The tau leptons theory and experimental data: Monte Carlo, fits, software and systematic errors
Zbigniew Was
2014-12-09
Status of tau lepton decay Monte Carlo generator TAUOLA is reviewed. Recent efforts on development of new hadronic currents are presented. Multitude new channels for anomalous tau decay modes and parametrization based on defaults used by BaBar collaboration are introduced. Also parametrization based on theoretical considerations are presented as an alternative. Lesson from comparison and fits to the BaBar and Belle data is recalled. It was found that as in the past, in particular at a time of comparisons with CLEO and ALEPH data, proper fitting, to as detailed as possible representation of the experimental data, is essential for appropriate developments of models of tau decays. In the later part of the presentation, use of the TAUOLA program for phenomenology of W,Z,H decays at LHC is adressed. Some new results, relevant for QED bremsstrahlung in such decays are presented as well.
NNPDF2.1: Including heavy quark mass effects in NNPDF fits
Guffanti, A. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg i. Br. (Germany)
2011-09-21
In this contribution we present the NNPDF2.1 parton distribution functions (PDF) set. The NNPDF2.1 set is a set extracted from a global fit to Deep-Inelastic Scattering (DIS), fixed target Drell-Yan (DY), Electroweak vector boson and inclusive jet cross-sections at colliders data. It is performed using the NNPDF methodology which relies on Monte Carlo techniques for determination of uncertainties and Neural Networks as unbiased interpolants.
Even-Parity S_(N) Adjoint Method Including SP_(N) Model Error and Iterative Efficiency
Zhang, Yunhuang
2014-08-10
In this Dissertation, we analyze an adjoint-based approach for assessing the model error of SP_(N) equations (low fidelity model) by comparing it against S_(N) equations (high fidelity model). Three model error estimation methods, namely, direct...
Physical fitness training for people with stroke
Saunders, David H.
2009-01-01
INTRODUCTION: Impaired physical fitness may contribute to functional limitations and disability after stroke. Physical fitness (including cardiorespiratory fitness and muscle strength/power) can be improved by appropriate ...
Hyper-Fit: Fitting Linear Models to Multidimensional Data with Multivariate Gaussian Uncertainties
Robotham, A S G
2015-01-01
Astronomical data is often uncertain with errors that are heteroscedastic (different for each data point) and covariant between different dimensions. Assuming that a set of D-dimensional data points can be described by a (D - 1)-dimensional plane with intrinsic scatter, we derive the general likelihood function to be maximised to recover the best fitting model. Alongside the mathematical description, we also release the hyper-fit package for the R statistical language (github.com/asgr/hyper.fit) and a user-friendly web interface for online fitting (hyperfit.icrar.org). The hyper-fit package offers access to a large number of fitting routines, includes visualisation tools, and is fully documented in an extensive user manual. Most of the hyper-fit functionality is accessible via the web interface. In this paper we include applications to toy examples and to real astronomical data from the literature: the mass-size, Tully-Fisher, Fundamental Plane, and mass-spin-morphology relations. In most cases the hyper-fit ...
Nathan Wiebe; Daniel Braun; Seth Lloyd
2012-07-03
We provide a new quantum algorithm that efficiently determines the quality of a least-squares fit over an exponentially large data set by building upon an algorithm for solving systems of linear equations efficiently (Harrow et al., Phys. Rev. Lett. {\\bf 103}, 150502 (2009)). In many cases, our algorithm can also efficiently find a concise function that approximates the data to be fitted and bound the approximation error. In cases where the input data is a pure quantum state, the algorithm can be used to provide an efficient parametric estimation of the quantum state and therefore can be applied as an alternative to full quantum state tomography given a fault tolerant quantum computer.
Register file soft error recovery
Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.
2013-10-15
Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
magazine Latest Issue:May 2015 All Issues submit The Perfect Fit Like Cinderella's glass slipper, the interaction between most biomolecules relies on a perfect fit. Humans...
Hollman, David S.; Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 ; Schaefer, Henry F.; Valeev, Edward F.
2014-02-14
A local density fitting scheme is considered in which atomic orbital (AO) products are approximated using only auxiliary AOs located on one of the nuclei in that product. The possibility of variational collapse to an unphysical “attractive electron” state that can affect such density fitting [P. Merlot, T. Kjærgaard, T. Helgaker, R. Lindh, F. Aquilante, S. Reine, and T. B. Pedersen, J. Comput. Chem. 34, 1486 (2013)] is alleviated by including atom-wise semidiagonal integrals exactly. Our approach leads to a significant decrease in the computational cost of density fitting for Hartree–Fock theory while still producing results with errors 2–5 times smaller than standard, nonlocal density fitting. Our method allows for large Hartree–Fock and density functional theory computations with exact exchange to be carried out efficiently on large molecules, which we demonstrate by benchmarking our method on 200 of the most widely used prescription drug molecules. Our new fitting scheme leads to smooth and artifact-free potential energy surfaces and the possibility of relatively simple analytic gradients.
Curve fitting methods for solar radiation data modeling
Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)
2014-10-24
This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.
Simonen, Fredric A.; Gosselin, Stephen R.; Doctor, Steven R.
2013-04-22
This document describes a new method to determine whether the flaws in a particular reactor pressure vessel are consistent with the assumptions regarding the number and sizes of flaws used in the analyses that formed the technical justification basis for the new voluntary alternative Pressurized Thermal Shock (PTS) rule (Draft 10 CFR 50.61a). The new methodology addresses concerns regarding prior methodology because ASME Code Section XI examinations do not detect all fabrication flaws, they have higher detection performance for some flaw types, and there are flaw sizing errors always present (e.g., significant oversizing of small flaws and systematic under sizing of larger flaws). The new methodology allows direct comparison of ASME Code Section XI examination results with values in the PTS draft rule Tables 2 and 3 in order to determine if the number and sizes of flaws detected by an ASME Code Section XI examination are consistent with those assumed in the probabilistic fracture mechanics calculations performed in support of the development of 10 CFR 50.61a.
Pickett, Patrick T. (Kettering, OH)
1981-01-01
A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.
Photometric Redshifts and Photometry Errors
D. Wittman; P. Riechers; V. E. Margoniner
2007-09-21
We examine the impact of non-Gaussian photometry errors on photometric redshift performance. We find that they greatly increase the scatter, but this can be mitigated to some extent by incorporating the correct noise model into the photometric redshift estimation process. However, the remaining scatter is still equivalent to that of a much shallower survey with Gaussian photometry errors. We also estimate the impact of non-Gaussian errors on the spectroscopic sample size required to verify the photometric redshift rms scatter to a given precision. Even with Gaussian {\\it photometry} errors, photometric redshift errors are sufficiently non-Gaussian to require an order of magnitude larger sample than simple Gaussian statistics would indicate. The requirements increase from this baseline if non-Gaussian photometry errors are included. Again the impact can be mitigated by incorporating the correct noise model, but only to the equivalent of a survey with much larger Gaussian photometry errors. However, these requirements may well be overestimates because they are based on a need to know the rms, which is particularly sensitive to tails. Other parametrizations of the distribution may require smaller samples.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Discretization error estimation and exact solution generation using the method of nearby problems.
Sinclair, Andrew J.; Raju, Anil; Kurzen, Matthew J.; Roy, Christopher John; Phillips, Tyrone S.
2011-10-01
The Method of Nearby Problems (MNP), a form of defect correction, is examined as a method for generating exact solutions to partial differential equations and as a discretization error estimator. For generating exact solutions, four-dimensional spline fitting procedures were developed and implemented into a MATLAB code for generating spline fits on structured domains with arbitrary levels of continuity between spline zones. For discretization error estimation, MNP/defect correction only requires a single additional numerical solution on the same grid (as compared to Richardson extrapolation which requires additional numerical solutions on systematically-refined grids). When used for error estimation, it was found that continuity between spline zones was not required. A number of cases were examined including 1D and 2D Burgers equation, the 2D compressible Euler equations, and the 2D incompressible Navier-Stokes equations. The discretization error estimation results compared favorably to Richardson extrapolation and had the advantage of only requiring a single grid to be generated.
Monte Carlo errors with less errors
Ulli Wolff
2006-11-29
We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.
Olson, Eric J.
2013-06-11
An apparatus, program product, and method that run an algorithm on a hardware based processor, generate a hardware error as a result of running the algorithm, generate an algorithm output for the algorithm, compare the algorithm output to another output for the algorithm, and detect the hardware error from the comparison. The algorithm is designed to cause the hardware based processor to heat to a degree that increases the likelihood of hardware errors to manifest, and the hardware error is observable in the algorithm output. As such, electronic components may be sufficiently heated and/or sufficiently stressed to create better conditions for generating hardware errors, and the output of the algorithm may be compared at the end of the run to detect a hardware error that occurred anywhere during the run that may otherwise not be detected by traditional methodologies (e.g., due to cooling, insufficient heat and/or stress, etc.).
Analysis of Errors in a Special Perturbations Satellite Orbit Propagator
Beckerman, M.; Jones, J.P.
1999-02-01
We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) |Final ReporttheHouse AppropriationsFit for Purpose
Huang, Weidong
2011-01-01
Surface slope error of concentrator is one of the main factors to influence the performance of the solar concentrated collectors which cause deviation of reflected ray and reduce the intercepted radiation. This paper presents the general equation to calculate the standard deviation of reflected ray error from slope error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 5 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope error is transferred to the reflected ray in more than 2 folds when the incidence angle is more than 0. The equation for reflected ray error is generally fit for all reflection surfaces, and can also be applied to control the error in designing an abaxial optical system.
Reversible (unitary) Ancillary qbits Controlled gates (cX, cZ) #12;Measurement Deterministic Duplication;Decoding use ancillary bits to determine what error occurred #12;Decoding use ancillary bits to determine what error occurred set to 0 if first two bits equal, set to 1 if not #12;Decoding use ancillary bits
Thermodynamics of error correction
Pablo Sartori; Simone Pigolotti
2015-04-24
Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and dissipated work of the process. Its derivation is based on the second law of thermodynamics, hence its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.
Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint
Florita, A.; Hodge, B. M.; Milligan, M.
2012-08-01
The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.
Abdelhamid Awad Aly Ahmed, Sala
2008-10-10
by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the O–ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major Subject: Computer Science QUANTUM ERROR CONTROL CODES A... Members, Mahmoud M. El-Halwagi Anxiao (Andrew) Jiang Rabi N. Mahapatra Head of Department, Valerie Taylor May 2008 Major Subject: Computer Science iii ABSTRACT Quantum Error Control Codes. (May 2008) Salah Abdelhamid Awad Aly Ahmed, B.Sc., Mansoura...
Fitness & Exercise - HPMC Occupational Health Services
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Downloads & Patient Materials > Fitness & Exercise Health Education & Wellness Downloads & Patient Materials Ergonomics Fitness & Exercise Aerobic Exercise Intensity and Target...
Error Dynamics: The Dynamic Emergence of Error Avoidance and
Bickhard, Mark H.
. Standard such notions are, however, arguably limited and bad notions, being based on untenable models of learning about error and of handling error knowledge constitute a complex major theme in evolution VICARIANTS Avoiding Error. The central theme is a progressive elaboration of kinds of dynamics that manage
Pole structure from energy-dependent and single-energy fits to $?N$ elastic scattering data
Alfred Švarc; Mirza Hadžimehmedovi?; Hedim Osmanovi?; Jugoslav Stahov; Ron L. Workman
2015-01-28
The pole structure of the current GW/SAID partial-wave analysis of elastic $\\pi N$ scattering and $\\eta N$ production data is studied. Pole positions and residues are extracted from both the energy-dependent and single-energy fits, using two different methods. For the energy-dependent fits, both contour integration and a Laurent+Pietarinen approach are used. In the case of single-energy fits, the Laurent+Pietarinen approach is used. Errors are estimated and the two sets of results are compared to other recent and older fits to data.
Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2013-11-28
A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resulting in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.
Clinical Competence Assessments Fitness for Duty Evaluations
Gleeson, Joseph G.
Clinical Competence Assessments Fitness for Duty Evaluations Practice & Billing Monitoring Assessment· Program Fitness for Duty Evaluations· Physician Enhancement Program· (PEP) - Monitoring Custom Competence Assessment· Fitness For Duty (FFD) Evaluation· #12;PACE Clinical Competence Assessment Program2 3
Geothermal FIT Design: International Experience and U.S. Considerations
Rickerson, W.; Gifford, J.; Grace, R.; Cory, K.
2012-08-01
Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date, a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).
Neutron multiplication error in TRU waste measurements
Veilleux, John [Los Alamos National Laboratory; Stanfield, Sean B [CCP; Wachter, Joe [CCP; Ceo, Bob [CCP
2009-01-01
Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are more realistic and accurate. To do so, measurements of standards and waste drums were performed with High Efficiency Neutron Counters (HENC) located at Los Alamos National Laboratory (LANL). The data were analyzed for multiplication effects and new estimates of the multiplication error were computed. A concluding section will present alternatives for reducing the number of rejections of TRU waste containers due to neutron multiplication error.
Climate Modeling and Function Fitting
Blais, Brian
Climate Modeling and Function Fitting Brown Bag Research Wednesday, October 26, 11 #12;Abstract In this seminar I hope to explore an approach to climate modeling to which I was just introduced, which focusses are those who are interested in any of the topics of time-series analysis, climate modeling , spectrum
Optimal error estimates for corrected trapezoidal rules
Talvila, Erik
2012-01-01
Corrected trapezoidal rules are proved for $\\int_a^b f(x)\\,dx$ under the assumption that $f"\\in L^p([a,b])$ for some $1\\leq p\\leq\\infty$. Such quadrature rules involve the trapezoidal rule modified by the addition of a term $k[f'(a)-f'(b)]$. The coefficient $k$ in the quadrature formula is found that minimizes the error estimates. It is shown that when $f'$ is merely assumed to be continuous then the optimal rule is the trapezoidal rule itself. In this case error estimates are in terms of the Alexiewicz norm. This includes the case when $f"$ is integrable in the Henstock--Kurzweil sense or as a distribution. All error estimates are shown to be sharp for the given assumptions on $f"$. It is shown how to make these formulas exact for all cubic polynomials $f$. Composite formulas are computed for uniform partitions.
Evaluation of respirator fit training by quantitative fit testing
Chute, Daniel Otis
1981-01-01
that all respirator wearers be trained and f1t tested. In additiion, as part of a complete respiratory protection program, the effect1veness of resp1rator use training should be appraised at periodic 1ntervals. The purpose of this experiment... of trained individuals was able to significantly improve their measured protection factors when compared to the untrained control group. In addition, when fit tests were re- peated on the same day, the second test resulted in consistently higher scores...
ERROR-TOLERANT MULTI-MODAL SENSOR FUSION Farinaz Koushanfar*
Potkonjak, Miodrag
ERROR-TOLERANT MULTI-MODAL SENSOR FUSION Farinaz Koushanfar* , Sasha Slijepcevic , Miodrag is multi-modal sensor fusion, where data from sensors of dif- ferent modalities are combined in order applications, including multi- modal sensor fusion, is to ensure that all of the techniques and tools are error
Pump apparatus including deconsolidator
Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew
2014-10-07
A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergyDepartment ofNuclearWhere Do OLEDs Fit
Introduction Observations PSF fitting Photometry Results Defocused PSF-fitting Photometry
Pinfield, David J.
Introduction Observations PSF fitting Photometry Results Defocused PSF-fitting Photometry Ro Parviainen Defocused PSF-fitting Photometry #12;Introduction Observations PSF fitting Photometry Results 1 Introduction The light curve Defocused PSF 2 Observations Observations 3 PSF fitting Photometry PSF model 1 PSF
Two-point Correlator Fits on HISQ Ensembles
A. Bazavov; C. Bernard; C. Bouchard; C. DeTar; D. Du; A. X. El-Khadra; J. Foley; E. D. Freeland; E. Gamiz; Steven Gottlieb; U. M. Heller; J. E. Hetrick; J. Kim; A. S. Kronfeld; J. Laiho; L. Levkova; M. Lightman; P. B. Mackenzie; E. T. Neil; M. Oktay; J. N. Simone; R. L. Sugar; D. Toussaint; R. S. Van de Water; R. Zhou; for the Fermilab Lattice Collaboration; for the MILC Collaboration
2012-12-04
We present our methods to fit the two point correlators for light, strange, and charmed pseudoscalar meson physics with the highly improved staggered quark (HISQ) action. We make use of the least-squares fit including the full covariance matrix of the correlators and including Gaussian constraints on some parameters. We fit the correlators on a variety of the HISQ ensembles. The lattice spacing ranges from 0.15 fm down to 0.06 fm. The light sea quark mass ranges from 0.2 times the strange quark mass down to the physical light quark mass. The HISQ ensembles also include lattices with different volumes and with unphysical values of the strange quark mass. We use the results from this work to obtain our preliminary results of $f_D$, $f_{D_s}$, $f_{D_s}/f_{D}$, and ratios of quark masses presented in another talk [1].
DATA COMPRESSION USING WAVELETS: ERROR ...
1910-90-11
algorithms that introduce differences between the original and compressed data in ... to choose an error metric that parallels the human visual system, so that image .... signal data along a communications channel, one sends integer codes that ...
FIT-FOR-PURPOSE LAND ADMINISTRATION
FIT-FOR-PURPOSE LAND ADMINISTRATION AND THE POST-2015 DEVELOPMENT AGENDA ANNUAL WORLD BANK the coalescence the yardstick 3 #12;Methodology fit-for-purpose land administration urban and rural; it will influence land administration design 2. Fit-for-purpose is happening; but, needs purpose, stages, and future
The Challenge of Quantum Error Correction.
Fominov, Yakov
in the design of physical bits. #12;What we need Hardware requirements: 1. Many 103-104 / R individual bits (R flip classical error b. Phase error 0exp( ( ) )z i E t dt = - Fluctuates 1. Need hardware error #12;Classical error correction by the software and hardware. , / 2 0 Hardware error correction: Ising
Fitting Skyrme functionals using linear response theory
A. Pastore; D. Davesne; K. Bennaceur; J. Meyer; V. Hellemans
2012-10-30
Recently, it has been recently shown that the linear response theory in symmetric nuclear matter can be used as a tool to detect finite size instabilities for different Skyrme functionals. In particular it has been shown that there is a correlation between the density at which instabilities occur in infinite matter and the instabilities in finite nuclei. In this article we present a new fitting protocol that uses this correlation to add new additional constraint in Symmetric Infinite Nuclear Matter in order to ensure the stability of finite nuclei against matter fluctuation in all spin and isospin channels. As an application, we give the parameters set for a new Skyrme functional which includes central and spin-orbit parts and which is free from instabilities by construction.
Unequal error protection of subband coded bits
Devalla, Badarinath
1994-01-01
Source coded data can be separated into different classes based on their susceptibility to channel errors. Errors in the Important bits cause greater distortion in the reconstructed signal. This thesis presents an Unequal Error Protection scheme...
Communication error detection using facial expressions
Wang, Sy Bor, 1976-
2008-01-01
Automatic detection of communication errors in conversational systems typically rely only on acoustic cues. However, perceptual studies have indicated that speakers do exhibit visual communication error cues passively ...
The effect of temperature and humidity on respirator fit
Niekerk, Gary
1986-01-01
benefits of the cilia and mucus are lost. Other defense mechanisms of the upper respiratory tract include sneezing and coughing, which tend to minimize the amount of irritants entering the system. ~ ~ Defense mechanisms of the alveolar sacs include a... cannot detect the presence of irritant smoke a satisfactory fit is assumed. If the test subject involuntarily reacts to the irritant by coughing or sneezing, then the subject has failed the test. When isoamyl acetate is used as the testing agent...
Formalism for Simulation-based Optimization of Measurement Errors in High Energy Physics
Yuehong Xie
2009-04-29
Miminizing errors of the physical parameters of interest should be the ultimate goal of any event selection optimization in high energy physics data analysis involving parameter determination. Quick and reliable error estimation is a crucial ingredient for realizing this goal. In this paper we derive a formalism for direct evaluation of measurement errors using the signal probability density function and large fully simulated signal and background samples without need for data fitting and background modelling. We illustrate the elegance of the formalism in the case of event selection optimization for CP violation measurement in B decays. The implication of this formalism on choosing event variables for data analysis is discussed.
Time & Fitness-Dependent Hamiltonian Biomechanics
Ivancevic, Tijana T
2009-01-01
In this paper we propose the time & fitness-dependent Hamiltonian form of human biomechanics, in which total mechanical + biochemical energy is not conserved. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics. Then we extend it using a powerful geometrical machinery consisting of fibre bundles, jet manifolds, polysymplectic geometry and Hamiltonian connections. In this way we derive time-dependent dissipative Hamiltonian equations and the fitness evolution equation for the general time & fitness-dependent human biomechanical system. Keywords: Human biomechanics, configuration bundle, Hamiltonian connections, jet manifolds, time & fitness-dependent dynamics
ERROR ANALYSIS OF COMPOSITE SHOCK INTERACTION PROBLEMS.
LEE,T.MU,Y.ZHAO,M.GLIMM,J.LI,X.YE,K.
2004-07-26
We propose statistical models of uncertainty and error in numerical solutions. To represent errors efficiently in shock physics simulations we propose a composition law. The law allows us to estimate errors in the solutions of composite problems in terms of the errors from simpler ones as discussed in a previous paper. In this paper, we conduct a detailed analysis of the errors. One of our goals is to understand the relative magnitude of the input uncertainty vs. the errors created within the numerical solution. In more detail, we wish to understand the contribution of each wave interaction to the errors observed at the end of the simulation.
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
2014-01-01
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Errormore »rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition. « less
Least square fitting with one parameter less
Bernd A. Berg
2015-05-28
It is shown that whenever the multiplicative normalization of a fitting function is not known, least square fitting by $\\chi^2$ minimization can be performed with one parameter less than usual by converting the normalization parameter into a function of the remaining parameters and the data.
Confirmation of standard error analysis techniques applied to EXAFS using simulations
Booth, Corwin H; Hu, Yung-Jin
2009-12-14
Systematic uncertainties, such as those in calculated backscattering amplitudes, crystal glitches, etc., not only limit the ultimate accuracy of the EXAFS technique, but also affect the covariance matrix representation of real parameter errors in typical fitting routines. Despite major advances in EXAFS analysis and in understanding all potential uncertainties, these methods are not routinely applied by all EXAFS users. Consequently, reported parameter errors are not reliable in many EXAFS studies in the literature. This situation has made many EXAFS practitioners leery of conventional error analysis applied to EXAFS data. However, conventional error analysis, if properly applied, can teach us more about our data, and even about the power and limitations of the EXAFS technique. Here, we describe the proper application of conventional error analysis to r-space fitting to EXAFS data. Using simulations, we demonstrate the veracity of this analysis by, for instance, showing that the number of independent dat a points from Stern's rule is balanced by the degrees of freedom obtained from a 2 statistical analysis. By applying such analysis to real data, we determine the quantitative effect of systematic errors. In short, this study is intended to remind the EXAFS community about the role of fundamental noise distributions in interpreting our final results.
Kernel Regression in the Presence of Correlated Errors Kernel Regression in the Presence in nonparametric regression is difficult in the presence of correlated errors. There exist a wide variety vector machines for regression. Keywords: nonparametric regression, correlated errors, bandwidth choice
Fitting Beef Cattle into Central Texas Farming.
Magee, A. C.
1956-01-01
Two Monte Carlo studies were conducted to investigate the sensitivity of fit indices in detecting model misspecification in multilevel structural equation models (MSEM) with normally distributed or dichotomous outcome ...
Follow the Family Food and Fitness Formula.
Cooksey, Dymple; Haggard, Marilyn; Hunt, Alice; Sweeten, Mary; Heussner, Mary Ann
1984-01-01
In this dissertation I examine the intersection of organizational communication and what I name extreme corporate wellness. I define extreme corporate wellness as the push towards more radical fitness and workplace health ...
Developing the next "wow" fitness product
Renjifo, Jorge F. (Renjifo-Mundo)
2007-01-01
The fitness industry has not seen a commercially successful revolution since the elliptical trainer in the mid 1990s. Newer products such as the Cybex Arc Trainer are vying to replicate this success, but are only slowly ...
Fast Fits for Lattice QCD Correlators
K. Hornbostel; G. P. Lepage; C. T. H. Davies; R. J. Dowdall; H. Na; J. Shigemitsu
2011-11-06
We illustrate a technique for fitting lattice QCD correlators to sums of exponentials that is significantly faster than traditional fitting methods --- 10--40 times faster for the realistic examples we present. Our examples are drawn from a recent analysis of the Upsilon spectrum, and another recent analysis of the D -> pi semileptonic form factor. For single correlators, we show how to simplify traditional effective-mass analyses.
Energy efficiency of error correction for wireless communication
Havinga, Paul J.M.
-control is an important issue for mobile computing systems. This includes energy spent in the physical radio transmission and Networking Conference 1999 [7]. #12;ENERGY EFFICIENCY OF ERROR CORRECTION FOR WIRELESS COMMUNICATIONA 2 on the energy of transmission and the energy of redundancy computation. We will show that the computational cost
Method and apparatus for detecting timing errors in a system oscillator
Gliebe, Ronald J. (Library, PA); Kramer, William R. (Bethel Park, PA)
1993-01-01
A method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.
LOCO with Constraints and Improved Fitting Technique
Huang, Xiaobiao; Safranek, James; Portmann, Greg; /LBL, Berkeley
2009-06-18
LOCO has been a powerful beam-based diagnostics and optics control method for storage rings and synchrotrons worldwide ever since it was established at NSLS by J. Safranek. This method measures the orbit response matrix and optionally the dispersion function of the machine. The data are then fitted to a lattice model by adjusting parameters such as quadrupole and skew quadrupole strengths in the model, BPM gains and rolls, corrector gains and rolls of the measurement system. Any abnormality of the machine that affects the machine optics can then be identified. The resulting lattice model is equivalent to the real machine lattice as seen by the BPMs. Since there are usually two or more BPMs per betatron period in modern circular accelerators, the model is often a very accurate representation of the real machine. According to the fitting result, one can correct the machine lattice to the design lattice by changing the quadrupole and skew quadrupole strengths. LOCO is so important that it is routinely performed at many electron storage rings to guarantee machine performance, especially after the Matlab-based LOCO code became available. However, for some machines, LOCO is not easy to carry out. In some cases, LOCO fitting converges to an unrealistic solution with large changes to the quadrupole strengths {Delta}K. The quadrupole gradient changes can be so large that the resulting lattice model fails to find a closed orbit and subsequent iterations become impossible. In cases when LOCO converges, the solution can have {Delta}K that is larger than realistic and often along with a spurious zigzag pattern between adjacent quadrupoles. This degeneracy behavior of LOCO is due to the correlation between the fitting parameters - usually between neighboring quadrupoles. The fitting scheme is therefore less restrictive over certain patterns of changes to these quadrupoles with which the correlated quadrupoles fight each other and the net effect is very inefficient {chi}{sup 2} reduction, i.e., small {chi}{sup 2} reduction with large changes of {Delta}K. Under effects of random noise, the fitting solution tends to crawl toward these patterns and ends up with unrealistically large {Delta}K. Such a solution is not very useful in optics correction because after the solution is dialed in, the quadrupoles will not respond as predicted by the lattice model due to magnet hysteresis. We will show that adding constraints to the fitting parameters is an effective way to combat this problem of LOCO. In fact, it improves optics calibration precision even for machines that don't show severe degeneracy behavior. LOCO fitting is essentially to solve a nonlinear least square problem with an iterative approach. The linear least square technique is applied in each iteration to move the solution toward the minimum. This approach is commonly referred to as the Gauss-Newton method. By using singular value decomposition (SVD) to invert the Jacobian matrix, this method has generally been very successful for LOCO. However, this method is based on a linear expansion of the residual vector over the fitting parameters which is valid only when the starting solution is sufficiently close to the real minimum. The fitting algorithm can have difficulties to converge when the initial guess is too far off. For example, it's possible for the {chi}{sup 2} merit function to increase after an iteration instead of decrease. This situation can be improved by using more robust nonlinear least square fitting algorithms, such as the Levenberg-Marquardt method. We will discuss the degeneracy problem in section 2 and then show how the constrained fitting can help in section 3. The application of Levenberg-Marquadt method to LOCO is shown in section 4. A summary is given in section 5.
Fitness for service applications in LNG plants
Bagnoli, D.L.; Polk, C.J.; Yin, H.; Gordon, J.R.
1995-12-31
Fitness-for-service assessments can provide information regarding operational reliability of equipment. However, to be meaningful, such assessments require an analytical procedure to determine the ability of engineering structures to tolerate the presence of weld flaws. In recent years, there has been a significant interest in this technology by the refining and petrochemical industries for predicting and avoiding fracture in pressurized components. Most applications have covered pressure vessel and piping where carbon and low alloy steels are the traditional materials of construction. More recently, fitness for service questions have developed for equipment with highly ductile materials such as aluminum alloys. In order to handle these questions ductile tearing resistance must be considered and R curve methods are required. In this paper examples are cited where fitness for service assessments were required for an aluminum heat exchanger in LNG service. Suitable R curve data were developed in order to establish flaw tolerance following UT inspections of this equipment.
Neural network approach to parton distributions fitting
Andrea Piccione; Joan Rojo; for the NNPDF Collaboration
2005-10-18
We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.
Countries Gasoline Prices Including Taxes
Gasoline and Diesel Fuel Update (EIA)
Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...
FIT for Use Everywhere? Assessing Experiences With Renewable...
FIT for Use Everywhere? Assessing Experiences With Renewable Energy Feed-In Tariffs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FIT for Use Everywhere? Assessing...
High-throughput comparison of gene fitness among related bacteria
2012-01-01
5096–5108. 36. Macnab RM: How bacteria assemble. Annu Revgene fitness among related bacteria. BMC Genomics 2012 13:gene fitness among related bacteria Rocio Canals 1 , Xiao-
Biomass Resources Overview and Perspectives on Best Fits for...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass resources overview and perspectives...
A Fitting Robot for Variational Analysis
Alan Ó Cais; Derek Leinweber; Selim Mahbub; Tony Williams
2008-12-18
We develop a robot algorithm to maximise the number of distinct states reliably extracted from correlator data using the variational analysis method. The robot explores the variational parameter space and attempts to remove, as far as possible, the human element from the fitting of the subsequent orthogonalised data.
Size, temperature, and fitness: three rules
Huey, Raymond B.
is smaller (79% of studies/estimates), primarily for terrestrial insects, reptiles, and annual plants. Evidence regarding Hotter is better is still limited (and primarily from terrestrial insects), but most, and fitness. Similarly, body temperature affects nearly all rate processes from biochemical kinetics
Group representations, error bases and quantum codes
Knill, E
1996-01-01
This report continues the discussion of unitary error bases and quantum codes. Nice error bases are characterized in terms of the existence of certain characters in a group. A general construction for error bases which are non-abelian over the center is given. The method for obtaining codes due to Calderbank et al. is generalized and expressed purely in representation theoretic terms. The significance of the inertia subgroup both for constructing codes and obtaining the set of transversally implementable operations is demonstrated.
Cosmographic Hubble fits to the supernova data
Celine Cattoen; Matt Visser
2008-09-03
The Hubble relation between distance and redshift is a purely cosmographic relation that depends only on the symmetries of a FLRW spacetime, but does not intrinsically make any dynamical assumptions. This suggests that it should be possible to estimate the parameters defining the Hubble relation without making any dynamical assumptions. To test this idea, we perform a number of inter-related cosmographic fits to the legacy05 and gold06 supernova datasets. Based on this supernova data, the "preponderance of evidence" certainly suggests an accelerating universe. However we would argue that (unless one uses additional dynamical and observational information) this conclusion is not currently supported "beyond reasonable doubt". As part of the analysis we develop two particularly transparent graphical representations of the redshift-distance relation -- representations in which acceleration versus deceleration reduces to the question of whether the relevant graph slopes up or down. Turning to the details of the cosmographic fits, three issues in particular concern us: First, the fitted value for the deceleration parameter changes significantly depending on whether one performs a chi^2 fit to the luminosity distance, proper motion distance or other suitable distance surrogate. Second, the fitted value for the deceleration parameter changes significantly depending on whether one uses the traditional redshift variable z, or what we shall argue is on theoretical grounds an improved parameterization y=z/(1+z). Third, the published estimates for systematic uncertainties are sufficiently large that they certainly impact on, and to a large extent undermine, the usual purely statistical tests of significance. We conclude that the supernova data should be treated with some caution.
On a fatal error in tachyonic physics
Edward Kapu?cik
2013-08-10
A fatal error in the famous paper on tachyons by Gerald Feinberg is pointed out. The correct expressions for energy and momentum of tachyons are derived.
Adjoint Error Estimation for Elastohydrodynamic Lubrication
Jimack, Peter
Adjoint Error Estimation for Elastohydrodynamic Lubrication by Daniel Edward Hart Submitted elastohydro- dynamic lubrication (EHL) problems. A functional is introduced, namely the friction
Measure of Diffusion Model Error for Thermal Radiation Transport
Kumar, Akansha
2013-04-19
and computational time. However, this approximation often has significant error. Error due to the inherent nature of a physics model is called model error. Information about the model error associated with the diffusion approximation is clearly desirable...
WIPP Weatherization: Common Errors and Innovative Solutions Presentati...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
WIPP Weatherization: Common Errors and Innovative Solutions Presentation WIPP Weatherization: Common Errors and Innovative Solutions Presentation This presentation contains...
Matthews, Daniel J.; Newman, Jeffrey A., E-mail: djm70@pitt.edu, E-mail: janewman@pitt.edu [Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, PA 15260 (United States)
2012-02-01
Cross-correlation techniques provide a promising avenue for calibrating photometric redshifts and determining redshift distributions using spectroscopy which is systematically incomplete (e.g., current deep spectroscopic surveys fail to obtain secure redshifts for 30%-50% or more of the galaxies targeted). In this paper, we improve on the redshift distribution reconstruction methods from our previous work by incorporating full covariance information into our correlation function fits. Correlation function measurements are strongly covariant between angular or spatial bins, and accounting for this in fitting can yield substantial reduction in errors. However, frequently the covariance matrices used in these calculations are determined from a relatively small set (dozens rather than hundreds) of subsamples or mock catalogs, resulting in noisy covariance matrices whose inversion is ill-conditioned and numerically unstable. We present here a method of conditioning the covariance matrix known as ridge regression which results in a more well behaved inversion than other techniques common in large-scale structure studies. We demonstrate that ridge regression significantly improves the determination of correlation function parameters. We then apply these improved techniques to the problem of reconstructing redshift distributions. By incorporating full covariance information, applying ridge regression, and changing the weighting of fields in obtaining average correlation functions, we obtain reductions in the mean redshift distribution reconstruction error of as much as {approx}40% compared to previous methods. We provide a description of POWERFIT, an IDL code for performing power-law fits to correlation functions with ridge regression conditioning that we are making publicly available.
Neutralino relic density including coannihilations
Paolo Gondolo; Joakim Edsjo
1997-11-25
We give an overview of our precise calculation of the relic density of the lightest neutralino, in which we included relativistic Boltzmann averaging, subthreshold and resonant annihilations, and coannihilation processes with charginos and neutralinos.
Inference for Model Error Allan Seheult
Oakley, Jeremy
Reservoirs, Model Error, Reification, Thermohaline Circulation. 1 Introduction Mathematical models of complex that the uncertainties associated with both calibrating a mathematical model to observations on a physical system specification exercise of model error with the cosmologists, linked to an extensive analysis of model
Nonparametric Regression with Correlated Errors Jean Opsomer
Wang, Yuedong
Nonparametric Regression with Correlated Errors Jean Opsomer Iowa State University Yuedong Wang Nonparametric regression techniques are often sensitive to the presence of correlation in the errors splines and wavelet regression under correlation, both for short-range and long-range dependence
Remarks on statistical errors in equivalent widths
Klaus Vollmann; Thomas Eversberg
2006-07-03
Equivalent width measurements for rapid line variability in atomic spectral lines are degraded by increasing error bars with shorter exposure times. We derive an expression for the error of the line equivalent width $\\sigma(W_\\lambda)$ with respect to pure photon noise statistics and provide a correction value for previous calculations.
Characterizing Application Memory Error Vulnerability to
Mutlu, Onur
-reliability memory (HRM) Store error-tolerant data in less-reliable lower-cost memory Store error-vulnerable data an application Observation 2: Data can be recovered by software ·Heterogeneous-Reliability Memory (HRM: Data can be recovered by software ·Heterogeneous-Reliability Memory (HRM) ·Evaluation 4 #12;Server
297 Copyright 2007 Psychonomic Society, Inc. Cross-task individual differences in error
Curran, Tim
, Arizona and christopher d'lauro and tiM curran University of Colorado, Boulder, Colorado The error, including the online detection and bias (positive learners; Frank, Woroch, & Curran, 2005). correction
On the evaluation of human error probabilities for post-initiating events
Presley, Mary R
2006-01-01
Quantification of human error probabilities (HEPs) for the purpose of human reliability assessment (HRA) is very complex. Because of this complexity, the state of the art includes a variety of HRA models, each with its own ...
Automated ligand fitting by core-fragment fitting and extension into density
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Klei, Herbert [Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 4000, Princeton, New Jersey 08543-4000 (United States); Adams, Paul D.; Moriarty, Nigel W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States); Cohn, Judith D. [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States)
2006-08-01
An automated ligand-fitting procedure has been developed and tested on 9327 ligands and (F{sub o} ? F{sub c})exp(i?{sub c}) difference density from macromolecular structures in the Protein Data Bank. A procedure for fitting of ligands to electron-density maps by first fitting a core fragment of the ligand to density and then extending the remainder of the ligand into density is presented. The approach was tested by fitting 9327 ligands over a wide range of resolutions (most are in the range 0.8-4.8 Å) from the Protein Data Bank (PDB) into (F{sub o} ? F{sub c})exp(i?{sub c}) difference density calculated using entries from the PDB without these ligands. The procedure was able to place 58% of these 9327 ligands within 2 Å (r.m.s.d.) of the coordinates of the atoms in the original PDB entry for that ligand. The success of the fitting procedure was relatively insensitive to the size of the ligand in the range 10–100 non-H atoms and was only moderately sensitive to resolution, with the percentage of ligands placed near the coordinates of the original PDB entry for fits in the range 58–73% over all resolution ranges tested.
A technique for human error analysis (ATHEANA)
Cooper, S.E.; Ramey-Smith, A.M.; Wreathall, J.; Parry, G.W. [and others
1996-05-01
Probabilistic risk assessment (PRA) has become an important tool in the nuclear power industry, both for the Nuclear Regulatory Commission (NRC) and the operating utilities. Human reliability analysis (HRA) is a critical element of PRA; however, limitations in the analysis of human actions in PRAs have long been recognized as a constraint when using PRA. A multidisciplinary HRA framework has been developed with the objective of providing a structured approach for analyzing operating experience and understanding nuclear plant safety, human error, and the underlying factors that affect them. The concepts of the framework have matured into a rudimentary working HRA method. A trial application of the method has demonstrated that it is possible to identify potentially significant human failure events from actual operating experience which are not generally included in current PRAs, as well as to identify associated performance shaping factors and plant conditions that have an observable impact on the frequency of core damage. A general process was developed, albeit in preliminary form, that addresses the iterative steps of defining human failure events and estimating their probabilities using search schemes. Additionally, a knowledge- base was developed which describes the links between performance shaping factors and resulting unsafe actions.
Ferguson, Andrew
2015-01-01
for therapy, but recent computational advances offer new ways to identify susceptible targets to guide, but certain patterns of mutations enable the virus to escape immune surveillance while maintaining high
Representations of spectral coordinates in FITS
E. W. Greisen; M. R. Calabretta; F. G. Valdes; S. L. Allen
2005-10-07
Greisen & Calabretta describe a generalized method for specifying the coordinates of FITS data samples. Following that general method, Calabretta & Greisen describe detailed conventions for defining celestial coordinates as they are projected onto a two-dimensional plane. The present paper extends the discussion to the spectral coordinates of wavelength, frequency, and velocity. World coordinate functions are defined for spectral axes sampled linearly in wavelength, frequency, or velocity, linearly in the logarithm of wavelength or frequency, as projected by ideal dispersing elements, and as specified by a lookup table.
Automated ligand fitting by core-fragment fitting and extensioninto density
Terwilliger, Thomas C.; Klei, Herbert; Adams, Paul D.; Moriarty,Nigel W.; Cohn, Judith D.
2006-08-01
A procedure for fitting of ligands to electron- density mapsby first fitting a core fragment of the ligand to density and thenextending the remainder of the ligand into density is presented. Theapproach was tested by fitting 9327 ligands over a wide range ofresolutions ( most are in the range 0.8-4.8 angstrom) from the ProteinData Bank (PDB) into (F-o - F-c) exp(i phi(c)) difference densitycalculated using entries from the PDB without these ligands. Theprocedure was able to place 58 percent of these 9327 ligands within 2angstrom (r.m. s.d.) of the coordinates of the atoms in the original PDBentry for that ligand. The success of the fitting procedure wasrelatively insensitive to the size of the ligand in the range 10 -100non-H atoms and was only moderately sensitive to resolution, with thepercentage of ligands placed near the coordinates of the original PDBentry for fits in the range 58 - 73 percent over all resolution rangestested.
The FIT Model - Fuel-cycle Integration and Tradeoffs
Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Meliisa C Teague; Gregory M Teske; Kurt G Vedros
2010-09-01
All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010] are an initial step by the FCR&D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. The question originally posed to the “system losses study” was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for “minimum fuel treatment” approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.
Agility metric sensitivity using linear error theory
Smith, David Matthew
2000-01-01
Aircraft agility metrics have been proposed for use to measure the performance and capability of aircraft onboard while in-flight. The sensitivity of these metrics to various types of errors and uncertainties is not ...
Quantum Error Correction for Quantum Memories
Barbara M. Terhal
2015-04-10
Active quantum error correction using qubit stabilizer codes has emerged as a promising, but experimentally challenging, engineering program for building a universal quantum computer. In this review we consider the formalism of qubit stabilizer and subsystem stabilizer codes and their possible use in protecting quantum information in a quantum memory. We review the theory of fault-tolerance and quantum error-correction, discuss examples of various codes and code constructions, the general quantum error correction conditions, the noise threshold, the special role played by Clifford gates and the route towards fault-tolerant universal quantum computation. The second part of the review is focused on providing an overview of quantum error correction using two-dimensional (topological) codes, in particular the surface code architecture. We discuss the complexity of decoding and the notion of passive or self-correcting quantum memories. The review does not focus on a particular technology but discusses topics that will be relevant for various quantum technologies.
Simulating Bosonic Baths with Error Bars
Mischa P. Woods; M. Cramer; M. B. Plenio
2015-04-07
We derive rigorous truncation-error bounds for the spin-boson model and its generalizations to arbitrary quantum systems interacting with bosonic baths. For the numerical simulation of such baths the truncation of both, the number of modes and the local Hilbert-space dimensions is necessary. We derive super-exponential Lieb--Robinson-type bounds on the error when restricting the bath to finitely-many modes and show how the error introduced by truncating the local Hilbert spaces may be efficiently monitored numerically. In this way we give error bounds for approximating the infinite system by a finite-dimensional one. As a consequence, numerical simulations such as the time-evolving density with orthogonal polynomials algorithm (TEDOPA) now allow for the fully certified treatment of the system-environment interaction.
Errors and paradoxes in quantum mechanics
D. Rohrlich
2007-08-28
Errors and paradoxes in quantum mechanics, entry in the Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, ed. F. Weinert, K. Hentschel, D. Greenberger and B. Falkenburg (Springer), to appear
Quantum error-correcting codes and devices
Gottesman, Daniel (Los Alamos, NM)
2000-10-03
A method of forming quantum error-correcting codes by first forming a stabilizer for a Hilbert space. A quantum information processing device can be formed to implement such quantum codes.
Organizational Errors: Directions for Future Research
Carroll, John Stephen
The goal of this chapter is to promote research about organizational errors—i.e., the actions of multiple organizational participants that deviate from organizationally specified rules and can potentially result in adverse ...
Quantifying truncation errors in effective field theory
R. J. Furnstahl; N. Klco; D. R. Phillips; S. Wesolowski
2015-06-03
Bayesian procedures designed to quantify truncation errors in perturbative calculations of quantum chromodynamics observables are adapted to expansions in effective field theory (EFT). In the Bayesian approach, such truncation errors are derived from degree-of-belief (DOB) intervals for EFT predictions. Computation of these intervals requires specification of prior probability distributions ("priors") for the expansion coefficients. By encoding expectations about the naturalness of these coefficients, this framework provides a statistical interpretation of the standard EFT procedure where truncation errors are estimated using the order-by-order convergence of the expansion. It also permits exploration of the ways in which such error bars are, and are not, sensitive to assumptions about EFT-coefficient naturalness. We first demonstrate the calculation of Bayesian probability distributions for the EFT truncation error in some representative examples, and then focus on the application of chiral EFT to neutron-proton scattering. Epelbaum, Krebs, and Mei{\\ss}ner recently articulated explicit rules for estimating truncation errors in such EFT calculations of few-nucleon-system properties. We find that their basic procedure emerges generically from one class of naturalness priors considered, and that all such priors result in consistent quantitative predictions for 68% DOB intervals. We then explore several methods by which the convergence properties of the EFT for a set of observables may be used to check the statistical consistency of the EFT expansion parameter.
Evaluating operating system vulnerability to memory errors.
Ferreira, Kurt Brian; Bridges, Patrick G.; Pedretti, Kevin Thomas Tauke; Mueller, Frank; Fiala, David; Brightwell, Ronald Brian
2012-05-01
Reliability is of great concern to the scalability of extreme-scale systems. Of particular concern are soft errors in main memory, which are a leading cause of failures on current systems and are predicted to be the leading cause on future systems. While great effort has gone into designing algorithms and applications that can continue to make progress in the presence of these errors without restarting, the most critical software running on a node, the operating system (OS), is currently left relatively unprotected. OS resiliency is of particular importance because, though this software typically represents a small footprint of a compute node's physical memory, recent studies show more memory errors in this region of memory than the remainder of the system. In this paper, we investigate the soft error vulnerability of two operating systems used in current and future high-performance computing systems: Kitten, the lightweight kernel developed at Sandia National Laboratories, and CLE, a high-performance Linux-based operating system developed by Cray. For each of these platforms, we outline major structures and subsystems that are vulnerable to soft errors and describe methods that could be used to reconstruct damaged state. Our results show the Kitten lightweight operating system may be an easier target to harden against memory errors due to its smaller memory footprint, largely deterministic state, and simpler system structure.
On the Fourier Transform Approach to Quantum Error Control
Hari Dilip Kumar
2012-08-24
Quantum codes are subspaces of the state space of a quantum system that are used to protect quantum information. Some common classes of quantum codes are stabilizer (or additive) codes, non-stabilizer (or non-additive) codes obtained from stabilizer codes, and Clifford codes. These are analyzed in a framework using the Fourier transform on finite groups, the finite group in question being a subgroup of the quantum error group considered. All the classes of codes that can be obtained in this framework are explored, including codes more general than Clifford codes. The error detection properties of one of these more general classes ("direct sums of translates of Clifford codes") are characterized. Examples codes are constructed, and computer code search results presented and analysed.
Gross error detection and stage efficiency estimation in a separation process
Serth, R.W.; Srikanth, B. . Dept. of Chemical and Natural Gas Engineering); Maronga, S.J. . Dept. of Chemical and Process Engineering)
1993-10-01
Accurate process models are required for optimization and control in chemical plants and petroleum refineries. These models involve various equipment parameters, such as stage efficiencies in distillation columns, the values of which must be determined by fitting the models to process data. Since the data contain random and systematic measurement errors, some of which may be large (gross errors), they must be reconciled to obtain reliable estimates of equipment parameters. The problem thus involves parameter estimation coupled with gross error detection and data reconciliation. MacDonald and Howat (1988) studied the above problem for a single-stage flash distillation process. Their analysis was based on the definition of stage efficiency due to Hausen, which has some significant disadvantages in this context, as discussed below. In addition, they considered only data sets which contained no gross errors. The purpose of this article is to extend the above work by considering alternative definitions of state efficiency and efficiency estimation in the presence of gross errors.
Effect of shrink fits on threshold speeds of rotordynamic instability
Al-Baz, Khalid A
2001-01-01
The purpose of this thesis is to study the effect of shrink fits on the threshold speeds of rotor instability. Shrink or press fit components in built-up rotors are known sources of internal friction damping. The internal ...
Page 1 of 1 EMPLOYEE FITNESS FOR DUTY
Acton, Scott
Page 1 of 1 EMPLOYEE FITNESS FOR DUTY INITIAL OBSERVATION REPORT Date of Incident: ___________ Time, confusion Threatening to harm self or others Document other observations related to Fitness for Duty
Hamlen, Kevin W.
Investigating SANS/CWE Top 25 Programming Errors. 1 Investigating the SANS/CWE Top 25 Programming Errors List Running Title: Investigating SANS/CWE Top 25 Programming Errors. Investigating the SANS;Investigating SANS/CWE Top 25 Programming Errors. 2 Investigating the SANS/CWE Top 25 Programming Errors List
Cosmographic Hubble fits to the supernova data
Cattoen, Celine
2008-01-01
The Hubble relation between distance and redshift is a purely cosmographic relation that depends only on the symmetries of a FLRW spacetime, but does not intrinsically make any dynamical assumptions. This suggests that it should be possible to estimate the parameters defining the Hubble relation without making any dynamical assumptions. To test this idea, we perform a number of inter-related cosmographic fits to the legacy05 and gold06 supernova datasets. Based on this supernova data, the "preponderance of evidence" certainly suggests an accelerating universe. However we would argue that (unless one uses additional dynamical and observational information) this conclusion is not currently supported "beyond reasonable doubt". As part of the analysis we develop two particularly transparent graphical representations of the redshift-distance relation -- representations in which acceleration versus deceleration reduces to the question of whether the relevant graph slopes up or down. Turning to the details of the co...
Tutorial, GECCO'05, Washington D.C. Fitness Approximation
Yang, Shengxiang
1 Tutorial, GECCO'05, Washington D.C. Fitness Approximation in Evolutionary Computation Yaochu Jin Honda Research Institute Europe Khaled Rasheed University of Georgia Tutorial, GECCO'05, Washington D expensive fitness evaluations Tutorial, GECCO'05, Washington D.C. Fitness Approximation Methods · Problem
Using Time Perception to Measure Fitness for Duty
Using Time Perception to Measure Fitness for Duty David M. Eagleman Baylor College of Medicine, Houston, Texas Assessing fitness for duty (FFD) typically requires expensive equipment and large time result in avoidable accidents (Rigaud & Flynn, 1995). Currently, the main method for assessing fitness
Multivariate Selection Response and Estimation of Fitness Surfaces
Walsh, Bruce
Multivariate Selection Response and Estimation of Fitness Surfaces 2nd Annual NSF short course: multivariate selection response (response when selection is acting on a vector of traits) and fitness surface traits. Multivariate Selection Response and Estimation of Fitness Surfaces, pg. 1 #12;* + Select All X Y
Error propagation equations for estimating the uncertainty in high-speed wind tunnel test results
Clark, E.L.
1994-07-01
Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, and calibration Mach number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-steam Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for five fundamental aerodynamic ratios which relate free-steam test conditions to a reference condition.
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory Authors: Schunck, N ; McDonnell,...
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory You are accessing a document...
Optimized structure and vibrational properties by error affected potential energy surfaces
Andrea Zen; Delyan Zhelyazov; Leonardo Guidoni
2013-06-18
The precise theoretical determination of the geometrical parameters of molecules at the minima of their potential energy surface and of the corresponding vibrational properties are of fundamental importance for the interpretation of vibrational spectroscopy experiments. Quantum Monte Carlo techniques are correlated electronic structure methods promising for large molecules, which are intrinsically affected by stochastic errors on both energy and force calculations, making the mentioned calculations more challenging with respect to other more traditional quantum chemistry tools. To circumvent this drawback in the present work we formulate the general problem of evaluating the molecular equilibrium structures, the harmonic frequencies and the anharmonic coefficients of an error affected potential energy surface. The proposed approach, based on a multidimensional fitting procedure, is illustrated together with a critical evaluation of systematic and statistical errors. We observe that the use of forces instead of energies in the fitting procedure reduces the the statistical uncertainty of the vibrational parameters by one order of magnitude. Preliminary results based on Variational Monte Carlo calculations on the water molecule demonstrate the possibility to evaluate geometrical parameters, harmonic and anharmonic coefficients at this level of theory with an affordable computational cost and a small stochastic uncertainty (<0.07% for geometries and <0.7% for vibrational properties).
Kessler, Christoph
] (where a[n] = +infty). C's * bsearch() can't be used, it requires a[j]==key. */ int findloc( void *key CombineCRCW BSPQuicksort * variant by Gerbessiotis/Valiant JPDC 22(1994) * implemented in NestStepC. */ int N=10; // default value /** findloc(): find largest index j in [0..n1] with * a[j
Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets
Jeffrey E. McClintock; Ramesh Narayan; James F. Steiner
2013-06-28
The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole's accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a_* of the black hole (|a_*| 0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.
One Size Fits All? Part 2: Benchmarking Results Michael Stonebraker1
Liskov, Barbara
and intelligence applications, a relational DBMS, and a widely used mathematical computation tool. In summary advantage. 1. The History of the OSFA Architecture Relational Database Management System (RDBMS) technology code line supporting all DBMS needs. The reasons for this "one size fits all" (OSFA) strategy include
Contraction Moves for Geometric Model Fitting Oliver J. Woodford, Minh-Tri Pham, Atsuto Maki,
Stenger, Björn
. This paper presents a new class of moves, called -expansion- contraction, which generalizes -expansion graph for optimizing the assignments in model fitting frameworks whose energies include Label Cost (LC), as well extensively in the early computer vision literature [1,2,3,4], has received renewed interest [5
Fitting: Subroutine to fit four-moment probability distributions to data
Winterstein, S.R.; Lange, C.H.; Kumar, S. [Stanford Univ., CA (United States)
1995-01-01
FITTING is a Fortran subroutine that constructs a smooth, generalized four-parameter probability distribution model. It is fit to the first four statistical moments of the random variable X (i.e., average values of X, X{sup 2}, X{sup 3}, and X{sup 4}) which can be calculated from data using the associated subroutine CALMOM. The generalized model is produced from a cubic distortion of the parent model, calibrated to match the first four moments of the data. This four-moment matching is intended to provide models that are more faithful to the data in the upper tail of the distribution. Examples are shown for two specific cases.
Jonathan Thornburg
2010-06-18
If a small "particle" of mass $\\mu M$ (with $\\mu \\ll 1$) orbits a Schwarzschild or Kerr black hole of mass $M$, the particle is subject to an $\\O(\\mu)$ radiation-reaction "self-force". Here I argue that it's valuable to compute this self-force highly accurately (relative error of $\\ltsim 10^{-6}$) and efficiently, and I describe techniques for doing this and for obtaining and validating error estimates for the computation. I use an adaptive-mesh-refinement (AMR) time-domain numerical integration of the perturbation equations in the Barack-Ori mode-sum regularization formalism; this is efficient, yet allows easy generalization to arbitrary particle orbits. I focus on the model problem of a scalar particle in a circular geodesic orbit in Schwarzschild spacetime. The mode-sum formalism gives the self-force as an infinite sum of regularized spherical-harmonic modes $\\sum_{\\ell=0}^\\infty F_{\\ell,\\reg}$, with $F_{\\ell,\\reg}$ (and an "internal" error estimate) computed numerically for $\\ell \\ltsim 30$ and estimated for larger~$\\ell$ by fitting an asymptotic "tail" series. Here I validate the internal error estimates for the individual $F_{\\ell,\\reg}$ using a large set of numerical self-force computations of widely-varying accuracies. I present numerical evidence that the actual numerical errors in $F_{\\ell,\\reg}$ for different~$\\ell$ are at most weakly correlated, so the usual statistical error estimates are valid for computing the self-force. I show that the tail fit is numerically ill-conditioned, but this can be mostly alleviated by renormalizing the basis functions to have similar magnitudes. Using AMR, fixed mesh refinement, and extended-precision floating-point arithmetic, I obtain the (contravariant) radial component of the self-force for a particle in a circular geodesic orbit of areal radius $r = 10M$ to within $1$~ppm relative error.
Lateral boundary errors in regional numerical weather
?umer, Slobodan
Lateral boundary errors in regional numerical weather prediction models Author: Ana Car Advisor, they describe evolution of atmospher - weather forecast. Every NWP model solves the same system of equations (1: assoc. prof. dr. Nedjeljka Zagar January 5, 2015 Abstract Regional models are used in many national
MEASUREMENT AND CORRECTION OF ULTRASONIC ANEMOMETER ERRORS
Heinemann, Detlev
commonly show systematic errors depending on wind speed due to inaccurate ultrasonic transducer mounting three- dimensional wind speed time series. Results for the variance and power spectra are shown. 1 wind speeds with ultrasonic anemometers: The measu- red flow is distorted by the probe head
Chinese Remaindering with Errors Oded Goldreich
International Association for Cryptologic Research (IACR)
Chinese Remaindering with Errors Oded Goldreich Department of Computer Science Weizmann Institute 02139, USA madhu@mit.edu. z Abstract The Chinese Remainder Theorem states that a positive integer m The Chinese Remainder Theorem states that a positive integer m is uniquely specified by its remainder modulo k
Reducing Biases in XBT Measurements by Including Discrete Information from Pressure Switches
Reducing Biases in XBT Measurements by Including Discrete Information from Pressure Switches MARLOS underway to improve XBT probes by including pressure switches. Information from these pressure measurements error parameters, and to optimize the use of pressure switches in terms of number of switches, optimal
Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)
Hodge, B. M.; Ela, E.; Milligan, M.
2011-10-01
This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.
Analysis of Solar Two Heliostat Tracking Error Sources
Jones, S.A.; Stone, K.W.
1999-01-28
This paper explores the geometrical errors that reduce heliostat tracking accuracy at Solar Two. The basic heliostat control architecture is described. Then, the three dominant error sources are described and their effect on heliostat tracking is visually illustrated. The strategy currently used to minimize, but not truly correct, these error sources is also shown. Finally, a novel approach to minimizing error is presented.
Supersymmetric Grand Unified Theories and Global Fits to Low Energy Data
T. Blazek; S. Raby
1996-11-13
We present a self-consistent $\\chi^2$ analysis of several supersymmetric (SUSY) grand unified theories recently discussed in the literature. We obtain global fits to low energy data, including gauge couplings, fermion masses and mixing angles, gauge boson masses and $BR(b\\rightarrow s\\gamma)$. One of the models studied provides an excellent fit to the low energy data with $\\chi^2\\sim 1$ for 3 degrees of freedom, in a large region of the experimentally allowed SUSY parameter space. We also discuss the consequences of our work for a general MSSM analysis at the $Z$ scale.
SU(2) chiral fits to light pseudoscalar masses and decay constants
A. Bazavov; C. Bernard; C. DeTar; X. Du; W. Freeman; Steven Gottlieb; Urs M. Heller; J. E. Hetrick; J. Laiho; L. Levkova; M. B. Oktay; J. Osborn; R. Sugar; D. Toussaint; R. S. Van de Water
2009-11-03
We present the results of fits to recent asqtad data in the light pseudoscalar sector using SU(2) partially-quenched staggered chiral perturbation theory. Superfine (a~0.06 fm) and ultrafine (a~0.045 fm) ensembles are used, where light sea quark masses and taste splittings are small compared to the strange quark mass. Our fits include continuum NNLO chiral logarithms and analytic terms. We give preliminary results for the pion decay constant, SU(2) low-energy constants and the chiral condensate in the two-flavor chiral limit.
Makarenkov, Vladimir
- mentaldatarequiresan efficientautomaticroutinefor theselection of hits. Unfortunately, random and systematic errors can
Detecting Soft Errors in Stencil based Computations
Sharma, V.; Gopalkrishnan, G.; Bronevetsky, G.
2015-05-06
Given the growing emphasis on system resilience, it is important to develop software-level error detectors that help trap hardware-level faults with reasonable accuracy while minimizing false alarms as well as the performance overhead introduced. We present a technique that approaches this idea by taking stencil computations as our target, and synthesizing detectors based on machine learning. In particular, we employ linear regression to generate computationally inexpensive models which form the basis for error detection. Our technique has been incorporated into a new open-source library called SORREL. In addition to reporting encouraging experimental results, we demonstrate techniques that help reduce the size of training data. We also discuss the efficacy of various detectors synthesized, as well as our future plans.
Error field penetration and locking to the backward propagating wave
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Finn, John M.; Cole, Andrew J.; Brennan, Dylan P.
2015-12-30
In this letter we investigate error field penetration, or locking, behavior in plasmas having stable tearing modes with finite real frequencies wr in the plasma frame. In particular, we address the fact that locking can drive a significant equilibrium flow. We show that this occurs at a velocity slightly above v = wr/k, corresponding to the interaction with a backward propagating tearing mode in the plasma frame. Results are discussed for a few typical tearing mode regimes, including a new derivation showing that the existence of real frequencies occurs for viscoresistive tearing modes, in an analysis including the effects ofmore »pressure gradient, curvature and parallel dynamics. The general result of locking to a finite velocity flow is applicable to a wide range of tearing mode regimes, indeed any regime where real frequencies occur.« less
Gross error detection in process data
Singh, Gurmeet
1992-01-01
, 1991), with many optimum properties, seems to have been untapped by chemical engineers. We first review the background of the Tr test, and present relevant properties of the test. IV. A Hotelling's Generalization of Students t Test One of the most...: Chemical Engineering GROSS ERROR DETECTION IN PROCESS DATA A Thesis by GURMEET SINGH Approved as to style and content by: Ralph E. White (Chair of Committee) Michael Nikoloau (Member Richard B. Gri n (Member) R. W. Flummerfelt (Head...
Improving Memory Error Handling Using Linux
Carlton, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blanchard, Sean P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Debardeleben, Nathan A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-07-25
As supercomputers continue to get faster and more powerful in the future, they will also have more nodes. If nothing is done, then the amount of memory in supercomputer clusters will soon grow large enough that memory failures will be unmanageable to deal with by manually replacing memory DIMMs. "Improving Memory Error Handling Using Linux" is a process oriented method to solve this problem by using the Linux kernel to disable (offline) faulty memory pages containing bad addresses, preventing them from being used again by a process. The process of offlining memory pages simplifies error handling and results in reducing both hardware and manpower costs required to run Los Alamos National Laboratory (LANL) clusters. This process will be necessary for the future of supercomputing to allow the development of exascale computers. It will not be feasible without memory error handling to manually replace the number of DIMMs that will fail daily on a machine consisting of 32-128 petabytes of memory. Testing reveals the process of offlining memory pages works and is relatively simple to use. As more and more testing is conducted, the entire process will be automated within the high-performance computing (HPC) monitoring software, Zenoss, at LANL.
Aschwanden, Markus J.; Sun, Xudong; Liu, Yang E-mail: xudongs@stanford.edu
2014-04-10
We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential E{sub N} and potential energy E{sub P} but find up to a factor of 4 discrepancy in the free energy E {sub free} = E{sub N} – E{sub P} and up to a factor of 10 discrepancy in the decrease of the free energy ?E {sub free} during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.
Single-channel fits and K-matrix constraints
R. L. Workman
2006-01-10
A K-matrix formalism is used to relate single-channel and multi-channel fits. We show how the single-channel formalism changes as new hadronic channels become accessible. These relations are compared to those commonly used to fit pseudoscalar meson photoproduction data.
Metrics Are Fitness Functions Too Mark Harman John Clark
Singer, Jeremy
that there is an alternative, complementary, view of a metric: as a fitness function, used to guide a search for optimal' (MAFF) approach offers a number of additional benefits to metrics research and practice because systems. It describes the properties of a metric which make it a good fitness function and explains
Alternative cosmology fits supernovae redshifts with no dark energyy
Francis J. M. Farley
2009-03-17
Supernovae and radio galaxy redshift data are fitted in an alternative cosmology. The galaxies are assumed to recede with unchanging velocities in a static Robertson-Walker metric with a(t) = 1. An exact fit is obtained with no adjustable parameters. There is no indication that the recession velocities are changing with time, so no call for "dark energy".
Shared dosimetry error in epidemiological dose-response analyses
Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo
2015-03-23
Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope ? is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of ?) is biased for ??0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.
Shared dosimetry error in epidemiological dose-response analyses
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo
2015-03-23
Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore »up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope ? is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of ?) is biased for ??0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less
Specified pipe fittings susceptible to sulfide stress cracking
McIntyre, D.R.; Moore, E.M. Jr. [Saudi Aramco, Dhahran (Saudi Arabia)
1996-01-01
The NACE Standard MR0175 limit of HRC 22 is too high for cold-forged and stress-relieved ASTM A234 WPB pipe fittings. Hardness surveys and sulfide stress cracking test results per ASTM G 39 and NACE TM0177 Method B are presented to support this contention. More stringent inspection and a hardness limit of HB 197 (for cold-forged and stress-relieved fittings only) are recommended. The paper describes a case in which fittings were welded in place in wet sour service flow lines and gas-oil separating plants which were ready to start. The failure of a welded fitting shortly after start-up led to extensive field hardness testing on all fittings from this manufacturer.
Press fit design : force and torque testing of steel dowel pins in brass and nylon samples
Nelson, Alexandra T
2006-01-01
An experimental study was conducted to determine the accuracy of current press fit theory when applied to press fit design. Brass and nylon hex samples were press fitted with hardened steel dowel pins. Press fit force and ...
Heat Pump Water Heaters and American Homes: A Good Fit?
Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie
2010-05-14
Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.
Fits to data The figures in this Appendix show the fits to the photometry for the mod-
Whiting, Matthew
Appendix D Fits to data The figures in this Appendix show the fits to the photometry for the mod to Section 4.4). The photometry is shown in the centre-left panel. The magnitudes from Table B.1 have been, against wavelength on the same log scale as the photometry. The bottom-left shows the optical spectrum
Progress in Understanding Error-field Physics in NSTX Spherical Torus Plasmas
E. Menard, R.E. Bell, D.A. Gates, S.P. Gerhardt, J.-K. Park, S.A. Sabbagh, J.W. Berkery, A. Egan, J. Kallman, S.M. Kaye, B. LeBlanc, Y.Q. Liu, A. Sontag, D. Swanson, H. Yuh, W. Zhu and the NSTX Research Team
2010-05-19
The low aspect ratio, low magnetic field, and wide range of plasma beta of NSTX plasmas provide new insight into the origins and effects of magnetic field errors. An extensive array of magnetic sensors has been used to analyze error fields, to measure error field amplification, and to detect resistive wall modes in real time. The measured normalized error-field threshold for the onset of locked modes shows a linear scaling with plasma density, a weak to inverse dependence on toroidal field, and a positive scaling with magnetic shear. These results extrapolate to a favorable error field threshold for ITER. For these low-beta locked-mode plasmas, perturbed equilibrium calculations find that the plasma response must be included to explain the empirically determined optimal correction of NSTX error fields. In high-beta NSTX plasmas exceeding the n=1 no-wall stability limit where the RWM is stabilized by plasma rotation, active suppression of n=1 amplified error fields and the correction of recently discovered intrinsic n=3 error fields have led to sustained high rotation and record durations free of low-frequency core MHD activity. For sustained rotational stabilization of the n=1 RWM, both the rotation threshold and magnitude of the amplification are important. At fixed normalized dissipation, kinetic damping models predict rotation thresholds for RWM stabilization to scale nearly linearly with particle orbit frequency. Studies for NSTX find that orbit frequencies computed in general geometry can deviate significantly from those computed in the high aspect ratio and circular plasma cross-section limit, and these differences can strongly influence the predicted RWM stability. The measured and predicted RWM stability is found to be very sensitive to the E × B rotation profile near the plasma edge, and the measured critical rotation for the RWM is approximately a factor of two higher than predicted by the MARS-F code using the semi-kinetic damping model.
Global fits to neutrino oscillation data
Thomas Schwetz
2006-06-06
I summarize the determination of neutrino oscillation parameters within the three-flavor framework from world neutrino oscillation data with date of May 2006, including the first results from the MINOS long-baseline experiment. It is illustrated how the determination of the leading "solar" and "atmospheric" parameters, as well as the bound on $\\theta_{13}$ emerge from an interplay of various complementary data sets. Furthermore, I discuss possible implications of sub-leading three-flavor effects in present atmospheric neutrino data induced by $\\Delta m^2_{21}$ and $\\theta_{13}$ for the bound on $\\theta_{13}$ and non-maximal values of $\\theta_{23}$, emphasizing, however, that these effects are not statistically significant at present. Finally, in view of the upcoming MiniBooNE results I briefly comment on the problem to reconcile the LSND signal.
New insights on numerical error in symplectic integration
Hugo Jiménez-Pérez; Jean-Pierre Vilotte; Barbara Romanowicz
2015-08-13
We implement and investigate the numerical properties of a new family of integrators connecting both variants of the symplectic Euler schemes, and including an alternative to the classical symplectic mid-point scheme, with some additional terms. This family is derived from a new method, introduced in a previous study, for generating symplectic integrators based on the concept of special symplectic manifold. The use of symplectic rotations and a particular type of projection keeps the whole procedure within the symplectic framework. We show that it is possible to define a set of parameters that control the additional terms providing a way of "tuning" these new symplectic schemes. We test the "tuned" symplectic integrators with the perturbed pendulum and we compare its behavior with an explicit scheme for perturbed systems. Remarkably, for the given examples, the error in the energy integral can be reduced considerably. There is a natural geometrical explanation, sketched at the end of this paper. This is the subject of a parallel article where a finer analysis is performed. Numerical results obtained in this paper open a new point of view on symplectic integrators and Hamiltonian error.
Decoherence and dephasing errors caused by the dc Stark effect...
Office of Scientific and Technical Information (OSTI)
Decoherence and dephasing errors caused by the dc Stark effect in rapid ion transport Citation Details In-Document Search Title: Decoherence and dephasing errors caused by the dc...
Human error contribution to nuclear materials-handling events
Sutton, Bradley (Bradley Jordan)
2007-01-01
This thesis analyzes a sample of 15 fuel-handling events from the past ten years at commercial nuclear reactors with significant human error contributions in order to detail the contribution of human error to fuel-handling ...
Prices include compostable serviceware and linen tablecloths
California at Davis, University of
APPETIZERS Prices include compostable serviceware and linen tablecloths for the food tables.ucdavis.edu. BUTTERNUT SQUASH & BLACK BEAN ENCHILADAS #12;BUFFETS Prices include compostable serviceware and linen
Error Reduction for Weigh-In-Motion
Hively, Lee M; Abercrombie, Robert K; Scudiere, Matthew B; Sheldon, Frederick T
2009-01-01
Federal and State agencies need certifiable vehicle weights for various applications, such as highway inspections, border security, check points, and port entries. ORNL weigh-in-motion (WIM) technology was previously unable to provide certifiable weights, due to natural oscillations, such as vehicle bouncing and rocking. Recent ORNL work demonstrated a novel filter to remove these oscillations. This work shows further filtering improvements to enable certifiable weight measurements (error < 0.1%) for a higher traffic volume with less effort (elimination of redundant weighing).
Forward Error Correction and Functional Programming
Bull, Tristan Michael
2011-04-25
.1 Annapolis Micro Wildstar 5 DDR2 DRAM Interface . . . . . . . . 50 6.2 Dual-Port DRAM Wrapper . . . . . . . . . . . . . . . . . . . . . 52 6.3 Kansas Lava DRAM Interface . . . . . . . . . . . . . . . . . . . . 55 7 Conclusion 58 7.1 Future Work... codewords. We ran the simulation using input data with energy per bit to noise power spectral density ratios (Eb=N0) of 3dB to 6dB in 0.5dB increments. For each Eb=N0 value, we ran the simulation until at least 25,000 bit errors were recorded. Results...
Unitary-process discrimination with error margin
T. Hashimoto; A. Hayashi; M. Hayashi; M. Horibe
2010-06-10
We investigate a discrimination scheme between unitary processes. By introducing a margin for the probability of erroneous guess, this scheme interpolates the two standard discrimination schemes: minimum-error and unambiguous discrimination. We present solutions for two cases. One is the case of two unitary processes with general prior probabilities. The other is the case with a group symmetry: the processes comprise a projective representation of a finite group. In the latter case, we found that unambiguous discrimination is a kind of "all or nothing": the maximum success probability is either 0 or 1. We also closely analyze how entanglement with an auxiliary system improves discrimination performance.
On the Error in QR Integration
Dieci, Luca; Van Vleck, Erik
2008-03-07
Society for Industrial and Applied Mathematics Vol. 46, No. 3, pp. 1166–1189 ON THE ERROR IN QR INTEGRATION? LUCA DIECI† AND ERIK S. VAN VLECK‡ Abstract. An important change of variables for a linear time varying system x? = A(t)x, t ? 0, is that induced...(X) is the matrix comprising the diagonal part of X, the rest being all 0’s; upp(X) is the matrix comprising the upper triangular part of X, the rest being all 0’s; and low(X) is the matrix comprising the strictly lower triangular part of X, the rest being all 0’s...
Bolstered Error Estimation Ulisses Braga-Neto a,c
Braga-Neto, Ulisses
the bolstered error estimators proposed in this paper, as part of a larger library for classification and error of the data. It has a direct geometric interpretation and can be easily applied to any classification rule as smoothed error estimation. In some important cases, such as a linear classification rule with a Gaussian
A Taxonomy of Number Entry Error Sarah Wiseman
Subramanian, Sriram
A Taxonomy of Number Entry Error Sarah Wiseman UCLIC MPEB, Malet Place London, WC1E 7JE sarah and the subsequent process of creating a taxonomy of errors from the information gathered. A total of 345 errors were. These codes are then organised into a taxonomy similar to that of Zhang et al (2004). We show how
Comments on Different techniques for finding best-fit parameters
Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Triplett, Laurie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-07-01
A common data analysis problem is to find best-fit parameters through chi-square minimization. Levenberg-Marquardt is an often used system that depends on gradients and converges when successive iterations do not change chi-square more than a specified amount. We point out in cases where the sought-after parameter weakly affects the fit and cases where the overall scale factor is a parameter, that a Golden Search technique can often do better. The Golden Search converges when the best-fit point is within a specified range and that range can be made arbitrarily small. It does not depend on the value of chi-square.
ERROR-TOLERANT MULTI-MODAL SENSOR FUSION (SHORT PAPER) Farinaz Koushanfar*
ERROR-TOLERANT MULTI-MODAL SENSOR FUSION (SHORT PAPER) Farinaz Koushanfar* , Sasha Slijepcevic ESN tasks is multi-modal sensor fusion, where data from sensors of dif- ferent modalities are combined ESN applications, including multi- modal sensor fusion, is to ensure that all of the techniques
A method for the quantification of model form error associated with physical systems.
Wallen, Samuel P.; Brake, Matthew Robert
2014-03-01
In the process of model validation, models are often declared valid when the differences between model predictions and experimental data sets are satisfactorily small. However, little consideration is given to the effectiveness of a model using parameters that deviate slightly from those that were fitted to data, such as a higher load level. Furthermore, few means exist to compare and choose between two or more models that reproduce data equally well. These issues can be addressed by analyzing model form error, which is the error associated with the differences between the physical phenomena captured by models and that of the real system. This report presents a new quantitative method for model form error analysis and applies it to data taken from experiments on tape joint bending vibrations. Two models for the tape joint system are compared, and suggestions for future improvements to the method are given. As the available data set is too small to draw any statistical conclusions, the focus of this paper is the development of a methodology that can be applied to general problems.
Multi-Ridge Fitting for Ring-Diagram Helioseismology
Greer, Benjamin J; Toomre, Juri
2014-01-01
Inferences of sub-surface flow velocities using local domain ring-diagram helioseismology depend on measuring the frequency splittings of oscillation modes seen in acoustic power spectra. Current methods for making these measurements utilize maximum-likelihood fitting techniques to match a model of modal power to the spectra. The model typically describes a single oscillation mode, and each mode in a given power spectrum is fit independently. We present a new method that produces measurements with greater reliability and accuracy by fitting multiple modes simultaneously. We demonstrate how this method permits measurements of sub-surface flows deeper into the Sun while providing higher uniformity in data coverage and velocity response closer to the limb of the solar disk. While the previous fitting method performs better for some measurements of low-phase-speed modes, we find this new method to be particularly useful for high phase-speed modes and small spatial areas.
Fit Index Sensitivity in Multilevel Structural Equation Modeling
Boulton, Aaron Jacob
2011-07-29
Multilevel Structural Equation Modeling (MSEM) is used to estimate latent variable models in the presence of multilevel data. A key feature of MSEM is its ability to quantify the extent to which a hypothesized model fits ...
Evolving Musical Performance Profiles Using Genetic Algorithms with Structural Fitness
Miranda, Eduardo Reck
Evolving Musical Performance Profiles Using Genetic Algorithms with Structural Fitness Qijun Zhang Eduardo Reck Miranda Computer Music Research School of Computing, communications and Electronics.e., hierarchical duration vs. amplitude matrices) for expressive music performance by machines. The performance
Comprehensive experimental fitness landscape and evolutionary network for small RNA
Jimenez Zarco, Jose I.
The origin of life is believed to have progressed through an RNA world, in which RNA acted as both genetic material and functional molecules. The structure of the evolutionary fitness landscape of RNA would determine natural ...
Structural connections in plywood friction-fit construction
Wagner, Mali E. (Mali Esther)
2014-01-01
CNC mills allow precise fabrication of planar parts with embedded joinery which can be assembled into complex 3D geometries without the use of foreign mechanical fasteners. This thesis studies the behavior of the friction-fit ...
Equilibrium Distribution of Mutators in the Single Fitness Peak Model
Tannenbaum, Emmanuel; Deeds, Eric J.; Shakhnovich, Eugene I.
2003-09-26
This Letter develops an analytically tractable model for determining the equilibrium distribution of mismatch repair deficient strains in unicellular populations. The approach is based on the single fitness peak model, ...
Frequentist-Bayes Goodness-of-fit Tests
Wang, Qi
2012-10-19
In this dissertation, the classical problems of testing goodness-of-fit of uniformity and parametric families are reconsidered. A new omnibus test for these problems is proposed and investigated. The new test statistics ...
Exercise and Fitness Guidelines for Elementary and Middle School Children
Greene, Leon; Adeyanju, Matthew
1991-05-01
In 1986, the President's Council on Physical Fitness and Sport released results showing that American youth were not in good physical condition and that schools needed to reemphasize physical education. Within the last 15 ...
Shrink fit effects on rotordynamic stability: experimental and theoretical study
Jafri, Syed Muhammad Mohsin
2007-09-17
This dissertation presents an experimental and theoretical study of subsynchronous rotordynamic instability in rotors caused by interference and shrink fit interfaces. The experimental studies show the presence of strong ...
Effect of shrink fits on threshold speeds of rotordynamic instability
Mir, MD. Mofazzal Hossain
2001-01-01
An investigation of the effect of shrink fits on threshold speeds of rotordynamic instability has been performed. It is known that running rotors at supercritical speed can result in some rotordynamic problems (asynchronous ...
AHA Recognizes Fit-Friendly Worksites at SRS
Broader source: Energy.gov [DOE]
AIKEN, S.C. – Two contractors supporting the EM program at the Savannah River Site (SRS) were recognized recently as Fit-Friendly Worksites by the American Heart Association (AHA).
Averaging cross section data so we can fit it
Brown, D.
2014-10-23
The ^{56}Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
Integrating human related errors with technical errors to determine causes behind offshore accidents
Aamodt, Agnar
errors were embedded as an integral part of the oil well drilling opera- tion. To reduce the number assessment of the failure. The method is based on a knowledge model of the oil-well drilling process. All of non-productive time (NPT) during oil-well drilling. NPT exhibits a much lower declining trend than
In Search of a Taxonomy for Classifying Qualitative Spreadsheet Errors
Przasnyski, Zbigniew; Seal, Kala Chand
2011-01-01
Most organizations use large and complex spreadsheets that are embedded in their mission-critical processes and are used for decision-making purposes. Identification of the various types of errors that can be present in these spreadsheets is, therefore, an important control that organizations can use to govern their spreadsheets. In this paper, we propose a taxonomy for categorizing qualitative errors in spreadsheet models that offers a framework for evaluating the readiness of a spreadsheet model before it is released for use by others in the organization. The classification was developed based on types of qualitative errors identified in the literature and errors committed by end-users in developing a spreadsheet model for Panko's (1996) "Wall problem". Closer inspection of the errors reveals four logical groupings of the errors creating four categories of qualitative errors. The usability and limitations of the proposed taxonomy and areas for future extension are discussed.
Pressure Change Measurement Leak Testing Errors
Pryor, Jeff M; Walker, William C
2014-01-01
A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.
Quantum Error Correction with magnetic molecules
José J. Baldoví; Salvador Cardona-Serra; Juan M. Clemente-Juan; Luis Escalera-Moreno; Alejandro Gaita-Ariño; Guillermo Mínguez Espallargas
2014-08-22
Quantum algorithms often assume independent spin qubits to produce trivial $|\\uparrow\\rangle=|0\\rangle$, $|\\downarrow\\rangle=|1\\rangle$ mappings. This can be unrealistic in many solid-state implementations with sizeable magnetic interactions. Here we show that the lower part of the spectrum of a molecule containing three exchange-coupled metal ions with $S=1/2$ and $I=1/2$ is equivalent to nine electron-nuclear qubits. We derive the relation between spin states and qubit states in reasonable parameter ranges for the rare earth $^{159}$Tb$^{3+}$ and for the transition metal Cu$^{2+}$, and study the possibility to implement Shor's Quantum Error Correction code on such a molecule. We also discuss recently developed molecular systems that could be adequate from an experimental point of view.
A. Frommer; K. Kahl; Th. Lippert; H. Rittich
2012-12-03
The Lanczos process constructs a sequence of orthonormal vectors v_m spanning a nested sequence of Krylov subspaces generated by a hermitian matrix A and some starting vector b. In this paper we show how to cheaply recover a secondary Lanczos process starting at an arbitrary Lanczos vector v_m. This secondary process is then used to efficiently obtain computable error estimates and error bounds for the Lanczos approximations to the action of a rational matrix function on a vector. This includes, as a special case, the Lanczos approximation to the solution of a linear system Ax = b. Our approach uses the relation between the Lanczos process and quadrature as developed by Golub and Meurant. It is different from methods known so far because of its use of the secondary Lanczos process. With our approach, it is now in particular possible to efficiently obtain {\\em upper bounds} for the error in the {\\em 2-norm}, provided a lower bound on the smallest eigenvalue of $A$ is known. This holds in particular for a large class of rational matrix functions including best rational approximations to the inverse square root and the sign function. We compare our approach to other existing error estimates and bounds known from the literature and include results of several numerical experiments.
Washington at Seattle, University of
ReadMe file: A user's guide for the vitality model parameter fitting routine and the S-Plus functions contained in file VitalityModelFitting.ssc. The VitalityModelFitting.ssc file contains all functions necessary to run the MLE parameter fitting routine for the vitality-based survival model
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth; Arkin, Adam P.; et al
2015-05-12
Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore »transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are too laborious to be applied to hundreds of experimental conditions across multiple bacteria. Here, we describe an approach, random bar code transposon-site sequencing (RB-TnSeq), which greatly simplifies the measurement of gene fitness by using bar code sequencing (BarSeq) to monitor the abundance of mutants. We performed 387 genome-wide fitness assays across five bacteria and identified phenotypes for over 5,000 genes. RB-TnSeq can be applied to diverse bacteria and is a powerful tool to annotate uncharacterized genes using phenotype data.« less
Fitting Single Particle Energies in $sdgh$ Major Shell
E. Dikmen; O. Öztürk; Y. Cengiz
2015-02-12
We have performed two kinds of non-linear fitting procedures to the single-particle energies in the $sdgh$ major shell to obtain better shell model results. The low-lying energy eigenvalues of the light Sn isotopes with $A=103-110$ in the $sdgh$-shell are calculated in the framework of the nuclear shell model by using CD-Bonn two-body effective nucleon-nucleon interaction. The obtained energy eigenvalues are fitted to the corresponding experimental values by using two different non-linear fitting procedures, i.e., downhill simplex method and clonal selection method. The unknown single-particle energies of the states $2s_{1/2}$, $1d_{3/2}$, and $0h_{11/2}$ are used in the fitting methods to obtain better spectra of the $^{104,106,108,110}$Sn isotopes. We compare the energy spectra of the $^{104,106,108,110}$Sn and $^{103,105,107,109}$Sn isotopes with/without a nonlinear fit to the experimental results.
aMCfast: automation of fast NLO computations for PDF fits
Valerio Bertone; Rikkert Frederix; Stefano Frixione; Juan Rojo; Mark Sutton
2014-06-30
We present the interface between MadGraph5_aMC@NLO, a self-contained program that calculates cross sections up to next-to-leading order accuracy in an automated manner, and APPLgrid, a code that parametrises such cross sections in the form of look-up tables which can be used for the fast computations needed in the context of PDF fits. The main characteristic of this interface, which we dub aMCfast, is its being fully automated as well, which removes the need to extract manually the process-specific information for additional physics processes, as is the case with other matrix element calculators, and renders it straightforward to include any new process in the PDF fits. We demonstrate this by studying several cases which are easily measured at the LHC, have a good constraining power on PDFs, and some of which were previously unavailable in the form of a fast interface.
INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION
Office of Scientific and Technical Information (OSTI)
interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...
State discrimination with error margin and its locality
A. Hayashi; T. Hashimoto; M. Horibe
2008-07-10
There are two common settings in a quantum-state discrimination problem. One is minimum-error discrimination where a wrong guess (error) is allowed and the discrimination success probability is maximized. The other is unambiguous discrimination where errors are not allowed but the inconclusive result "I don't know" is possible. We investigate discrimination problem with a finite margin imposed on the error probability. The two common settings correspond to the error margins 1 and 0. For arbitrary error margin, we determine the optimal discrimination probability for two pure states with equal occurrence probabilities. We also consider the case where the states to be discriminated are multipartite, and show that the optimal discrimination probability can be achieved by local operations and classical communication.
Error models in quantum computation: an application of model selection
Lucia Schwarz; Steven van Enk
2013-09-04
Threshold theorems for fault-tolerant quantum computing assume that errors are of certain types. But how would one detect whether errors of the "wrong" type occur in one's experiment, especially if one does not even know what type of error to look for? The problem is that for many qubits a full state description is impossible to analyze, and a full process description is even more impossible to analyze. As a result, one simply cannot detect all types of errors. Here we show through a quantum state estimation example (on up to 25 qubits) how to attack this problem using model selection. We use, in particular, the Akaike Information Criterion. The example indicates that the number of measurements that one has to perform before noticing errors of the wrong type scales polynomially both with the number of qubits and with the error size.
Fluctuating fitness shapes the clone size distribution of immune repertoires
Desponds, Jonathan; Walczak, Aleksandra M
2015-01-01
The adaptive immune system relies on the diversity of receptors expressed on the surface of B and T-cells to protect the organism from a vast amount of pathogenic threats. The proliferation and degradation dynamics of different cell types (B cells, T cells, naive, memory) is governed by a variety of antigenic and environmental signals, yet the observed clone sizes follow a universal power law distribution. Guided by this reproducibility we propose effective models of somatic evolution where cell fate depends on an effective fitness. This fitness is determined by growth factors acting either on clones of cells with the same receptor responding to specific antigens, or directly on single cells with no regards for clones. We identify fluctuations in the fitness acting specifically on clones as the essential ingredient leading to the observed distributions. Combining our models with experiments we characterize the scale of fluctuations in antigenic environments and we provide tools to identify the relevant growth...
The Impact of Environmental Fluctuations on Evolutionary Fitness Functions
Melbinger, Anna
2015-01-01
The concept of fitness as a measure for a species's success in natural selection is central to the theory of evolution. We here investigate how reproduction rates which are not constant but vary in response to environmental fluctuations, influence a species' prosperity and thereby its fitness. Interestingly, we find that not only larger growth rates but also reduced sensitivities to environmental changes substantially increase the fitness. Thereby, depending on the noise level of the environment, it might be an evolutionary successful strategy to minimize this sensitivity rather than to optimize the reproduction speed. Also for neutral evolution, where species with exactly the same properties compete, variability in the growth rates plays a crucial role. The time for one species to fixate is strongly reduced in the presence of environmental noise. Hence, environmental fluctuations constitute a possible explanation for effective population sizes inferred from genetic data that often are much smaller than the c...
RESEARCH ARTICLE Minimization of divergence error in volumetric velocity
Marusic, Ivan
RESEARCH ARTICLE Minimization of divergence error in volumetric velocity measurements Volumetric velocity measurements taken in incompressible fluids are typically hindered by a nonzero
Pipe3D, a pipeline to analyze Integral Field Spectroscopy data: I. New fitting phylosophy of FIT3D
Sánchez, S F; Sánchez-Blázquez, P; González, J J; Rosález-Ortega, F F; Cano-Díaz, M; López-Cobá, C; Marino, R A; de Paz, A Gil; Mollá, M; López-Sánchez, A R; Ascasibar, Y; Barrera-Ballesteros, J
2015-01-01
We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. FIT3D is a tool developed to analyze Integral Field Spectroscopy data and it is the basis of Pipe3D, a pipeline already used in the analysis of datasets like CALIFA, MaNGA, and SAMI. We describe the philosophy behind the fitting procedure, and in detail each of the different steps in the analysis. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations. In summary, we find that using different stellar population templates we reproduce the mean properties of the stellar population (age, metallicity, and dust attenuation) within ~0.1 dex. A similar approach is adopted for the ionized gas, where a set of simulated emission- line systems was created. Finally, we compare the results of the analysis using FIT3D with those pro...
Course may include: Research in Education
Course may include: Research in Education Statistics in Education Theories of Educational Admin Policy Analysis Sociological Aspects of Education Approaches to Literacy Development Information and Communication Technologies Issues in Education Final Project Seminar Master of Education Educational
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2014-11-25
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2013-02-19
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
This form is interactive --complete electronically and print Notification of Fitness for Duty
Pillow, Jonathan
This form is interactive -- complete electronically and print Notification of Fitness for Duty as written notification directing you to undergo a Fitness for Duty Evaluation. The reason
3D FOOT DIGITIZING AND ITS APPLICATION TO FOOTWEAR FITTING
Juan, Alfons
1 3D FOOT DIGITIZING AND ITS APPLICATION TO FOOTWEAR FITTING DIGITALISATION 3D DU PIED ET LEUR and methodological difficulties. The combination of 3D scanning systems with mathematical classification techniques for a given customer. In this paper, a new approach for customized classification (assignment) of comfortable
Fitting In: Extreme Corporate Wellness and Organizational Communication
James, Eric Preston
2014-07-31
program known as CrossFit. I argue that a discourse of extreme corporate wellness furthers a social-Darwinian viewpoint of “survival of the fittest” not only in the workplace, but also in an employee’s personal and home life. This study combined...
Dynamic Cooperative Coevolutionary Sensor Deployment via Localized Fitness Evaluation
Chen, Yuanzhu Peter
Dynamic Cooperative Coevolutionary Sensor Deployment via Localized Fitness Evaluation Xingyan Jiang used to evaluate the quality of sensor placement. The first one is sensing coverage, which is the area interest in autonomous sensor deployment, where a sensor can only communicate with those within a limited
MSc Project Report Empirical Study of Fitness Functions for
Harman, Mark
1 MSc Project Report Empirical Study of Fitness Functions for Search Based Slicing MSc Advanced on the different program points. Therefore we can easy to understand them and reduce time and cost. This project report attempts to analyse the rationale of the search algorithms, and then use them to implement
Phenotypic Plasticity Opposes Species Invasions by Altering Fitness Surface
Phenotypic Plasticity Opposes Species Invasions by Altering Fitness Surface Scott D. Peacor1 ecological processes. However, the influence on invasions of phenotypic plasticity, a key component of many species interactions, is unknown. We present a model in which phenotypic plasticity of a resident species
Supplemental Information Translating HIV sequences into quantitative fitness landscapes to
Ferguson, Andrew
Supplemental Information Translating HIV sequences into quantitative fitness landscapes to predict contact information. Tel: (617) 253-3890. Fax: (617) 253-2272. Email: arupc@mit.edu. #12;Supplemental Inventory 1. Supplemental Figures and Tables Figure S1, Related to Figure 2 Figure S2, Related to Figure 4
High-DimensionalFitnessLandscapesandSpeciation SergeyGavrilets
Gavrilets, Sergey
to experimental work on the genetics of popula- tions" (Sheppard 1954) and a "guiding light for rigorous- ment of a theory of large-scale evolutionary diversification and adaptive radiation. The other of fitness landscapes (also known as "adaptive landscapes," "adaptive topographies," and "surfaces
Fitting and forecasting non-linear coupled dark energy
Casas, Santiago; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian
2015-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 \\text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and w...
Structure Fitness Sharing (SFS) for Evolutionary Design by Genetic Programming
Fernandez, Thomas
Structure Fitness Sharing (SFS) for Evolutionary Design by Genetic Programming Abstract Balanced structure and parameter search is critical to evolutionary design with genetic programming (GP). Structure problems such as algorithm design, program induction and logic design, in which only structure search
Structure Fitness Sharing (SFS) for Evolutionary Design by Genetic Programming
Hu, Jianjun
Structure Fitness Sharing (SFS) for Evolutionary Design by Genetic Programming Abstract Balanced structure and parameter search is critical to evolutionary design with Genetic programming (GP). Structure and in neural network design. In all of these problems, the objective is to search for an open-ended structure
Fitness Biasing Produce Adaptive Gaits for Hexapod Robots
Parker, Gary B.
Fitness Biasing Produce Adaptive Gaits for Hexapod Robots Gary Parker Computer Science Connecticut in an earlier work an effective learning cycles a hexapod robot. learning system capable of adapting to changes produce gaits hexapod robots difficult problem. particularly challenging if wants programs altered adapt
Fitness Biasing to Produce Adaptive Gaits for Hexapod Robots
Parker, Gary B.
Fitness Biasing to Produce Adaptive Gaits for Hexapod Robots Gary B. Parker Computer Science was shown in an earlier work to be an effective tool for learning leg cycles for a hexapod robot for hexapod robots is a difficult problem. It is particularly challenging if one wants these programs
Uncertainty, Subjectivity, Trust and Risk: How It All Fits Together
Stølen, Ketil
Uncertainty, Subjectivity, Trust and Risk: How It All Fits Together Bjørnar Solhaug1 and Ketil uncertainty, subjective, objective, trust, risk, trust management. 1 Aleatory Uncertainty vs. Epistemic be reduced by narrowing the interval and thereby making a more precise prediction. 2 Objective vs. Subjective
2006-01-01
This document concerns the award of a contract for minor metalwork, metal fittings, cladding and roofing at CERN. The Finance Committee is invited to agree to the negotiation of a contract with the firm INIZIATIVE INDUSTRIALI SRL (IT), the lowest bidder, for the provision of minor metalwork, metal fittings, cladding and roofing at CERN for three years for a total amount not exceeding 1 467 895 euros (2 258 301 Swiss francs), not subject to revision for two years. The contract will include options for two one-year extensions beyond the initial three-year period.
Mutual information, bit error rate and security in Wójcik's scheme
Zhanjun Zhang
2004-02-21
In this paper the correct calculations of the mutual information of the whole transmission, the quantum bit error rate (QBER) are presented. Mistakes of the general conclusions relative to the mutual information, the quantum bit error rate (QBER) and the security in W\\'{o}jcik's paper [Phys. Rev. Lett. {\\bf 90}, 157901(2003)] have been pointed out.
Kernel Regression with Correlated Errors K. De Brabanter
Kernel Regression with Correlated Errors K. De Brabanter , J. De Brabanter , , J.A.K. Suykens B: It is a well-known problem that obtaining a correct bandwidth in nonparametric regression is difficult support vector machines for regression. Keywords: nonparametric regression, correlated errors, short
Ridge Regression Estimation Approach to Measurement Error Model
Shalabh
Ridge Regression Estimation Approach to Measurement Error Model A.K.Md. Ehsanes Saleh Carleton of the regression parameters is ill conditioned. We consider the Hoerl and Kennard type (1970) ridge regression (RR) modifications of the five quasi- empirical Bayes estimators of the regression parameters of a measurement error
Solving LWE problem with bounded errors in polynomial time
International Association for Cryptologic Research (IACR)
Solving LWE problem with bounded errors in polynomial time Jintai Ding1,2 Southern Chinese call the learning with bounded errors (LWBE) problems, we can solve it with complexity O(nD ). Keywords, this problem corresponds to the learning parity with noise (LPN) problem. There are several ways to solve
Fault-Tolerant Error Correction with the Gauge Color Code
Benjamin J. Brown; Naomi H. Nickerson; Dan E. Browne
2015-08-03
The gauge color code is a quantum error-correcting code with local syndrome measurements that, remarkably, admits a universal transversal gate set without the need for resource-intensive magic state distillation. A result of recent interest, proposed by Bomb\\'{i}n, shows that the subsystem structure of the gauge color code admits an error-correction protocol that achieves tolerance to noisy measurements without the need for repeated measurements, so called single-shot error correction. Here, we demonstrate the promise of single-shot error correction by designing a two-part decoder and investigate its performance. We simulate fault-tolerant error correction with the gauge color code by repeatedly applying our proposed error-correction protocol to deal with errors that occur continuously to the underlying physical qubits of the code over the duration that quantum information is stored. We estimate a sustainable error rate, i.e. the threshold for the long time limit, of $ \\sim 0.31\\%$ for a phenomenological noise model using a simple decoding algorithm.
Error detection through consistency checking Peng Gong* Lan Mu#
Silver, Whendee
Error detection through consistency checking Peng Gong* Lan Mu# *Center for Assessment & Monitoring Hall, University of California, Berkeley, Berkeley, CA 94720-3110 gong@nature.berkeley.edu mulan, accessibility, and timeliness as recorded in the lineage data (Chen and Gong, 1998). Spatial error refers
Analysis of Probabilistic Error Checking Procedures on Storage Systems
Chen, Ing-Ray
Analysis of Probabilistic Error Checking Procedures on Storage Systems ING-RAY CHEN AND I.-LING YEN Email: irchen@iie.ncku.edu.tw Conventionally, error checking on storage systems is performed on-the-fly (with probability 1) as the storage system is being accessed in order to improve the reliability
ADJOINT AND DEFECT ERROR BOUNDING AND CORRECTION FOR FUNCTIONAL ESTIMATES
Pierce, Niles A.
decades. Integral functionals also arise in other aerospace areas such as the calculation of radar cross functional that results from residual errors in approximating the solution to the partial differential to handle flows with shocks; numerical experiments confirm 4th order error estimates for a pressure integral
Kinematic Error Correction for Minimally Invasive Surgical Robots
in two likely sources of kinematic error: port displacement and instrument shaft flexion. For a quasi. To reach the surgical site near the chest wall, the instrument shaft applies significant torque to the port, and the instrument shaft to bend. These kinematic errors impair positioning of the robot and cause deviations from
Grid-scale Fluctuations and Forecast Error in Wind Power
G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi
2015-03-29
The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).
Grid-scale Fluctuations and Forecast Error in Wind Power
Bel, G; Toots, M; Bandi, M M
2015-01-01
The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).
Using error correction to determine the noise model
M. Laforest; D. Simon; J. -C. Boileau; J. Baugh; M. Ditty; R. Laflamme
2007-01-25
Quantum error correcting codes have been shown to have the ability of making quantum information resilient against noise. Here we show that we can use quantum error correcting codes as diagnostics to characterise noise. The experiment is based on a three-bit quantum error correcting code carried out on a three-qubit nuclear magnetic resonance (NMR) quantum information processor. Utilizing both engineered and natural noise, the degree of correlations present in the noise affecting a two-qubit subsystem was determined. We measured a correlation factor of c=0.5+/-0.2 using the error correction protocol, and c=0.3+/-0.2 using a standard NMR technique based on coherence pathway selection. Although the error correction method demands precise control, the results demonstrate that the required precision is achievable in the liquid-state NMR setting.
Error Control of Iterative Linear Solvers for Integrated Groundwater Models
Dixon, Matthew; Brush, Charles; Chung, Francis; Dogrul, Emin; Kadir, Tariq
2010-01-01
An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient (PCG) method or Generalized Minimum RESidual method (GMRES) is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of 'forward error bound estimation' to show how rescaling the linear system affects the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed using the USGS GSFLOW package and the California State Department of Water Resources' Integrated Water Flow Model (IWFM), we observe that this error bound guides the choice of a prac...
xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures
McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus
2014-09-01
A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.
Scramjet including integrated inlet and combustor
Kutschenreuter, P.H. Jr.; Blanton, J.C.
1992-02-04
This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.
Electric Power Monthly, August 1990. [Glossary included
Not Available
1990-11-29
The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.
Robust linear regression with broad distributions of errors
Postnikov, Eugene B
2015-01-01
We consider the problem of linear fitting of noisy data in the case of broad (say $\\alpha$-stable) distributions of random impacts ("noise"), which can lack even the first moment. This situation, common in statistical physics of small systems, in Earth sciences, in network science or in econophysics, does not allow for application of conventional Gaussian maximum-likelihood estimators resulting in usual least-squares fits. Such fits lead to large deviations of fitted parameters from their true values due to the presence of outliers. The approaches discussed here aim onto the minimization of the width of the distribution of residua. The corresponding width of the distribution can either be defined via the interquantile distance of the corresponding distributions or via the scale parameter in its characteristic function. The methods provide the robust regression even in the case of short samples with large outliers, and are equivalent to the normal least squares fit for the Gaussian noises. Our discussion is il...
MOTIVATION INCLUDED OR EXCLUDED FROM Mihaela Cocea
Cocea, Mihaela
MOTIVATION Â INCLUDED OR EXCLUDED FROM E-LEARNING Mihaela Cocea National College of Ireland Mayor, Dublin 1, Ireland sweibelzahl@ncirl.ie ABSTRACT The learners' motivation has an impact on the quality-Learning, motivation has been mainly considered in terms of instructional design. Research in this direction suggests
Energy Consumption of Personal Computing Including Portable
Namboodiri, Vinod
processing unit (CPU) processing power and capacity of mass storage devices doubles every 18 months. Such growth in both processing and storage capabilities fuels the production of ever more powerful portableEnergy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1
Course may include: Research in Education
Development Information and Communication Technologies Issues in Education Final Project Seminar Master, the Final Project Seminar. This graduate program will allow you to develop your skills and knowledgeCourse may include: Research in Education Qualitative Methods in Educational Research Fundamentals
Communication in automation, including networking and wireless
Antsaklis, Panos
Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use
A decision support system prototype including human factors based on the TOGA meta-theory approach
Cappelli, M.; Memmi, F.; Gadomski, A. M.; Sepielli, M.
2012-07-01
The human contribution to the risk of operation of complex technological systems is often not negligible and sometimes tends to become significant, as shown by many reports on incidents and accidents occurred in the past inside Nuclear Power Plants (NPPs). An error of a human operator of a NPP can derive by both omission and commission. For instance, complex commission errors can also lead to significant catastrophic technological accidents, as for the case of the Three Mile Island accident. Typically, the problem is analyzed by focusing on the single event chain that has provoked the incident or accident. What is needed is a general framework able to include as many parameters as possible, i.e. both technological and human factors. Such a general model could allow to envisage an omission or commission error before it can happen or, alternatively, suggest preferred actions to do in order to take countermeasures to neutralize the effect of the error before it becomes critical. In this paper, a preliminary Decision Support System (DSS) based on the so-called (-) TOGA meta-theory approach is presented. The application of such a theory to the management of nuclear power plants has been presented in the previous ICAPP 2011. Here, a human factor simulator prototype is proposed in order to include the effect of human errors in the decision path. The DSS has been developed using a TRIGA research reactor as reference plant, and implemented using the LabVIEW programming environment and the Finite State Machine (FSM) model The proposed DSS shows how to apply the Universal Reasoning Paradigm (URP) and the Universal Management Paradigm (UMP) to a real plant context. The DSS receives inputs from instrumentation data and gives as output a suggested decision. It is obtained as the result of an internal elaborating process based on a performance function. The latter, describes the degree of satisfaction and efficiency, which are dependent on the level of responsibility related to each professional role. As an application, we present the simulation of the discussed error, e.g. the unchecked extraction of the control rods during a power variation maneuver and we show how the effect of human errors can affect the performance function, giving rise to different countermeasures which could call different operator figures into play, potentially not envisaged in the standard procedure. (authors)
C -parameter distribution at N 3 LL ' including power corrections
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.
2015-05-01
We compute the e?e? C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(?3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments ?n. To eliminate an O(?QCD) renormalon ambiguity in the soft function, we switchmore »from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter ?1. We show how to simultaneously account for running effects in ?1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for ?s(mZ) and ?1, the perturbative uncertainty in our cross section is ? 2.5% at Q=mZ.« less
C -parameter distribution at N 3 LL ' including power corrections
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.
2015-05-01
We compute the e?e? C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(?3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments ?n. To eliminate an O(?QCD) renormalon ambiguity in the soft function, we switch from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter ?1. We show how to simultaneously account for running effects in ?1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for ?s(mZ) and ?1, the perturbative uncertainty in our cross section is ? 2.5% at Q=mZ.
Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint
Stynes, J. K.; Ihas, B.
2012-04-01
The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.
Catastrophic photometric redshift errors: Weak-lensing survey requirements
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using onlymore »the photometric redshifts with z ? 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less
Balancing aggregation and smoothing errors in inverse models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Turner, A. J.; Jacob, D. J.
2015-01-13
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore »state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less
Balancing aggregation and smoothing errors in inverse models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Turner, A. J.; Jacob, D. J.
2015-06-30
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore »state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less
Measuring worst-case errors in a robot workcell
Simon, R.W.; Brost, R.C.; Kholwadwala, D.K. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center
1997-10-01
Errors in model parameters, sensing, and control are inevitably present in real robot systems. These errors must be considered in order to automatically plan robust solutions to many manipulation tasks. Lozano-Perez, Mason, and Taylor proposed a formal method for synthesizing robust actions in the presence of uncertainty; this method has been extended by several subsequent researchers. All of these results presume the existence of worst-case error bounds that describe the maximum possible deviation between the robot`s model of the world and reality. This paper examines the problem of measuring these error bounds for a real robot workcell. These measurements are difficult, because of the desire to completely contain all possible deviations while avoiding bounds that are overly conservative. The authors present a detailed description of a series of experiments that characterize and quantify the possible errors in visual sensing and motion control for a robot workcell equipped with standard industrial robot hardware. In addition to providing a means for measuring these specific errors, these experiments shed light on the general problem of measuring worst-case errors.
Subterranean barriers including at least one weld
Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.
2007-01-09
A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.
Photoactive devices including porphyrinoids with coordinating additives
Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav
2015-05-12
Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.
Power generation method including membrane separation
Lokhandwala, Kaaeid A. (Union City, CA)
2000-01-01
A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.
Rotor assembly including superconducting magnetic coil
Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)
2003-01-01
Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.
Nuclear reactor shield including magnesium oxide
Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)
1981-01-01
An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.
Electric power monthly, September 1990. [Glossary included
Not Available
1990-12-17
The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)
Natural Priors, CMSSM Fits and LHC Weather Forecasts
Ben C Allanach; Kyle Cranmer; Christopher G Lester; Arne M Weber
2007-07-05
Previous LHC forecasts for the constrained minimal supersymmetric standard model (CMSSM), based on current astrophysical and laboratory measurements, have used priors that are flat in the parameter tan beta, while being constrained to postdict the central experimental value of MZ. We construct a different, new and more natural prior with a measure in mu and B (the more fundamental MSSM parameters from which tan beta and MZ are actually derived). We find that as a consequence this choice leads to a well defined fine-tuning measure in the parameter space. We investigate the effect of such on global CMSSM fits to indirect constraints, providing posterior probability distributions for Large Hadron Collider (LHC) sparticle production cross sections. The change in priors has a significant effect, strongly suppressing the pseudoscalar Higgs boson dark matter annihilation region, and diminishing the probable values of sparticle masses. We also show how to interpret fit information from a Markov Chain Monte Carlo in a frequentist fashion; namely by using the profile likelihood. Bayesian and frequentist interpretations of CMSSM fits are compared and contrasted.
Wind Power Forecasting Error Distributions: An International Comparison; Preprint
Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.
2012-09-01
Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.
Pendulum Shifts, Context, Error, and Personal Accountability
Harold Blackman; Oren Hester
2011-09-01
This paper describes a series of tools that were developed to achieve a balance in under-standing LOWs and the human component of events (including accountability) as the INL continues its shift to a learning culture where people report, are accountable and interested in making a positive difference - and want to report because information is handled correctly and the result benefits both the reporting individual and the organization. We present our model for understanding these interrelationships; the initiatives that were undertaken to improve overall performance.
A complete Randomized Benchmarking Protocol accounting for Leakage Errors
T. Chasseur; F. K. Wilhelm
2015-07-09
Randomized Benchmarking allows to efficiently and scalably characterize the average error of an unitary 2-design such as the Clifford group $\\mathcal{C}$ on a physical candidate for quantum computation, as long as there are no non-computational leakage levels in the system. We investigate the effect of leakage errors on Randomized Benchmarking induced from an additional level per physical qubit and provide a modified protocol that allows to derive reliable estimates for the error per gate in their presence. We assess the variance of the sequence fidelity corresponding to the number of random sequences needed for valid fidelity estimation. Our protocol allows for gate dependent error channels without being restricted to perturbations. We show that our protocol is compatible with Interleaved Randomized Benchmarking and expand to benchmarking of arbitrary gates. This setting is relevant for superconducting transmon qubits, among other systems.
Honest Confidence Intervals for the Error Variance in Stepwise Regression
Stine, Robert A.
Honest Confidence Intervals for the Error Variance in Stepwise Regression Dean P. Foster and Robert alternatives are used. These simpler algorithms (e.g., forward or backward stepwise regression) obtain
Servo control booster system for minimizing following error
Wise, William L. (Mountain View, CA)
1985-01-01
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Removing Systematic Errors from Rotating Shadowband Pyranometer Data Frank Vignola
Oregon, University of
of the pyranometer to briefly shade the pyranometer once a minute. Direct hori- zontal irradiance is calculated used in programs evaluating the performance of photovoltaic systems, and systematic errors in the data
Error estimation and adaptive mesh refinement for aerodynamic flows
Hartmann, Ralf
Error estimation and adaptive mesh refinement for aerodynamic flows Ralf Hartmann1 and Paul Houston, 38108 Braunschweig, Germany Ralf.Hartmann@dlr.de 2 School of Mathematical Sciences University
MULTITARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS
Hartmann, Ralf
MULTIÂTARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS RALF HARTMANN of Scientific Computing, TU Braunschweig, Germany (Ralf.Hartmann@dlr.de). 1 #12; 2 R. HARTMANN
Error estimation and adaptive mesh refinement for aerodynamic flows
Hartmann, Ralf
Error estimation and adaptive mesh refinement for aerodynamic flows Ralf Hartmann, Joachim Held), Lilien- thalplatz 7, 38108 Braunschweig, Germany, e-mail: Ralf.Hartmann@dlr.de 1 #12;2 Ralf Hartmann
MULTITARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS
Hartmann, Ralf
MULTITARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS RALF HARTMANN Abstract, Germany (Ralf.Hartmann@dlr.de). 1 #12;2 R. HARTMANN quantity under consideration. However, in many
Inflated applicants: Attribution errors in performance evaluation by professionals
Swift, Samuel; Moore, Don; Sharek, Zachariah; Gino, Francesca
2013-01-01
performance among applicants from each ‘‘type’’ of school.and interview performance. Each school provided multi-yearschool, PLOS ONE | www.plosone.org July 2013 | Volume 8 | Issue 7 | e69258 Attribution Errors in Performance
Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint
Hodge, B. M.; Milligan, M.
2011-03-01
In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.
On Student's 1908 Article "The Probable Error of a Mean"
Kim, Jong-Min
's "attention" resulted in a report, "The Application of the `Law of Error' to the work of the Brewery" dated No] and other records available in their Dublin brewery"; see Pearson 1939, p. 213.) Unable to find
Performance optimizations for compiler-based error detection
Mitropoulou, Konstantina
2015-06-29
The trend towards smaller transistor technologies and lower operating voltages stresses the hardware and makes transistors more susceptible to transient errors. In future systems, performance and power gains will come ...
Efficient Semiparametric Estimators for Biological, Genetic, and Measurement Error Applications
Garcia, Tanya
2012-10-19
Many statistical models, like measurement error models, a general class of survival models, and a mixture data model with random censoring, are semiparametric where interest lies in estimating finite-dimensional parameters ...
Error bars for linear and nonlinear neural network regression models
Penny, Will
Error bars for linear and nonlinear neural network regression models William D. Penny and Stephen J College of Science, Technology and Medicine, London SW7 2BT., U.K. w.penny@ic.ac.uk, s
NOVELTY, CONFIDENCE & ERRORS IN CONNECTIONIST Stephen J. Roberts & William Penny
Roberts, Stephen
d NOVELTY, CONFIDENCE & ERRORS IN CONNECTIONIST SYSTEMS Stephen J. Roberts & William Penny Neural, Technology & Medicine London, UK s.j.roberts@ic.ac.uk, w.penny@ic.ac.uk April 21, 1997 Abstract Key words
Predicting Intentional Tax Error Using Open Source Literature and Data
for each PUMS respondent (or agent), in certain line item/taxpayer categories, allowing us to construct dis-Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Results of Meta-Analysis 12 6 Intentional Error in Line Items/Taxpayer Categories 13 6
Zhao, Gong-Bo
2014-04-01
Based on a suite of N-body simulations of the Hu-Sawicki model of f(R) gravity with different sets of model and cosmological parameters, we develop a new fitting formula with a numeric code, MGHalofit, to calculate the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. We compare the MGHalofit predictions at various redshifts (z ? 1) to the f(R) simulations and find that the relative error of the MGHalofit fitting formula of P(k) is no larger than 6% at k ? 1 h Mpc{sup –1} and 12% at k in (1, 10] h Mpc{sup –1}, respectively. Based on a sensitivity study of an ongoing and a future spectroscopic survey, we estimate the detectability of a signal of modified gravity described by the Hu-Sawicki model using the power spectrum up to quasi-nonlinear scales.
Suboptimal quantum-error-correcting procedure based on semidefinite programming
Naoki Yamamoto; Shinji Hara; Koji Tsumura
2006-06-13
In this paper, we consider a simplified error-correcting problem: for a fixed encoding process, to find a cascade connected quantum channel such that the worst fidelity between the input and the output becomes maximum. With the use of the one-to-one parametrization of quantum channels, a procedure finding a suboptimal error-correcting channel based on a semidefinite programming is proposed. The effectiveness of our method is verified by an example of the bit-flip channel decoding.
Low-energy R-matrix fits for the 6Li(d,a)4He S factor
J. Grineviciute; L. Lamia; A. M. Mukhamedzhanov; C. Spitaleri; M. La Cognata
2015-01-07
Background: The information about the 6Li(d,a)4He reaction rates of the astrophysical interest can be obtained by extrapolating direct data to the lower energies, or by indirect methods. The indirect Trojan Horse method, as well as various R-matrix and polynomial fits to direct data, estimate the electron screening energies much larger than the adiabatic limit. Calculations that include the subthreshold resonance estimate smaller screening energies. Purpose: Obtain the 6Li(d,a)4He reaction R-matrix parameters and the astrophysical S factor for the energies relevant to the stellar plasmas by fitting the R-matrix formulas for the subthreshold resonances to the S factor data above 60 keV. Methods: The bare S factor is calculated using the single and the two-level R-matrix formulas for the closest to the threshold 0+ and 2+ subthreshold states at 22.2, 20.2 and 20.1 MeV. The electron screening potential Ue is then obtained by fitting it as a single parameter to the low energy data. Results: The low energy S factor is dominated by the 2+ subthreshold resonance at 22.2 MeV. The influence of the other two subthreshold states is small. R-matrix fits result in the electron screening that is smaller than the adiabatic value. Neglecting the electron screening above 60 keV reduces the electron screening potential significantly. Calculations show a large ambiguity associated with a choice of the initial channel radius. Conclusions: The R matrix fits do not show a significantly larger Ue than predicted by the atomic physics models. The R-matrix best fit produces Ue=149.5 eV and Sb(0)=21.7 MeV b.
TESLA-FEL 2009-07 Errors in Reconstruction of Difference Orbit
Contents 1 Introduction 1 2 Standard Least Squares Solution 2 3 Error Emittance and Error Twiss Parameters as the position of the reconstruction point changes, we will introduce error Twiss parameters and invariant error in the point of interest has to be achieved by matching error Twiss parameters in this point to the desired
A Taxonomy to Enable Error Recovery and Correction in Software Vilas Sridharan
Kaeli, David R.
A Taxonomy to Enable Error Recovery and Correction in Software Vilas Sridharan ECE Department years, reliability research has largely used the following taxonomy of errors: Undetected Errors Errors (CE). While this taxonomy is suitable to characterize hardware error detection and correction
A simple real-word error detection and correction using local word bigram and trigram
A simple real-word error detection and correction using local word bigram and trigram Pratip bbcisical@gmail.com Abstract Spelling error is broadly classified in two categories namely non word error and real word error. In this paper a localized real word error detection and correction method is proposed
Compiler-Assisted Detection of Transient Memory Errors
Tavarageri, Sanket; Krishnamoorthy, Sriram; Sadayappan, Ponnuswamy
2014-06-09
The probability of bit flips in hardware memory systems is projected to increase significantly as memory systems continue to scale in size and complexity. Effective hardware-based error detection and correction requires that the complete data path, involving all parts of the memory system, be protected with sufficient redundancy. First, this may be costly to employ on commodity computing platforms and second, even on high-end systems, protection against multi-bit errors may be lacking. Therefore, augmenting hardware error detection schemes with software techniques is of consider- able interest. In this paper, we consider software-level mechanisms to comprehensively detect transient memory faults. We develop novel compile-time algorithms to instrument application programs with checksum computation codes so as to detect memory errors. Unlike prior approaches that employ checksums on computational and architectural state, our scheme verifies every data access and works by tracking variables as they are produced and consumed. Experimental evaluation demonstrates that the proposed comprehensive error detection solution is viable as a completely software-only scheme. We also demonstrate that with limited hardware support, overheads of error detection can be further reduced.
Optical panel system including stackable waveguides
DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)
2007-11-20
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.
Thermovoltaic semiconductor device including a plasma filter
Baldasaro, Paul F. (Clifton Park, NY)
1999-01-01
A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.
Simple Model of Membrane Proteins Including Solvent
D. L. Pagan; A. Shiryayev; T. P. Connor; J. D. Gunton
2006-03-04
We report a numerical simulation for the phase diagram of a simple two dimensional model, similar to one proposed by Noro and Frenkel [J. Chem. Phys. \\textbf{114}, 2477 (2001)] for membrane proteins, but one that includes the role of the solvent. We first use Gibbs ensemble Monte Caro simulations to determine the phase behavior of particles interacting via a square-well potential in two dimensions for various values of the interaction range. A phenomenological model for the solute-solvent interactions is then studied to understand how the fluid-fluid coexistence curve is modified by solute-solvent interactions. It is shown that such a model can yield systems with liquid-liquid phase separation curves that have both upper and lower critical points, as well as closed loop phase diagrams, as is the case with the corresponding three dimensional model.
Calculation of the Johann error for spherically bent x-ray imaging crystal spectrometers
Wang, E.; Beiersdorfer, P.; Gu, M.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Reinke, M.; Rice, J. E.; Podpaly, Y.
2010-10-15
New x-ray imaging crystal spectrometers, currently operating on Alcator C-Mod, NSTX, EAST, and KSTAR, record spectral lines of highly charged ions, such as Ar{sup 16+}, from multiple sightlines to obtain profiles of ion temperature and of toroidal plasma rotation velocity from Doppler measurements. In the present work, we describe a new data analysis routine, which accounts for the specific geometry of the sightlines of a curved-crystal spectrometer and includes corrections for the Johann error to facilitate the tomographic inversion. Such corrections are important to distinguish velocity induced Doppler shifts from instrumental line shifts caused by the Johann error. The importance of this correction is demonstrated using data from Alcator C-Mod.
Fournier, René Orel, Slava
2013-12-21
We present a method for fitting high-dimensional potential energy surfaces that is almost fully automated, can be applied to systems with various chemical compositions, and involves no particular choice of function form. We tested it on four systems: Ag{sub 20}, Sn{sub 6}Pb{sub 6}, Si{sub 10}, and Li{sub 8}. The cost for energy evaluation is smaller than the cost of a density functional theory (DFT) energy evaluation by a factor of 1500 for Li{sub 8}, and 60 000 for Ag{sub 20}. We achieved intermediate accuracy (errors of 0.4 to 0.8 eV on atomization energies, or, 1% to 3% on cohesive energies) with rather small datasets (between 240 and 1400 configurations). We demonstrate that this accuracy is sufficient to correctly screen the configurations with lowest DFT energy, making this function potentially very useful in a hybrid global optimization strategy. We show that, as expected, the accuracy of the function improves with an increase in the size of the fitting dataset.
Property:Incentive/PVPbiFitMaxKW | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc JumpPVPbiFitMaxKW Jump
Property:Incentive/PVResFitDolKWh | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc JumpPVPbiFitMaxKW
Engine lubrication circuit including two pumps
Lane, William H.
2006-10-03
A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.
Bayesian Semiparametric Density Deconvolution and Regression in the Presence of Measurement Errors
Sarkar, Abhra
2014-06-24
Although the literature on measurement error problems is quite extensive, solutions to even the most fundamental measurement error problems like density deconvolution and regression with errors-in-covariates are available ...
Estimation of the error for small-sample optimal binary filter design using prior knowledge
Sabbagh, David L
1999-01-01
Optimal binary filters estimate an unobserved ideal quantity from observed quantities. Optimality is with respect to some error criterion, which is usually mean absolute error MAE (or equivalently mean square error) for the binary values. Both...
Fault tree analysis of commonly occurring medication errors and methods to reduce them
Cherian, Sandhya Mary
1994-01-01
-depth analysis of over two hundred actual medication error incidents. These errors were then classified according to type, in an attempt at deriving a generalized fault tree for the medication delivery system that contributed to errors. This generalized fault...
EFFECT OF MANUFACTURING ERRORS ON FIELD QUALITY OF DIPOLE MAGNETS FOR THE SSC
Meuser, R.B.
2010-01-01
in Fig. 2. Table 2. Manufacturing Error Mode Groups13-16, 1985 EFFECT OF MANUFACTURING ERRORS ON FIELD QUALITYMag Note-27 EFFECT OF MANUFACTURING ERRORS ON FIELO QUALITY
Faraday rotation data analysis with least-squares elliptical fitting
White, Adam D.; McHale, G. Brent; Goerz, David A.; Speer, Ron D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2010-10-15
A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the method is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.
Structure of minimum-error quantum state discrimination
Joonwoo Bae
2013-07-19
Distinguishing different quantum states is a fundamental task having practical applications for information processing. Despite the efforts devoted so far, however, strategies for optimal discrimination are known only for specific examples. We here consider the problem of minimum-error quantum state discrimination where the average error is attempted to be minimized. We show the general structure of minimum-error state discrimination as well as useful properties to derive analytic solutions. Based on the general structure, we present a geometric formulation of the problem, which can be applied to cases where quantum state geometry is clear. We also introduce equivalent classes of sets of quantum states in terms of minimum-error discrimination: sets of quantum states in an equivalence class share the same guessing probability. In particular, for qubit states where the state geometry is found with the Bloch sphere, we illustrate that for an arbitrary set of qubit states, the minimum-error state discrimination with equal prior probabilities can be analytically solved, that is, optimal measurement and the guessing probability are explicitly obtained.
Economic penalties of problems and errors in solar energy systems
Raman, K.; Sparkes, H.R.
1983-01-01
Experience with a large number of installed solar energy systems in the HUD Solar Program has shown that a variety of problems and design/installation errors have occurred in many solar systems, sometimes resulting in substantial additional costs for repair and/or replacement. In this paper, the effect of problems and errors on the economics of solar energy systems is examined. A method is outlined for doing this in terms of selected economic indicators. The method is illustrated by a simple example of a residential solar DHW system. An example of an installed, instrumented solar energy system in the HUD Solar Program is then discussed. Detailed results are given for the effects of the problems and errors on the cash flow, cost of delivered heat, discounted payback period, and life-cycle cost of the solar energy system. Conclusions are drawn regarding the most suitable economic indicators for showing the effects of problems and errors in solar energy systems. A method is outlined for deciding on the maximum justifiable expenditure for maintenance on a solar energy system with problems or errors.
Goal-oriendted local a posteriori error estimator for H(div)
2011-12-15
Dec 15, 2011 ... error estimator measures the pollution effect from the outside region of D ... error estimators which account for and quantify the pollution effect.
V-228: RealPlayer Buffer Overflow and Memory Corruption Error...
Broader source: Energy.gov (indexed) [DOE]
a memory corruption error and execute arbitrary code on the target system. IMPACT: Access control error SOLUTION: vendor recommends upgrading to version 16.0.3.51 Addthis...
Clark, E.L.
1993-08-01
Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, calibration Mach number and Reynolds number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-stream Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for nine fundamental aerodynamic ratios, most of which relate free-stream test conditions (pressure, temperature, density or velocity) to a reference condition. Tables of the ratios, R, absolute sensitivity coefficients, {partial_derivative}R/{partial_derivative}M{infinity}, and relative sensitivity coefficients, (M{infinity}/R) ({partial_derivative}R/{partial_derivative}M{infinity}), are provided as functions of M{infinity}.
Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.
2015-12-08
An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.
Generating Light Curves from Forced PSF-fit Photometry on PTFIDE Difference-images
Masci, Frank
1 Generating Light Curves from Forced PSF-fit Photometry on PTFIDE ancillary forced Aperture Photometry 6 Other quality checks for PSF-fit photometry Putting it all together: conversion to magnitudes 9 ACtoDC Photometry
xMDFF: molecular dynamics flexible fitting of low-resolution...
Office of Scientific and Technical Information (OSTI)
xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures Citation Details In-Document Search Title: xMDFF: molecular dynamics flexible fitting of...
This form is interactive --complete electronically and print! Certification of Fitness For Duty
Pillow, Jonathan
This form is interactive -- complete electronically and print! Certification of Fitness For Duty referred to you for an evaluation and confirmation of fitness for duty based on the following observations
Goal pursuit is more than planning: the moderating role of regulatory fit
Tam, Wing Yin Leona
2006-10-30
Research indicates that planning helps consumers in their goal pursuit, but little is known about how and when such beneficial effects change with regulatory fit Ã¢Â?Â? fit between consumersÃ¢Â?Â? regulatory orientation ...
Reducing collective quantum state rotation errors with reversible dephasing
Cox, Kevin C.; Norcia, Matthew A.; Weiner, Joshua M.; Bohnet, Justin G.; Thompson, James K.
2014-12-29
We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21?dB in the context of collective population measurements of the spin states of an ensemble of 2.1×10{sup 5} laser cooled and trapped {sup 87}Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.
Characterization of quantum dynamics using quantum error correction
S. Omkar; R. Srikanth; S. Banerjee
2015-01-27
Characterizing noisy quantum processes is important to quantum computation and communication (QCC), since quantum systems are generally open. To date, all methods of characterization of quantum dynamics (CQD), typically implemented by quantum process tomography, are \\textit{off-line}, i.e., QCC and CQD are not concurrent, as they require distinct state preparations. Here we introduce a method, "quantum error correction based characterization of dynamics", in which the initial state is any element from the code space of a quantum error correcting code that can protect the state from arbitrary errors acting on the subsystem subjected to the unknown dynamics. The statistics of stabilizer measurements, with possible unitary pre-processing operations, are used to characterize the noise, while the observed syndrome can be used to correct the noisy state. Our method requires at most $2(4^n-1)$ configurations to characterize arbitrary noise acting on $n$ qubits.
Non-Gaussian numerical errors versus mass hierarchy
Y. Meurice; M. B. Oktay
2000-05-12
We probe the numerical errors made in renormalization group calculations by varying slightly the rescaling factor of the fields and rescaling back in order to get the same (if there were no round-off errors) zero momentum 2-point function (magnetic susceptibility). The actual calculations were performed with Dyson's hierarchical model and a simplified version of it. We compare the distributions of numerical values obtained from a large sample of rescaling factors with the (Gaussian by design) distribution of a random number generator and find significant departures from the Gaussian behavior. In addition, the average value differ (robustly) from the exact answer by a quantity which is of the same order as the standard deviation. We provide a simple model in which the errors made at shorter distance have a larger weight than those made at larger distance. This model explains in part the non-Gaussian features and why the central-limit theorem does not apply.
01-12-2000 - Mechanical Failure of Supplied Air Fitting | The...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2000 - Mechanical Failure of Supplied Air Fitting Document Number: NA Effective Date: 012000 File (public): 01-12-2000...
Fitness for duty in the nuclear power industry
Durbin, N.; Moore, C.; Grant, T.; Fleming, T.; Hunt, P.; Martin, R.; Murphy, S.; Hauth, J.; Wilson, R.; Bittner, A.; Bramwell, A.; Macaulay, J.; Olson, J.; Terrill, E.; Toquam, J. )
1991-09-01
This report presents an overview of the NRC licensees' implementation of the FFD program during the first full year of the program's operation and provides new information on a variety of FFD technical issues. The purpose of this document is to contribute to appropriate changes to the rule, to the inspection process, and to other NRC activities. It describes the characteristics of licensee programs, discusses the results of NRC inspections, updates technical information covered in previous reports, and identifies lessons learned during the first year. Overall, the experience of the first full year of licensees' FFD program operations indicates that licensees have functioning fitness for duty programs devoted to the NRC rule's performance objectives of achieving drug-free workplaces in which nuclear power plant personnel are not impaired as they perform their duties. 96 refs., 14 tabs.
Factorization of correspondence and camera error for unconstrained dense correspondence applications
Knoblauch, D; Hess-Flores, M; Duchaineau, M; Kuester, F
2009-09-29
A correspondence and camera error analysis for dense correspondence applications such as structure from motion is introduced. This provides error introspection, opening up the possibility of adaptively and progressively applying more expensive correspondence and camera parameter estimation methods to reduce these errors. The presented algorithm evaluates the given correspondences and camera parameters based on an error generated through simple triangulation. This triangulation is based on the given dense, non-epipolar constraint, correspondences and estimated camera parameters. This provides an error map without requiring any information about the perfect solution or making assumptions about the scene. The resulting error is a combination of correspondence and camera parameter errors. An simple, fast low/high pass filter error factorization is introduced, allowing for the separation of correspondence error and camera error. Further analysis of the resulting error maps is applied to allow efficient iterative improvement of correspondences and cameras.
Full protection of superconducting qubit systems from coupling errors
M. J. Storcz; J. Vala; K. R. Brown; J. Kempe; F. K. Wilhelm; K. B. Whaley
2005-08-09
Solid state qubits realized in superconducting circuits are potentially extremely scalable. However, strong decoherence may be transferred to the qubits by various elements of the circuits that couple individual qubits, particularly when coupling is implemented over long distances. We propose here an encoding that provides full protection against errors originating from these coupling elements, for a chain of superconducting qubits with a nearest neighbor anisotropic XY-interaction. The encoding is also seen to provide partial protection against errors deriving from general electronic noise.
When soft controls get slippery: User interfaces and human error
Stubler, W.F.; O`Hara, J.M.
1998-12-01
Many types of products and systems that have traditionally featured physical control devices are now being designed with soft controls--input formats appearing on computer-based display devices and operated by a variety of input devices. A review of complex human-machine systems found that soft controls are particularly prone to some types of errors and may affect overall system performance and safety. This paper discusses the application of design approaches for reducing the likelihood of these errors and for enhancing usability, user satisfaction, and system performance and safety.
Comment on "Optimum Quantum Error Recovery using Semidefinite Programming"
M. Reimpell; R. F. Werner; K. Audenaert
2006-06-07
In a recent paper ([1]=quant-ph/0606035) it is shown how the optimal recovery operation in an error correction scheme can be considered as a semidefinite program. As a possible future improvement it is noted that still better error correction might be obtained by optimizing the encoding as well. In this note we present the result of such an improvement, specifically for the four-bit correction of an amplitude damping channel considered in [1]. We get a strict improvement for almost all values of the damping parameter. The method (and the computer code) is taken from our earlier study of such correction schemes (quant-ph/0307138).
Error-prevention scheme with two pairs of qubits
Chu, Shih-I; Yang, Chui-Ping; Han, Siyuan
2002-09-04
Ei jue ie j&5ue je i& , e iP$0,1% @6#!. The expressions for HS and HSB are as follows: HS5e0~s I z 1s II z !, *Email address: cpyang@floquet.chem.ku.edu †Email address: sichu@ku.edu ‡ Email address: han@ku.eduError-prevention scheme Chui-Ping Yang.... The sche two pairs of qubits and through error-prevention proc through a decoherence-free subspace for collective p pairs; leakage out of the encoding space due to amp addition, how to construct decoherence-free states for n discussed. DOI: 10.1103/Phys...
Estimating market power in homogeneous product markets using a composed error model
Orea, Luis; Steinbuks, Jevgenijs
2012-04-25
for assisting us with computation of residual demand elasticities based on PX bidding data. We also thank David Newbery, Jacob LaRiviere, Mar Reguant, the anonymous reviewer, and the participants of the 3rd International Workshop on Empirical Methods in Energy... that variation in the error term is an exponential function of an intercept term, the day-ahead forecast of total demand and its square (i.e., FQ, FQ2), that are included in the model in order to capture possible demand-size effects, and a vector of days...
Contributions to Human Errors and Breaches in National Security Applications.
Pond, D. J.; Houghton, F. K.; Gilmore, W. E.
2002-01-01
Los Alamos National Laboratory has recognized that security infractions are often the consequence of various types of human errors (e.g., mistakes, lapses, slips) and/or breaches (i.e., deliberate deviations from policies or required procedures with no intention to bring about an adverse security consequence) and therefore has established an error reduction program based in part on the techniques used to mitigate hazard and accident potentials. One cornerstone of this program, definition of the situational and personal factors that increase the likelihood of employee errors and breaches, is detailed here. This information can be used retrospectively (as in accident investigations) to support and guide inquiries into security incidents or prospectively (as in hazard assessments) to guide efforts to reduce the likelihood of error/incident occurrence. Both approaches provide the foundation for targeted interventions to reduce the influence of these factors and for the formation of subsequent 'lessons learned.' Overall security is enhanced not only by reducing the inadvertent releases of classified information but also by reducing the security and safeguards resources devoted to them, thereby allowing these resources to be concentrated on acts of malevolence.
Backward Error and Condition of Polynomial Eigenvalue Problems \\Lambda
Higham, Nicholas J.
, 1999 Abstract We develop normwise backward errors and condition numbers for the polynoÂ mial eigenvalue Research Council grant GR/L76532. 1 #12; where A l 2 C n\\Thetan , l = 0: m and we refer to P as a â??Âmatrix. Few direct numerical methods are available for solving the polynomial eigenvalue problem (PEP). When m
DISCRIMINATION AND CLASSIFICATION OF UXO USING MAGNETOMETRY: INVERSION AND ERROR
Sambridge, Malcolm
DISCRIMINATION AND CLASSIFICATION OF UXO USING MAGNETOMETRY: INVERSION AND ERROR ANALYSIS USING for the different solutions didn't even overlap. Introduction A discrimination and classification strategy ambiguity and possible remanent magnetization the recovered dipole moment is compared to a library
Rate Regions for Coherent and Noncoherent Multisource Network Error Correction
Ho, Tracey
,tho,effros}@caltech.edu Joerg Kliewer New Mexico State University Email: jkliewer@nmsu.edu Elona Erez Yale University Email a single error on a network link may lead to a corruption of many received packets at the destination nodes
Optimal Estimation from Relative Measurements: Error Scaling (Extended Abstract)
Hespanha, João Pedro
"relative" measurement between xu and xv is available: uv = xu - xv + u,v Rk , (u, v) E V × V, (1) whereOptimal Estimation from Relative Measurements: Error Scaling (Extended Abstract) Prabir Barooah Jo~ao P. Hespanha I. ESTIMATION FROM RELATIVE MEASUREMENTS We consider the problem of estimating a number
Low Degree Test with Polynomially Small Error Dana Moshkovitz
Moshkovitz, Dana
Low Degree Test with Polynomially Small Error Dana Moshkovitz October 19, 2014 Abstract A long line of work in Theoretical Computer Science shows that a function is close to a low degree polynomial iff it is close to a low degree polynomial locally. This is known as low degree testing
Time reversal in thermoacoustic tomography - an error estimate
Hristova, Yulia
2008-01-01
The time reversal method in thermoacoustic tomography is used for approximating the initial pressure inside a biological object using measurements of the pressure wave made outside the object. This article presents error estimates for the time reversal method in the cases of variable, non-trapping sound speeds.
Error Control Based Model Reduction for Parameter Optimization of Elliptic
of technical devices that rely on multiscale processes, such as fuel cells or batteries. As the solutionError Control Based Model Reduction for Parameter Optimization of Elliptic Homogenization Problems optimization of elliptic multiscale problems with macroscopic optimization functionals and microscopic material
DISCRIMINATION AND CLASSIFICATION OF UXO USING MAGNETOMETRY: INVERSION AND ERROR
Oldenburg, Douglas W.
DISCRIMINATION AND CLASSIFICATION OF UXO USING MAGNETOMETRY: INVERSION AND ERROR ANALYSIS USING for the different solutions didn't even overlap. Introduction A discrimination and classification strategy-UXOs dug per UXO). The discrimination and classification methodology depends on the magnitude of the recov
Improving STT-MRAM Density Through Multibit Error Correction
Sapatnekar, Sachin
. Traditional methods enhance robustness at the cost of area/energy by using larger cell sizes to improve the thermal stability of the MTJ cells. This paper employs multibit error correction with DRAM to the read operation) through TX. A key attribute of an MTJ is the notion of thermal stability. Fig. 2
Designing Automation to Reduce Operator Errors Nancy G. Leveson
Leveson, Nancy
Designing Automation to Reduce Operator Errors Nancy G. Leveson Computer Science and Engineering University of Washington Everett Palmer NASA Ames Research Center Introduction Advanced automation has been of moderelated problems [SW95]. After studying accidents and incidents in the new, highly automated
Verification of unfold error estimates in the unfold operator code
Fehl, D.L.; Biggs, F.
1997-01-01
Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}
ARTIFICIAL INTELLIGENCE 223 A Geometric Approach to Error
Richardson, David
ARTIFICIAL INTELLIGENCE 223 A Geometric Approach to Error Detection and Recovery for Robot Motion, and uncertainty in the geometric * This report describes research done at the Artificial Intelligence Laboratory of the Massach- usetts Institute of Technology. Support for the Laboratory's Artificial Intelligence research
Control del Error para la Multirresoluci on Quincunx a la
Amat, Sergio
multirresoluci#19;on discreta no lineal de Harten. En los algoritmos de multirresoluci#19;on se transforma una obtiene ^ f L la cual debera de estar cerca de #22; f L . Por lo tanto, los algoritmos no deben de ser inestables. En este estudio, introduciremos algoritmos de control del error y de la estabilidad. Se obtendr
Error Bounds from Extra Precise Iterative Refinement James Demmel
Li, Xiaoye Sherry
now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5 Cooperative Agreement No. ACI-9619020; NSF Grant Nos. ACI-9813362 and CCF-0444486; the DOE Grant Nos. DE-FG03
Error rate and power dissipation in nano-logic devices
Kim, Jong Un
2005-08-29
of an error-free condition on temperature in single electron logic processors is derived. The size of the quantum dot of single electron transistor is predicted when a single electron logic processor with the a billion single electron transistors works without...
Error rate and power dissipation in nano-logic devices
Kim, Jong Un
2004-01-01
-free condition on temperature in single electron logic processors is derived. The size of the quantum dot of a single electron transistor is predicted when a single electron logic processor with the 10? single electron transistors works without error at room...
Urban Water Demand with Periodic Error Correction David R. Bell
Griffin, Ronald
them. Econometric estimates of residential demand for water abound (Dalhuisen et al. 2003Urban Water Demand with Periodic Error Correction by David R. Bell and Ronald C. Griffin February, Department of Agricultural Economics, Texas A&M University. #12;Abstract Monthly demand for publicly supplied
Errors-in-variables problems in transient electromagnetic mineral exploration
Braslavsky, Julio H.
Errors-in-variables problems in transient electromagnetic mineral exploration K. Lau, J. H in transient electromagnetic mineral exploration. A specific sub-problem of interest in this area geological surveys, dia- mond drilling, and airborne mineral exploration. Our interest here is with ground
Error Control of Iterative Linear Solvers for Integrated Groundwater Models
California at Davis, University of
Error Control of Iterative Linear Solvers for Integrated Groundwater Models by Matthew F. Dixon1 for integrated groundwater models, which are implicitly coupled to another model, such as surface water models in legacy groundwater modeling packages, resulting in the overall simulation speedups as large as 7
Estimating the error distribution function in nonparametric regression
Mueller, Uschi
Schick, Wolfgang Wefelmeyer Summary: We construct an efficient estimator for the error distribution estimator, influence function #12;2 M¨uller - Schick - Wefelmeyer M¨uller, Schick and Wefelmeyer (2004a. We refer also to the introduction of M¨uller, Schick and Wefelmeyer (2004b). Our proof is complicat
Automatic Error Elimination by Horizontal Code Transfer across Multiple Applications
Polz, Martin
Automatic Error Elimination by Horizontal Code Transfer across Multiple Applications Stelios CSAIL, Cambridge, MA, USA Abstract We present Code Phage (CP), a system for automatically transferring. To the best of our knowledge, CP is the first system to automatically transfer code across multiple
Error field and magnetic diagnostic modeling for W7-X
Lazerson, Sam A.; Gates, David A.; NEILSON, GEORGE H.; OTTE, M.; Bozhenkov, S.; Pedersen, T. S.; GEIGER, J.; LORE, J.
2014-07-01
The prediction, detection, and compensation of error fields for the W7-X device will play a key role in achieving a high beta (? = 5%), steady state (30 minute pulse) operating regime utilizing the island divertor system [1]. Additionally, detection and control of the equilibrium magnetic structure in the scrape-off layer will be necessary in the long-pulse campaign as bootstrapcurrent evolution may result in poor edge magnetic structure [2]. An SVD analysis of the magnetic diagnostics set indicates an ability to measure the toroidal current and stored energy, while profile variations go undetected in the magnetic diagnostics. An additional set of magnetic diagnostics is proposed which improves the ability to constrain the equilibrium current and pressure profiles. However, even with the ability to accurately measure equilibrium parameters, the presence of error fields can modify both the plasma response and diverter magnetic field structures in unfavorable ways. Vacuum flux surface mapping experiments allow for direct measurement of these modifications to magnetic structure. The ability to conduct such an experiment is a unique feature of stellarators. The trim coils may then be used to forward model the effect of an applied n = 1 error field. This allows the determination of lower limits for the detection of error field amplitude and phase using flux surface mapping. *Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.
Development of an Expert System for Classification of Medical Errors
Kopec, Danny
in the United States. There has been considerable speculation that these figures are either overestimated published by the Institute of Medicine (IOM) indicated that between 44,000 and 98,000 unnecessary deaths per in hospitals in the IOM report, what is of importance is that the number of deaths caused by such errors
The contour method cutting assumption: error minimization and correction
Prime, Michael B; Kastengren, Alan L
2010-01-01
The recently developed contour method can measure 2-D, cross-sectional residual-stress map. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contours of the new surfaces created by the cut, which will not be flat if residual stresses are relaxed by the cutting, are then measured and used to calculate the original residual stresses. The precise nature of the assumption about the cut is presented theoretically and is evaluated experimentally. Simply assuming a flat cut is overly restrictive and misleading. The critical assumption is that the width of the cut, when measured in the original, undeformed configuration of the body is constant. Stresses at the cut tip during cutting cause the material to deform, which causes errors. The effect of such cutting errors on the measured stresses is presented. The important parameters are quantified. Experimental procedures for minimizing these errors are presented. An iterative finite element procedure to correct for the errors is also presented. The correction procedure is demonstrated on experimental data from a steel beam that was plastically bent to put in a known profile of residual stresses.
Selected CRC Polynomials Can Correct Errors and Thus Reduce Retransmission
Mache, Jens
sensor networks, minimizing communication is crucial to improve energy consumption and thus lifetime Correction, Reliability, Network Protocol, Low Power Comsumption I. INTRODUCTION Error detection using Cyclic of retransmitting the whole packet - improves energy consumption and thus lifetime of wireless sensor networks
A Spline Algorithm for Modeling Cutting Errors Turning Centers
Gilsinn, David E.
. Bandy Automated Production Technology Division National Institute of Standards and Technology 100 Bureau are made up of features with profiles defined by arcs and lines. An error model for turned parts must take. In the case where there is a requirement of tangency between two features, such as a line tangent to an arc
Staying FIT: Efficient Load Shedding Techniques for Distributed Stream Processing
. Bottlenecks slow down processing and network transmission, and cause delayed outputs. Load management has been. Common load management techniques include adaptive load distribution, admis- sion control, and load
Global Fits of the Minimal Universal Extra Dimensions Scenario
Bertone, Gianfranco; Kong, Kyoungchul; de Austri, Roberto Ruiz; Trotta, Roberto; /Imperial Coll., London
2012-06-22
In theories with Universal Extra-Dimensions (UED), the {gamma}{sub 1} particle, first excited state of the hypercharge gauge boson, provides an excellent Dark Matter (DM) candidate. Here we use a modified version of the SuperBayeS code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive in particular the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the {gamma}{sub 1} with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at {approx} 10{sup -11} pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross-section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross-sections. On the other hand, the LHC with 1 fb{sup -1} of data should be able to probe the current best-fit UED parameters.
Bozkaya, U?ur
2014-09-28
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Chatzopoulos, E.; Wheeler, J. Craig; Vinko, J. [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); Horvath, Z. L.; Nagy, A., E-mail: manolis@astro.as.utexas.edu [Department of Optics and Quantum Electronics, University of Szeged (Hungary)
2013-08-10
We present fits of generalized semi-analytic supernova (SN) light curve (LC) models for a variety of power inputs including {sup 56}Ni and {sup 56}Co radioactive decay, magnetar spin-down, and forward and reverse shock heating due to supernova ejecta-circumstellar matter (CSM) interaction. We apply our models to the observed LCs of the H-rich superluminous supernovae (SLSN-II) SN 2006gy, SN 2006tf, SN 2008am, SN 2008es, CSS100217, the H-poor SLSN-I SN 2005ap, SCP06F6, SN 2007bi, SN 2010gx, and SN 2010kd, as well as to the interacting SN 2008iy and PTF 09uj. Our goal is to determine the dominant mechanism that powers the LCs of these extraordinary events and the physical conditions involved in each case. We also present a comparison of our semi-analytical results with recent results from numerical radiation hydrodynamics calculations in the particular case of SN 2006gy in order to explore the strengths and weaknesses of our models. We find that CS shock heating produced by ejecta-CSM interaction provides a better fit to the LCs of most of the events we examine. We discuss the possibility that collision of supernova ejecta with hydrogen-deficient CSM accounts for some of the hydrogen-deficient SLSNe (SLSN-I) and may be a plausible explanation for the explosion mechanism of SN 2007bi, the pair-instability supernova candidate. We characterize and discuss issues of parameter degeneracy.
MPI Runtime Error Detection with MUST: Advances in Deadlock Detection
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hilbrich, Tobias; Protze, Joachim; Schulz, Martin; de Supinski, Bronis R.; Müller, Matthias S.
2013-01-01
The widely used Message Passing Interface (MPI) is complex and rich. As a result, application developers require automated tools to avoid and to detect MPI programming errors. We present the Marmot Umpire Scalable Tool (MUST) that detects such errors with significantly increased scalability. We present improvements to our graph-based deadlock detection approach for MPI, which cover future MPI extensions. Our enhancements also check complex MPI constructs that no previous graph-based detection approach handled correctly. Finally, we present optimizations for the processing of MPI operations that reduce runtime deadlock detection overheads. Existing approaches often require (p) analysis time per MPI operation,more »forpprocesses. We empirically observe that our improvements lead to sub-linear or better analysis time per operation for a wide range of real world applications.« less
Comparison of Wind Power and Load Forecasting Error Distributions: Preprint
Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.
2012-07-01
The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.
Method and system for reducing errors in vehicle weighing systems
Hively, Lee M. (Philadelphia, TN); Abercrombie, Robert K. (Knoxville, TN)
2010-08-24
A method and system (10, 23) for determining vehicle weight to a precision of <0.1%, uses a plurality of weight sensing elements (23), a computer (10) for reading in weighing data for a vehicle (25) and produces a dataset representing the total weight of a vehicle via programming (40-53) that is executable by the computer (10) for (a) providing a plurality of mode parameters that characterize each oscillatory mode in the data due to movement of the vehicle during weighing, (b) by determining the oscillatory mode at which there is a minimum error in the weighing data; (c) processing the weighing data to remove that dynamical oscillation from the weighing data; and (d) repeating steps (a)-(c) until the error in the set of weighing data is <0.1% in the vehicle weight.
Runtime Detection of C-Style Errors in UPC Code
Pirkelbauer, P; Liao, C; Panas, T; Quinlan, D
2011-09-29
Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the global address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.
On the efficiency of nondegenerate quantum error correction codes for Pauli channels
Gunnar Bjork; Jonas Almlof; Isabel Sainz
2009-05-19
We examine the efficiency of pure, nondegenerate quantum-error correction-codes for Pauli channels. Specifically, we investigate if correction of multiple errors in a block is more efficient than using a code that only corrects one error per block. Block coding with multiple-error correction cannot increase the efficiency when the qubit error-probability is below a certain value and the code size fixed. More surprisingly, existing multiple-error correction codes with a code length equal or less than 256 qubits have lower efficiency than the optimal single-error correcting codes for any value of the qubit error-probability. We also investigate how efficient various proposed nondegenerate single-error correcting codes are compared to the limit set by the code redundancy and by the necessary conditions for hypothetically existing nondegenerate codes. We find that existing codes are close to optimal.
Sader, John E.; Yousefi, Morteza; Friend, James R.; Melbourne Centre for Nanofabrication, Clayton, Victoria 3800
2014-02-15
Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.
AIPS Memo 114r The FITS Interferometry Data Interchange Convention --Revised
Greisen, Eric
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.7 Calibration and flagging information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 FITS-IDI file structure 10 3.1 The primary HDU
Moment-Based Probability Modeling and Extreme Response Estimation, The FITS Routine Version 1.2
MANUEL,LANCE; KASHEF,TINA; WINTERSTEIN,STEVEN R.
1999-11-01
This report documents the use of the FITS routine, which provides automated fits of various analytical, commonly used probability models from input data. It is intended to complement the previously distributed FITTING routine documented in RMS Report 14 (Winterstein et al., 1994), which implements relatively complex four-moment distribution models whose parameters are fit with numerical optimization routines. Although these four-moment fits can be quite useful and faithful to the observed data, their complexity can make them difficult to automate within standard fitting algorithms. In contrast, FITS provides more robust (lower moment) fits of simpler, more conventional distribution forms. For each database of interest, the routine estimates the distribution of annual maximum response based on the data values and the duration, T, over which they were recorded. To focus on the upper tails of interest, the user can also supply an arbitrary lower-bound threshold, {chi}{sub low}, above which a shifted distribution model--exponential or Weibull--is fit.
Data Fitting in Partial Differential Algebraic Equations: Some Academic and Industrial
Schittkowski, Klaus
dynamics of hydro systems, · MCFC fuel cells, · horn radiators for satellite communication. The dynamical engineering. Key words: parameter estimation, data fitting, least squares optimization, partial differential
SU-E-T-51: Bayesian Network Models for Radiotherapy Error Detection
Kalet, A; Phillips, M; Gennari, J [UniversityWashington, Seattle, WA (United States)
2014-06-01
Purpose: To develop a probabilistic model of radiotherapy plans using Bayesian networks that will detect potential errors in radiation delivery. Methods: Semi-structured interviews with medical physicists and other domain experts were employed to generate a set of layered nodes and arcs forming a Bayesian Network (BN) which encapsulates relevant radiotherapy concepts and their associated interdependencies. Concepts in the final network were limited to those whose parameters are represented in the institutional database at a level significant enough to develop mathematical distributions. The concept-relation knowledge base was constructed using the Web Ontology Language (OWL) and translated into Hugin Expert Bayes Network files via the the RHugin package in the R statistical programming language. A subset of de-identified data derived from a Mosaiq relational database representing 1937 unique prescription cases was processed and pre-screened for errors and then used by the Hugin implementation of the Estimation-Maximization (EM) algorithm for machine learning all parameter distributions. Individual networks were generated for each of several commonly treated anatomic regions identified by ICD-9 neoplasm categories including lung, brain, lymphoma, and female breast. Results: The resulting Bayesian networks represent a large part of the probabilistic knowledge inherent in treatment planning. By populating the networks entirely with data captured from a clinical oncology information management system over the course of several years of normal practice, we were able to create accurate probability tables with no additional time spent by experts or clinicians. These probabilistic descriptions of the treatment planning allow one to check if a treatment plan is within the normal scope of practice, given some initial set of clinical evidence and thereby detect for potential outliers to be flagged for further investigation. Conclusion: The networks developed here support the use of probabilistic models into clinical chart checking for improved detection of potential errors in RT plans.
System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)
Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros
2010-09-01
This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a forcing function, helping the team in this endeavor. Models don’t like “TBD” as an input, forcing us to make assumptions and see if they matter. A major addition in FY 2010 was exploratory analysis of “modified open fuel” cycles, employing “minimum fuel treatment” as opposed to full aqueous or electrochemical separation treatment. This increased complexity in our analysis and analytical tool development because equilibrium conditions do not appear sustainable in minimum fuel treatment cases, as was assumed in FY 2009 work with conventional aqueous and electrochemical separation. It is no longer reasonable to assume an equilibrium situation exists in all cases.
Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Liu, Donglai; Zuo, Tao; Hora, Bhavna; Song, Hongshuo; Kong, Wei; Yu, Xianghui; Goonetilleke, Nilu; Bhattacharya, Tanmoy; Perelson, Alan S.; Haynes, Barton F.; et al
2014-01-01
Background: Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. Results: The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, themore »fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. Conclusions: Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.« less
Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation
Liu, Donglai; Zuo, Tao; Hora, Bhavna; Song, Hongshuo; Kong, Wei; Yu, Xianghui; Goonetilleke, Nilu; Bhattacharya, Tanmoy; Perelson, Alan S.; Haynes, Barton F.; McMichael, Andrew J.; Gao, Feng
2014-01-01
Background: Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. Results: The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, the fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. Conclusions: Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.
Nuclear Arms Control R&D Consortium includes Los Alamos
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as...
Physical activity, physical fitness and leukocyte telomere length.
Soares-Miranda, Luisa; Imamura, Fumiaki; Siscovick, David; Jenny, Nancy Swords; Fitzpatrick, Annette L.; Mozaffarian, Dariush
2015-01-01
types, frequency, and duration of each 107 activity were used to calculate weekly energy expenditure (kcal/week) from leisure-108 time activity. Usual exercise intensity was also assessed, with responses including no 109 exercise or low, medium... ) and also better represent long-term effects of 175 habitual PA and PF, we took advantage of repeated measures of PA to PF to perform 176 cumulative updating (averaging of serial values) (Supplementary Figure 1, SDC, 177 Timeline). When PA or PF were...
Cappelli, M.; Gadomski, A. M.; Sepiellis, M.; Wronikowska, M. W.
2012-07-01
In the field of nuclear power plant (NPP) safety modeling, the perception of the role of socio-cognitive engineering (SCE) is continuously increasing. Today, the focus is especially on the identification of human and organization decisional errors caused by operators and managers under high-risk conditions, as evident by analyzing reports on nuclear incidents occurred in the past. At present, the engineering and social safety requirements need to enlarge their domain of interest in such a way to include all possible losses generating events that could be the consequences of an abnormal state of a NPP. Socio-cognitive modeling of Integrated Nuclear Safety Management (INSM) using the TOGA meta-theory has been discussed during the ICCAP 2011 Conference. In this paper, more detailed aspects of the cognitive decision-making and its possible human errors and organizational vulnerability are presented. The formal TOGA-based network model for cognitive decision-making enables to indicate and analyze nodes and arcs in which plant operators and managers errors may appear. The TOGA's multi-level IPK (Information, Preferences, Knowledge) model of abstract intelligent agents (AIAs) is applied. In the NPP context, super-safety approach is also discussed, by taking under consideration unexpected events and managing them from a systemic perspective. As the nature of human errors depends on the specific properties of the decision-maker and the decisional context of operation, a classification of decision-making using IPK is suggested. Several types of initial situations of decision-making useful for the diagnosis of NPP operators and managers errors are considered. The developed models can be used as a basis for applications to NPP educational or engineering simulators to be used for training the NPP executive staff. (authors)
Newport News in Review, ch. 47, segment includes TEDF groundbreaking...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
https:www.jlab.orgnewsarticlesnewport-news-review-ch-47-segment-includes-tedf-groundbreaking-event Newport News in Review, ch. 47, segment includes TEDF groundbreaking event...
Solar Energy Education. Reader, Part II. Sun story. [Includes...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Part II. Sun story. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Reader, Part II. Sun story. Includes glossary You are...
Microfluidic devices and methods including porous polymer monoliths...
Office of Scientific and Technical Information (OSTI)
devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic...
A CHARACTERISTIC GALERKIN METHOD WITH ADAPTIVE ERROR CONTROL FOR THE CONTINUOUS CASTING PROBLEM
Nochetto, Ricardo H.
A CHARACTERISTIC GALERKIN METHOD WITH ADAPTIVE ERROR CONTROL FOR THE CONTINUOUS CASTING PROBLEM casting problem is a convectiondominated nonlinearly degenerate diffusion problem. It is discretized adaptive method. Keywords. a posteriori error estimates, continuous casting, method of characteristics
Simulations of error in quantum adiabatic computations of random 2-SAT instances
Gill, Jay S. (Jay Singh)
2006-01-01
This thesis presents a series of simulations of quantum computations using the adiabatic algorithm. The goal is to explore the effect of error, using a perturbative approach that models 1-local errors to the Hamiltonian ...
Design techniques for graph-based error-correcting codes and their applications
Lan, Ching Fu
2006-04-12
-correcting (channel) coding. The main idea of error-correcting codes is to add redundancy to the information to be transmitted so that the receiver can explore the correlation between transmitted information and redundancy and correct or detect errors caused...
The Impact of Soil Sampling Errors on Variable Rate Fertilization
R. L. Hoskinson; R C. Rope; L G. Blackwood; R D. Lee; R K. Fink
2004-07-01
Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and a predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted for almost 87% of the cost difference. The sum of these differences could result in a $34 per acre cost difference for the fertilization. Because of these differences, better analysis or better sampling methods may need to be done, or more samples collected, to ensure that the soil measurements are truly representative of the field’s spatial variability.
Error-field penetration in reversed magnetic shear configurations
Wang, H. H.; Wang, Z. X.; Wang, X. Q. [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)] [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, X. G. [School of Physics, Peking University, Beijing 100871 (China)] [School of Physics, Peking University, Beijing 100871 (China)
2013-06-15
Error-field penetration in reversed magnetic shear (RMS) configurations is numerically investigated by using a two-dimensional resistive magnetohydrodynamic model in slab geometry. To explore different dynamic processes in locked modes, three equilibrium states are adopted. Stable, marginal, and unstable current profiles for double tearing modes are designed by varying the current intensity between two resonant surfaces separated by a certain distance. Further, the dynamic characteristics of locked modes in the three RMS states are identified, and the relevant physics mechanisms are elucidated. The scaling behavior of critical perturbation value with initial plasma velocity is numerically obtained, which obeys previously established relevant analytical theory in the viscoresistive regime.
Error 401 on upload? | OpenEI Community
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion Flume Jump to: navigation, search BasicError
The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus
Elena, Santiago F.
The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus of each mutant. The distribution of nonlethal deleterious effects was highly skewed and had a long, flat-normal distribution, with 19% reduction of average fitness; the effects distribution of preobserved deleterious
Global warming and positive fitness response in mountain populations of common lizards
Danchin, Etienne
Global warming and positive fitness response in mountain populations of common lizards Lacerta, Madrid, Spain Abstract Recent global warming threatens many species and has already caused population and individual-based approaches. Keywords: body size, fitness, global warming, life-history trade-offs, lizards
Computation of mutual fitness by competing bacteria Juan E. Keymera,1,2
companies to extinction but at the cost of innovation caused by removal of competition (1). In the world for dominance at the cost of extinction of the less-fit strain if there are fitness advantages to the presence), but such extinction scenarios are not the norm in natural spatially heterogeneous habitats, at least for ``lower
Virtual Hooping: teaching a phone about hula-hooping for Fitness, Fun and Rehabilitation
Murray-Smith, Roderick
Virtual Hooping: teaching a phone about hula-hooping for Fitness, Fun and Rehabilitation Josip Musi for fitness and rehabilitation purposes by training them to recognise a user's hula-hooping movements. It also the creation of hula- hooping performance metrics which can be used in wellness, rehabilitation
Fitting Narrow Emission Lines in X-ray Spectra Taeyoung Park
Wolfe, Patrick J.
Fitting Narrow Emission Lines in X-ray Spectra Taeyoung Park Department of Statistics, Harvard University October 25, 2005 Taeyoung Park Fitting Narrow Emission Lines in X X-ray luminosity, and the emission of photons with energies is represented by a spectrum
astroph/9710116 Fitting random stable solar systems to TitiusBode laws
Toronto, University of
astroph/9710116 10 Oct 1997 Fitting random stable solar systems to TitiusBode laws Preprint: 10 ``solar systems'' are generated with planetary orbital radii r distributed uniformly random in log r of these systems to generalized Bode laws are performed, and compared to the fit of our own Solar System. We find
Plasma parameter scaling of the error-field penetration threshold in tokamaks Richard Fitzpatrick
Fitzpatrick, Richard
Plasma parameter scaling of the error-field penetration threshold in tokamaks Richard Fitzpatrick of a rotating tokamak plasma to a resonant error-field Phys. Plasmas 21, 092513 (2014); 10.1063/1.4896244 A nonideal error-field response model for strongly shaped tokamak plasmas Phys. Plasmas 17, 112502 (2010); 10
Matt Duckham Page 1 Implementing an object-oriented error sensitive GIS
Duckham, Matt
Matt Duckham Page 1 Implementing an object-oriented error sensitive GIS Matt Duckham Department in the handling of uncertainty within GIS, the production of what has been described as an error sensitive GIS of opportunities, but also impediments to the implemen- tation of such an error sensitive GIS. An important barrier
Repeated quantum error correction on a continuously encoded qubit by real-time feedback
Julia Cramer; Norbert Kalb; M. Adriaan Rol; Bas Hensen; Machiel S. Blok; Matthew Markham; Daniel J. Twitchen; Ronald Hanson; Tim H. Taminiau
2015-08-06
Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits, so that errors can be detected without affecting the encoded state. To be compatible with universal fault-tolerant computations, it is essential that the states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected qubit using a diamond quantum processor. We encode a logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements using an ancilla electron spin, and apply corrections on the encoded state by real-time feedback. The actively error-corrected qubit is robust against errors and multiple rounds of error correction prevent errors from accumulating. Moreover, by correcting phase errors naturally induced by the environment, we demonstrate that encoded quantum superposition states are preserved beyond the dephasing time of the best physical qubit used in the encoding. These results establish a powerful platform for the fundamental investigation of error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.
Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning
Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning Robert Granat, Kiri-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors for detecting and recovering from such errors. A common hardware technique for achieving radiation protection
Edit: Study -APP Save | Exit | Hide/Show Errors | Print... | Jump To
Biederman, Irving
Edit: Study - APP Save | Exit | Hide/Show Errors | Print... | Jump To: 01. Project Guidance Save | Exit | Hide/Show Errors | Print... | Jump To: 01. Project IdentificationStarDev/ResourceAdministration/Project/ProjectEditor?Project=com... 1 #12;Edit: Study - APP- Save | Exit | Hide/Show Errors | Print... | Jump To: 02. Study
Error Correction on a Tree: An Instanton Approach V. Chernyak,1
Stepanov, Misha
or semianalytical estimating of the post-error correction bit error rate (BER) when a forward-error correction 630090, Russia 5 Department of Electrical Engineering, University of Arizona, Tucson, Arizona 85721, USA is utilized for transmitting information through a noisy channel. The generic method that applies to a variety
Exposure Measurement Error in Time-Series Studies of Air Pollution: Concepts and Consequences
Dominici, Francesca
1 Exposure Measurement Error in Time-Series Studies of Air Pollution: Concepts and Consequences S in time-series studies 1 11/11/99 Keywords: measurement error, air pollution, time series, exposure of air pollution and health. Because measurement error may have substantial implications for interpreting
Verification of unfold error estimates in the UFO code
Fehl, D.L.; Biggs, F.
1996-07-01
Spectral unfolding is an inverse mathematical operation which attempts to obtain spectral source information from a set of tabulated response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the UFO (UnFold Operator) code. In addition to an unfolded spectrum, UFO also estimates the unfold uncertainty (error) induced by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). 100 random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetemined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-Pinch and ion-beam driven hohlraums.
Aperiodic dynamical decoupling sequences in presence of pulse errors
Zhi-Hui Wang; V. V. Dobrovitski
2011-01-12
Dynamical decoupling (DD) is a promising tool for preserving the quantum states of qubits. However, small imperfections in the control pulses can seriously affect the fidelity of decoupling, and qualitatively change the evolution of the controlled system at long times. Using both analytical and numerical tools, we theoretically investigate the effect of the pulse errors accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G. S. Uhrig, Phys. Rev. Lett. {\\bf 98}, 100504 (2007)], and the Quadratic DD (QDD) protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\\bf 104}, 130501 (2010)]. We consider the implementation of these sequences using the electron spins of phosphorus donors in silicon, where DD sequences are applied to suppress dephasing of the donor spins. The dependence of the decoupling fidelity on different initial states of the spins is the focus of our study. We investigate in detail the initial drop in the DD fidelity, and its long-term saturation. We also demonstrate that by applying the control pulses along different directions, the performance of QDD protocols can be noticeably improved, and explain the reason of such an improvement. Our results can be useful for future implementations of the aperiodic decoupling protocols, and for better understanding of the impact of errors on quantum control of spins.
In-Line-Test of Variability and Bit-Error-Rate of HfOx-Based Resistive Memory
Ji, B L; Ye, Q; Gausepohl, S; Deora, S; Veksler, D; Vivekanand, S; Chong, H; Stamper, H; Burroughs, T; Johnson, C; Smalley, M; Bennett, S; Kaushik, V; Piccirillo, J; Rodgers, M; Passaro, M; Liehr, M
2015-01-01
Spatial and temporal variability of HfOx-based resistive random access memory (RRAM) are investigated for manufacturing and product designs. Manufacturing variability is characterized at different levels including lots, wafers, and chips. Bit-error-rate (BER) is proposed as a holistic parameter for the write cycle resistance statistics. Using the electrical in-line-test cycle data, a method is developed to derive BERs as functions of the design margin, to provide guidance for technology evaluation and product design. The proposed BER calculation can also be used in the off-line bench test and build-in-self-test (BIST) for adaptive error correction and for the other types of random access memories.
GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mandelbaum, Rachel; Rowe, Barnaby; Armstrong, Robert; Bard, Deborah; Bertin, Emmanuel; Bosch, James; Boutigny, Dominique; Courbin, Frederic; Dawson, William A.; Donnarumma, Annamaria; et al
2015-05-11
The study present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty aboutmore »a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods’ results support the simple model in which additive shear biases depend linearly on PSF ellipticity.« less
GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology
Mandelbaum, Rachel; Rowe, Barnaby; Armstrong, Robert; Bard, Deborah; Bertin, Emmanuel; Bosch, James; Boutigny, Dominique; Courbin, Frederic; Dawson, William A.; Donnarumma, Annamaria; Fenech Conti, Ian; Gavazzi, Raphael; Gentile, Marc; Gill, Mandeep S. S.; Hogg, David W.; Huff, Eric M.; Jee, M. James; Kacprzak, Tomasz; Kilbinger, Martin; Kuntzer, Thibault; Lang, Dustin; Luo, Wentao; March, Marisa C.; Marshall, Philip J.; Meyers, Joshua E.; Miller, Lance; Miyatake, Hironao; Nakajima, Reiko; Ngole Mboula, Fred Maurice; Nurbaeva, Guldariya; Okura, Yuki; Paulin-Henriksson, Stephane; Rhodes, Jason; Schneider, Michael D.; Shan, Huanyuan; Sheldon, Erin S.; Simet, Melanie; Starck, Jean -Luc; Sureau, Florent; Tewes, Malte; Zarb Adami, Kristian; Zhang, Jun; Zuntz, Joe
2015-05-11
The study present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods’ results support the simple model in which additive shear biases depend linearly on PSF ellipticity.
Lined sampling vessel including a filter to separate solids from liquids on exit
Shurtliff, Rodney M. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID)
2001-01-01
A filtering apparatus has an open canister with an inlet port. A canister lid is provided which includes an outlet port for the passage of fluids from the canister. Liners are also provided which are shaped to fit the interiors of the canister and the lid, with at least the canister liner preferably being flexible. The sample to be filtered is positioned inside the canister liner, with the lid and lid liner being put in place thereafter. A filter element is located between the sample and the outlet port. Seals are formed between the canister liner and lid liner, and around the outlet port to prevent fluid leakage. A pressure differential is created between the canister and the canister liner so that the fluid in the sample is ejected from the outlet port and the canister liner collapses around the retained solids.
Mathur, Anuj
1994-01-01
In this work we study the pollution-error in the h-version of the finite element method and its effect on the local quality of a-posteriori error estimators. We show that the pollution-effect in an interior subdomain depends on the relationship...
Fossen, Haakon
Errors, 3rd printing ·Page 3, Fig 1.2 has an error in the stratigraphic key: "Tertiary" should "-amplitude" to "-wavelength". ·Page 231, 6th and 3rd last lines of the page: Add "Figure" in front of 19.5a ..." and 3rd line: "three principal axes" (not two). #12;
Global fits of the dark matter-nucleon effective interactions
Catena, Riccardo; Gondolo, Paolo E-mail: paolo.gondolo@utah.edu
2014-09-01
The effective theory of isoscalar dark matter-nucleon interactions mediated by heavy spin-one or spin-zero particles depends on 10 coupling constants besides the dark matter particle mass. Here we compare this 11-dimensional effective theory to current observations in a comprehensive statistical analysis of several direct detection experiments, including the recent LUX, SuperCDMS and CDMSlite results. From a multidimensional scan with about 3 million likelihood evaluations, we extract the marginalized posterior probability density functions (a Bayesian approach) and the profile likelihoods (a frequentist approach), as well as the associated credible regions and confidence levels, for each coupling constant vs dark matter mass and for each pair of coupling constants. We compare the Bayesian and frequentist approach in the light of the currently limited amount of data. We find that current direct detection data contain sufficient information to simultaneously constrain not only the familiar spin-independent and spin-dependent interactions, but also the remaining velocity and momentum dependent couplings predicted by the dark matter-nucleon effective theory. For current experiments associated with a null result, we find strong correlations between some pairs of coupling constants. For experiments that claim a signal (i.e., CoGeNT and DAMA), we find that pairs of coupling constants produce degenerate results.
Title IX & Discrimination Complaint Form (including sexual harassment)
Walker, Lawrence R.
Title IX & Discrimination Complaint Form (including sexual harassment) Office of Diversity. Although the university cannot commit to keeping a complaint of discrimination confidential the process for filing or investigating complaints of discrimination (including sexual harassment). Note
Explosion at Louisa (including Morrison Old) Colliery, Durham
Yates, R.
MINISTRY OF FUEL AND POWER - EXPLOSION AT LOUISA (including MORRISON OLD) COLLIERY, DURHAM REPORT On the Causes of, and Circumstances attending, the Explosion which occurred at Louisa (including Morrison Old) Colliery, ...
JFIT: a framework to obtain combined experimental results through joint fits
Eli Ben-Haim; René Brun; Bertrand Echenard; Thomas E. Latham
2015-01-18
A framework is presented for obtaining combined experimental results through joint fits of datasets from several experiments. The JFIT framework allows such fits to be performed keeping the data separated, in its original format, and using independent fitting environments, thus simplifying the process with respect to data access policies. It is based on a master-server architecture, using the network communication classes from ROOT. The framework provides an optimal way to exploit data from several experiments: it ensures that correlations are correctly taken into account and results in a better determination of nuisance parameters. Its advantages are discussed and illustrated by two examples from the domain of high energy physics.
Coordinated joint motion control system with position error correction
Danko, George (Reno, NV)
2011-11-22
Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.
Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.
2013-03-19
Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (‘stochastic’) model with the weather forecast model (‘deterministic’) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.
Fabrication of Machined and Shrink Fitted Impactor; Composite Liners for the Los Alamos HEDP Program
Randolph, B.
1999-10-19
Composite liners have been fabricated for the Los Alamos liner driven HEDP experiments using impactors formed by physical vapor deposition (PVD), electroplating, machining and shrink fitting. Chemical vapor deposition (CVD) has been proposed for some ATLAS liner applications. This paper describes the processes used to fabricate machined and shrink fitted impactors which have been used for copper impactors in 1100 aluminum liners and 6061 T-6 aluminum impactors in 1100 aluminum liners. The most successful processes have been largely empirically developed and rely upon a combination of shrink fitted and light press fitting. The processes used to date will be described along with some considerations for future composite liners requirements in the HEDP Program.
Install Removable Insulation on Valves and Fittings - Steam Tip Sheet #17
2012-01-01
This revised AMO tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.
INFORMATION GEOMETRY FOR NONLIENAR LEAST-SQUARES DATA FITTING AND NUMERICAL
Sethna, James P.
as a hyper-ribbon. The hyper-ribbon structure explains many of the difficulties associated with fitting to flux penetration. By mapping the two-dimensional linear stability theory into a one-dimensional
Dynamical Modeling and Multi-Experiment Fitting with PottersWheel Supplement
Timmer, Jens
Dynamical Modeling and Multi-Experiment Fitting with PottersWheel Supplement Thomas Maiwald@fdm.uni-freiburg.de June 10, 2008 Abstract This supplement provides detailed information about the functionalities
Dees, Windy Lynn
2009-05-15
The purpose of this study was to determine if personality fit between NASCAR drivers and their major sponsors affects the sponsorship outcomes of consumer attitudes toward the sponsor, attitudes toward the brand, and ...
Lee, Yuan-Hsuan
2011-10-21
This dissertation focuses on issues related to fitting an optimal variance-covariance structure in multilevel linear modeling framework with two Monte Carlo simulation studies. In the first study, the author evaluated the ...
Watkinson, Harold
1958-01-01
These Regulations, which prescribe the conditions to be satisfied by a public service vehicle before a certificate of fitness (without the issue of which a vehicle may not be licensed to be used as a public service vehicle) ...
Auld, Stuart Kenneth John Robert
2011-11-24
Immune responses are presumed to contribute to host fitness, either by fighting off infections or via immunopathology. Research in this thesis sought to relate the magnitude of a putative immune response to infection and ...
Fitness effects of new mutations and adaptive evolution in house mice
Kousathanas, Athanasios
2013-11-28
Knowledge of the distribution of fitness effects of new mutations (DFE) can enable us to quantify the amount of genetic change between species that is driven by natural selection and contributes to adaptive evolution. ...
Discrete optimization methods to fit piecewise-affine models to data ...
2015-03-09
(a) A piecewise affine model with k = 2, fitting the eight data points. A = {ai}i?I .... where: i) for every j ? J, each group Aj is completely contained into the subdo-.
Shekhar, Karthik
Mutational escape from vaccine-induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus' fitness as a function of ...
Fitting Pinna-Related Transfer Functions to Anthropometry for Binaural Sound Rendering
Avanzini, Federico
Fitting Pinna-Related Transfer Functions to Anthropometry for Binaural Sound Rendering Simone Spagnol 1 , Michele Geronazzo 2 , Federico Avanzini 3 Department of Information Engineering, Universit of resonant modes - are basically monaural and heavily depend on the listener's anthropometry. Finding
Phone: 321-674-8096 http://my.fit.edu/~swood/OCE4541_pg1.html
Wood, Stephen L.
using solar panels. The hull will be constructed from 50-52- H32 marine grade aluminum Tepley dtepley@fit.edu Major: Ocean Engineering Specialty: Underwater Technology The innovative
Nonparametric estimation of additive nonlinear ARX time series: Local Linear Fitting and Projections
Cai, Zongwu; Masry, Elias
2000-08-01
We consider the estimation and identification of the components (endogenous and exogenous) of additive nonlinear ARX time series models. We employ a local polynomial fitting scheme coupled with projections. We establish ...
Sulfide stress cracking susceptible pipe fittings bought to NACE MR0175
McIntyre, D.R.; Moore, E.M. Jr. [Saudi Aramco, Dhahran (Saudi Arabia)
1995-09-01
The NACE MR0175 limit of R{sub c} 22 is non-conservative for cold-forged and stress relieved ASTM A234 WPB pipe fittings. Hardness surveys and sulfide stress cracking test results per ASTM G39 and NACE TMO177 Method B are presented. More stringent inspection and a hardness limit of BHN 197 (for cold-forged and stress relieved fittings only) are recommended to rectify this situation.
Optical pattern recognition architecture implementing the mean-square error correlation algorithm
Molley, Perry A. (Albuquerque, NM)
1991-01-01
An optical architecture implementing the mean-square error correlation algorithm, MSE=.SIGMA.[I-R].sup.2 for discriminating the presence of a reference image R in an input image scene I by computing the mean-square-error between a time-varying reference image signal s.sub.1 (t) and a time-varying input image signal s.sub.2 (t) includes a laser diode light source which is temporally modulated by a double-sideband suppressed-carrier source modulation signal I.sub.1 (t) having the form I.sub.1 (t)=A.sub.1 [1+.sqroot.2m.sub.1 s.sub.1 (t)cos (2.pi.f.sub.o t)] and the modulated light output from the laser diode source is diffracted by an acousto-optic deflector. The resultant intensity of the +1 diffracted order from the acousto-optic device is given by: I.sub.2 (t)=A.sub.2 [+2m.sub.2.sup.2 s.sub.2.sup.2 (t)-2.sqroot.2m.sub.2 (t) cos (2.pi.f.sub.o t] The time integration of the two signals I.sub.1 (t) and I.sub.2 (t) on the CCD deflector plane produces the result R(.tau.) of the mean-square error having the form: R(.tau.)=A.sub.1 A.sub.2 {[T]+[2m.sub.2.sup.2.multidot..intg.s.sub.2.sup.2 (t-.tau.)dt]-[2m.sub.1 m.sub.2 cos (2.tau.f.sub.o .tau.).multidot..intg.s.sub.1 (t)s.sub.2 (t-.tau.)dt]} where: s.sub.1 (t) is the signal input to the diode modulation source: s.sub.2 (t) is the signal input to the AOD modulation source; A.sub.1 is the light intensity; A.sub.2 is the diffraction efficiency; m.sub.1 and m.sub.2 are constants that determine the signal-to-bias ratio; f.sub.o is the frequency offset between the oscillator at f.sub.c and the modulation at f.sub.c +f.sub.o ; and a.sub.o and a.sub.1 are constant chosen to bias the diode source and the acousto-optic deflector into their respective linear operating regions so that the diode source exhibits a linear intensity characteristic and the AOD exhibits a linear amplitude characteristic.
The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors
Rangel, Alejandra; Palte, Gesa; Dunscombe, Peter [Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2, Canada and Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4 (Canada); Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada); Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada) and Department of Oncology, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada)
2010-07-15
Purpose: Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. Methods: 9 head and neck (H and N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets ({+-}1 mm in two banks, {+-}0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. Results: The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H and N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. Conclusions: None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.
Kraan, Aafke C., E-mail: aafke.kraan@pi.infn.it [Erasmus MC Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Water, Steven van de; Teguh, David N.; Al-Mamgani, Abrahim [Erasmus MC Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Madden, Tom; Kooy, Hanne M. [Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Heijmen, Ben J.M.; Hoogeman, Mischa S. [Erasmus MC Daniel den Hoed Cancer Center, Rotterdam (Netherlands)
2013-12-01
Purpose: Setup, range, and anatomical uncertainties influence the dose delivered with intensity modulated proton therapy (IMPT), but clinical quantification of these errors for oropharyngeal cancer is lacking. We quantified these factors and investigated treatment fidelity, that is, robustness, as influenced by adaptive planning and by applying more beam directions. Methods and Materials: We used an in-house treatment planning system with multicriteria optimization of pencil beam energies, directions, and weights to create treatment plans for 3-, 5-, and 7-beam directions for 10 oropharyngeal cancer patients. The dose prescription was a simultaneously integrated boost scheme, prescribing 66 Gy to primary tumor and positive neck levels (clinical target volume-66 Gy; CTV-66 Gy) and 54 Gy to elective neck levels (CTV-54 Gy). Doses were recalculated in 3700 simulations of setup, range, and anatomical uncertainties. Repeat computed tomography (CT) scans were used to evaluate an adaptive planning strategy using nonrigid registration for dose accumulation. Results: For the recalculated 3-beam plans including all treatment uncertainty sources, only 69% (CTV-66 Gy) and 88% (CTV-54 Gy) of the simulations had a dose received by 98% of the target volume (D98%) >95% of the prescription dose. Doses to organs at risk (OARs) showed considerable spread around planned values. Causes for major deviations were mixed. Adaptive planning based on repeat imaging positively affected dose delivery accuracy: in the presence of the other errors, percentages of treatments with D98% >95% increased to 96% (CTV-66 Gy) and 100% (CTV-54 Gy). Plans with more beam directions were not more robust. Conclusions: For oropharyngeal cancer patients, treatment uncertainties can result in significant differences between planned and delivered IMPT doses. Given the mixed causes for major deviations, we advise repeat diagnostic CT scans during treatment, recalculation of the dose, and if required, adaptive planning to improve adequate IMPT dose delivery.
Mercer, Kristin L.; Emry, D. Jason; Snow, Allison A.; Kost, Matthew A.; Pace, Brian A.; Alexander, Helen M.
2014-10-08
Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary ...
SU-E-J-235: Varian Portal Dosimetry Accuracy at Detecting Simulated Delivery Errors
Gordon, J; Bellon, M; Barton, K; Gulam, M; Chetty, I
2014-06-01
Purpose: To use receiver operating characteristic (ROC) analysis to quantify the Varian Portal Dosimetry (VPD) application's ability to detect delivery errors in IMRT fields. Methods: EPID and VPD were calibrated/commissioned using vendor-recommended procedures. Five clinical plans comprising 56 modulated fields were analyzed using VPD. Treatment sites were: pelvis, prostate, brain, orbit, and base of tongue. Delivery was on a Varian Trilogy linear accelerator at 6MV using a Millenium120 multi-leaf collimator. Image pairs (VPD-predicted and measured) were exported in dicom format. Each detection test imported an image pair into Matlab, optionally inserted a simulated error (rectangular region with intensity raised or lowered) into the measured image, performed 3%/3mm gamma analysis, and saved the gamma distribution. For a given error, 56 negative tests (without error) were performed, one per 56 image pairs. Also, 560 positive tests (with error) with randomly selected image pairs and randomly selected in-field error location. Images were classified as errored (or error-free) if percent pixels with ?errors of different sizes. VPD was considered to reliably detect an error if images were correctly classified as errored or error-free at least 95% of the time, for some ?+? combination. Results: 20mm{sup 2} errors with intensity altered by ?20% could be reliably detected, as could 10mm{sup 2} errors with intensity was altered by ?50%. Errors with smaller size or intensity change could not be reliably detected. Conclusion: Varian Portal Dosimetry using 3%/3mm gamma analysis is capable of reliably detecting only those fluence errors that exceed the stated sizes. Images containing smaller errors can pass mathematical analysis, though may be detected by visual inspection. This work was not funded by Varian Oncology Systems. Some authors have other work partly funded by Varian Oncology Systems.
What To Include In The Whistleblower Complaint? | National Nuclear...
National Nuclear Security Administration (NNSA)
Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Operations Management and Budget Whistleblower Program What To Include In The Whistleblower Complaint?...
Introduction to Small-Scale Photovoltaic Systems (Including RETScreen...
Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale...
Including Retro-Commissioning in Federal Energy Savings Performance...
Broader source: Energy.gov (indexed) [DOE]
More Documents & Publications Including Retro-Commissioning in Federal Energy Savings Performance Contracts Enabling Mass-Scale Financing for Federal Energy, Water, and...
Numerical simulations for low energy nuclear reactions including...
Office of Scientific and Technical Information (OSTI)
Numerical simulations for low energy nuclear reactions including direct channels to validate statistical models Citation Details In-Document Search Title: Numerical simulations for...
U-182: Microsoft Windows Includes Some Invalid Certificates
Broader source: Energy.gov [DOE]
The operating system includes some invalid intermediate certificates. The vulnerability is due to the certificate authorities and not the operating system itself.
Carvill, Anna; Bushman, Kate; Ellsworth, Amy
2014-06-17
The EnergyFit Nevada (EFN) Better Buildings Neighborhood Program (BBNP, and referred to in this document as the EFN program) currently encourages Nevada residents to make whole-house energy-efficient improvements by providing rebates, financing, and access to a network of qualified home improvement contractors. The BBNP funding, consisting of 34 Energy Efficiency Conservation Block Grants (EECBG) and seven State Energy Program (SEP) grants, was awarded for a three-year period to the State of Nevada in 2010 and used for initial program design and implementation. By the end of first quarter in 2014, the program had achieved upgrades in 553 homes, with an average energy reduction of 32% per home. Other achievements included: ? Completed 893 residential energy audits and installed upgrades in 0.05% of all Nevada single-family homes1 ? Achieved an overall conversation rate of 38.1%2 ? 7,089,089 kWh of modeled energy savings3 ? Total annual homeowner energy savings of approximately $525,7523 ? Efficiency upgrades completed on 1,100,484 square feet of homes3 ? $139,992 granted in loans to homeowners for energy-efficiency upgrades ? 29,285 hours of labor and $3,864,272 worth of work conducted by Nevada auditors and contractors4 ? 40 contractors trained in Nevada ? 37 contractors with Building Performance Institute (BPI) certification in Nevada ? 19 contractors actively participating in the EFN program in Nevada 1 Calculated using 2012 U.S. Census data reporting 1,182,870 homes in Nevada. 2 Conversion rate through March 31, 2014, for all Nevada Retrofit Initiative (NRI)-funded projects, calculated using the EFN tracking database. 3 OptiMiser energy modeling, based on current utility rates. 4 This is the sum of $3,596,561 in retrofit invoice value and $247,711 in audit invoice value.
Soop, K
1966-01-01
Differences between hydrogen and heavy liquid geometry programs and some details about fitting in the program drat
Contagious error sources would need time travel to prevent quantum computation
Gil Kalai; Greg Kuperberg
2015-05-07
We consider an error model for quantum computing that consists of "contagious quantum germs" that can infect every output qubit when at least one input qubit is infected. Once a germ actively causes error, it continues to cause error indefinitely for every qubit it infects, with arbitrary quantum entanglement and correlation. Although this error model looks much worse than quasi-independent error, we show that it reduces to quasi-independent error with the technique of quantum teleportation. The construction, which was previously described by Knill, is that every quantum circuit can be converted to a mixed circuit with bounded quantum depth. We also consider the restriction of bounded quantum depth from the point of view of quantum complexity classes.
Acton, Scott
1 Fitness for Duty Procedures These procedures are intended to be a guide for implementing University Policy HRM-037, "Evaluating Employee Fitness for Duty". That policy applies to all employees's fitness for duty must report their observations to the employee's supervisor. 2. The supervisor
PSERC 97-12 "Thermal Unit Commitment Including
PSERC 97-12 "Thermal Unit Commitment Including Optimal AC Power Flow Constraints" Carlos Murillo-562-3966. #12;Thermal Unit Commitment Including Optimal AC Power Flow Constraints Carlos Murillo S anchez Robert a new algorithm for unit commitment that employs a Lagrange relaxation technique with a new augmentation
Summer Conference Participant Registration Fee: $200 Includes the following
Tullos, Desiree
Summer Conference Participant Registration Fee: $200 Includes the following: Lodging for Wednesday on Wednesday, Thursday, and Friday Brunch on Saturday Summer Conference T-shirt Class materials Congress Only only (although they are encouraged to attend the entire conference). This fee includes the following
Solar Energy Education. Reader, Part II. Sun story. [Includes glossary
Not Available
1981-05-01
Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)
Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development
Chen, Tsuhan
Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New
Plasma dynamics and a significant error of macroscopic averaging
Marek A. Szalek
2005-05-22
The methods of macroscopic averaging used to derive the macroscopic Maxwell equations from electron theory are methodologically incorrect and lead in some cases to a substantial error. For instance, these methods do not take into account the existence of a macroscopic electromagnetic field EB, HB generated by carriers of electric charge moving in a thin layer adjacent to the boundary of the physical region containing these carriers. If this boundary is impenetrable for charged particles, then in its immediate vicinity all carriers are accelerated towards the inside of the region. The existence of the privileged direction of acceleration results in the generation of the macroscopic field EB, HB. The contributions to this field from individual accelerated particles are described with a sufficient accuracy by the Lienard-Wiechert formulas. In some cases the intensity of the field EB, HB is significant not only for deuteron plasma prepared for a controlled thermonuclear fusion reaction but also for electron plasma in conductors at room temperatures. The corrected procedures of macroscopic averaging will induce some changes in the present form of plasma dynamics equations. The modified equations will help to design improved systems of plasma confinement.
Aperiodic dynamical decoupling sequences in presence of pulse errors
Wang, Zhi-Hui
2011-01-01
Dynamical decoupling (DD) is a promising tool for preserving the quantum states of qubits. However, small imperfections in the control pulses can seriously affect the fidelity of decoupling, and qualitatively change the evolution of the controlled system at long times. Using both analytical and numerical tools, we theoretically investigate the effect of the pulse errors accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G. S. Uhrig, Phys. Rev. Lett. {\\bf 98}, 100504 (2007)], and the Quadratic DD (QDD) protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\\bf 104}, 130501 (2010)]. We consider the implementation of these sequences using the electron spins of phosphorus donors in silicon, where DD sequences are applied to suppress dephasing of the donor spins. The dependence of the decoupling fidelity on different initial states of the spins is the focus of our study. We investigate in detail the initial drop in the DD fidelity, and its long-term saturation. We also demonstra...
Articles which include chevron film cooling holes, and related processes
Bunker, Ronald Scott; Lacy, Benjamin Paul
2014-12-09
An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.
The Importance of Run-time Error Detection Glenn R. Luecke 1
Luecke, Glenn R.
Iowa State University's High Performance Computing Group, Iowa State University, Ames, Iowa 50011, USA State University's High Performance Computing Group for evaluating run-time error detection capabilities
A Key Recovery Attack on Error Correcting Code Based a Lightweight Security Protocol
International Association for Cryptologic Research (IACR)
become prevalent in various fields. Manufacturing, supply chain management and inventory control are some--Authentication, error correcting coding, lightweight, privacy, RFID, security ! 1 INTRODUCTION RFID technology has
Ulidowski, Irek
Eccentricity Error Correction for Automated Estimation of Polyethylene Wear after Total Hip. Wire markers are typically attached to the polyethylene acetabular component of the prosthesis so
Choose and choose again: appearance-reality errors, pragmatics and logical ability
Deák, Gedeon O; Enright, Brian
2006-01-01
Development, 62, 753–766. Speer, J.R. (1984). Two practicalolder still make errors (e.g. Speer, 1984), some preschool
Choose and choose again: appearance-reality errors, pragmatics and logical ability.
Deák, Gedeon O; Enright, Brian
2006-01-01
Development, 62, 753-766. Speer, J. R. (1984). Two practicalolder still make errors (e.g. , Speer, 1984), some preschool
Neutron Soft Errors in Xilinx FPGAs at Lawrence Berkeley National Laboratory
George, Jeffrey S.
2008-01-01
Quasi-Monoenergetic Neutron Beam from Deuteron Breakup”, inexperiments of atmospheric neutron effects on deep sub-Neutron Soft Errors in Xilinx FPGAs at Lawrence Berkeley
Threshold analysis with fault-tolerant operations for nonbinary quantum error correcting codes
Kanungo, Aparna
2005-11-01
an expression to compute the gate error threshold for nonbinary quantum codes and test this result for different classes of codes, to get codes with best threshold results....
Sayer, R.O.
2003-07-29
RSAP [1] is a computer code for display and manipulation of neutron cross section data and selected SAMMY output. SAMMY [2] is a multilevel R-matrix code for fitting neutron time-of-flight cross-section data using Bayes' method. This users' guide provides documentation for the recently updated RSAP code (version 6). The code has been ported to the Linux platform, and several new features have been added, including the capability to read cross section data from ASCII pointwise ENDF files as well as double-precision PLT output from SAMMY. A number of bugs have been found and corrected, and the input formats have been improved. Input items are parsed so that items may be separated by spaces or commas.
Minimally non-local nucleon-nucleon potentials with chiral two-pion exchange including $?$'s
M. Piarulli; L. Girlanda; R. Schiavilla; R. Navarro Pérez; J. E. Amaro; E. Ruiz Arriola
2015-02-16
We construct a coordinate-space chiral potential, including $\\Delta$-isobar intermediate states in its two-pion-exchange component. The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders ($Q^2$ and $Q^4$, respectively, $Q$ denoting generically the low momentum scale) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 $pp$ and 2982 $np$ data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0--300 MeV. For the total 5291 $pp$ and $np$ data in this range, we obtain a $\\chi^2$/datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, $R_{\\rm L}$ and $R_{\\rm S}$ respectively, ranging from $(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$ fm down to $(0.8,0.6)$ fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.
Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including ? resonances
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Piarulli, M.; Girlanda, L.; Schiavilla, R.; Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz
2015-02-26
In this study, we construct a coordinate-space chiral potential, including ?-isobar intermediate states in its two-pion-exchange component up to order Q3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q2 and Q4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For the total 5291 $pp$more »and $np$ data in this range, we obtain a ?2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
From the Lab to the real world : sources of error in UF {sub 6} gas enrichment monitoring
Lombardi, Marcie L.
2012-03-01
Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching to an improved safeguards model that calls for new technologies to help keep up with the increasing size and complexity of today’s gas centrifuge enrichment plants (GCEPs). One of the primary goals of the IAEA is to detect the production of uranium at levels greater than those an enrichment facility may have declared. In order to accomplish this goal, new enrichment monitors need to be as accurate as possible. This dissertation will look at the Advanced Enrichment Monitor (AEM), a new enrichment monitor designed at Los Alamos National Laboratory. Specifically explored are various factors that could potentially contribute to errors in a final enrichment determination delivered by the AEM. There are many factors that can cause errors in the determination of uranium hexafluoride (UF{sub 6}) gas enrichment, especially during the period when the enrichment is being measured in an operating GCEP. To measure enrichment using the AEM, a passive 186-keV (kiloelectronvolt) measurement is used to determine the {sup 235}U content in the gas, and a transmission measurement or a gas pressure reading is used to determine the total uranium content. A transmission spectrum is generated using an x-ray tube and a “notch” filter. In this dissertation, changes that could occur in the detection efficiency and the transmission errors that could result from variations in pipe-wall thickness will be explored. Additional factors that could contribute to errors in enrichment measurement will also be examined, including changes in the gas pressure, ambient and UF{sub 6} temperature, instrumental errors, and the effects of uranium deposits on the inside of the pipe walls will be considered. The sensitivity of the enrichment calculation to these various parameters will then be evaluated. Previously, UF{sub 6} gas enrichment monitors have required empty pipe measurements to accurately determine the pipe attenuation (the pipe attenuation is typically much larger than the attenuation in the gas). This dissertation reports on a method for determining the thickness of a pipe in a GCEP when obtaining an empty pipe measurement may not be feasible. This dissertation studies each of the components that may add to the final error in the enrichment measurement, and the factors that were taken into account to mitigate these issues are also detailed and tested. The use of an x-ray generator as a transmission source and the attending stability issues are addressed. Both analytical calculations and experimental measurements have been used. For completeness, some real-world analysis results from the URENCO Capenhurst enrichment plant have been included, where the final enrichment error has remained well below 1% for approximately two months.
The FIT 2.0 Model - Fuel-cycle Integration and Tradeoffs
Steven J. Piet; Nick R. Soelberg; Layne F. Pincock; Eric L. Shaber; Gregory M Teske
2011-06-01
All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010b] are steps by the Fuel Cycle Technology program toward an analysis that accounts for the requirements and capabilities of each fuel cycle component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. This report describes FIT 2, an update of the original FIT model.[Piet2010c] FIT is a method to analyze different fuel cycles; in particular, to determine how changes in one part of a fuel cycle (say, fuel burnup, cooling, or separation efficiencies) chemically affect other parts of the fuel cycle. FIT provides the following: Rough estimate of physics and mass balance feasibility of combinations of technologies. If feasibility is an issue, it provides an estimate of how performance would have to change to achieve feasibility. Estimate of impurities in fuel and impurities in waste as function of separation performance, fuel fabrication, reactor, uranium source, etc.
Including Retro-Commissioning in Federal Energy Savings Performance...
the cost of the survey. Developing a detailed scope of work and a fixed price for this work is important to eliminate risk to the Agency and the ESCo. Including a detailed scope...
T-603: Mac OS X Includes Some Invalid Comodo Certificates
Broader source: Energy.gov [DOE]
The operating system includes some invalid certificates. The vulnerability is due to the invalid certificates and not the operating system itself. Other browsers, applications, and operating systems are affected.
FINITE ELEMENT ANALYSIS OF STEEL WELDED COVERPLATE INCLUDING COMPOSITE DOUBLERS
Petri, Brad
2008-05-15
With the increasing focus on welded bridge members resulting in crack initiation and propagation, there is a large demand for creative solutions. One of these solutions includes the application of composite doublers over ...
Title 16 USC 818 Public Lands Included in Project - Reservation...
of Lands From Entry Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16 USC 818 Public Lands Included in Project...
Including costs of supply chain risk in strategic sourcing decisions
Jain, Avani
2009-01-01
Cost evaluations do not always include the costs associated with risks when organizations make strategic sourcing decisions. This research was conducted to establish and quantify the impact of risks and risk-related costs ...
Hybrid powertrain system including smooth shifting automated transmission
Beaty, Kevin D.; Nellums, Richard A.
2006-10-24
A powertrain system is provided that includes a prime mover and a change-gear transmission having an input, at least two gear ratios, and an output. The powertrain system also includes a power shunt configured to route power applied to the transmission by one of the input and the output to the other one of the input and the output. A transmission system and a method for facilitating shifting of a transmission system are also provided.
Limited Personal Use of Government Office Equipment including Information Technology
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2005-01-07
The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ayouz, Mehdi; Babikov, Dmitri
2012-01-01
New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. Newab initiocalculations are carried out at these points and are used to build new surface. Additional points are added to the vicinitymore »of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less
Evaluating specific error characteristics of microwave-derived cloud liquid water products
Christopher, Sundar A.
of cloud LWP products globally using concurrent data from visible/ infrared satellite sensors. The approachEvaluating specific error characteristics of microwave-derived cloud liquid water products Thomas J microwave satellite measurements. Using coincident visible/infrared satellite data, errors are isolated
A nonideal error-field response model for strongly shaped tokamak plasmas R. Fitzpatrick
Fitzpatrick, Richard
A nonideal error-field response model for strongly shaped tokamak plasmas R. Fitzpatrick Citation of a rotating tokamak plasma to a resonant error-field Phys. Plasmas 21, 092513 (2014); 10.1063/1.4896244 Kinetic description of rotating Tokamak plasmas with anisotropic temperatures in the collisionless regime
Upper Bounds on ErrorCorrecting RunlengthLimited Block Codes
Ytrehus, Ã?yvind
. Inf. Th. May 1991, pp. 941--945 Abstract --- Upper bounds are derived on the number of codewordsÂlimited codes, errorÂcorrection. This work was supported by the Norwegian Research Council for Science on the size of (d; k)Â constrained, simpleÂerror correcting block codes. There are two directions in which one
Finite Element Approximation of the Acoustic Wave Equation: Error Control and Mesh
Bangerth, Wolfgang
Finite Element Approximation of the Acoustic Wave Equation: Error Control and Mesh Adaptation of the Acoustic Wave Equation: Error Control and Mesh Adaptation Wolfgang Bangerth and Rolf Rannacher1 Institute@iwr.uni-heidelberg.de Abstract We present an approach to solving the acoustic wave equation by adaptive finite el- ement methods
Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow
Shadday, Martin A., Jr.
1997-03-20
The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated.
Low-voltage, low-power, low switching error, class-AB switched current
Serdijn, Wouter A.
Low-voltage, low-power, low switching error, class-AB switched current memory cell C. Sawigun and W into two components by a low-voltage class-AB current splitter and subsequently processes the individual signals by two low switching error class-A memory cells. As a conse- quence, the output current obtained
Using system simulation to model the impact of human error in a maritime system
van Dorp, Johan René
the modeling of human error related accident event sequences in a risk assessment of maritime oil framwork was developed for the Prince William Sound Risk Assessment based on interviews with maritime William Sound; Human error; Maritime accidents; Expert judgement; Risk assessment; Risk management 1
Convergence Analysis of the LMS Algorithm with a General Error Nonlinearity and an IID Input
Al-Naffouri, Tareq Y.
Convergence Analysis of the LMS Algorithm with a General Error Nonlinearity and an IID Input Tareq. of Electrical Eng. Abstract The class of least mean square (LMS) algorithms employing a general error are entirely consis- tent with those of the LMS algorithm and several of its variants. The results also
Al-Naffouri, Tareq Y.
The Optimum Error Nonlinearity in LMS Adaptation with an Independent and Identically Distributed, CA 94305 Dhahran 31261 USA Saudi Arabia Abstract The class of LMS algorithms employing a gen- eral view of error nonlinearities in LMS adaptation. In particular, it subsumes two recently developed
Outage Probability for Free-Space Optical Systems Over Slow Fading Channels With Pointing Errors
Hranilovic, Steve
Outage Probability for Free-Space Optical Systems Over Slow Fading Channels With Pointing Errors, Canada. Email: farid@grads.ece.mcmaster.ca, hranilovic@mcmaster.ca Abstract-- We investigate the outage errors. An expression for the outage probability is derived and we show that optimizing the transmit- ted
Object calculus and the object-oriented analysis and design of an error-sensitive GIS
Duckham, Matt
Object calculus and the object-oriented analysis and design of an error-sensitive GIS MATT DUCKHAM of an error-sensitive GIS Abstract. The use of object-oriented analysis and design (OOAD) in GIS research of the key contemporary issues in GIS. This paper examines the application of one particular OO formalism
State preservation by repetitive error detection in a superconducting quantum circuit J. Kelly,1,
Martinis, John M.
State preservation by repetitive error detection in a superconducting quantum circuit J. Kelly,1 , and superconducting circuits1113 have demonstrated multi-qubit states that are first-order toler- ant to one type of error. Recently, experiments with ion traps and superconducting circuits have shown the simultaneous de
Mitigating FPGA Interconnect Soft Errors by In-Place LUT Inversion
He, Lei
, power and perfor- mance. Recent logic re-synthesis techniques, such as ROSE [2], IPR [3], IPD [4] and R2Mitigating FPGA Interconnect Soft Errors by In-Place LUT Inversion Naifeng Jing1 , Ju-Yueh Lee2 the Soft Error Rate (SER) at chip level, and reveal a locality and NP-Hardness of the IPV problem. We
Mitigating FPGA Interconnect Soft Errors by In-Place LUT Inversion
He, Lei
but with high overhead in area, power and performance. Recent logic re-synthesis techniques, such as ROSE [2Mitigating FPGA Interconnect Soft Errors by In-Place LUT Inversion Naifeng Jing1 , Ju-Yueh Lee2 the Soft Error Rate (SER) at chip level, and reveal a locality and NP-Hardness of the IPV problem. We
An Energy-Aware Fault Tolerant Scheduling Framework for Soft Error Resilient Cloud Computing Systems
Pedram, Massoud
An Energy-Aware Fault Tolerant Scheduling Framework for Soft Error Resilient Cloud Computing has drastically increased their susceptibility to soft errors. At the grand scale of cloud computing outputs or system crash. At the grand scale of cloud computing, this problem can only worsen [2, 3, 4, 5
PII S00167037(99)00204-5 A test for systematic errors in 40
Min, Kyoungwon
dating arise from uncertainties in the 40 K decay constants and K/Ar isotopic data for neutron fluence monitors (standards). The activity data underlying the decay constants used in geochronology since 1977). These studies have shown that system- atic errors outweigh typical analytical errors by at least one order
TYPOGRAPHICAL AND ORTHOGRAPHICAL SPELLING ERROR Kyongho Min*, William H. Wilson*, Yoo-Jin Moon
Wilson, Bill
-Jin Moon *School of Computer Science and Engineering The University of New South Wales Sydney NSW 2052 of spelling errors such as typographical (Damerau, 1964; Pollock and Zamora, 1983), orthographical (Sterling), and orthographical errors in spontaneous writings of children (Sterling, 1983; Mitton, 1987). 1.2. Approaches
A Case for Soft Error Detection and Correction in Computational Chemistry
van Dam, Hubertus JJ; Vishnu, Abhinav; De Jong, Wibe A.
2013-09-10
High performance computing platforms are expected to deliver 10(18) floating operations per second by the year 2022 through the deployment of millions of cores. Even if every core is highly reliable the sheer number of the them will mean that the mean time between failures will become so short that most applications runs will suffer at least one fault. In particular soft errors caused by intermittent incorrect behavior of the hardware are a concern as they lead to silent data corruption. In this paper we investigate the impact of soft errors on optimization algorithms using Hartree-Fock as a particular example. Optimization algorithms iteratively reduce the error in the initial guess to reach the intended solution. Therefore they may intuitively appear to be resilient to soft errors. Our results show that this is true for soft errors of small magnitudes but not for large errors. We suggest error detection and correction mechanisms for different classes of data structures. The results obtained with these mechanisms indicate that we can correct more than 95% of the soft errors at moderate increases in the computational cost.
Measurement and Analysis of the Error Characteristics of an In-Building Wireless Network
Steenkiste, Peter
on fiber or electrical connections have excellent error characteris- tics but that wireless networksMeasurement and Analysis of the Error Characteristics of an In-Building Wireless Network David fdavide,prsg@cs.cmu.edu Abstract There is general belief that networks based on wireless technolo- gies
A Non-Stationary Errors-in-Variables Method with Application to Mineral Exploration
Braslavsky, Julio H.
A Non-Stationary Errors-in-Variables Method with Application to Mineral Exploration K. Lau 1 J. H-cancellation in transient electromagnetic mineral exploration. Alternative methods for noise cancellation in these systems for this class of systems is proposed and applied to a problem arising in mineral exploration. An errors
Presenting JECA: A Java Error Correcting Algorithm for the Java Intelligent Tutoring System
Franek, Frantisek
Presenting JECA: A Java Error Correcting Algorithm for the Java Intelligent Tutoring System Edward context involving small Java programs. Furthermore, this paper presents JECA (Java Error Correction is to provide a foundation for the Java Intelligent Tutoring System (JITS) currently being field-tested. Key
A POSTERIORI ERROR ANALYSIS OF THE LINKED INTERPOLATION TECHNIQUE FOR PLATE BENDING PROBLEMS
Lovadina, Carlo
A POSTERIORI ERROR ANALYSIS OF THE LINKED INTERPOLATION TECHNIQUE FOR PLATE BENDING PROBLEMS CARLO Interpolation Tech- nique' to approximate the solution of plate bending problems. We show that the proposed. 1. Introduction. In this paper we present an a posteriori error analysis for the so-called `Linked
Integrated Control-Path Design and Error Recovery in the Synthesis of Digital
Chakrabarty, Krishnendu
11 Integrated Control-Path Design and Error Recovery in the Synthesis of Digital Microfluidic Lab that incorporates control paths and an error- recovery mechanism in the design of a digital microfluidic lab, compared to a baseline chip design, the biochip with a control path can reduce the completion time by 30
Impact of Turbulence Closures and Numerical Errors for the Optimization of Flow Control Devices
Paris-Sud XI, Université de
Impact of Turbulence Closures and Numerical Errors for the Optimization of Flow Control Devices J the use of a Kriging-based global optimization method to determine optimal control parameters conduct an optimization process and measure the impact of numerical and modeling errors on the optimal
ERROR BOUNDS FOR MONOTONE APPROXIMATION SCHEMES FOR HAMILTON-JACOBI-BELLMAN
ERROR BOUNDS FOR MONOTONE APPROXIMATION SCHEMES FOR HAMILTON-JACOBI-BELLMAN EQUATIONS GUY BARLES AND ESPEN R. JAKOBSEN Abstract. We obtain error bounds for monotone approximation schemes of Hamilton-Jacobi, (almost) smooth supersolutions for the Hamilton-Jacobi-Bellman equation. 1. Introduction This paper
AN ADAPTIVE METHOD WITH RIGOROUS ERROR CONTROL FOR THE HAMILTON-JACOBI EQUATIONS.
AN ADAPTIVE METHOD WITH RIGOROUS ERROR CONTROL FOR THE HAMILTON-JACOBI EQUATIONS. PART II: THE TWO adaptive method with rigorous error control for the Hamilton-Jacobi equations. Part II: The two and study an adaptive method for finding approximations to the viscosity solution of Hamilton-Jacobi
PROBABILITY OF ERROR FOR TRAINED UNITARY SPACE-TIME MODULATION OVER A
Swindlehurst, A. Lee
PROBABILITY OF ERROR FOR TRAINED UNITARY SPACE-TIME MODULATION OVER A GAUSS-INNOVATIONS RICIAN probability of error for trained uni- tary space-time modulation over channels with a constant specular trained modulation, assuming that the channel is constant between training periods. All of the above
Characterization of the Impact of Indoor Doppler Errors on Pedestrian Dead Reckoning
Calgary, University of
Characterization of the Impact of Indoor Doppler Errors on Pedestrian Dead Reckoning Valérie, University of Calgary 2500 University Drive NW Calgary, Alberta, Canada, T2N 1N4 Abstract--Indoor pedestrian on a Pedestrian Dead Reckoning (PDR) navigation filter is investigated. Doppler errors are simulated using
IEEE SENSORS JOURNAL, VOL. 3, NO. 5, OCTOBER 2003 595 Active Structural Error Suppression in MEMS
Chen, Zhongping
-run perturbations are presented. Index Terms--Error suppression, microelectromechanical sys- tems (MEMS), rate integrating gyroscopes, smart MEMS. I. INTRODUCTION AS MICROELECTROMECHANICAL systems (MEMS) inertial sensorsIEEE SENSORS JOURNAL, VOL. 3, NO. 5, OCTOBER 2003 595 Active Structural Error Suppression in MEMS
Estimate of B(K -> pi nu nubar) from Standard Model fits to lambda_t
S. H. Kettell; L. G. Landsberg; H. Nguyen
2003-05-19
We estimate B(K -> pi nu nubar) in the context of the Standard Model by fitting for lambda_t = Vtd x V*ts of the `kaon unitarity triangle' relation. We fit data from epsilon_K, the CP-violating parameter describing K-mixing, and a_{psi K}, the CP-violating asymmetry in B -> J/psi K decays. Our estimate is independent of the CKM matrix element Vcb and of the ratio of Bs to Bd mixing frequencies. The measured value of B(K+ -> pi+ nu nubar) can be compared both to this estimate and to predictions made from the ratio of B mixing frequencies.
Measurement and fitting of spectrum and pulse shapes of a liquid methane moderator at IPNS
Carpenter, J.M.; Robinson, R.A.; Taylor, A.D.
1983-01-01
We have measured the absolute intensity, and the energy spectrum, and the pulse shapes as function of neutron energy for the IPNS liquid CH/sub 4/ F moderator, at 108 K. We have fitted the spectrum, corrected for attenuation by aluminum in the beam, using a new cutoff function and fitted the pulse shapes to a new function which is the sum of two decaying exponentials, convoluted with a gaussian, and determined the wavelength variation of the parameters. We present here the results of a preliminary analysis.
Almasi, Gheorghe (Ardsley, NY) [Ardsley, NY; Blumrich, Matthias Augustin (Ridgefield, CT) [Ridgefield, CT; Chen, Dong (Croton-On-Hudson, NY) [Croton-On-Hudson, NY; Coteus, Paul (Yorktown, NY) [Yorktown, NY; Gara, Alan (Mount Kisco, NY) [Mount Kisco, NY; Giampapa, Mark E. (Irvington, NY) [Irvington, NY; Heidelberger, Philip (Cortlandt Manor, NY) [Cortlandt Manor, NY; Hoenicke, Dirk I. (Ossining, NY) [Ossining, NY; Singh, Sarabjeet (Mississauga, CA) [Mississauga, CA; Steinmacher-Burow, Burkhard D. (Wernau, DE) [Wernau, DE; Takken, Todd (Brewster, NY) [Brewster, NY; Vranas, Pavlos (Bedford Hills, NY) [Bedford Hills, NY
2008-06-03
Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored in memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.
Methods of producing adsorption media including a metal oxide
Mann, Nicholas R; Tranter, Troy J
2014-03-04
Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.
Thin film solar cell including a spatially modulated intrinsic layer
Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)
1989-03-28
One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.
Solar Energy Education. Renewable energy: a background text. [Includes glossary
Not Available
1985-01-01
Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)
Biomass Potentials from California Forest and Shrublands Including Fuel
Biomass Potentials from California Forest and Shrublands Including Fuel Reduction Potentials-04-004 February 2005 Revised: October 2005 Arnold Schwarzenegger, Governor, State of California #12;Biomass Tiangco, CEC Bryan M. Jenkins, University of California #12;Biomass Potentials from California Forest
Applied Linguistics Department Curriculum for the IEP Including Curriculum Summary
Weaver, Adam Lee
Applied Linguistics Department Curriculum for the IEP Including Curriculum Summary 1 C-1-2 Curriculum for the IEP (as described in CEA Curriculum Standards) I. General Curriculum Philosophy a topics, and global issues. b. Skills Development: The IEP curriculum offers courses that provide skills
Optimal Energy Management Strategy including Battery Health through Thermal
Paris-Sud XI, Université de
Optimal Energy Management Strategy including Battery Health through Thermal Management for Hybrid: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management, Pontryagin's Minimum Principle. 1. INTRODUCTION The interest for energy management strategy (EMS) of Hybrid
Directing all emergency activities including evacuation of personnel.
Johnson, Eric E.
for employees who perform or shut down critical plant operations. · Systems to account for all employees after· Directing all emergency activities including evacuation of personnel. · Ensuring that outside emergency services are notified when necessary. · Directing the shutdown of plant operations when necessary
Thermal Unit Commitment Including Optimal AC Power Flow Constraints
Thermal Unit Commitment Including Optimal AC Power Flow Constraints Carlos Murillo{Sanchez Robert J algorithm for unit commitment that employs a Lagrange relaxation technique with a new augmentation. This framework allows the possibility of committing units that are required for the VArs that they can produce
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Namhai Chua; Kush, A.
1993-02-16
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids.
Major initiatives in materials research at Western include
Christensen, Dan
, and the growth and formation of new materials. Western is a leader in the study of the interactions of radiationMajor initiatives in materials research at Western include Surface Science Western, Interface of the wide range of materials and biomaterials research within the Faculty of Science and across Western
Assessment of Mission Design Including Utilization of Libration
Barcelona, Universitat de
Assessment of Mission Design Including Utilization of Libration Points and Weak Stability: The International Sun-Earth Explorer 3 . . . . . . . . . . . . . . . 11 2.1.2 WIND/JWST: Next Generation Space Telescope . . . . . . . . . . . . . . . 33 2.1.9 FIRST/HERSCHEL: Far Infra
Free Energy Efficiency Kit includes CFL light bulbs,
Rose, Annkatrin
Free Energy Efficiency Kit Kit includes CFL light bulbs, spray foam, low-flow shower head, and more for discounted energy assessments. FREE HOME ENERGY EFFICIENCY SEMINAR N e w R i ver L i g ht & Pow e r a n d W! Building Science 101 Presentation BPI Certified Building Professionals will present home energy efficiency
Introduction Adhesion complexes play key roles in many events, including
Hardin, Jeff
Introduction Adhesion complexes play key roles in many events, including cell migration cell adhesion are remarkably similar in Caenorhabditis elegans, Drosophila and humans (Hynes and Zhao to reveal much about the basic, conserved molecular mechanisms that mediate and regulate cell adhesion
Ginting, Victor
2014-03-15
it was demonstrated that a posteriori analyses in general and in particular one that uses adjoint methods can accurately and efficiently compute numerical error estimates and sensitivity for critical Quantities of Interest (QoIs) that depend on a large number of parameters. Activities include: analysis and implementation of several time integration techniques for solving system of ODEs as typically obtained from spatial discretization of PDE systems; multirate integration methods for ordinary differential equations; formulation and analysis of an iterative multi-discretization Galerkin finite element method for multi-scale reaction-diffusion equations; investigation of an inexpensive postprocessing technique to estimate the error of finite element solution of the second-order quasi-linear elliptic problems measured in some global metrics; investigation of an application of the residual-based a posteriori error estimates to symmetric interior penalty discontinuous Galerkin method for solving a class of second order quasi-linear elliptic problems; a posteriori analysis of explicit time integrations for system of linear ordinary differential equations; derivation of accurate a posteriori goal oriented error estimates for a user-defined quantity of interest for two classes of first and second order IMEX schemes for advection-diffusion-reaction problems; Postprocessing finite element solution; and A Bayesian Framework for Uncertain Quantification of Porous Media Flows.
Thomas, David D.
examples of virulence traits in plant pathogenic microorganisms that also have a function in their survivalOpinion Expanding the Paradigms of Plant Pathogen Life History and Evolution of Parasitic Fitness of America Introduction How do pathogens, whether they par- asitize plants or animals, acquire virulence
WHAT IS A HTHT MINOR? A HTHT-minor fits within the UT profile: High Tech,
Theune, Mariët
WHAT IS A HTHT MINOR? A HTHT-minor fits within the UT profile: High Tech, Human Touch. The minor-minor is to illuminate specific societal themes for which the UT develops High Tech Human Touch solutions are High Tech Human Touch (multidisciplinary) and are profiling for the student. The UT offers most HTHT
Utility and Importance of Poisson-Nernst-Planck Immittance-Spectroscopy Fitting Models
Macdonald, James Ross
-range immittance- spectroscopy (IS) frequency-response data for unsupported materials with diffusing mobile charge to such fields as biology, corrosion, and energy storage. Since a composite PNP fitting model with charges of the model, its response possibilities, and its broad applicability. It deals with a neutral species that can
Fast Fourier Transform for Fitness Landscapes Dan Rockmorea, Peter Kosteleca, Wim Hordijkb, Peter F.
Stadler, Peter F.
Fast Fourier Transform for Fitness Landscapes Dan Rockmorea, Peter Kosteleca, Wim Hordijkb, Peter F of the Walsh/Fourier transforms are feasible for landscapes with up to 108 configurations using Fast Fourier as the generating set on Sn. Keywords. Spectral Analysis, Fast Fourier Transform, Walsh Functions, Cayley Graphs
UNIVERSITY OF FLORIDA AAUS MEDICAL EVALUATION OF FITNESS FOR SCUBA DIVING REPORT
Slatton, Clint
UNIVERSITY OF FLORIDA AAUS MEDICAL EVALUATION OF FITNESS FOR SCUBA DIVING REPORT ____________________________________________________________________________________ Name of Applicant (Print or Type) Date of Medical Evaluation Month/Day/Year) To The Examining Physician History Form may indicate potential health or safety risks as noted. Scuba diving is an activity that puts
Eliciting Safety Policy and Balancing with Operational Fitness in Systems of Systems
Kelly, Tim
Eliciting Safety Policy and Balancing with Operational Fitness in Systems of Systems Georgios Despotou High Integrity Systems Group Department of Computer Science University of York York, UK george@cs.york.ac.uk Martin Hall-May High Integrity Systems Group Department of Computer Science University of York York, UK
Carlson, Charles W.
Solar Wind Particle Distribution Function Fitted via the Generalized Kappa Distribution Function Maxwellian distributions as it would be expected for a quasi-collisionless plasma. However, the presence of high energy tail and shoulders in the profile of distribution function stimulate to look for a better
Nonlinear Fitness Landscape of a Molecular Pathway Lilia Perfeito1,2
LÃ¤ssig, Michael
, provided the original author and source are credited. Funding: This work was funded by the Deutsche of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E activities of proteins can also reduce fitness due to energy consumption or toxic effects of the reaction
Sesquiterpene lactone stereochemistry influences herbivore resistance and plant fitness in the field
Whitney, Kenneth
of the protective role of secondary metabolites and thus of plant fitness. As stereochemical variation is widespread, sesquiterpene lactone, Xanthium strumarium, common cocklebur. INTRODUCTION Linking plant secondary metabolites secondary metabolite classes have been shown to in- fluence herbivore resistance and subsequent plant
Velocys microchannel reactor small enough to fit in a standard shipping container
Wallace, Mark
in a standard shipping container The GreenSky London waste-biomass to jet fuel plant will produce 50,000 tonnesVelocys microchannel reactor small enough to fit in a standard shipping container Valuable liquid fuels from waste gas Velocys, an Oxford Chemistry spin-out company, markets smaller-scale reactors
FIRE DEPARTMENT, CITY OF NEW YORK * BUREAU OF FIRE PREVENTION CERTIFICATE OF FITNESS APPLICATION
Jia, Songtao
FIRE DEPARTMENT, CITY OF NEW YORK * BUREAU OF FIRE PREVENTION CERTIFICATE OF FITNESS APPLICATION Security # 846 29 120 MI ADDRESS 936 WEST END AVE APT E2 ZIP CODE 10025 STATE NY CITY OR BOROUGH New York RELATED EMPLOYER NAME COLUMBIA UNIVERSITY APPLICANT'S WORK ADDRESS CITY OR BOROUGH New York, NY STATE NY
Are hybrid species more fit than ancestral parent species in the current hybrid species habitats?
Rieseberg, Loren
Are hybrid species more fit than ancestral parent species in the current hybrid species habitats? L Columbia, Vancouver, BC, Canada Introduction Hybridization is receiving renewed attention as an important). For homoploid hybridization in plants, where chromosome number remains the same, models and empirical evi- dence
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness
O'Leary, Michael
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness Mike O'Leary Department of Mathematics Towson University World Conference on Nonlinear Analysis Orlando, FL July 2008 Mike O'Leary of this work are joint with Judith Miller, Georgetown University. Mike O'Leary (Towson University) A Diffusion
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness
O'Leary, Michael
A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness Mike O'Leary Department of Mathematics Towson University PDE Seminar Vanderbilt University November 2008 Mike O'Leary (Towson University are joint with Judith Miller, Georgetown University. Mike O'Leary (Towson University) A Diffusion Model
Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic
Rohani, Pej
the focus of our models are based on the mosquito, A. aegypti, which can spread yellow fever, dengue fever-words: Aedes aegypti, biological control, dengue fever, fitness, population cycles, RIDL, SIT, transgenic males and the effects on mosquito dynamics Steven M. White1 *, Pejman Rohani2,3,4 and Steven M. Sait1 1
WHAT IS A HTHT MINOR? A HTHT-minor fits within the UT profile: High Tech,
Theune, Mariët
ENGINEERING AEROSPACE ENGINEERING IS FRONT RUNNER IN THE DEVELOPMENT OF NEW HIGH TECH APPLICATIONS. THEORIESWHAT IS A HTHT MINOR? A HTHT-minor fits within the UT profile: High Tech, Human Touch. The minor-minor is to illuminate specific societal themes for which the UT develops High Tech Human Touch solutions
Preprint 24th EU PVSEC, 2009, Hamburg FITTING OF LATERAL RESISTANCES IN SILICON SOLAR CELLS
Junk, Michael
Preprint 24th EU PVSEC, 2009, Hamburg FITTING OF LATERAL RESISTANCES IN SILICON SOLAR CELLS cell from electroluminescence (EL) is introduced. A two-dimensional model of the solar cell screen printed monocrystalline silicon solar cell are shown and the influence of lateral diffusion
Short pond hydroperiod decreases fitness of nonnative hybrid salamanders in California
Johnson, Jarrett
Short pond hydroperiod decreases fitness of nonnative hybrid salamanders in California J. R, with modified permanent ponds harboring salamanders with a greater proportion of nonnative genes. Our study, nonnative and hybrid. Using experimental pond mesocosms, we implemented three pond drying regimes
Misevic, Dusan
are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value mutation rate was lost. We conclude that rugged fitness landscapes can prevent the evolution of mutation mutations with phenotypic effects are deleterious, producing a genetic load that favors organisms with low
Real Estate and MLR Diagnostics Bivariate Fit of condition By size
Vardeman, Stephen B.
Real Estate and MLR Diagnostics Bivariate Fit of condition By size 0 2 4 6 8 10 condition 10 15 20Real Estate MLR Residuals Distributions Residual price -2 -1.5 -1 -0.5 0 .5 1 1.5 Normal(7.1e
Fitting of random tessellation models to keratin filament Michael Beil1
Schmidt, Volker
Fitting of random tessellation models to keratin filament networks Michael Beil1 Stefanie Eckel2.fleischer@uni-ulm.de #12;Abstract The role of specific structural patterns in keratin filament networks for regulating bio of methods for the analysis of filament network morphology. We have previ- ously developed a statistical