is the most accurate for mixtures with large Lewis number (positive Markstein length) while NM II is the most accurate for mixtures with small Lewis number (negative Markstein length). Therefore, in order to get accurate laminar flame speed and Markstein length from spherical flame experiments, different non-linear models should be used for different mixtures. The validity of the theoretical results is further demonstrated by numerical and experimental studies. The results of this study can be used directly in spherical flame experiments measuring the laminar flame speed and Markstein length. (author)

  4. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect (OSTI)

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  5. The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

    SciTech Connect (OSTI)

    Bailey, Catherine N.

    2010-01-01

    The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c{sup 2}. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as well

  6. Aromatics oxidation and soot formation in flames

    SciTech Connect (OSTI)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  7. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  8. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  9. Gated strip proportional detector

    DOE Patents [OSTI]

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  10. Gated strip proportional detector

    DOE Patents [OSTI]

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  11. Stable glow discharge detector

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2004-05-18

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.

  12. Flame tolerant secondary fuel nozzle

    SciTech Connect (OSTI)

    Khan, Abdul Rafey; Ziminsky, Willy Steve; Wu, Chunyang; Zuo, Baifang; Stevenson, Christian Xavier

    2015-02-24

    A combustor for a gas turbine engine includes a plurality of primary nozzles configured to diffuse or premix fuel into an air flow through the combustor; and a secondary nozzle configured to premix fuel with the air flow. Each premixing nozzle includes a center body, at least one vane, a burner tube provided around the center body, at least two cooling passages, a fuel cooling passage to cool surfaces of the center body and the at least one vane, and an air cooling passage to cool a wall of the burner tube. The cooling passages prevent the walls of the center body, the vane(s), and the burner tube from overheating during flame holding events.

  13. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    SciTech Connect (OSTI)

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W.; King, Galen B.

    2009-10-15

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate

  14. The interaction of high-speed turbulence with flames: Turbulent flame speed

    SciTech Connect (OSTI)

    Poludnenko, A.Y.; Oran, E.S. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375 (United States)

    2011-02-15

    Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S{sub T}, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S{sub L}, resulting in the Damkoehler number Da=0.05. The simulations were performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model, based on the one-step Arrhenius kinetics, represents a stoichiometric H{sub 2}-air mixture under the assumption of the Lewis number Le=1. Global properties and the internal structure of the flame were analyzed in an earlier paper, which showed that this system represents turbulent combustion in the thin reaction zone regime. This paper demonstrates that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S{sub T} is predominantly determined by the increase of the flame surface area, A{sub T}, caused by turbulence. (4) The observed increase of S{sub T} relative to S{sub L} exceeds the corresponding increase of A{sub T} relative to the surface area of the planar laminar flame, on average, by {approx}14%, varying from only a few percent to as high as {approx}30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent flame collisions and formation of regions of high flame curvature >or similar 1/{delta}{sub L}, or ''cusps,'' where {delta}{sub L} is the thermal width of the laminar flame. (6) The local flame speed in the cusps

  15. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at ALS Chemical Dynamics Beamline 9.0.2. In the apparatus, premixed reagent gases enter the flame chamber through the porous flat face of a burner that translates...

  16. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by a crossed tunable VUV beam. Photoions are mass-analyzed using a time-of-flight (TOF) mass spectrometer (MS). The luminous zone of the flame shown here (just to left...

  17. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to be well understood in terms of average energy output, ... In the apparatus, premixed reagent gases enter the flame ... The team launched a systematic search for enols among 24 ...

  18. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... to be well understood in terms of average energy output, ... In the apparatus, premixed reagent gases enter the flame ... The team launched a systematic search for enols among 24 ...

  19. Cal Flame: Proposed Penalty (2015-CE-14015)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Cal Flame failed to certify refrigerator basic model BBQ09849P-H as compliant with the applicable energy conservation standards.

  20. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  1. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  2. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  3. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  4. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  5. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  6. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  7. NO concentration imaging in turbulent nonpremixed flames

    SciTech Connect (OSTI)

    Schefer, R.W.

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  8. Laminar flame speeds of moist syngas mixtures

    SciTech Connect (OSTI)

    Das, Apurba K. [Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Kumar, Kamal; Sung, Chih-Jen [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2011-02-15

    This work experimentally investigates the effect of the presence of water vapor on the laminar flame speeds of moist syngas/air mixtures using the counterflow twin-flame configuration. The experimental results presented here are for fuel lean syngas mixtures with molar percentage of hydrogen in the hydrogen and carbon monoxide mixture varying from 5% to 100%, for an unburned mixture temperature of 323 K, and under atmospheric pressure. At a given equivalence ratio, the effect of varying amount of water vapor addition on the measured laminar flame speed is demonstrated. The experimental laminar flame speeds are also compared with computed values using chemical kinetic mechanisms reported in the literature. It is found that laminar flame speed varies non-monotonically with addition of water for the carbon monoxide rich mixtures. It first increases with increasing amount of water addition, reaches a maximum value, and then decreases. An integrated reaction path analysis is further conducted to understand the controlling mechanism responsible for the non-monotonic variation in laminar flame speed due to water addition. On the other hand, for higher values of H{sub 2}/CO ratio the laminar flame speed monotonically decreases with increasing water addition. It is shown that the competition between the chemical and thermal effects of water addition leads to the observed response. Furthermore, reaction rate sensitivity analysis as well as binary diffusion coefficient sensitivity analysis are conducted to identify the possible sources of discrepancy between the experimental and predicted values. The sensitivity results indicate that the reaction rate constant of H{sub 2}+OH = H{sub 2}O+H is worth revisiting and refinement of binary diffusion coefficient data of N{sub 2}-H{sub 2}O, N{sub 2}-H{sub 2}, and H{sub 2}-H{sub 2}O pairs can be considered. (author)

  9. Can we characterize turbulence in premixed flames?

    SciTech Connect (OSTI)

    Lipatnikov, A.N. [Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, 412 96 (Sweden)

    2009-06-15

    Modeling of premixed turbulent combustion involves averaging reaction rates in turbulent flows. The focus of most approaches to resolving this problem has been placed on determining the dependence of the mean rate w of product creation on the laminar flame speed S{sub L}, the rms turbulence velocity u', etc. The goal of the present work is to draw attention to another issue: May the input quantity u{sup '} for a model of w= w(u'/S{sub L},..) be considered to be known? The point is that heat release substantially affects turbulence and, hence, turbulence characteristics in premixed flames should be modeled. However, standard moment methods for numerically simulating turbulent flows do not allow us to evaluate the true turbulence characteristics in a flame. For instance, the Reynolds stresses in premixed flames are affected not only by turbulence itself, but also by velocity jump across flamelets. A common way to resolving this problem consists of considering the Reynolds stresses conditioned on unburned (or burned) mixture to be the true turbulence characteristics. In the present paper, this widely accepted but never proved hypothesis is put into question, first, by considering simple model constant-density problems (flame motion in an oscillating one-dimensional laminar flow; flame stabilized in a periodic shear, one-dimensional, laminar flow; turbulent mixing). In all the cases, the magnitude of velocity fluctuations, calculated using the conditioned Reynolds stresses, is affected by the intermittency of reactants and products and, hence, is not the true rms velocity. Second, the above claim is further supported by comparing balance equations for the mean and conditioned Reynolds stresses. The conditioned Reynolds stresses do not characterize the true turbulence in flames, because conditional averaging cuts off flow regions characterized by either high or low velocities. (author)

  10. Analytical instruments, ionization sources, and ionization methods

    DOE Patents [OSTI]

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  11. Pentan isomers compound flame front structure

    SciTech Connect (OSTI)

    Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.; Rachmetkaliev, K.N.

    1995-08-13

    The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to the side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.

  12. Investigations of swirl flames in a gas turbine model combustor

    SciTech Connect (OSTI)

    Meier, W.; Duan, X.R.; Weigand, P.

    2006-01-01

    The thermochemical states of three swirling CH{sub 4}/air diffusion flames, stabilized in a gas turbine model combustor, were investigated using laser Raman scattering. The flames were operated at different thermal powers and air/fuel ratios and exhibited different flame behavior with respect to flame instabilities. They had previously been characterized with respect to their flame structures, velocity fields, and mean values of temperature, major species concentrations, and mixture fraction. The single-pulse multispecies measurements presented in this article revealed very rapid mixing of fuel and air, accompanied by strong effects of turbulence-chemistry interactions in the form of local flame extinction and ignition delay. Flame stabilization is accomplished mainly by hot and relatively fuel-rich combustion products, which are transported back to the flame root within an inner recirculation zone. The flames are not attached to the fuel nozzle, and are stabilized approximately 10 mm above the fuel nozzle, where fuel and air are partially premixed before ignition. The mixing and reaction progress in this area are discussed in detail. The flames are short (<50 mm), especially that exhibiting thermoacoustic oscillations, and reach a thermochemical state close to adiabatic equilibrium at the flame tip. The main goals of this article are to outline results that yield deeper insight into the combustion of gas turbine flames and to establish an experimental database for the validation of numerical models.

  13. Computatonal and experimental study of laminar flames

    SciTech Connect (OSTI)

    Smooke, M.D.; Long, M.B.

    1993-12-01

    This research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in counterflow, cylindrical and coflowing axisymmetric configurations. The authors have pursued both computational and experimental aspects of the research in parallel. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the one and two-dimensional nonlinear boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. In particular, spontaneous Raman scattering and laser induced fluorescence were used to measure the temperature, major and minor species profiles.

  14. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments [OSTI]

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  15. Power-law wrinkling turbulence-flame interaction model for astrophysical flames

    SciTech Connect (OSTI)

    Jackson, Aaron P.; Townsley, Dean M.; Calder, Alan C.

    2014-04-01

    We extend a model for turbulence-flame interactions (TFI) to consider astrophysical flames with a particular focus on combustion in Type Ia supernovae. The inertial range of the turbulent cascade is nearly always under-resolved in simulations of astrophysical flows, requiring the use of a model in order to quantify the effects of subgrid-scale wrinkling of the flame surface. We provide implementation details to extend a well-tested TFI model to low-Prandtl number flames for use in the compressible hydrodynamics code FLASH. A local, instantaneous measure of the turbulent velocity is calibrated for FLASH and verification tests are performed. Particular care is taken to consider the relation between the subgrid rms turbulent velocity and the turbulent flame speed, especially for high-intensity turbulence where the turbulent flame speed is not expected to scale with the turbulent velocity. Finally, we explore the impact of different TFI models in full-star, three-dimensional simulations of Type Ia supernovae.

  16. PHASE DETECTOR

    DOE Patents [OSTI]

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  17. Excitation of thermoacoustic oscillations by small premixed flames

    SciTech Connect (OSTI)

    Coats, C.M.; Chang, Z.; Williams, P.D.

    2010-06-15

    Experiments have been carried out in which very small lean premixed flames closely representative of those formed by modern multiport domestic gas burners have been subjected to controlled acoustic perturbation. PLIF from CH has been used to visualise the flame response and the heat-release-rate fluctuations have been evaluated directly from the flame images. It is shown that small laminar flames can amplify the effects of acoustic velocity fluctuations by mechanisms that do not involve resonant heat loss to the burner and that the fluctuations in flame-front area are not adequately characterised by a Strouhal number alone. The measured transfer function is compared with the predictions of various analytical formulations and a new model of the flame oscillation is proposed which applies specifically to situations in which the design of the burner renders the flame base immobile. (author)

  18. Microwave detector

    DOE Patents [OSTI]

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  19. Microwave detector

    DOE Patents [OSTI]

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  20. Hydrogen detector

    DOE Patents [OSTI]

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  1. Identification of combustion intermediates in a low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flame with tunable synchrotron photoionization

    SciTech Connect (OSTI)

    Wu, Xuesong; Huang, Zuohua; Wei, Lixia [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Yuan, Tao; Zhang, Kuiwen [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2009-07-15

    Low-pressure (4.0 kPa) premixed laminar 2,5-dimethylfuran (DMF)/oxygen/argon flame with an equivalence ratio of 2.0 was studied with tunable vacuum ultraviolet (VUV) synchrotron radiation photoionization and molecular-beam mass spectrometry. Photoionization mass spectra of DMF/O{sub 2}/Ar flame were recorded and the photoionization efficiency curves of the combustion intermediates were measured. Flame species, including isomeric intermediates, are identified by comparing the measured ionization energies with those reported in literatures or those calculated with Gaussian-3 procedure. More than 70 species have been detected, including furan and its derivatives, aromatics, and free radicals. Possible reaction pathways of DMF, 2-methylfuran, and furan are proposed based on the intermediates identified. DMF can be consumed by H-abstraction and pyrolysis reactions. 2-Methylfuran and furan can be consumed by H-abstraction, H-addition and pyrolysis reactions. (author)

  2. Flame quality monitor system for fixed firing rate oil burners

    DOE Patents [OSTI]

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  3. Flame and flow characteristics of double concentric jets

    SciTech Connect (OSTI)

    Huang, R.F.; Yang, J.T.; Lee, P.C.

    1997-01-01

    The characteristic flame and flow modes of a double concentric type of combustor possessing a central air jet and an annular propane gas are experimentally studied. Subject to the effects of the gravitational, inertial, and pressure forces, the cold flow is classified into three primary patterns: annular fountain, unstable fountain, and recirculation bubble flows. Using direct and schlieren photography techniques, the flames in the velocity domain of annulus and central jets are systematically classified into several characteristic modes. At low central jet velocity, a central flame enclosed in a annular diffusion flame might exist. At high central jet velocity, only the annular flames exist. The existence of the central flame dominates the flame and flow behaviors at low central jet velocity. The interaction between the central jet and the recirculation bubble in the near wake region dominates the flame characteristics at high central jet velocity. The interaction between the flame behavior and the flow patterns in each characteristic mode is comprehensively discussed. The temperature profiles are probed by a fine-wire thermocouple. The radial temperature profiles for each characteristic flame mode at various levels are presented to show the thermal structures.

  4. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow andmore » relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse

  5. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    SciTech Connect (OSTI)

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow and relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suetal.(Combust. Flame, vol.144 (3), 2006, pp.494512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the

  6. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    SciTech Connect (OSTI)

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow and relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both

  7. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  8. The advanced flame quality indicator system

    SciTech Connect (OSTI)

    Oman, R.; Rossi, M.J.; Calia, V.S.; Davis, F.L.; Rudin, A.

    1997-09-01

    By combining oil tank monitoring, systems diagnostics and flame quality monitoring in an affordable system that communicates directly with dealers by telephone modem, Insight Technologies offers new revenue opportunities and the capability for a new order of customer relations to oil dealers. With co-sponsorship from New York State Energy Research and Development Authority, we have incorporated several valuable functions to a new product based on the original Flame Quality Indicator concept licensed from the US DOE`s Brookhaven National Laboratory. The new system is the Advanced Flame Quality Indicator, or AFQI. As before, the AFQI monitors and reports the intensity of the burner flame relative to a calibration established when the burner is set up at AFQI installation. Repairs or adjustments are summoned by late-night outgoing telephone calls when limits are exceeded in either direction, indicating an impending contamination or other malfunction. A independently, a pressure transducer for monitoring oil tank level and filter condition, safety lockout alarms and a temperature monitor; all reporting automatically at instructed intervals via an on-board modem to a central station PC computer (CSC). Firmware on each AFQI unit and Insight-supplied software on the CSC automatically interact to maintain a customer database for an oil dealer, an OEM, or a regional service contractor. In addition to ensuring continuously clean and efficient operation, the AFQI offers the oil industry a new set of immediate payoffs, among which are reduced outages and emergency service calls, shorter service calls from cleaner operation, larger oil delivery drops, the opportunity to stretch service intervals to as along as three years in some cases, new selling features to keep and attract customers, and greatly enhanced customer contact, quality and reliability.

  9. Computational and experimental study of laminar flames

    SciTech Connect (OSTI)

    Smooke, Mitchell

    2015-05-29

    During the past three years, our research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in coflowing axisymmetric configurations. We have pursued both computational and experimental aspects of the research in parallel on both steady-state and time-dependent systems. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the steady-state and time-dependent boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. Previously, spontaneous Raman scattering, chemiluminescence, and laser-induced fluorescence were used to measure the temperature, major and minor species profiles. Particle image velocimetry (PIV) has been used to investigate velocity distributions and for calibration of time-varying flames. Laser-induced incandescence (LII) with an extinction calibration was used to determine soot volume fractions, while soot surface temperatures were measured with three-color optical pyrometry using a color digital camera. A blackbody calibration of the camera allows for determination of soot volume fraction as well, which can be compared with the LII measurements. More recently, we have concentrated on a detailed characterization of soot using a variety of techniques including time-resolved LII (TiRe-LII) for soot primary particles sizes, multi-angle light scattering (MALS) for soot radius of gyration, and spectrally-resolved line of sight attenuation (spec-LOSA). Combining the information from all of these soot measurements can be used to determine the soot optical properties, which are observed to vary significantly depending on spatial location and fuel dilution. Our goal has been to obtain a more fundamental understanding of the important fluid dynamic and chemical interactions in

  10. Nanocomposite scintillator, detector, and method

    DOE Patents [OSTI]

    Cooke, D. Wayne; McKigney, Edward A.; Muenchausen, Ross E.; Bennett, Bryan L.

    2009-04-28

    A compact includes a mixture of a solid binder and at least one nanopowder phosphor chosen from yttrium oxide, yttrium tantalate, barium fluoride, cesium fluoride, bismuth germanate, zinc gallate, calcium magnesium pyrosilicate, calcium molybdate, calcium chlorovanadate, barium titanium pyrophosphate, a metal tungstate, a cerium doped nanophosphor, a bismuth doped nanophosphor, a lead doped nanophosphor, a thallium doped sodium iodide, a doped cesium iodide, a rare earth doped pyrosilicate, or a lanthanide halide. The compact can be used in a radiation detector for detecting ionizing radiation.

  11. Turbulent Nonpremixed Flames (TNF): Experimental Data Archives and Computational Submodels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In the 1990s an international collaboration formed around a series of workshops that became known collectively as the International Workshop on Measurement and Computation of Turbulent Non-Premixed Flames (TNF). An online library, hosted by Sandia National Laboratory (California) was established that provides data sets and submodels or "mechanisms" for the study of turbulence-chemistry interactions in turbulent nonpremixed and partially premixed combustion. Data are organized by flame types: simple jet flames, piloted jet flames, bluff body flames, and swirl flames. These data sets provide a means for collaborative comparisons of both measured and simulated/modeled research results and also assist scientists in determining priorities for further research. More than 20 data sets or databases are available from this website, along with various downloadable files of chemical mechanisms. The website also provides an extensive bibliography and the proceedings of the workshops themselves from 1996 through 2012. Information continues to be added to this collection.

  12. (Resonance ionization spectroscopy)

    SciTech Connect (OSTI)

    Young, J.P.

    1990-10-11

    J. P. Young attended the Fifth International Symposium on Resonance Ionization Spectroscopy and presented an invited oral presentation on research he and coworkers had carried out in applying diode lasers to resonance ionization mass spectrometry. A summary of the conference is given along with an assessment of some of the presentations that the author found of interest. Young also visited Professor Marassi at the University of Camerino to present a seminar and discuss mutual interests in a new molten salt research project of the author. Some of the studies at Camerino are described. Ideas concerning the author's research that came from private discussions are also presented here.

  13. FIELD TEST OF THE FLAME QUALITY INDICATOR

    SciTech Connect (OSTI)

    Andrew M. Rudin; Thomas Butcher; Henry Troost

    2003-02-04

    The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion chambers, and poor fuel

  14. Soot precursor measurements in benzene and hexane diffusion flames

    SciTech Connect (OSTI)

    Kobayashi, Y.; Furuhata, T.; Amagai, K.; Arai, M.

    2008-08-15

    To clarify the mechanism of soot formation in diffusion flames of liquid fuels, measurements of soot and its precursors were carried out. Sooting diffusion flames formed by a small pool combustion equipment system were used for this purpose. Benzene and hexane were used as typical aromatic and paraffin fuels. A laser-induced fluorescence (LIF) method was used to obtain spatial distributions of polycyclic aromatic hydrocarbons (PAHs), which are considered as soot particles. Spatial distributions of soot in test flames were measured by a laser-induced incandescence (LII) method. Soot diameter was estimated from the temporal change of LII intensity. A region of transition from PAHs to soot was defined from the results of LIF and LII. Flame temperatures, PAH species, and soot diameters in this transition region were investigated for both benzene and hexane flames. The results show that though the flame structures of benzene and hexane were different, the temperature in the PAHs-soot transition region of the benzene flame was similar to that of the hexane flame. Furthermore, the relationship between the PAH concentrations measured by gas chromatography in both flames and the PAH distributions obtained from LIF are discussed. It was found that PAHs with smaller molecular mass, such as benzene and toluene, remained in both the PAHs-soot transition and sooting regions, and it is thought that molecules heavier than pyrene are the leading candidates for soot precursor formation. (author)

  15. Turbulence-Flame Interactions in Type Ia Supernovae (Journal...

    Office of Scientific and Technical Information (OSTI)

    turbulent intensity and l is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. ...

  16. Shielded flashback-resistant diffusion flame burner for combustion diagnostics

    SciTech Connect (OSTI)

    Krupa, R.J.; Zizak, G.; Winefordner, J.D.

    1986-10-15

    A burner design is presented which is of general utility for combustion diagnostics of high temperature, high burning velocity flames. (AIP)

  17. Flame dynamics in a micro-channeled combustor

    SciTech Connect (OSTI)

    Hussain, Taaha; Balachandran, Ramanarayanan; Markides, Christos N.

    2015-01-22

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  18. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  19. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  20. Device for calibrating a radiation detector system

    DOE Patents [OSTI]

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  1. Device for calibrating a radiation detector system

    DOE Patents [OSTI]

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  2. Transition from cool flame to thermal flame in compression ignition process

    SciTech Connect (OSTI)

    Yamada, Hiroyuki; Suzaki, Kotaro; Goto, Yuichi; Tezaki, Atsumu

    2008-07-15

    The mechanism that initiates thermal flames in compression ignition has been studied. Experimentally, a homogeneous charge compression ignition (HCCI) engine was used with DME, n-heptane, and n-decane. Arrhenius plots of the heat release rate in the HCCI experiments showed that rates of heat release with DME, n-heptane, and n-decane exhibited a certain activation energy that is identical to that of the H{sub 2}O{sub 2} decomposition reaction. The same feature was observed in diesel engine operation using ordinary diesel fuel with advanced ignition timing to make ignition occur after the end of fuel injection. These experimental results were reproduced in nondimensional simulations using kinetic mechanisms for DME, n-heptane, and n-decane, the last being developed by extending the n-heptane mechanism. Methanol addition, which suppresses low-temperature oxidation (LTO) and delays the ignition timing, had no effect on the activation energy obtained from the Arrhenius plot of heat release rate. Nevertheless, methanol addition lowered the heat release rates during the prethermal flame process. This is because H{sub 2}O{sub 2} formation during cool flame was reduced by adding methanol. The mechanism during the transition process from cool flame to thermal flame can be explained quantitatively using thermal explosion theory, in which the rate-determining reaction is H{sub 2}O{sub 2} decomposition, assuming that heat release in this period is caused by partial oxidation of DME and HCHO initiated with the reaction with OH produced though H{sub 2}O{sub 2} decomposition. (author)

  3. The EXO-200 Detector, Part I: Detector Design And Construction...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The EXO-200 Detector, Part I: Detector Design And Construction Citation Details In-Document Search Title: The EXO-200 Detector, Part I: Detector Design And ...

  4. Investigations of swirl flames in a gas turbine model combustor

    SciTech Connect (OSTI)

    Weigand, P.; Meier, W.; Duan, X.R.; Stricker, W.; Aigner, M.

    2006-01-01

    A gas turbine model combustor for swirling CH{sub 4}/air diffusion flames at atmospheric pressure with good optical access for detailed laser measurements is discussed. Three flames with thermal powers between 7.6 and 34.9 kW and overall equivalence ratios between 0.55 and 0.75 were investigated. These behave differently with respect to combustion instabilities: Flame A burned stably, flame B exhibited pronounced thermoacoustic oscillations, and flame C, operated near the lean extinction limit, was subject to sudden liftoff with partial extinction and reanchoring. One aim of the studies was a detailed experimental characterization of flame behavior to better understand the underlying physical and chemical processes leading to instabilities. The second goal of the work was the establishment of a comprehensive database that can be used for validation and improvement of numerical combustion models. The flow field was measured by laser Doppler velocimetry, the flame structures were visualized by planar laser-induced fluorescence (PLIF) of OH and CH radicals, and the major species concentrations, temperature, and mixture fraction were determined by laser Raman scattering. The flow fields of the three flames were quite similar, with high velocities in the region of the injected gases, a pronounced inner recirculation zone, and an outer recirculation zone with low velocities. The flames were not attached to the fuel nozzle and thus were partially premixed before ignition. The near field of the flames was characterized by fast mixing and considerable finite-rate chemistry effects. CH PLIF images revealed that the reaction zones were thin (=<0.5 mm) and strongly corrugated and that the flame zones were short (h=<50 mm). Despite the similar flow fields of the three flames, the oscillating flame B was flatter and opened more widely than the others. In the current article, the flow field, structures, and mean and rms values of the temperature, mixture fraction, and species

  5. Nuclear Cargo Detector - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Cargo Detector Thomas Jefferson National Accelerator Facility Contact TJNAF About This Technology Technology Marketing SummaryApparatus for the inspection of cargo containers for nuclear materials comprising one or more arrays of modules comprising grounded, closed conductive tubes filled with an ionizing gas mixture such as, but not limited to, Argon:CO.sub.2.DescriptionA wire is suspended along each tube axis and electrically connected at both ends of the tube. A positive, dc high

  6. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    SciTech Connect (OSTI)

    Chakrabarty, Rajan K.; Novosselov, Igor V.; Beres, Nicholas D.; Moosmller, Hans; Sorensen, Christopher M.; Stipe, Christopher B.

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (?g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in ?g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in ?g flames, which reduces the time to gel for nanoparticles by ?10{sup 6}?s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  7. Wide range radioactive gas concentration detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  8. Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  9. System and method for optical monitoring of a combustion flame

    DOE Patents [OSTI]

    Brown, Dale M; Sandvik, Peter M; Fedison, Jeffrey B; Matocha, Kevin S; Johnson, Thomas E

    2006-09-26

    An optical spectrometer for combustion flame temperature determination includes at least two photodetectors positioned for receiving light from a combustion flame, each of the at least two photodetectors having a different, overlapping bandwidth for detecting a respective output signal in an ultraviolet emission band; and a computer for subtracting a respective output signal of a first one of the at least two photodetectors from a respective output signal of a second one of the at least two photodetectors to obtain a segment signal, and using the segment signal to determine the combustion flame temperature.

  10. Extinction and structure of counterflow premixed flames. Master's thesis

    SciTech Connect (OSTI)

    Crump, J.K.

    1989-01-01

    A theoretical and experimental investigation of the extinction of a counterflow premixed flame was performed using methane as the fuel. The extinction limits were measured for a premixed flame stabilized between a premixed, fuel lean stream of methane, air and nitrogen and a stream of hot combustion product. The composition of the reactant mixture as a function of the strain rate was measured at extinction over a wide range of conditions. The results are interpreted using previously developed theories to derive overall chemical kinetic rate parameters. Temperature and composition profiles were obtained for several premixed flames near extinction.

  11. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    SciTech Connect (OSTI)

    Seitzman, Jerry; Lieuwen, Timothy

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide

  12. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOE Patents [OSTI]

    Katz, Joseph L.; Miquel, Philippe F.

    1997-01-01

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.

  13. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOE Patents [OSTI]

    Katz, J.L.; Miquel, P.F.

    1997-07-22

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.

  14. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less

  15. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane air jet flames

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methaneair chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methaneair mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmorethe boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.less

  16. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    SciTech Connect (OSTI)

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

  17. Plastic neutron detectors.

    SciTech Connect (OSTI)

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in

  18. Design and Prototyping of an Ionization Profile Monitor for the SNS Accumulator Ring

    SciTech Connect (OSTI)

    Bartkoski, Dirk A; Deibele, Craig E; Polsky, Yarom

    2014-12-01

    An ionization profile monitor (IPM) has been designed for the Spallation Neutron Source (SNS) accumulator ring. Utilizing ionized electrons produced by beam-gas ionization, the SNS IPM uses a 120 kV bias potential to overcome beam space charge and accelerate electrons towards a movable particle detector. A 300 G magnetic field is used to confine the transverse electron motion, resulting in profile errors at the estimated 7% level. With a system bandwidth of 17.5 MHz. The SNS IPM is capable of measuring turn-by-turn beam profiles for a fully accumulated beam. This paper presents a description of the system and design.

  19. Simple Analysis of Flame Dynamics via Flexible Convected Disturbance...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Simple Analysis of Flame Dynamics via Flexible Convected Disturbance ... OSTI Identifier: 1160232 Report Number(s): A-NETL-PUB-020 Journal ID: ISSN 0748-4658 ...

  20. Probing flame chemistry with MBMS, theory, and modeling

    SciTech Connect (OSTI)

    Westmoreland, P.R.

    1993-12-01

    The objective is to establish kinetics of combustion and molecular-weight growth in C{sub 3} hydrocarbon flames as part of an ongoing study of flame chemistry. Specific reactions being studied are (1) the growth reactions of C{sub 3}H{sub 5} and C{sub 3}H{sub 3} with themselves and with unsaturated hydrocarbons and (2) the oxidation reactions of O and OH with C{sub 3}`s. This approach combines molecular-beam mass spectrometry (MBMS) experiments on low-pressure flat flames; theoretical predictions of rate constants by thermochemical kinetics, Bimolecular Quantum-RRK, RRKM, and master-equation theory; and whole-flame modeling using full mechanisms of elementary reactions.

  1. The effect of fuel composition on flame dynamics

    SciTech Connect (OSTI)

    Hendricks, Adam G.; Vandsburger, Uri

    2007-10-15

    As fuel sources diversify, the gas turbine industry is under increasing pressure to develop fuel-flexible plants, able to use fuels with a variety of compositions from a large range of sources. However, the dynamic characteristics vary considerably with composition, in many cases altering the thermoacoustic stability of the combustor. We compare the flame dynamics, or the response in heat release rate of the flame to acoustic perturbations, of the three major constituents of natural gas: methane, ethane, and propane. The heat release rate is quantified using OH* chemiluminescence and product gas temperature. Gas temperature is measured by tracking the absorption of two high-temperature water lines, via Tunable Diode Laser Absorption Spectroscopy. The flame dynamics of the three fuels differ significantly. The changes in flame dynamics due to variations in fuel composition have the potential to have a large effect on the thermoacoustic stability of the combustor. (author)

  2. 10b- Bifurcations in swirling flames.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in combustors With contributions by M. Falese, S. Hermeth, G. Staffelbach, L. Gicquel Computers & Fluids 89 (2014) 167-178 Comb. & Flame. 2014, 161, 184-196. Copyright Dr T....

  3. DNS of a turbulent lifted DME jet flame

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less

  4. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOE Patents [OSTI]

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  5. Electromechanically-cooled germanium radiation detector system...

    Office of Scientific and Technical Information (OSTI)

    ... GE DETECTORS; STIRLING CYCLE; ENERGY SYSTEMS; GE SEMICONDUCTOR DETECTORS; MEASURING INSTRUMENTS; MECHANICS; RADIATION DETECTORS; SEMICONDUCTOR DETECTORS; THERMODYNAMIC ...

  6. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames

    SciTech Connect (OSTI)

    Veloo, Peter S.; Wang, Yang L.; Egolfopoulos, Fokion N.; Westbrook, Charles K.

    2010-10-15

    Laminar flame speeds and extinction strain rates of premixed methanol, ethanol, and n-butanol flames were determined experimentally in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Additional measurements were conducted also to determine the laminar flame speeds of their n-alkane/air counterparts, namely methane, ethane, and n-butane in order to compare the effect of alkane and alcohol molecular structures on high-temperature flame kinetics. For both propagation and extinction experiments the flow velocities were determined using the digital particle image velocimetry method. Laminar flame speeds were derived through a non-linear extrapolation approach based on direct numerical simulations of the experiments. Two recently developed detailed kinetics models of n-butanol oxidation were used to simulate the experiments. The experimental results revealed that laminar flame speeds of ethanol/air and n-butanol/air flames are similar to those of their n-alkane/air counterparts, and that methane/air flames have consistently lower laminar flame speeds than methanol/air flames. The laminar flame speeds of methanol/air flames are considerably higher compared to both ethanol/air and n-butanol/air flames under fuel-rich conditions. Numerical simulations of n-butanol/air freely propagating flames, revealed discrepancies between the two kinetic models regarding the consumption pathways of n-butanol and its intermediates. (author)

  7. The stability and visualized flame and flow structures of a combusting jet in cross flow

    SciTech Connect (OSTI)

    Huang, R.F.; Chang, J.M. . Dept. of Mechanical Engineering)

    1994-08-01

    The blowoff stability and flame behavior of a combusting propane gas jet issuing from a well-contoured burner perpendicularly to a cross air stream in a wind tunnel test section is studied experimentally. A category of never-lift flames was found to have different stability characteristics and behavior from the conventionally reported liftable flames. The stability domain of the never-lift flames covers higher cross-flow velocities and lower fuel jet velocities compared with the liftable flames. The flame configurations in the stability domain are identified by characteristic modes: down-washed flame, flashing flame, developing flame, dual-flame, flickering flame, and pre-blowoff flame. The schlieren photographs are presented in order to discuss the effects of the flow structures on the general behavior of the flames in each characteristic mode and on the flame stability characteristics. The bisector of the eddy travelling avenue reasonably depicts the trajectory of the combusting jet in cross flow. Correlations for the trajectories of cold and combusting jets in cross flow are obtained.

  8. GADRAS Detector Response Function.

    SciTech Connect (OSTI)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  9. Evaluation of metallic foils for preconcentration of sulfur-containing gases with subsequent flash desorption/flame photometric detection

    SciTech Connect (OSTI)

    Kagel, R.A.; Farwell, S.O.

    1986-05-01

    Ag, Ni, Pd, Pt, Rh, and W foils were examined for their collective efficiencies toward seven sulfur-containing gases, i.e., H/sub 2/S, CH/sub 3/SH, CH/sub 3/SCH/sub 3/, CH/sub 3/SSCH/sub 3/, CS/sub 2/, COS, and SO/sub 2/. Low- and sub-part-per-billion (v/v) concentrations of these individual sulfur gases in air were drawn through a fluorocarbon resin cell containing a mounted 30-mm x 7-mm x 0.025-mm metal foil. The preconcentrated species were then thermally desorbed by a controlled pulse of current through the foil. The desorbed sample plug was swept in precleaned zero air from the fluorocarbon resin cell to a flame photometric detector. Sampling flow rate, ambient temperature, sample humidity, and common oxidants were examined for their effects on the collection efficiencies of these sulfur compounds on platinum and palladium foils. Analytical characteristics of this metal foil collection/flash desorption/flame photometric detector (MFC/FD/FPD) technique include a sulfur gas detectability of less than 50 pptr (parts per trillion) (v/v), a response repeatability of at least 95%, and field portable collection cells and instrumentation. The results are discussed both in terms of potential analytical applications of MFC/FD/FPD and in terms of their relationship to characterized models of gas adsorption on solid surfaces. 33 references, 6 figures, 3 tables.

  10. Liquid-phase chromatography detector

    DOE Patents [OSTI]

    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  11. Liquid-phase chromatography detector

    DOE Patents [OSTI]

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  12. A study of partially premixed unconfined propane flames

    SciTech Connect (OSTI)

    Roekke, N.A.; Hustad, J.E.; Soenju, O.K. )

    1994-04-01

    Unconfined turbulent partially premixed propane/air flames issuing from a straight tube into quiescent air at atmospheric pressure and temperature are investigated. Experiments on lifted flames are performed. Flame height and liftoff are reported together with emission indices for oxides of nitrogen (NO[sub 3]). The degree of partially premixing has been varied between a fuel mass fraction of 1.0 to 0.15. Six different nozzle diameters, d[sub 0], of 3.2, 6, 10, 20.5, 23.3, and 29.5 mm have been used. This resulted in outlet velocities, u[sub 0], varying from 1 to 130 m/s, flame heights up to 2.5 m, Froude numbers, Fr, from 3 to 3 [times] 10[sup 5], and thermal heat releases up to 350 kW. Flame height and liftoff show a strong dependence upon the ratio of the nozzle outlet velocity to the outlet diameter, the Froude number, and the fuel mass fraction Y[sub f]. Both modified, simplified, and newly developed expressions for height, liftoff and NO[sub x] emissions are presented and discussed. All the proposed expressions scale with Y[sub f][sup a]Fr[sup b] or Y[sub r][sup a]f(u[sub 0], d[sub 0]). The emission index for NO[sub x] scales very well with a previously developed expression based on the buoyant flame volume. The agreement between predictions and experimental data is generally good and well within the underlying experimental and theoretical uncertainties. The results from this study contain new data, as very little focus has previously been directed toward lifted partially premixed free flames of this size.

  13. Segmented pyroelector detector

    DOE Patents [OSTI]

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  14. Gamma ray detector shield

    DOE Patents [OSTI]

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  15. Organic materials and devices for detecting ionizing radiation

    DOE Patents [OSTI]

    Doty, F. Patrick; Chinn, Douglas A.

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  16. Nonlinear effects of stretch on the flame front propagation

    SciTech Connect (OSTI)

    Halter, F.; Tahtouh, T.; Mounaim-Rousselle, C. [Institut PRISME, Universite d'Orleans, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France)

    2010-10-15

    In all experimental configurations, the flames are affected by stretch (curvature and/or strain rate). To obtain the unstretched flame speed, independent of the experimental configuration, the measured flame speed needs to be corrected. Usually, a linear relationship linking the flame speed to stretch is used. However, this linear relation is the result of several assumptions, which may be incorrected. The present study aims at evaluating the error in the laminar burning speed evaluation induced by using the traditional linear methodology. Experiments were performed in a closed vessel at atmospheric pressure for two different mixtures: methane/air and iso-octane/air. The initial temperatures were respectively 300 K and 400 K for methane and iso-octane. Both methodologies (linear and nonlinear) are applied and results in terms of laminar speed and burned gas Markstein length are compared. Methane and iso-octane were chosen because they present opposite evolutions in their Markstein length when the equivalence ratio is increased. The error induced by the linear methodology is evaluated, taking the nonlinear methodology as the reference. It is observed that the use of the linear methodology starts to induce substantial errors after an equivalence ratio of 1.1 for methane/air mixtures and before an equivalence ratio of 1 for iso-octane/air mixtures. One solution to increase the accuracy of the linear methodology for these critical cases consists in reducing the number of points used in the linear methodology by increasing the initial flame radius used. (author)

  17. Welding arc gap ionization device

    DOE Patents [OSTI]

    Schweikhardt, George M.

    1976-01-01

    An alpha emitting isotope is positioned near the tip of a TIG welding electrode so that the alpha radiation can provide an ionized path between the electrode and the workpiece.

  18. Resonance ionization for analytical spectroscopy

    DOE Patents [OSTI]

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  19. Measurement of the soot concentration and soot particle sizes in propane oxygen flames

    SciTech Connect (OSTI)

    Bockhorn, H.; Fetting, F.; Meyer, U.; Reck, R.; Wannemacher, G.

    1981-01-01

    Soot concentrations and particle sizes were measured by light scattering and probe measurements in the burnt gas region of atmospheric pressure propane-oxygen flames and propane-oxygen flames to which hydrogen or ammonia were added. The results show that the soot concentrations in propane-oxygen flames, to which hydrogen is added are lower compared to propane-oxygen flames. The decrease of soot concentration is much stronger when ammonia is added. Associated with the reduction of soot concentration is a reduction of mean particle size of the soot particles and a lower breadth of the particle size distributions. Electron micrographs of soot particles from the probe measurements showed that soot particles from flames with high soot concentrations (propane oxygen flames) are aggregates with chain or cluster structure while the structure of the particles from flames with lower soot concentration (propane oxygen flames with hydrogen or ammonia added) is more compact. 24 refs.

  20. Mercuric iodide light detector and related method

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.

    1986-01-01

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.

  1. Mercuric iodide light detector and related method

    DOE Patents [OSTI]

    Iwanczyk, J.S.; Barton, J.B.; Dabrowski, A.J.; Schnepple, W.F.

    1986-09-23

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator. 7 figs.

  2. Absolute beam emittance measurements at RHIC using ionization profile monitors

    SciTech Connect (OSTI)

    Minty, M.; Connolly, R; Liu, C.; Summers, T.; Tepikian, S.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  3. High-energy detector

    DOE Patents [OSTI]

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  4. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    SciTech Connect (OSTI)

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  5. Study of fuel-nitrogen reactions in rich, premixed flames

    SciTech Connect (OSTI)

    Roby, R.J.

    1988-01-01

    The formation and removal of nitrogen-containing species involved in fuel-nitrogen reactions have been studied in atmospheric-pressure fuel-rich hydrogen/oxygen/argon flames. The fuel-nitrogen reaction mechanism was investigated by addition of ammonia, nitric oxide, or hydrogen cyanide alone or with various hydrocarbons to a base flame. Profiles of stable nitrogen species and hydroxyl radical were measured in the post-flame gases. Results show that an initial rapid decay of nitric oxide added to a hydrogen/oxygen/argon flame to approximately 60% of its initial value occurs within 1.0 mm of the burner surface (0.5 msec). The primary reaction for removal of nitric oxide was found to be H + NO + M = HNO + M. The reaction of nitric oxide with various hydrocarbons to form hydrogen cyanide was found to be first order in both the initial hydrocarbon concentration and the initial nitric oxide concentration. A kinetic model was developed that only partially predicts the results obtained. Analysis showed that, by varying the heat of formation of imidogen within the limits of its uncertainty, agreement between the calculations and the data could be improved for nitric oxide and nitrogen. However, the amine, nitrous oxide and hydrogen cyanide profiles were found not to be significantly affected. The significant discrepancy between the measured and calculated ammonia profiles is discussed in terms of the model predictions of both the ammonia formation and decay rates. The reaction: NM + H = N + H/sub 2/ is identified as a key rate-controlling step for removal of amine species in these flames. Evidence from the data and theoretical calculations suggests that the rate of this reaction at the current flame conditions may be as much as a factor of ten slower than the previously reported value.

  6. Spatially resolved heat release rate measurements in turbulent premixed flames

    SciTech Connect (OSTI)

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.; Mastorakos, E.; Frank, J.H.

    2006-01-01

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique uses simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.

  7. Phenomena in oscillating downward propagating flames induced by external laser irradiation method

    SciTech Connect (OSTI)

    Park, June Sung; Fujita, Osamu; Honko, Teruaki; Yamada, Yuichiro; Ito, Hiroyuki; Nakamura, Yuji [Division of Mechanical and Space Engineering, Hokkaido University, Kita13 Nishi8, Kita-ku, Sapporo, Hokkaido (Japan)

    2010-11-15

    Experiments in C{sub 2}H{sub 4}/CO{sub 2}-O{sub 2} premixed flames (Le < 1) propagating downwardly in a tube have been conducted to observe transition phenomena from laminar flame front to turbulent flame propagation triggered by external laser irradiation method. To investigate the exact motions of flame tip fluctuation at the initial moment of irradiating CO{sub 2} laser, the completely flat flame front is selected as a default flame, which is corresponding to the primary acoustic instability as reported by Searby (1992). According to the time-resolved observation, the flame front exposed to CO{sub 2} laser beam shows extremely unstable flame motions in which highly curved flame front towards unburned mixture is subject to diffusive-thermal instability. Then, the sudden enhanced burning state (increased flame surface) caused by flame instability induces the secondary acoustic instability which is akin to the observation in Ref. In the present study, we report the detailed descriptions of flame fronts on the transient behaviors leading the primary acoustic instability to turbulent motions actively induced by the absorption of externally irradiated CO{sub 2} laser beam. (author)

  8. INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2005-02-01

    Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally

  9. Lesson 4 - Ionizing Radiation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 - Ionizing Radiation Lesson 4 - Ionizing Radiation Lesson Three showed that unstable isotopes emit energy as they become more stable. This energy is known as radiation. This lesson explores forms of radiation, where radiation is found, how we detect and measure radiation, what sources of radiation people are exposed to, whether radiation is harmful, and how we can limit our exposure. Specific topics covered in this lesson include: Types of radiation Non-ionizing Ionizing Forms of ionizing

  10. 6Li foil thermal neutron detector

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Swinhoe, Martyn T; Favalli, Andrea; Chung, Kiwhan; Macarthur, Duncan W

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  11. Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations.

    SciTech Connect (OSTI)

    Chen, Jacqueline H.; Hawkes, Evatt R.

    2004-08-01

    Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damkhler number conditions, well beyond the regime in which agreement was expected. For lower Damkhler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however, they

  12. Detectors (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  13. Detectors (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  14. Method of growing films by flame synthesis using a stagnation-flow reactor

    DOE Patents [OSTI]

    Hahn, David W.; Edwards, Christopher F.

    1998-01-01

    A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.

  15. Method of growing films by flame synthesis using a stagnation-flow reactor

    DOE Patents [OSTI]

    Hahn, D.W.; Edwards, C.F.

    1998-11-24

    A method is described for stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability. 5 figs.

  16. Performance parameters of a liquid filled ionization chamber array

    SciTech Connect (OSTI)

    Poppe, B.; Stelljes, T. S.; Looe, H. K.; Chofor, N.; Harder, D.; Willborn, K.

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluated using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within 0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of 2.6% from the reference condition for the setup used. The ?-values of the

  17. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  18. Adaptors for radiation detectors

    SciTech Connect (OSTI)

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  19. On flame kernel formation and propagation in premixed gases

    SciTech Connect (OSTI)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  20. Flame Synthesis of Carbon Nanotubes Using Low Calorific Value Gases

    SciTech Connect (OSTI)

    Jorge Camacho; Mahesh Subramanya; Ahsan R. Choudhuri

    2007-03-31

    Nanostructures formed in diffusion flames of pure fuels [CH{sub 4}, C{sub 3}H{sub 8}, and C{sub 2}H{sub 2}] at different fuel flow rates have been analyzed. Synthesis samples have been also collected from diffusion flames of various fuel blends [H{sub 2}-CH{sub 4}, H{sub 2}-CO, H{sub 2}-C{sub 3}H{sub 8}, H{sub 2}-C{sub 2}H{sub 2}] at different combustion conditions. SEM images of particulate samples collected from H{sub 2}-CH{sub 4} diffusion flames show formation of nanostructures. However, the formation of nanostructures only occurs at a narrow window of fuel compositions (< 10% H{sub 2} concentration in the mixture) and flow conditions (Jet Exit Reynolds number Re{sub j} = 200). At higher H{sub 2} concentration and flow velocity, formation of nanostructures diminishes and H{sub 2}-CH{sub 4} flames produce amorphous carbon and soot particles.

  1. Single and double grid long-range alpha detectors

    DOE Patents [OSTI]

    MacArthur, Duncan W.; Allander, Krag S.

    1993-01-01

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  2. Single and double grid long-range alpha detectors

    DOE Patents [OSTI]

    MacArthur, D.W.; Allander, K.S.

    1993-03-16

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  3. Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors

    SciTech Connect (OSTI)

    Leman, S.W.; /MIT, MKI; Cabrera, B.; /Stanford U., Phys. Dept.; McCarthy, K.A.; /MIT, MKI; Pyle, M.; /Stanford U., Phys. Dept.; Resch, R.; /SLAC; Sadoulet, B.; Sundqvist, K.M.; /LBL, Berkeley; Brink, P.L.; Cherry, M.; /Stanford U., Phys. Dept.; Do Couto E Silva, E.; /SLAC; Figueroa-Feliciano, E.; /MIT, MKI; Mirabolfathi, N.; Serfass, B.; /UC, Berkeley; Tomada, A.; /Stanford U., Phys. Dept.

    2012-06-04

    We present results on quasidiffusion studies in large, 3 inch diameter, 1 inch thick [100] high purity germanium crystals, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare data obtained in two different detector types, with different phonon sensor area coverage, with results from a Monte Carlo. The Monte Carlo includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels.

  4. The digital trigger system for the RED-100 detector

    SciTech Connect (OSTI)

    Naumov, P. P. Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Efremenko, Yu. V.; Kaplin, V. A.

    2015-12-15

    The system for forming a trigger for the liquid xenon detector RED-100 is developed. The trigger can be generated for all types of events that the detector needs for calibration and data acquisition, including the events with a single electron of ionization. In the system, a mechanism of event detection is implemented according to which the timestamp and event type are assigned to each event. The trigger system is required in the systems searching for rare events to select and keep only the necessary information from the ADC array. The specifications and implementation of the trigger unit which provides a high efficiency of response even to low-energy events are considered.

  5. Real Time Flame Monitoring of Gasifier and Injectors

    SciTech Connect (OSTI)

    Zelepouga, Serguei; Saveliev, Alexei

    2011-12-31

    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or

  6. Combustion instabilities in sudden expansion oxy-fuel flames

    SciTech Connect (OSTI)

    Ditaranto, Mario; Hals, Joergen

    2006-08-15

    An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)

  7. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  8. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  9. Wide-range radioactive-gas-concentration detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  10. Nanomechanical resonance detector

    DOE Patents [OSTI]

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  11. Partially-Premixed Flames in Internal Combustion Engines

    SciTech Connect (OSTI)

    Robert W. Pitz; Michael C. Drake; Todd D. Fansler; Volker Sick

    2003-11-05

    This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers

  12. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect (OSTI)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  13. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    DOE Patents [OSTI]

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  14. An experimental investigation of thermoacoustic instabilities in a premixed swirl-stabilized flame

    SciTech Connect (OSTI)

    Fritsche, D.; Fueri, M.; Boulouchos, K.

    2007-10-15

    Modern gas turbines use lean premixed combustion to achieve the best compromise between pollutant emissions and efficiency. This type of combustion increases the flame receptivity to external perturbations, thereby promoting the onset of large-amplitude pressure oscillations called thermoacoustic instabilities (often referred to as combustion noise). To improve our understanding of stability properties in such complex systems, encountered in many industrial applications, the flame structure of an atmospheric swirl-stabilized burner of 30 to 75 kW was systematically investigated for various inlet temperatures and air-fuel ratios. This investigation revealed the existence of two stable flame types (one lean and one rich) separated by a region of unstable flames characterized by very distinct flame shapes, flame pressure drops, and dynamic pressure oscillations. The lean transition from stable to unstable flames has been associated with a critical flame temperature at the edge of two different flame-stabilizing mechanisms, while the rich transition from unstable to stable flames has been attributed to a critical ratio of hydrodynamic to combustion times in terms of Damkoehler number. In this noise island, the mechanism for instability is due to the nonmonotonic behavior of flame pressure drop as the air-fuel ratio is changed, the maximum pressure drop across the flame coinciding with the maximum dynamic pressure. Finally, the frequency analysis of the dynamic pressure revealed the coupling with the acoustic eigenmodes of the combustion chamber for the dominant mode and with the plenum for secondary ones the frequency of which did not change with flame temperature. (author)

  15. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  16. LHC detector upgrades

    SciTech Connect (OSTI)

    Dan Green

    2003-09-15

    The LHC detectors are well into their construction phase. The LHC schedule shows first beam to ATLAS and CMS in 2007. Because the LHC accelerator has begun to plan for a ten fold increase in LHC design luminosity (the SLHC or super LHC) it is none too soon to begin to think about the upgrades which will be required of the present LHC detectors. In particular, the tracking systems of ATLAS and CMS will need to be completely rebuilt. Given the time needed to do the R & D, make prototypes, and construct the new detectors and given the accelerator schedule for the SLHC, work needs to begin rather soon.

  17. Combustion measurements of an array of radial jet reattachment flames

    SciTech Connect (OSTI)

    Wu, J.; Seyed-Yagoobi, J.

    1999-07-01

    Radial Jet Reattachment Combustion (RJRC) nozzle provides improved fuel/air mixing for use in impingement flame heating. The RJRC nozzle produces a very stable flame with a circumferentially symmetric surface temperature profile and low coefficients of pressure on the impingement surface. The RJRC also produces very little soot. To characterize the performance of an array of RJRC nozzles from combustion point of view, exhaust gas analyses are presented through CO, CO{sub 2}, O{sub 2}, and NO{sub x} measurements. The results are also compared to the single RJRC nozzle combustion characteristics. In the array configuration, the highly, moderately, and weakly interactive RJRC nozzles are considered. The interaction among nozzles is highly dependent upon the between-nozzle spacing.

  18. AIRBORNE RADIATION DETECTOR

    DOE Patents [OSTI]

    Cartmell, T.R.; Gifford, J.F.

    1959-08-01

    An ionization chamber used for measuring the radioactivity of dust present in atmospheric air is described. More particularly. the patent describes a device comprising two concentric open ended, electrically connected cylinders between which is disposed a wire electrcde. A heating source is disposed inside of the cylinder to circulate air through the space between the two cylinders by convective flow. A high voltage electric field between the wire electrcde of the electrically connected cylinder will cause ionization of the air as it passes therethrough.

  19. Analysis of the laminar flamelet concept for nonpremixed laminar flames

    SciTech Connect (OSTI)

    Claramunt, K.; Consul, R.; Carbonell, D.; Perez-Segarra, C.D.

    2006-06-15

    The goal of this paper is to investigate the application of the laminar flamelet concept to the multidimensional numerical simulation of nonpremixed laminar flames. The performance of steady and unsteady flamelets is analyzed. The deduction of the mathematical formulation of flamelet modeling is exposed and some commonly used simplifications are examined. Different models for the scalar dissipation rate dependence on the mixture fraction variable are analyzed. Moreover, different criteria to evaluate the Lagrangian-type flamelet lifetime for unsteady flamelets are investigated. Inclusion of phenomena such as differential diffusion with constant Lewis number for each species and radiation heat transfer are also studied. A confined co-flow axisymmetric nonpremixed methane/air laminar flame experimentally investigated by McEnally and Pfefferle (Combust. Sci. Technol. 116-117 (1996) 183-209) and numerically investigated by Bennett, McEnally, Pfefferle, and Smooke (Combust. Flame 123 (2000) 522-546), Consul, Perez-Segarra, Claramunt, Cadafalch, and Oliva (Combust. Theory Modelling 7 (3) (2003) 525-544), and Claramunt, Consul, Perez-Segarra, and Oliva (Combust. Flame 137 (2004) 444-457) has been used as a test case. Results obtained using the flamelet concept have been compared to data obtained from the full resolution of the complete transport equations using primitive variables. Finite-volume techniques over staggered grids are used to discretize the governing equations. A parallel multiblock algorithm based on domain decomposition techniques running with loosely coupled computers has been used. To assess the quality of the numerical solutions presented in this paper, a verification process based on the generalized Richardson extrapolation technique and on the grid convergence index (GCI) has been applied. (author)

  20. Numerical investigation of spontaneous flame propagation under RCCI conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline H

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel

  1. Numerical investigation of spontaneous flame propagation under RCCI conditions

    SciTech Connect (OSTI)

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline H

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles and n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel

  2. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  3. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  4. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  5. Modular optical detector system

    DOE Patents [OSTI]

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  6. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  7. Fuel control for gas turbine with continuous pilot flame

    DOE Patents [OSTI]

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  8. Fuel effects on flame lift-off under diesel conditions

    SciTech Connect (OSTI)

    Persson, Helena; Andersson, Oeivind; Egnell, Rolf

    2011-01-15

    An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

  9. Characterization of acoustic effects on flame structures by beam deflection technique

    SciTech Connect (OSTI)

    Bedat, B.; Kostiuk, L.W.; Cheng, R.K.

    1993-10-01

    This work shows that the acoustic effects are the causes of the small amplitude flame wrinkling and movements seen in all the different gravitational conditions. The comparison between the acoustic velocity and beam deflection spectra for the two conditions studied (glass beads and fiber glass) demonstrates clearly this flame/acoustic coupling. This acoustic study shows that the burner behaves like a Helmholtz resonator. The estimated resonance frequency corresponds well to the experimental measurements. The fiber glass damps the level of the resonance frequency and the flame motion. The changes shown in normalized beam deflection spectra give further support of this damping. This work demonstrates that the acoustics has a direct influence on flame structure in the laminar case and the preliminary results in turbulent case also show a strong coupling. The nature of this flame/acoustic coupling are still not well understood. Further investigation should include determining the frequency limits and the sensitivity of the flame to acoustic perturbations.

  10. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    SciTech Connect (OSTI)

    Müller, O. Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  11. Nuclear cargo detector

    DOE Patents [OSTI]

    Christo, Steven Basil

    2006-12-19

    Apparatus for the inspection of cargo containers for nuclear materials comprising one or more arrays of modules comprising grounded, closed conductive tubes filled with an ionizing gas mixture such as, but not limited to, Argon:CO.sub.2. A wire is suspended along each tube axis and electrically connected at both ends of the tube. A positive, dc high voltage is supplied to one end of the wire and an amplifier is attached to the other end through a capacitance to decouple the amplifier from the high voltage. X-rays, gamma rays or neutrons produced by nuclear material and passing through the tube ionize the gas. The electrons from the gas ionization process are accelerated toward the wire surface due to the wire's electrical potential. The acceleration of the electrons near the wire's surface is sufficient to ionize more gas and produce an amplification of electrons/ions that create a surge of current large enough to be detectable by the amplifier. Means are also provided for a warning device coupled to the amplifier.

  12. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOE Patents [OSTI]

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  13. Unsteady behavior of locally strained diffusion flames affected by curvature and preferential diffusion

    SciTech Connect (OSTI)

    Yoshida, Kenji; Takagi, Toshimi

    1999-07-01

    Experimental and numerical studies are made of transient H{sub 2}/N{sub 2}--air counterflow diffusion flames unsteadily strained by an impinging micro jet. Two-dimensional temperature measurements by laser Rayleigh scattering method and numerical computations taking into account detailed chemical kinetics are conducted paying attention to transient local extinction and reignition in relation to the unsteadiness, flame curvature and preferential diffusion effects. The results are as follows. (1) Transient local flame extinction is observed where the micro jet impinges. But, the transient flame can survive instantaneously in spite of quite high stretch rate where the steady flame cannot exist. (2) Reignition is observed after the local extinction due to the micro air jet impingement. The temperature after reignition becomes significantly higher than that of the original flame. This high temperature is induced by the concentration of H{sub 2} species due to the preferential diffusion in relation to the concave curvature. The predicted behaviors of the local transient extinction and reignition are well confirmed by the experiments. (3) The reignition is induced after the formation of combustible premixed gas mixture and the consequent flame propagation. (4) The reignition is hardly observed after the extinction by micro fuel jet impingement. This is due to the dilution of H{sub 2} species induced by the preferential diffusion in relation to the convex curvature. (5) The maximum flame temperature cannot be rationalized by the stretch rate but changes widely depending on the unsteadiness and the flame curvature in relation with preferential diffusion.

  14. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    SciTech Connect (OSTI)

    Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

    2014-01-24

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  15. Cost efficiency of flame-guniting the lining of open-hearth and electric steelmaking furnaces

    SciTech Connect (OSTI)

    Voronov, M.V.; Kozenko, N.I.; Moiseenko, V.D.; Bondarenko, A.G.

    1988-05-01

    The use of flame-guniting for lining repair to the open-hearth and electric steelmaking furnaces of a number of Soviet plants is reviewed. Equipment and technology for flame-guniting the lining of furnaces, which provide for both local and general repairs to the walls, roofs, and bottoms of furnaces, are discussed. Methods are given for calculating expenditures for repair work and determining the cost efficiency of flame guniting relative to the increased number of heats per lining life. Results are given from calculations of the projected cost-efficiency of using flame-guniting for furnace lining repair at the metallurgical plants of the Ukranian Ministry of Ferrous Metallurgy.

  16. Experimental investigation into the effect of reformer gas addition on flame speed and flame front propagation in premixed, homogeneous charge gasoline engines

    SciTech Connect (OSTI)

    Conte, Enrico; Boulouchos, Konstantinos

    2006-07-15

    The effect of reformer gas addition to gasoline in internal combustion engines is assessed based on in-cylinder measurement techniques. These include ion sensors, an optical spark plug and heat release analysis from the cylinder pressure. A detailed analysis of these measurements is presented, giving insight into the combustion process and into the energy release. The flame front shape and propagation in the combustion chamber are reconstructed and the flame speed is estimated. The laminar flame speed has been observed to increase linearly with the energy fraction of reformer gas in the fuel blend. From pure gasoline to pure reformer gas the laminar flame speed increases by a factor of 4.4. The relative increase in the turbulent flame speed is lower. These results confirm what can be observed from the heat release analysis, that reformer gas addition mainly shortens the first phase of the combustion process. Different reformer gas compositions were tested, varying the ratio of hydrogen to inert species. Finally, flame propagation and flame speed at EGR-burn limit and at lean-burn limit are investigated. (author)

  17. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    SciTech Connect (OSTI)

    Choi, B.C.; Chung, S.H.

    2010-12-15

    The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. (author)

  18. Detectors in Extreme Conditions

    SciTech Connect (OSTI)

    Blaj, G.; Carini, G.; Carron, S.; Haller, G.; Hart, P.; Hasi, J.; Herrmann, S.; Kenney, C.; Segal, J.; Tomada, A.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  19. Effects of fuel type and equivalence ratios on the flickering of triple flames

    SciTech Connect (OSTI)

    Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A.

    2009-02-15

    An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

  20. Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame

    SciTech Connect (OSTI)

    Meier, W.; Weigand, P.; Duan, X.R.; Giezendanner-Thoben, R.

    2007-07-15

    A nozzle configuration for technically premixed gas turbine flames was operated with CH{sub 4} and air at atmospheric pressure. The flames were confined by a combustion chamber with large quartz windows, allowing the application of optical and laser diagnostics. In a distinct range of operating conditions the flames exhibited strong self-excited thermoacoustic pulsations at a frequency around 290 Hz. A flame with P=25kW thermal power and an equivalence ratio of {phi}=0.7 was chosen as a target flame in order to analyze the dynamics and the feedback mechanism of the periodic instability in detail. The velocity field was measured by three-component laser Doppler velocimetry, the flame structures were measured by chemiluminescence imaging and planar laser-induced fluorescence of OH, and the joint probability density functions of major species concentrations, mixture fraction, and temperature were measured by laser Raman scattering. All measuring techniques were applied in a phase-locked mode with respect to the phase angle of the periodic pulsation. In addition to the pulsating flame, a nonpulsating flame with increased fuel flow rate (P=30kW, {phi}=0.83) was studied for comparison. The measurements revealed significant differences between the structures of the pulsating and the nonpulsating (or ''quiet'') flame. Effects of finite-rate chemistry and unmixedness were observed in both flames but were more pronounced in the pulsating flame. The phase-locked measurements revealed large variations of all measured quantities during an oscillation cycle. This yielded a clear picture of the sequence of events and allowed the feedback mechanism of the instability to be identified and described quantitatively. The data set presents a very good basis for the verification of numerical combustion simulations because the boundary conditions of the experiment were well-defined and the most important quantities were measured with a high accuracy. (author)

  1. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  2. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  3. Scintillation neutron detectors

    SciTech Connect (OSTI)

    Davidson, J.B.

    1984-01-01

    Two basic types of scintillation area neutron detectors are reviewed. The first is the prompt detector which uses photomultipliers to convert the neutron scintillations to electrical pulses. These signals are combined in weighting or encoding circuits to give event location. Several embodiments of the weighted and coded scintillator approach are mentioned. The second type of scintillation detector is based on television techniques and has a delayed readout. In this method all the light (or as much as possible) is either focused with a fast lens or is coupled by being put in direct contact with the fiber-optic faceplate of an image intensifier tube. The light from the phosphor screen is intensified and coupled to a television camera tube instead of a photomultiplier, and further amplification is produced in the camera tube by accelerating the photoelectrons in order to produce secondary electrons. (LEW)

  4. JSATS Detector Field Manual

    SciTech Connect (OSTI)

    Choi, Eric Y.; Flory, Adam E.; Lamarche, Brian L.; Weiland, Mark A.

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software. The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values

  5. Handheld CZT radiation detector

    DOE Patents [OSTI]

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  6. Semiconductor radiation detector

    DOE Patents [OSTI]

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  7. RADIATION WAVE DETECTOR

    DOE Patents [OSTI]

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  8. Semiconductor neutron detector

    DOE Patents [OSTI]

    Ianakiev, Kiril D.; Littlewood, Peter B.; Blagoev, Krastan B.; Swinhoe, Martyn T.; Smith, James L.; Sullivan, Clair J.; Alexandrov, Boian S.; Lashley, Jason Charles

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  9. Future water Cherenkov detectors

    SciTech Connect (OSTI)

    Bergevin, Marc

    2015-05-15

    In these proceedings a review of the current proposed large-scale Warer Cherenkov experiments is given. An argument is made that future water Cherenkov detectors would benefit in the investment in neutron detection technology. A brief overview will be given of proposed water Cherenkov experiments such as HYPER-K and MEMPHYS and other R and D experiments to demonstrate neutron capture in water Cherenkov detectors. Finally, innovation developed in the context of the now defunct LBNE Water R and D option to improve Water Cherenkov technology will be described.

  10. Acoustic emission intrusion detector

    DOE Patents [OSTI]

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  11. Fissile material detector

    DOE Patents [OSTI]

    Ivanov, Alexander I.; Lushchikov, Vladislav I.; Shabalin, Eugeny P.; Maznyy, Nikita G.; Khvastunov, Michael M.; Rowland, Mark

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  12. Ultrasonic liquid level detector

    DOE Patents [OSTI]

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  13. Identification of a Previously Unobserved Dissociative Ionization...

    Office of Scientific and Technical Information (OSTI)

    Identification of a Previously Unobserved Dissociative Ionization Pathway in Time-Resolved Photospectroscopy of the Deuterium Molecule Not Available Temp HTML Storage 2: Cao, Wei; ...

  14. Atmospheric Ionization Mass Spectrometry Capabilities at Sandia...

    Office of Scientific and Technical Information (OSTI)

    Mass Spectrometry Capabilities at Sandia National Labs. Citation Details In-Document Search Title: Atmospheric Ionization Mass Spectrometry Capabilities at Sandia National Labs. ...

  15. Ionization probes of molecular structure and chemistry

    SciTech Connect (OSTI)

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  16. Fuel properties to enable lifted-flame combustion

    SciTech Connect (OSTI)

    Kurtz, Eric

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  17. The Upgraded D0 detector

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; ,

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  18. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect (OSTI)

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine programs goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  19. Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames

    SciTech Connect (OSTI)

    Weiland, N.T.; Strakey, P.A.

    2007-03-01

    Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Programs aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

  20. Timewise morphology of turbulent diffusion flame by means of image processing

    SciTech Connect (OSTI)

    Torii, Shuichi; Yano, Toshiaki; Tsuchino, Fumihiro

    1999-07-01

    An experimental study is performed to investigate the dynamic behavior of jet diffusion flames from a vertical circular nozzle. A real-time image processing on slow-motion video recording using the high-speed video camera is employed to clarify the flame morphology. Emphasis is placed on the timewise variation of the flame length, H, the peripheral distance of the flame, L, and the projected area of the flame contour, S, based on the RGB values of the flame. Here, RGB implies the three primary colors, i.e., red, green and blue, respectively. Propane is used as fuel and a burner tube of 2.40 mm inside diameter is employed here. It is found from the study that (1) a real-time color image processing with the aid of a slow-motion video recording discriminates the flame shape and discloses the flame behavior with time, (2) H, L and S vary periodically with time, and (3) the time-averaged value of L{sup 2}/S and its turbulence intensity, which is defined here, are intensified with an increase in the Reynolds number.

  1. Temperature and species-concentration measurements in turbulent flames by the CARS technique

    SciTech Connect (OSTI)

    Goss, L.P.; Schreiber, P.W.; Switzer, G.L.; Trump, D.D.

    1983-09-01

    Simultaneous temperature and N/sub 2/-concentration data have been obtained employing a 10-Hz coherent anti-stokes Raman spectroscopy system on two propane-air turbulent-jet diffusion flames with Reynolds numbers of 2000 and 6000. Average values, probability density functions, and correlation plots show reasonable trends for both centerline and radial profiles of the turbulent flames.

  2. Directional gamma detector

    DOE Patents [OSTI]

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  3. Understanding the SNO+ Detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, inmore »which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.« less

  4. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  5. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  6. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  7. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  8. Understanding the SNO+ Detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, inmore » which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.« less

  9. Electromagnetic radiation detector

    DOE Patents [OSTI]

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  10. Understanding the SNO+ Detector

    SciTech Connect (OSTI)

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  11. Comparison of CDMS [100] and [111] Oriented Germanium Detectors

    SciTech Connect (OSTI)

    Leman, S.W.; Hertel, S.A.; Kim, P.; Cabrera, B.; Do Couto E.Silva, E.; Figueroa-Feliciano, E.; McCarthy, K.A.; Resch, R.; Sadoulet, B.; Sundqvist, K.M.; /UC, Berkeley

    2012-09-14

    The Cryogenic Dark Matter Search (CDMS) utilizes large mass, 3-inch diameter x 1-inch thick target masses as particle detectors. The target is instrumented with both phonon and ionization sensors and comparison of energy in each channel provides event-by-event classification of electron and nuclear recoils. Fiducial volume is determined by the ability to obtain good phonon and ionization signal at a particular location. Due to electronic band structure in germanium, electron mass is described by an anisotropic tensor with heavy mass aligned along the symmetry axis defined by the [111] Miller index (L valley), resulting in large lateral component to the transport. The spatial distribution of electrons varies significantly for detectors which have their longitudinal axis orientations described by either the [100] or [111] Miller indices. Electric fields with large fringing component at high detector radius also affect the spatial distribution of electrons and holes. Both effects are studied in a 3 dimensional Monte Carlo and the impact on fiducial volume is discussed.

  12. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames

    SciTech Connect (OSTI)

    Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D.; de Goey, L.P.H.

    2008-04-15

    The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)

  13. Critical radius for sustained propagation of spark-ignited spherical flames

    SciTech Connect (OSTI)

    Kelley, Andrew P.; Jomaas, Grunde; Law, Chung K.

    2009-05-15

    An experimental study was performed to determine the requirements for sustained propagation of spark-ignited hydrogen-air and butane-air flames at atmospheric and elevated pressures. Results show that sustained propagation is always possible for mixtures whose Lewis number is less than unity, as long as a flame can be initially established. However, for mixtures whose Lewis number is greater than unity, sustained propagation depends on whether the initially ignited flame can attain a minimum radius. This minimum radius was determined for mixtures of different equivalence ratios and pressures, and was found to agree moderately well with the theoretically predicted critical radius beyond which there is no solution for the adiabatic, quasi-steady propagation of the spherical flame. The essential roles of pressure, detailed chemistry, and the need to use local values in the quantitative evaluation of the flame response parameters are emphasized. (author)

  14. Laws of convective vortex formation behind a flame front during its propagation in a tube

    SciTech Connect (OSTI)

    Abrukov, S.A.; Samsonov, V.P.

    1986-05-01

    This paper examines laws and conditions of convective vortex formation in combustion products during the propagation of a slow, stable flame in a vertical, half-open tube. The main element of the experimental unit was the reaction tube and weightless conditions were created in a freely falling container holding the reaction tube. Propane-air and CO-air mixtures were used. The structure of the flow behind the flame front was studied by the interferometric method. Frames are show from an interference film illustrating the typical pattern of vortex formation behind the flame front when the flame propagates upward at a velocity of 7 cm/sec. Analyses of the interferograms shows that the flame is stable before the vortices appear and that the flow of combustion products is laminar.

  15. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect (OSTI)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  16. Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner

    SciTech Connect (OSTI)

    Hancock, R.D.; Bertagnolli, K.E.; Lucht, R.P.

    1997-05-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy of diatomic nitrogen and hydrogen was used to measure flame temperatures in hydrogen/air flames produced using a nonpremixed, near-adiabatic, flat-flame Hencken burner. The CARS temperature measurements are compared with adiabatic flame temperatures calculated by the NASA-Lewis equilibrium code for equivalence ratios from 0.5--2.5. The nitrogen CARS temperatures are in excellent agreement with the equilibrium code calculations. Comparison of nitrogen CARS data and the equilibrium code calculations confirms that for sufficiently high flow rates the Hencken burner produces nearly adiabatic flames. Hydrogen CARS temperature measurements are compared to both nitrogen CARS temperature measurements and equilibrium code predictions in order to evaluate and improve the accuracy of hydrogen CARS as a temperature diagnostic tool. Hydrogen CARS temperatures for fuel-rich flames are on average 70 K ({approximately}3%) above the equilibrium code predictions and nitrogen CARS temperatures. The difference between temperatures measured using hydrogen and nitrogen CARS is probably due primarily to uncertainties in hydrogen linewidths and line-broadening mechanisms at these conditions.

  17. Multi-anode ionization chamber

    DOE Patents [OSTI]

    Bolotnikov, Aleksey E.; Smith, Graham; Mahler, George J.; Vanier, Peter E.

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  18. Ionization tube simmer current circuit

    DOE Patents [OSTI]

    Steinkraus, R.F. Jr.

    1994-12-13

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.

  19. Ionization tube simmer current circuit

    DOE Patents [OSTI]

    Steinkraus, Jr., Robert F.

    1994-01-01

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

  20. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    SciTech Connect (OSTI)

    Wang, Hai; Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model

  1. Detector #2 Data Sheet - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Spec Lab‎ > ‎ Detector #2 Data Sheet

  2. Underwater radiation detector

    DOE Patents [OSTI]

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  3. Liquid level detector

    DOE Patents [OSTI]

    Tshishiku, Eugene M.

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  4. Microwave hemorrhagic stroke detector

    DOE Patents [OSTI]

    Haddad, Waleed S.; Trebes, James E.

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  5. Microwave hemorrhagic stroke detector

    DOE Patents [OSTI]

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  6. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  7. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  8. Seismic intrusion detector system

    DOE Patents [OSTI]

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  9. Biological detector and method

    DOE Patents [OSTI]

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  10. Biological detector and method

    DOE Patents [OSTI]

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  11. Biological detector and method

    DOE Patents [OSTI]

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  12. Directional fast-neutron detector

    DOE Patents [OSTI]

    Byrd, Roger C. (Albuquerque, NM)

    1994-01-01

    A plurality of omnidirectional radiation detectors are arranged in a close packed symmetrical pattern to form a segmented detector. The output radiation counts from these detectors are arithmetically combined to provide the direction of a source of incident radiation. Directionality is achieved without the use of shielding to provide collimation and background reduction effects. Indeed, output counts from paired detectors are simply subtracted to yield a vector direction toward the radiation source. The counts from all of the detectors can be combined to yield an output signal functionally related to the radiation source strength.

  13. Nanowire-based detector

    DOE Patents [OSTI]

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  14. Sensor readout detector circuit

    DOE Patents [OSTI]

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  15. Sensor readout detector circuit

    DOE Patents [OSTI]

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  16. Hybrid superconducting neutron detectors

    SciTech Connect (OSTI)

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  17. A numerical and experimental investigation of premixed methane-air flame transient response

    SciTech Connect (OSTI)

    Habib N. Najm; Phillip H. Paul; Omar M. Knio; Andrew McIlroy

    2000-01-06

    The authors report the results of a numerical and experimental investigation of the response of premixed methane-air flames to transient strain-rate disturbances induced by a two-dimensional counter-rotating vortex-pair. The numerical and experimental time histories of flow and flame evolution are matched over a 10 ms interaction time. Measurements and computations of CH and OH peak data evolution are reported, and found to indicate mis-prediction of the flame time scales in the numerical model. Qualitative transient features of OH at rich conditions are not predicted in the computations. On the other hand, evolution of computed and measured normalized HCO fractions are in agreement. The computed CH{sub 3}O response exhibits a strong transient driven by changes to internal flame structure, namely temperature profile steepening, induced by the flow field. Steady state experimental PLIF CH{sub 3}O data is reported, but experimental transient CH{sub 3}O data is not available. The present analysis indicates that the flame responds at time scales that are quite distinct from ``propagation'' time scale derived from flame thickness and burning speed. Evidently, these propagation time scales are not adequate for characterizing the transient flame response.

  18. Highly turbulent counterflow flames: A laboratory scale benchmark for practical systems

    SciTech Connect (OSTI)

    Coppola, Gianfilippo; Coriton, Bruno; Gomez, Alessandro

    2009-09-15

    We propose a highly turbulent counterflow flame as a very useful benchmark of complexity intermediate between laminar flames and practical systems. By operating in a turbulent Reynolds number regime of relevance to practical systems such as gas turbines and internal combustion engines, it retains the interaction of turbulence and chemistry of such environments, but offers several advantages including: (a) the achievement of high Reynolds numbers without pilot flames, which is particularly advantageous from a modeling standpoint; (b) control of the transition from stable flames to local extinction/reignition conditions; (c) compactness of the domain by comparison with jet flames, with obvious advantages from both a diagnostic and, especially, a computational viewpoint; and (d) the reduction or, altogether, elimination of soot formation, thanks to the high strain rates and low residence times of such a system, and the establishment of conditions of large stoichiometric mixture fraction, as required for robust flame stabilization. We demonstrate the phenomenology of such highly strained turbulent flames under conditions spanning unpremixed, partially premixed and premixed regimes. The system lends itself to the validation of DNS and other computational models. It is also well-suited for the examination of practical fuel blends - a need that is becoming more and more pressing in view of the anticipated diversification of the future fossil fuel supply. (author)

  19. Laminar round jet diffusion flame buoyant instabilities: Study on the disappearance of varicose structures at ultra-low Froude number

    SciTech Connect (OSTI)

    Boulanger, Joan [Gas Turbine Laboratory, Institute for Aerospace Research, Ottawa, Ontario (Canada)

    2010-04-15

    At very low Froude number, buoyancy instabilities of round laminar jet diffusion flames disappear (except for small tip oscillations referred to as flickering) and those flames look stable and smooth. This study examines the contributions of the different phenomena in the flow dynamics that may explain this effect. It is observed that, at ultra-low Froude/Reynolds numbers, the material influenced by buoyancy is the plume of the flame and not the flame itself (reaction zone) that is short. Therefore, the vorticity creation zone does not profit from the reaction neighbourhood promoting a sharp gradient of density. Expansion and stretch are also important as they push vorticity creation terms more inside the flame and closer to the burner rim compared to moderate Froude flames. In these latter, the vorticity is continuously created around the flame reaction zone, along its developed height and closer to the vertical direction (in average). (author)

  20. Modeling of 1,3-hexadiene, 2,4-hexadiene and 1,4-hexadiene-doped methane flames: Flame modeling, benzene and styrene formation

    SciTech Connect (OSTI)

    Sharma, Sandeep; Harper, Michael R.; Green, William H.

    2010-07-15

    In this work, we have developed a detailed chemical kinetic model and reacting flow simulation for the hexadiene-doped 2-d methane diffusion flames studied experimentally by McEnally and Pfefferle. The GRI-Mech 2.11 methane oxidation and Lawrence Livermore butane oxidation mechanisms were used as the base mechanism to which hexadiene chemistry generated by Reaction Mechanism Generator (RMG) was added. Some important chemically activated pathways leading to aromatic species formation, including the reactions on C{sub 5}H{sub 7}, C{sub 6}H{sub 10}, C{sub 6}H{sub 9}, C{sub 6}H{sub 7}, C{sub 8}H{sub 8} and C{sub 8}H{sub 9} potential energy surfaces, are examined in great detail using quantum chemistry (CBS-QB3) and master equation analysis as implemented in Variflex. An efficient program to solve the doped methane diffusion flame was developed. The solver uses the method of lines to solve the species mass balance equation arising in the diffusion flame. It assumes that the temperature and velocity profiles of the doped flame are the same as those of the undoped flame. The mole fractions of various species as predicted by our model are compared to the experimentally measured mole fractions. The agreement between theory and experiments is quite good for most molecules. The added hexadiene dopants to the flame decompose to produce significant amount of cyclopentadienyl radical, which combines with methyl radical to produce benzene. We also show that styrene is formed primarily by recombination of cyclopentadienyl and propargyl radicals, a pathway which to our knowledge, has not been included in prior flame simulations. (author)

  1. Evolution of extreme resistance to ionizing radiation via genetic...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair Prev Next Title: Evolution of extreme resistance to ionizing ...

  2. Final Report: Ionization chemistry of high temperature molecular...

    Office of Scientific and Technical Information (OSTI)

    Final Report: Ionization chemistry of high temperature molecular fluids Citation Details In-Document Search Title: Final Report: Ionization chemistry of high temperature molecular ...

  3. Laser Ionized Preformed Plasma at FACET (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Laser Ionized Preformed Plasma at FACET Citation Details In-Document Search Title: Laser Ionized Preformed Plasma at FACET You are accessing a document from the ...

  4. Appearance, temperature, and NO{sub x} emission of two inverse diffusion flames with different port design

    SciTech Connect (OSTI)

    Sze, L.K.; Cheung, C.S.; Leung, C.W.

    2006-01-01

    Experiments were carried out to investigate the appearance, temperature distribution, and NO{sub x} emission index of two inverse diffusion flames, one with circumferentially arranged ports (CAPs) and the other with co-axial (CoA) jets, both burning LPG with 70% butane and 30% propane. Flame appearances were investigated first with a fixed fueling rate at different airflow rates equivalent to air jet Reynolds numbers (Re) of 1000 to 4500; and then at a fixed airflow rate with different fueling rates equivalent to overall equivalence ratios (F) of 1.0 to 2.0. The CAP flame is found to consist of two zones: a lower entrainment zone and an upper mixing and combustion zone. The CoA flame in most cases is similar to a diffusion flame. The two-zone structure can be observed only at Re larger than 2500. The temperature distributions of the flames are similar at overall equivalence ratios of 1.0 and 1.2 for Re=2500, except that the corresponding CoA flame is longer. The flame temperature is higher in the CAP flame than the CoA flame at higher overall equivalence ratios. A measurement of centerline oxygen concentrations shows that the oxygen concentration reaches a minimum value at a flame height of 50 mm in the CAP flame but decreases more gradually in the CoA flame. It can be concluded that there is more intense air-fuel mixing in a CAP flame than the CoA flame. Investigation of the emission index of NO{sub x} (EINO{sub x}) for both flames at Re=2500 and overall equivalence ratios of 1.0 to 6.0 reveals that the EINO{sub x} curve of each flame is bell-shaped, with a maximum value of 3.2 g/kg at F=1.2 for the CAP flame and 3 g/kg at F=2.2 for the CoA flame.

  5. Investigation of critical equivalence ratio and chemical speciation in flames of ethylbenzene-ethanol blends

    SciTech Connect (OSTI)

    Therrien, Richard J.; Ergut, Ali; Levendis, Yiannis A.; Richter, Henning; Howard, Jack B.; Carlson, Joel B.

    2010-02-15

    This work investigates five different one-dimensional, laminar, atmospheric pressure, premixed ethanol/ethylbenzene flames (0%, 25%, 50%, 75% and 90% ethanol by weight) at their soot onset threshold ({phi}{sub critical}). Liquid ethanol/ethylbenzene mixtures were pre-vaporized in nitrogen, blended with an oxygen-nitrogen mixture and, upon ignition, burned in premixed one-dimensional flames at atmospheric pressure. The flames were controlled so that each was at its visual soot onset threshold, and all had similar temperature profiles (determined by thermocouples). Fixed gases, light volatile hydrocarbons, polycyclic aromatic hydrocarbons (PAH), and oxygenated aromatic hydrocarbons were directly sampled at three locations in each flame. The experimental results were compared with a detailed kinetic model, and the modeling results were used to perform a reaction flux analysis of key species. The critical equivalence ratio was observed to increase in a parabolic fashion as ethanol concentration increased in the fuel mixture. The experimental results showed increasing trends of methane, ethane, and ethylene with increasing concentrations of ethanol in the flames. Carbon monoxide was also seen to increase significantly with the increase of ethanol in the flame, which removes carbon from the PAH and soot formation pathways. The PAH and oxygenated aromatic hydrocarbon values were very similar in the 0%, 25% and 50% ethanol flames, but significantly lower in the 75% and 90% ethanol flames. These results were in general agreement with the model and were reflected by the model soot predictions. The model predicted similar soot profiles for the 0%, 25% and 50% ethanol flames, however it predicted significantly lower values in the 75% and 90% ethanol flames. The reaction flux analysis revealed benzyl to be a major contributor to single and double ring aromatics (i.e., benzene and naphthalene), which was identified in a similar role in nearly sooting or highly sooting

  6. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems

    SciTech Connect (OSTI)

    Kessler, D.A.; Gamezo, V.N.; Oran, E.S. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC (United States)

    2010-11-15

    Flame acceleration and deflagration-to-detonation transitions (DDT) in large obstructed channels filled with a stoichiometric methane-air mixture are simulated using a single-step reaction mechanism. The reaction parameters are calibrated using known velocities and length scales of laminar flames and detonations. Calculations of the flame dynamics and DDT in channels with obstacles are compared to previously reported experimental data. The results obtained using the simple reaction model qualitatively, and in many cases, quantitatively match the experiments and are found to be largely insensitive to small variations in model parameters. (author)

  7. Effect of thermal gravitational convection on flame propagation over a fuel surface

    SciTech Connect (OSTI)

    Samsonov, V.P.

    1985-03-01

    The effect of thermal gravitational convection on flame propagation velocity and stability was determined by comparison of experimental results obtained by changing gravitational conditions while maintaining other external conditions constant. The fuel materials used were series BF glues. Interferograms were produced to study the alcohol vapor concentration field above the drying glue surface. Under conditions of normal gravity, flame behavior changes markedly. The flame loses stability and its structure becomes complex and strictly periodically repetitive. Experiments under conditions of weightlessness revealed that in the absence of gravity, relaxation combustion is impossible.

  8. Temperature measurement of axisymmetric flames under the influence of magnetic field using Talbot interferometry

    SciTech Connect (OSTI)

    Agarwal, Shilpi E-mail: manojklakra@gmail.com Kumar, Manoj E-mail: manojklakra@gmail.com Shakher, Chandra E-mail: manojklakra@gmail.com

    2014-10-15

    Combustion process control is related with ecological improvement and the problem of energy efficiency; hence it has a wide interest at both economical and scientific levels. Application of a magnetic field is one of the most promising methods of combustion control. The presence of magnetic field induces the changes in flame behavior. The effect of uniform magnetic field developed by permanent magnet is studied by Talbot interferometry using circular gratings. Experimental results show a small decrease in flame temperature and increase in flame dimensions.

  9. Igniter for gas discharge pipe with a flame detection system

    SciTech Connect (OSTI)

    Guerra, R.E.

    1990-03-06

    This patent describes a method of burning waste gas, using an igniter of the type having a nozzle, a main gas conduit extending to the nozzle, and an electrical spark means for creating a spark in the nozzle. It comprises: mounting the igniter to a waste gas discharge pipe with the nozzle directed across the opening of the gas discharge pipe; supplying a gaseous fuel to the main gas conduit; igniting the gaseous fuel with the electrical spark means, creating a flame for igniting the waste gas being discharged from the gas discharge pipe; providing the igniter with an auxiliary gas line extending to the vicinity of the nozzle; and supplying a second and lower volume source of waste gas to the auxiliary gas line for burning at the nozzle.

  10. TSTA Piping and Flame Arrestor Operating Experience Data

    SciTech Connect (OSTI)

    Cadwallader, Lee C.; Willms, R. Scott

    2014-10-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility operated from 1984 to 2001, running a prototype fusion fuel processing loop with ~100 grams of tritium as well as small experiments. There have been several operating experience reports written on this facility’s operation and maintenance experience. This paper describes analysis of two additional components from TSTA, small diameter gas piping that handled small amounts of tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The operating experiences and the component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.

  11. FLAME-SAMPLING PHOTOIONIZATION MASS SPECTROSCOPY - FINAL TECHNICAL REPORT

    SciTech Connect (OSTI)

    Hansen, Nils

    2013-02-12

    Research focused on detailed studies of the complex combustion chemistry of oxygenated, bio-derived fuels. In particular, studies were done of the flame chemistry of simple methyl and ethyl esters chosen as surrogates for the long-chain esters that are primary constituents of biodiesel fuels. The principal goals of these studies were: (1) show how fuel-specific structural differences including degree of unsaturation, linear vs. branched chain structures, and methoxy vs. ethoxy functions affect fueldestruction pathways, (2) understand the chemistry leading to potential increases in the emissions of hazardous air pollutants including aldehydes and ketones inherent in the use of biodiesel fuels, and (3) define the key chemical reaction mechanisms responsible for observed reductions in polycyclic aromatic hydrocarbons and particulate matter when oxygenated fuels are used as replacements for conventional fuels.

  12. Emissions from ethanol-blended fossil fuel flames

    SciTech Connect (OSTI)

    Akcayoglu, Azize

    2011-01-15

    A fundamental study to investigate the emission characteristics of ethanol-blended fossil fuels is presented. Employing a heterogeneous experimental setup, emissions are measured from diffusion flames around spherical porous particles. Using an infusion pump, ethanol-fossil fuel blend is transpired into a porous sphere kept in an upward flowing air stream. A typical probe of portable digital exhaust gas analyzer is placed in and around the flame with the help of a multi-direction traversing mechanism to measure emissions such as un-burnt hydrocarbons, carbon monoxide and carbon dioxide. Since ethanol readily mixes with water, emission characteristics of ethanol-water blends are also studied. For comparison purpose, emissions from pure ethanol diffusion flames are also presented. A simplified theoretical analysis has been carried out to determine equilibrium surface temperature, composition of the fuel components in vapor-phase and heat of reaction of each blend. These theoretical predictions are used in explaining the emission characteristics of flames from ethanol blends. (author) This paper presents the results of an experimental study of flow structure in horizontal equilateral triangular ducts having double rows of half delta-wing type vortex generators mounted on the duct's slant surfaces. The test ducts have the same axial length and hydraulic diameter of 4 m and 58.3 mm, respectively. Each duct consists of double rows of half delta wing pairs arranged either in common flow-up or common flow-down configurations. Flow field measurements were performed using a Particle Image Velocimetry Technique for hydraulic diameter based Reynolds numbers in the range of 1000-8000. The secondary flow field differences generated by two different vortex generator configurations were examined in detail. The secondary flow is found stronger behind the second vortex generator pair than behind the first pair but becomes weaker far from the second pair in the case of Duct1. However

  13. Gamma Detector Response and Analysis Software - Detector Response Function

    Energy Science and Technology Software Center (OSTI)

    2014-05-13

    GADRAS-DRF uses a Detector Response Function (DRF) to compute the response of gamma-ray detectors incident radiation. The application includes provision for plotting measured and computed spectra and for characterizing detector response parameters based on measurements of a series of calibration sources (e.g., Ba-133, Cs-137, Co-60, and Th-228). An application program interface enables other programs to access the dynamic-link library that is used to compute spectra.

  14. RADIATION DETECTOR SYSTEM

    DOE Patents [OSTI]

    Gundlach, J.C.; Kelley, G.G.

    1958-02-25

    This patent relates to radiation detection devices and presents a unique detection system especialiy desirable for portable type instruments using a Geiger-Mueller for a high voltage battery, thereby reducing the size and weight of the instrument, by arranging a one-shot multivibrator to recharge a capacitance applying operating potential to tho Geiger-Mueller tube each time a nuclear particle is detected. When detection occurs, the multivibrator further delivers a pulse to an appropriate indicator doing away with the necessity for the pulse amplifier conventionally intermediate between the detector and indicator in pulse detection systems.

  15. Wire-inhomogeneity detector

    DOE Patents [OSTI]

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  16. Pyroelectric demodulating detector

    DOE Patents [OSTI]

    Brocato, Robert W.

    2008-07-08

    A pyroelectric demodulating detector (also termed a pyroelectric demodulator) is disclosed which utilizes an electrical resistor stacked upon a pyroelectric element to demodulate an rf or microwave electrical input signal which is amplitude-modulated (AM). The pyroelectric demodulator, which can be formed as a hybrid or a monolithic device, has applications for use in AM radio receivers. Demodulation is performed by feeding the AM input signal into the resistor and converting the AM input signal into an AM heat signal which is conducted through the pyroelectric element and used to generate an electrical output signal containing AM information from the AM input signal.

  17. Flexible composite radiation detector

    DOE Patents [OSTI]

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  18. Response microcantilever thermal detector

    DOE Patents [OSTI]

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  19. Photon detector system

    DOE Patents [OSTI]

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  20. High throughput microcantilever detector

    DOE Patents [OSTI]

    Thundat, Thomas G.; Ferrell, Thomas L.; Hansen, Karolyn M.; Tian, Fang

    2004-07-20

    In an improved uncoated microcantilever detector, the sample sites are placed on a separate semi-conducting substrate and the microcantilever element detects and measures the changes before and after a chemical interaction or hybridization of the sites by sensing differences of phase angle between an alternating voltage applied to the microcantilever element and vibration of the microcantilever element. In another embodiment of the invention, multiple sample sites are on a sample array wherein an array of microcantilever elements detect and measure the change before and after chemical interactions or hybridizations of the sample sites.

  1. Liquid level detector

    DOE Patents [OSTI]

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  2. Liquid level detector

    DOE Patents [OSTI]

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  3. (Resonance ionization spectroscopy and its applications)

    SciTech Connect (OSTI)

    Ramsey, J.M.

    1990-10-11

    The Fifth International Symposium in Resonance Ionization Spectroscopy and Its Applications was attended. The Joint Research Centre of the European Communities at Ispra, Italy was also visited. The traveler presented an invited talk, chaired a meeting session and gave an impromptu presentation on how current laser technology limits the development of commercial instrumentation based upon Resonance Ionization Spectroscopy. The conference was truely international with scientists from 19 countries and less than 1/4 from the US. The meeting also provided a health mixture of experimentalists and theoreticians. Technical developments reported included the use of electric field ionization from laser prepared Rydberg states as a way to reduce background signals and commercial development of an optical parametric oscillator for replacing pulsed dye laser. A speaker from the Soviet Union suggested their willingness to market hardware they have developed based upon the resonance ionization technique.

  4. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less

  5. Linear and non-linear forced response of a conical, ducted, laminar premixed flame

    SciTech Connect (OSTI)

    Karimi, Nader; Brear, Michael J.; Jin, Seong-Ho; Monty, Jason P. [Department of Mechanical Engineering, University of Melbourne, Parkville, 3010 Vic. (Australia)

    2009-11-15

    This paper presents an experimental study on the dynamics of a ducted, conical, laminar premixed flame subjected to acoustic excitation of varying amplitudes. The flame transfer function is measured over a range of forcing frequencies and equivalence ratios. In keeping with previous works, the measured flame transfer function is in good agreement with that predicted by linear kinematic theory at low amplitudes of acoustic velocity excitation. However, a systematic departure from linear behaviour is observed as the amplitude of the velocity forcing upstream of the flame increases. This non-linearity is mostly in the phase of the transfer function and manifests itself as a roughly constant phase at high forcing amplitude. Nonetheless, as predicted by non-linear kinematic arguments, the response always remains close to linear at low forcing frequencies, regardless of the forcing amplitude. The origin of this phase behaviour is then sought through optical data post-processing. (author)

  6. EFFECTS OF MAGNETIC FIELDS ON THE PROPAGATION OF NUCLEAR FLAMES IN MAGNETIC WHITE DWARFS

    SciTech Connect (OSTI)

    Kutsuna, Masamichi; Shigeyama, Toshikazu [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-04-10

    We investigate the effects of the magnetic field on the propagation of laminar flames of nuclear reactions taking place in white dwarfs with masses close to the Chandrasekhar limit. We calculate the velocities of laminar flames parallel and perpendicular to uniform magnetic fields as eigenvalues of steady solutions for magnetic hydrodynamical equations. As a result, we find that even when the magnetic pressure does not dominate the entire pressure it is possible for the magnetic field to suppress the flame propagation through the thermal conduction. Above the critical magnetic field, the flame velocity decreases with increasing magnetic field strength as v {approx} B{sup -1}. In media with densities of 10{sup 7}, 10{sup 8}, and 10{sup 9} g cm{sup -3}, the critical magnetic fields are orders of {approx}10{sup 10}, 10{sup 11}, and 10{sup 12} G, respectively.

  7. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    DOE Patents [OSTI]

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  8. Regularities of flame propagation in a tube under weightless conditions: stability investigation

    SciTech Connect (OSTI)

    Samsonov, V.P.; Abrukov, S.A.; Kidin, N.I.

    1985-05-01

    In research devoted to the theoretical investigation of laminar flames during propagation in channels, one of the mandatory assumptions is the assumption about no gravity forces but until now the verification of the results of such work has been impossible because of the lack of experimental data on flame propagation under weightless conditions. This paper reports on experiments conducted to verify existing deductions and to do so the flame structure and certain regularities of its propagation in a half-open square tube under weightless conditions were investigated using a Schlieren method. Further, the evolution of the displacement of single perturbations on the flame surface to the wall was investigated by the method of a stroboscopic survey.

  9. Photon detectors with gaseous amplification

    SciTech Connect (OSTI)

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  10. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    SciTech Connect (OSTI)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H.; Jong, W. L.; Cutajar, D. L.; Rosenfeld, A. B.

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  11. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  12. Design, Modeling, and Validation of a Flame Reformer for LNT External

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bypass Regeneration | Department of Energy Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_midlam-mohler.pdf (432.95 KB) More Documents & Publications Eaton Aftertreatment System (EAS) for On-Highway Diesel Engines Diesel Reformers for On-board Hydrogen Applications

  13. Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambitious Technology Aboard | Department of Energy Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with Ambitious Technology Aboard Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with Ambitious Technology Aboard May 17, 2011 - 5:15pm Addthis Smoke cloud from Endeavour's Final Launge | Photo: NASA, Troy Cryder Smoke cloud from Endeavour's Final Launge | Photo: NASA, Troy Cryder Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee)

  14. Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion 2003 DEER Conference Presentation: Sandia National Laboratories 2003_deer_pickett.pdf (538.33 KB) More Documents & Publications Effects of Ambient Density and Temperature on Soot Formation under High-EGR Conditions Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines Optical-Engine and Surrogate-Fuels

  15. EIS-0351: Operation of Flaming Gorge Dam, Colorado River Storage Project, Colorado River, UT

    Broader source: Energy.gov [DOE]

    The Secretary of the United States Department of the Interior (Secretary), acting through the Bureau of Reclamation (Reclamation), is considering whether to implement a proposed action under which Flaming Gorge Dam would be operated to achieve the flow and temperature regimes recommended in the September 2000 report Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam (2000 Flow and Temperature Recommendations), published by the Upper Colorado River Endangered Fish Recovery Program (Recovery Program).

  16. Spark ignited turbulent flame kernel growth. Annual report, January--December, 1992

    SciTech Connect (OSTI)

    Santavicca, D.A.

    1994-06-01

    Cyclic combustion variations in spark-ignition engines limit the use of dilute charge strategies for achieving low NO{sub x} emissions and improved fuel economy. Results from an experimental study of the effect of incomplete fuel-air mixing (ifam) on spark-ignited flame kernel growth in turbulent propane-air mixtures are presented. The experiments were conducted in a turbulent flow system that allows for independent variation of flow parameters, ignition system parameters, and the degree of fuel-air mixing. Measurements were made at 1 atm and 300 K conditions. Five cases were studied; a premixed and four incompletely mixed cases with 6%, 13%, 24% and 33% RMS (root-mean-square) fluctuations in the fuel/air equivalence ratio. High speed laser shadowgraphy at 4,000 frames-per-second was used to record flame kernel growth following spark ignition, from which the equivalent flame kernel radius as a function of time was determined. The effect of ifam was evaluated in terms of the flame kernel growth rate, cyclic variations in the flame kernel growth, and the rate of misfire. The results show that fluctuations in local mixture strength due to ifam cause the flame kernel surface to become wrinkled and distorted; and that the amount of wrinkling increases as the degree of ifam. Ifam was also found to result in a significant increase in cyclic variations in the flame kernel growth. The average flame kernel growth rates for the premixed and the incompletely mixed cases were found to be within the experimental uncertainty except for the 33%-RMS-fluctuation case where the growth rate is significantly lower. The premixed and 6%-RMS-fluctuation cases had a 0% misfire rate. The misfire rates were 1% and 2% for the 13%-RMS-fluctuation and 24%-RMS-fluctuation cases, respectively; however, it drastically increased to 23% in the 33%-RMS-fluctuation case.

  17. Detector Background at Muon Colliders

    SciTech Connect (OSTI)

    Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2011-09-01

    Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine-detector interface (MDI) and detector. Results of the most recent realistic simulation studies are presented for a 1.5-TeV MC. It is shown that appropriately designed IR and MDI with sophisticated shielding in the detector have a potential to substantially suppress the background rates in the MC detector. The main characteristics of backgrounds are studied.

  18. Soot surface temperature measurements in pure and diluted flames at atmospheric and elevated pressures

    SciTech Connect (OSTI)

    Berry Yelverton, T.L.; Roberts, W.L. [Department of Mechanical and Aerospace Engineering, Campus Box 7910, North Carolina State University, 3211 Broughton Hall, Raleigh, NC 27695 (United States)

    2008-10-15

    Soot surface temperature was measured in laminar jet diffusion flames at atmospheric and elevated pressures. The soot surface temperature was measured in flames at one, two, four, and eight atmospheres with both pure and diluted (using helium, argon, nitrogen, or carbon dioxide individually) ethylene fuels with a calibrated two-color soot pyrometry technique. These two dimensional temperature profiles of the soot aid in the analysis and understanding of soot production, leading to possible methods for reducing soot emission. Each flame investigated was at its smoke point, i.e., at the fuel flow rate where the overall soot production and oxidation rates are equal. The smoke point was chosen because it was desirable to have similar soot loadings for each flame. A second set of measurements were also taken where the fuel flow rate was held constant to compare with earlier work. These measurements show that overall flame temperature decreases with increasing pressure, with increasing pressure the position of peak temperature shifts to the tip of the flame, and the temperatures measured were approximately 10% lower than those calculated assuming equilibrium and neglecting radiation. (author)

  19. Effects of multi-component diffusion and heat release on laminar diffusion flame liftoff

    SciTech Connect (OSTI)

    Li, Zhiliang; Chen, Ruey-Hung [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Phuoc, Tran X. [National Energy Technology Laboratory, Department of Energy, P.O. Box 10940, MS 84-340, Pittsburgh, PA 15261 (United States)

    2010-08-15

    Numerical simulations were conducted of the liftoff and stabilization phenomena of laminar jet diffusion flames of inert-diluted C{sub 3}H{sub 8} and CH{sub 4} fuels. Both non-reacting and reacting jets were investigated, including multi-component diffusivities and heat release effects (buoyancy and gas expansion). The role of Schmidt number for non-reacting jets was investigated, with no conclusive Schmidt number criterion for liftoff previously arrived at in similarity solutions. The cold-flow simulation for He-diluted CH{sub 4} fuel does not predict flame liftoff; however, adding heat release reaction lead to the prediction of liftoff, which is consistent with experimental observations. Including reaction was also found to improve liftoff height prediction for C{sub 3}H{sub 8} flames, with the flame base location differing from that in the similarity solution - the intersection of the stoichiometric and iso-velocity (equal to 1-D flame speed) is not necessary for flame stabilization (and thus liftoff). Possible mechanisms other than that proposed for similarity solution may better help to explain the stabilization and liftoff phenomena. (author)

  20. Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion

    SciTech Connect (OSTI)

    Choi, B.C.; Kim, K.N.; Chung, S.H.

    2009-02-15

    Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

  1. Experimental study of stationary flame propagation in a tube under conditions of weightlessness

    SciTech Connect (OSTI)

    Samsonov, V.P.; Abrukov, S.A.; Danilkin, V.A.; Davydov, A.E.; Tyameikin, V.Y.

    1983-05-01

    The development of detailed concepts of the effect of gravitational conditions on a wide class of combustion phenomena has been hindered by the lack of a sufficient amount of experimental data on combustion under conditions of weightlessness. The present study investigates the changes in form of a laminar flame under the influence of natural thermal convection with stationary propagation in a vertical tube under normal gravitational conditions and under conditions of weightlessness, in which case convection is absent. Lean propane/CO/air mixtures were ignited in a reaction tube suspended in a weightlessness simulation chamber. High speed photographic recording of the flame front revealed that for flame propagation from an open lower end under normal gravitational conditions the flame front is more convex than under weightless conditions. Under conditions of weightlessness the form of the flame front is the same for propagation from either end. Equations are derived describing the change in flame front convexity produced by convection. Some divergence of the calculation results from the experimental data may be explained by the fact that the equations do not consider factors such as thermal expansion and viscosity of the combustion products, and the peculiarities of convective ascent of these products.

  2. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    SciTech Connect (OSTI)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  3. Event counting alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; MacArthur, D.W.

    1996-08-27

    An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.

  4. Event counting alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D.; MacArthur, Duncan W.

    1996-01-01

    An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.

  5. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  6. Void/particulate detector

    DOE Patents [OSTI]

    Claytor, Thomas N.; Karplus, Henry B.

    1985-01-01

    Voids and particulates are detected in a flowing stream of fluid contained in a pipe by a detector which includes three transducers spaced about the pipe. A first transducer at a first location on the pipe transmits an ultrasonic signal into the stream. A second transducer detects the through-transmission of the signal at a second location and a third transducer at a third location upstream from the first location detects the back-scattering of the signal from any voids or particulates. To differentiate between voids and particulates a fourth transducer is positioned at a fourth location which is also upstream from the first location. The back-scattered signals are normalized with the through-transmission signal to minimize temperature fluctuations.

  7. Laser pulse detector

    DOE Patents [OSTI]

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  8. Laser pulse detector

    DOE Patents [OSTI]

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  9. Volatile chemical reagent detector

    DOE Patents [OSTI]

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  10. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  11. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  12. Particle detector spatial resolution

    DOE Patents [OSTI]

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  13. Particle detector spatial resolution

    DOE Patents [OSTI]

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  14. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba; Kocsis, Menyhert

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  15. Imaging alpha particle detector

    DOE Patents [OSTI]

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  16. Imaging alpha particle detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  17. Micro-channel plate detector

    DOE Patents [OSTI]

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  18. Multiphoton ionization of large water clusters

    SciTech Connect (OSTI)

    Apicella, B.; Li, X.; Passaro, M.; Spinelli, N.; Wang, X.

    2014-05-28

    Water clusters are multimers of water molecules held together by hydrogen bonds. In the present work, multiphoton ionization in the UV range coupled with time of flight mass spectrometry has been applied to water clusters with up to 160 molecules in order to obtain information on the electronic states of clusters of different sizes up to dimensions that can approximate the bulk phase. The dependence of ion intensities of water clusters and their metastable fragments produced by laser ionization at 355 nm on laser power density indicates a (3+1)-photon resonance-enhanced multiphoton ionization process. It also explains the large increase of ionization efficiency at 355 nm compared to that at 266 nm. Indeed, it was found, by applying both nanosecond and picosecond laser ionization with the two different UV wavelengths, that no water cluster sequences after n = 9 could be observed at 266 nm, whereas water clusters up to m/z 2000 Th in reflectron mode and m/z 3000 Th in linear mode were detected at 355 nm. The agreement between our findings on clusters of water, especially true in the range with n > 10, and reported data for liquid water supports the hypothesis that clusters above a critical dimension can approximate the liquid phase. It should thus be possible to study clusters just above 10 water molecules, for getting information on the bulk phase structure.

  19. The iQID Camera An Ionizing-Radiation Quantum Imaging Detector...

    Office of Scientific and Technical Information (OSTI)

    less Authors: Miller, Brian W. ; Gregory, Stephanie J. ; Fuller, Erin S. ; Barrett, Harrison H. ; Barber, Bradford H. ; Furenlid, Lars R. Publication Date: 2014-06-11 OSTI...

  20. Wire chamber radiation detector with discharge control

    DOE Patents [OSTI]

    Perez-Mendez, Victor; Mulera, Terrence A.

    1984-01-01

    A wire chamber radiation detector (11) has spaced apart parallel electrodes (16) and grids (17, 18, 19) defining an ignition region (21) in which charged particles (12) or other ionizing radiations initiate brief localized avalanche discharges (93) and defining an adjacent memory region (22) in which sustained glow discharges (94) are initiated by the primary discharges (93). Conductors (29, 32) of the grids (18, 19) at each side of the memory section (22) extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles (12) were detected by sequentially transmitting pulses to the conductors (29) of one grid (18) while detecting transmissions of the pulses to the orthogonal conductors (36) of the other grid (19) through glow discharges (94). One of the grids (19) bounding the memory region (22) is defined by an array of conductive elements (32) each of which is connected to the associated readout conductor (36) through a separate resistance (37). The wire chamber (11) avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles (12) have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  1. Methane and methanol oxidation in supercritical water: Chemical kinetics and hydrothermal flame studies

    SciTech Connect (OSTI)

    Steeper, R.R.

    1996-01-01

    Supercritical water oxidation (SCWO) is an emerging technology for the treatment of wastes in the presence of a large concentration of water at conditions above water`s thermodynamic critical point. A high-pressure, optically accessible reaction cell was constructed to investigate the oxidation of methane and methanol in this environment. Experiments were conducted to examine both flame and non-flame oxidation regimes. Optical access enabled the use of normal and shadowgraphy video systems for visualization, and Raman spectroscopy for in situ measurement of species concentrations. Flame experiments were performed by steadily injecting pure oxygen into supercritical mixtures of water and methane or methanol at 270 bar and at temperatures from 390 to 510{degrees}C. The experiments mapped conditions leading to the spontaneous ignition of diffusion flames in supercritical water. Above 470{degrees}C, flames spontaneously ignite in mixtures containing only 6 mole% methane or methanol. This data is relevant to the design and operation of commercial SCWO processes that may be susceptible to inadvertent flame formation. Non-flame oxidation kinetics experiments measured rates of methane oxidation in supercritical water at 270 bar and at temperatures from 390 to 442{degrees}C. The initial methane concentration was nominally 0.15 gmol/L, a level representative of commercial SCWO processes. The observed methane concentration histories were fit to a one-step reaction rate expression indicating a reaction order close to two for methane and zero for oxygen. Experiments were also conducted with varying water concentrations (0 to 8 gmol/L) while temperature and initial reactant concentrations were held constant. The rate of methane oxidation rises steadily with water concentration up to about 5 gmol/L and then abruptly falls off at higher concentrations.

  2. Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames

    SciTech Connect (OSTI)

    Olivani, Andrea; Solero, Giulio; Cozzi, Fabio; Coghe, Aldo

    2007-04-15

    Two confined lean non-premixed swirl-stabilized flame typologies were investigated in order to achieve detailed information on the thermal and aerodynamic field in the close vicinity of the burner throat and provide correlation with the exhaust emissions. Previous finding indicated the generation of a partially premixed flame with radial fuel injection and a purely diffusive flame with co-axial injection in a swirling co-flow. In the present work, the experimental study is reported which has been conducted on a straight exit laboratory burner with no quarl cone, fuelled by natural gas and air, and fired vertically upwards with the flame stabilized at the end of two concentric pipes with the annulus supplying swirled air and the central pipe delivering the fuel. Two fuel injection typologies, co-axial and radial (i.e., transverse), leading to different mixing mechanisms, have been characterized through different techniques: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) for a comprehensive analysis of the velocity field, still photography for the detection of flame front and main visible features, and thermocouples for the temperature distribution. Isothermal flow conditions have been included in the experimental investigation to provide a basic picture of the flow field and to comprehend the modifications induced by the combustion process. The results indicated that, although the global mixing process and the main flame structure are governed by the swirl motion imparted to the air stream, the two different fuel injection methodologies play an important role on mixture formation and flame stabilization in the primary mixing zone. Particularly, it has been found that, in case of axial injection, the turbulent interaction between the central fuel jet and the backflow generated by the swirl can induce an intermittent fuel penetration in the recirculated hot products and the formation of a central sooting luminous plume, a phenomenon totally

  3. Memory in Nonlinear Ionization of Transparent Solids

    SciTech Connect (OSTI)

    Rajeev, P. P.; Simova, E.; Hnatovsky, C.; Taylor, R. S.; Rayner, D. M.; Corkum, P. B.; Gertsvolf, M.; Bhardwaj, V. R.

    2006-12-22

    We demonstrate a shot-to-shot reduction in the threshold laser intensity for ionization of bulk glasses illuminated by intense femtosecond pulses. For SiO{sub 2} the threshold change serves as positive feedback reenforcing the process that produced it. This constitutes a memory in nonlinear ionization of the material. The threshold change saturates with the number of pulses incident at a given spot. Irrespective of the pulse energy, the magnitude of the saturated threshold change is constant ({approx}20%). However, the number of shots required to reach saturation does depend on the pulse energy. Recognition of a memory in ionization is vital to understand multishot optical or electrical breakdown phenomena in dielectrics.

  4. Resonance ionization spectroscopy of zirconium atoms

    SciTech Connect (OSTI)

    Page, R.H.; Dropinski, S.C.; Worden, E.F. Jr.; Stockdale, J.A.D.

    1992-05-01

    We have examined the stepwise-resonant three-photon-ionization spectrum of neutral zirconium atoms using three separately-tunable pulsed visible dye lasers. Lifetimes of even-parity levels (measured with delayed-photoionization technique) range from 10 to 100 nsec. Direct ionization cross sections appear to be less than 10{sup {minus}17} cm{sup 2}; newly-detected autoionizing levels give peak ionization cross sections (inferred from saturation fluences) up to 10{sup {minus}15} cm{sup 2}. Members of Rydberg series converging to the 315 and 1323 cm{sup {minus}1} levels of Zr{sup +} were identified. ``Clumps`` of autoionizing levels are thought to be due to Rydberg-valence mixing.

  5. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOE Patents [OSTI]

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  6. Ionized cluster beam technology for material science

    SciTech Connect (OSTI)

    Takagi, Toshinori

    1997-06-20

    The most suitable kinetic energy range of ionized materials in film formation and epitaxial growth is from a few eV to a few hundreds eV, especially, less than about 100eV, when ions are used as a host. The main roles of ions in film formation are the effects due to their kinetic energy and the electronic charge effects which involve the effect to active film formation and the effect acceleration of chemical reactions. Therefore, it is important to develope the technology to transport large volume of a flux of ionized particles with an extremely low incident energy without any troubles due to the space charge effects and charge up problems on the surface. This is the exact motivation for us to have been developing the Ionized Cluster Beam (ICB) technology since 1972. By ICB technology materials (actually wide varieties of materials such as metal, semiconductor, magnetic material, insulator, organic material, etc.) are vaporized and ejected through a small hole nozzle into a high vacuum, where the vaporized material condenses into clusters with loosely coupled atoms with the sizes about from 100 to a few 1000 atoms (mainly 100-2000 atoms) by supercondensation phenomena due to the adiabatic expansion in this evaporation process through a small hole nozzle. In the ICB technology an atom in each cluster is ionized by irradiated by electron shower, and the ionized clusters are accelerated by electric field onto a substrate. The ionized clusters with neutral clusters impinged onto a substrate are spreaded separately into atoms migrating over the substrate, so that the surface migration energy of the impinged atoms, that is, surface diffusion energy are controlled by an incident energy of a cluster. In this report the theoretical and also experimental results of ICB technology are summarized.

  7. INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION

    Office of Scientific and Technical Information (OSTI)

    interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...

  8. Microwave hematoma detector

    DOE Patents [OSTI]

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  9. Optical transcutaneous bilirubin detector

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-03-04

    This invention consists of a transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  10. Optical transcutaneous bilirubin detector

    DOE Patents [OSTI]

    Kronberg, James W.

    1993-01-01

    A transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  11. Optical transcutaneous bilirubin detector

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-11-09

    A transcutaneous bilirubin detector is designed comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient. 6 figures.

  12. Review of using gallium nitride for ionizing radiation detection

    SciTech Connect (OSTI)

    Wang, Jinghui; Mulligan, Padhraic; Cao, Lei R.; Brillson, Leonard

    2015-09-15

    With the largest band gap energy of all commercial semiconductors, GaN has found wide application in the making of optoelectronic devices. It has also been used for photodetection such as solar blind imaging as well as ultraviolet and even X-ray detection. Unsurprisingly, the appreciable advantages of GaN over Si, amorphous silicon (a-Si:H), SiC, amorphous SiC (a-SiC), and GaAs, particularly for its radiation hardness, have drawn prompt attention from the physics, astronomy, and nuclear science and engineering communities alike, where semiconductors have traditionally been used for nuclear particle detection. Several investigations have established the usefulness of GaN for alpha detection, suggesting that when properly doped or coated with neutron sensitive materials, GaN could be turned into a neutron detection device. Work in this area is still early in its development, but GaN-based devices have already been shown to detect alpha particles, ultraviolet light, X-rays, electrons, and neutrons. Furthermore, the nuclear reaction presented by {sup 14}N(n,p){sup 14}C and various other threshold reactions indicates that GaN is intrinsically sensitive to neutrons. This review summarizes the state-of-the-art development of GaN detectors for detecting directly and indirectly ionizing radiation. Particular emphasis is given to GaN's radiation hardness under high-radiation fields.

  13. Seal system with integral detector

    DOE Patents [OSTI]

    Fiarman, S.

    1982-08-12

    A seal system is disclosed for materials where security is of the essence, such as nuclear materials. The seal is tamper-indicating, indicates changes in environmental conditions that evidence attempts to bypass the seal, is unique and cost effective. The seal system is comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  14. Seal system with integral detector

    DOE Patents [OSTI]

    Fiarman, Sidney

    1985-01-01

    There is disclosed a seal system for materials where security is of the essence, such as nuclear materials, which is tamper-indicating, which indicates changes in environmental conditions that evidence attempts to by-pass the seal, which is unique and cost effective, said seal system comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  15. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  16. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  17. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  18. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames

    SciTech Connect (OSTI)

    Wang, Y.; Yao, Q. [Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, 100084 Beijing (China); Nathan, G.J. [School of Mechanical Engineering, Centre for Energy Technology, The University of Adelaide, S.A. 5005 (Australia); Alwahabi, Z.T.; King, K.D.; Ho, K. [School of Chemical Engineering, Centre for Energy Technology, The University of Adelaide, S.A. 5005 (Australia)

    2010-07-15

    The effect of a nominally uniform electric field on the initially uniform distribution of soot has been assessed for laminar premixed ethylene/air flames from a McKenna burner. An electrophoretic influence on charged soot particles was measured through changes to the deposition rate of soot on the McKenna plug, using laser extinction (LE). Soot volume fraction was measured in situ using laser-induced incandescence (LII). Particle size and morphologies were assessed through ex situ transmission electron microscopy (TEM) using thermophoretic sampling particle diagnostics (TSPD). The results show that the majority of these soot particles are positively charged. The presence of a negatively charged plug was found to decrease the particle residence times in the flame and to influence the formation and oxidation progress. A positively charged plug has the opposite effect. The effect on soot volume fraction, particles size and morphology with electric field strength is also reported. Flame stability was also found to be affected by the presence of the electric field, with the balance of the electrophoretic force and drag force controlling the transition to unstable flame flicker. The presence of charged species generated by the flame was found to reduce the dielectric field strength to one seventh that of air. (author)

  19. Experimental study of Markstein number effects on laminar flamelet velocity in turbulent premixed flames

    SciTech Connect (OSTI)

    Weiss, M.; Zarzalis, N. [Division of Combustion Technology, Engler-Bunte-Institute, University of Karlsruhe (TH), Karlsruhe (Germany); Suntz, R. [Institute for Chemical Technology, University of Karlsruhe (TH), Karlsruhe (Germany)

    2008-09-15

    Effects of turbulent flame stretch on mean local laminar burning velocity of flamelets, u{sub n}, were investigated experimentally in an explosion vessel at normal temperature and pressure. In this context, the wrinkling, A{sub t}/A{sub l}, and the burning velocity, u{sub t}, of turbulent flames were measured simultaneously. With the flamelet assumption the mean local laminar burning velocity of flamelets, u{sub n}=u{sub t} x (A{sub t}/A{sub l}){sup -1}, was calculated for different turbulence intensities. The results were compared to the influence of stretch on spherically expanding laminar flames. For spherically expanding laminar flames the stretched laminar burning velocity, u{sub n}, varied linearly with the Karlovitz stretch factor, yielding Markstein numbers that depend on the mixture composition. Six different mixtures with positive and negative Markstein numbers were investigated. The measurements of the mean local laminar burning velocity of turbulent flamelets were used to derive an efficiency parameter, I, which reflects the impact of the Markstein number and turbulent flame stretch - expressed by the turbulent Karlovitz stretch factor - on the local laminar burning velocity of flamelets. The results showed that the efficiency is reduced with increasing turbulence intensity and the reduction can be correlated to unsteady effects. (author)

  20. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    SciTech Connect (OSTI)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  1. Flame Inhibition by Phosphorus-Containing Compounds over a Range of Equivalence Ratios

    SciTech Connect (OSTI)

    Jayaweera, T M; Melius, C F; Pitz, W J; Westbrook, C K; Korobeinichev, O P; Shvartsberg, V M; Shmakov, A G; Rybitskaya, I V; Curran, H

    2004-03-17

    There is much interest in the combustion mechanism of organophosphorus compounds (OPCs) due to their role as potential halon replacements in fire suppression. A continuing investigation of the inhibition activity of organophosphorus compounds under a range of equivalence ratios was performed experimentally and computationally, as measured by the burning velocity. Updates to a previous mechanism were made by the addition and modification of reactions in the mechanism for a more complete description of the recombination reactions. In this work, the laminar flame speed is measured experimentally and calculated numerically for a premixed propane/air flame, under a range of equivalence ratios, undoped and doped with dimethyl methylphosphonate (DMMP). A detailed investigation of the catalytic cycles involved in the recombination of key flame radicals is made for two equivalence ratios, lean and rich. From this, the importance of different catalytic cycles involved in the lean versus rich case is discussed. Although the importance of certain cycles is different under different stoichiometries, the OPCs are similarly effective across the range, demonstrating the robustness of OPCs as flame suppressants. In addition, it is shown that the phosphorus compounds are most active in the high temperature region of the flame. This may, in part, explain their high level of inhibition effectiveness.

  2. Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame

    SciTech Connect (OSTI)

    Marinov, N.M.; Pitz, W.J.; Westbrook, C.K.; Vincitore, A.M.; Castaldi, M.J.; Senkan, S.M.; Melius, C.F.

    1998-07-01

    Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane-oxygen-argon burner stabilized flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.6 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer technique. Measurements were made in the main reaction and post-reaction zones for a number of low molecular weight species, aliphatics, aromatics, and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-fused aromatic rings. Reaction flux and sensitivity analysis were used to help identify the important reaction sequences leading to aromatic and PAH growth and destruction in the n-butane flame. Reaction flux analysis showed the propargyl recombination reaction was the dominant pathway to benzene formation. The consumption of propargyl by H atoms was shown to limit propargyl, benzene, and naphthalene formation in flames as exhibited by the large negative sensitivity coefficients. Naphthalene and phenanthrene production was shown to be plausibly formed through reactions involving resonantly stabilized cyclopentadienyl and indenyl radicals. Many of the low molecular weight aliphatics, combustion by-products, aromatics, branched aromatics, and PAHs were fairly well simulated by the model. Additional work is required to understand the formation mechanisms of phenyl acetylene, pyrene, and fluoranthene in the n-butane flame. 73 refs.

  3. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy

    SciTech Connect (OSTI)

    Owald, P.; Khler, M.; Hemberger, P.; Bodi, A.; Gerber, T.; Bierkandt, T.; Akyildiz, E.; Kasper, T.

    2014-02-15

    Adaptation of a low-pressure flat flame burner with a flame-sampling interface to the imaging photoelectron photoion coincidence spectrometer (iPEPICO) of the VUV beamline at the Swiss Light Source is presented. The combination of molecular-beam mass spectrometry and iPEPICO provides a new powerful analytical tool for the detailed investigation of reaction networks in flames. First results demonstrate the applicability of the new instrument to comprehensive flame diagnostics and the potentially high impact for reaction mechanism development for conventional and alternative fuels. Isomer specific identification of stable and radical flame species is demonstrated with unrivaled precision. Radical detection and identification is achieved for the initial H-abstraction products of fuel molecules as well as for the reaction controlling H, O, and OH radicals. Furthermore, quantitative evaluation of changing species concentrations during the combustion process and the applicability of respective results for kinetic model validation are demonstrated. Utilization of mass-selected threshold photoelectron spectra is shown to ensure precise signal assignment and highly reliable spatial profiles.

  4. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame

    SciTech Connect (OSTI)

    Castaldi, M.J.; Marinov, N.M.; Melius, C.F.

    1996-02-01

    Experimental and detailed chemical kinetic modeling has been performed to investigate aromatic and polyaromatic hydrocarbon formation pathways in a rich, sooting, ethylene-oxygen-argon premixed flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.5 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer (GC/MS) technique. Measurements were made in the flame and post-flame zone for a number of low molecular weight species, aliphatics, aromatics and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-aromatic fused rings. The modeling results show the key reaction sequences leading to aromatic and polycyclic aromatic hydrocarbon growth involve the combination of resonantly stabilized radicals. In particular, propargyl and 1-methylallenyl combination reactions lead to benzene and methyl substituted benzene formation, while polycyclic aromatics are formed from cyclopentadienyl radicals and fused rings that have a shared C{sub 5} side structure. Naphthalene production through the reaction step of cyclopentadienyl self-combination and phenanthrene formation from indenyl and cyclopentadienyl combination were shown to be important in the flame modeling study. The removal of phenyl by O{sub 2} leading to cyclopentadienyl formation is expected to play a pivotal role in the PAH or soot precursor growth process under fuel-rich oxidation conditions.

  5. Effects of CO addition on the characteristics of laminar premixed CH{sub 4}/air opposed-jet flames

    SciTech Connect (OSTI)

    Wu, C.-Y. [Advanced Engine Research Center, Kao Yuan University, Kaohsiung County, 821 (China); Chao, Y.-C.; Chen, C.-P.; Ho, C.-T. [Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701 (China); Cheng, T.S. [Department of Mechanical Engineering, Chung Hua University, Hsinchu, 300 (China)

    2009-02-15

    The effects of CO addition on the characteristics of premixed CH{sub 4}/air opposed-jet flames are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position, temperature, and velocity are performed in stoichiometric CH{sub 4}/CO/air opposed-jet flames with various CO contents in the fuel. Thermocouple is used for the determination of flame temperature, velocity measurement is made using particle image velocimetry (PIV), and the flame front position is measured by direct photograph as well as with laser-induced predissociative fluorescence (LIPF) of OH imaging techniques. The laminar burning velocity is calculated using the PREMIX code of Chemkin collection 3.5. The flame structures of the premixed stoichiometric CH{sub 4}/CO/air opposed-jet flames are simulated using the OPPDIF package with GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position, temperature, and velocity of the stoichiometric CH{sub 4}/CO/air flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that as the CO content in the fuel is increased from 0% to 80%, CO oxidation (R99) increases significantly and contributes to a significant level of heat-release rate. It is also shown that the laminar burning velocity reaches a maximum value (57.5 cm/s) at the condition of 80% of CO in the fuel. Based on the results of sensitivity analysis, the chemistry of CO consumption shifts to the dry oxidation kinetics when CO content is further increased over 80%. Comparison between the results of computed laminar burning velocity, flame temperature, CO consumption rate, and sensitivity analysis reveals that the effect of CO addition on the laminar burning velocity of the stoichiometric CH{sub 4}/CO/air flames is due mostly to the transition of the dominant chemical kinetic steps. (author)

  6. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect (OSTI)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  7. Composite scintillators for detection of ionizing radiation

    DOE Patents [OSTI]

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  8. WARPED IONIZED HYDROGEN IN THE GALAXY

    SciTech Connect (OSTI)

    Cersosimo, J. C.; Figueroa, N. Santiago; Velez, S. Figueroa; Soto, C. Lozada; Mader, S.; Azcarate, D.

    2009-07-01

    We report observations of the H166{alpha} ({nu} = 1424.734 MHz) radio recombination line (RRL) emission from the Galactic plane in the longitude range l = 267 deg. - 302 deg. and latitude range b = -3.{sup 0}0 to +1.{sup 0}5. The line emission observed describes the Carina arm in the Galactic azimuth range from {theta} = 260 deg. to 190 deg. The structure is located at negative latitudes with respect to the formal Galactic plane. The observations are combined with RRL data from the first Galactic quadrant. Both quadrants show the signature of the warp for the ionized gas, but an asymmetry of the distribution is noted. In the fourth quadrant, the gas is located between Galactic radii R {approx} 7 and 10 kpc, and the amplitude of the warp is seen from the midplane to z {approx} -150 pc. In the first quadrant, the gas is found between R {approx} 8 and 13-16 kpc, and flares to z {approx} +350 pc. We confirm the warp of the ionized gas near the solar circle. The distribution of the ionized gas is compared with the maximum intensity H I emission (0.30 < n{sub HI} < 0.45 cm{sup -3}) at intervals of the Galactic ring. The ionized material is correlated with the H I maximum intensity in both quadrants, and both components show the same tilted behavior with respect to the mid-Galactic plane.

  9. Theory of multiphoton ionization of atoms

    SciTech Connect (OSTI)

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs.

  10. The MINERνA detector

    SciTech Connect (OSTI)

    Fiorentini, G. A.

    2015-05-15

    MINERνA (Main INjector Experiment for ν-A) is a dedicated neutrino-nucleus scattering experiment at Fermilab. It uses a fine-grained fully active detector to make precision measurements of neutrino and antineutrino interactions on a variety of different nuclear targets (plastic scintillator, C, Fe, Pb, He and H2O) for energies up to few GeV. An overview of the experiment and a description of the detector are presented.

  11. Neutron detectors comprising boron powder

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  12. Directional detector of gamma rays

    DOE Patents [OSTI]

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  13. Hydrogen Contamination Detector Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Contamination Detector Workshop DOE Fuel Cell Technologies Office Hosted by: SAE International, Troy, Michigan June 12, 2014 (8:30 AM - 3:00 PM) Workshop Objective: The objective of the Hydrogen Contamination Detector (HCD) Workshop is to gather input from stakeholders on requirements, technologies and the research and development (R&D) gaps associated with the detection of contamination at hydrogen fueling stations. This input will help identify current state-of-the-art detection

  14. Hydrogen Contamination Detector Workshop Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contamination Detector Workshop Workshop held June 12, 2014 SAE International, Troy, Michigan (This page intentionally left blank) i Hydrogen Contamination Detector Workshop Workshop held June 12, 2014 SAE International, Troy, Michigan Sponsored by: U.S. Department of Energy (DOE) Energy Effciency and Renewable Energy (EERE) Fuel Cell Technologies Offce (FCTO) Hosted by: SAE International Lead Organizer Will James, Fuel Cell Technologies Offce, DOE Organizing Committee Will James, Fuel Cell

  15. The MICE Demonstration of Ionization Cooling

    SciTech Connect (OSTI)

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  16. Parameters of a supersonic combustion chamber with organization of combustion at the flame front

    SciTech Connect (OSTI)

    Solokhin, E.L.; Mironenko, V.A.; Ivanov, V.I.

    1985-10-25

    In some engineering problems, it is necessary to burn fuel in the combustion chamber with supersonic flow. As a rule, the scheme of organization of the process in such a chamber presupposes a separate accompanying feed of fuel and oxidant in which combustion of fuel takes place in a diffusion flame front. In this article we give theoretical results of investigation of a supersonic combustion chamber in which combustion of the fuel mixture takes place in a oblique flame front stabilized by an external source (analogous to the subsonic combustion chambers of ramjets). The possibility of the existence of such an oblique flame front in a supersonic flow of fuel mixture was previously proved experimentally.

  17. Chemistry of destroying chemical warfare agents in flame. Technical project report, April 1994-May 1995

    SciTech Connect (OSTI)

    Korobeinichev, O.P.; Chernov, A.A.; Shvartsberg, V.M.; Il`in, S.B.; Mokrushin, V.V.

    1995-05-01

    The goal of the research is to increase our understanding of flame chemistry of organophosphorus compounds (OPC). This class of chemicals includes chemical warfare agents. (CWAs) such as the nerve agents GB GD and VX, stockpiles of which in the United States and Former Soviet Union are scheduled for destruction by incineration or other technologies. Although high CWA destruction efficiency has been demonstrated in incinerator tests in the U.S. it is necessary to improve technology for achievement higher efficiency and lower level of pollutants. The knowledge of detailed destruction chemistry of the CWA and simulants can be obtained by studying the structure of flames, doped with simulants and CWA and by the development of the combustion model which will include the chemical mechanism of destroying CWA in flame. Alkyl phosphates and alkyl phosphonates are typical organophosphorus compounds, that are simulants of sarin.

  18. A study of electron recombination using highly ionizing particles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7) Eliminate lightly ionizing ptcls by requiring T calo > 0.5 T range Collection Induction Time ADC Select Highly Ionizing Particles Wire time time ANT 2013 Baller 13 Particle...

  19. Understanding the anomalous dispersion of doubly-ionized carbon...

    Office of Scientific and Technical Information (OSTI)

    of doubly-ionized carbon plasmas near 47 nm Citation Details In-Document Search Title: Understanding the anomalous dispersion of doubly-ionized carbon plasmas near 47 nm Over ...

  20. EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM...

    Office of Scientific and Technical Information (OSTI)

    EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II) Citation Details In-Document Search Title: EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II) ...

  1. Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment

    SciTech Connect (OSTI)

    McCarthy, Kevin

    2013-06-01

    Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that 85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory in Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented.

  2. Evidence of thermonuclear flame spreading on neutron stars from burst rise oscillations

    SciTech Connect (OSTI)

    Chakraborty, Manoneeta; Bhattacharyya, Sudip E-mail: sudip@tifr.res.in

    2014-09-01

    Burst oscillations during the rising phases of thermonuclear X-ray bursts are usually believed to originate from flame spreading on the neutron star surface. However, the decrease of fractional oscillation amplitude with rise time, which provides a main observational support for the flame spreading model, have so far been reported from only a few bursts. Moreover, the non-detection and intermittent detections of rise oscillations from many bursts are not yet understood considering the flame spreading scenario. Here, we report the decreasing trend of fractional oscillation amplitude from an extensive analysis of a large sample of Rossi X-ray Timing Explorer Proportional Counter Array bursts from 10 neutron star low-mass X-ray binaries. This trend is 99.99% significant for the best case, which provides, to the best of our knowledge, by far the strongest evidence of such a trend. Moreover, it is important to note that an opposite trend is not found in any of the bursts. The concave shape of the fractional amplitude profiles for all the bursts suggests latitude-dependent flame speeds, possibly due to the effects of the Coriolis force. We also systematically study the roles of low fractional amplitude and low count rate for non-detection and intermittent detections of rise oscillations, and attempt to understand them within the flame spreading scenario. Our results support a weak turbulent viscosity for flame spreading, and imply that burst rise oscillations originate from an expanding hot spot, thus making these oscillations a more reliable tool to constrain the neutron star equations of state.

  3. Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone

    SciTech Connect (OSTI)

    Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F.

    2010-04-15

    The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)

  4. Quantum Theory for Cold Avalanche Ionization in Solids

    SciTech Connect (OSTI)

    Deng, H. X.; Zu, X. T.; Xiang, X.; Sun, K.

    2010-09-10

    A theory of photon-assisted impact ionization in solids is presented. Our theory makes a quantum description of the new impact ionization--cold avalanche ionization recently reported by P. P. Rajeev, M. Gertsvolf, P. B. Corkum, and D. M. Rayner [Phys. Rev. Lett. 102, 083001 (2009)]. The present theory agrees with the experiments and can be reduced to the traditional impact ionization expression in the absence of a laser.

  5. Using near detector(s) to predict the far detector events in NOvA experiment

    SciTech Connect (OSTI)

    Djurcic, Zelimir; /Argonne

    2011-01-01

    The NOvA experiment is designed to search for a non-vanishing mixing angle {theta}{sub 13} with unprecedented sensitivity and has the potential to resolve the neutrino mass hierarchy and constrain CP-violation phase. NOvA will use two functionally identical detectors at near and far locations to eliminate sensitivity to modeling of neutrino flux and cross-sections. The near detector will measure neutrino rate to constrain backgrounds expected in the far detector which will search for appearance of electron neutrinos and/or anti-neutrinos using Fermilab NuMI neutrino beam. This report describes initial thoughts on how the available beams and detectors may be used to reach the NOvA goals.

  6. Enhancement of a laminar premixed methane/oxygen/nitrogen flame speed using femtosecond-laser-induced plasma

    SciTech Connect (OSTI)

    Yu Xin; Peng Jiangbo; Yi Yachao; Zhao Yongpeng; Chen Deying; Yu Junhua [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080 (China); Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China); Yang Peng; Sun Rui [Institute of Combustion Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2010-07-05

    We first investigate the effects of femtosecond-laser-induced plasma on the flame speed of a laminar premixed methane/oxygen/nitrogen flame with a wide range of the equivalence ratios (0.8-1.05) at atmospheric pressure. It is experimentally found that the flame speed increases 20.5% at equivalence ratios 1.05. The self-emission spectra from the flame and the plasma are studied and an efficient production of active radicals under the action of femtosecond (fs)-laser pulses has been observed. Based on the experimental data obtained, the presence of oxygen atom and hydrocarbon radicals is suggested to be a key factor enhancing flame speed.

  7. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect (OSTI)

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  8. Adhesion of diamond coatings synthesized by oxygen-acetylene flame CVD on tungsten carbide

    SciTech Connect (OSTI)

    Marinkovic, S.; Stankovic, S.; Dekanski, A.

    1995-12-31

    The results of a study concerned with chemical vapor deposition of diamond on tungsten carbide cutting tools using an oxygen-acetylene flame in a normal ambient environment are presented. Effects of preparation conditions on the adhesion of the coating have been investigated, including different surface treatment, different position of the flame with respect to the coated surface, effect of an intermediate poorly crystalline diamond layer, etc. In particular, effect of polishing and ultrasonic lapping with diamond powder was compared with that of a corresponding treatment with SiC powder.

  9. Method for producing flame retardant porous products and products produced thereby

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame. 1 fig.

  10. Method for producing flame retardant porous products and products produced thereby

    DOE Patents [OSTI]

    Salyer, Ival O.

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  11. Method for Producing Flame Retardant Porous Products and Products Produced Thereby

    DOE Patents [OSTI]

    Salyer, Ival O.

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  12. Method and apparatus to monitor a beam of ionizing radiation

    SciTech Connect (OSTI)

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  13. TH-C-19A-06: Measurements with a New Commercial Synthetic Single Crystal Diamond Detector

    SciTech Connect (OSTI)

    Laub, W; Crilly, R

    2014-06-15

    Purpose: A commercial version of a synthetic single crystal diamond detector in a Scottky diode configuration was recently released as the new type 60019 microDiamond detector (PTW-Freiburg). In this study we investigate the dosimetric properties of this detector and explore if the use of the microDiamond detector can be expanded to high energy photon beams of up to 15MV and to large field measurements. Methods: Energy dependency was investigated. Photon and electron depth-dose curves were measured. Photon PDDs were measured with the Semiflex type 31010, microLion type 31018, P-Diode type 60016, SRS Diode type 60018, and the microDiamond type 60019 detector. Electron depth-dose curves were measured with a Markus chamber type 23343, an E Diode type 60017 and the microDiamond type 60019 detector (all PTW-Freiburg). Profiles were measured with the E-Diode and microDiamond at dose maximum depths. Results: The microDiamond detector shows no energy dependence in high energy photon or electron dosimetry. Electron PDD measurements with the E-Diode and microDiamond are in good agreement except for the bremsstrahlungs region, where values are about 0.5 % lower with the microDiamond detector. Markus detector measurements agree with E-Diode measurements in this region. For depths larger than dmax, depth-dose curves of photon beams measured with the microDiamond detector are in close agreement to those measured with the microLion detector for small fields and with those measured with a Semiflex 0.125cc ionization chamber for large fields. For profile measurements, microDiamond detector measurements agree well with microLion and P-Diode measurements in the high-dose region and the penumbra region. For areas outside the open field, P-Diode measurements are about 0.5–1.0% higher than microDiamond and microLion measurements. Conclusion: The investigated diamond detector is suitable for a wide range of applications in high energy photon and electron dosimetry and is interesting

  14. Nonflame, source-induced sulfur fluorescence detector for sulfur-containing compounds

    SciTech Connect (OSTI)

    Gage, D.R.; Farwell, S.O.

    1980-12-01

    Results of some preliminary investigations of the fluorescence spectra of S/sub 2/ and the non-flame production of S/sub 2/ from sulfur-containing molecules are reported. Passage of the gas to be analyzed through a catalyst-oven containing a plug of NiO/sub 2//Al/sub 2/O/sub 3/ catalyst containing 10 wt% NiO/sub 2/ and heated to 400/sup 0/C resulted in conversion of H/sub 2/S to S/sub 2/ and elemental sulfur. The S/sub 2/ was detected by measurement of its fluorescence bands at 260 and 310nm, and elemental sulfur condensed on the cool parts of the apparatus. However, determination of sulfur-content of gas mixtures with the apparatus described herein were not as repeatable as desired, and the work is being continued on various facets of the non-flame system with work being directed toward the evaluation of different catalysts, catalyst temperature, design of a smaller detector geometry utilizing a pulsed-light excitation source, a windowless cell, and optical filters instead of monochromators to select the S/sub 2/ excitation and emission wavelengths. (BLM)

  15. RIngle-crystal lithium fluoride detectors

    SciTech Connect (OSTI)

    Nepomnyashchikh, A.I.; Afonin, G.P.; Mironenko, S.N.; Selyauko, A.I.

    1985-10-01

    The use of lithium fluoride as detectors for thermoluminescence dosimetry is discussed. The principal characteristics of detectors of diameters 3, 8, and 10 mm are discussed, including: lower limit of detectable dose, repeated use of detectors, dependence of the thermally stimulated luminescence yield on the radiation dose, and loss of accumulated light sum during storage of the detectors. The detector preserves its characteristics to within + or - 15% after irradiation with a dose of 5 . 10/sup 4/ cGy.

  16. Lithium-drifted silicon detector with segmented contacts

    DOE Patents [OSTI]

    Tindall, Craig S.; Luke, Paul N.

    2006-06-13

    A method and apparatus for creating both segmented and unsegmented radiation detectors which can operate at room temperature. The devices include a metal contact layer, and an n-type blocking contact formed from a thin layer of amorphous semiconductor. In one embodiment the material beneath the n-type contact is n-type material, such as lithium compensated silicon that forms the active region of the device. The active layer has been compensated to a degree at which the device may be fully depleted at low bias voltages. A p-type blocking contact layer, or a p-type donor material can be formed beneath a second metal contact layer to complete the device structure. When the contacts to the device are segmented, the device is capable of position sensitive detection and spectroscopy of ionizing radiation, such as photons, electrons, and ions.

  17. High precision thermal neutron detectors

    SciTech Connect (OSTI)

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B.

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  18. Report on Advanced Detector Development

    SciTech Connect (OSTI)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  19. Metal detector technology data base

    SciTech Connect (OSTI)

    Porter, L.K.; Gallo, L.R.; Murray, D.W.

    1990-08-01

    The tests described in this report were conducted to obtain information on the effects target characteristics have on portal type metal detector response. A second purpose of the tests was to determine the effect of detector type and settings on the detection of the targets. Although in some cases comparison performance of different types and makes of metal detectors is found herein, that is not the primary purpose of the report. Further, because of the many variables that affect metal detector performance, the information presented can be used only in a general way. The results of these tests can show general trends in metal detection, but do little for making accurate predictions as to metal detector response to a target with a complex shape such as a handgun. The shape of an object and its specific metal content (both type and treatment) can have a significant influence on detection. Thus it should not be surprising that levels of detection for a small 100g stainless steel handgun are considerably different than for detection of the 100g stainless steel right circular cylinder that was used in these tests. 7 figs., 1 tab.

  20. Ionization photophysics and spectroscopy of cyanoacetylene

    SciTech Connect (OSTI)

    Leach, Sydney; Champion, Norbert; Garcia, Gustavo A.; Fray, Nicolas; Gaie-Levrel, François; Mahjoub, Ahmed; Bénilan, Yves; Gazeau, Marie-Claire; Schwell, Martin

    2014-05-07

    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11–15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC{sub 3}N involves new aspects and new assignments of the vibrational components to excitation of the A{sup 2}Σ{sup +} and B{sup 2}Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B{sup 2}Π state of HC{sub 3}N{sup +}. A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C{sup 2}Σ{sup +} state of HC{sub 3}N{sup +} at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6–15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C–H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised.

  1. Genetic variation in resistance to ionizing radiation

    SciTech Connect (OSTI)

    Ayala, F.J.

    1989-01-01

    The very reactive superoxide anion O[sub 2] is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20[sub 2][sup [minus

  2. Alloy nanoparticle synthesis using ionizing radiation

    DOE Patents [OSTI]

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  3. Cadmium telluride photovoltaic radiation detector

    DOE Patents [OSTI]

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  4. Cadmium telluride photovoltaic radiation detector

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.; Fox, Richard J.

    1981-01-01

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  5. Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow

    SciTech Connect (OSTI)

    Kim, M.K.; Ryu, S.K.; Won, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea); Chung, S.H. [Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2010-01-15

    The stabilization characteristics of liftoff and blowoff in nonpremixed laminar jet flames in a coflow have been investigated experimentally for propane fuel by applying AC and DC electric fields to the fuel nozzle with a single-electrode configuration. The liftoff and blowoff velocities have been measured by varying the applied voltage and frequency of AC and the voltage and the polarity of DC. The result showed that the AC electric fields extended the stabilization regime of nozzle-attached flame in terms of jet velocity. As the applied AC voltage increased, the nozzle-attached flame was maintained even over the blowout velocity without having electric fields. In such a case, a blowoff occurred directly without experiencing a lifted flame. While for the DC cases, the influence on liftoff was minimal. There existed three different regimes depending on the applied AC voltage. In the low voltage regime, the nozzle-detachment velocity of either liftoff or blowoff increased linearly with the applied voltage, while nonlinearly with the AC frequency. In the intermediate voltage regime, the detachment velocity decreased with the applied voltage and reasonably independent of the AC frequency. At the high voltage regime, the detachment was significantly influenced by the generation of discharges. (author)

  6. OH-Planar Fluorescence Measurements of Pressurized, Hydrogen Premixed Flames in the SimVal Combustor

    SciTech Connect (OSTI)

    Strakey, P.A.; Woodruff, S.D.; Williams, T.C.; Schefer, R.W.

    2008-07-01

    Planar laser-induced fluorescence measurements of the hydroxyl radical in lean, premixed natural gas flames augmented with hydrogen are presented. The experiments were conducted in the Simulation Validation combustor at the National Energy Technology Laboratory at operating pressures from 1 to 8 atmospheres. The data, which were collected in a combustor with well-controlled boundary conditions, are intended to be used for validating computational fluid dynamics models under conditions directly relevant to land-based gas turbine engines. The images, which show significant effects of hydrogen on local flame quenching, are discussed in terms of a turbulent premixed combustion regime and nondimensional parameters such as Karlovitz number. Pressure was found to thin the OH region, but only had a secondary effect on overall flame shape compared with the effects of hydrogen addition, which was found to decrease local quenching and shorten the turbulent flame brush. A method to process the individual images based on local gradients of fluorescence intensity is proposed, and results are presented. Finally, the results of several large eddy simulations are presented and compared with the experimental data in an effort to understand the issues related to model validation, especially for simulations that do not include OH as an intermediate species.

  7. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    SciTech Connect (OSTI)

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  8. Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results

    SciTech Connect (OSTI)

    Fleifil, M.; Annaswamy, A.M.; Ghoneim, A.F.; Ghoneim, Z.A.

    1996-09-01

    Combustion instability is a resonance phenomenon that arises due to the coupling between the system acoustics and the unsteady heat release. The constructive feedback between the two processes, which is known to occur as a certain phase relationship between the pressure and the unsteady heat release rate is satisfied, depends on many parameters among which is the acoustic mode, the flame holder characteristics, and the dominant burning pattern. In this paper, the authors construct an analytical model to describe the dynamic response of a laminar premixed flame stabilized on the rim of a tube to velocity oscillation. They consider uniform and nonuniform velocity perturbations superimposed on a pipe flow velocity profile. The model results show that the magnitude of heat release perturbation and its phase with respect to the dynamic perturbation dependent primarily on the flame Strohal number, representing the ratio of the dominant frequency times the tube radius to the laminar burning velocity. In terms of this number, high-frequency perturbations pass through the flame while low frequencies lead to a strong response. The phase with respect to the velocity perturbation behaves in the opposite way. Results of this model are shown to agree with experimental observations and to be useful in determining how the combustion excited model is selected among all the acoustic unstable modes. The model is then used to obtain a time-domain differential equation describing the relationship between the velocity perturbation and the heat release response over the entire frequency range.

  9. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    SciTech Connect (OSTI)

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose

    2014-12-01

    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  10. Laser-Induced Ionization Efficiency Enhancement On A Filament For Thermal Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Siegfried, M.

    2015-10-14

    The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For this study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.

  11. Silicon Detector Letter of Intent

    SciTech Connect (OSTI)

    Aihara, H.; Burrows, P.; Oreglia, M.

    2010-05-26

    This document presents the current status of SiD's effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R&D needed to provide the technical basis for an optimised SiD.

  12. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect (OSTI)

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  13. Flame-vortex interaction driven combustion dynamics in a backward-facing step combustor

    SciTech Connect (OSTI)

    Altay, H. Murat; Speth, Raymond L.; Hudgins, Duane E.; Ghoniem, Ahmed F.

    2009-05-15

    The combustion dynamics of propane-hydrogen mixtures are investigated in an atmospheric pressure, lean, premixed backward-facing step combustor. We systematically vary the equivalence ratio, inlet temperature and fuel composition to determine the stability map of the combustor. Simultaneous pressure, velocity, heat release rate and equivalence ratio measurements and high-speed video from the experiments are used to identify and characterize several distinct operating modes. When fuel is injected far upstream from the step, the equivalence ratio entering the flame is temporally and spatially uniform, and the combustion dynamics are governed only by flame-vortex interactions. Four distinct dynamic regimes are observed depending on the operating parameters. At high but lean equivalence ratios, the flame is unstable and oscillates strongly as it is wrapped around the large unsteady wake vortex. At intermediate equivalence ratios, weakly oscillating quasi-stable flames are observed. Near the lean blowout limit, long stable flames extending from the corner of the step are formed. At atmospheric inlet temperature, the unstable mode resonates at the 1/4 wavemode of the combustor. As the inlet temperature is increased, the 5/4 wavemode of the combustor is excited at high but lean equivalence ratios, forming the high-frequency unstable flames. Higher hydrogen concentration in the fuel and higher inlet temperatures reduce the equivalence ratios at which the transitions between regimes are observed. We plot combustion dynamics maps or the response curves, that is the overall sound pressure level as a function of the equivalence ratio, for different operating conditions. We demonstrate that numerical results of strained premixed flames can be used to collapse the response curves describing the transitions among the dynamic modes onto a function of the heat release rate parameter alone, rather than a function dependent on the equivalence ratio, inlet temperature and fuel

  14. Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit

    SciTech Connect (OSTI)

    Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2010-12-15

    Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)

  15. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH{sub 2}O in a piloted premixed jet flame

    SciTech Connect (OSTI)

    Li, Z.S.; Li, B.; Sun, Z.W.; Alden, M. [Division of Combustion Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Bai, X.S. [Division of Fluid Mechanics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden)

    2010-06-15

    High resolution planar laser-induced fluorescence (PLIF) was applied to investigate the local flame front structures of turbulent premixed methane/air jet flames in order to reveal details about turbulence and flame interaction. The targeted turbulent flames were generated on a specially designed coaxial jet burner, in which low speed stoichiometric gas mixture was fed through the outer large tube to provide a laminar pilot flame for stabilization of the high speed jet flame issued through the small inner tube. By varying the inner tube flow speed and keeping the mixture composition as that of the outer tube, different flames were obtained covering both the laminar and turbulent flame regimes with different turbulent intensities. Simultaneous CH/CH{sub 2}O, and also OH PLIF images were recorded to characterize the influence of turbulence eddies on the reaction zone structure, with a spatial resolution of about 40 {mu}m and temporal resolution of around 10 ns. Under all experimental conditions, the CH radicals were found to exist only in a thin layer; the CH{sub 2}O were found in the inner flame whereas the OH radicals were seen in the outer flame with the thin CH layer separating the OH and CH{sub 2}O layers. The outer OH layer is thick and it corresponds to the oxidation zone and post-flame zone; the CH{sub 2}O layer is thin in laminar flows; it becomes broad at high speed turbulent flow conditions. This phenomenon was analyzed using chemical kinetic calculations and eddy/flame interaction theory. It appears that under high turbulence intensity conditions, the small eddies in the preheat zone can transport species such as CH{sub 2}O from the reaction zones to the preheat zone. The CH{sub 2}O species are not consumed in the preheat zone due to the absence of H, O, and OH radicals by which CH{sub 2}O is to be oxidized. The CH radicals cannot exist in the preheat zone due to the rapid reactions of this species with O{sub 2} and CO{sub 2} in the inner-layer of the

  16. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    SciTech Connect (OSTI)

    Bradley, D.; Lawes, M.; Mansour, M.S. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)

  17. A two-step chemical scheme for kerosene-air premixed flames

    SciTech Connect (OSTI)

    Franzelli, B.; Riber, E.; Sanjose, M.; Poinsot, T.

    2010-07-15

    A reduced two-step scheme (called 2S-KERO-BFER) for kerosene-air premixed flames is presented in the context of Large Eddy Simulation of reacting turbulent flows in industrial applications. The chemical mechanism is composed of two reactions corresponding to the fuel oxidation into CO and H{sub 2}O, and the CO - CO{sub 2} equilibrium. To ensure the validity of the scheme for rich combustion, the pre-exponential constants of the two reactions are tabulated versus the local equivalence ratio. The fuel and oxidizer exponents are chosen to guarantee the correct dependence of laminar flame speed with pressure. Due to a lack of experimental results, the detailed mechanism of Dagaut composed of 209 species and 1673 reactions, and the skeletal mechanism of Luche composed of 91 species and 991 reactions have been used to validate the reduced scheme. Computations of one-dimensional laminar flames have been performed with the 2S{sub K}ERO{sub B}FER scheme using the CANTERA and COSILAB softwares for a wide range of pressure ([1; 12] atm), fresh gas temperature ([300; 700] K), and equivalence ratio ([0.6; 2.0]). Results show that the flame speed is correctly predicted for the whole range of parameters, showing a maximum for stoichiometric flames, a decrease for rich combustion and a satisfactory pressure dependence. The burnt gas temperature and the dilution by Exhaust Gas Recirculation are also well reproduced. Moreover, the results for ignition delay time are in good agreement with the experiments. (author)

  18. Direct detector for terahertz radiation

    DOE Patents [OSTI]

    Wanke, Michael C.; Lee, Mark; Shaner, Eric A.; Allen, S. James

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  19. Thermal Neutron Detectors with Discrete Anode Pad Readout

    SciTech Connect (OSTI)

    Yu,B.; Schaknowski, N.A., Smith, G.C., DeGeronimo, G., Vernon, E.O.

    2008-10-19

    A new two-dimensional thermal neutron detector concept that is capable of very high rates is being developed. It is based on neutron conversion in {sup 3}He in an ionization chamber (unity gas gain) that uses only a cathode and anode plane; there is no additional electrode such as a Frisch grid. The cathode is simply the entrance window, and the anode plane is composed of discrete pads, each with their own readout electronics implemented via application specific integrated circuits. The aim is to provide a new generation of detectors with key characteristics that are superior to existing techniques, such as higher count rate capability, better stability, lower sensitivity to background radiation, and more flexible geometries. Such capabilities will improve the performance of neutron scattering instruments at major neutron user facilities. In this paper, we report on progress with the development of a prototype device that has 48 x 48 anode pads and a sensitive area of 24cm x 24cm.

  20. Magnetic reconnection in a weakly ionized plasma

    SciTech Connect (OSTI)

    Leake, James E.; Lukin, Vyacheslav S.; Linton, Mark G.

    2013-06-15

    Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.

  1. Waveshifters and Scintillators for Ionizing Radiation Detection

    SciTech Connect (OSTI)

    B.Baumgaugh; J.Bishop; D.Karmgard; J.Marchant; M.McKenna; R.Ruchti; M.Vigneault; L.Hernandez; C.Hurlbut

    2007-12-11

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments.

  2. (Resonance ionization spectroscopy and its applications)

    SciTech Connect (OSTI)

    Payne, M.G.

    1990-10-05

    The field of Resonance Ionization Spectroscopy grew out of work done in the Photophysics Group at Oak Ridge National Laboratory. As one of the original developers of this field the traveler has continued to attend this meeting on a regular basis. The traveler was originally asked to present an invited talk and to present part of a short course offered to graduate students attending the conference. Subsequently, the traveler was also asked to chair a session and to be a judge of the students papers entered in a contest for a $1000 first prize.

  3. Neutron coincidence detectors employing heterogeneous materials

    DOE Patents [OSTI]

    Czirr, J. Bartley (Mapleton, UT); Jensen, Gary L. (Orem, UT)

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  4. Radiation Detector & Imaging | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detector & Imaging At Jefferson Lab, scientists, engineers and technicians in the Radiation Detector & Imaging Group adapt cutting-edge nuclear physics research detector technology to develop application-specific, radioisotope imaging systems. Technology has been developed for a variety of bio-medical applications such as medical-oriented clinical and preclinical research as well as for plant biology research. Jefferson Lab's Radiation Detector and Imaging Group Members of

  5. Hydrogen Contamination Detector Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contamination Detector Workshop Hydrogen Contamination Detector Workshop SAE International hosted the Hydrogen Contamination Detector Workshop on June 12, 2014, in Troy, Michigan. Sponsored by the U.S. Department of Energy (DOE) Fuel Cell Technologies Office, the workshop was held to gather individual input from key stakeholders about suitable technologies and research and development (R&D) gaps and needs for hydrogen contamination detectors at hydrogen refueling stations. This input helped

  6. Sensors and Detectors | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Detectors Sensors and Detectors Today, much of science focuses on observing signals that are extremely small, faint, or far away. In order to help push the boundaries of research, scientists and engineers at Argonne have pioneered the development of state-of-the-art sensors and detectors with capabilities that range from revolutionizing high-energy physics to helping to ensure our national security. Argonne detector technology can be found everywhere from deep underground as part of

  7. Hybrid anode for semiconductor radiation detectors

    SciTech Connect (OSTI)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  8. Hand and shoe monitor using air ionization probes

    DOE Patents [OSTI]

    Fergus, Richard W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  9. Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen...

    Office of Scientific and Technical Information (OSTI)

    Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen, Kristoffer A. Los Alamos National Laboratory; Fontes, Christopher J. Los Alamos National Laboratory; Colgan,...

  10. Dwarf Galaxies with Ionizing Radiation Feedback II: Spatially...

    Office of Scientific and Technical Information (OSTI)

    Star Formation Relation Citation Details In-Document Search Title: Dwarf Galaxies with Ionizing Radiation Feedback II: Spatially-resolved Star Formation Relation Authors: Kim, ...

  11. Ionized channel generation of an intense-relativistic electron beam

    DOE Patents [OSTI]

    Frost, Charles A.; Leifeste, Gordon T.; Shope, Steven L.

    1988-01-01

    A foilless intense relativistic electron beam generator uses an ionized cnel to guide electrons from a cathode passed an anode to a remote location.

  12. Pulsed Ionization Source for Ion Mobility Spectrometers - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffusion-limited resolution. In addition, the radioactive ion sources used in many IMSs present potential safety and hazardous waste disposal issues. Other ionization sources...

  13. High efficiency direct detection of ions from resonance ionization of sputtered atoms

    DOE Patents [OSTI]

    Gruen, D.M.; Pellin, M.J.; Young, C.E.

    1985-01-16

    A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.

  14. High efficiency direct detection of ions from resonance ionization of sputtered atoms

    DOE Patents [OSTI]

    Gruen, Dieter M.; Pellin, Michael J.; Young, Charles E.

    1986-01-01

    A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.

  15. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect (OSTI)

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  16. Flame front imaging in an internal-combustion engine simulator by laser-induced fluorescence of acetaldehyde

    SciTech Connect (OSTI)

    Arnold, A.; Becker, H.; Suntz, R.; Monkhouse, P.; Wolfrum, J. ); Maly, R.; Pfister, W. )

    1990-08-01

    Acetaldehyde has been used as a fluorescent dopant for two-dimensional imaging of the flame front in an internal-combustion-engine simulator. The molecule was excited with a XeCl-laser-light sheet at 308 nm, and broadband fluorescence centered at 400 nm was detected. In this way, the flame front could be marked by mapping regions of unburned gas. Also, the intake process into the engine could be followed.

  17. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    SciTech Connect (OSTI)

    Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.

    2015-04-15

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

  18. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    SciTech Connect (OSTI)

    Clemens, Noel

    2015-09-30

    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.

  19. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  20. Plasma Panel Based Radiation Detectors

    SciTech Connect (OSTI)

    Friedman, Dr. Peter S.; Varner Jr, Robert L; Ball, Robert; Beene, James R; Ben Moshe, M.; Benhammou, Yan; Chapman, J. Wehrley; Etzion, E; Ferretti, Claudio; Bentefour, E; Levin, Daniel S.; Moshe, M.; Silver, Yiftah; Weaverdyck, Curtis; Zhou, Bing

    2013-01-01

    The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels (PDPs). It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in PDPs, it uses non-reactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (< 50 m RMS) and low cost. In this paper we report here on prototype PPS experimental results in detecting betas, protons and cosmic muons, and we extrapolate on the PPS potential for applications including detection of alphas, heavy-ions at low to medium energy, thermal neutrons and X-rays.

  1. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  2. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  3. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  4. Background canceling surface alpha detector

    DOE Patents [OSTI]

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1996-06-11

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.

  5. Background canceling surface alpha detector

    DOE Patents [OSTI]

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1996-01-01

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.

  6. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  7. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuels

    SciTech Connect (OSTI)

    Matti Maricq, M.

    2011-01-15

    Data are presented to compare soot formation in both surrogate and practical fatty acid methyl ester biodiesel and petroleum fuel diffusion flames. The approach here uses differential mobility analysis to follow the size distributions and electrical charge of soot particles as they evolve in the flame, and laser ablation particle mass spectrometry to elucidate their composition. Qualitatively, these soot properties exhibit a remarkably similar development along the flames. The size distributions begin as a single mode of precursor nanoparticles, evolve through a bimodal phase marking the onset of aggregate formation, and end in a self preserving mode of fractal-like particles. Both biodiesel and hydrocarbon fuels yield a common soot composition dominated by C{sub x}H{sub y}{sup +} ions, stabilomer PAHs, and fullerenes in the positive ion mass spectrum, and C{sub x}{sup -} and C{sub 2x}H{sup -} in the negative ion spectrum. These ion intensities initially grow with height in the diffusion flames, but then decline during later stages, consistent with soot carbonization. There are important quantitative differences between fuels. The surrogate biodiesel fuel methyl butanoate substantially reduces soot levels, but soot formation and evolution in this flame are delayed relative to both soy and petroleum fuels. In contrast, soots from soy and hexadecane flames exhibit nearly quantitative agreement in their size distribution and composition profiles with height, suggesting similar soot precursor chemistry. (author)

  8. A silicon photomultiplier readout for time of flight neutron spectroscopy with {gamma}-ray detectors

    SciTech Connect (OSTI)

    Pietropaolo, A.; Gorini, G.; Festa, G.; Andreani, C.; De Pascale, M. P.; Reali, E.; Grazzi, F.; Schooneveld, E. M.

    2009-09-15

    The silicon photomultiplier (SiPM) is a recently developed photosensor used in particle physics, e.g., for detection of minimum ionizing particles and/or Cherenkov radiation. Its performance is comparable to that of photomultiplier tubes, but with advantages in terms of reduced volume and magnetic field insensitivity. In the present study, the performance of a gamma ray detector made of an yttrium aluminum perovskite scintillation crystal and a SiPM-based readout is assessed for use in time of flight neutron spectroscopy. Measurements performed at the ISIS pulsed neutron source demonstrate the feasibility of {gamma}-detection based on the new device.

  9. The Phenix Detector magnet subsystem

    SciTech Connect (OSTI)

    Yamamoto, R.M.; Bowers, J.M.; Harvey, A.R.

    1995-05-19

    The PHENIX [Photon Electron New Heavy Ion Experiment] Detector is one of two large detectors presently under construction for RHIC (Relativistic Heavy Ion Collider) located at Brookhaven National Laboratory. Its primary goal is to detect a new phase of matter; the quark-gluon plasma. In order to achieve this objective, the PHENIX Detector utilizes a complex magnet subsystem which is comprised of two large magnets identified as the Central Magnet (CM) and the Muon Magnet (MM). Muon Identifier steel is also included as part of this package. The entire magnet subsystem stands over 10 meters tall and weighs in excess of 1900 tons (see Fig. 1). Magnet size alone provided many technical challenges throughout the design and fabrication of the project. In addition, interaction with foreign collaborators provided the authors with new areas to address and problems to solve. Russian collaborators would fabricate a large fraction of the steel required and Japanese collaborators would supply the first coil. This paper will describe the overall design of the PHENIX magnet subsystem and discuss its present fabrication status.

  10. Three-dimensional simulations of cellular non-premixed jet flames

    SciTech Connect (OSTI)

    Valaer, A.L.; Frouzakis, C.E.; Boulouchos, K.; Papas, P.; Tomboulides, A.G.

    2010-04-15

    The formation, dynamics and structure of cellular flames in circular non-premixed jets are examined with three-dimensional numerical simulations incorporating detailed descriptions of chemistry and transport. Similar to past experiments reported in the literature, CO{sub 2}-diluted hydrogen in diluted or pure oxygen co-flowing streams in the proximity of the extinction limit are considered. As in the experiments, several preferred cellular states are found to co-exist with the particular state realized depending on initial conditions as well as on the jet characteristics. The simulations provide additionally the temporal transitions to different stationary or rotating cellular flames, their detailed structure, and the dependence of the scaling of the realized number of cells with the vorticity thickness. (author)

  11. Soot formation in methane/air nonpremixed flames doped with small quantities of C3 hydrocarbons

    SciTech Connect (OSTI)

    McEnally, C.S.; Pfefferle, L.D.

    1998-03-01

    Gas temperature, C1 to C12 stable hydrocarbon concentrations, and soot volume fractions were measured in an axisymmetry methane/air coflowing nonpremixed flame whose fuel was doped with one mole per cent allene, propene, and propane. The additives did not significantly alter the temperature field, methane mole fractions, or chain-carrying radical concentrations. However, soot volume fractions were increased, in the order allene > propene > propane. The hydrocarbon species measurements indicated that soot formation increases because the additives undergo reaction sequences that raise the concentrations of the benzene and phenyl radical precursors C{sub 3}H{sub 3}, C{sub 4}H{sub 3}, and C{sub 4}H{sub 5}, and consequently enhance the benzene/phenyl formation rate. Therefore, creation of these precursors and of the first aromatic ring are crucial rate-limiting soot formation steps in methane flames.

  12. Elimination of dimethyl methylphosphonate by plasma flame made of microwave plasma and burning hydrocarbon fuel

    SciTech Connect (OSTI)

    Cho, S. C.; Uhm, H. S.; Hong, Y. C.; Park, Y. G.; Park, J. S.

    2008-06-15

    Elimination of dimethyl methylphosphonate (DMMP) in liquid phase was studied by making use of a microwave plasma burner, exhibiting a safe removal capability of stockpiled chemical weapons. The microwave plasma burner consisted of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The burner flames were sustained by injecting hydrocarbon fuels into the microwave plasma torch in air discharge. The Fourier transform infrared spectra indicated near perfect elimination of DMMP in the microwave plasma burner. This was confirmed by gas chromatography spectra as supporting data, revealing the disappearance of even intermediary compounds in the process of DMMP destruction. The experimental results and the physical configuration of the microwave plasma burner may provide an effective means of on-site removal of chemical warfare agents found on a battlefield.

  13. Intumescent flame retardants for polymers. I. The poly(acrylonitrile)-ammonium polyphosphate-hexabromocyclododecane system

    SciTech Connect (OSTI)

    Ballistreri, A.; Montaudo, G.; Puglisi, C.; Scamporrino, E.; Vitalini, D.

    1983-05-01

    The influence of ammonium polyphosphate (APP) and hexabromocyclododecane (HBCD) as flame retardant (FR) on poly(acrylonitrile) (PAN) has been examined. The APP-HBCD system behaves as an intumescent flame retardant (IFR) formulation, APP being the char-forming agent and HBCD the blowing agent. A negligible gas-phase mode of action was ascertained for HBCD with this substrate. A synergism between the two FR agents was observed, corresponding to about 50% increased efficacy with respect to the separate effects of the two components. Thermogravimetry (TG), oxygen index (OI), nitrous oxide index (NOI) experiments and phosphorous residue measurements were performed to substantiate the conclusion that a condensed phase mechanism of action accounts for all the facts observed.

  14. Effect of ignition conditions on upward flame spread on a composite material in a corner configuration

    SciTech Connect (OSTI)

    Ohlemiller, T.; Cleary, T.; Shields, J.

    1996-12-31

    This paper focuses on the issue of fire growth on composite materials beyond the region immediately subjected to an ignition source. Suppression of this growth is one of the key issues in realizing the safe usage of composite structural materials. A vinyl ester/glass composite was tested in the form of a 90{degrees} comer configuration with an inert ceiling segment 2.44 m above the top of the fire source. The igniter was a propane burner, either 23 or 38 cm in width with power output varied from 30 to 150 Kw. Upward flame spread rate and heat release rate were measured mainly for a brominated vinyl ester resin but limited results were also obtained for a non-flame retarded vinyl ester and a similar composite coated with an intumescent paint. Rapid fire growth beyond the igniter region was seen for the largest igniter power case; the intumescent coating successfully prevented fire growth for this case.

  15. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  16. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  17. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    SciTech Connect (OSTI)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  18. Temperature of aircraft cargo flame exposure during accidents involving fuel spills

    SciTech Connect (OSTI)

    Mansfield, J.A.

    1993-01-01

    This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident, collisions into an alert aircraft by an aircraft that is on landing or take-off, and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.

  19. Effects of swirl-flow on flame propagation in a constant-volume vessel

    SciTech Connect (OSTI)

    Cai, P.; Watanabe, Kazunori; Obara, Tetsuro; Yoshihashi, Teruo; Ohyagi, Shigeharu

    1999-07-01

    Flame propagation in a closed vessel is one of the fundamental topics in the combustion science and technology. This problem has been studied mostly for application to engine combustion because the combustion processes in a premixed spark ignition engine are well simulated by those processes in a constant-volume combustion chamber. One of the most important objective to study this phenomena is to elucidate the combustion phenomena to increase the thermal efficiency of engine by enhancing the combustion process. In real engines, a number of technical methods such as swirl, tumble, squish and jet flows ere developed to shorten a burning time. All of these methods make use of flows in the combustion chamber. The fundamental problem is then to elucidate a mechanism of reduction of the burning time by the flows and their turbulence. In the present work, experiments were conducted to investigate the effects of swirl-flow on the flame propagation in a disc-shaped constant-volume vessel of 100 mm in diameter and 30 mm in depth. Figure A-1 shows a schematic of the apparatus. Gaseous mixtures used were methane diluted with air at an atmospheric pressure, and their equivalence ratios were varied as a parameter. Ignition timing was varied to change the velocity of swirling flow before the flame propagation. As results, a burning time was found to be decreased as the swirling flow increased and a maximum pressure was increased as the velocity increased as a total heat loss decreased. Flame front structures were clearly observed by the instantaneous schlieren photography.

  20. Lean methane premixed laminar flames doped by components of diesel fuel II: n-propylcyclohexane

    SciTech Connect (OSTI)

    Pousse, E.; Porter, R.; Warth, V.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, Nancy Universite, CNRS, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2010-01-15

    For a better understanding of the chemistry involved during the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-propylcyclohexane has been investigated. The inlet gases contained 7.1% (molar) methane, 36.8% oxygen, and 0.81% n-propylcyclohexane (C{sub 9}H{sub 18}), corresponding to an equivalence ratio of 0.68 and a C{sub 9}H{sub 18}/CH{sub 4} ratio of 11.4%. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 17 C{sub 3}-C{sub 5} hydrocarbons, seven C{sub 1}-C{sub 3} oxygenated compounds, and only four cyclic C{sub 6+} compounds, namely benzene, 1,3-cyclohexadiene, cyclohexene, and methylenecyclohexane. A new mechanism for the oxidation of n-propylcyclohexane has been proposed. It allows the proper simulation of profiles of most of the products measured in flames, as well as the satisfactory reproduction of experimental results obtained in a jet-stirred reactor. The main reaction pathways of consumption of n-propylcyclohexane have been derived from rate-of-production analysis. (author)

  1. A lean methane premixed laminar flame doped with components of diesel fuel. I. n-Butylbenzene

    SciTech Connect (OSTI)

    Pousse, E.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, Nancy Universite, CNRS, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2009-05-15

    To better understand the chemistry involved in the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-butylbenzene has been investigated. The inlet gases contained 7.1% (molar) methane, 36.8% oxygen, and 0.96% n-butylbenzene corresponding to an equivalence ratio of 0.74 and a ratio C{sub 10}H{sub 14}/CH{sub 4} of 13.5%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 16 C{sub 3}-C{sub 5} hydrocarbons, and 7 C{sub 1}-C{sub 3} oxygenated compounds, as well as 20 aromatic products. A new mechanism for the oxidation of n-butylbenzene is proposed whose predictions are in satisfactory agreement with measured species profiles in flames and flow reactor experiments. The main reaction pathways of consumption of n-butylbenzene have been derived from flow rate analyses. (author)

  2. PLIF measurement of fuel concentration distribution in transient hydrogen jet flame

    SciTech Connect (OSTI)

    Tomita, Eiji; Hamamoto, Yoshisuke; Yoshiyama, Sadami; Toda, Hitoshi

    1999-07-01

    To know the concentration field of fuel spray or jet is very important because the following combustion process strongly depends on it. Recently, planar laser induced fluorescence (PLIF) measurement is often used to clarify two-dimensional concentration field of fuel and other species. In this study, PLIF measurement was applied to investigate the concentration distribution of a transient hydrogen jet with combustion. The jet penetrates with entraining ambient air and hydrogen is mixed with the air. Each experimental run of the jet shows different configuration and concentration distribution although averaged jet shows axisymmetric ones. Normalized concentration in radial direction presents Gaussian distribution and normalized concentration in axial direction is expressed by the relation inverse to the axial direction. The mixture was ignited near the nozzle exit after some delay time (t = 3.6ms) during injection ({approximately}11ms). For example, the fuel concentration in the transient jet at t = 1.0 and 1.4ms after the spark ignition (t = 4.6 and 5.0 ms respectively) was obtained as shown in a figure. The behavior of the flame development was measured in the transient flame jet by analyzing these images. The velocities of the jet and flame tips were also determined.

  3. Structure of turbulent hydrogen jet diffusion flames with or without swirl

    SciTech Connect (OSTI)

    Takahashi, Fumiaki; Vangsness, M.D.; Durbin, M.D.; Schmoll, W.J.

    1995-12-31

    The aerodynamic and thermal structure of double-concentric turbulent hydrogen jet diffusion flames with or without swirl has been investigated using three-component laser-Doppler velocimetry (LDV) and coherent anti-Stokes Raman spectroscopy. The LDV data were conditionally sampled upon the origin of the fluid (jet, annulus, or external) to avoid the velocity-bias problem and to gain more detailed information on the turbulent structure. As the mean jet velocity was increased, the turbulent flame zone shifted inward and the thermal layer became thinner, whereas swirl created a radial velocity even at the annulus air exit, thereby shifting the flame zone outward and broadening the thermal layer. The probability-density functions (pdf) of velocity components,m their 21 moments (up to fourth order), temperature pdf, mean, and root-mean-square fluctuation temperature were determined at numerous radial locations at seven axial heights in the near field (<26.5 jet diameters). The data can be used to validate computational models.

  4. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization aremore » located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that hydrogen

  5. Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames

    SciTech Connect (OSTI)

    Kearney, Sean Patrick

    2014-12-31

    A hybrid fs/ps pure-rotational coherent anti-Stokes Raman scattering (CARS) scheme is systematically evaluated over a wide range of flame conditions in the product gases of two canonical flat-flame burners. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed using a high-energy, frequency-narrow picosecond beam generated by the second-harmonic bandwidth compression scheme that has recently been demonstrated for rotational CARS generation in H2/air flat flames. The measured spectra are free of collision effects and nonresonant background and can be obtained on a single-shot basis at 1 kHz. The technique is evaluated for temperature/oxygen measurements in near-adiabatic H2/air flames stabilized on the Hencken burner for equivalence ratios of φ = 0.20–1.20. Thermometry is demonstrated in hydrocarbon/air products for φ = 0.75–3.14 in premixed C2H4/air flat flames on the McKenna burner. Reliable spectral fitting is demonstrated for both shot-averaged and single-laser-shot data using a simple phenomenological model. Measurement accuracy is benchmarked by comparison to adiabatic-equilibrium calculations for the H2/air flames, and by comparison with nanosecond CARS measurements for the C2H4/air flames. Quantitative accuracy comparable to nanosecond rotational CARS measurements is observed, while the observed precision in both the temperature and oxygen data is extraordinarily high, exceeding nanosecond CARS, and on par with the best published thermometric precision by femtosecond vibrational CARS in flames, and rotational femtosecond CARS at low temperature. Threshold levels of signal-to-noise ratio to achieve 1–2% precision in temperature and O2/N2 ratio are identified. Our results show that pure-rotational fs/ps CARS is a robust and quantitative tool when applied across a wide

  6. Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kearney, Sean Patrick

    2014-12-31

    A hybrid fs/ps pure-rotational coherent anti-Stokes Raman scattering (CARS) scheme is systematically evaluated over a wide range of flame conditions in the product gases of two canonical flat-flame burners. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed using a high-energy, frequency-narrow picosecond beam generated by the second-harmonic bandwidth compression scheme that has recently been demonstrated for rotational CARS generation in H2/air flat flames. The measured spectra are free of collision effects and nonresonant background and can be obtained on a single-shot basis at 1 kHz. The technique is evaluated for temperature/oxygenmore » measurements in near-adiabatic H2/air flames stabilized on the Hencken burner for equivalence ratios of φ = 0.20–1.20. Thermometry is demonstrated in hydrocarbon/air products for φ = 0.75–3.14 in premixed C2H4/air flat flames on the McKenna burner. Reliable spectral fitting is demonstrated for both shot-averaged and single-laser-shot data using a simple phenomenological model. Measurement accuracy is benchmarked by comparison to adiabatic-equilibrium calculations for the H2/air flames, and by comparison with nanosecond CARS measurements for the C2H4/air flames. Quantitative accuracy comparable to nanosecond rotational CARS measurements is observed, while the observed precision in both the temperature and oxygen data is extraordinarily high, exceeding nanosecond CARS, and on par with the best published thermometric precision by femtosecond vibrational CARS in flames, and rotational femtosecond CARS at low temperature. Threshold levels of signal-to-noise ratio to achieve 1–2% precision in temperature and O2/N2 ratio are identified. Our results show that pure-rotational fs/ps CARS is a robust and quantitative tool when applied across a wide range of flame conditions spanning lean H2/air combustion to fuel-rich sooting hydrocarbon

  7. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    SciTech Connect (OSTI)

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that

  8. Spectroscopy of triply and quadruply ionized states of mercury

    SciTech Connect (OSTI)

    Huttula, M.; Huttula, S.-M.; Lablanquie, P.; Palaudoux, J.; Penent, F.; Andric, L.; Eland, J. H. D.

    2011-03-15

    Multielectron coincidence spectroscopy has been used to study multiple ionization of atomic mercury. The binding energies of triply and quadruply ionized states of Hg have been determined from three- and fourfold electron coincidences. Relativistic ab initio theory has been used to calculate the state energies and predict the experimental findings.

  9. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    SciTech Connect (OSTI)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A.

    1998-05-01

    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction

  10. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  11. Propagation and extinction of premixed C{sub 5}-C{sub 12}n-alkane flames

    SciTech Connect (OSTI)

    Ji, Chunsheng; Dames, Enoch; Wang, Yang L.; Wang, Hai; Egolfopoulos, Fokion N. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2010-02-15

    Laminar flame speeds and extinction strain rates of premixed C{sub 5}-C{sub 12}n-alkane flames were determined at atmospheric pressure and elevated unburned mixture temperatures, over a wide range of equivalence ratios. Experiments were performed in the counterflow configuration and flow velocities were measured using Laser Doppler Velocimetry. The laminar flame speeds were obtained using a non-linear extrapolation technique utilizing numerical simulations of the counterflow experiments with detailed descriptions of chemical kinetics and molecular transport. Compared to linearly extrapolated values, the laminar flame speeds obtained using non-linear extrapolations were found to be 1-4 cm/s lower depending on the equivalence ratio. It was determined that the laminar flame speeds of all n-alkane/air mixtures considered in this investigation are similar to each other and sensitive largely to the H{sub 2}/CO and C{sub 1}-C{sub 4} hydrocarbon kinetics. Additionally, the resistance to extinction decreases as the fuel molecular weight increases. Simulations of the experiments were performed using the recently developed JetSurF 0.2 reaction model consisting of 194 species and 1459 reactions. The laminar flame speeds were predicted with good accuracy for all the n-alkane-air mixtures considered. The experimental extinction strain rates are well predicted by the model for fuel-lean mixtures. For stoichiometric and fuel-rich mixtures, the predicted extinction strain rates are approximately 10% lower than the experimental values. Insights into the physical and chemical processes that control the response of n-alkane flames are provided through detailed sensitivity analyses on both reaction rates and binary diffusion coefficients. (author)

  12. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  13. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  14. A terahertz plasmon cavity detector

    SciTech Connect (OSTI)

    Dyer, G. C.; Vinh, N. Q.; Allen, S. J.; Aizin, G. R.; Mikalopas, J.; Reno, J. L.; Shaner, E. A.

    2010-11-08

    Sensitivity of a plasmonic detector is enhanced by integrating a broadband log-periodic antenna with a two-dimensional plasma cavity that is defined by source, drain, and multiple gates of a GaAs/AlGaAs high electron mobility transistor. Both narrow-band terahertz detection and a rich harmonic spectrum are evident. With a bolometric sensor in the channel, we report responsivity, on resonance at 235-240 GHz and at 20 K, of up to 7 kV/W and a noise equivalent power of 5x10{sup -10} W/Hz{sup 1/2}.

  15. Microgap ultra-violet detector

    DOE Patents [OSTI]

    Wuest, Craig R.; Bionta, Richard M.

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  16. Microgap ultra-violet detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  17. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect (OSTI)

    Grudberg, Peter Matthew

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many ?? you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  18. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect (OSTI)

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  19. Saturation of CVD Diamond Detectors

    SciTech Connect (OSTI)

    Lucile S. Dauffy; Richard A. Lerche; Greg J. Schmid; Jeffrey A. Koch; Christopher Silbernagel

    2005-01-01

    A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its surrounding electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 µJ, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (Ebandgap = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.

  20. Recirculating cross-correlation detector

    DOE Patents [OSTI]

    Andrews, W.H. Jr.; Roberts, M.J.

    1985-01-18

    A digital cross-correlation detector is provided in which two time-varying signals are correlated by repetitively comparing data samples stored in digital form to detect correlation between the two signals. The signals are sampled at a selected rate converted to digital form, and stored in separate locations in separate memories. When the memories are filled, the data samples from each memory are first fed word-by-word through a multiplier and summing circuit and each result is compared to the last in a peak memory circuit and if larger than the last is retained in the peak memory. Then the address line to leading signal memory is offset by one byte to affect one sample period delay of a known amount in that memory and the data in the two memories are then multiplied word-by-word once again and summed. If a new result is larger than a former sum, it is saved in the peak memory together with the time delay. The recirculating process continues with the address of the one memory being offset one additional byte each cycle until the address is shifted through the length of the memory. The correlation between the two signals is indicated by the peak signal stored in the peak memory together with the delay time at which the peak occurred. The circuit is faster and considerably less expensive than comparable accuracy correlation detectors.