Absolute Percent Error Based Fitness Functions for Evolving Forecast Models AndyNovobilski,Ph.D.
Fernandez, Thomas
Absolute Percent Error Based Fitness Functions for Evolving Forecast Models Andy computfi~gas a methodof data mining,is its intrinsic ability to drive modelselection accordingto a mixedset of criteria. Basedon natural selection, evolutionary computing utilizes evaluationof candidatesolutions
NNPDF2.1: Including heavy quark mass effects in NNPDF fits
Guffanti, A. [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg i. Br. (Germany)
2011-09-21T23:59:59.000Z
In this contribution we present the NNPDF2.1 parton distribution functions (PDF) set. The NNPDF2.1 set is a set extracted from a global fit to Deep-Inelastic Scattering (DIS), fixed target Drell-Yan (DY), Electroweak vector boson and inclusive jet cross-sections at colliders data. It is performed using the NNPDF methodology which relies on Monte Carlo techniques for determination of uncertainties and Neural Networks as unbiased interpolants.
The tau leptons theory and experimental data: Monte Carlo, fits, software and systematic errors
Zbigniew Was
2014-12-09T23:59:59.000Z
Status of tau lepton decay Monte Carlo generator TAUOLA is reviewed. Recent efforts on development of new hadronic currents are presented. Multitude new channels for anomalous tau decay modes and parametrization based on defaults used by BaBar collaboration are introduced. Also parametrization based on theoretical considerations are presented as an alternative. Lesson from comparison and fits to the BaBar and Belle data is recalled. It was found that as in the past, in particular at a time of comparisons with CLEO and ALEPH data, proper fitting, to as detailed as possible representation of the experimental data, is essential for appropriate developments of models of tau decays. In the later part of the presentation, use of the TAUOLA program for phenomenology of W,Z,H decays at LHC is adressed. Some new results, relevant for QED bremsstrahlung in such decays are presented as well.
Seshia, Sanjit A.
Design as You See FIT: System-Level Soft Error Analysis of Sequential Circuits Daniel Holcomb of the overall circuit can be computed from the CFIT and probabilities of system-level failure due to soft er,wenchaol,sseshia}@eecs.berkeley.edu Abstract Soft errors in combinational and sequential elements of dig- ital circuits are an increasing
Even-Parity S_(N) Adjoint Method Including SP_(N) Model Error and Iterative Efficiency
Zhang, Yunhuang
2014-08-10T23:59:59.000Z
In this Dissertation, we analyze an adjoint-based approach for assessing the model error of SP_(N) equations (low fidelity model) by comparing it against S_(N) equations (high fidelity model). Three model error estimation methods, namely, direct...
de Lijser, Peter
in a thesis or dissertation. 1. Left margin must be set 1.5 inches on every page, including appendices. 2. Use
Polynomial fits and the proton radius puzzle
E. Kraus; K. E. Mesick; A. White; R. Gilman; S. Strauch
2014-10-27T23:59:59.000Z
The Proton Radius Puzzle refers to the ~7{\\sigma} discrepancy that exists between the proton charge radius determined from muonic hydrogen and that determined from electronic hydrogen spectroscopy and electron-proton scattering. One possible partial resolution to the puzzle includes errors in the extraction of the proton radius from ep elastic scattering data. This possibility is made plausible by certain fits which extract a smaller proton radius from the scattering data consistent with that determined from muonic hydrogen. The reliability of some of these fits that yield a smaller proton radius was studied. We found that fits of form factor data with a truncated polynomial fit are unreliable and systematically give values for the proton radius that are too small. Additionally, a polynomial fit with a \\chi^2_{reduced} ~ 1 is not a sufficient indication for a reliable result.
Physical fitness training for people with stroke
Saunders, David H.
2009-01-01T23:59:59.000Z
INTRODUCTION: Impaired physical fitness may contribute to functional limitations and disability after stroke. Physical fitness (including cardiorespiratory fitness and muscle strength/power) can be improved by appropriate ...
Hyper-Fit: Fitting Linear Models to Multidimensional Data with Multivariate Gaussian Uncertainties
Robotham, A S G
2015-01-01T23:59:59.000Z
Astronomical data is often uncertain with errors that are heteroscedastic (different for each data point) and covariant between different dimensions. Assuming that a set of D-dimensional data points can be described by a (D - 1)-dimensional plane with intrinsic scatter, we derive the general likelihood function to be maximised to recover the best fitting model. Alongside the mathematical description, we also release the hyper-fit package for the R statistical language (github.com/asgr/hyper.fit) and a user-friendly web interface for online fitting (hyperfit.icrar.org). The hyper-fit package offers access to a large number of fitting routines, includes visualisation tools, and is fully documented in an extensive user manual. Most of the hyper-fit functionality is accessible via the web interface. In this paper we include applications to toy examples and to real astronomical data from the literature: the mass-size, Tully-Fisher, Fundamental Plane, and mass-spin-morphology relations. In most cases the hyper-fit ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of WntSupport Homelessand RenewableSyntheticSystematic Errors of MiniBooNE
Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))
1990-01-01T23:59:59.000Z
The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.
Register file soft error recovery
Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.
2013-10-15T23:59:59.000Z
Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.
Uncertainty quantification and error analysis
Higdon, Dave M [Los Alamos National Laboratory; Anderson, Mark C [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Klein, Richard [Los Alamos National Laboratory; Berliner, Mark [OHIO STATE UNIV.; Covey, Curt [LLNL; Ghattas, Omar [UNIV OF TEXAS; Graziani, Carlo [UNIV OF CHICAGO; Seager, Mark [LLNL; Sefcik, Joseph [LLNL; Stark, Philip [UC/BERKELEY; Stewart, James [SNL
2010-01-01T23:59:59.000Z
UQ studies all sources of error and uncertainty, including: systematic and stochastic measurement error; ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations on the accuracy and reliability of computations, approximations, and algorithms; and human error. A more precise definition for UQ is suggested below.
Curve fitting methods for solar radiation data modeling
Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)
2014-10-24T23:59:59.000Z
This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.
Simonen, Fredric A.; Gosselin, Stephen R.; Doctor, Steven R.
2013-04-22T23:59:59.000Z
This document describes a new method to determine whether the flaws in a particular reactor pressure vessel are consistent with the assumptions regarding the number and sizes of flaws used in the analyses that formed the technical justification basis for the new voluntary alternative Pressurized Thermal Shock (PTS) rule (Draft 10 CFR 50.61a). The new methodology addresses concerns regarding prior methodology because ASME Code Section XI examinations do not detect all fabrication flaws, they have higher detection performance for some flaw types, and there are flaw sizing errors always present (e.g., significant oversizing of small flaws and systematic under sizing of larger flaws). The new methodology allows direct comparison of ASME Code Section XI examination results with values in the PTS draft rule Tables 2 and 3 in order to determine if the number and sizes of flaws detected by an ASME Code Section XI examination are consistent with those assumed in the probabilistic fracture mechanics calculations performed in support of the development of 10 CFR 50.61a.
Pickett, Patrick T. (Kettering, OH)
1981-01-01T23:59:59.000Z
A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.
Albert, Réka
susceptibility to disease is homogenous across the network degree distribution is roughly symmetric much the network highly skewed distribution of contacts (follows a discretized Weibull distribution) most nodesIntroduction ERGM Model Fitting Simulation References Using social network characteristics
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21T23:59:59.000Z
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville Power AdministrationHawaiiEnergyFlorida July 9,Department of EnergyHouseFit for Purpose Projects
Analysis of Errors in a Special Perturbations Satellite Orbit Propagator
Beckerman, M.; Jones, J.P.
1999-02-01T23:59:59.000Z
We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.
Monte Carlo errors with less errors
Ulli Wolff
2006-11-29T23:59:59.000Z
We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.
Olson, Eric J.
2013-06-11T23:59:59.000Z
An apparatus, program product, and method that run an algorithm on a hardware based processor, generate a hardware error as a result of running the algorithm, generate an algorithm output for the algorithm, compare the algorithm output to another output for the algorithm, and detect the hardware error from the comparison. The algorithm is designed to cause the hardware based processor to heat to a degree that increases the likelihood of hardware errors to manifest, and the hardware error is observable in the algorithm output. As such, electronic components may be sufficiently heated and/or sufficiently stressed to create better conditions for generating hardware errors, and the output of the algorithm may be compared at the end of the run to detect a hardware error that occurred anywhere during the run that may otherwise not be detected by traditional methodologies (e.g., due to cooling, insufficient heat and/or stress, etc.).
Huang, Weidong
2011-01-01T23:59:59.000Z
Surface slope error of concentrator is one of the main factors to influence the performance of the solar concentrated collectors which cause deviation of reflected ray and reduce the intercepted radiation. This paper presents the general equation to calculate the standard deviation of reflected ray error from slope error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 5 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope error is transferred to the reflected ray in more than 2 folds when the incidence angle is more than 0. The equation for reflected ray error is generally fit for all reflection surfaces, and can also be applied to control the error in designing an abaxial optical system.
Kirchhoff, William H. [Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8370, Gaithersburg, Maryland 20899-8370 (United States)
2012-09-15T23:59:59.000Z
The extended logistic function provides a physically reasonable description of interfaces such as depth profiles or line scans of surface topological or compositional features. It describes these interfaces with the minimum number of parameters, namely, position, width, and asymmetry. Logistic Function Profile Fit (LFPF) is a robust, least-squares fitting program in which the nonlinear extended logistic function is linearized by a Taylor series expansion (equivalent to a Newton-Raphson approach) with no apparent introduction of bias in the analysis. The program provides reliable confidence limits for the parameters when systematic errors are minimal and provides a display of the residuals from the fit for the detection of systematic errors. The program will aid researchers in applying ASTM E1636-10, 'Standard practice for analytically describing sputter-depth-profile and linescan-profile data by an extended logistic function,' and may also prove useful in applying ISO 18516: 2006, 'Surface chemical analysis-Auger electron spectroscopy and x-ray photoelectron spectroscopy-determination of lateral resolution.' Examples are given of LFPF fits to a secondary ion mass spectrometry depth profile, an Auger surface line scan, and synthetic data generated to exhibit known systematic errors for examining the significance of such errors to the extrapolation of partial profiles.
Reversible (unitary) Ancillary qbits Controlled gates (cX, cZ) #12;Measurement Deterministic Duplication;Decoding use ancillary bits to determine what error occurred #12;Decoding use ancillary bits to determine what error occurred set to 0 if first two bits equal, set to 1 if not #12;Decoding use ancillary bits
Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint
Florita, A.; Hodge, B. M.; Milligan, M.
2012-08-01T23:59:59.000Z
The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.
Stabilizer Formalism for Operator Quantum Error Correction
Poulin, D
2005-01-01T23:59:59.000Z
Operator quantum error correction is a recently developed theory that provides a generalized framework for active error correction and passive error avoiding schemes. In this paper, we describe these codes in the language of the stabilizer formalism of standard quantum error correction theory. This is achieved by adding a "gauge" group to the standard stabilizer definition of a code. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shor's 9-qubit code that allows us to remove 3 of its 8 stabilizer generators, leading to a simpler decoding procedure without affecting its essential properties. This opens the path to possible improvement of the error threshold of fault tolerant quantum computing. We also derive a modified Hamming bound that applies to all stabilizer codes, including degenerate ones.
Abdelhamid Awad Aly Ahmed, Sala
2008-10-10T23:59:59.000Z
QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major... Subject: Computer Science QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...
Thermodynamics of error correction
Pablo Sartori; Simone Pigolotti
2015-04-24T23:59:59.000Z
Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and dissipated work of the process. Its derivation is based on the second law of thermodynamics, hence its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.
Quantum Error Correction Workshop on
Grassl, Markus
Error Correction Avoiding Errors: Mathematical Model decomposition of the interaction algebra;Quantum Error Correction Designed Hamiltonians Main idea: "perturb the system to make it more stable" · fast (local) control operations = average Hamiltonian with more symmetry (cf. techniques from NMR
Broader source: Energy.gov [DOE]
EnergyFit Nevada is a home energy retrofit program. The program assists homeowners in finding and contacting an energy assessment professional to perform an energy assessment and a certified...
Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2013-11-28T23:59:59.000Z
A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resulting in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.
Pump apparatus including deconsolidator
Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew
2014-10-07T23:59:59.000Z
A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.
Clinical Competence Assessments Fitness for Duty Evaluations
Gleeson, Joseph G.
Clinical Competence Assessments Fitness for Duty Evaluations Practice & Billing Monitoring Assessment· Program Fitness for Duty Evaluations· Physician Enhancement Program· (PEP) - Monitoring Custom Competence Assessment· Fitness For Duty (FFD) Evaluation· #12;PACE Clinical Competence Assessment Program2 3
Geothermal FIT Design: International Experience and U.S. Considerations
Rickerson, W.; Gifford, J.; Grace, R.; Cory, K.
2012-08-01T23:59:59.000Z
Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date, a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).
STATISTICAL MODEL OF SYSTEMATIC ERRORS: LINEAR ERROR MODEL
Rudnyi, Evgenii B.
to apply. The algorithm to maximize a likelihood function in the case of a non-linear physico - the same variances of errors 3.1. One-way classification 3.2. Linear regression 4. Real case (vaporizationSTATISTICAL MODEL OF SYSTEMATIC ERRORS: LINEAR ERROR MODEL E.B. Rudnyi Department of Chemistry
Living Expenses (includes approximately
Maroncelli, Mark
& engineering programs All other programs Graduate: MBA/INFSY at Erie & Harrisburg (12 credits) Business Guarantee 3 (Does not include Dependents Costs4 ) Altoona, Berks, Erie, and Harrisburg 12-Month Estimated
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 334 318Cubic Feet) YearSalesNew2003 Detailed Tables .Errors of Nonobservation Finally,
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 334 318 706Production% of41.1Diesel prices increase nationally TheCold Fusion Error Unexpected
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) | SciTech Connect Journal Article: X-rayContract Documents PPPL The files|DisclaimersFeature featured2Cold Fusion Error
Evaluation of respirator fit training by quantitative fit testing
Chute, Daniel Otis
1981-01-01T23:59:59.000Z
that all respirator wearers be trained and f1t tested. In additiion, as part of a complete respiratory protection program, the effect1veness of resp1rator use training should be appraised at periodic 1ntervals. The purpose of this experiment... of trained individuals was able to significantly improve their measured protection factors when compared to the untrained control group. In addition, when fit tests were re- peated on the same day, the second test resulted in consistently higher scores...
Neutron multiplication error in TRU waste measurements
Veilleux, John [Los Alamos National Laboratory; Stanfield, Sean B [CCP; Wachter, Joe [CCP; Ceo, Bob [CCP
2009-01-01T23:59:59.000Z
Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are more realistic and accurate. To do so, measurements of standards and waste drums were performed with High Efficiency Neutron Counters (HENC) located at Los Alamos National Laboratory (LANL). The data were analyzed for multiplication effects and new estimates of the multiplication error were computed. A concluding section will present alternatives for reducing the number of rejections of TRU waste containers due to neutron multiplication error.
Optimal error estimates for corrected trapezoidal rules
Talvila, Erik
2012-01-01T23:59:59.000Z
Corrected trapezoidal rules are proved for $\\int_a^b f(x)\\,dx$ under the assumption that $f"\\in L^p([a,b])$ for some $1\\leq p\\leq\\infty$. Such quadrature rules involve the trapezoidal rule modified by the addition of a term $k[f'(a)-f'(b)]$. The coefficient $k$ in the quadrature formula is found that minimizes the error estimates. It is shown that when $f'$ is merely assumed to be continuous then the optimal rule is the trapezoidal rule itself. In this case error estimates are in terms of the Alexiewicz norm. This includes the case when $f"$ is integrable in the Henstock--Kurzweil sense or as a distribution. All error estimates are shown to be sharp for the given assumptions on $f"$. It is shown how to make these formulas exact for all cubic polynomials $f$. Composite formulas are computed for uniform partitions.
ERROR-TOLERANT MULTI-MODAL SENSOR FUSION Farinaz Koushanfar*
Potkonjak, Miodrag
ERROR-TOLERANT MULTI-MODAL SENSOR FUSION Farinaz Koushanfar* , Sasha Slijepcevic , Miodrag is multi-modal sensor fusion, where data from sensors of dif- ferent modalities are combined in order applications, including multi- modal sensor fusion, is to ensure that all of the techniques and tools are error
Learning from FITS: Limitations in use in modern astronomical research
Thomas, Brian; Economou, Frossie; Greenfield, Perry; Hirst, Paul; Berry, David S; Bray, Erik; Gray, Norman; Muna, Demitri; Turner, James; de Val-Borro, Miguel; Santander-Vela, Juande; Shupe, David; Good, John; Berriman, G Bruce; Kitaeff, Slava; Fay, Jonathan; Laurino, Omar; Alexov, Anastasia; Landry, Walter; Masters, Joe; Brazier, Adam; Schaaf, Reinhold; Edwards, Kevin; Redman, Russell O; Marsh, Thomas R; Streicher, Ole; Norris, Pat; Pascual, Sergio; Davie, Matthew; Droettboom, Michael; Robitaille, Thomas; Campana, Riccardo; Hagen, Alex; Hartogh, Paul; Klaes, Dominik; Craiga, Matthew W; Homeier, Derek
2015-01-01T23:59:59.000Z
The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard, however, is showing its age. Developed in the late 1970s, the FITS authors made a number of implementation choices that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not anticipate the challenges which we are facing today in astronomical computing. Difficulties we now face include, but are not limited to, addressing the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets, and capturing significantly more complex metadata and data relationships. There are members of the community today who find some or all of these limitations unworkable, and have decided to move ahead with storing data in other formats. If this frag...
Two-point Correlator Fits on HISQ Ensembles
A. Bazavov; C. Bernard; C. Bouchard; C. DeTar; D. Du; A. X. El-Khadra; J. Foley; E. D. Freeland; E. Gamiz; Steven Gottlieb; U. M. Heller; J. E. Hetrick; J. Kim; A. S. Kronfeld; J. Laiho; L. Levkova; M. Lightman; P. B. Mackenzie; E. T. Neil; M. Oktay; J. N. Simone; R. L. Sugar; D. Toussaint; R. S. Van de Water; R. Zhou; for the Fermilab Lattice Collaboration; for the MILC Collaboration
2012-12-04T23:59:59.000Z
We present our methods to fit the two point correlators for light, strange, and charmed pseudoscalar meson physics with the highly improved staggered quark (HISQ) action. We make use of the least-squares fit including the full covariance matrix of the correlators and including Gaussian constraints on some parameters. We fit the correlators on a variety of the HISQ ensembles. The lattice spacing ranges from 0.15 fm down to 0.06 fm. The light sea quark mass ranges from 0.2 times the strange quark mass down to the physical light quark mass. The HISQ ensembles also include lattices with different volumes and with unphysical values of the strange quark mass. We use the results from this work to obtain our preliminary results of $f_D$, $f_{D_s}$, $f_{D_s}/f_{D}$, and ratios of quark masses presented in another talk [1].
FIT-FOR-PURPOSE LAND ADMINISTRATION
FIT-FOR-PURPOSE LAND ADMINISTRATION AND THE POST-2015 DEVELOPMENT AGENDA ANNUAL WORLD BANK the coalescence the yardstick 3 #12;Methodology fit-for-purpose land administration urban and rural; it will influence land administration design 2. Fit-for-purpose is happening; but, needs purpose, stages, and future
Identification of toroidal field errors in a modified betatron accelerator
Loschialpo, P. (Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)); Marsh, S.J. (SFA Inc., Landover, Maryland 20785 (United States)); Len, L.K.; Smith, T. (FM Technologies Inc., 10529-B Braddock Road, Fairfax, Virginia 22032 (United States)); Kapetanakos, C.A. (Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States))
1993-06-01T23:59:59.000Z
A newly developed probe, having a 0.05% resolution, has been used to detect errors in the toroidal magnetic field of the NRL modified betatron accelerator. Measurements indicate that the radial field components (errors) are 0.1%--1% of the applied toroidal field. Such errors, in the typically 5 kG toroidal field, can excite resonances which drive the beam to the wall. Two sources of detected field errors are discussed. The first is due to the discrete nature of the 12 single turn coils which generate the toroidal field. Both measurements and computer calculations indicate that its amplitude varies from 0% to 0.2% as a function of radius. Displacement of the outer leg of one of the toroidal field coils by a few millimeters has a significant effect on the amplitude of this field error. Because of uniform toroidal periodicity of these coils this error is a good suspect for causing the excitation of the damaging [ital l]=12 resonance seen in our experiments. The other source of field error is due to the current feed gaps in the vertical magnetic field coils. A magnetic field is induced inside the vertical field coils' conductor in the opposite direction of the applied toroidal field. Fringe fields at the gaps lead to additional field errors which have been measured as large as 1.0%. This source of field error, which exists at five toroidal locations around the modified betatron, can excite several integer resonances, including the [ital l]=12 mode.
see Type I decision error see Type II decision error
-1, 12, 22; 4-11; 5-46 to 51; 7-7; 8-1, 2, 15, 16, 22, 24, 27; A-5; N-16 areas 2-5 HSA/scoping 2 INDEX see Type I decision error see Type II decision error 91b material 3-5 Amin area-25; 8-11, 17 area evaluation & HSA 3-11 classification 2-4, 5, 17, 28; 4-11 contaminated 2-3 land
DATA COMPRESSION USING WAVELETS: ERROR ...
1910-90-11T23:59:59.000Z
algorithms that introduce differences between the original and compressed data in ... to choose an error metric that parallels the human visual system, so that image .... signal data along a communications channel, one sends integer codes that ...
The Challenge of Quantum Error Correction.
Fominov, Yakov
in the design of physical bits. #12;What we need Hardware requirements: 1. Many 103-104 / R individual bits (R flip classical error b. Phase error 0exp( ( ) )z i E t dt = - Fluctuates 1. Need hardware error #12;Classical error correction by the software and hardware. , / 2 0 Hardware error correction: Ising
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
2014-01-01T23:59:59.000Z
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore »measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study,Taqpolymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, clonedPfupolymerase, Phusion Hot Start, andPwopolymerase, we find the lowest error rates withPfu, Phusion, andPwopolymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed withTaqpolymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
Unequal error protection of subband coded bits
Devalla, Badarinath
1994-01-01T23:59:59.000Z
Source coded data can be separated into different classes based on their susceptibility to channel errors. Errors in the Important bits cause greater distortion in the reconstructed signal. This thesis presents an Unequal Error Protection scheme...
Unequal error protection of subband coded bits
Devalla, Badarinath
1994-01-01T23:59:59.000Z
Source coded data can be separated into different classes based on their susceptibility to channel errors. Errors in the Important bits cause greater distortion in the reconstructed signal. This thesis presents an Unequal Error Protection scheme...
Fitness & Exercise - HPMC Occupational Health Services
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
& Patient Materials Ergonomics Fitness & Exercise Aerobic Exercise Intensity and Target Heart Rate Men's Health Nutrition Women's Health Health & Productivity Health Calculators &...
Robust mixtures in the presence of measurement errors
Jianyong Sun; Ata Kaban; Somak Raychaudhury
2007-09-06T23:59:59.000Z
We develop a mixture-based approach to robust density modeling and outlier detection for experimental multivariate data that includes measurement error information. Our model is designed to infer atypical measurements that are not due to errors, aiming to retrieve potentially interesting peculiar objects. Since exact inference is not possible in this model, we develop a tree-structured variational EM solution. This compares favorably against a fully factorial approximation scheme, approaching the accuracy of a Markov-Chain-EM, while maintaining computational simplicity. We demonstrate the benefits of including measurement errors in the model, in terms of improved outlier detection rates in varying measurement uncertainty conditions. We then use this approach in detecting peculiar quasars from an astrophysical survey, given photometric measurements with errors.
Communication error detection using facial expressions
Wang, Sy Bor, 1976-
2008-01-01T23:59:59.000Z
Automatic detection of communication errors in conversational systems typically rely only on acoustic cues. However, perceptual studies have indicated that speakers do exhibit visual communication error cues passively ...
Harmonic Analysis Errors in Calculating Dipole,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
to reduce the harmonic field calculation errors. A conformal transfor- mation of a multipole magnet into a dipole reduces these errors. Dipole Magnet Calculations A triangular...
Formalism for Simulation-based Optimization of Measurement Errors in High Energy Physics
Yuehong Xie
2009-04-29T23:59:59.000Z
Miminizing errors of the physical parameters of interest should be the ultimate goal of any event selection optimization in high energy physics data analysis involving parameter determination. Quick and reliable error estimation is a crucial ingredient for realizing this goal. In this paper we derive a formalism for direct evaluation of measurement errors using the signal probability density function and large fully simulated signal and background samples without need for data fitting and background modelling. We illustrate the elegance of the formalism in the case of event selection optimization for CP violation measurement in B decays. The implication of this formalism on choosing event variables for data analysis is discussed.
SYSTEMATIC CONTINUUM ERRORS IN THE Ly{alpha} FOREST AND THE MEASURED TEMPERATURE-DENSITY RELATION
Lee, Khee-Gan, E-mail: lee@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)
2012-07-10T23:59:59.000Z
Continuum fitting uncertainties are a major source of error in estimates of the temperature-density relation (usually parameterized as a power-law, T {proportional_to} {Delta}{sup {gamma}-1}) of the intergalactic medium through the flux probability distribution function (PDF) of the Ly{alpha} forest. Using a simple order-of-magnitude calculation, we show that few percent-level systematic errors in the placement of the quasar continuum due to, e.g., a uniform low-absorption Gunn-Peterson component could lead to errors in {gamma} of the order of unity. This is quantified further using a simple semi-analytic model of the Ly{alpha} forest flux PDF. We find that under(over)estimates in the continuum level can lead to a lower (higher) measured value of {gamma}. By fitting models to mock data realizations generated with current observational errors, we find that continuum errors can cause a systematic bias in the estimated temperature-density relation of ({delta}({gamma})) Almost-Equal-To -0.1, while the error is increased to {sigma}{sub {gamma}} Almost-Equal-To 0.2 compared to {sigma}{sub {gamma}} Almost-Equal-To 0.1 in the absence of continuum errors.
Least square fitting with one parameter less
Bernd A. Berg
2015-05-28T23:59:59.000Z
It is shown that whenever the multiplicative normalization of a fitting function is not known, least square fitting by $\\chi^2$ minimization can be performed with one parameter less than usual by converting the normalization parameter into a function of the remaining parameters and the data.
ERROR ANALYSIS OF COMPOSITE SHOCK INTERACTION PROBLEMS.
LEE,T.MU,Y.ZHAO,M.GLIMM,J.LI,X.YE,K.
2004-07-26T23:59:59.000Z
We propose statistical models of uncertainty and error in numerical solutions. To represent errors efficiently in shock physics simulations we propose a composition law. The law allows us to estimate errors in the solutions of composite problems in terms of the errors from simpler ones as discussed in a previous paper. In this paper, we conduct a detailed analysis of the errors. One of our goals is to understand the relative magnitude of the input uncertainty vs. the errors created within the numerical solution. In more detail, we wish to understand the contribution of each wave interaction to the errors observed at the end of the simulation.
Jiang, Boyang
2012-02-14T23:59:59.000Z
As the forecasting models become more sophisticated in their physics and possible depictions of the nearshore hydrodynamics, they also become increasingly sensitive to errors in the inputs. These input errors include: mis-specification of the input...
Developing the next "wow" fitness product
Renjifo, Jorge F. (Renjifo-Mundo)
2007-01-01T23:59:59.000Z
The fitness industry has not seen a commercially successful revolution since the elliptical trainer in the mid 1990s. Newer products such as the Cybex Arc Trainer are vying to replicate this success, but are only slowly ...
Fitting Beef Cattle into Central Texas Farming.
Magee, A. C.
1956-01-01T23:59:59.000Z
Two Monte Carlo studies were conducted to investigate the sensitivity of fit indices in detecting model misspecification in multilevel structural equation models (MSEM) with normally distributed or dichotomous outcome ...
Follow the Family Food and Fitness Formula.
Cooksey, Dymple; Haggard, Marilyn; Hunt, Alice; Sweeten, Mary; Heussner, Mary Ann
1984-01-01T23:59:59.000Z
In this dissertation I examine the intersection of organizational communication and what I name extreme corporate wellness. I define extreme corporate wellness as the push towards more radical fitness and workplace health ...
Fast Fits for Lattice QCD Correlators
K. Hornbostel; G. P. Lepage; C. T. H. Davies; R. J. Dowdall; H. Na; J. Shigemitsu
2011-11-06T23:59:59.000Z
We illustrate a technique for fitting lattice QCD correlators to sums of exponentials that is significantly faster than traditional fitting methods --- 10--40 times faster for the realistic examples we present. Our examples are drawn from a recent analysis of the Upsilon spectrum, and another recent analysis of the D -> pi semileptonic form factor. For single correlators, we show how to simplify traditional effective-mass analyses.
Confirmation of standard error analysis techniques applied to EXAFS using simulations
Booth, Corwin H; Hu, Yung-Jin
2009-12-14T23:59:59.000Z
Systematic uncertainties, such as those in calculated backscattering amplitudes, crystal glitches, etc., not only limit the ultimate accuracy of the EXAFS technique, but also affect the covariance matrix representation of real parameter errors in typical fitting routines. Despite major advances in EXAFS analysis and in understanding all potential uncertainties, these methods are not routinely applied by all EXAFS users. Consequently, reported parameter errors are not reliable in many EXAFS studies in the literature. This situation has made many EXAFS practitioners leery of conventional error analysis applied to EXAFS data. However, conventional error analysis, if properly applied, can teach us more about our data, and even about the power and limitations of the EXAFS technique. Here, we describe the proper application of conventional error analysis to r-space fitting to EXAFS data. Using simulations, we demonstrate the veracity of this analysis by, for instance, showing that the number of independent dat a points from Stern's rule is balanced by the degrees of freedom obtained from a 2 statistical analysis. By applying such analysis to real data, we determine the quantitative effect of systematic errors. In short, this study is intended to remind the EXAFS community about the role of fundamental noise distributions in interpreting our final results.
Power of Alternative Fit Indices for Multiple Group Longitudinal Tests of Measurement Invariance
Short, Stephen David
2014-05-31T23:59:59.000Z
a Monte Carlo simulation to examine the power of change in alternative fit indices to detect two types of measurement invariance, weak and strong, across a variety of manipulated study conditions including sample size, sample size ratio, lack...
Countries Gasoline Prices Including Taxes
Gasoline and Diesel Fuel Update (EIA)
stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium Uranium fuel, nuclear reactors,...
Kernel Regression in the Presence of Correlated Errors Kernel Regression in the Presence in nonparametric regression is difficult in the presence of correlated errors. There exist a wide variety vector machines for regression. Keywords: nonparametric regression, correlated errors, bandwidth choice
Energy efficiency of error correction for wireless communication
Havinga, Paul J.M.
-control is an important issue for mobile computing systems. This includes energy spent in the physical radio transmission and Networking Conference 1999 [7]. #12;ENERGY EFFICIENCY OF ERROR CORRECTION FOR WIRELESS COMMUNICATIONA 2 on the energy of transmission and the energy of redundancy computation. We will show that the computational cost
Method and apparatus for detecting timing errors in a system oscillator
Gliebe, Ronald J. (Library, PA); Kramer, William R. (Bethel Park, PA)
1993-01-01T23:59:59.000Z
A method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.
Optimal data fitting: a moment approach
2007-01-06T23:59:59.000Z
Data fitting problems have long been very useful in many different application areas. A well-known .... natural to ask how good this moment relaxation could be as compared to the original problem and ... In this section, let us assume that fixed.
Neural network approach to parton distributions fitting
Andrea Piccione; Joan Rojo; for the NNPDF Collaboration
2005-10-18T23:59:59.000Z
We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.
Countries Gasoline Prices Including Taxes
Gasoline and Diesel Fuel Update (EIA)
Selected Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 51115 6.15 6.08 6.28 6.83 6.96 6.75 3.06 5415 6.14 6.06...
Cosmographic Hubble fits to the supernova data
Celine Cattoen; Matt Visser
2008-09-03T23:59:59.000Z
The Hubble relation between distance and redshift is a purely cosmographic relation that depends only on the symmetries of a FLRW spacetime, but does not intrinsically make any dynamical assumptions. This suggests that it should be possible to estimate the parameters defining the Hubble relation without making any dynamical assumptions. To test this idea, we perform a number of inter-related cosmographic fits to the legacy05 and gold06 supernova datasets. Based on this supernova data, the "preponderance of evidence" certainly suggests an accelerating universe. However we would argue that (unless one uses additional dynamical and observational information) this conclusion is not currently supported "beyond reasonable doubt". As part of the analysis we develop two particularly transparent graphical representations of the redshift-distance relation -- representations in which acceleration versus deceleration reduces to the question of whether the relevant graph slopes up or down. Turning to the details of the cosmographic fits, three issues in particular concern us: First, the fitted value for the deceleration parameter changes significantly depending on whether one performs a chi^2 fit to the luminosity distance, proper motion distance or other suitable distance surrogate. Second, the fitted value for the deceleration parameter changes significantly depending on whether one uses the traditional redshift variable z, or what we shall argue is on theoretical grounds an improved parameterization y=z/(1+z). Third, the published estimates for systematic uncertainties are sufficiently large that they certainly impact on, and to a large extent undermine, the usual purely statistical tests of significance. We conclude that the supernova data should be treated with some caution.
Representing cognitive activities and errors in HRA trees
Gertman, D.I.
1992-01-01T23:59:59.000Z
A graphic representation method is presented herein for adapting an existing technology--human reliability analysis (HRA) event trees, used to support event sequence logic structures and calculations--to include a representation of the underlying cognitive activity and corresponding errors associated with human performance. The analyst is presented with three potential means of representing human activity: the NUREG/CR-1278 HRA event tree approach; the skill-, rule- and knowledge-based paradigm; and the slips, lapses, and mistakes paradigm. The above approaches for representing human activity are integrated in order to produce an enriched HRA event tree -- the cognitive event tree system (COGENT)-- which, in turn, can be used to increase the analyst's understanding of the basic behavioral mechanisms underlying human error and the representation of that error in probabilistic risk assessment. Issues pertaining to the implementation of COGENT are also discussed.
Representing cognitive activities and errors in HRA trees
Gertman, D.I.
1992-05-01T23:59:59.000Z
A graphic representation method is presented herein for adapting an existing technology--human reliability analysis (HRA) event trees, used to support event sequence logic structures and calculations--to include a representation of the underlying cognitive activity and corresponding errors associated with human performance. The analyst is presented with three potential means of representing human activity: the NUREG/CR-1278 HRA event tree approach; the skill-, rule- and knowledge-based paradigm; and the slips, lapses, and mistakes paradigm. The above approaches for representing human activity are integrated in order to produce an enriched HRA event tree -- the cognitive event tree system (COGENT)-- which, in turn, can be used to increase the analyst`s understanding of the basic behavioral mechanisms underlying human error and the representation of that error in probabilistic risk assessment. Issues pertaining to the implementation of COGENT are also discussed.
Matthews, Daniel J.; Newman, Jeffrey A., E-mail: djm70@pitt.edu, E-mail: janewman@pitt.edu [Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, PA 15260 (United States)
2012-02-01T23:59:59.000Z
Cross-correlation techniques provide a promising avenue for calibrating photometric redshifts and determining redshift distributions using spectroscopy which is systematically incomplete (e.g., current deep spectroscopic surveys fail to obtain secure redshifts for 30%-50% or more of the galaxies targeted). In this paper, we improve on the redshift distribution reconstruction methods from our previous work by incorporating full covariance information into our correlation function fits. Correlation function measurements are strongly covariant between angular or spatial bins, and accounting for this in fitting can yield substantial reduction in errors. However, frequently the covariance matrices used in these calculations are determined from a relatively small set (dozens rather than hundreds) of subsamples or mock catalogs, resulting in noisy covariance matrices whose inversion is ill-conditioned and numerically unstable. We present here a method of conditioning the covariance matrix known as ridge regression which results in a more well behaved inversion than other techniques common in large-scale structure studies. We demonstrate that ridge regression significantly improves the determination of correlation function parameters. We then apply these improved techniques to the problem of reconstructing redshift distributions. By incorporating full covariance information, applying ridge regression, and changing the weighting of fields in obtaining average correlation functions, we obtain reductions in the mean redshift distribution reconstruction error of as much as {approx}40% compared to previous methods. We provide a description of POWERFIT, an IDL code for performing power-law fits to correlation functions with ridge regression conditioning that we are making publicly available.
Degeneracy and Discreteness in Cosmological Model Fitting
Teng, Huan-Yu; Hu, Huan-Chen; Zhang, Tong-Jie
2015-01-01T23:59:59.000Z
We explore the degeneracy and discreteness problems in the standard cosmological model ({\\Lambda}CDM). We use the Observational Hubble Data (OHD) and the type Ia supernova (SNe Ia) data to study this issue. In order to describe the discreteness in fitting of data, we define a factor G to test the influence from each single data point and analyze the goodness of G. Our results indicate that a higher absolute value of G shows a better capability of distinguishing models, which means the parameters are restricted into smaller confidence intervals with a larger figure of merit evaluation. Consequently, we claim that the factor G is an effective way in model differentiation when using different models to fit the observational data.
Error handling strategies in multiphase inverse modeling
Finsterle, S.; Zhang, Y.
2010-12-01T23:59:59.000Z
Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.
Statistical Error analysis of Nucleon-Nucleon phenomenological potentials
R. Navarro Perez; J. E. Amaro; E. Ruiz Arriola
2014-06-10T23:59:59.000Z
Nucleon-Nucleon potentials are commonplace in nuclear physics and are determined from a finite number of experimental data with limited precision sampling the scattering process. We study the statistical assumptions implicit in the standard least squares fitting procedure and apply, along with more conventional tests, a tail sensitive quantile-quantile test as a simple and confident tool to verify the normality of residuals. We show that the fulfilment of normality tests is linked to a judicious and consistent selection of a nucleon-nucleon database. These considerations prove crucial to a proper statistical error analysis and uncertainty propagation. We illustrate these issues by analyzing about 8000 proton-proton and neutron-proton scattering published data. This enables the construction of potentials meeting all statistical requirements necessary for statistical uncertainty estimates in nuclear structure calculations.
Estimating IMU heading error from SAR images.
Doerry, Armin Walter
2009-03-01T23:59:59.000Z
Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.
On a fatal error in tachyonic physics
Edward Kapu?cik
2013-08-10T23:59:59.000Z
A fatal error in the famous paper on tachyons by Gerald Feinberg is pointed out. The correct expressions for energy and momentum of tachyons are derived.
Original Article Error Bounds and Metric Subregularity
2014-06-18T23:59:59.000Z
theory of error bounds of extended real-valued functions. Another objective is to ... Another observation is that neighbourhood V in the original definition of metric.
Automated ligand fitting by core-fragment fitting and extension into density
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Klei, Herbert [Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 4000, Princeton, New Jersey 08543-4000 (United States); Adams, Paul D.; Moriarty, Nigel W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States); Cohn, Judith D. [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States)
2006-08-01T23:59:59.000Z
An automated ligand-fitting procedure has been developed and tested on 9327 ligands and (F{sub o} ? F{sub c})exp(i?{sub c}) difference density from macromolecular structures in the Protein Data Bank. A procedure for fitting of ligands to electron-density maps by first fitting a core fragment of the ligand to density and then extending the remainder of the ligand into density is presented. The approach was tested by fitting 9327 ligands over a wide range of resolutions (most are in the range 0.8-4.8 Å) from the Protein Data Bank (PDB) into (F{sub o} ? F{sub c})exp(i?{sub c}) difference density calculated using entries from the PDB without these ligands. The procedure was able to place 58% of these 9327 ligands within 2 Å (r.m.s.d.) of the coordinates of the atoms in the original PDB entry for that ligand. The success of the fitting procedure was relatively insensitive to the size of the ligand in the range 10–100 non-H atoms and was only moderately sensitive to resolution, with the percentage of ligands placed near the coordinates of the original PDB entry for fits in the range 58–73% over all resolution ranges tested.
Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)
Hodge, B. M.; Milligan, M.
2011-07-01T23:59:59.000Z
This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.
On the evaluation of human error probabilities for post-initiating events
Presley, Mary R
2006-01-01T23:59:59.000Z
Quantification of human error probabilities (HEPs) for the purpose of human reliability assessment (HRA) is very complex. Because of this complexity, the state of the art includes a variety of HRA models, each with its own ...
Probabilistic growth of large entangled states with low error accumulation
Yuichiro Matsuzaki; Simon C Benjamin; Joseph Fitzsimons
2009-08-03T23:59:59.000Z
The creation of complex entangled states, resources that enable quantum computation, can be achieved via simple 'probabilistic' operations which are individually likely to fail. However, typical proposals exploiting this idea carry a severe overhead in terms of the accumulation of errors. Here we describe an method that can rapidly generate large entangled states with an error accumulation that depends only logarithmically on the failure probability. We find that the approach may be practical for success rates in the sub-10% range, while ultimately becoming unfeasible at lower rates. The assumptions that we make, including parallelism and high connectivity, are appropriate for real systems including measurement-induced entanglement. This result therefore shows the feasibility for real devices based on such an approach.
Error Mining on Dependency Trees Claire Gardent
Paris-Sud XI, Université de
Error Mining on Dependency Trees Claire Gardent CNRS, LORIA, UMR 7503 Vandoeuvre-l`es-Nancy, F-l`es-Nancy, F-54600, France shashi.narayan@loria.fr Abstract In recent years, error mining approaches were propose an algorithm for mining trees and ap- ply it to detect the most likely sources of gen- eration
SEU induced errors observed in microprocessor systems
Asenek, V.; Underwood, C.; Oldfield, M. [Univ. of Surrey, Guildford (United Kingdom). Surrey Space Centre] [Univ. of Surrey, Guildford (United Kingdom). Surrey Space Centre; Velazco, R.; Rezgui, S.; Cheynet, P. [TIMA Lab., Grenoble (France)] [TIMA Lab., Grenoble (France); Ecoffet, R. [Centre National d`Etudes Spatiales, Toulouse (France)] [Centre National d`Etudes Spatiales, Toulouse (France)
1998-12-01T23:59:59.000Z
In this paper, the authors present software tools for predicting the rate and nature of observable SEU induced errors in microprocessor systems. These tools are built around a commercial microprocessor simulator and are used to analyze real satellite application systems. Results obtained from simulating the nature of SEU induced errors are shown to correlate with ground-based radiation test data.
Remarks on statistical errors in equivalent widths
Klaus Vollmann; Thomas Eversberg
2006-07-03T23:59:59.000Z
Equivalent width measurements for rapid line variability in atomic spectral lines are degraded by increasing error bars with shorter exposure times. We derive an expression for the error of the line equivalent width $\\sigma(W_\\lambda)$ with respect to pure photon noise statistics and provide a correction value for previous calculations.
Inference for Model Error Allan Seheult
Oakley, Jeremy
Reservoirs, Model Error, Reification, Thermohaline Circulation. 1 Introduction Mathematical models of complex that the uncertainties associated with both calibrating a mathematical model to observations on a physical system specification exercise of model error with the cosmologists, linked to an extensive analysis of model
Nonparametric Regression with Correlated Errors Jean Opsomer
Wang, Yuedong
Nonparametric Regression with Correlated Errors Jean Opsomer Iowa State University Yuedong Wang Nonparametric regression techniques are often sensitive to the presence of correlation in the errors splines and wavelet regression under correlation, both for short-range and long-range dependence
Representations of spectral coordinates in FITS
E. W. Greisen; M. R. Calabretta; F. G. Valdes; S. L. Allen
2005-10-07T23:59:59.000Z
Greisen & Calabretta describe a generalized method for specifying the coordinates of FITS data samples. Following that general method, Calabretta & Greisen describe detailed conventions for defining celestial coordinates as they are projected onto a two-dimensional plane. The present paper extends the discussion to the spectral coordinates of wavelength, frequency, and velocity. World coordinate functions are defined for spectral axes sampled linearly in wavelength, frequency, or velocity, linearly in the logarithm of wavelength or frequency, as projected by ideal dispersing elements, and as specified by a lookup table.
Stabilizer Formalism for Operator Quantum Error Correction
David Poulin
2006-06-14T23:59:59.000Z
Operator quantum error correction is a recently developed theory that provides a generalized framework for active error correction and passive error avoiding schemes. In this paper, we describe these codes in the stabilizer formalism of standard quantum error correction theory. This is achieved by adding a "gauge" group to the standard stabilizer definition of a code that defines an equivalence class between encoded states. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shor's 9-qubit code that allows us to remove 4 of its 8 stabilizer generators, leading to a simpler decoding procedure and a wider class of logical operations without affecting its essential properties. This opens the path to possible improvements of the error threshold of fault-tolerant quantum computing.
Automated ligand fitting by core-fragment fitting and extensioninto density
Terwilliger, Thomas C.; Klei, Herbert; Adams, Paul D.; Moriarty,Nigel W.; Cohn, Judith D.
2006-08-01T23:59:59.000Z
A procedure for fitting of ligands to electron- density mapsby first fitting a core fragment of the ligand to density and thenextending the remainder of the ligand into density is presented. Theapproach was tested by fitting 9327 ligands over a wide range ofresolutions ( most are in the range 0.8-4.8 angstrom) from the ProteinData Bank (PDB) into (F-o - F-c) exp(i phi(c)) difference densitycalculated using entries from the PDB without these ligands. Theprocedure was able to place 58 percent of these 9327 ligands within 2angstrom (r.m. s.d.) of the coordinates of the atoms in the original PDBentry for that ligand. The success of the fitting procedure wasrelatively insensitive to the size of the ligand in the range 10 -100non-H atoms and was only moderately sensitive to resolution, with thepercentage of ligands placed near the coordinates of the original PDBentry for fits in the range 58 - 73 percent over all resolution rangestested.
The FIT Model - Fuel-cycle Integration and Tradeoffs
Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Meliisa C Teague; Gregory M Teske; Kurt G Vedros
2010-09-01T23:59:59.000Z
All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010] are an initial step by the FCR&D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. The question originally posed to the “system losses study” was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for “minimum fuel treatment” approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.
Ferguson, Andrew
2015-01-01T23:59:59.000Z
for therapy, but recent computational advances offer new ways to identify susceptible targets to guide, but certain patterns of mutations enable the virus to escape immune surveillance while maintaining high
A technique for human error analysis (ATHEANA)
Cooper, S.E.; Ramey-Smith, A.M.; Wreathall, J.; Parry, G.W. [and others
1996-05-01T23:59:59.000Z
Probabilistic risk assessment (PRA) has become an important tool in the nuclear power industry, both for the Nuclear Regulatory Commission (NRC) and the operating utilities. Human reliability analysis (HRA) is a critical element of PRA; however, limitations in the analysis of human actions in PRAs have long been recognized as a constraint when using PRA. A multidisciplinary HRA framework has been developed with the objective of providing a structured approach for analyzing operating experience and understanding nuclear plant safety, human error, and the underlying factors that affect them. The concepts of the framework have matured into a rudimentary working HRA method. A trial application of the method has demonstrated that it is possible to identify potentially significant human failure events from actual operating experience which are not generally included in current PRAs, as well as to identify associated performance shaping factors and plant conditions that have an observable impact on the frequency of core damage. A general process was developed, albeit in preliminary form, that addresses the iterative steps of defining human failure events and estimating their probabilities using search schemes. Additionally, a knowledge- base was developed which describes the links between performance shaping factors and resulting unsafe actions.
Effect of shrink fits on threshold speeds of rotordynamic instability
Al-Baz, Khalid A
2001-01-01T23:59:59.000Z
The purpose of this thesis is to study the effect of shrink fits on the threshold speeds of rotor instability. Shrink or press fit components in built-up rotors are known sources of internal friction damping. The internal ...
Page 1 of 1 EMPLOYEE FITNESS FOR DUTY
Acton, Scott
Page 1 of 1 EMPLOYEE FITNESS FOR DUTY INITIAL OBSERVATION REPORT Date of Incident: ___________ Time, confusion Threatening to harm self or others Document other observations related to Fitness for Duty
Error Detection and Error Classification: Failure Awareness in Data Transfer Scheduling
Louisiana State University; Balman, Mehmet; Kosar, Tevfik
2010-10-27T23:59:59.000Z
Data transfer in distributed environment is prone to frequent failures resulting from back-end system level problems, like connectivity failure which is technically untraceable by users. Error messages are not logged efficiently, and sometimes are not relevant/useful from users point-of-view. Our study explores the possibility of an efficient error detection and reporting system for such environments. Prior knowledge about the environment and awareness of the actual reason behind a failure would enable higher level planners to make better and accurate decisions. It is necessary to have well defined error detection and error reporting methods to increase the usability and serviceability of existing data transfer protocols and data management systems. We investigate the applicability of early error detection and error classification techniques and propose an error reporting framework and a failure-aware data transfer life cycle to improve arrangement of data transfer operations and to enhance decision making of data transfer schedulers.
Using Time Perception to Measure Fitness for Duty
Using Time Perception to Measure Fitness for Duty David M. Eagleman Baylor College of Medicine, Houston, Texas Assessing fitness for duty (FFD) typically requires expensive equipment and large time result in avoidable accidents (Rigaud & Flynn, 1995). Currently, the main method for assessing fitness
Tutorial, GECCO'05, Washington D.C. Fitness Approximation
Yang, Shengxiang
1 Tutorial, GECCO'05, Washington D.C. Fitness Approximation in Evolutionary Computation Yaochu Jin Honda Research Institute Europe Khaled Rasheed University of Georgia Tutorial, GECCO'05, Washington D expensive fitness evaluations Tutorial, GECCO'05, Washington D.C. Fitness Approximation Methods · Problem
Multivariate Selection Response and Estimation of Fitness Surfaces
Walsh, Bruce
Multivariate Selection Response and Estimation of Fitness Surfaces 2nd Annual NSF short course: multivariate selection response (response when selection is acting on a vector of traits) and fitness surface traits. Multivariate Selection Response and Estimation of Fitness Surfaces, pg. 1 #12;* + Select All X Y
Cosmographic Hubble fits to the supernova data
Cattoen, Celine
2008-01-01T23:59:59.000Z
The Hubble relation between distance and redshift is a purely cosmographic relation that depends only on the symmetries of a FLRW spacetime, but does not intrinsically make any dynamical assumptions. This suggests that it should be possible to estimate the parameters defining the Hubble relation without making any dynamical assumptions. To test this idea, we perform a number of inter-related cosmographic fits to the legacy05 and gold06 supernova datasets. Based on this supernova data, the "preponderance of evidence" certainly suggests an accelerating universe. However we would argue that (unless one uses additional dynamical and observational information) this conclusion is not currently supported "beyond reasonable doubt". As part of the analysis we develop two particularly transparent graphical representations of the redshift-distance relation -- representations in which acceleration versus deceleration reduces to the question of whether the relevant graph slopes up or down. Turning to the details of the co...
Quantum error-correcting codes and devices
Gottesman, Daniel (Los Alamos, NM)
2000-10-03T23:59:59.000Z
A method of forming quantum error-correcting codes by first forming a stabilizer for a Hilbert space. A quantum information processing device can be formed to implement such quantum codes.
Organizational Errors: Directions for Future Research
Carroll, John Stephen
The goal of this chapter is to promote research about organizational errors—i.e., the actions of multiple organizational participants that deviate from organizationally specified rules and can potentially result in adverse ...
Errors and paradoxes in quantum mechanics
D. Rohrlich
2007-08-28T23:59:59.000Z
Errors and paradoxes in quantum mechanics, entry in the Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, ed. F. Weinert, K. Hentschel, D. Greenberger and B. Falkenburg (Springer), to appear
Simulating Bosonic Baths with Error Bars
Mischa P. Woods; M. Cramer; M. B. Plenio
2015-04-07T23:59:59.000Z
We derive rigorous truncation-error bounds for the spin-boson model and its generalizations to arbitrary quantum systems interacting with bosonic baths. For the numerical simulation of such baths the truncation of both, the number of modes and the local Hilbert-space dimensions is necessary. We derive super-exponential Lieb--Robinson-type bounds on the error when restricting the bath to finitely-many modes and show how the error introduced by truncating the local Hilbert spaces may be efficiently monitored numerically. In this way we give error bounds for approximating the infinite system by a finite-dimensional one. As a consequence, numerical simulations such as the time-evolving density with orthogonal polynomials algorithm (TEDOPA) now allow for the fully certified treatment of the system-environment interaction.
Agility metric sensitivity using linear error theory
Smith, David Matthew
2000-01-01T23:59:59.000Z
Aircraft agility metrics have been proposed for use to measure the performance and capability of aircraft onboard while in-flight. The sensitivity of these metrics to various types of errors and uncertainties is not ...
Parameters and error of a theoretical model
Moeller, P.; Nix, J.R.; Swiatecki, W.
1986-09-01T23:59:59.000Z
We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs.
On the Fourier Transform Approach to Quantum Error Control
Hari Dilip Kumar
2012-08-24T23:59:59.000Z
Quantum codes are subspaces of the state space of a quantum system that are used to protect quantum information. Some common classes of quantum codes are stabilizer (or additive) codes, non-stabilizer (or non-additive) codes obtained from stabilizer codes, and Clifford codes. These are analyzed in a framework using the Fourier transform on finite groups, the finite group in question being a subgroup of the quantum error group considered. All the classes of codes that can be obtained in this framework are explored, including codes more general than Clifford codes. The error detection properties of one of these more general classes ("direct sums of translates of Clifford codes") are characterized. Examples codes are constructed, and computer code search results presented and analysed.
Evaluating operating system vulnerability to memory errors.
Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico); Pedretti, Kevin Thomas Tauke; Mueller, Frank (North Carolina State University); Fiala, David (North Carolina State University); Brightwell, Ronald Brian
2012-05-01T23:59:59.000Z
Reliability is of great concern to the scalability of extreme-scale systems. Of particular concern are soft errors in main memory, which are a leading cause of failures on current systems and are predicted to be the leading cause on future systems. While great effort has gone into designing algorithms and applications that can continue to make progress in the presence of these errors without restarting, the most critical software running on a node, the operating system (OS), is currently left relatively unprotected. OS resiliency is of particular importance because, though this software typically represents a small footprint of a compute node's physical memory, recent studies show more memory errors in this region of memory than the remainder of the system. In this paper, we investigate the soft error vulnerability of two operating systems used in current and future high-performance computing systems: Kitten, the lightweight kernel developed at Sandia National Laboratories, and CLE, a high-performance Linux-based operating system developed by Cray. For each of these platforms, we outline major structures and subsystems that are vulnerable to soft errors and describe methods that could be used to reconstruct damaged state. Our results show the Kitten lightweight operating system may be an easier target to harden against memory errors due to its smaller memory footprint, largely deterministic state, and simpler system structure.
Quantifying truncation errors in effective field theory
R. J. Furnstahl; N. Klco; D. R. Phillips; S. Wesolowski
2015-06-03T23:59:59.000Z
Bayesian procedures designed to quantify truncation errors in perturbative calculations of quantum chromodynamics observables are adapted to expansions in effective field theory (EFT). In the Bayesian approach, such truncation errors are derived from degree-of-belief (DOB) intervals for EFT predictions. Computation of these intervals requires specification of prior probability distributions ("priors") for the expansion coefficients. By encoding expectations about the naturalness of these coefficients, this framework provides a statistical interpretation of the standard EFT procedure where truncation errors are estimated using the order-by-order convergence of the expansion. It also permits exploration of the ways in which such error bars are, and are not, sensitive to assumptions about EFT-coefficient naturalness. We first demonstrate the calculation of Bayesian probability distributions for the EFT truncation error in some representative examples, and then focus on the application of chiral EFT to neutron-proton scattering. Epelbaum, Krebs, and Mei{\\ss}ner recently articulated explicit rules for estimating truncation errors in such EFT calculations of few-nucleon-system properties. We find that their basic procedure emerges generically from one class of naturalness priors considered, and that all such priors result in consistent quantitative predictions for 68% DOB intervals. We then explore several methods by which the convergence properties of the EFT for a set of observables may be used to check the statistical consistency of the EFT expansion parameter.
Hamlen, Kevin W.
Investigating SANS/CWE Top 25 Programming Errors. 1 Investigating the SANS/CWE Top 25 Programming Errors List Running Title: Investigating SANS/CWE Top 25 Programming Errors. Investigating the SANS;Investigating SANS/CWE Top 25 Programming Errors. 2 Investigating the SANS/CWE Top 25 Programming Errors List
One Size Fits All? Part 2: Benchmarking Results Michael Stonebraker1
Liskov, Barbara
and intelligence applications, a relational DBMS, and a widely used mathematical computation tool. In summary advantage. 1. The History of the OSFA Architecture Relational Database Management System (RDBMS) technology code line supporting all DBMS needs. The reasons for this "one size fits all" (OSFA) strategy include
Error Detection and Recovery for Robot Motion Planning with Uncertainty
Donald, Bruce Randall
1987-07-01T23:59:59.000Z
Robots must plan and execute tasks in the presence of uncertainty. Uncertainty arises from sensing errors, control errors, and uncertainty in the geometry of the environment. The last, which is called model error, has ...
A systems approach to reducing utility billing errors
Ogura, Nori
2013-01-01T23:59:59.000Z
Many methods for analyzing the possibility of errors are practiced by organizations who are concerned about safety and error prevention. However, in situations where the error occurrence is random and difficult to track, ...
Lee, Khee-Gan; Spergel, David N. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Suzuki, Nao, E-mail: lee@astro.princeton.edu [E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)
2012-02-15T23:59:59.000Z
Continuum fitting is an important aspect of Ly{alpha} forest science, since errors in the derived optical depths scale with the fractional continuum error. However, traditional methods of estimating continua in noisy and moderate-resolution spectra (e.g., Sloan Digital Sky Survey, SDSS; S/N {approx}< 10 pixel{sup -1} and R {approx} 2000), such as power-law extrapolation or dividing by the mean spectrum, achieve no better than {approx}15% rms accuracy. To improve on this, we introduce mean-flux-regulated principal component analysis (MF-PCA) continuum fitting. In this technique, PCA fitting is carried out redward of the quasar Ly{alpha} line in order to provide a prediction for the shape of the Ly{alpha} forest continuum. The slope and amplitude of this continuum prediction is then corrected using external constraints for the Ly{alpha} forest mean flux. This requires prior knowledge of the mean flux, (F), but significantly improves the accuracy of the flux transmission, F {identical_to} exp (- {tau}), estimated from each pixel. From tests on mock spectra, we find that MF-PCA reduces the errors to 8% rms in S/N {approx} 2 spectra, and <5% rms in spectra with S/N {approx}> 5. The residual Fourier power in the continuum is decreased by a factor of a few in comparison with dividing by the mean continuum, enabling Ly{alpha} flux power spectrum measurements to be extended to {approx}2 Multiplication-Sign larger scales. Using this new technique, we make available continuum fits for 12,069 z > 2.3 Ly{alpha} forest spectra from SDSS Data Release 7 for use by the community. This technique is also applicable to future releases of the ongoing Baryon Oscillations Spectroscopic Survey, which obtains spectra for {approx}150, 000 Ly{alpha} forest spectra at low signal-to-noise (S/N {approx} 2).
Fitting: Subroutine to fit four-moment probability distributions to data
Winterstein, S.R.; Lange, C.H.; Kumar, S. [Stanford Univ., CA (United States)
1995-01-01T23:59:59.000Z
FITTING is a Fortran subroutine that constructs a smooth, generalized four-parameter probability distribution model. It is fit to the first four statistical moments of the random variable X (i.e., average values of X, X{sup 2}, X{sup 3}, and X{sup 4}) which can be calculated from data using the associated subroutine CALMOM. The generalized model is produced from a cubic distortion of the parent model, calibrated to match the first four moments of the data. This four-moment matching is intended to provide models that are more faithful to the data in the upper tail of the distribution. Examples are shown for two specific cases.
Error propagation equations for estimating the uncertainty in high-speed wind tunnel test results
Clark, E.L.
1994-07-01T23:59:59.000Z
Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, and calibration Mach number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-steam Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for five fundamental aerodynamic ratios which relate free-steam test conditions to a reference condition.
Global Error bounds for systems of convex polynomials over ...
2011-11-11T23:59:59.000Z
This paper is devoted to study the Lipschitzian/Holderian type global error ...... set is not neccessarily compact, we obtain the Hölder global error bound result.
Running jobs error: "inet_arp_address_lookup"
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
jobs error: "inetarpaddresslookup" Resolved: Running jobs error: "inetarpaddresslookup" September 22, 2013 by Helen He (0 Comments) Symptom: After the Hopper August 14...
Gershgorin, B. [Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, NY 10012 (United States); Harlim, J. [Department of Mathematics, North Carolina State University, NC 27695 (United States)], E-mail: jharlim@ncsu.edu; Majda, A.J. [Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, NY 10012 (United States)
2010-01-01T23:59:59.000Z
The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. This approach can have significant skill by fitting the parameters to some statistical feature of the true signal; however in the context of real-time prediction, such a strategy performs poorly when intermittent transitions to instability occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating parameters on the fly is a stochastic parameter estimation through partial observations of the true signal. In this paper, we extend our newly developed stochastic parameter estimation strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering sparsely observed spatially extended turbulent systems which exhibit abrupt stability transition from time to time despite a stable average behavior. For our primary numerical example, we consider a turbulent system of externally forced barotropic Rossby waves with instability introduced through intermittent negative damping. We find high filtering skill of SPEKF applied to this toy model even in the case of very sparse observations (with only 15 out of the 105 grid points observed) and with unspecified external forcing and damping. Additive and multiplicative bias corrections are used to learn the unknown features of the true dynamics from observations. We also present a comprehensive study of predictive skill in the one-mode context including the robustness toward variation of stochastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore, the proposed stochastic parameter estimation scheme applied to the same spatially extended Rossby wave system demonstrates high predictive skill, comparable with the skill of the perfect model for a duration of many eddy turnover times especially in the unstable regime.
SU(2) chiral fits to light pseudoscalar masses and decay constants
A. Bazavov; C. Bernard; C. DeTar; X. Du; W. Freeman; Steven Gottlieb; Urs M. Heller; J. E. Hetrick; J. Laiho; L. Levkova; M. B. Oktay; J. Osborn; R. Sugar; D. Toussaint; R. S. Van de Water
2009-11-03T23:59:59.000Z
We present the results of fits to recent asqtad data in the light pseudoscalar sector using SU(2) partially-quenched staggered chiral perturbation theory. Superfine (a~0.06 fm) and ultrafine (a~0.045 fm) ensembles are used, where light sea quark masses and taste splittings are small compared to the strange quark mass. Our fits include continuum NNLO chiral logarithms and analytic terms. We give preliminary results for the pion decay constant, SU(2) low-energy constants and the chiral condensate in the two-flavor chiral limit.
Mather, Mara
Running head: STEREOTYPE THREAT REDUCES MEMORY ERRORS Stereotype threat can reduce older adults, 90089-0191. Phone: 213-740-6772. Email: barbersa@usc.edu #12;STEREOTYPE THREAT REDUCES MEMORY ERRORS 2 Abstract (144 words) Stereotype threat often incurs the cost of reducing the amount of information
Jonathan Thornburg
2010-06-18T23:59:59.000Z
If a small "particle" of mass $\\mu M$ (with $\\mu \\ll 1$) orbits a Schwarzschild or Kerr black hole of mass $M$, the particle is subject to an $\\O(\\mu)$ radiation-reaction "self-force". Here I argue that it's valuable to compute this self-force highly accurately (relative error of $\\ltsim 10^{-6}$) and efficiently, and I describe techniques for doing this and for obtaining and validating error estimates for the computation. I use an adaptive-mesh-refinement (AMR) time-domain numerical integration of the perturbation equations in the Barack-Ori mode-sum regularization formalism; this is efficient, yet allows easy generalization to arbitrary particle orbits. I focus on the model problem of a scalar particle in a circular geodesic orbit in Schwarzschild spacetime. The mode-sum formalism gives the self-force as an infinite sum of regularized spherical-harmonic modes $\\sum_{\\ell=0}^\\infty F_{\\ell,\\reg}$, with $F_{\\ell,\\reg}$ (and an "internal" error estimate) computed numerically for $\\ell \\ltsim 30$ and estimated for larger~$\\ell$ by fitting an asymptotic "tail" series. Here I validate the internal error estimates for the individual $F_{\\ell,\\reg}$ using a large set of numerical self-force computations of widely-varying accuracies. I present numerical evidence that the actual numerical errors in $F_{\\ell,\\reg}$ for different~$\\ell$ are at most weakly correlated, so the usual statistical error estimates are valid for computing the self-force. I show that the tail fit is numerically ill-conditioned, but this can be mostly alleviated by renormalizing the basis functions to have similar magnitudes. Using AMR, fixed mesh refinement, and extended-precision floating-point arithmetic, I obtain the (contravariant) radial component of the self-force for a particle in a circular geodesic orbit of areal radius $r = 10M$ to within $1$~ppm relative error.
On the Error in QR Integration
Dieci, Luca; Van Vleck, Erik
2008-03-07T23:59:59.000Z
] . . . [R(t2, t1) +E2][R(t1, t0) +E1]R(t0) , k = 1, 2, . . . , where Q(tk) is the exact Q-factor at tk and the triangular transitions R(tj , tj?1) are also the exact ones. Moreover, the factors Ej , j = 1, . . . , k, are bounded in norm by the local error... committed during integration of the relevant differential equations; see Theorems 3.1 and 3.16.” We will henceforth simply write (2.7) ?Ej? ? ?, j = 1, 2, . . . , and stress that ? is computable, in fact controllable, in terms of local error tolerances...
Recent experiences with error estimation and adaptivity
Haque, Khalid Ansar
1991-01-01T23:59:59.000Z
RECENT EXPERIENCES WITH ERROR ESTIMATION AND ADAPTIVITY A Thesis by K HA LID ANSA R I I A & )UE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1991 Major Subject: Aerospace Engineering RECENT EXPERIENCES WITH ERROR ESTIMATION AND ADAPTIVITY A Thesis by KHALID ANSAR HAQUE Approved as to style and content by: W b4 f. ou Lou (i s T. Strouboulis (Chair of Committee) W. E...
Laser Phase Errors in Seeded FELs
Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC
2012-03-28T23:59:59.000Z
Harmonic seeding of free electron lasers has attracted significant attention from the promise of transform-limited pulses in the soft X-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.
Fitting the Galaxy Rotation Curves: Strings versus NFW profile
Yeuk-Kwan E. Cheung; Feng Xu
2008-10-14T23:59:59.000Z
Remarkable fit of galaxy rotation curves is achieved using a simple model from string theory. The rotation curves of the same group of galaxies are also fit using dark matter model with the generalized Navarro-Frenk-White profile for comparison. String model utilizes three free parameters vs five in the dark matter model. The average chi-squared of the string model fit is 1.649 while that of the dark matter model is 1.513. The generalized NFW profile fits marginally better at a price of two more free parameters.
A self-checking fiber optic dosimeter for monitoring common errors in brachytherapy applications
Yin, Y.; Lambert, J.; Yang, S.; McKenzie, D. R.; Jackson, M.; Suchowerska, N. [Physics School, University of Sydney, New South Wales 2006 (Australia); Physics School, University of Sydney, New South Wales 2006 (Australia) and Department of Radiation Oncology, Royal Prince Alfred Hospital, New South Wales 2050 (Australia); Physics School, University of Sydney, New South Wales 2006 (Australia); Department of Radiation Oncology, Royal Prince Alfred Hospital, New South Wales 2050 (Australia); Physics School, University of Sydney, New South Wales 2006 (Australia) and Department of Radiation Oncology, Royal Prince Alfred Hospital, New South Wales 2050 (Australia)
2009-07-15T23:59:59.000Z
Scintillation dosimetry with optical fiber readout [fiber optic dosimetry (FOD)] requires accurate measurement of light intensity. It is therefore vulnerable to loss of calibration if any changes occur in the efficiency of the optical pathway between the scintillator and the light detector. The authors show in this article that common types of errors that arise during clinical use for brachytherapy applications can be quantified using a light emitting diode to stimulate the scintillator, the so-called LED-FOD method, in an integrated and easy-to-use control unit that incorporates a compact peripheral component interconnect extension for instrumentation. Common sources of error include bending and mechanical compression of the fiber optic components and changes in the temperature of the scintillator. The authors show that the method can detect all the common errors studied in this work and that different types of errors can result in different correlations between the LED stimulated signal and the brachytherapy source signal. For a single-type error the LED-FOD can be used easily for system diagnosis and validation with the possibility to correct the dosimeter reading if the correlation between the LED stimulated signal and the brachytherapy source signal can be defined. For more complex errors, resulting from two or more errors occurring simultaneously, the LED-FOD method can also allow the clinician to make a judgment on the reliability of the dosimeter reading. This self-checking method can enhance the clinical robustness of the FOD for achieving accurate dose control.
Prices include compostable serviceware and linen tablecloths
California at Davis, University of
APPETIZERS Prices include compostable serviceware and linen tablecloths for the food tables.ucdavis.edu. BUTTERNUT SQUASH & BLACK BEAN ENCHILADAS #12;BUFFETS Prices include compostable serviceware and linen
Error analysis of nuclear forces and effective interactions
R. Navarro Perez; J. E. Amaro; E. Ruiz Arriola
2014-09-04T23:59:59.000Z
The Nucleon-Nucleon interaction is the starting point for ab initio Nuclear Structure and Nuclear reactions calculations. Those are effectively carried out via effective interactions fitting scattering data up to a maximal center of mass momentum. However, NN interactions are subjected to statistical and systematic uncertainties which are expected to propagate and have some impact on the predictive power and accuracy of theoretical calculations, regardless on the numerical accuracy of the method used to solve the many body problem. We stress the necessary conditions required for a correct and self-consistent statistical interpretation of the discrepancies between theory and experiment which enable a subsequent statistical error propagation and correlation analysis. We comprehensively discuss an stringent and recently proposed tail-sensitive normality test and provide a simple recipe to implement it. As an application, we analyze the deduced uncertainties and correlations of effective interactions in terms of Moshinsky-Skyrme parameters and effective field theory counterterms as derived from the bare NN potential containing One-Pion-Exchange and Chiral Two-Pion-Exchange interactions inferred from scattering data.
Analysis of Solar Two Heliostat Tracking Error Sources
Jones, S.A.; Stone, K.W.
1999-01-28T23:59:59.000Z
This paper explores the geometrical errors that reduce heliostat tracking accuracy at Solar Two. The basic heliostat control architecture is described. Then, the three dominant error sources are described and their effect on heliostat tracking is visually illustrated. The strategy currently used to minimize, but not truly correct, these error sources is also shown. Finally, a novel approach to minimizing error is presented.
High Performance Dense Linear System Solver with Soft Error Resilience
Dongarra, Jack
High Performance Dense Linear System Solver with Soft Error Resilience Peng Du, Piotr Luszczek systems, and in some scientific applications C/R is not applicable for soft error at all due to error) high performance dense linear system solver with soft error resilience. By adopting a mathematical
Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)
Hodge, B. M.; Ela, E.; Milligan, M.
2011-10-01T23:59:59.000Z
This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.
Lateral boundary errors in regional numerical weather
?umer, Slobodan
Lateral boundary errors in regional numerical weather prediction models Author: Ana Car Advisor weather services for short- range forecasts. These models are covering smaller areas with higher reso Introduction Equations for numerical weather prediction (NWP) are mathematical represen- ation of physical
MEASUREMENT AND CORRECTION OF ULTRASONIC ANEMOMETER ERRORS
Heinemann, Detlev
commonly show systematic errors depending on wind speed due to inaccurate ultrasonic transducer mounting three- dimensional wind speed time series. Results for the variance and power spectra are shown. 1 wind speeds with ultrasonic anemometers: The measu- red flow is distorted by the probe head
Aschwanden, Markus J. [Lockheed Martin Advanced Technology Center, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Sun, Xudong; Liu, Yang, E-mail: aschwanden@lmsal.com, E-mail: xudongs@stanford.edu, E-mail: yliu@sun.stanford.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)
2014-04-10T23:59:59.000Z
We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential E{sub N} and potential energy E{sub P} but find up to a factor of 4 discrepancy in the free energy E {sub free} = E{sub N} – E{sub P} and up to a factor of 10 discrepancy in the decrease of the free energy ?E {sub free} during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.
Alternative cosmology fits supernovae redshifts with no dark energyy
Francis J. M. Farley
2009-03-17T23:59:59.000Z
Supernovae and radio galaxy redshift data are fitted in an alternative cosmology. The galaxies are assumed to recede with unchanging velocities in a static Robertson-Walker metric with a(t) = 1. An exact fit is obtained with no adjustable parameters. There is no indication that the recession velocities are changing with time, so no call for "dark energy".
Searching the Clinical Fitness Landscape Margaret J. Eppstein1
Eppstein, Margaret J.
Abstract Widespread unexplained variations in clinical practices and patient outcomes suggest major in expected patient outcomes than more traditional approaches in searching simulated clinical fitnessSearching the Clinical Fitness Landscape Margaret J. Eppstein1 *, Jeffrey D. Horbar2,4 , Jeffrey S
Metrics Are Fitness Functions Too Mark Harman John Clark
Singer, Jeremy
that there is an alternative, complementary, view of a metric: as a fitness function, used to guide a search for optimal' (MAFF) approach offers a number of additional benefits to metrics research and practice because systems. It describes the properties of a metric which make it a good fitness function and explains
Single-channel fits and K-matrix constraints
R. L. Workman
2006-01-10T23:59:59.000Z
A K-matrix formalism is used to relate single-channel and multi-channel fits. We show how the single-channel formalism changes as new hadronic channels become accessible. These relations are compared to those commonly used to fit pseudoscalar meson photoproduction data.
Makarenkov, Vladimir
- mentaldatarequiresan efficientautomaticroutinefor theselection of hits. Unfortunately, random and systematic errors can
Press fit design : force and torque testing of steel dowel pins in brass and nylon samples
Nelson, Alexandra T
2006-01-01T23:59:59.000Z
An experimental study was conducted to determine the accuracy of current press fit theory when applied to press fit design. Brass and nylon hex samples were press fitted with hardened steel dowel pins. Press fit force and ...
Specified pipe fittings susceptible to sulfide stress cracking
McIntyre, D.R.; Moore, E.M. Jr. [Saudi Aramco, Dhahran (Saudi Arabia)
1996-01-01T23:59:59.000Z
The NACE Standard MR0175 limit of HRC 22 is too high for cold-forged and stress-relieved ASTM A234 WPB pipe fittings. Hardness surveys and sulfide stress cracking test results per ASTM G 39 and NACE TM0177 Method B are presented to support this contention. More stringent inspection and a hardness limit of HB 197 (for cold-forged and stress-relieved fittings only) are recommended. The paper describes a case in which fittings were welded in place in wet sour service flow lines and gas-oil separating plants which were ready to start. The failure of a welded fitting shortly after start-up led to extensive field hardness testing on all fittings from this manufacturer.
Improving Planck calibration by including frequency-dependent relativistic corrections
Quartin, Miguel
2015-01-01T23:59:59.000Z
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10^(-3), due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
Heat Pump Water Heaters and American Homes: A Good Fit?
Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie
2010-05-14T23:59:59.000Z
Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.
Quantum Latin squares and unitary error bases
Benjamin Musto; Jamie Vicary
2015-04-10T23:59:59.000Z
In this paper we introduce quantum Latin squares, combinatorial quantum objects which generalize classical Latin squares, and investigate their applications in quantum computer science. Our main results are on applications to unitary error bases (UEBs), basic structures in quantum information which lie at the heart of procedures such as teleportation, dense coding and error correction. We present a new method for constructing a UEB from a quantum Latin square equipped with extra data. Developing construction techniques for UEBs has been a major activity in quantum computation, with three primary methods proposed: shift-and-multiply, Hadamard, and algebraic. We show that our new approach simultaneously generalizes the shift-and-multiply and Hadamard methods. Furthermore, we explicitly construct a UEB using our technique which we prove cannot be obtained from any of these existing methods.
Global fits to neutrino oscillation data
Thomas Schwetz
2006-06-06T23:59:59.000Z
I summarize the determination of neutrino oscillation parameters within the three-flavor framework from world neutrino oscillation data with date of May 2006, including the first results from the MINOS long-baseline experiment. It is illustrated how the determination of the leading "solar" and "atmospheric" parameters, as well as the bound on $\\theta_{13}$ emerge from an interplay of various complementary data sets. Furthermore, I discuss possible implications of sub-leading three-flavor effects in present atmospheric neutrino data induced by $\\Delta m^2_{21}$ and $\\theta_{13}$ for the bound on $\\theta_{13}$ and non-maximal values of $\\theta_{23}$, emphasizing, however, that these effects are not statistically significant at present. Finally, in view of the upcoming MiniBooNE results I briefly comment on the problem to reconcile the LSND signal.
Gross error detection in process data
Singh, Gurmeet
1992-01-01T23:59:59.000Z
, 1991), with many optimum properties, seems to have been untapped by chemical engineers. We first review the background of the Tr test, and present relevant properties of the test. IV. A Hotelling's Generalization of Students t Test One of the most...: Chemical Engineering GROSS ERROR DETECTION IN PROCESS DATA A Thesis by GURMEET SINGH Approved as to style and content by: Ralph E. White (Chair of Committee) Michael Nikoloau (Member Richard B. Gri n (Member) R. W. Flummerfelt (Head...
Improving Memory Error Handling Using Linux
Carlton, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blanchard, Sean P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Debardeleben, Nathan A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-07-25T23:59:59.000Z
As supercomputers continue to get faster and more powerful in the future, they will also have more nodes. If nothing is done, then the amount of memory in supercomputer clusters will soon grow large enough that memory failures will be unmanageable to deal with by manually replacing memory DIMMs. "Improving Memory Error Handling Using Linux" is a process oriented method to solve this problem by using the Linux kernel to disable (offline) faulty memory pages containing bad addresses, preventing them from being used again by a process. The process of offlining memory pages simplifies error handling and results in reducing both hardware and manpower costs required to run Los Alamos National Laboratory (LANL) clusters. This process will be necessary for the future of supercomputing to allow the development of exascale computers. It will not be feasible without memory error handling to manually replace the number of DIMMs that will fail daily on a machine consisting of 32-128 petabytes of memory. Testing reveals the process of offlining memory pages works and is relatively simple to use. As more and more testing is conducted, the entire process will be automated within the high-performance computing (HPC) monitoring software, Zenoss, at LANL.
Comments on Different techniques for finding best-fit parameters
Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Triplett, Laurie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-07-01T23:59:59.000Z
A common data analysis problem is to find best-fit parameters through chi-square minimization. Levenberg-Marquardt is an often used system that depends on gradients and converges when successive iterations do not change chi-square more than a specified amount. We point out in cases where the sought-after parameter weakly affects the fit and cases where the overall scale factor is a parameter, that a Golden Search technique can often do better. The Golden Search converges when the best-fit point is within a specified range and that range can be made arbitrarily small. It does not depend on the value of chi-square.
Message passing in fault tolerant quantum error correction
Z. W. E. Evans; A. M. Stephens
2008-06-13T23:59:59.000Z
Inspired by Knill's scheme for message passing error detection, here we develop a scheme for message passing error correction for the nine-qubit Bacon-Shor code. We show that for two levels of concatenated error correction, where classical information obtained at the first level is used to help interpret the syndrome at the second level, our scheme will correct all cases with four physical errors. This results in a reduction of the logical failure rate relative to conventional error correction by a factor proportional to the reciprocal of the physical error rate.
Shared dosimetry error in epidemiological dose-response analyses
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo
2015-03-23T23:59:59.000Z
Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore »up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope ? is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of ?) is biased for ??0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less
Progress in Understanding Error-field Physics in NSTX Spherical Torus Plasmas
E. Menard, R.E. Bell, D.A. Gates, S.P. Gerhardt, J.-K. Park, S.A. Sabbagh, J.W. Berkery, A. Egan, J. Kallman, S.M. Kaye, B. LeBlanc, Y.Q. Liu, A. Sontag, D. Swanson, H. Yuh, W. Zhu and the NSTX Research Team
2010-05-19T23:59:59.000Z
The low aspect ratio, low magnetic field, and wide range of plasma beta of NSTX plasmas provide new insight into the origins and effects of magnetic field errors. An extensive array of magnetic sensors has been used to analyze error fields, to measure error field amplification, and to detect resistive wall modes in real time. The measured normalized error-field threshold for the onset of locked modes shows a linear scaling with plasma density, a weak to inverse dependence on toroidal field, and a positive scaling with magnetic shear. These results extrapolate to a favorable error field threshold for ITER. For these low-beta locked-mode plasmas, perturbed equilibrium calculations find that the plasma response must be included to explain the empirically determined optimal correction of NSTX error fields. In high-beta NSTX plasmas exceeding the n=1 no-wall stability limit where the RWM is stabilized by plasma rotation, active suppression of n=1 amplified error fields and the correction of recently discovered intrinsic n=3 error fields have led to sustained high rotation and record durations free of low-frequency core MHD activity. For sustained rotational stabilization of the n=1 RWM, both the rotation threshold and magnitude of the amplification are important. At fixed normalized dissipation, kinetic damping models predict rotation thresholds for RWM stabilization to scale nearly linearly with particle orbit frequency. Studies for NSTX find that orbit frequencies computed in general geometry can deviate significantly from those computed in the high aspect ratio and circular plasma cross-section limit, and these differences can strongly influence the predicted RWM stability. The measured and predicted RWM stability is found to be very sensitive to the E × B rotation profile near the plasma edge, and the measured critical rotation for the RWM is approximately a factor of two higher than predicted by the MARS-F code using the semi-kinetic damping model.
Equilibrium Distribution of Mutators in the Single Fitness Peak Model
Tannenbaum, Emmanuel; Deeds, Eric J.; Shakhnovich, Eugene I.
2003-09-26T23:59:59.000Z
This Letter develops an analytically tractable model for determining the equilibrium distribution of mismatch repair deficient strains in unicellular populations. The approach is based on the single fitness peak model, ...
Effect of shrink fits on threshold speeds of rotordynamic instability
Mir, MD. Mofazzal Hossain
2001-01-01T23:59:59.000Z
An investigation of the effect of shrink fits on threshold speeds of rotordynamic instability has been performed. It is known that running rotors at supercritical speed can result in some rotordynamic problems (asynchronous ...
Shrink fit effects on rotordynamic stability: experimental and theoretical study
Jafri, Syed Muhammad Mohsin
2007-09-17T23:59:59.000Z
This dissertation presents an experimental and theoretical study of subsynchronous rotordynamic instability in rotors caused by interference and shrink fit interfaces. The experimental studies show the presence of strong ...
Frequentist-Bayes Goodness-of-fit Tests
Wang, Qi
2012-10-19T23:59:59.000Z
In this dissertation, the classical problems of testing goodness-of-fit of uniformity and parametric families are reconsidered. A new omnibus test for these problems is proposed and investigated. The new test statistics ...
Fit Index Sensitivity in Multilevel Structural Equation Modeling
Boulton, Aaron Jacob
2011-07-29T23:59:59.000Z
Multilevel Structural Equation Modeling (MSEM) is used to estimate latent variable models in the presence of multilevel data. A key feature of MSEM is its ability to quantify the extent to which a hypothesized model fits ...
Fitness Uniform Deletion: A Simple Way to Preserve Diversity
Hutter, Marcus
is the gradual decline in population diversity that tends to occur over time. This can slow a system's progress. In this paper we present the Fitness Uniform Deletion Scheme (FUDS), a simple but somewhat unconventional ap
Shrink fit effects on rotordynamic stability: experimental and theoretical study
Jafri, Syed Muhammad Mohsin
2007-09-17T23:59:59.000Z
This dissertation presents an experimental and theoretical study of subsynchronous rotordynamic instability in rotors caused by interference and shrink fit interfaces. The experimental studies show the presence of strong unstable subsynchronous...
A Note on Fitting ideals Jonathan A. Huang
Yorke, James
by H. Fitting; the canonical reference is D. G. Northcott's textbook Finite Free Resolutions ideal F , created from Gauss sums, is contained in the annihilator ideal of ClF ; a more general
Exercise and Fitness Guidelines for Elementary and Middle School Children
Greene, Leon; Adeyanju, Matthew
1991-05-01T23:59:59.000Z
In 1986, the President's Council on Physical Fitness and Sport released results showing that American youth were not in good physical condition and that schools needed to reemphasize physical education. Within the last 15 ...
LADWP- Feed-in Tariff (FiT) Program (California)
Broader source: Energy.gov [DOE]
Note: LADWP accepted applications for the second 20 MW allocation of the 100 MW FiT Set Pricing Program between July 8 and July 12, 2013. This program is the first component of a 150 megawatt (MW)...
Evolving Musical Performance Profiles Using Genetic Algorithms with Structural Fitness
Miranda, Eduardo Reck
Evolving Musical Performance Profiles Using Genetic Algorithms with Structural Fitness Qijun Zhang Eduardo Reck Miranda Computer Music Research School of Computing, communications and Electronics.e., hierarchical duration vs. amplitude matrices) for expressive music performance by machines. The performance
Structural connections in plywood friction-fit construction
Wagner, Mali E. (Mali Esther)
2014-01-01T23:59:59.000Z
CNC mills allow precise fabrication of planar parts with embedded joinery which can be assembled into complex 3D geometries without the use of foreign mechanical fasteners. This thesis studies the behavior of the friction-fit ...
LADWP- Feed-in Tariff (FiT) Program
Broader source: Energy.gov [DOE]
LADWP is providing a Feed-in Tariff (FiT) program to support the development of renewable energy projects in its territory. All technologies eligible for compliance with the state's renewables po...
FCourse: Learn to Swim Level 6: Fitness Swimmer
Azevedo, Ricardo
Purpose To refine strokes so participants swim them with more ease, efficiency, power and smoothness Pull buoy o Fins o Pace clock o Paddles Describe the principles of setting up a fitness program
AHA Recognizes Fit-Friendly Worksites at SRS
Broader source: Energy.gov [DOE]
AIKEN, S.C. – Two contractors supporting the EM program at the Savannah River Site (SRS) were recognized recently as Fit-Friendly Worksites by the American Heart Association (AHA).
Multi-Ridge Fitting for Ring-Diagram Helioseismology
Greer, Benjamin J; Toomre, Juri
2014-01-01T23:59:59.000Z
Inferences of sub-surface flow velocities using local domain ring-diagram helioseismology depend on measuring the frequency splittings of oscillation modes seen in acoustic power spectra. Current methods for making these measurements utilize maximum-likelihood fitting techniques to match a model of modal power to the spectra. The model typically describes a single oscillation mode, and each mode in a given power spectrum is fit independently. We present a new method that produces measurements with greater reliability and accuracy by fitting multiple modes simultaneously. We demonstrate how this method permits measurements of sub-surface flows deeper into the Sun while providing higher uniformity in data coverage and velocity response closer to the limb of the solar disk. While the previous fitting method performs better for some measurements of low-phase-speed modes, we find this new method to be particularly useful for high phase-speed modes and small spatial areas.
Fitting In: Extreme Corporate Wellness and Organizational Communication
James, Eric Preston
2014-07-31T23:59:59.000Z
In this dissertation I examine the intersection of organizational communication and what I name extreme corporate wellness. I define extreme corporate wellness as the push towards more radical fitness and workplace health ...
MHK technologies include current energy conversion
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
research leverages decades of experience in engineering and design and analysis (D&A) of wind power technologies, and its vast research complex, including high-performance...
Averaging cross section data so we can fit it
Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC
2014-10-23T23:59:59.000Z
The ^{56}Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
The effect of temperature and humidity on respirator fit
Niekerk, Gary
1986-01-01T23:59:59.000Z
THE EFFECT OF TEMPERATURE AND HUMIDITY ON RESPIRATOR FIT A Thesis by GARY NIEKERK Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1986 Maj... or Subject: Industr ial Hygiene THE EFFECT OF TEMPERATURE AND HUMIDITY ON RESPIRATOR FIT A Thesis by Gary Niekerk Approved as to style and content by: c . o n ( Chairman of Coami ttee) a . e non (Member) anie . ones (Member) e an . an (Head...
New insights on numerical error in symplectic integration
Hugo Jiménez-Pérez; Jean-Pierre Vilotte; Barbara Romanowicz
2015-08-13T23:59:59.000Z
We implement and investigate the numerical properties of a new family of integrators connecting both variants of the symplectic Euler schemes, and including an alternative to the classical symplectic mid-point scheme, with some additional terms. This family is derived from a new method, introduced in a previous study, for generating symplectic integrators based on the concept of special symplectic manifold. The use of symplectic rotations and a particular type of projection keeps the whole procedure within the symplectic framework. We show that it is possible to define a set of parameters that control the additional terms providing a way of "tuning" these new symplectic schemes. We test the "tuned" symplectic integrators with the perturbed pendulum and we compare its behavior with an explicit scheme for perturbed systems. Remarkably, for the given examples, the error in the energy integral can be reduced considerably. There is a natural geometrical explanation, sketched at the end of this paper. This is the subject of a parallel article where a finer analysis is performed. Numerical results obtained in this paper open a new point of view on symplectic integrators and Hamiltonian error.
Human error contribution to nuclear materials-handling events
Sutton, Bradley (Bradley Jordan)
2007-01-01T23:59:59.000Z
This thesis analyzes a sample of 15 fuel-handling events from the past ten years at commercial nuclear reactors with significant human error contributions in order to detail the contribution of human error to fuel-handling ...
Evolved Error Management Biases in the Attribution of Anger
Galperin, Andrew
2012-01-01T23:59:59.000Z
von Hippel, W. , Poore, J. C. , Buss, D. M. , et al. (under27, 733-763. Haselton, M. G. , & Buss, D. M. (2000). Error27, 733-763. Haselton, M. G. , & Buss, D. M. (2000). Error
Efficient Semiparametric Estimators for Biological, Genetic, and Measurement Error Applications
Garcia, Tanya
2012-10-19T23:59:59.000Z
to the models considered in Tsiatis and Ma (2004), our model is less stringent because it allows an unspecified model error distribution and unspecified covariate distribution, not just the latter. With an unspecified model error distribution, the RMM... with measurement error is a very different problem compared to the model considered in Tsiatis and Ma (2004), where the model error distribution has a known parametric form. Consequently, the semiparamet- ric treatment here is also drastically different. Our...
Franklin Trouble Shooting and Error Messages
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirt DocumentationSitesWeather6Environmental1 |MAgnEt forFirstFourth FridayTrouble Shooting and Error
Error Analysis in Nuclear Density Functional Theory
Nicolas Schunck; Jordan D. McDonnell; Jason Sarich; Stefan M. Wild; Dave Higdon
2014-07-11T23:59:59.000Z
Nuclear density functional theory (DFT) is the only microscopic, global approach to the structure of atomic nuclei. It is used in numerous applications, from determining the limits of stability to gaining a deep understanding of the formation of elements in the universe or the mechanisms that power stars and reactors. The predictive power of the theory depends on the amount of physics embedded in the energy density functional as well as on efficient ways to determine a small number of free parameters and solve the DFT equations. In this article, we discuss the various sources of uncertainties and errors encountered in DFT and possible methods to quantify these uncertainties in a rigorous manner.
A method for the quantification of model form error associated with physical systems.
Wallen, Samuel P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-03-01T23:59:59.000Z
In the process of model validation, models are often declared valid when the differences between model predictions and experimental data sets are satisfactorily small. However, little consideration is given to the effectiveness of a model using parameters that deviate slightly from those that were fitted to data, such as a higher load level. Furthermore, few means exist to compare and choose between two or more models that reproduce data equally well. These issues can be addressed by analyzing model form error, which is the error associated with the differences between the physical phenomena captured by models and that of the real system. This report presents a new quantitative method for model form error analysis and applies it to data taken from experiments on tape joint bending vibrations. Two models for the tape joint system are compared, and suggestions for future improvements to the method are given. As the available data set is too small to draw any statistical conclusions, the focus of this paper is the development of a methodology that can be applied to general problems.
ERROR MODELS FOR LIGHT SENSORS BY STATISTICAL ANALYSIS OF RAW SENSOR MEASUREMENTS
Potkonjak, Miodrag
silicon solar cell that converts light impulses directly into electrical charges that can easily-based systems including calibration, sensor fusion and power management. We developed a system of statistical the standard procedure is to use error models to enable calibration, in a variant of our approach, we use
ERROR-TOLERANT MULTI-MODAL SENSOR FUSION (SHORT PAPER) Farinaz Koushanfar*
ERROR-TOLERANT MULTI-MODAL SENSOR FUSION (SHORT PAPER) Farinaz Koushanfar* , Sasha Slijepcevic ESN tasks is multi-modal sensor fusion, where data from sensors of dif- ferent modalities are combined ESN applications, including multi- modal sensor fusion, is to ensure that all of the techniques
A Taxonomy of Number Entry Error Sarah Wiseman
Subramanian, Sriram
A Taxonomy of Number Entry Error Sarah Wiseman UCLIC MPEB, Malet Place London, WC1E 7JE sarah and the subsequent process of creating a taxonomy of errors from the information gathered. A total of 345 errors were. These codes are then organised into a taxonomy similar to that of Zhang et al (2004). We show how
Susceptibility of Commodity Systems and Software to Memory Soft Errors
Riska, Alma
Susceptibility of Commodity Systems and Software to Memory Soft Errors Alan Messer, Member, IEEE Abstract--It is widely understood that most system downtime is acounted for by programming errors transient errors in computer system hardware due to external factors, such as cosmic rays. This work
Predictors of Threat and Error Management: Identification of Core
Predictors of Threat and Error Management: Identification of Core Nontechnical Skills In normal flight operations, crews are faced with a variety of external threats and commit a range of errors of these threats and errors therefore forms an essential element of enhancing performance and minimizing risk
Bolstered Error Estimation Ulisses Braga-Neto a,c
Braga-Neto, Ulisses
the bolstered error estimators proposed in this paper, as part of a larger library for classification and error of the data. It has a direct geometric interpretation and can be easily applied to any classification rule as smoothed error estimation. In some important cases, such as a linear classification rule with a Gaussian
Error rate and power dissipation in nano-logic devices
Kim, Jong Un
2004-01-01T23:59:59.000Z
Current-controlled logic and single electron logic processors have been investigated with respect to thermal-induced bit error. A maximal error rate for both logic processors is regarded as one bit-error/year/chip. A maximal clock frequency...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth; Arkin, Adam P.; et al
2015-05-12T23:59:59.000Z
Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore »transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are too laborious to be applied to hundreds of experimental conditions across multiple bacteria. Here, we describe an approach, random bar code transposon-site sequencing (RB-TnSeq), which greatly simplifies the measurement of gene fitness by using bar code sequencing (BarSeq) to monitor the abundance of mutants. We performed 387 genome-wide fitness assays across five bacteria and identified phenotypes for over 5,000 genes. RB-TnSeq can be applied to diverse bacteria and is a powerful tool to annotate uncharacterized genes using phenotype data.« less
Sessions include: Beginning Farmer and Rancher
Watson, Craig A.
Sessions include: Beginning Farmer and Rancher New Markets and Regulations Food Safety Good Bug, Bad Bug ID Horticulture Hydroponics Livestock and Pastured Poultry Mushrooms Organic Live animal exhibits Saturday evening social, and Local foods Florida Small Farms and Alternative
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2014-11-25T23:59:59.000Z
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2013-02-19T23:59:59.000Z
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Polian, Ilia
of soft errors in modern microprocessors has been reported to never lead to a system failure. Any techniques are enhanced by a methodology to handle soft errors on address bits. Furthermore, we demonstrate]. Consequently, many state-of-the art systems provide soft error detection and correction capabilities [Hass 89
Technological Advancements and Error Rates in Radiation Therapy Delivery
Margalit, Danielle N., E-mail: dmargalit@partners.org [Harvard Radiation Oncology Program, Boston, MA (United States); Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA (United States); Chen, Yu-Hui; Catalano, Paul J.; Heckman, Kenneth; Vivenzio, Todd; Nissen, Kristopher; Wolfsberger, Luciant D.; Cormack, Robert A.; Mauch, Peter; Ng, Andrea K. [Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA (United States)
2011-11-15T23:59:59.000Z
Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system at Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique. There was a lower error rate with IMRT compared with 3D/conventional RT, highlighting the need for sustained vigilance against errors common to more traditional treatment techniques.
Locked modes and magnetic field errors in MST
Almagri, A.F.; Assadi, S.; Prager, S.C.; Sarff, J.S.; Kerst, D.W.
1992-06-01T23:59:59.000Z
In the MST reversed field pinch magnetic oscillations become stationary (locked) in the lab frame as a result of a process involving interactions between the modes, sawteeth, and field errors. Several helical modes become phase locked to each other to form a rotating localized disturbance, the disturbance locks to an impulsive field error generated at a sawtooth crash, the error fields grow monotonically after locking (perhaps due to an unstable interaction between the modes and field error), and over the tens of milliseconds of growth confinement degrades and the discharge eventually terminates. Field error control has been partially successful in eliminating locking.
Fitness for duty in the nuclear industry: Update of the technical issues 1996
Durbin, N.; Grant, T. [eds.] [Battelle Seattle Research Center, WA (United States)
1996-05-01T23:59:59.000Z
The purpose of this report is to provide an update of information on the technical issues surrounding the creation, implementation, and maintenance of fitness-for-duty (FFD) policies and programs. It has been prepared as a resource for Nuclear Regulatory Commission (NRC) and nuclear power plant personnel who deal with FFD programs. It contains a general overview and update on the technical issues that the NRC considered prior to the publication of its original FFD rule and the revisions to that rule (presented in earlier NUREG/CRs). It also includes chapters that address issues about which there is growing concern and/or about which there have been substantial changes since NUREG/CR-5784 was published. Although this report is intended to support the NRC`s rule making on fitness for duty, the conclusions of the authors of this report are their own and do not necessarily represent the opinions of the NRC.
aMCfast: automation of fast NLO computations for PDF fits
Valerio Bertone; Rikkert Frederix; Stefano Frixione; Juan Rojo; Mark Sutton
2014-06-30T23:59:59.000Z
We present the interface between MadGraph5_aMC@NLO, a self-contained program that calculates cross sections up to next-to-leading order accuracy in an automated manner, and APPLgrid, a code that parametrises such cross sections in the form of look-up tables which can be used for the fast computations needed in the context of PDF fits. The main characteristic of this interface, which we dub aMCfast, is its being fully automated as well, which removes the need to extract manually the process-specific information for additional physics processes, as is the case with other matrix element calculators, and renders it straightforward to include any new process in the PDF fits. We demonstrate this by studying several cases which are easily measured at the LHC, have a good constraining power on PDFs, and some of which were previously unavailable in the form of a fast interface.
Fitting Single Particle Energies in $sdgh$ Major Shell
Dikmen, E; Cengiz, Y
2015-01-01T23:59:59.000Z
We have performed two kinds of non-linear fitting procedures to the single-particle energies in the $sdgh$ major shell to obtain better shell model results. The low-lying energy eigenvalues of the light Sn isotopes with $A=103-110$ in the $sdgh$-shell are calculated in the framework of the nuclear shell model by using CD-Bonn two-body effective nucleon-nucleon interaction. The obtained energy eigenvalues are fitted to the corresponding experimental values by using two different non-linear fitting procedures, i.e., downhill simplex method and clonal selection method. The unknown single-particle energies of the states $2s_{1/2}$, $1d_{3/2}$, and $0h_{11/2}$ are used in the fitting methods to obtain better spectra of the $^{104,106,108,110}$Sn isotopes. We compare the energy spectra of the $^{104,106,108,110}$Sn and $^{103,105,107,109}$Sn isotopes with/without a nonlinear fit to the experimental results.
In Search of a Taxonomy for Classifying Qualitative Spreadsheet Errors
Przasnyski, Zbigniew; Seal, Kala Chand
2011-01-01T23:59:59.000Z
Most organizations use large and complex spreadsheets that are embedded in their mission-critical processes and are used for decision-making purposes. Identification of the various types of errors that can be present in these spreadsheets is, therefore, an important control that organizations can use to govern their spreadsheets. In this paper, we propose a taxonomy for categorizing qualitative errors in spreadsheet models that offers a framework for evaluating the readiness of a spreadsheet model before it is released for use by others in the organization. The classification was developed based on types of qualitative errors identified in the literature and errors committed by end-users in developing a spreadsheet model for Panko's (1996) "Wall problem". Closer inspection of the errors reveals four logical groupings of the errors creating four categories of qualitative errors. The usability and limitations of the proposed taxonomy and areas for future extension are discussed.
Integrating human related errors with technical errors to determine causes behind offshore accidents
Aamodt, Agnar
errors were embedded as an integral part of the oil well drilling opera- tion. To reduce the number assessment of the failure. The method is based on a knowledge model of the oil-well drilling process. All of non-productive time (NPT) during oil-well drilling. NPT exhibits a much lower declining trend than
Electric Power Monthly, August 1990. [Glossary included
Not Available
1990-11-29T23:59:59.000Z
The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.
Quantum Error Correction with magnetic molecules
José J. Baldoví; Salvador Cardona-Serra; Juan M. Clemente-Juan; Luis Escalera-Moreno; Alejandro Gaita-Ariño; Guillermo Mínguez Espallargas
2014-08-22T23:59:59.000Z
Quantum algorithms often assume independent spin qubits to produce trivial $|\\uparrow\\rangle=|0\\rangle$, $|\\downarrow\\rangle=|1\\rangle$ mappings. This can be unrealistic in many solid-state implementations with sizeable magnetic interactions. Here we show that the lower part of the spectrum of a molecule containing three exchange-coupled metal ions with $S=1/2$ and $I=1/2$ is equivalent to nine electron-nuclear qubits. We derive the relation between spin states and qubit states in reasonable parameter ranges for the rare earth $^{159}$Tb$^{3+}$ and for the transition metal Cu$^{2+}$, and study the possibility to implement Shor's Quantum Error Correction code on such a molecule. We also discuss recently developed molecular systems that could be adequate from an experimental point of view.
Output error identification of hydrogenerator conduit dynamics
Vogt, M.A.; Wozniak, L. (Illinois Univ., Urbana, IL (USA)); Whittemore, T.R. (Bureau of Reclamation, Denver, CO (USA))
1989-09-01T23:59:59.000Z
Two output error model reference adaptive identifiers are considered for estimating the parameters in a reduced order gate position to pressure model for the hydrogenerator. This information may later be useful in an adaptive controller. Gradient and sensitivity functions identifiers are discussed for the hydroelectric application and connections are made between their structural differences and relative performance. Simulations are presented to support the conclusion that the latter algorithm is more robust, having better disturbance rejection and less plant model mismatch sensitivity. For identification from recorded plant data from step gate inputs, the other algorithm even fails to converge. A method for checking the estimated parameters is developed by relating the coefficients in the reduced order model to head, an externally measurable parameter.
Pressure Change Measurement Leak Testing Errors
Pryor, Jeff M [ORNL] [ORNL; Walker, William C [ORNL] [ORNL
2014-01-01T23:59:59.000Z
A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.
Communication in automation, including networking and wireless
Antsaklis, Panos
Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use
Electrochemical cell including ribbed electrode substrates
Breault, R.D.; Goller, G.J.; Roethlein, R.J.; Sprecher, G.C.
1981-07-21T23:59:59.000Z
An electrochemical cell including an electrolyte retaining matrix layer located between and in contact with cooperating anode and cathode electrodes is disclosed herein. Each of the electrodes is comprised of a ribbed (or grooved) substrate including a gas porous body as its main component and a catalyst layer located between the substrate and one side of the electrolyte retaining matrix layer. Each substrate body includes a ribbed section for receiving reactant gas and lengthwise side portions on opposite sides of the ribbed section. Each of the side portions includes a channel extending along its entire length from one surface thereof (e.g., its outer surface) to but stopping short of an opposite surface (e.g., its inner surface) so as to provide a web directly between the channel and the opposite surface. Each of the channels is filled with a gas impervious substance and each of the webs is impregnated with a gas impervious substance so as to provide a gas impervious seal along the entire length of each side portion of each substrate and between the opposite faces thereof (e.g., across the entire thickness thereof).
Energy Consumption of Personal Computing Including Portable
Namboodiri, Vinod
Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research
C -parameter distribution at N 3 LL ' including power corrections
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.
2015-05-01T23:59:59.000Z
We compute the e?e? C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(?3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments ?n. To eliminate an O(?QCD) renormalon ambiguity in the soft function, we switch from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter ?1. We show how to simultaneously account for running effects in ?1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for ?s(mZ) and ?1, the perturbative uncertainty in our cross section is ? 2.5% at Q=mZ.
C -parameter distribution at N 3 LL ' including power corrections
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.
2015-05-01T23:59:59.000Z
We compute the e?e? C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(?3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments ?n. To eliminate an O(?QCD) renormalon ambiguity in the soft function, we switchmore »from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter ?1. We show how to simultaneously account for running effects in ?1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for ?s(mZ) and ?1, the perturbative uncertainty in our cross section is ? 2.5% at Q=mZ.« less
Subterranean barriers including at least one weld
Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.
2007-01-09T23:59:59.000Z
A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.
This form is interactive --complete electronically and print Notification of Fitness for Duty
Pillow, Jonathan
This form is interactive -- complete electronically and print Notification of Fitness for Duty as written notification directing you to undergo a Fitness for Duty Evaluation. The reason
Rotor assembly including superconducting magnetic coil
Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)
2003-01-01T23:59:59.000Z
Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.
Power generation method including membrane separation
Lokhandwala, Kaaeid A. (Union City, CA)
2000-01-01T23:59:59.000Z
A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.
Electric power monthly, September 1990. [Glossary included
Not Available
1990-12-17T23:59:59.000Z
The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)
2006-01-01T23:59:59.000Z
This document concerns the award of a contract for minor metalwork, metal fittings, cladding and roofing at CERN. The Finance Committee is invited to agree to the negotiation of a contract with the firm INIZIATIVE INDUSTRIALI SRL (IT), the lowest bidder, for the provision of minor metalwork, metal fittings, cladding and roofing at CERN for three years for a total amount not exceeding 1 467 895 euros (2 258 301 Swiss francs), not subject to revision for two years. The contract will include options for two one-year extensions beyond the initial three-year period.
Structured Probabilistic Models of Proteins across Spatial and Fitness Landscapes
acid composition in response to changing fitness landscapes. The thesis of this dissertation interactions quickly and accurately. We then develop a method of learning generative models of amino acid cocktails that remain effective against natural possible mutant variants of the tar- get. Towards this
Fitness Biasing Produce Adaptive Gaits for Hexapod Robots
Parker, Gary B.
Fitness Biasing Produce Adaptive Gaits for Hexapod Robots Gary Parker Computer Science Connecticut in an earlier work an effective learning cycles a hexapod robot. learning system capable of adapting to changes produce gaits hexapod robots difficult problem. particularly challenging if wants programs altered adapt
Fitness Biasing to Produce Adaptive Gaits for Hexapod Robots
Parker, Gary B.
Fitness Biasing to Produce Adaptive Gaits for Hexapod Robots Gary B. Parker Computer Science was shown in an earlier work to be an effective tool for learning leg cycles for a hexapod robot for hexapod robots is a difficult problem. It is particularly challenging if one wants these programs
Fitting and forecasting non-linear coupled dark energy
Casas, Santiago; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian
2015-01-01T23:59:59.000Z
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 \\text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and w...
Uncertainty, Subjectivity, Trust and Risk: How It All Fits Together
Stølen, Ketil
Uncertainty, Subjectivity, Trust and Risk: How It All Fits Together Bjørnar Solhaug1 and Ketil uncertainty, subjective, objective, trust, risk, trust management. 1 Aleatory Uncertainty vs. Epistemic be reduced by narrowing the interval and thereby making a more precise prediction. 2 Objective vs. Subjective
Structure Fitness Sharing (SFS) for Evolutionary Design by Genetic Programming
Fernandez, Thomas
Structure Fitness Sharing (SFS) for Evolutionary Design by Genetic Programming Abstract Balanced structure and parameter search is critical to evolutionary design with genetic programming (GP). Structure problems such as algorithm design, program induction and logic design, in which only structure search
Structure Fitness Sharing (SFS) for Evolutionary Design by Genetic Programming
Hu, Jianjun
Structure Fitness Sharing (SFS) for Evolutionary Design by Genetic Programming Abstract Balanced structure and parameter search is critical to evolutionary design with Genetic programming (GP). Structure and in neural network design. In all of these problems, the objective is to search for an open-ended structure
High-DimensionalFitnessLandscapesandSpeciation SergeyGavrilets
Gavrilets, Sergey
to experimental work on the genetics of popula- tions" (Sheppard 1954) and a "guiding light for rigorous- ment of a theory of large-scale evolutionary diversification and adaptive radiation. The other of fitness landscapes (also known as "adaptive landscapes," "adaptive topographies," and "surfaces
Supplemental Information Translating HIV sequences into quantitative fitness landscapes to
Ferguson, Andrew
Supplemental Information Translating HIV sequences into quantitative fitness landscapes to predict contact information. Tel: (617) 253-3890. Fax: (617) 253-2272. Email: arupc@mit.edu. #12;Supplemental Inventory 1. Supplemental Figures and Tables Figure S1, Related to Figure 2 Figure S2, Related to Figure 4
Fitness Space Structure of a Neuromechanical Randall D. Beer
Beer, Randall D.
93 Fitness Space Structure of a Neuromechanical System Randall D. Beer Cognitive Science Program, and the impact of network architecture on walking performance and evolvability (Beer, 1995a; Beer, Chiel, & Gallagher, 1999; Beer & Gallagher, 1992; Chiel, Beer, & Gallagher, 1999; Psujek, Ames, & Beer, 2006
Dynamic Cooperative Coevolutionary Sensor Deployment via Localized Fitness Evaluation
Chen, Yuanzhu Peter
Dynamic Cooperative Coevolutionary Sensor Deployment via Localized Fitness Evaluation Xingyan Jiang used to evaluate the quality of sensor placement. The first one is sensing coverage, which is the area interest in autonomous sensor deployment, where a sensor can only communicate with those within a limited
A decision support system prototype including human factors based on the TOGA meta-theory approach
Cappelli, M.; Memmi, F. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy); Gadomski, A. M. [ECONA, Centro Interuniv. Elaborazione Cognitiva Sistemi Naturali e Artificiali, via dei Marsi 47, Rome (Italy); Sepielli, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy)
2012-07-01T23:59:59.000Z
The human contribution to the risk of operation of complex technological systems is often not negligible and sometimes tends to become significant, as shown by many reports on incidents and accidents occurred in the past inside Nuclear Power Plants (NPPs). An error of a human operator of a NPP can derive by both omission and commission. For instance, complex commission errors can also lead to significant catastrophic technological accidents, as for the case of the Three Mile Island accident. Typically, the problem is analyzed by focusing on the single event chain that has provoked the incident or accident. What is needed is a general framework able to include as many parameters as possible, i.e. both technological and human factors. Such a general model could allow to envisage an omission or commission error before it can happen or, alternatively, suggest preferred actions to do in order to take countermeasures to neutralize the effect of the error before it becomes critical. In this paper, a preliminary Decision Support System (DSS) based on the so-called (-) TOGA meta-theory approach is presented. The application of such a theory to the management of nuclear power plants has been presented in the previous ICAPP 2011. Here, a human factor simulator prototype is proposed in order to include the effect of human errors in the decision path. The DSS has been developed using a TRIGA research reactor as reference plant, and implemented using the LabVIEW programming environment and the Finite State Machine (FSM) model The proposed DSS shows how to apply the Universal Reasoning Paradigm (URP) and the Universal Management Paradigm (UMP) to a real plant context. The DSS receives inputs from instrumentation data and gives as output a suggested decision. It is obtained as the result of an internal elaborating process based on a performance function. The latter, describes the degree of satisfaction and efficiency, which are dependent on the level of responsibility related to each professional role. As an application, we present the simulation of the discussed error, e.g. the unchecked extraction of the control rods during a power variation maneuver and we show how the effect of human errors can affect the performance function, giving rise to different countermeasures which could call different operator figures into play, potentially not envisaged in the standard procedure. (authors)
SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration
Chu, A; Ahmad, M; Chen, Z; Nath, R [Yale New Haven Hospital/School of Medicine Yale University, New Haven, CT (United States); Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States)
2014-06-01T23:59:59.000Z
Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilities of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions. Conclusion: LOOP can cooperate with any fitting routine functioning as a “robust fit”. In addition, it can be set as a benchmark for film-dose calibration fitting performance.
Deterministic treatment of model error in geophysical data assimilation
Carrassi, Alberto
2015-01-01T23:59:59.000Z
This chapter describes a novel approach for the treatment of model error in geophysical data assimilation. In this method, model error is treated as a deterministic process fully correlated in time. This allows for the derivation of the evolution equations for the relevant moments of the model error statistics required in data assimilation procedures, along with an approximation suitable for application to large numerical models typical of environmental science. In this contribution we first derive the equations for the model error dynamics in the general case, and then for the particular situation of parametric error. We show how this deterministic description of the model error can be incorporated in sequential and variational data assimilation procedures. A numerical comparison with standard methods is given using low-order dynamical systems, prototypes of atmospheric circulation, and a realistic soil model. The deterministic approach proves to be very competitive with only minor additional computational c...
Error models in quantum computation: an application of model selection
Lucia Schwarz; Steven van Enk
2013-09-04T23:59:59.000Z
Threshold theorems for fault-tolerant quantum computing assume that errors are of certain types. But how would one detect whether errors of the "wrong" type occur in one's experiment, especially if one does not even know what type of error to look for? The problem is that for many qubits a full state description is impossible to analyze, and a full process description is even more impossible to analyze. As a result, one simply cannot detect all types of errors. Here we show through a quantum state estimation example (on up to 25 qubits) how to attack this problem using model selection. We use, in particular, the Akaike Information Criterion. The example indicates that the number of measurements that one has to perform before noticing errors of the wrong type scales polynomially both with the number of qubits and with the error size.
A two reservoir model of quantum error correction
James P. Clemens; Julio Gea-Banacloche
2005-08-22T23:59:59.000Z
We consider a two reservoir model of quantum error correction with a hot bath causing errors in the qubits and a cold bath cooling the ancilla qubits to a fiducial state. We consider error correction protocols both with and without measurement of the ancilla state. The error correction acts as a kind of refrigeration process to maintain the data qubits in a low entropy state by periodically moving the entropy to the ancilla qubits and then to the cold reservoir. We quantify the performance of the error correction as a function of the reservoir temperatures and cooling rate by means of the fidelity and the residual entropy of the data qubits. We also make a comparison with the continuous quantum error correction model of Sarovar and Milburn [Phys. Rev. A 72 012306].
Trial application of a technique for human error analysis (ATHEANA)
Bley, D.C. [Buttonwood Consulting, Inc., Oakton, VA (United States); Cooper, S.E. [Science Applications International Corp., Reston, VA (United States); Parry, G.W. [NUS, Gaithersburg, MD (United States)] [and others
1996-10-01T23:59:59.000Z
The new method for HRA, ATHEANA, has been developed based on a study of the operating history of serious accidents and an understanding of the reasons why people make errors. Previous publications associated with the project have dealt with the theoretical framework under which errors occur and the retrospective analysis of operational events. This is the first attempt to use ATHEANA in a prospective way, to select and evaluate human errors within the PSA context.
Multiverse rate equation including bubble collisions
Michael P. Salem
2013-02-19T23:59:59.000Z
The volume fractions of vacua in an eternally inflating multiverse are described by a coarse-grain rate equation, which accounts for volume expansion and vacuum transitions via bubble formation. We generalize the rate equation to account for bubble collisions, including the possibility of classical transitions. Classical transitions can modify the details of the hierarchical structure among the volume fractions, with potential implications for the staggering and Boltzmann-brain issues. Whether or not our vacuum is likely to have been established by a classical transition depends on the detailed relationships among transition rates in the landscape.
Cosmic Ray Spectral Deformation Caused by Energy Determination Errors
Per Carlson; Conny Wannemark
2005-05-10T23:59:59.000Z
Using simulation methods, distortion effects on energy spectra caused by errors in the energy determination have been investigated. For cosmic ray proton spectra, falling steeply with kinetic energy E as E-2.7, significant effects appear. When magnetic spectrometers are used to determine the energy, the relative error increases linearly with the energy and distortions with a sinusoidal form appear starting at an energy that depends significantly on the error distribution but at an energy lower than that corresponding to the Maximum Detectable Rigidity of the spectrometer. The effect should be taken into consideration when comparing data from different experiments, often having different error distributions.
Error estimates for the Euler discretization of an optimal control ...
Joseph FrÃ©dÃ©ric Bonnans
2014-12-10T23:59:59.000Z
Dec 10, 2014 ... Abstract: We study the error introduced in the solution of an optimal control problem with first order state constraints, for which the trajectories ...
On Error Estimates of the Penalty Method for Unsteady Navier ...
Nov 26, 2002 ... http://WWW.jstor.org/about/terms.html. ... However, the best error estimates available to the author's knowledge" ... AMS subject classi?cations.
New Fractional Error Bounds for Polynomial Systems with ...
2014-07-27T23:59:59.000Z
techniques are largely based on variational analysis and generalized differentiation, ...... Example 3.10 (failure of global error bounds for polynomial systems).
Thermovoltaic semiconductor device including a plasma filter
Baldasaro, Paul F. (Clifton Park, NY)
1999-01-01T23:59:59.000Z
A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.
Optical panel system including stackable waveguides
DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)
2007-11-20T23:59:59.000Z
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.
Stress and domestication traits increase the relative fitness of cropwild hybrids in sunflower
wild hybrid, domestication, G · E interactions, GM crops, herbicide, introgression, relative fitness
Alabama in Huntsville, University of
HPE Fitness and Wellness Certificate Completion Form Instructions As you are nearing completion of (or have already completed) your Fitness and Wellness Credit Certificate, this is the final step met, individuals must submit a completed HPE Fitness and Wellness Credit Certificate Completion Form
Engine lubrication circuit including two pumps
Lane, William H.
2006-10-03T23:59:59.000Z
A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.
Kinematic Error Correction for Minimally Invasive Surgical Robots
in two likely sources of kinematic error: port displacement and instrument shaft flexion. For a quasi. To reach the surgical site near the chest wall, the instrument shaft applies significant torque to the port, and the instrument shaft to bend. These kinematic errors impair positioning of the robot and cause deviations from
ARTIFICIAL INTELLIGENCE 223 A Geometric Approach to Error
Richardson, David
may not even exist. For this reason we investigate error detection and recovery (EDR) strategies. We may not even exist. For this reason we investigate error detection and recovery (EDR ) strategies. We and implementational questions remain. The second contribution is a formal, geometric approach to EDR. While EDR
Error Control of Iterative Linear Solvers for Integrated Groundwater Models
Bai, Zhaojun
gradient method or Generalized Minimum RESidual (GMRES) method, is how to choose the residual tolerance for integrated groundwater models, which are implicitly coupled to another model, such as surface water models the correspondence between the residual error in the preconditioned linear system and the solution error. Using
Numerical Construction of Likelihood Distributions and the Propagation of Errors
J. Swain; L. Taylor
1997-12-12T23:59:59.000Z
The standard method for the propagation of errors, based on a Taylor series expansion, is approximate and frequently inadequate for realistic problems. A simple and generic technique is described in which the likelihood is constructed numerically, thereby greatly facilitating the propagation of errors.
Mining API Error-Handling Specifications from Source Code
Xie, Tao
Mining API Error-Handling Specifications from Source Code Mithun Acharya and Tao Xie Department it difficult to mine error-handling specifications through manual inspection of source code. In this paper, we, without any user in- put. In our framework, we adapt a trace generation technique to distinguish
Calibration and Error in Placental Molecular Clocks: A Conservative
Hadly, Elizabeth
Calibration and Error in Placental Molecular Clocks: A Conservative Approach Using for calibrating both mitogenomic and nucleogenomic placental timescales. We applied these reestimates to the most calibration error may inflate the power of the molecular clock when testing the time of ordinal
Error detection through consistency checking Peng Gong* Lan Mu#
Silver, Whendee
Error detection through consistency checking Peng Gong* Lan Mu# *Center for Assessment & Monitoring Hall, University of California, Berkeley, Berkeley, CA 94720-3110 gong@nature.berkeley.edu mulan, accessibility, and timeliness as recorded in the lineage data (Chen and Gong, 1998). Spatial error refers
Mutual information, bit error rate and security in Wójcik's scheme
Zhanjun Zhang
2004-02-21T23:59:59.000Z
In this paper the correct calculations of the mutual information of the whole transmission, the quantum bit error rate (QBER) are presented. Mistakes of the general conclusions relative to the mutual information, the quantum bit error rate (QBER) and the security in W\\'{o}jcik's paper [Phys. Rev. Lett. {\\bf 90}, 157901(2003)] have been pointed out.
Kernel Regression with Correlated Errors K. De Brabanter
Kernel Regression with Correlated Errors K. De Brabanter , J. De Brabanter , , J.A.K. Suykens B: It is a well-known problem that obtaining a correct bandwidth in nonparametric regression is difficult support vector machines for regression. Keywords: nonparametric regression, correlated errors, short
Ridge Regression Estimation Approach to Measurement Error Model
Shalabh
Ridge Regression Estimation Approach to Measurement Error Model A.K.Md. Ehsanes Saleh Carleton of the regression parameters is ill conditioned. We consider the Hoerl and Kennard type (1970) ridge regression (RR) modifications of the five quasi- empirical Bayes estimators of the regression parameters of a measurement error
Solving LWE problem with bounded errors in polynomial time
International Association for Cryptologic Research (IACR)
Solving LWE problem with bounded errors in polynomial time Jintai Ding1,2 Southern Chinese call the learning with bounded errors (LWBE) problems, we can solve it with complexity O(nD ). Keywords, this problem corresponds to the learning parity with noise (LPN) problem. There are several ways to solve
Natural Priors, CMSSM Fits and LHC Weather Forecasts
Ben C Allanach; Kyle Cranmer; Christopher G Lester; Arne M Weber
2007-07-05T23:59:59.000Z
Previous LHC forecasts for the constrained minimal supersymmetric standard model (CMSSM), based on current astrophysical and laboratory measurements, have used priors that are flat in the parameter tan beta, while being constrained to postdict the central experimental value of MZ. We construct a different, new and more natural prior with a measure in mu and B (the more fundamental MSSM parameters from which tan beta and MZ are actually derived). We find that as a consequence this choice leads to a well defined fine-tuning measure in the parameter space. We investigate the effect of such on global CMSSM fits to indirect constraints, providing posterior probability distributions for Large Hadron Collider (LHC) sparticle production cross sections. The change in priors has a significant effect, strongly suppressing the pseudoscalar Higgs boson dark matter annihilation region, and diminishing the probable values of sparticle masses. We also show how to interpret fit information from a Markov Chain Monte Carlo in a frequentist fashion; namely by using the profile likelihood. Bayesian and frequentist interpretations of CMSSM fits are compared and contrasted.
Robust linear regression with broad distributions of errors
Postnikov, Eugene B
2015-01-01T23:59:59.000Z
We consider the problem of linear fitting of noisy data in the case of broad (say $\\alpha$-stable) distributions of random impacts ("noise"), which can lack even the first moment. This situation, common in statistical physics of small systems, in Earth sciences, in network science or in econophysics, does not allow for application of conventional Gaussian maximum-likelihood estimators resulting in usual least-squares fits. Such fits lead to large deviations of fitted parameters from their true values due to the presence of outliers. The approaches discussed here aim onto the minimization of the width of the distribution of residua. The corresponding width of the distribution can either be defined via the interquantile distance of the corresponding distributions or via the scale parameter in its characteristic function. The methods provide the robust regression even in the case of short samples with large outliers, and are equivalent to the normal least squares fit for the Gaussian noises. Our discussion is il...
Error Control of Iterative Linear Solvers for Integrated Groundwater Models
Dixon, Matthew; Brush, Charles; Chung, Francis; Dogrul, Emin; Kadir, Tariq
2010-01-01T23:59:59.000Z
An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient (PCG) method or Generalized Minimum RESidual method (GMRES) is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of 'forward error bound estimation' to show how rescaling the linear system affects the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed using the USGS GSFLOW package and the California State Department of Water Resources' Integrated Water Flow Model (IWFM), we observe that this error bound guides the choice of a prac...
Grid-scale Fluctuations and Forecast Error in Wind Power
Bel, G; Toots, M; Bandi, M M
2015-01-01T23:59:59.000Z
The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).
An Efficient Approach towards Mitigating Soft Errors Risks
Sadi, Muhammad Sheikh; Uddin, Md Nazim; Jürjens, Jan
2011-01-01T23:59:59.000Z
Smaller feature size, higher clock frequency and lower power consumption are of core concerns of today's nano-technology, which has been resulted by continuous downscaling of CMOS technologies. The resultant 'device shrinking' reduces the soft error tolerance of the VLSI circuits, as very little energy is needed to change their states. Safety critical systems are very sensitive to soft errors. A bit flip due to soft error can change the value of critical variable and consequently the system control flow can completely be changed which leads to system failure. To minimize soft error risks, a novel methodology is proposed to detect and recover from soft errors considering only 'critical code blocks' and 'critical variables' rather than considering all variables and/or blocks in the whole program. The proposed method shortens space and time overhead in comparison to existing dominant approaches.
Grid-scale Fluctuations and Forecast Error in Wind Power
G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi
2015-03-29T23:59:59.000Z
The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).
Zhao, Gong-Bo, E-mail: gongbo@icosmology.info [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012, ChinaAND (China); Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)
2014-04-01T23:59:59.000Z
Based on a suite of N-body simulations of the Hu-Sawicki model of f(R) gravity with different sets of model and cosmological parameters, we develop a new fitting formula with a numeric code, MGHalofit, to calculate the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. We compare the MGHalofit predictions at various redshifts (z ? 1) to the f(R) simulations and find that the relative error of the MGHalofit fitting formula of P(k) is no larger than 6% at k ? 1 h Mpc{sup –1} and 12% at k in (1, 10] h Mpc{sup –1}, respectively. Based on a sensitivity study of an ongoing and a future spectroscopic survey, we estimate the detectability of a signal of modified gravity described by the Hu-Sawicki model using the power spectrum up to quasi-nonlinear scales.
Measuring worst-case errors in a robot workcell
Simon, R.W.; Brost, R.C.; Kholwadwala, D.K. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center
1997-10-01T23:59:59.000Z
Errors in model parameters, sensing, and control are inevitably present in real robot systems. These errors must be considered in order to automatically plan robust solutions to many manipulation tasks. Lozano-Perez, Mason, and Taylor proposed a formal method for synthesizing robust actions in the presence of uncertainty; this method has been extended by several subsequent researchers. All of these results presume the existence of worst-case error bounds that describe the maximum possible deviation between the robot`s model of the world and reality. This paper examines the problem of measuring these error bounds for a real robot workcell. These measurements are difficult, because of the desire to completely contain all possible deviations while avoiding bounds that are overly conservative. The authors present a detailed description of a series of experiments that characterize and quantify the possible errors in visual sensing and motion control for a robot workcell equipped with standard industrial robot hardware. In addition to providing a means for measuring these specific errors, these experiments shed light on the general problem of measuring worst-case errors.
Logical Error Rate Scaling of the Toric Code
Fern H. E. Watson; Sean D. Barrett
2014-09-26T23:59:59.000Z
To date, a great deal of attention has focused on characterizing the performance of quantum error correcting codes via their thresholds, the maximum correctable physical error rate for a given noise model and decoding strategy. Practical quantum computers will necessarily operate below these thresholds meaning that other performance indicators become important. In this work we consider the scaling of the logical error rate of the toric code and demonstrate how, in turn, this may be used to calculate a key performance indicator. We use a perfect matching decoding algorithm to find the scaling of the logical error rate and find two distinct operating regimes. The first regime admits a universal scaling analysis due to a mapping to a statistical physics model. The second regime characterizes the behavior in the limit of small physical error rate and can be understood by counting the error configurations leading to the failure of the decoder. We present a conjecture for the ranges of validity of these two regimes and use them to quantify the overhead -- the total number of physical qubits required to perform error correction.
Balancing aggregation and smoothing errors in inverse models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Turner, A. J.; Jacob, D. J.
2015-01-13T23:59:59.000Z
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore »state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less
Balancing aggregation and smoothing errors in inverse models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Turner, A. J.; Jacob, D. J.
2015-06-30T23:59:59.000Z
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore »state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less
Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint
Stynes, J. K.; Ihas, B.
2012-04-01T23:59:59.000Z
The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.
Wind Power Forecasting Error Distributions: An International Comparison; Preprint
Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.
2012-09-01T23:59:59.000Z
Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.
Natural Priors, CMSSM Fits and LHC Weather Forecasts
Allanach, B C; Cranmer, Kyle; Lester, Christopher G; Weber, Arne M
2007-08-07T23:59:59.000Z
ar X iv :0 70 5. 04 87 v3 [ he p- ph ] 5 J ul 20 07 Preprint typeset in JHEP style - HYPER VERSION DAMTP-2007-18 Cavendish-HEP-2007-03 MPP-2007-36 Natural Priors, CMSSM Fits and LHC Weather Forecasts Benjamin C Allanach1, Kyle Cranmer2... ’s likely discoveries. There are big differences between nature of the questions answered by a forecast, and the ques- tions that will be answered by the experiments themselves when they have acquired compelling data. A weather forecast predicting “severe...
Financing Tool Fits the Bill | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Department of Energy System0 Federal Balanced9-04 FinancialFinancing Tool Fits the Bill
INJECTION STRAIGHT PULSED MAGNET ERROR TOLERANCE STUDY FOR TOP-OFF INJECTION
Wang, G.M.; Shaftan; T.: Fliller; R.; Parker; B.; Heese; R.; Kowalski; S.; Willeke; F.
2011-03-28T23:59:59.000Z
NSLS II is designed to work in top-off injection mode. The injection straight includes a septum and four fast kicker magnets. The pulsed magnet errors will excite a betatron oscillation. This paper gives the formulas of each error contribution to the oscillation amplitude at various source points in the ring. These are compared with simulation results. Based on the simple formulas, we can specify the error tolerances on the pulsed magnets with the goal to minimize the injection transient and scale it to similar machines. The NSLS-II is a 3 GeV third generation synchrotron light source under construction at Brookhaven National Laboratory. Due to its short lifetime, NSLS-II storage ring requires the top-off injection (once per minute) during which the stored beam orbit is highly desired as transparent. But the errors, from the SR pulsed magnets at the injection straight - kickers (non-closed injection bump) and pulsed septum (time-dependent stray field), excite a stored beam betatron oscillation. The magnitude of the perturbation can be large disturning some of the user experiments. In 2010 injection straight review, based on the experts experiences in ALS, DIAMOND, SLS and SPEAR, we came to the conclusion that the acceptable oscillation amplitude at the long straight is set as 100 {micro}m (i.e. 0.7 {sigma}x) in horizontal plane and 12 {micro}m, 2.5 {sigma}y, in vertical plane for NSLS II. This paper gives the analysis estimate of the different error source tolerance from the pulse magnets and scales it to our requirements. The result is compared with simulation.
Thermal Hydraulic Simulations, Error Estimation and Parameter
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of WntSupportB 18B()The FiveRevisedThe vision of aTheos J.ArgonneThermal
Forward Error Correction and Functional Programming
Bull, Tristan Michael
2011-04-25T23:59:59.000Z
de ned which provide an interface to Fabric. A subset of these are included below: inStdLogic :: String -> Fabric (Seq Bool) inStdLogicVector :: (Size x) => String -> Fabric (Seq (Unsigned x)) outStdLogic :: String -> Seq Bool -> Fabric () outStd...LogicVector :: (Size x) => String -> Seq (Unsigned x) -> Fabric () inStdLogic and inStdLogicVector each name an input, while outStdLogic and outStdLogicVector each name an output and return a Fabric. This interface can be used to build a Fabric for the counter example...
Pendulum Shifts, Context, Error, and Personal Accountability
Harold Blackman; Oren Hester
2011-09-01T23:59:59.000Z
This paper describes a series of tools that were developed to achieve a balance in under-standing LOWs and the human component of events (including accountability) as the INL continues its shift to a learning culture where people report, are accountable and interested in making a positive difference - and want to report because information is handled correctly and the result benefits both the reporting individual and the organization. We present our model for understanding these interrelationships; the initiatives that were undertaken to improve overall performance.
Faraday rotation data analysis with least-squares elliptical fitting
White, Adam D.; McHale, G. Brent; Goerz, David A.; Speer, Ron D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2010-10-15T23:59:59.000Z
A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the method is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.
Servo control booster system for minimizing following error
Wise, William L. (Mountain View, CA)
1985-01-01T23:59:59.000Z
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Sensitivity of OFDM Systems to Synchronization Errors and Spatial Diversity
Zhou, Yi
2012-02-14T23:59:59.000Z
jitter cause inter-carrier interference. The overall system performance in terms of symbol error rate is limited by the inter-carrier interference. For a reliable information reception, compensatory measures must be taken. The second part...
Universally Valid Error-Disturbance Relations in Continuous Measurements
Atsushi Nishizawa; Yanbei Chen
2015-05-31T23:59:59.000Z
In quantum physics, measurement error and disturbance were first naively thought to be simply constrained by the Heisenberg uncertainty relation. Later, more rigorous analysis showed that the error and disturbance satisfy more subtle inequalities. Several versions of universally valid error-disturbance relations (EDR) have already been obtained and experimentally verified in the regimes where naive applications of the Heisenberg uncertainty relation failed. However, these EDRs were formulated for discrete measurements. In this paper, we consider continuous measurement processes and obtain new EDR inequalities in the Fourier space: in terms of the power spectra of the system and probe variables. By applying our EDRs to a linear optomechanical system, we confirm that a tradeoff relation between error and disturbance leads to the existence of an optimal strength of the disturbance in a joint measurement. Interestingly, even with this optimal case, the inequality of the new EDR is not saturated because of doublely existing standard quantum limits in the inequality.
Predicting Intentional Tax Error Using Open Source Literature and Data
for each PUMS respondent (or agent), in certain line item/taxpayer categories, allowing us to construct dis-Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Results of Meta-Analysis 12 6 Intentional Error in Line Items/Taxpayer Categories 13 6
Diagnosing multiplicative error by lensing magnification of type Ia supernovae
Zhang, Pengjie
2015-01-01T23:59:59.000Z
Weak lensing causes spatially coherent fluctuations in flux of type Ia supernovae (SNe Ia). This lensing magnification allows for weak lensing measurement independent of cosmic shear. It is free of shape measurement errors associated with cosmic shear and can therefore be used to diagnose and calibrate multiplicative error. Although this lensing magnification is difficult to measure accurately in auto correlation, its cross correlation with cosmic shear and galaxy distribution in overlapping area can be measured to significantly higher accuracy. Therefore these cross correlations can put useful constraint on multiplicative error, and the obtained constraint is free of cosmic variance in weak lensing field. We present two methods implementing this idea and estimate their performances. We find that, with $\\sim 1$ million SNe Ia that can be achieved by the proposed D2k survey with the LSST telescope (Zhan et al. 2008), multiplicative error of $\\sim 0.5\\%$ for source galaxies at $z_s\\sim 1$ can be detected and la...
Inflated applicants: Attribution errors in performance evaluation by professionals
Swift, Samuel; Moore, Don; Sharek, Zachariah; Gino, Francesca
2013-01-01T23:59:59.000Z
performance among applicants from each ‘‘type’’ of school.and interview performance. Each school provided multi-yearschool, PLOS ONE | www.plosone.org July 2013 | Volume 8 | Issue 7 | e69258 Attribution Errors in Performance
Removing Systematic Errors from Rotating Shadowband Pyranometer Data Frank Vignola
Oregon, University of
of the pyranometer to briefly shade the pyranometer once a minute. Direct hori- zontal irradiance is calculated used in programs evaluating the performance of photovoltaic systems, and systematic errors in the data
Honest Confidence Intervals for the Error Variance in Stepwise Regression
Stine, Robert A.
Honest Confidence Intervals for the Error Variance in Stepwise Regression Dean P. Foster and Robert alternatives are used. These simpler algorithms (e.g., forward or backward stepwise regression) obtain
Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint
Hodge, B. M.; Milligan, M.
2011-03-01T23:59:59.000Z
In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.
A Taxonomy to Enable Error Recovery and Correction in Software Vilas Sridharan
Kaeli, David R.
A Taxonomy to Enable Error Recovery and Correction in Software Vilas Sridharan ECE Department years, reliability research has largely used the following taxonomy of errors: Undetected Errors Errors (CE). While this taxonomy is suitable to characterize hardware error detection and correction
TESLA-FEL 2009-07 Errors in Reconstruction of Difference Orbit
Contents 1 Introduction 1 2 Standard Least Squares Solution 2 3 Error Emittance and Error Twiss Parameters as the position of the reconstruction point changes, we will introduce error Twiss parameters and invariant error in the point of interest has to be achieved by matching error Twiss parameters in this point to the desired
Suboptimal quantum-error-correcting procedure based on semidefinite programming
Naoki Yamamoto; Shinji Hara; Koji Tsumura
2006-06-13T23:59:59.000Z
In this paper, we consider a simplified error-correcting problem: for a fixed encoding process, to find a cascade connected quantum channel such that the worst fidelity between the input and the output becomes maximum. With the use of the one-to-one parametrization of quantum channels, a procedure finding a suboptimal error-correcting channel based on a semidefinite programming is proposed. The effectiveness of our method is verified by an example of the bit-flip channel decoding.
Mesoscale predictability and background error convariance estimation through ensemble forecasting
Ham, Joy L
2002-01-01T23:59:59.000Z
MESOSCALE PREDICTABILITY AND BACKGROUND ERROR COVARIANCE ESTIMATION THROUGH ENSEMBLE FORECASTING A Thesis by JOY L. HAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2002 Major Subject: Atmospheric Sciences MESOSCALE PREDICTABILITY AND BACKGROUND ERROR COVARIANCE ESTIMATION THROUGH ENSEMBLE FORECASTING A Thesis by JOY L. HAM Submitted to the Office of Graduate Studies...
Using doppler radar images to estimate aircraft navigational heading error
Doerry, Armin W. (Albuquerque, NM); Jordan, Jay D. (Albuquerque, NM); Kim, Theodore J. (Albuquerque, NM)
2012-07-03T23:59:59.000Z
A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.
Fault-Tolerant Thresholds for Encoded Ancillae with Homogeneous Errors
Bryan Eastin
2006-11-14T23:59:59.000Z
I describe a procedure for calculating thresholds for quantum computation as a function of error model given the availability of ancillae prepared in logical states with independent, identically distributed errors. The thresholds are determined via a simple counting argument performed on a single qubit of an infinitely large CSS code. I give concrete examples of thresholds thus achievable for both Steane and Knill style fault-tolerant implementations and investigate their relation to threshold estimates in the literature.
Mesoscale predictability and background error convariance estimation through ensemble forecasting
Ham, Joy L
2002-01-01T23:59:59.000Z
MESOSCALE PREDICTABILITY AND BACKGROUND ERROR COVARIANCE ESTIMATION THROUGH ENSEMBLE FORECASTING A Thesis by JOY L. HAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2002 Major Subject: Atmospheric Sciences MESOSCALE PREDICTABILITY AND BACKGROUND ERROR COVARIANCE ESTIMATION THROUGH ENSEMBLE FORECASTING A Thesis by JOY L. HAM Submitted to the Office of Graduate Studies...
Coding Techniques for Error Correction and Rewriting in Flash Memories
Mohammed, Shoeb Ahmed
2010-10-12T23:59:59.000Z
CODING TECHNIQUES FOR ERROR CORRECTION AND REWRITING IN FLASH MEMORIES A Thesis by SHOEB AHMED MOHAMMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 2010 Major Subject: Electrical Engineering CODING TECHNIQUES FOR ERROR CORRECTION AND REWRITING IN FLASH MEMORIES A Thesis by SHOEB AHMED MOHAMMED Submitted to the Office of Graduate Studies of Texas A&M University in partial...
A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes
A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes 2006 Abstract Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE of which include ``tall tower'' instrumentation), one grassland site, and one agricultural site, to conduct
Test models for improving filtering with model errors through stochastic parameter estimation
Gershgorin, B. [Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, NY 10012 (United States); Harlim, J. [Department of Mathematics, North Carolina State University, NC 27695 (United States)], E-mail: jharlim@ncsu.edu; Majda, A.J. [Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, NY 10012 (United States)
2010-01-01T23:59:59.000Z
The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.
Compiler-Assisted Detection of Transient Memory Errors
Tavarageri, Sanket; Krishnamoorthy, Sriram; Sadayappan, Ponnuswamy
2014-06-09T23:59:59.000Z
The probability of bit flips in hardware memory systems is projected to increase significantly as memory systems continue to scale in size and complexity. Effective hardware-based error detection and correction requires that the complete data path, involving all parts of the memory system, be protected with sufficient redundancy. First, this may be costly to employ on commodity computing platforms and second, even on high-end systems, protection against multi-bit errors may be lacking. Therefore, augmenting hardware error detection schemes with software techniques is of consider- able interest. In this paper, we consider software-level mechanisms to comprehensively detect transient memory faults. We develop novel compile-time algorithms to instrument application programs with checksum computation codes so as to detect memory errors. Unlike prior approaches that employ checksums on computational and architectural state, our scheme verifies every data access and works by tracking variables as they are produced and consumed. Experimental evaluation demonstrates that the proposed comprehensive error detection solution is viable as a completely software-only scheme. We also demonstrate that with limited hardware support, overheads of error detection can be further reduced.
This form is interactive --complete electronically and print! Certification of Fitness For Duty
Pillow, Jonathan
This form is interactive -- complete electronically and print! Certification of Fitness For Duty referred to you for an evaluation and confirmation of fitness for duty based on the following observations
Goal pursuit is more than planning: the moderating role of regulatory fit
Tam, Wing Yin Leona
2006-10-30T23:59:59.000Z
Research indicates that planning helps consumers in their goal pursuit, but little is known about how and when such beneficial effects change with regulatory fit Ã¢Â?Â? fit between consumersÃ¢Â?Â? regulatory orientation ...
Fitting Narrow Spectral Lines in High Energy Astrophysics Using Incompatible Gibbs Samplers
van Dyk, David
for the data degradation processes (van Dyk et al., 2001). Efficient X-ray Spectral Fitting Hierarchical' & $ % Fitting Narrow Spectral Lines in High Energy Astrophysics Using Incompatible Gibbs Samplers Siemiginowska (Harvard-Smithsonian Center for Astrophysics, USA, aneta
Kimbrough, Steven Orla
Using Interactive Evolutionary Computation (IEC) with Validated Surrogate Fitness Functions Evolu- tionary Computation (IEC) is a natural approach here, if practicable. The paper proposes development of Validated Surrogate Fitness (VSF) functions as a workable and gener- alizable form of IEC
Extending ACNET communication types to include multicast semantics
Neswold, R.; King, C.; /Fermilab
2009-10-01T23:59:59.000Z
In Fermilab's accelerator control system, multicast communication wasn't properly incorporated into ACNET's transport layer, nor in its programming API. We present some recent work that makes multicasts naturally fit in the ACNET network environment. We also show how these additions provide high-availability for ACNET services.
01-12-2000 - Mechanical Failure of Supplied Air Fitting | The...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2000 - Mechanical Failure of Supplied Air Fitting Document Number: NA Effective Date: 012000 File (public): 01-12-2000...
Texas at Arlington, University of
Different strategies have been reported for the quantification and isolation of CTCs including polycarbonate on the polycarbonate membranes af
"Least Squares Fitting" Using Artificial Neural Networks YARON DANON and MARK J. EMBRECHTS
Danon, Yaron
"Least Squares Fitting" Using Artificial Neural Networks YARON DANON and MARK J. EMBRECHTS process changes the internal parameters (weights) of the network such that the neural net can represent a backpropagation fit to various continuous functions will be presented, showing properties of neural network fitted
Using Brain Weight to Predict Gestation in Mammals Bivariate Fit of Gestation By Brain Weight
Carriquiry, Alicia
1 Using Brain Weight to Predict Gestation in Mammals Bivariate Fit of Gestation By Brain Weight 0 100 200 300 400 500 Gestation 0 500 1000 1500 BrainWgt Linear Fit (All 50 mammals) Predicted Gestation = 85.248543 + 0.299867 Brain Weight Summary of Fit RSquare 0.372483 RSquare Adj 0.35941 Root Mean
Zanker, Johannes M.
Evolutionary Computation (IEC) has been applied to art and design problems where the fitness of an individual and their consequences for future IEC applications are discussed. Categories and Subject Descriptors J.4 Social Computation (IEC) [6]. IEC thus allows for true phenotypic fitness assessment, where the overall fitness
EFFECT OF MANUFACTURING ERRORS ON FIELD QUALITY OF DIPOLE MAGNETS FOR THE SSC
Meuser, R.B.
2010-01-01T23:59:59.000Z
in Fig. 2. Table 2. Manufacturing Error Mode Groups13-16, 1985 EFFECT OF MANUFACTURING ERRORS ON FIELD QUALITYMag Note-27 EFFECT OF MANUFACTURING ERRORS ON FIELO QUALITY
A new and efficient error resilient entropy code for image and video compression
Min, Jungki
1999-01-01T23:59:59.000Z
Image and video compression standards such as JPEG, MPEG, H.263 are severely sensitive to errors. Among typical error propagation mechanisms in video compression schemes, loss of block synchronization causes the worst result. Even one bit error...
Bayesian Semiparametric Density Deconvolution and Regression in the Presence of Measurement Errors
Sarkar, Abhra
2014-06-24T23:59:59.000Z
Although the literature on measurement error problems is quite extensive, solutions to even the most fundamental measurement error problems like density deconvolution and regression with errors-in-covariates are available ...
Clark, E.L.
1993-08-01T23:59:59.000Z
Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, calibration Mach number and Reynolds number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-stream Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for nine fundamental aerodynamic ratios, most of which relate free-stream test conditions (pressure, temperature, density or velocity) to a reference condition. Tables of the ratios, R, absolute sensitivity coefficients, {partial_derivative}R/{partial_derivative}M{infinity}, and relative sensitivity coefficients, (M{infinity}/R) ({partial_derivative}R/{partial_derivative}M{infinity}), are provided as functions of M{infinity}.
V-228: RealPlayer Buffer Overflow and Memory Corruption Error...
Broader source: Energy.gov (indexed) [DOE]
a memory corruption error and execute arbitrary code on the target system. IMPACT: Access control error SOLUTION: vendor recommends upgrading to version 16.0.3.51 Addthis...
Reducing Collective Quantum State Rotation Errors with Reversible Dephasing
Kevin C. Cox; Matthew A. Norcia; Joshua M. Weiner; Justin G. Bohnet; James K. Thompson
2014-07-16T23:59:59.000Z
We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21 dB in the context of collective population measurements of the spin states of an ensemble of $2.1 \\times 10^5$ laser cooled and trapped $^{87}$Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.
Meta learning of bounds on the Bayes classifier error
Moon, Kevin R; Hero, Alfred O
2015-01-01T23:59:59.000Z
Meta learning uses information from base learners (e.g. classifiers or estimators) as well as information about the learning problem to improve upon the performance of a single base learner. For example, the Bayes error rate of a given feature space, if known, can be used to aid in choosing a classifier, as well as in feature selection and model selection for the base classifiers and the meta classifier. Recent work in the field of f-divergence functional estimation has led to the development of simple and rapidly converging estimators that can be used to estimate various bounds on the Bayes error. We estimate multiple bounds on the Bayes error using an estimator that applies meta learning to slowly converging plug-in estimators to obtain the parametric convergence rate. We compare the estimated bounds empirically on simulated data and then estimate the tighter bounds on features extracted from an image patch analysis of sunspot continuum and magnetogram images.
Characterization of quantum dynamics using quantum error correction
S. Omkar; R. Srikanth; S. Banerjee
2015-01-27T23:59:59.000Z
Characterizing noisy quantum processes is important to quantum computation and communication (QCC), since quantum systems are generally open. To date, all methods of characterization of quantum dynamics (CQD), typically implemented by quantum process tomography, are \\textit{off-line}, i.e., QCC and CQD are not concurrent, as they require distinct state preparations. Here we introduce a method, "quantum error correction based characterization of dynamics", in which the initial state is any element from the code space of a quantum error correcting code that can protect the state from arbitrary errors acting on the subsystem subjected to the unknown dynamics. The statistics of stabilizer measurements, with possible unitary pre-processing operations, are used to characterize the noise, while the observed syndrome can be used to correct the noisy state. Our method requires at most $2(4^n-1)$ configurations to characterize arbitrary noise acting on $n$ qubits.
Non-Gaussian numerical errors versus mass hierarchy
Y. Meurice; M. B. Oktay
2000-05-12T23:59:59.000Z
We probe the numerical errors made in renormalization group calculations by varying slightly the rescaling factor of the fields and rescaling back in order to get the same (if there were no round-off errors) zero momentum 2-point function (magnetic susceptibility). The actual calculations were performed with Dyson's hierarchical model and a simplified version of it. We compare the distributions of numerical values obtained from a large sample of rescaling factors with the (Gaussian by design) distribution of a random number generator and find significant departures from the Gaussian behavior. In addition, the average value differ (robustly) from the exact answer by a quantity which is of the same order as the standard deviation. We provide a simple model in which the errors made at shorter distance have a larger weight than those made at larger distance. This model explains in part the non-Gaussian features and why the central-limit theorem does not apply.
Factorization of correspondence and camera error for unconstrained dense correspondence applications
Knoblauch, D; Hess-Flores, M; Duchaineau, M; Kuester, F
2009-09-29T23:59:59.000Z
A correspondence and camera error analysis for dense correspondence applications such as structure from motion is introduced. This provides error introspection, opening up the possibility of adaptively and progressively applying more expensive correspondence and camera parameter estimation methods to reduce these errors. The presented algorithm evaluates the given correspondences and camera parameters based on an error generated through simple triangulation. This triangulation is based on the given dense, non-epipolar constraint, correspondences and estimated camera parameters. This provides an error map without requiring any information about the perfect solution or making assumptions about the scene. The resulting error is a combination of correspondence and camera parameter errors. An simple, fast low/high pass filter error factorization is introduced, allowing for the separation of correspondence error and camera error. Further analysis of the resulting error maps is applied to allow efficient iterative improvement of correspondences and cameras.
Updated User's Guide for Sammy: Multilevel R-Matrix Fits to Neutron Data Using Bayes' Equations
Larson, Nancy M [ORNL
2008-10-01T23:59:59.000Z
In 1980 the multilevel multichannel R-matrix code SAMMY was released for use in analysis of neutron-induced cross section data at the Oak Ridge Electron Linear Accelerator. Since that time, SAMMY has evolved to the point where it is now in use around the world for analysis of many different types of data. SAMMY is not limited to incident neutrons but can also be used for incident protons, alpha particles, or other charged particles; likewise, Coulomb exit hannels can be included. Corrections for a wide variety of experimental conditions are available in the code: Doppler and resolution broadening, multiple-scattering corrections for capture or reaction yields, normalizations and backgrounds, to name but a few. The fitting procedure is Bayes' method, and data and parameter covariance matrices are properly treated within the code. Pre- and post-processing capabilities are also available, including (but not limited to) connections with the Evaluated Nuclear Data Files. Though originally designed for use in the resolved resonance region, SAMMY also includes a treatment for data analysis in the unresolved resonance region.
Henry L. Haselgrove; Peter P. Rohde
2007-07-03T23:59:59.000Z
In a recent study [Rohde et al., quant-ph/0603130 (2006)] of several quantum error correcting protocols designed for tolerance against qubit loss, it was shown that these protocols have the undesirable effect of magnifying the effects of depolarization noise. This raises the question of which general properties of quantum error-correcting codes might explain such an apparent trade-off between tolerance to located and unlocated error types. We extend the counting argument behind the well-known quantum Hamming bound to derive a bound on the weights of combinations of located and unlocated errors which are correctable by nondegenerate quantum codes. Numerical results show that the bound gives an excellent prediction to which combinations of unlocated and located errors can be corrected with high probability by certain large degenerate codes. The numerical results are explained partly by showing that the generalized bound, like the original, is closely connected to the information-theoretic quantity the quantum coherent information. However, we also show that as a measure of the exact performance of quantum codes, our generalized Hamming bound is provably far from tight.
Peak, Derek
Are you getting an error message in UniFi Plus? (suggestion...check the auto-hint line!) In most cases, Unifi Plus does not prominently display error messages; instead, the error message and processing messages Keyboard shortcuts Instructions for accessing other blocks, windows or forms from
Comment on "Optimum Quantum Error Recovery using Semidefinite Programming"
M. Reimpell; R. F. Werner; K. Audenaert
2006-06-07T23:59:59.000Z
In a recent paper ([1]=quant-ph/0606035) it is shown how the optimal recovery operation in an error correction scheme can be considered as a semidefinite program. As a possible future improvement it is noted that still better error correction might be obtained by optimizing the encoding as well. In this note we present the result of such an improvement, specifically for the four-bit correction of an amplitude damping channel considered in [1]. We get a strict improvement for almost all values of the damping parameter. The method (and the computer code) is taken from our earlier study of such correction schemes (quant-ph/0307138).
Error estimates and specification parameters for functional renormalization
Schnoerr, David [Institute for Theoretical Physics, University of Heidelberg, D-69120 Heidelberg (Germany)] [Institute for Theoretical Physics, University of Heidelberg, D-69120 Heidelberg (Germany); Boettcher, Igor, E-mail: I.Boettcher@thphys.uni-heidelberg.de [Institute for Theoretical Physics, University of Heidelberg, D-69120 Heidelberg (Germany)] [Institute for Theoretical Physics, University of Heidelberg, D-69120 Heidelberg (Germany); Pawlowski, Jan M. [Institute for Theoretical Physics, University of Heidelberg, D-69120 Heidelberg (Germany) [Institute for Theoretical Physics, University of Heidelberg, D-69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung mbH, D-64291 Darmstadt (Germany); Wetterich, Christof [Institute for Theoretical Physics, University of Heidelberg, D-69120 Heidelberg (Germany)] [Institute for Theoretical Physics, University of Heidelberg, D-69120 Heidelberg (Germany)
2013-07-15T23:59:59.000Z
We present a strategy for estimating the error of truncated functional flow equations. While the basic functional renormalization group equation is exact, approximated solutions by means of truncations do not only depend on the choice of the retained information, but also on the precise definition of the truncation. Therefore, results depend on specification parameters that can be used to quantify the error of a given truncation. We demonstrate this for the BCS–BEC crossover in ultracold atoms. Within a simple truncation the precise definition of the frequency dependence of the truncated propagator affects the results, indicating a shortcoming of the choice of a frequency independent cutoff function.
Correctable noise of Quantum Error Correcting Codes under adaptive concatenation
Jesse Fern
2008-02-27T23:59:59.000Z
We examine the transformation of noise under a quantum error correcting code (QECC) concatenated repeatedly with itself, by analyzing the effects of a quantum channel after each level of concatenation using recovery operators that are optimally adapted to use error syndrome information from the previous levels of the code. We use the Shannon entropy of these channels to estimate the thresholds of correctable noise for QECCs and find considerable improvements under this adaptive concatenation. Similar methods could be used to increase quantum fault tolerant thresholds.
Error-prevention scheme with two pairs of qubits
Chu, Shih-I; Yang, Chui-Ping; Han, Siyuan
2002-09-04T23:59:59.000Z
Ei jue ie j&5ue je i& , e iP$0,1% @6#!. The expressions for HS and HSB are as follows: HS5e0~s I z 1s II z !, *Email address: cpyang@floquet.chem.ku.edu †Email address: sichu@ku.edu ‡ Email address: han@ku.eduError-prevention scheme Chui-Ping Yang.... The sche two pairs of qubits and through error-prevention proc through a decoherence-free subspace for collective p pairs; leakage out of the encoding space due to amp addition, how to construct decoherence-free states for n discussed. DOI: 10.1103/Phys...
Laser Phase Errors in Seeded Free Electron Lasers
Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC
2012-04-17T23:59:59.000Z
Harmonic seeding of free electron lasers has attracted significant attention as a method for producing transform-limited pulses in the soft x-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality and impede production of transform-limited pulses. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.
Global Fits of the Minimal Universal Extra Dimensions Scenario
Bertone, Gianfranco; /Zurich U. /Paris, Inst. Astrophys.; Kong, Kyoungchul; /SLAC /Kansas U.; de Austri, Roberto Ruiz; /Valencia U., IFIC; Trotta, Roberto; /Imperial Coll., London
2012-06-22T23:59:59.000Z
In theories with Universal Extra-Dimensions (UED), the {gamma}{sub 1} particle, first excited state of the hypercharge gauge boson, provides an excellent Dark Matter (DM) candidate. Here we use a modified version of the SuperBayeS code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive in particular the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the {gamma}{sub 1} with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at {approx} 10{sup -11} pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross-section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross-sections. On the other hand, the LHC with 1 fb{sup -1} of data should be able to probe the current best-fit UED parameters.
Bozkaya, U?ur, E-mail: ugur.bozkaya@atauni.edu.tr [Department of Chemistry, Atatürk University, Erzurum 25240, Turkey and Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)
2014-09-28T23:59:59.000Z
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Soft Error Modeling and Protection for Sequential Elements Hossein Asadi and Mehdi B. Tahoori
on system-level soft error rate. The number of clock cycles required for an error in a bistable to be propagated to system outputs is used to measure the vulnerability of bistables to soft errors. 1 Introduction, soft errors become the main reliability concern during lifetime operation of digital systems. Soft
Low-Cost Hardening of Image Processing Applications Against Soft Errors Ilia Polian1,2
Polian, Ilia
, and their hardening against soft errors becomes an issue. We propose a methodology to identify soft errors as uncritical based on their impact on the system's functionality. We call a soft error uncritical if its impact are imperceivable for the human user of the system. We focus on soft errors in the motion esti- mation subsystem
Distinguishing congestion and error losses: an ECN/ELN based scheme
Kamakshisundaram, Raguram
2001-01-01T23:59:59.000Z
error rates, like wireless links, packets are lost more due to error than due to congestion. But TCP does not differentiate between error and congestion losses and hence reduces the sending rate for losses due to error also, which unnecessarily reduces...
Error Exponent for Discrete Memoryless Multiple-Access Channels
Anastasopoulos, Achilleas
Error Exponent for Discrete Memoryless Multiple-Access Channels by Ali Nazari A dissertation Bayraktar Associate Professor Jussi Keppo #12;c Ali Nazari 2011 All Rights Reserved #12;To my parents. ii Becky Turanski, Nancy Goings, Michele Feldkamp, Ann Pace, Karen Liska and Beth Lawson for efficiently
Optimal Estimation from Relative Measurements: Error Scaling (Extended Abstract)
Hespanha, João Pedro
"relative" measurement between xu and xv is available: uv = xu - xv + u,v Rk , (u, v) E V × V, (1) whereOptimal Estimation from Relative Measurements: Error Scaling (Extended Abstract) Prabir Barooah Jo~ao P. Hespanha I. ESTIMATION FROM RELATIVE MEASUREMENTS We consider the problem of estimating a number
On the error estimates for the rotational pressure-correction ...
2004-06-11T23:59:59.000Z
Dec 19, 2003 ... that may be viewed as a predictor-corrector strategy aiming at .... Since for projection methods the treatment of the nonlinear term does not ... In practice, the nonlin- .... One derives immediately from the standard PDE theory that .... Let us first write the equations that control the time increments of the errors.
Automatic Error Elimination by Horizontal Code Transfer across Multiple Applications
Polz, Martin
Automatic Error Elimination by Horizontal Code Transfer across Multiple Applications Stelios CSAIL, Cambridge, MA, USA Abstract We present Code Phage (CP), a system for automatically transferring. To the best of our knowledge, CP is the first system to automatically transfer code across multiple
Error Bounds from Extra Precise Iterative Refinement James Demmel
Li, Xiaoye Sherry
now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5 Cooperative Agreement No. ACI-9619020; NSF Grant Nos. ACI-9813362 and CCF-0444486; the DOE Grant Nos. DE-FG03
Control del Error para la Multirresoluci on Quincunx a la
Amat, Sergio
multirresoluci#19;on discreta no lineal de Harten. En los algoritmos de multirresoluci#19;on se transforma una obtiene ^ f L la cual debera de estar cerca de #22; f L . Por lo tanto, los algoritmos no deben de ser inestables. En este estudio, introduciremos algoritmos de control del error y de la estabilidad. Se obtendr
Urban Water Demand with Periodic Error Correction David R. Bell
Griffin, Ronald
them. Econometric estimates of residential demand for water abound (Dalhuisen et al. 2003Urban Water Demand with Periodic Error Correction by David R. Bell and Ronald C. Griffin February, Department of Agricultural Economics, Texas A&M University. #12;Abstract Monthly demand for publicly supplied
Error Control Based Model Reduction for Parameter Optimization of Elliptic
of technical devices that rely on multiscale processes, such as fuel cells or batteries. As the solutionError Control Based Model Reduction for Parameter Optimization of Elliptic Homogenization Problems optimization of elliptic multiscale problems with macroscopic optimization functionals and microscopic material
ADJOINT AND DEFECT ERROR BOUNDING AND CORRECTION FOR FUNCTIONAL ESTIMATES
Pierce, Niles A.
and Michael B. Giles Applied & Computational Mathematics, California Institute of Technology Computing to handle flows with shocks; numerical experiments confirm 4th order error estimates for a pressure integral of shocked quasi-1D Euler flow. Numerical results also demonstrate 4th order accuracy for the drag
RESIDUAL TYPE A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC OBSTACLE PROBLEMS
Nochetto, Ricardo H.
to double obstacle problems are briefly discussed. Key words. a posteriori error estimates, residual Science Foundation under the grant No.19771080 and China National Key Project ``Large Scale Scientific\\Gamma satisfies / Å¸ 0 on @ and K is the convex set of admissible displacements K := fv 2 H 1 0(\\Omega\\Gamma : v
Selected CRC Polynomials Can Correct Errors and Thus Reduce Retransmission
Mache, Jens
sensor networks, minimizing communication is crucial to improve energy consumption and thus lifetime Correction, Reliability, Network Protocol, Low Power Comsumption I. INTRODUCTION Error detection using Cyclic of retransmitting the whole packet - improves energy consumption and thus lifetime of wireless sensor networks
A Spline Algorithm for Modeling Cutting Errors Turning Centers
Gilsinn, David E.
. Bandy Automated Production Technology Division National Institute of Standards and Technology 100 Bureau are made up of features with profiles defined by arcs and lines. An error model for turned parts must take. In the case where there is a requirement of tangency between two features, such as a line tangent to an arc
Time reversal in thermoacoustic tomography - an error estimate
Hristova, Yulia
2008-01-01T23:59:59.000Z
The time reversal method in thermoacoustic tomography is used for approximating the initial pressure inside a biological object using measurements of the pressure wave made outside the object. This article presents error estimates for the time reversal method in the cases of variable, non-trapping sound speeds.
IPASS: Error Tolerant NMR Backbone Resonance Assignment by Linear Programming
Waterloo, University of
IPASS: Error Tolerant NMR Backbone Resonance Assignment by Linear Programming Babak Alipanahi1 automatically picked peaks. IPASS is proposed as a novel integer linear programming (ILP) based assignment assignment method. Although a variety of assignment approaches have been developed, none works well on noisy
Research Article Preschool Speech Error Patterns Predict Articulation
-age clinical outcomes. Many atypical speech sound errors in preschoolers may be indicative of weak phonological Outcomes in Children With Histories of Speech Sound Disorders Jonathan L. Preston,a,b Margaret Hull disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Method
Edinburgh Research Explorer Prevalence and Causes of Prescribing Errors
Hall, Christopher
of Prescribing Errors: The PRescribing Outcomes for Trainee Doctors Engaged in Clinical Training (PROTECT) Study: The PRescribing Outcomes for Trainee Doctors Engaged in Clinical Training (PROTECT) Study Cristi´n Ryan1 , Sarah Kingdom, 7 Health Psychology, University of Aberdeen, Aberdeen, United Kingdom, 8 Clinical Pharmacology
Development of an Expert System for Classification of Medical Errors
Kopec, Danny
in the United States. There has been considerable speculation that these figures are either overestimated published by the Institute of Medicine (IOM) indicated that between 44,000 and 98,000 unnecessary deaths per in hospitals in the IOM report, what is of importance is that the number of deaths caused by such errors
Error field and magnetic diagnostic modeling for W7-X
Lazerson, Sam A. [PPPL; Gates, David A. [PPPL; NEILSON, GEORGE H. [PPPL; OTTE, M.; Bozhenkov, S.; Pedersen, T. S.; GEIGER, J.; LORE, J.
2014-07-01T23:59:59.000Z
The prediction, detection, and compensation of error fields for the W7-X device will play a key role in achieving a high beta (? = 5%), steady state (30 minute pulse) operating regime utilizing the island divertor system [1]. Additionally, detection and control of the equilibrium magnetic structure in the scrape-off layer will be necessary in the long-pulse campaign as bootstrapcurrent evolution may result in poor edge magnetic structure [2]. An SVD analysis of the magnetic diagnostics set indicates an ability to measure the toroidal current and stored energy, while profile variations go undetected in the magnetic diagnostics. An additional set of magnetic diagnostics is proposed which improves the ability to constrain the equilibrium current and pressure profiles. However, even with the ability to accurately measure equilibrium parameters, the presence of error fields can modify both the plasma response and diverter magnetic field structures in unfavorable ways. Vacuum flux surface mapping experiments allow for direct measurement of these modifications to magnetic structure. The ability to conduct such an experiment is a unique feature of stellarators. The trim coils may then be used to forward model the effect of an applied n = 1 error field. This allows the determination of lower limits for the detection of error field amplitude and phase using flux surface mapping. *Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.
Errors-in-variables problems in transient electromagnetic mineral exploration
Braslavsky, Julio H.
Errors-in-variables problems in transient electromagnetic mineral exploration K. Lau, J. H in transient electromagnetic mineral exploration. A specific sub-problem of interest in this area geological surveys, dia- mond drilling, and airborne mineral exploration. Our interest here is with ground
Improving STT-MRAM Density Through Multibit Error Correction
Sapatnekar, Sachin
. Traditional methods enhance robustness at the cost of area/energy by using larger cell sizes to improve the thermal stability of the MTJ cells. This paper employs multibit error correction with DRAM to the read operation) through TX. A key attribute of an MTJ is the notion of thermal stability. Fig. 2
Error Minimization Methods in Biproportional Apportionment Federica Ricca Andrea Scozzari
Serafini, Paolo
as an alternative to the classical axiomatic approach introduced by Balinski and Demange in 1989. We provide and in the statistical literature. A milestone theoretical setting was given by Balinski and Demange in 1989 [5, 6 a class of methods for Biproportional Apportionment characterized by an "error minimization" approach
DISCRIMINATION AND CLASSIFICATION OF UXO USING MAGNETOMETRY: INVERSION AND ERROR
Sambridge, Malcolm
DISCRIMINATION AND CLASSIFICATION OF UXO USING MAGNETOMETRY: INVERSION AND ERROR ANALYSIS USING for the different solutions didn't even overlap. Introduction A discrimination and classification strategy ambiguity and possible remanent magnetization the recovered dipole moment is compared to a library
Flexible Error Protection for Energy Efficient Reliable Architectures Timothy Miller
Xuan, Dong
Flexible Error Protection for Energy Efficient Reliable Architectures Timothy Miller , Nagarjuna and Computer Engineering The Ohio State University {millerti,teodores}@cse.ohio-state.edu, nagarjun. To deal with these com- peting trends, energy-efficient solutions are needed to deal with reli- ability
Designing Automation to Reduce Operator Errors Nancy G. Leveson
Leveson, Nancy
Designing Automation to Reduce Operator Errors Nancy G. Leveson Computer Science and Engineering University of Washington Everett Palmer NASA Ames Research Center Introduction Advanced automation has been of moderelated problems [SW95]. After studying accidents and incidents in the new, highly automated
Fast Error Estimates For Indirect Measurements: Applications To Pavement Engineering
Kreinovich, Vladik
Fast Error Estimates For Indirect Measurements: Applications To Pavement Engineering Carlos that is difficult to measure directly (e.g., lifetime of a pavement, efficiency of an engine, etc). To estimate y computation time. As an example of this methodology, we give pavement lifetime estimates. This work
Data aware, Low cost Error correction for Wireless Sensor Networks
California at San Diego, University of
Data aware, Low cost Error correction for Wireless Sensor Networks Shoubhik Mukhopadhyay, Debashis challenges in adoption and deployment of wireless networked sensing applications is ensuring reliable sensor of such applications. A wireless sensor network is inherently vulnerable to different sources of unreliability
Chatzopoulos, E.; Wheeler, J. Craig; Vinko, J. [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); Horvath, Z. L.; Nagy, A., E-mail: manolis@astro.as.utexas.edu [Department of Optics and Quantum Electronics, University of Szeged (Hungary)
2013-08-10T23:59:59.000Z
We present fits of generalized semi-analytic supernova (SN) light curve (LC) models for a variety of power inputs including {sup 56}Ni and {sup 56}Co radioactive decay, magnetar spin-down, and forward and reverse shock heating due to supernova ejecta-circumstellar matter (CSM) interaction. We apply our models to the observed LCs of the H-rich superluminous supernovae (SLSN-II) SN 2006gy, SN 2006tf, SN 2008am, SN 2008es, CSS100217, the H-poor SLSN-I SN 2005ap, SCP06F6, SN 2007bi, SN 2010gx, and SN 2010kd, as well as to the interacting SN 2008iy and PTF 09uj. Our goal is to determine the dominant mechanism that powers the LCs of these extraordinary events and the physical conditions involved in each case. We also present a comparison of our semi-analytical results with recent results from numerical radiation hydrodynamics calculations in the particular case of SN 2006gy in order to explore the strengths and weaknesses of our models. We find that CS shock heating produced by ejecta-CSM interaction provides a better fit to the LCs of most of the events we examine. We discuss the possibility that collision of supernova ejecta with hydrogen-deficient CSM accounts for some of the hydrogen-deficient SLSNe (SLSN-I) and may be a plausible explanation for the explosion mechanism of SN 2007bi, the pair-instability supernova candidate. We characterize and discuss issues of parameter degeneracy.
Nuclear Arms Control R&D Consortium includes Los Alamos
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as...
Investigations into the Nature of Halogen Bonding Including Symmetry...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
into the Nature of Halogen Bonding Including Symmetry Adapted Perturbation Theory Analyses. Investigations into the Nature of Halogen Bonding Including Symmetry Adapted...
Including Retro-Commissioning in Federal Energy Savings Performance...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Including Retro-Commissioning in Federal Energy Savings Performance Contracts Including Retro-Commissioning in Federal Energy Savings Performance Contracts Document describes...
Demonstration of a 50% Thermal Efficient Diesel Engine - Including...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
a 50% Thermal Efficient Diesel Engine - Including HTCD Program Overview Demonstration of a 50% Thermal Efficient Diesel Engine - Including HTCD Program Overview Presentation given...
The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications
Foo, Jasmine; Wan Xiaoliang [Division of Applied Mathematics, Brown University, 182 George Street, Box F, Providence, RI 02912 (United States); Karniadakis, George Em [Division of Applied Mathematics, Brown University, 182 George Street, Box F, Providence, RI 02912 (United States)], E-mail: gk@dam.brown.edu
2008-11-20T23:59:59.000Z
Stochastic spectral methods are numerical techniques for approximating solutions to partial differential equations with random parameters. In this work, we present and examine the multi-element probabilistic collocation method (ME-PCM), which is a generalized form of the probabilistic collocation method. In the ME-PCM, the parametric space is discretized and a collocation/cubature grid is prescribed on each element. Both full and sparse tensor product grids based on Gauss and Clenshaw-Curtis quadrature rules are considered. We prove analytically and observe in numerical tests that as the parameter space mesh is refined, the convergence rate of the solution depends on the quadrature rule of each element only through its degree of exactness. In addition, the L{sup 2} error of the tensor product interpolant is examined and an adaptivity algorithm is provided. Numerical examples demonstrating adaptive ME-PCM are shown, including low-regularity problems and long-time integration. We test the ME-PCM on two-dimensional Navier-Stokes examples and a stochastic diffusion problem with various random input distributions and up to 50 dimensions. While the convergence rate of ME-PCM deteriorates in 50 dimensions, the error in the mean and variance is two orders of magnitude lower than the error obtained with the Monte Carlo method using only a small number of samples (e.g., 100). The computational cost of ME-PCM is found to be favorable when compared to the cost of other methods including stochastic Galerkin, Monte Carlo and quasi-random sequence methods.
Results of a nuclear power plant Application of a new technique for human error analysis (ATHEANA)
Forester, J.A.; Whitehead, D.W.; Kolaczkowski, A.M.; Thompson, C.M.
1997-10-01T23:59:59.000Z
A new method to analyze human errors has been demonstrated at a pressurized water reactor (PWR) nuclear power plant. This was the first application of the new method referred to as A Technique for Human Error Analysis (ATHEANA). The main goals of the demonstration were to test the ATHEANA process as described in the frame-of-reference manual and the implementation guideline, test a training package developed for the method, test the hypothesis that plant operators and trainers have significant insight into the error-forcing-contexts (EFCs) that can make unsafe actions (UAs) more likely, and to identify ways to improve the method and its documentation. A set of criteria to evaluate the {open_quotes}success{close_quotes} of the ATHEANA method as used in the demonstration was identified. A human reliability analysis (HRA) team was formed that consisted of an expert in probabilistic risk assessment (PRA) with some background in HRA (not ATHEANA) and four personnel from the nuclear power plant. Personnel from the plant included two individuals from their PRA staff and two individuals from their training staff. Both individuals from training are currently licensed operators and one of them was a senior reactor operator {open_quotes}on shift{close_quotes} until a few months before the demonstration. The demonstration was conducted over a 5 month period and was observed by members of the Nuclear Regulatory Commission`s ATHEANA development team, who also served as consultants to the HRA team when necessary. Example results of the demonstration to date, including identified human failure events (HFEs), UAs, and EFCs are discussed. Also addressed is how simulator exercises are used in the ATHEANA demonstration project.
SU-E-T-152: Error Sensitivity and Superiority of a Protocol for 3D IMRT Quality Assurance
Gueorguiev, G [Massachusetts General Hospital, Boston, MA (United States); University of Massachusetts Lowell, Lowell, MA (United States); Cotter, C; Turcotte, J; Sharp, G; Crawford, B [Massachusetts General Hospital, Boston, MA (United States); Mah'D, M [University of Massachusetts Lowell, Lowell, MA (United States)
2014-06-01T23:59:59.000Z
Purpose: To test if the parameters included in our 3D QA protocol with current tolerance levels are able to detect certain errors and show the superiority of 3D QA method over single ion chamber measurements and 2D gamma test by detecting most of the introduced errors. The 3D QA protocol parameters are: TPS and measured average dose difference, 3D gamma test with 3mmDTA/3% test parameters, and structure volume for which the TPS predicted and measured absolute dose difference is greater than 6%. Methods: Two prostate and two thoracic step-and-shoot IMRT patients were investigated. The following errors were introduced to each original treatment plan: energy switched from 6MV to 10MV, linac jaws retracted to 15cmx15cm, 1,2,3 central MLC leaf pairs retracted behind the jaws, single central MLC leaf put in or out of the treatment field, Monitor Units (MU) increased and decreased by 1 and 3%, collimator off by 5 and 15 degrees, detector shifted by 5mm to the left and right, gantry treatment angle off by 5 and 15 degrees. QA was performed on each plan using single ion chamber, 2D ion chamber array for 2D gamma analysis and using IBA's COMPASS system for 3D QA. Results: Out of the three tested QA methods single ion chamber performs the worst not detecting subtle errors. 3D QA proves to be the superior out of the three methods detecting all of introduced errors, except 10MV and 1% MU change, and MLC rotated (those errors were not detected by any QA methods tested). Conclusion: As the way radiation is delivered evolves, so must the QA. We believe a diverse set of 3D statistical parameters applied both to OAR and target plan structures provides the highest level of QA.
Including robustness in multi-criteria optimization for intensity-modulated proton therapy
Chen, Wei; Trofimov, Alexei; Madden, Thomas; Kooy, Hanne; Bortfeld, Thomas; Craft, David
2011-01-01T23:59:59.000Z
We present a method to include robustness into a multi-criteria optimization (MCO) framework for intensity-modulated proton therapy (IMPT). The approach allows one to simultaneously explore the trade-off between different objectives as well as the trade-off between robustness and nominal plan quality. In MCO, a database of plans each emphasizing different treatment planning objectives, is pre-computed to approximate the Pareto surface. An IMPT treatment plan that strikes the best balance between the different objectives can be selected by navigating on the Pareto surface. In our approach, robustness is integrated into MCO by adding robustified objectives and constraints to the MCO problem. Uncertainties of the robust problem are modeled by pre-calculated dose-influence matrices for a nominal scenario and a number of pre-defined error scenarios. A robustified objective represents the worst objective function value that can be realized for any of the error scenarios. The optimization method is based on a linear...
AIPS Memo 114r The FITS Interferometry Data Interchange Convention --Revised
Greisen, Eric
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.7 Calibration and flagging information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 FITS-IDI file structure 10 3.1 The primary HDU
Data Fitting in Partial Differential Algebraic Equations: Some Academic and Industrial
Schittkowski, Klaus
dynamics of hydro systems, · MCFC fuel cells, · horn radiators for satellite communication. The dynamical engineering. Key words: parameter estimation, data fitting, least squares optimization, partial differential
runtime error message: "readControlMsg: System returned error Connection
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of5,:,, , ., ..., at the XlthImages ofrfry AmesComparisons of2rshouk
System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)
Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros
2010-09-01T23:59:59.000Z
This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a forcing function, helping the team in this endeavor. Models don’t like “TBD” as an input, forcing us to make assumptions and see if they matter. A major addition in FY 2010 was exploratory analysis of “modified open fuel” cycles, employing “minimum fuel treatment” as opposed to full aqueous or electrochemical separation treatment. This increased complexity in our analysis and analytical tool development because equilibrium conditions do not appear sustainable in minimum fuel treatment cases, as was assumed in FY 2009 work with conventional aqueous and electrochemical separation. It is no longer reasonable to assume an equilibrium situation exists in all cases.
Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Liu, Donglai; Zuo, Tao; Hora, Bhavna; Song, Hongshuo; Kong, Wei; Yu, Xianghui; Goonetilleke, Nilu; Bhattacharya, Tanmoy; Perelson, Alan S.; Haynes, Barton F.; et al
2014-01-01T23:59:59.000Z
Background: Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. Results: The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, themore »fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. Conclusions: Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.« less
Method and system for reducing errors in vehicle weighing systems
Hively, Lee M. (Philadelphia, TN); Abercrombie, Robert K. (Knoxville, TN)
2010-08-24T23:59:59.000Z
A method and system (10, 23) for determining vehicle weight to a precision of <0.1%, uses a plurality of weight sensing elements (23), a computer (10) for reading in weighing data for a vehicle (25) and produces a dataset representing the total weight of a vehicle via programming (40-53) that is executable by the computer (10) for (a) providing a plurality of mode parameters that characterize each oscillatory mode in the data due to movement of the vehicle during weighing, (b) by determining the oscillatory mode at which there is a minimum error in the weighing data; (c) processing the weighing data to remove that dynamical oscillation from the weighing data; and (d) repeating steps (a)-(c) until the error in the set of weighing data is <0.1% in the vehicle weight.
MPI Runtime Error Detection with MUST: Advances in Deadlock Detection
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hilbrich, Tobias; Protze, Joachim; Schulz, Martin; de Supinski, Bronis R.; Müller, Matthias S.
2013-01-01T23:59:59.000Z
The widely used Message Passing Interface (MPI) is complex and rich. As a result, application developers require automated tools to avoid and to detect MPI programming errors. We present the Marmot Umpire Scalable Tool (MUST) that detects such errors with significantly increased scalability. We present improvements to our graph-based deadlock detection approach for MPI, which cover future MPI extensions. Our enhancements also check complex MPI constructs that no previous graph-based detection approach handled correctly. Finally, we present optimizations for the processing of MPI operations that reduce runtime deadlock detection overheads. Existing approaches often require (p) analysis time per MPI operation,more »forpprocesses. We empirically observe that our improvements lead to sub-linear or better analysis time per operation for a wide range of real world applications.« less
Comparison of Wind Power and Load Forecasting Error Distributions: Preprint
Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.
2012-07-01T23:59:59.000Z
The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.
On the efficiency of nondegenerate quantum error correction codes for Pauli channels
Gunnar Bjork; Jonas Almlof; Isabel Sainz
2009-05-19T23:59:59.000Z
We examine the efficiency of pure, nondegenerate quantum-error correction-codes for Pauli channels. Specifically, we investigate if correction of multiple errors in a block is more efficient than using a code that only corrects one error per block. Block coding with multiple-error correction cannot increase the efficiency when the qubit error-probability is below a certain value and the code size fixed. More surprisingly, existing multiple-error correction codes with a code length equal or less than 256 qubits have lower efficiency than the optimal single-error correcting codes for any value of the qubit error-probability. We also investigate how efficient various proposed nondegenerate single-error correcting codes are compared to the limit set by the code redundancy and by the necessary conditions for hypothetically existing nondegenerate codes. We find that existing codes are close to optimal.
Lined sampling vessel including a filter to separate solids from liquids on exit
Shurtliff, Rodney M. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID)
2001-01-01T23:59:59.000Z
A filtering apparatus has an open canister with an inlet port. A canister lid is provided which includes an outlet port for the passage of fluids from the canister. Liners are also provided which are shaped to fit the interiors of the canister and the lid, with at least the canister liner preferably being flexible. The sample to be filtered is positioned inside the canister liner, with the lid and lid liner being put in place thereafter. A filter element is located between the sample and the outlet port. Seals are formed between the canister liner and lid liner, and around the outlet port to prevent fluid leakage. A pressure differential is created between the canister and the canister liner so that the fluid in the sample is ejected from the outlet port and the canister liner collapses around the retained solids.
Scaling behavior of discretization errors in renormalization and improvement constants
Bhattacharya, T; Lee, W; Sharpe, S R; Bhattacharya, Tanmoy; Gupta, Rajan; Lee, Weonjong; Sharpe, Stephen R.
2006-01-01T23:59:59.000Z
Non-perturbative results for improvement and renormalization constants needed for on-shell and off-shell O(a) improvement of bilinear operators composed of Wilson fermions are presented. The calculations have been done in the quenched approximation at beta=6.0, 6.2 and 6.4. To quantify residual discretization errors we compare our data with results from other non-perturbative calculations and with one-loop perturbation theory.
Error message recording and reporting in the SLC control system
Spencer, N.; Bogart, J.; Phinney, N.; Thompson, K.
1985-04-01T23:59:59.000Z
Error or information messages that are signaled by control software either in the VAX host computer or the local microprocessor clusters are handled by a dedicated VAX process (PARANOIA). Messages are recorded on disk for further analysis and displayed at the appropriate console. Another VAX process (ERRLOG) can be used to sort, list and histogram various categories of messages. The functions performed by these processes and the algorithms used are discussed.
Runtime Detection of C-Style Errors in UPC Code
Pirkelbauer, P; Liao, C; Panas, T; Quinlan, D
2011-09-29T23:59:59.000Z
Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the global address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.
Physical activity, physical fitness and leukocyte telomere length.
Soares-Miranda, Luisa; Imamura, Fumiaki; Siscovick, David; Jenny, Nancy Swords; Fitzpatrick, Annette L.; Mozaffarian, Dariush
2015-01-01T23:59:59.000Z
types, frequency, and duration of each 107 activity were used to calculate weekly energy expenditure (kcal/week) from leisure-108 time activity. Usual exercise intensity was also assessed, with responses including no 109 exercise or low, medium... ) and also better represent long-term effects of 175 habitual PA and PF, we took advantage of repeated measures of PA to PF to perform 176 cumulative updating (averaging of serial values) (Supplementary Figure 1, SDC, 177 Timeline). When PA or PF were...
The Mimicking Octopus: Towards a one-size-fits-all Database Architecture
The Mimicking Octopus: Towards a one-size-fits-all Database Architecture Alekh Jindal Supervised by anyways. In this paper we discuss building a new type of database system which fits several use started off as monolithic systems. However, database engineers soon started tuning their performance
Computation of mutual fitness by competing bacteria Juan E. Keymera,1,2
companies to extinction but at the cost of innovation caused by removal of competition (1). In the world for dominance at the cost of extinction of the less-fit strain if there are fitness advantages to the presence), but such extinction scenarios are not the norm in natural spatially heterogeneous habitats, at least for ``lower
SHRINK-FITTING AND DOWEL WELDING IN MORTISE AND TENON STRUCTURAL WOOD JOINTS
Paris-Sud XI, Université de
SHRINK-FITTING AND DOWEL WELDING IN MORTISE AND TENON STRUCTURAL WOOD JOINTS E.Mougel1 , C.Segovia1 welded dowels. Increasing the number of welded dowels, however, produced joints of higher strength than those bonded just by shrink-fitting. Combining in the same joint both dowel welding and shrink
Fitting Narrow Emission Lines in X-ray Spectra Taeyoung Park
Wolfe, Patrick J.
Fitting Narrow Emission Lines in X-ray Spectra Taeyoung Park Department of Statistics, Harvard University October 25, 2005 Taeyoung Park Fitting Narrow Emission Lines in X X-ray luminosity, and the emission of photons with energies is represented by a spectrum
Goal pursuit is more than planning: the moderating role of regulatory fit
Tam, Wing Yin Leona
2006-10-30T23:59:59.000Z
Research indicates that planning helps consumers in their goal pursuit, but little is known about how and when such beneficial effects change with regulatory fit Ã¢Â?Â? fit between consumersÃ¢Â?Â? regulatory orientation and goal pursuit means...
Triantaphyllou, Evangelos
Prediction of Diabetes by Employing a New Data Mining Approach Which Balances Fitting, Evangelos, "Prediction of Diabetes by Employing a New Data Mining Approach Which Balances Fitting disease) is called diabetes. The cause of diabetes is still a mystery, although obesity and lack
Virtual Hooping: teaching a phone about hula-hooping for Fitness, Fun and Rehabilitation
Murray-Smith, Roderick
Virtual Hooping: teaching a phone about hula-hooping for Fitness, Fun and Rehabilitation Josip Musi for fitness and rehabilitation purposes by training them to recognise a user's hula-hooping movements. It also the creation of hula- hooping performance metrics which can be used in wellness, rehabilitation
astroph/9710116 Fitting random stable solar systems to TitiusBode laws
Toronto, University of
astroph/9710116 10 Oct 1997 Fitting random stable solar systems to TitiusBode laws Preprint: 10 ``solar systems'' are generated with planetary orbital radii r distributed uniformly random in log r of these systems to generalized Bode laws are performed, and compared to the fit of our own Solar System. We find
Example Retro-Commissioning Scope of Work to Include Services...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Retro-Commissioning Scope of Work to Include Services as Part of an ESPC Investment-Grade Audit Example Retro-Commissioning Scope of Work to Include Services as Part of an ESPC...
SU-E-T-51: Bayesian Network Models for Radiotherapy Error Detection
Kalet, A; Phillips, M; Gennari, J [UniversityWashington, Seattle, WA (United States)
2014-06-01T23:59:59.000Z
Purpose: To develop a probabilistic model of radiotherapy plans using Bayesian networks that will detect potential errors in radiation delivery. Methods: Semi-structured interviews with medical physicists and other domain experts were employed to generate a set of layered nodes and arcs forming a Bayesian Network (BN) which encapsulates relevant radiotherapy concepts and their associated interdependencies. Concepts in the final network were limited to those whose parameters are represented in the institutional database at a level significant enough to develop mathematical distributions. The concept-relation knowledge base was constructed using the Web Ontology Language (OWL) and translated into Hugin Expert Bayes Network files via the the RHugin package in the R statistical programming language. A subset of de-identified data derived from a Mosaiq relational database representing 1937 unique prescription cases was processed and pre-screened for errors and then used by the Hugin implementation of the Estimation-Maximization (EM) algorithm for machine learning all parameter distributions. Individual networks were generated for each of several commonly treated anatomic regions identified by ICD-9 neoplasm categories including lung, brain, lymphoma, and female breast. Results: The resulting Bayesian networks represent a large part of the probabilistic knowledge inherent in treatment planning. By populating the networks entirely with data captured from a clinical oncology information management system over the course of several years of normal practice, we were able to create accurate probability tables with no additional time spent by experts or clinicians. These probabilistic descriptions of the treatment planning allow one to check if a treatment plan is within the normal scope of practice, given some initial set of clinical evidence and thereby detect for potential outliers to be flagged for further investigation. Conclusion: The networks developed here support the use of probabilistic models into clinical chart checking for improved detection of potential errors in RT plans.
Meyer, Jeff, E-mail: jmeye3@utsouthwestern.ed [University of Texas-M.D. Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques; Amos, Richard [University of Texas-M.D. Anderson Cancer Center, Houston, TX (United States)
2010-10-01T23:59:59.000Z
Purpose: Conventional proton therapy with passively scattered beams is used to treat a number of tumor sites, including prostate cancer. Spot scanning proton therapy is a treatment delivery means that improves conformal coverage of the clinical target volume (CTV). Placement of individual spots within a target is dependent on traversed tissue density. Errors in patient alignment perturb dose distributions. Moreover, there is a need for a rational planning approach that can mitigate the dosimetric effect of random alignment errors. We propose a treatment planning approach and then analyze the consequences of various simulated alignment errors on prostate treatments. Methods and Materials: Ten control patients with localized prostate cancer underwent treatment planning for spot scanning proton therapy. After delineation of the clinical target volume, a scanning target volume (STV) was created to guide dose coverage. Errors in patient alignment in two axes (rotational and yaw) as well as translational errors in the anteroposterior direction were then simulated, and dose to the CTV and normal tissues were reanalyzed. Results: Coverage of the CTV remained high even in the setting of extreme rotational and yaw misalignments. Changes in the rectum and bladder V45 and V70 were similarly minimal, except in the case of translational errors, where, as a result of opposed lateral beam arrangements, much larger dosimetric perturbations were observed. Conclusions: The concept of the STV as applied to spot scanning radiation therapy and as presented in this report leads to robust coverage of the CTV even in the setting of extreme patient misalignments.
Super-Kamiokande hep neutrino best fit: a possible signal of nonmaxwellian solar plasma
Massimo Coraddu; Marcello Lissia; Giuseppe Mezzorani; Piero Quarati
2002-12-03T23:59:59.000Z
The Super-Kamiokande best global fit, which includes data from SNO, Gallium and Chlorine experiments, results in a hep neutrino contribution to the signals that, even after oscillation, is greater than the SSM prediction. The solar hep neutrino flux that would yield this contribution is four times larger than the one predicted by the SSM. Recent detailed calculations exclude that the astrophysical factor S_{hep}(0) could be wrong by such a large factor. Given the reliability of the temperature and densities profiles inside the Sun, this experimental result indicates that plasma effects are important for this reaction. We show that a slight enhancement of the high-energy tail, enhancement that is of the order of the deviations from the Maxwell-Boltzmann distribution expected in the solar core plasma, produces an increment of the hep rate of the magnitude required. We verified that the other neutrino fluxes remain compatible with experimental signals and SSM predictions. Better measurements of the high-energy tail of the neutrino spectrum would improve our understanding of reaction rates in the solar plasma.
A Rediatively Light Stop Saves the Best Global Fit for Higgs Boson Mass and Decays
Zhaofeng Kang; Tianjun Li; Jinmian Li; Yandong Liu
2012-08-13T23:59:59.000Z
The LHC discovered the Standard Model (SM) like Higgs boson with mass around 125 GeV. However, there exist hints of deviations from Higgs decays. Including the Tevatron data, the deviations can be explained by the extremely mixed stop sector in the sense of best global fit (BGF). We analyze the relations among the competing reduced coupling hGG, Higgs boson mass,and LHC stop mass m_{\\wt t_1} lower bound at the tree- and one-loop level. In particular, we point out that we use the light stop running mass in the Higgs boson mass calculation while the light stop pole mass in the Higgs decays. So the gluino radiative correction on the light stop mass plays the crucial role. Its large negative correction saves the GBF in the Minimal Supersymmetric SM (MSSM) and the next to the MSSM (NMSSM) constrained by the perturbativity. Moreover, a light stop is predicted: in the MSSM if we set the gluino mass M_3\\lesssim4 TeV, we have m_{\\wt t_1}
Cappelli, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy); Gadomski, A. M. [ECONA, Centro Interuniversitario Elaborazione Cognitiva Sistemi Naturali e Artificiali, via dei Marsi 47, Rome (Italy); Sepiellis, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy); Wronikowska, M. W. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy); Poznan School of Social Sciences (Poland)
2012-07-01T23:59:59.000Z
In the field of nuclear power plant (NPP) safety modeling, the perception of the role of socio-cognitive engineering (SCE) is continuously increasing. Today, the focus is especially on the identification of human and organization decisional errors caused by operators and managers under high-risk conditions, as evident by analyzing reports on nuclear incidents occurred in the past. At present, the engineering and social safety requirements need to enlarge their domain of interest in such a way to include all possible losses generating events that could be the consequences of an abnormal state of a NPP. Socio-cognitive modeling of Integrated Nuclear Safety Management (INSM) using the TOGA meta-theory has been discussed during the ICCAP 2011 Conference. In this paper, more detailed aspects of the cognitive decision-making and its possible human errors and organizational vulnerability are presented. The formal TOGA-based network model for cognitive decision-making enables to indicate and analyze nodes and arcs in which plant operators and managers errors may appear. The TOGA's multi-level IPK (Information, Preferences, Knowledge) model of abstract intelligent agents (AIAs) is applied. In the NPP context, super-safety approach is also discussed, by taking under consideration unexpected events and managing them from a systemic perspective. As the nature of human errors depends on the specific properties of the decision-maker and the decisional context of operation, a classification of decision-making using IPK is suggested. Several types of initial situations of decision-making useful for the diagnosis of NPP operators and managers errors are considered. The developed models can be used as a basis for applications to NPP educational or engineering simulators to be used for training the NPP executive staff. (authors)
V-109: Google Chrome WebKit Type Confusion Error Lets Remote...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
9: Google Chrome WebKit Type Confusion Error Lets Remote Users Execute Arbitrary Code V-109: Google Chrome WebKit Type Confusion Error Lets Remote Users Execute Arbitrary Code...
T-545: RealPlayer Heap Corruption Error in 'vidplin.dll' Lets...
T-545: RealPlayer Heap Corruption Error in 'vidplin.dll' Lets Remote Users Execute Arbitrary Code T-545: RealPlayer Heap Corruption Error in 'vidplin.dll' Lets Remote Users Execute...
Recompile if your codes run into MPICH error after the maintenance...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Recompile if your codes run into MPICH errors after the maintenance on 6252014 Recompile if your codes run into MPICH error after the maintenance on 6252014 June 27, 2014 (0...
Design techniques for graph-based error-correcting codes and their applications
Lan, Ching Fu
2006-04-12T23:59:59.000Z
-correcting (channel) coding. The main idea of error-correcting codes is to add redundancy to the information to be transmitted so that the receiver can explore the correlation between transmitted information and redundancy and correct or detect errors caused...
Simulations of error in quantum adiabatic computations of random 2-SAT instances
Gill, Jay S. (Jay Singh)
2006-01-01T23:59:59.000Z
This thesis presents a series of simulations of quantum computations using the adiabatic algorithm. The goal is to explore the effect of error, using a perturbative approach that models 1-local errors to the Hamiltonian ...
T-719:Apache mod_proxy_ajp HTTP Processing Error Lets Remote Users Deny Service
Broader source: Energy.gov [DOE]
A remote user can cause the backend server to remain in an error state until the retry timeout expires.
McReynolds, W.L. (Bonneville Power Administration, Vancouver, WA (US)); Badley, D.E. (N.W. Power Pool, Coordinating Office, Portland, OR (US))
1991-08-01T23:59:59.000Z
This paper describes an automatic generation control (AGC) system that simultaneously reduces time error and accumulated inadvertent interchange energy in interconnected power system. This method is automatic time error and accumulated inadvertent interchange reduction (AIIR). With this method control areas help correct the system time error when doing so also tends to correct accumulated inadvertent interchange. Thus in one step accumulated inadvertent interchange and system time error are corrected.
U-182: Microsoft Windows Includes Some Invalid Certificates
Broader source: Energy.gov [DOE]
The operating system includes some invalid intermediate certificates. The vulnerability is due to the certificate authorities and not the operating system itself.
Introduction to Small-Scale Photovoltaic Systems (Including RETScreen...
Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Photovoltaic Systems...
Including Retro-Commissioning in Federal Energy Savings Performance...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
11.2 Retro-Cx in Federal ESPCs Including Retro-Commissioning In Federal Energy Saving Performance Contracts Retro-commissioning generally reduces operating and maintenance costs,...
Energy Department Expands Gas Gouging Reporting System to Include...
Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone...
Optimum decoding of TCM in the presence of phase errors
Han, Jae Choong
1990-01-01T23:59:59.000Z
discussed. Our approach is to assume that intersymbol interference has been effectively removed by the equalizer while the phase tracking scheme has partially removed the phase jitter, in which case the output of the equalizer will have a slowly varying.... The DAL [I] used the decision at the output ol' the Viterbi decoder to demodulate the local c&arrier. The performance degradation of coded 8-PSK when disturbed by recovered carrier phase error and jitter is investigatecl in i'Gi, in which simulation...
Effects of color coding on keying time and errors
Wooldridge, Brenda Gail
1983-01-01T23:59:59.000Z
were to determine the effects if any oi' color coding upon the error rate and location time of special func- tion keys on a computer keyboard. An ACT-YA CRT keyboard interfaced with a Kromemco microcomputer was used. There were 84 high schoool... to comnunicate with more and more computer-like devices. The most common computer/human interface is the terminal, consisting of a display screen, and keyboard. The format and layout on the display screen of computer-generated information is generally...
The Impact of Soil Sampling Errors on Variable Rate Fertilization
R. L. Hoskinson; R C. Rope; L G. Blackwood; R D. Lee; R K. Fink
2004-07-01T23:59:59.000Z
Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and a predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted for almost 87% of the cost difference. The sum of these differences could result in a $34 per acre cost difference for the fertilization. Because of these differences, better analysis or better sampling methods may need to be done, or more samples collected, to ensure that the soil measurements are truly representative of the field’s spatial variability.
Error-field penetration in reversed magnetic shear configurations
Wang, H. H.; Wang, Z. X.; Wang, X. Q. [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)] [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, X. G. [School of Physics, Peking University, Beijing 100871 (China)] [School of Physics, Peking University, Beijing 100871 (China)
2013-06-15T23:59:59.000Z
Error-field penetration in reversed magnetic shear (RMS) configurations is numerically investigated by using a two-dimensional resistive magnetohydrodynamic model in slab geometry. To explore different dynamic processes in locked modes, three equilibrium states are adopted. Stable, marginal, and unstable current profiles for double tearing modes are designed by varying the current intensity between two resonant surfaces separated by a certain distance. Further, the dynamic characteristics of locked modes in the three RMS states are identified, and the relevant physics mechanisms are elucidated. The scaling behavior of critical perturbation value with initial plasma velocity is numerically obtained, which obeys previously established relevant analytical theory in the viscoresistive regime.
An error correcting procedure for imperfect supervised, nonparametric classification
Ferrell, Dennis Ray
1973-01-01T23:59:59.000Z
ON INFORMATION THEORY . is active) . I'or simplicity in writing, Pr(B=B. ) will be ab- j breviated by Pr(B. ), and f(x/B=B ) will be abbreviated by j f (x/B. ) . The basic problem is, upon observing x, to determine j which class is active. If complete... to be B , r (x), is r (x) ( L Pr(B /x) i=1 The conditional probability of error can be minimized over j by assigning to a measurement x, the label value B such that minimizes r (x) . The rule which will do this is Bayes rule, b*. The resulting...
JFIT: a framework to obtain combined experimental results through joint fits
Eli Ben-Haim; René Brun; Bertrand Echenard; Thomas E. Latham
2015-01-18T23:59:59.000Z
A framework is presented for obtaining combined experimental results through joint fits of datasets from several experiments. The JFIT framework allows such fits to be performed keeping the data separated, in its original format, and using independent fitting environments, thus simplifying the process with respect to data access policies. It is based on a master-server architecture, using the network communication classes from ROOT. The framework provides an optimal way to exploit data from several experiments: it ensures that correlations are correctly taken into account and results in a better determination of nuisance parameters. Its advantages are discussed and illustrated by two examples from the domain of high energy physics.
Trade-off of lossless source coding error exponents Cheng Chang Anant Sahai
Sahai, Anant
Trade-off of lossless source coding error exponents Cheng Chang Anant Sahai HP Labs, Palo Alto EECS, UC Berkeley ISIT 2008 Chang (HP Labs), Sahai ( UC Berkeley) Error Exponents trade-off ISIT 2008 1 (HP Labs), Sahai ( UC Berkeley) Error Exponents trade-off ISIT 2008 2 / 14 #12;Stabilizing an unstable
A Memory Soft Error Measurement on Production Systems Xin Li Kai Shen Michael C. Huang
Shen, Kai
A Memory Soft Error Measurement on Production Systems Xin Li Kai Shen Michael C. Huang University and dealing with these soft (or transient) errors is impor- tant for system reliability. Several earlier for memory soft error measurement on production systems where performance impact on existing running ap
A Memory Soft Error Measurement on Production Systems # Xin Li Kai Shen Michael C. Huang
Shen, Kai
A Memory Soft Error Measurement on Production Systems # Xin Li Kai Shen Michael C. Huang University and dealing with these soft (or transient) errors is impor tant for system reliability. Several earlier for memory soft error measurement on production systems where performance impact on existing running ap
Matt Duckham Page 1 Implementing an object-oriented error sensitive GIS
Duckham, Matt
Matt Duckham Page 1 Implementing an object-oriented error sensitive GIS Matt Duckham Department in the handling of uncertainty within GIS, the production of what has been described as an error sensitive GIS of opportunities, but also impediments to the implemen- tation of such an error sensitive GIS. An important barrier
Digication Error Message:"Your username is already in use by another account."
Barrash, Warren
Digication Error Message:"Your username is already in use by another account." You may need you have one). If you receive the error message below, here's how to log into your Digication account. (For example, if the error message appeared when using your employee account, switch to your employee
Repeated quantum error correction on a continuously encoded qubit by real-time feedback
Julia Cramer; Norbert Kalb; M. Adriaan Rol; Bas Hensen; Machiel S. Blok; Matthew Markham; Daniel J. Twitchen; Ronald Hanson; Tim H. Taminiau
2015-08-06T23:59:59.000Z
Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits, so that errors can be detected without affecting the encoded state. To be compatible with universal fault-tolerant computations, it is essential that the states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected qubit using a diamond quantum processor. We encode a logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements using an ancilla electron spin, and apply corrections on the encoded state by real-time feedback. The actively error-corrected qubit is robust against errors and multiple rounds of error correction prevent errors from accumulating. Moreover, by correcting phase errors naturally induced by the environment, we demonstrate that encoded quantum superposition states are preserved beyond the dephasing time of the best physical qubit used in the encoding. These results establish a powerful platform for the fundamental investigation of error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.
Edit: Study -APP Save | Exit | Hide/Show Errors | Print... | Jump To
Biederman, Irving
Edit: Study - APP Save | Exit | Hide/Show Errors | Print... | Jump To: 01. Project Guidance Save | Exit | Hide/Show Errors | Print... | Jump To: 01. Project IdentificationStarDev/ResourceAdministration/Project/ProjectEditor?Project=com... 1 #12;Edit: Study - APP- Save | Exit | Hide/Show Errors | Print... | Jump To: 02. Study
Non-Concurrent Error Detection and Correction in Fault-Tolerant Discrete-Time LTI
Hadjicostis, Christoforos
Non-Concurrent Error Detection and Correction in Fault-Tolerant Discrete-Time LTI Dynamic Systems encoded form and allow error detection and correction to be performed through concurrent parity checks (i that allows parity checks to capture the evolution of errors in the system and, based on non-concurrent parity
Exposure Measurement Error in Time-Series Studies of Air Pollution: Concepts and Consequences
Dominici, Francesca
1 Exposure Measurement Error in Time-Series Studies of Air Pollution: Concepts and Consequences S in time-series studies 1 11/11/99 Keywords: measurement error, air pollution, time series, exposure of air pollution and health. Because measurement error may have substantial implications for interpreting
In-Line-Test of Variability and Bit-Error-Rate of HfOx-Based Resistive Memory
Ji, B L; Ye, Q; Gausepohl, S; Deora, S; Veksler, D; Vivekanand, S; Chong, H; Stamper, H; Burroughs, T; Johnson, C; Smalley, M; Bennett, S; Kaushik, V; Piccirillo, J; Rodgers, M; Passaro, M; Liehr, M
2015-01-01T23:59:59.000Z
Spatial and temporal variability of HfOx-based resistive random access memory (RRAM) are investigated for manufacturing and product designs. Manufacturing variability is characterized at different levels including lots, wafers, and chips. Bit-error-rate (BER) is proposed as a holistic parameter for the write cycle resistance statistics. Using the electrical in-line-test cycle data, a method is developed to derive BERs as functions of the design margin, to provide guidance for technology evaluation and product design. The proposed BER calculation can also be used in the off-line bench test and build-in-self-test (BIST) for adaptive error correction and for the other types of random access memories.
Summer Conference Participant Registration Fee: $200 Includes the following
Tullos, Desiree
Summer Conference Participant Registration Fee: $200 Includes the following: Lodging for Wednesday on Wednesday, Thursday, and Friday Brunch on Saturday Summer Conference T-shirt Class materials Congress Only only (although they are encouraged to attend the entire conference). This fee includes the following
Solar Energy Education. Reader, Part II. Sun story. [Includes glossary
Not Available
1981-05-01T23:59:59.000Z
Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)
PSERC 97-12 "Thermal Unit Commitment Including
PSERC 97-12 "Thermal Unit Commitment Including Optimal AC Power Flow Constraints" Carlos Murillo-562-3966. #12;Thermal Unit Commitment Including Optimal AC Power Flow Constraints Carlos Murillo S anchez Robert a new algorithm for unit commitment that employs a Lagrange relaxation technique with a new augmentation
Articles which include chevron film cooling holes, and related processes
Bunker, Ronald Scott; Lacy, Benjamin Paul
2014-12-09T23:59:59.000Z
An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.
Aperiodic dynamical decoupling sequences in presence of pulse errors
Zhi-Hui Wang; V. V. Dobrovitski
2011-01-12T23:59:59.000Z
Dynamical decoupling (DD) is a promising tool for preserving the quantum states of qubits. However, small imperfections in the control pulses can seriously affect the fidelity of decoupling, and qualitatively change the evolution of the controlled system at long times. Using both analytical and numerical tools, we theoretically investigate the effect of the pulse errors accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G. S. Uhrig, Phys. Rev. Lett. {\\bf 98}, 100504 (2007)], and the Quadratic DD (QDD) protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\\bf 104}, 130501 (2010)]. We consider the implementation of these sequences using the electron spins of phosphorus donors in silicon, where DD sequences are applied to suppress dephasing of the donor spins. The dependence of the decoupling fidelity on different initial states of the spins is the focus of our study. We investigate in detail the initial drop in the DD fidelity, and its long-term saturation. We also demonstrate that by applying the control pulses along different directions, the performance of QDD protocols can be noticeably improved, and explain the reason of such an improvement. Our results can be useful for future implementations of the aperiodic decoupling protocols, and for better understanding of the impact of errors on quantum control of spins.
GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mandelbaum, Rachel; Rowe, Barnaby; Armstrong, Robert; Bard, Deborah; Bertin, Emmanuel; Bosch, James; Boutigny, Dominique; Courbin, Frederic; Dawson, William A.; Donnarumma, Annamaria; et al
2015-05-11T23:59:59.000Z
The study present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty aboutmore »a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods’ results support the simple model in which additive shear biases depend linearly on PSF ellipticity.« less
Dees, Windy Lynn
2009-05-15T23:59:59.000Z
The purpose of this study was to determine if personality fit between NASCAR drivers and their major sponsors affects the sponsorship outcomes of consumer attitudes toward the sponsor, attitudes toward the brand, and ...
Lee, Yuan-Hsuan
2011-10-21T23:59:59.000Z
This dissertation focuses on issues related to fitting an optimal variance-covariance structure in multilevel linear modeling framework with two Monte Carlo simulation studies. In the first study, the author evaluated the ...
Nonparametric estimation of additive nonlinear ARX time series: Local Linear Fitting and Projections
Cai, Zongwu; Masry, Elias
2000-08-01T23:59:59.000Z
We consider the estimation and identification of the components (endogenous and exogenous) of additive nonlinear ARX time series models. We employ a local polynomial fitting scheme coupled with projections. We establish ...
Fitness effects of new mutations and adaptive evolution in house mice
Kousathanas, Athanasios
2013-11-28T23:59:59.000Z
Knowledge of the distribution of fitness effects of new mutations (DFE) can enable us to quantify the amount of genetic change between species that is driven by natural selection and contributes to adaptive evolution. ...
Auld, Stuart Kenneth John Robert
2011-11-24T23:59:59.000Z
Immune responses are presumed to contribute to host fitness, either by fighting off infections or via immunopathology. Research in this thesis sought to relate the magnitude of a putative immune response to infection and ...
Watkinson, Harold
1958-01-01T23:59:59.000Z
These Regulations, which prescribe the conditions to be satisfied by a public service vehicle before a certificate of fitness (without the issue of which a vehicle may not be licensed to be used as a public service vehicle) ...
Discrete optimization methods to fit piecewise-affine models to data ...
2015-03-09T23:59:59.000Z
(a) A piecewise affine model with k = 2, fitting the eight data points. A = {ai}i?I .... where: i) for every j ? J, each group Aj is completely contained into the subdo-.
Fitting Pinna-Related Transfer Functions to Anthropometry for Binaural Sound Rendering
Avanzini, Federico
Fitting Pinna-Related Transfer Functions to Anthropometry for Binaural Sound Rendering Simone Spagnol 1 , Michele Geronazzo 2 , Federico Avanzini 3 Department of Information Engineering, Universit of resonant modes - are basically monaural and heavily depend on the listener's anthropometry. Finding
Fabrication of Machined and Shrink Fitted Impactor; Composite Liners for the Los Alamos HEDP Program
Randolph, B.
1999-10-19T23:59:59.000Z
Composite liners have been fabricated for the Los Alamos liner driven HEDP experiments using impactors formed by physical vapor deposition (PVD), electroplating, machining and shrink fitting. Chemical vapor deposition (CVD) has been proposed for some ATLAS liner applications. This paper describes the processes used to fabricate machined and shrink fitted impactors which have been used for copper impactors in 1100 aluminum liners and 6061 T-6 aluminum impactors in 1100 aluminum liners. The most successful processes have been largely empirically developed and rely upon a combination of shrink fitted and light press fitting. The processes used to date will be described along with some considerations for future composite liners requirements in the HEDP Program.
Minimally non-local nucleon-nucleon potentials with chiral two-pion exchange including $?$'s
M. Piarulli; L. Girlanda; R. Schiavilla; R. Navarro Pérez; J. E. Amaro; E. Ruiz Arriola
2015-02-16T23:59:59.000Z
We construct a coordinate-space chiral potential, including $\\Delta$-isobar intermediate states in its two-pion-exchange component. The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders ($Q^2$ and $Q^4$, respectively, $Q$ denoting generically the low momentum scale) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 $pp$ and 2982 $np$ data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0--300 MeV. For the total 5291 $pp$ and $np$ data in this range, we obtain a $\\chi^2$/datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, $R_{\\rm L}$ and $R_{\\rm S}$ respectively, ranging from $(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$ fm down to $(0.8,0.6)$ fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.
Sulfide stress cracking susceptible pipe fittings bought to NACE MR0175
McIntyre, D.R.; Moore, E.M. Jr. [Saudi Aramco, Dhahran (Saudi Arabia)
1995-09-01T23:59:59.000Z
The NACE MR0175 limit of R{sub c} 22 is non-conservative for cold-forged and stress relieved ASTM A234 WPB pipe fittings. Hardness surveys and sulfide stress cracking test results per ASTM G39 and NACE TMO177 Method B are presented. More stringent inspection and a hardness limit of BHN 197 (for cold-forged and stress relieved fittings only) are recommended to rectify this situation.
Zhong, Jing; Hou, Jinliang; Shen, Shyin; Yuan, Haibo; Huo, Zhiying; Zhang, Huihua; Xiang, Maosheng; Zhang, Huawai; Liu, Xiaowe
2015-01-01T23:59:59.000Z
We develop a template-fit method to automatically identify and classify late-type K and M dwarfs in spectra from the LAMOST. A search of the commissioning data, acquired in 2009-2010, yields the identification of 2612 late-K and M dwarfs. The template fit method also provides spectral classification to half a subtype, classifies the stars along the dwarf-subdwarf metallicity sequence, and provides improved metallicity/gravity information on a finer scale. The automated search and classification is performed using a set of cool star templates assembled from the Sloan Digital Sky Survey spectroscopic database. We show that the stars can be efficiently classified despite shortcomings in the LAMOST commissioning data which include bright sky lines in the red. In particular we find that the absolute and relative strengths of the critical TiO and CaH molecular bands around 7000A are cleanly measured, which provides accurate spectral typing from late-K to mid-M, and makes it possible to estimate metallicities in a w...
Fossen, Haakon
Errors, 3rd printing ·Page 3, Fig 1.2 has an error in the stratigraphic key: "Tertiary" should "-amplitude" to "-wavelength". ·Page 231, 6th and 3rd last lines of the page: Add "Figure" in front of 19.5a ..." and 3rd line: "three principal axes" (not two). #12;
Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development
Chen, Tsuhan
Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Stedman (Natural Resources), Jeff Tester (Sustainable Energy Institute and Chemical & Biomolecular Engineering) W. VA #12;Energy Transitions: A Systems Approach August 2011 version Page 2 Energy
Including costs of supply chain risk in strategic sourcing decisions
Jain, Avani
2009-01-01T23:59:59.000Z
Cost evaluations do not always include the costs associated with risks when organizations make strategic sourcing decisions. This research was conducted to establish and quantify the impact of risks and risk-related costs ...
Biomass Potentials from California Forest and Shrublands Including Fuel
Biomass Potentials from California Forest and Shrublands Including Fuel Reduction Potentials.1 Biomass Components For Energy Production...............................12 3.2 Forest Inventories................................................................. 17 3.5 Rotation Calculations and Annualization of Biomass Potentials......... 27 3.6 Energy
Title 16 USC 818 Public Lands Included in Project - Reservation...
of Lands From Entry Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16 USC 818 Public Lands Included in Project...
Unitarity bounds in the Higgs model including triplet fields...
Office of Scientific and Technical Information (OSTI)
the Higgs model including triplet fields with custodial symmetry We study bounds on Higgs-boson masses from perturbative unitarity in the Georgi-Machacek model, whose Higgs sector...
Mercer, Kristin L.; Emry, D. Jason; Snow, Allison A.; Kost, Matthew A.; Pace, Brian A.; Alexander, Helen M.
2014-10-08T23:59:59.000Z
Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary ...
Kim, Taejeong
coefficients Neural signal Fitted spike Noise region Spike region Fig. 1. Flow chart of the encoding process the multi-resolution Teager energy operator (MTEO) method. And then each spike is fitted by a multi
Hybrid powertrain system including smooth shifting automated transmission
Beaty, Kevin D.; Nellums, Richard A.
2006-10-24T23:59:59.000Z
A powertrain system is provided that includes a prime mover and a change-gear transmission having an input, at least two gear ratios, and an output. The powertrain system also includes a power shunt configured to route power applied to the transmission by one of the input and the output to the other one of the input and the output. A transmission system and a method for facilitating shifting of a transmission system are also provided.
Dynamic properties of subgrade soils, including environmental effects
Edris, Earl Victor
1976-01-01T23:59:59.000Z
DYNAMIC PROPERTIES OF SUBGRADE SOILS, INCLUDING ENVIRONMENTAL EFFECTS A Thesis by EARL VICTOR EDRIS, JR. I Submitted to the Graduate College of Texas AlIM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1976 Major Subject: Civil Engineering DYNAMIC PROPERTIES OF SUBGRADE SOILS, INCLUDING ENVIRONMENTAL EFFECTS A Thesis by EARL VICTOR EDRIS, JR. Approved as to style and content by: Chairm of Committ Head of Departm t M mber Member...
Limited Personal Use of Government Office Equipment including Information Technology
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2005-01-07T23:59:59.000Z
The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.
Carvill, Anna; Bushman, Kate; Ellsworth, Amy
2014-06-17T23:59:59.000Z
The EnergyFit Nevada (EFN) Better Buildings Neighborhood Program (BBNP, and referred to in this document as the EFN program) currently encourages Nevada residents to make whole-house energy-efficient improvements by providing rebates, financing, and access to a network of qualified home improvement contractors. The BBNP funding, consisting of 34 Energy Efficiency Conservation Block Grants (EECBG) and seven State Energy Program (SEP) grants, was awarded for a three-year period to the State of Nevada in 2010 and used for initial program design and implementation. By the end of first quarter in 2014, the program had achieved upgrades in 553 homes, with an average energy reduction of 32% per home. Other achievements included: ? Completed 893 residential energy audits and installed upgrades in 0.05% of all Nevada single-family homes1 ? Achieved an overall conversation rate of 38.1%2 ? 7,089,089 kWh of modeled energy savings3 ? Total annual homeowner energy savings of approximately $525,7523 ? Efficiency upgrades completed on 1,100,484 square feet of homes3 ? $139,992 granted in loans to homeowners for energy-efficiency upgrades ? 29,285 hours of labor and $3,864,272 worth of work conducted by Nevada auditors and contractors4 ? 40 contractors trained in Nevada ? 37 contractors with Building Performance Institute (BPI) certification in Nevada ? 19 contractors actively participating in the EFN program in Nevada 1 Calculated using 2012 U.S. Census data reporting 1,182,870 homes in Nevada. 2 Conversion rate through March 31, 2014, for all Nevada Retrofit Initiative (NRI)-funded projects, calculated using the EFN tracking database. 3 OptiMiser energy modeling, based on current utility rates. 4 This is the sum of $3,596,561 in retrofit invoice value and $247,711 in audit invoice value.
Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.
2013-03-19T23:59:59.000Z
Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (‘stochastic’) model with the weather forecast model (‘deterministic’) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.
Coordinated joint motion control system with position error correction
Danko, George (Reno, NV)
2011-11-22T23:59:59.000Z
Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.
Statistical evaluation of design-error related accidents
Ott, K.O.; Marchaterre, J.F.
1980-01-01T23:59:59.000Z
In a recently published paper (Campbell and Ott, 1979), a general methodology was proposed for the statistical evaluation of design-error related accidents. The evaluation aims at an estimate of the combined residual frequency of yet unknown types of accidents lurking in a certain technological system. Here, the original methodology is extended, as to apply to a variety of systems that evolves during the development of large-scale technologies. A special categorization of incidents and accidents is introduced to define the events that should be jointly analyzed. The resulting formalism is applied to the development of the nuclear power reactor technology, considering serious accidents that involve in the accident-progression a particular design inadequacy.
Sayer, R.O.
2003-07-29T23:59:59.000Z
RSAP [1] is a computer code for display and manipulation of neutron cross section data and selected SAMMY output. SAMMY [2] is a multilevel R-matrix code for fitting neutron time-of-flight cross-section data using Bayes' method. This users' guide provides documentation for the recently updated RSAP code (version 6). The code has been ported to the Linux platform, and several new features have been added, including the capability to read cross section data from ASCII pointwise ENDF files as well as double-precision PLT output from SAMMY. A number of bugs have been found and corrected, and the input formats have been improved. Input items are parsed so that items may be separated by spaces or commas.
Methods of producing adsorption media including a metal oxide
Mann, Nicholas R; Tranter, Troy J
2014-03-04T23:59:59.000Z
Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.
Solar Energy Education. Renewable energy: a background text. [Includes glossary
Not Available
1985-01-01T23:59:59.000Z
Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)
Metal vapor laser including hot electrodes and integral wick
Ault, Earl R. (Livermore, CA); Alger, Terry W. (Tracy, CA)
1995-01-01T23:59:59.000Z
A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.
Metal vapor laser including hot electrodes and integral wick
Ault, E.R.; Alger, T.W.
1995-03-07T23:59:59.000Z
A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.
Watson Library enhancements to include new service desk
2008-01-01T23:59:59.000Z
12/5/13 KU Libraries News: Watson Library enhancements to include new service desk www.lib.ku.edu/news/newservicedesk.shtml 1/1 Contact Us The University of Kansas Libraries Lawrence, KS 66045 (785) 864-8983 Copyright © 2013 by the University... of Kansas Watson Library enhancements to include new service desk The University of Kansas Libraries is adding a new service desk to Watson Library to enhance the user experience and draw attention to new and existing resources. The desk, which...
Thin film solar cell including a spatially modulated intrinsic layer
Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)
1989-03-28T23:59:59.000Z
One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.
Optical pattern recognition architecture implementing the mean-square error correlation algorithm
Molley, Perry A. (Albuquerque, NM)
1991-01-01T23:59:59.000Z
An optical architecture implementing the mean-square error correlation algorithm, MSE=.SIGMA.[I-R].sup.2 for discriminating the presence of a reference image R in an input image scene I by computing the mean-square-error between a time-varying reference image signal s.sub.1 (t) and a time-varying input image signal s.sub.2 (t) includes a laser diode light source which is temporally modulated by a double-sideband suppressed-carrier source modulation signal I.sub.1 (t) having the form I.sub.1 (t)=A.sub.1 [1+.sqroot.2m.sub.1 s.sub.1 (t)cos (2.pi.f.sub.o t)] and the modulated light output from the laser diode source is diffracted by an acousto-optic deflector. The resultant intensity of the +1 diffracted order from the acousto-optic device is given by: I.sub.2 (t)=A.sub.2 [+2m.sub.2.sup.2 s.sub.2.sup.2 (t)-2.sqroot.2m.sub.2 (t) cos (2.pi.f.sub.o t] The time integration of the two signals I.sub.1 (t) and I.sub.2 (t) on the CCD deflector plane produces the result R(.tau.) of the mean-square error having the form: R(.tau.)=A.sub.1 A.sub.2 {[T]+[2m.sub.2.sup.2.multidot..intg.s.sub.2.sup.2 (t-.tau.)dt]-[2m.sub.1 m.sub.2 cos (2.tau.f.sub.o .tau.).multidot..intg.s.sub.1 (t)s.sub.2 (t-.tau.)dt]} where: s.sub.1 (t) is the signal input to the diode modulation source: s.sub.2 (t) is the signal input to the AOD modulation source; A.sub.1 is the light intensity; A.sub.2 is the diffraction efficiency; m.sub.1 and m.sub.2 are constants that determine the signal-to-bias ratio; f.sub.o is the frequency offset between the oscillator at f.sub.c and the modulation at f.sub.c +f.sub.o ; and a.sub.o and a.sub.1 are constant chosen to bias the diode source and the acousto-optic deflector into their respective linear operating regions so that the diode source exhibits a linear intensity characteristic and the AOD exhibits a linear amplitude characteristic.
Optimal Energy Management Strategy including Battery Health through Thermal
Paris-Sud XI, Université de
Optimal Energy Management Strategy including Battery Health through Thermal Management for Hybrid: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management, Pontryagin's Minimum Principle. 1. INTRODUCTION The interest for energy management strategy (EMS) of Hybrid
Major initiatives in materials research at Western include
Christensen, Dan
, and the growth and formation of new materials. Western is a leader in the study of the interactions of radiationMajor initiatives in materials research at Western include Surface Science Western, Interface of the wide range of materials and biomaterials research within the Faculty of Science and across Western
Perhaps federal research grants can include infrastructure costs.
Sur, Mriganka
Perhaps federal research grants can include infrastructure costs. There are signs to find favour in China, a country beset by similar problems. The particular structure of Indian science and healthystart-uppackages. The government could contribute to these costs. 487 NATURE|Vol 436|28 July 2005
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Namhai Chua; Kush, A.
1993-02-16T23:59:59.000Z
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids.
DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.
Paris-Sud XI, Université de
DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES. ABSTRACT The use of renewable energies for electricity production presents a growing interest, especially in autonomous power production imposes several difficulties to the power system operation when penetration is high. Here, a model
Thermal Unit Commitment Including Optimal AC Power Flow Constraints
Thermal Unit Commitment Including Optimal AC Power Flow Constraints Carlos Murillo{Sanchez Robert J algorithm for unit commitment that employs a Lagrange relaxation technique with a new augmentation. This framework allows the possibility of committing units that are required for the VArs that they can produce
Applied Linguistics Department Curriculum for the IEP Including Curriculum Summary
Weaver, Adam Lee
Applied Linguistics Department Curriculum for the IEP Including Curriculum Summary 1 C-1-2 Curriculum for the IEP (as described in CEA Curriculum Standards) I. General Curriculum Philosophy a topics, and global issues. b. Skills Development: The IEP curriculum offers courses that provide skills
Free Energy Efficiency Kit includes CFL light bulbs,
Rose, Annkatrin
Free Energy Efficiency Kit Kit includes CFL light bulbs, spray foam, low-flow shower head, and more for discounted energy assessments. FREE HOME ENERGY EFFICIENCY SEMINAR N e w R i ver L i g ht & Pow e r a n d W! Building Science 101 Presentation BPI Certified Building Professionals will present home energy efficiency
1 INTRODUCTION A typical flexible pavement system includes four
Zornberg, Jorge G.
1 INTRODUCTION A typical flexible pavement system includes four distinct layers: asphalt concrete course in order to reduce costs or to minimize capil- lary action under the pavement. Figure 1: Cross-section of flexible pavement system (Muench 2006) Pavement distress may occur due to either traffic or environmental
HTS Conductor Design Issues Including Quench and Stability,
HTS Conductor Design Issues Including Quench and Stability, AC Losses, and Fault Currents M. J objective and technical approach · The purpose of this collaborative R&D project is an investigation of HTS conductor design optimization with emphasis on stability and protection issues for YBCO wires and coils
Kraan, Aafke C., E-mail: aafke.kraan@pi.infn.it [Erasmus MC Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Water, Steven van de; Teguh, David N.; Al-Mamgani, Abrahim [Erasmus MC Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Madden, Tom; Kooy, Hanne M. [Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Heijmen, Ben J.M.; Hoogeman, Mischa S. [Erasmus MC Daniel den Hoed Cancer Center, Rotterdam (Netherlands)
2013-12-01T23:59:59.000Z
Purpose: Setup, range, and anatomical uncertainties influence the dose delivered with intensity modulated proton therapy (IMPT), but clinical quantification of these errors for oropharyngeal cancer is lacking. We quantified these factors and investigated treatment fidelity, that is, robustness, as influenced by adaptive planning and by applying more beam directions. Methods and Materials: We used an in-house treatment planning system with multicriteria optimization of pencil beam energies, directions, and weights to create treatment plans for 3-, 5-, and 7-beam directions for 10 oropharyngeal cancer patients. The dose prescription was a simultaneously integrated boost scheme, prescribing 66 Gy to primary tumor and positive neck levels (clinical target volume-66 Gy; CTV-66 Gy) and 54 Gy to elective neck levels (CTV-54 Gy). Doses were recalculated in 3700 simulations of setup, range, and anatomical uncertainties. Repeat computed tomography (CT) scans were used to evaluate an adaptive planning strategy using nonrigid registration for dose accumulation. Results: For the recalculated 3-beam plans including all treatment uncertainty sources, only 69% (CTV-66 Gy) and 88% (CTV-54 Gy) of the simulations had a dose received by 98% of the target volume (D98%) >95% of the prescription dose. Doses to organs at risk (OARs) showed considerable spread around planned values. Causes for major deviations were mixed. Adaptive planning based on repeat imaging positively affected dose delivery accuracy: in the presence of the other errors, percentages of treatments with D98% >95% increased to 96% (CTV-66 Gy) and 100% (CTV-54 Gy). Plans with more beam directions were not more robust. Conclusions: For oropharyngeal cancer patients, treatment uncertainties can result in significant differences between planned and delivered IMPT doses. Given the mixed causes for major deviations, we advise repeat diagnostic CT scans during treatment, recalculation of the dose, and if required, adaptive planning to improve adequate IMPT dose delivery.
The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors
Rangel, Alejandra; Palte, Gesa; Dunscombe, Peter [Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2, Canada and Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4 (Canada); Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada); Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada) and Department of Oncology, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada)
2010-07-15T23:59:59.000Z
Purpose: Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. Methods: 9 head and neck (H and N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets ({+-}1 mm in two banks, {+-}0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. Results: The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H and N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. Conclusions: None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.
The FIT 2.0 Model - Fuel-cycle Integration and Tradeoffs
Steven J. Piet; Nick R. Soelberg; Layne F. Pincock; Eric L. Shaber; Gregory M Teske
2011-06-01T23:59:59.000Z
All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010b] are steps by the Fuel Cycle Technology program toward an analysis that accounts for the requirements and capabilities of each fuel cycle component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. This report describes FIT 2, an update of the original FIT model.[Piet2010c] FIT is a method to analyze different fuel cycles; in particular, to determine how changes in one part of a fuel cycle (say, fuel burnup, cooling, or separation efficiencies) chemically affect other parts of the fuel cycle. FIT provides the following: Rough estimate of physics and mass balance feasibility of combinations of technologies. If feasibility is an issue, it provides an estimate of how performance would have to change to achieve feasibility. Estimate of impurities in fuel and impurities in waste as function of separation performance, fuel fabrication, reactor, uranium source, etc.
Contagious error sources would need time travel to prevent quantum computation
Gil Kalai; Greg Kuperberg
2015-05-07T23:59:59.000Z
We consider an error model for quantum computing that consists of "contagious quantum germs" that can infect every output qubit when at least one input qubit is infected. Once a germ actively causes error, it continues to cause error indefinitely for every qubit it infects, with arbitrary quantum entanglement and correlation. Although this error model looks much worse than quasi-independent error, we show that it reduces to quasi-independent error with the technique of quantum teleportation. The construction, which was previously described by Knill, is that every quantum circuit can be converted to a mixed circuit with bounded quantum depth. We also consider the restriction of bounded quantum depth from the point of view of quantum complexity classes.
Solar Energy Education. Reader, Part II. Sun story. [Includes glossary]
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million CubicRefinersUpcomingSmall-Industrial Sign Inedition (Technical Report) |(Technical
Solar Energy Education. Renewable energy: a background text. [Includes
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million CubicRefinersUpcomingSmall-Industrial Sign Inedition (Technical
[Article 1 of 7: Motivates and Includes the Consumer]
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of5, 2014 |andWaterResidentialPhysicsZYGO
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ayouz, Mehdi; Babikov, Dmitri
2012-01-01T23:59:59.000Z
New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. Newab initiocalculations are carried out at these points and are used to build new surface. Additional points are added to the vicinitymore »of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less
Scher, Aaron David
2005-08-29T23:59:59.000Z
................................................................................ 7 3 ADS optimization screenshot.................................................................... 11 4 Maximum (a) Zin, (b) |S21 magnitude|, and (c) |S21 phase| error factors. Z 0 = 50 ? , L = 200 um, substrate thickness = 100 um..., and VSWR = 2.... 12 5 Maximum (a) Zin, (b) |S21 magnitude|, and (c) |S21 phase| error factors. Z0=25 ? , L = 200 um, substrate thickness = 100 um, and VSWR = 2. .... 13 6 Maximum Zin error factors for (a) L = 100 um and (b) L = 150 um...
Conversion of geothermal waste to commercial products including silica
Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)
2003-01-01T23:59:59.000Z
A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.
Rawle, Tim
to known cool-core clusters. The green line shows the best fit template from the Rieke+09 library, from, E. Egami1, A. Edge2, M. Rex1, for the Herschel Lensing Survey and LoCuSS collaborations 1Steward the Herschel Lensing Survey (HLS) and Local Cluster Substructure Survey (LoCuSS). The sample includes known
Kaeli, David R.
A Field Analysis of System-level Effects of Soft Errors Occurring in Microprocessors used, will generate sufficient charge to cause a soft error. In the absence of error correction schemes, the system rates for unprotected systems [8]. Soft errors are emerging as a significant obstacle to increasing
Kaeli, David R.
A Field Failure Analysis of Microprocessors used in Information Systems Abstract Soft errors due from error logs and error traces of the microprocessors collected from systems in the field. Soft focus on soft error rate (SER) estimation of microprocessors used in information systems by analyzing
The Importance of Run-time Error Detection Glenn R. Luecke 1
Luecke, Glenn R.
Iowa State University's High Performance Computing Group, Iowa State University, Ames, Iowa 50011, USA State University's High Performance Computing Group for evaluating run-time error detection capabilities
Accounting for model error due to unresolved scales within ensemble Kalman filtering
Lewis Mitchell; Alberto Carrassi
2014-09-02T23:59:59.000Z
We propose a method to account for model error due to unresolved scales in the context of the ensemble transform Kalman filter (ETKF). The approach extends to this class of algorithms the deterministic model error formulation recently explored for variational schemes and extended Kalman filter. The model error statistic required in the analysis update is estimated using historical reanalysis increments and a suitable model error evolution law. Two different versions of the method are described; a time-constant model error treatment where the same model error statistical description is time-invariant, and a time-varying treatment where the assumed model error statistics is randomly sampled at each analysis step. We compare both methods with the standard method of dealing with model error through inflation and localization, and illustrate our results with numerical simulations on a low order nonlinear system exhibiting chaotic dynamics. The results show that the filter skill is significantly improved through the proposed model error treatments, and that both methods require far less parameter tuning than the standard approach. Furthermore, the proposed approach is simple to implement within a pre-existing ensemble based scheme. The general implications for the use of the proposed approach in the framework of square-root filters such as the ETKF are also discussed.
Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar
Doerry, Armin W. (Albuquerque, NM); Heard, Freddie E. (Albuquerque, NM); Cordaro, J. Thomas (Albuquerque, NM)
2008-06-24T23:59:59.000Z
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
Goal-oriendted local a posteriori error estimator for H(div)
2011-12-15T23:59:59.000Z
Dec 15, 2011 ... error estimator measures the pollution effect from the outside region of D and provides a basis for local refinement in order to efficiently ...
V-172: ISC BIND RUNTIME_CHECK Error Lets Remote Users Deny Service...
Broader source: Energy.gov (indexed) [DOE]
the target resolver to crash IMPACT: Triggering this defect will cause the affected server to exit with an error, denying service to recursive DNS clients that use that...
Ulidowski, Irek
Eccentricity Error Correction for Automated Estimation of Polyethylene Wear after Total Hip. Wire markers are typically attached to the polyethylene acetabular component of the prosthesis so
Choose and choose again: appearance-reality errors, pragmatics and logical ability
Deák, Gedeon O; Enright, Brian
2006-01-01T23:59:59.000Z
Development, 62, 753–766. Speer, J.R. (1984). Two practicalolder still make errors (e.g. Speer, 1984), some preschool
Choose and choose again: appearance-reality errors, pragmatics and logical ability.
Deák, Gedeon O; Enright, Brian
2006-01-01T23:59:59.000Z
Development, 62, 753-766. Speer, J. R. (1984). Two practicalolder still make errors (e.g. , Speer, 1984), some preschool
Measurement and fitting of spectrum and pulse shapes of a liquid methane moderator at IPNS
Carpenter, J.M.; Robinson, R.A.; Taylor, A.D.
1983-01-01T23:59:59.000Z
We have measured the absolute intensity, and the energy spectrum, and the pulse shapes as function of neutron energy for the IPNS liquid CH/sub 4/ F moderator, at 108 K. We have fitted the spectrum, corrected for attenuation by aluminum in the beam, using a new cutoff function and fitted the pulse shapes to a new function which is the sum of two decaying exponentials, convoluted with a gaussian, and determined the wavelength variation of the parameters. We present here the results of a preliminary analysis.
A probabilistic formulation of evolutionary synthesis models: implications for SED fittings
M. Cervino; V. Luridiana
2007-02-15T23:59:59.000Z
Evolutionary synthesis models (ESM) have been extensively used to obtain the star formation history in galaxies by means of SED fitting. Implicit in this use of ESM is that (a) for given evolutionary parameters, the shape of the SED is fixed whatever the size of the observed cluster (b) all regions of the observed SED have the same weight in the fit. However, Nature does not follow these two assumptions, as is implied by the existence of Surface Brightness Fluctuations in galaxies and as can be shown by simple logical arguments.
Light curve of a source orbiting around a black hole: A fitting-formula
V. Karas
1996-05-15T23:59:59.000Z
A simple, analytical fitting-formula for a photometric light curve of a source of light orbiting around a black hole is presented. The formula is applicable for sources on a circular orbit with radius smaller than 45 gravitational radii from the black hole. This range of radii requires gravitational focusation of light rays and the Doppler effect to be taken into account with care. The fitting-formula is therefore useful for modelling the X-ray variability of inner regions in active galactic nuclei.
Reliability of temperature determination from curve-fitting in multi-wavelength pyrometery
Ni, P.A.; More, R.M.; Bieniosek, F.M.
2013-08-04T23:59:59.000Z
Abstract This paper examines the reliability of a widely used method for temperature determination by multi-wavelength pyrometry. In recent WDM experiments with ion-beam heated metal foils, we found that the statistical quality of the fit to the measured data is not necessarily a measure of the accuracy of the inferred temperature. We found a specific example where a second-best fit leads to a more realistic temperature value. The physics issue is the wavelength-dependent emissivity of the hot surface. We discuss improvements of the multi-frequency pyrometry technique, which will give a more reliable determination of the temperature from emission data.
Goodness-of-Fit Test Issues in Generalized Linear Mixed Models
Chen, Nai-Wei
2012-02-14T23:59:59.000Z
checking of Case 1 for (1)ZSm and (2)cS tran m . . . 58 13 Results of the type I error rate of Sm by using local polynomial smoothed residuals are computed based on the scaled chi-squared distribution cSm...-cluster interaction term of fixed effects between two con- tinuous covariates when the alternative model (4.6) is assumed. . . . 64 17 Results of controlling type I error rate of Sm by using local poly- nomial smoothed residuals are computed based on cSm when...
Trapped Ion Quantum Error Correcting Protocols Using Only Global Operations
Joseph F. Goodwin; Benjamin J. Brown; Graham Stutter; Howard Dale; Richard C. Thompson; Terry Rudolph
2014-07-07T23:59:59.000Z
Quantum error-correcting codes are many-body entangled states that are prepared and measured using complex sequences of entangling operations. Each element of such an entangling sequence introduces noise to delicate quantum information during the encoding or reading out of the code. It is important therefore to find efficient entangling protocols to avoid the loss of information. Here we propose an experiment that uses only global entangling operations to encode an arbitrary logical qubit to either the five-qubit repetition code or the five-qubit code, with a six-ion Coulomb crystal architecture in a Penning trap. We show that the use of global operations enables us to prepare and read out these codes using only six and ten global entangling pulses, respectively. The proposed experiment also allows the acquisition of syndrome information during readout. We provide a noise analysis for the presented protocols, estimating that we can achieve a six-fold improvement in coherence time with noise as high as $\\sim 1\\%$ on each entangling operation.