National Library of Energy BETA

Sample records for firstenergy nuclear operating

  1. FirstEnergy RFP

    Broader source: Energy.gov [DOE]

    FirstEnergy Ohio request for proposals (RFP) is seeking up to 233,000 Renewable Energy Certificates (REC) and 6,800 Solar RECs for its Ohio utilities— Ohio Edison, Cleveland Electric Illuminating, and Toledo Edison. Qualifying RECs and SRECs will be used by companies to meet the Ohio RPS requirements.

  2. 1,"John E Amos","Coal","Appalachian Power Co",2900 2,"FirstEnergy...

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"John E Amos","Coal","Appalachian Power Co",2900 2,"FirstEnergy Harrison Power ...

  3. Nuclear Operations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Operations The SFO Nuclear Operations office is responsible for direction, day-to-day oversight and contract administration activities regarding safe nuclear operations in ...

  4. FirstEnergy Generation Corp | Open Energy Information

    Open Energy Info (EERE)

    search Name: FirstEnergy Generation Corp Place: Ohio Twitter: @FirstEnergyCorp Facebook: https:www.facebook.comFirstEnergyCareers Outage Hotline: 1-888-544-4877 Outage...

  5. FirstEnergy (Potomac Edison)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    FirstEnergy (Potomac Edison) offers incentives to Maryland residential customers who are interested in upgrading to more energy efficient appliances and HVACsystems. Rebates are available on...

  6. FirstEnergy (Potomac Edison)- Municipal and Street Lighting Program

    Broader source: Energy.gov [DOE]

    FirstEnergy (Potomac Edision) offers several incentives for non-residential and municipal customers to upgrade traffic signals, pedestrian signals, street lights to more efficient  fixtures. The...

  7. Motion to Intervene Out of Time and Comments of FirstEnergy Service...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motion to Intervene Out of Time and Comments of FirstEnergy Service Company PP-230-3 Motion to Intervene Out of Time and Comments of FirstEnergy Service Company PDF icon Motion to ...

  8. FirstEnergy (Mon Power & Potomac Edison)- Business Lighting Incentive Program

    Broader source: Energy.gov [DOE]

    FirstEnergy's commercial, industrial, and governmental customers are eligible to participate in the Business Lighting Incentive Program. This program provides a performance-based rebate for energ...

  9. Motion to Intervene Out of Time and Comments of FirstEnergy Service Company

    Energy Savers [EERE]

    PP-230-3 | Department of Energy and Comments of FirstEnergy Service Company PP-230-3 Motion to Intervene Out of Time and Comments of FirstEnergy Service Company PP-230-3 Motion to Intervene Out of Time and Comments of FirstEnergy Service Company PDF icon Motion to Intervene Out of Time and Comments of FirstEnergy Service Company PP-230-3 More Documents & Publications PP-230-3 International Transmission Company Application for presidential permit OE Docket No. PP-230-4 International

  10. FirstEnergy (Potomac Edison)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    FirstEnergy company Potomac Edison offers rebates to eligible commercial, industrial, governmental, and institutional customers in Maryland service territory who are interested in upgrading to...

  11. FirstEnergy (MetEdison, Penelec, Penn Power)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    In order to help meet the goals established in Pennsylvania's Act 129, FirstEnergy's Pennsylvania companies (MetEdison, Penelec, and Penn Power) are providing energy efficiency incentives for a...

  12. Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations NNSA's Emergency Response Operations program acts as the headquarters command and control, functioning as the coordinating focal point for all deployed assets during a nuclear or radiological incident. It also acts as support to any national special security events, special events, the Department of Defense; the Department of State during operations outside the continental United States and local, state, or federal law enforcement. The Operations Program coordinates the following

  13. Nuclear reactor characteristics and operational history

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Nuclear > U.S. reactor operation status tables Nuclear Reactor Operational Status Tables Release date: November 22, 2011 Next release date: TBD See also: Table 1. Capacity and ...

  14. Safety of Nuclear Explosive Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-07

    This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

  15. Nuclear Facility Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and ...

  16. operations center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations Center The Office of Emergency Operations Support maintains situational awareness of the nation's energy infrastructure and nuclear weapons complex and facilitates...

  17. METHOD OF OPERATING NUCLEAR REACTORS

    DOE Patents [OSTI]

    Untermyer, S.

    1958-10-14

    A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.

  18. Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    focal point for all deployed assets during a nuclear or radiological incident. ... missions: SearchSurge - Detecting nuclear or radiological materials during a ...

  19. FirstEnergy (Met-Ed, Penelec, Penn Power, and West Penn)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    In order to help meet the goals established in Pennsylvania's Act 129, FirstEnergy's Pennsylvania companies (MetEdison, Penelec, West Penn and Penn Power) provide energy efficiency incentives for a...

  20. Emergency Operations Training Academy | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Emergency Operations Training Academy Emergency Operations Training Academy The Office of Emergency Operations, NA-40-The Emergency Operations Training Academy (EOTA) EOTA provides training and education to enhance the readiness of personnel in the radiological-nuclear emergency operations community. For more information or to contact us, visit the EOTA website at

  1. Nuclear Safety Research and Development Program Operating Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating ...

  2. operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure ...

  3. Emergency Operations Training Academy | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Response / Training Emergency Operations Training Academy Rotating image showing pictures of Classroom, Online and Hands on trainings The Office of Emergency Operations, NA-40-The Emergency Operations Training Academy (EOTA) EOTA provides training and education to enhance the readiness of personnel in the radiological-nuclear emergency operations community. For more information or to contact us, visit the EOTA website at: http://eota.energy.gov/ Vision The Emergency Operations

  4. Operations Center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Response Operations Center The Office of Emergency Operations Support maintains situational awareness of the nation's energy infrastructure and nuclear weapons complex and facilitates management of national emergency events via a secure nationwide communications network. The Operations Center provides an integrated, scalable, mobile and/or virtual response capability to enable NNSA to successfully conduct routine and emergency operations through the leverage of mission critical resources in

  5. NNSA Streamlines Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Streamlines Operations NNSA Streamlines Operations Washington, DC he National Nuclear Security Administration (NNSA) implemented a new organizational structure that eliminates a layer of management and seeks to achieve a 20 percent reduction in federal personnel by the end of Fiscal Year 2004. Three operations offices-at Oakland, Las Vegas, and Albuquerque-were eliminated, and site offices that oversee contractor operations now report directly to headquarters

  6. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, Robert W.

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  7. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  8. Wolf Creek Nuclear Operating Corporation | Open Energy Information

    Open Energy Info (EERE)

    Wolf Creek Nuclear Operating Corporation Jump to: navigation, search Name: Wolf Creek Nuclear Operating Corporation Place: Burlington, Kansas Zip: 66839-0411 Product: Wolf Creek...

  9. and Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations NNSA's Asset Management Program Completes First Pilot The National Nuclear Security Administration (NNSA) today announced completion of a $520k pilot to replace a roof, as well as heating, ventilation and cooling (HVAC) system for the Core Library and Data Center at Mercury, Nevada (http://nevada.usgs.gov/mercury/). The library was established

  10. Hazard Analysis Reports for Nuclear Explosive Operations

    Energy Savers [EERE]

    NA-STD-3016-2006 May 2006 DOE LIMITED STANDARD HAZARD ANALYSIS REPORTS FOR NUCLEAR EXPLOSIVE OPERATIONS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-NA-STD-3016-2006 iii FORWARD This Department of Energy (DOE)/National Nuclear Security Administration (NNSA)

  11. Microsoft PowerPoint - 3_Chris Wolff _Wensday_NMMSS_2014_Powerpoint...

    National Nuclear Security Administration (NNSA)

    Medved, FirstEnergy Nuclear Operating Company *Bill Herwig, South Carolina Electric & Gas *Tom Morello, Constellation Energy Nuclear Group *Alan Krichinsky, Oak Ridge National...

  12. Metropolitan Edison Company SEF Loans (FirstEnergy Territory...

    Broader source: Energy.gov (indexed) [DOE]

    grid supply; projects involving the development of a sustainable energy technology (e.g., solar panel manufacturing); businesses that use renewable energy in the operation of a...

  13. Nuclear reactor characteristics and operational history

    Gasoline and Diesel Fuel Update (EIA)

    Table 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor PDF ... MWh2 Capacity Factor Percent3 Arkansas Nuclear One 1 AR PWR 842 6,607,090 90 Arkansas ...

  14. CRAD, Nuclear Reactor Facility Operations - December 4, 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) December 4, 2014 CRAD,...

  15. Infrastructure and Operations | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies....

  16. Our Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations Infrastructure and Operations NNSA's missions require a secure production and laboratory infrastructure meeting immediate and long term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies. Administration Programs Management and Budget The organization provides timely, cost-effective, and efficient administrative and financial support for NNSA headquarters staff.

  17. Infrastructure and Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Infrastructure and Operations NNSA's missions require a secure production and laboratory infrastructure meeting immediate and long term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies. Learn More Ten-Year Site Plans (TYSP) Related Topics infrastructure na-00 operations Related News NNSA Achieves Major Milestone in BUILDER Implementation Extended Life Program asks 'How do

  18. emergency operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home ... real-time response management system Pantex Emergency Services ... DHSNational Operations Center The Department of Energy ...

  19. Emergency Operations Training Academy | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    ... Introduction Monitoring Division Mgr Training, Adv NARAC Dispersion Modeling NARAC Web Operations Overview of Consequence Management Overview of the DOENNSA Emergency ...

  20. Institute of Nuclear Power Operations annual report, 1993

    SciTech Connect (OSTI)

    1993-12-31

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry.

  1. National Nuclear Security Administration Official Tours Cleanup Operations for Navy

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Adm. James F. Caldwell Jr., director of the DOE National Nuclear Security Administration’s Naval Nuclear Propulsion Program, recently toured the Hanford Site cleanup activities managed by EM’s Richland Operations Office (RL). RL Manager Stacy Charboneau welcomed Caldwell to the site.

  2. Learn More About NNSA's Emergency Operations Office | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Emergency Response Learn More About NNSA's Emergency Operations Office NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. NNSA ensures that capabilities are in place to respond to any

  3. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  4. infrastructure and operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    infrastructure and operations NSC completes last part to facilitate relocation This month, employees at the National Security Campus in Kansas City, Mo., are celebrating the completion of the last "build ahead" part needed to maintain their 99.9 percent on-time delivery record during one of the nation's largest industrial moves. More than 275 unique part numbers encompassing... Ten-Year Site Plans (TYSP) The FY 2016-2025 TYSPs are planning documents and as such, represent possible

  5. Joint Technical Operations Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Joint Technical Operations Team JTOT Logo NNSA's Joint Technical Operations Team (JTOT) provides specialized technical capabilities in support of lead federal agencies to respond to weapons of mass destruction. Furthermore, the JTOT provides real-time technical support to other deployed NNSA emergency response assets through the JTOT Home Team. Mission The JTOT mission is to provide scientific and technical support of the lead federal agency during all aspects of a nuclear or radiological

  6. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    SciTech Connect (OSTI)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.

  7. Office of Safety Infrastructure & Operations | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Safety Infrastructure & Operations NNSA's G2 Management Information System Wins Association for Enterprise Information's (AFEI) "Excellence in Enterprise Information Award" The G2 team and the 2015 Association for Enterprise Information's (AFEI) Excellence in Enterprise Information Award. (WASHINGTON, D.C) - The National Nuclear Security Administration (NNSA) has received the 2015 Association for Enterprise Information's (AFEI) Excellence in Enterprise

  8. Nuclear electromagnetic charge and current operators in Chiral EFT

    SciTech Connect (OSTI)

    Girlanda, Luca; Marcucci, Laura Elisa; Pastore, Saori; Piarulli, Maria; Schiavilla, Rocco; Viviani, Michele

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  9. Office of Emergency Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Office of Emergency Operations

  10. COMPUTERIZATION OF NUCLEAR POWER PLANT EMERGENCY OPERATING PROCEDURES.

    SciTech Connect (OSTI)

    OHARA,J.M.; HIGGINS,J.; STUBLER,W.

    2000-07-30

    Emergency operating procedures (EOPs) in nuclear plants guide operators in handling significant process disturbances. Historically these procedures have been paper-based. More recently, computer-based procedure (CBP) systems have been developed to improve the usability of EOPs. The objective of this study was to establish human factors review guidance for CBP systems based on a technically valid methodology. First, a characterization of CBPs was developed for describing their key design features, including both procedure representation and functionality. Then, the research on CBPs and related areas was reviewed. This information provided the technical basis on which the guidelines were developed. For some aspects of CBPs the technical basis was insufficient to develop guidance; these aspects were identified as issues to be addressed in future research.

  11. Annual radiological environmental operating report: Browns Ferry Nuclear Plant, 1992. Operations Services/Technical Programs

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. Small amounts of Co-60 and Cs-134 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public.

  12. Concept of Operations for Nuclear Warhead Embedded Sensors

    SciTech Connect (OSTI)

    Rockett, P D; Koncher, T R

    2012-05-16

    Embedded arms-control-sensors provide a powerful new paradigm for managing compliance with future nuclear weapons treaties, where deployed warhead numbers will be reduced to 1000 or less. The CONOPS (Concept of Operations) for use with these sensors is a practical tool with which one may help define design parameters, including size, power, resolution, communications, and physical structure. How frequently must data be acquired and must a human be present? Will such data be acquired for only stored weapons or will it be required of deployed weapons as well? Will tactical weapons be subject to such monitoring or will only strategic weapons apply? Which data will be most crucial? Will OSI's be a component of embedded sensor data management or will these sensors stand alone in their data extraction processes? The problem space is massive, but can be constrained by extrapolating to a reasonable future treaty regime and examining the bounded options this scenario poses. Arms control verification sensors, embedded within the warhead case or aeroshell, must provide sufficient but not excessively detailed data, confirming that the item is a nuclear warhead and that it is a particular warhead without revealing sensitive information. Geolocation will be provided by an intermediate transceiver used to acquire the data and to forward the data to a central processing location. Past Chain-of-Custody projects have included such devices and will be primarily responsible for adding such indicators in the future. For the purposes of a treaty regime a TLI will be verified as a nuclear warhead by knowledge of (a) the presence and mass of SNM, (b) the presence of HE, and (c) the reporting of a unique tag ID. All of these parameters can be obtained via neutron correlation measurements, Raman spectroscopy, and fiber optic grating fabrication, respectively. Data from these sensors will be pushed out monthly and acquired nearly daily, providing one of several verification layers in depth, including on-site inspections, NTM, declarations, and semi-annual BCC meetings. Human intervention will not be necessary. The sheer numbers, small size, and wide distribution of warhead TLIs will mandate the added level of remote monitoring that Embedded Sensors can provide. This multilayer protection will limit the need to increase the frequency of OSIs, by adding confidence that declared TLIs remain as declared and that no undeclared items enter the regime without the other States Party's knowledge. Acceptance of Embedded arms control Sensor technologies will require joint development by all State's Parties involved. Principles of operation and robustness of technologies must be individually evaluated to sustain confidence in the strength of this system against attack. Weapons designers must be assured that these sensors will in no way impact weapon performance and operation, will not affect weapons security and safety, and will have a neutral impact upon weapon system surety. Each State's Party will need to conduct an in depth review of their weapons lifecycle to determine where moves may be reduced to minimize vulnerabilities and where random selection may be used to minimize the ability to make undeclared changes. In the end Verification is a political measure, not a technical one. If the potential users can gain sufficient confidence in the application of Embedded arms control Sensors, they could constitute the final layer of glue to hold together the next Nuclear Arms Control agreement.

  13. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect (OSTI)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  14. Decontamination and recovery of materials at nuclear facilites - operating history

    SciTech Connect (OSTI)

    Gillis, P.J. Jr.

    1994-12-31

    Non-Destructive Cleaning (NDC) Mobile CO{sub 2} Decontamination Facilities have more than 120 months of operational time conducting radioactive decontamination at Nuclear Power Stations and U.S. Department of Energy sites. During this time, we have compiled an extensive database on what has been decontaminated and the cost savings realized. The following are areas of interest: (1) how the CO{sub 2} decontamination process works; (2) how radioactive wastes are minimized and radioactive exposure to personnel is reduced with the use of the NDC Decontamination Facility; (3) how the self-contained Mobile Decontamination Facility works to provide adequate containment and control of the radioactive materials; (4) what kinds of items have been decontaminated, ranging from tools to underwater television cameras and from electric motors to lead shielding; (5) liquid radioactive waste volume reduction; (6) mixed-waste volume reduction; and (7) achievements in dose reduction to radiation levels that are as low as is reasonably achievable (ALARA) The design and operating features and performance of the Mobile Decontamination Facility, as well as the actual volumes of materials decontaminated, the decontamination factors achieved, the amounts and types of things that are free released, and the actual cost savings in all of these areas have been assessed. The data that was used is actual utility data and not the vendor`s data. All the experiences were from actual power plants.

  15. NA 40 - Associate Administrator for Emergency Operations | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration 40 - Associate Administrator for Emergency Operations

  16. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site | Department of Energy Nuclear Solutions, LLC to Manage and Operate its Savannah River Site DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its Savannah River Site January 10, 2007 - 10:24am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Savannah River Nuclear Solutions (SRNS), LLC has been selected as the management and operating contractor for DOE's Savannah River Site (SRS) in Aiken, South Carolina. The

  17. Analysis of Nuclear Power Plant Operating Costs: A 1995 Update, An

    Reports and Publications (EIA)

    1995-01-01

    This report provides an analysis of nuclear power plant operating costs. The Energy Information Administration published three reports on this subject during the period 1988-1995.

  18. Facility Operations and User Support | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    continuing product support, software license and maintenance fees, procurement of operational equipment and media, quality and reliability activities, and collaborations. ...

  19. Facility Operations and User Support | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Facility Operations and User Support This sub-program provides both necessary physical facility and operational support for reliable, cross-lab production computing and storage environments as well as a suite of user services for effective use of ASC tri-lab computing resources. The scope of the facility operations includes planning, integration and deployment, continuing product support, software license and maintenance fees, procurement of operational equipment and media,

  20. DHS/National Operations Center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    DHS/National Operations Center The Department of Energy (DOE)/ Department of Homeland Security (DHS) Watch Office Desk in DHS's National Operations Center (NOC) represents DOE/NNSA within the NOC. In conjunction with over 80 federal, state, and local government agencies, the DOE/DHS Operations Center Watch Officer(s) collect, analyze and facilitate the exchange of vital information between DHS and DOE supporting the DHS mission of preventing and/or responding to acts of terrorism in the United

  1. Dynamic Operations Wayfinding System (DOWS) for Nuclear Power Plants

    SciTech Connect (OSTI)

    Boring, Ronald Laurids; Ulrich, Thomas Anthony; Lew, Roger Thomas

    2015-08-01

    A novel software tool is proposed to aid reactor operators in respond- ing to upset plant conditions. The purpose of the Dynamic Operations Wayfind- ing System (DOWS) is to diagnose faults, prioritize those faults, identify paths to resolve those faults, and deconflict the optimal path for the operator to fol- low. The objective of DOWS is to take the guesswork out of the best way to combine procedures to resolve compound faults, mitigate low threshold events, or respond to severe accidents. DOWS represents a uniquely flexible and dy- namic computer-based procedure system for operators.

  2. Nuclear Power 2010 Program: Combined Construction and Operating...

    Broader source: Energy.gov (indexed) [DOE]

    Power 2010 (NP 2010) Construction and Operating LicenseDesign Certification (COLDC) Demonstration program together with the financial incentives provided by the Energy Policy Act...

  3. KCP operations began 65 years ago today | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operations began 65 years ago today Thursday, February 27, 2014 - 4:43pm On Feb. 28, 1949, ... Today, the Kansas City Plant is celebrating 65 years of delivering on its national ...

  4. Nuclear power plant simulators: their use in operator training and requalification

    SciTech Connect (OSTI)

    Jones, D.W.; Baer, D.K.; Francis, C.C.

    1980-07-01

    This report presents the results of a study performed for the Nuclear Regulatory Commission to evaluate the capabilities and use of nuclear power plant simulators either built or being built by the US nuclear power industry; to determine the adequacy of existing standards for simulator design and for the training of power plant operators on simulators; and to assess the issues about simulator training programs raised by the March 28, 1979, accident at Three Mile Island Unit 2.

  5. Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report

    Broader source: Energy.gov [DOE]

    The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States.

  6. EIS-0225: Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environemental impact of a proposal to continue operation of the Pantex Plant and associated storage of nuclear weapon components. Alternatives considered include: ...

  7. Enterprise Assessments Targeted Review of Nuclear Reactor Facility Operations at Sandia National Laboratories … March 2016

    Energy Savers [EERE]

    Targeted Review of Nuclear Reactor Facility Operations at Sandia National Laboratories March 2016 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  8. Reactor engineering support of operations at Three Mile Island nuclear station

    SciTech Connect (OSTI)

    Tropasso, R.T.

    1995-12-31

    The purpose of this paper is to detail the activities in which plant nuclear engineering personnel provide direct support to plant operations. The specific activities include steady-state, transient, and shutdown/refueling operation support as well as special project involvement. The paper is intended to describe the experiences at Three Mile Island (TMI) in which significant benefit to the success of the activity is achieved through the support of the nuclear engineers.

  9. An analysis of nuclear power plant operating costs: A 1995 update

    SciTech Connect (OSTI)

    1995-04-21

    Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

  10. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  11. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  12. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented.

  13. Sustainable Forward Operating Base Nuclear Power Evaluation (Relationship Mapping System) Users’ Manual

    SciTech Connect (OSTI)

    Not Listed

    2012-01-01

    The Sustainable Forward Operating Base (FOB) Nuclear Power Evaluation was developed by the Idaho National Laboratory Systems Engineering Department to support the Defense Advanced Research Projects Agency (DARPA) in assessing and demonstrating the viability of deploying small-scale reactors in support of military operations in theatre. This document provides a brief explanation of how to access and use the Sustainable FOB Nuclear Power Evaluation utility to view assessment results as input into developing and integrating the program elements needed to create a successful demonstration.

  14. Theoretical uncertainties in the nuclear matrix elements of neutrinoless double beta decay: The transition operator

    SciTech Connect (OSTI)

    Menndez, Javier

    2013-12-30

    We explore the theoretical uncertainties related to the transition operator of neutrinoless double-beta (0???) decay. The transition operator used in standard calculations is a product of one-body currents, that can be obtained phenomenologically as in Tomoda [1] or imkovic et al. [2]. However, corrections to the operator are hard to obtain in the phenomenological approach. Instead, we calculate the 0??? decay operator in the framework of chiral effective theory (EFT), which gives a systematic order-by-order expansion of the transition currents. At leading orders in chiral EFT we reproduce the standard one-body currents of Refs. [1] and [2]. Corrections appear as two-body (2b) currents predicted by chiral EFT. We compute the effects of the leading 2b currents to the nuclear matrix elements of 0??? decay for several transition candidates. The 2b current contributions are related to the quenching of Gamow-Teller transitions found in nuclear structure calculations.

  15. CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing

    Office of Legacy Management (LM)

    tudies/B ackground Book 1 CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing Areas Vol. 11, April 1988 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. CERCLA PRELIMINARY ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE WCILEAR WEAPONS T E S r n G AREAS Prepared by Water Resources Center Desert Research Institute University of Nevada System ,Prepared for U . S .

  16. Report to the US Nuclear Regulatory Commission on Analysis and Evaluation of Operational Data, 1986

    SciTech Connect (OSTI)

    1987-05-01

    This annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during calendar year 1986. Comments and observations are provided on operating experience at nuclear power plants and other NRC licensees, including results from selected AEOD studies; summaries of abnormal occurrences involving US nuclear plants; reviews of licensee event reports and their quality, reactor scram experience from 1984 to 1986, engineered safety features actuations, and the trends and patterns analysis program; and assessments of nonreactor and medical misadministration events. In addition, the report provides the year-end status of all recommendations included in AEOD studies, and listings of all AEOD reports issued from 1980 through 1986.

  17. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study

    SciTech Connect (OSTI)

    Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

    1987-08-01

    Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators.

  18. Operational Challenges of Extended Dry Storage of Spent Nuclear Fuel - 12550

    SciTech Connect (OSTI)

    Nichol, M. [Nuclear Energy Institute, Washington DC (United States)

    2012-07-01

    As a result of the termination of the Yucca Mountain used fuel repository program and a continuing climate of uncertainty in the national policy for nuclear fuel disposition, the likelihood has increased that extended storage, defined as more than 60 years, and subsequent transportation of used nuclear fuel after periods of extended storage may become necessary. Whether at the nation's 104 nuclear energy facilities, or at one or more consolidated interim storage facilities, the operational challenges of extended storage and transportation will depend upon the future US policy for Used Fuel Management and the future Regulatory Framework for EST, both of which should be developed with consideration of their operational impacts. Risk insights into the regulatory framework may conclude that dry storage and transportation operations should focus primarily on ensuring canister integrity. Assurance of cladding integrity may not be beneficial from an overall risk perspective. If assurance of canister integrity becomes more important, then mitigation techniques for potential canister degradation mechanisms will be the primary source of operational focus. If cladding integrity remains as an important focus, then operational challenges to assure it would require much more effort. Fundamental shifts in the approach to design a repository and optimize the back-end of the fuel cycle will need to occur in order to address the realities of the changes that have taken place over the last 30 years. Direct disposal of existing dual purpose storage and transportation casks will be essential to optimizing the back end of the fuel cycle. The federal used fuel management should focus on siting and designing a repository that meets this objective along with the development of CIS, and possibly recycling. An integrated approach to developing US policy and the regulatory framework must consider the potential operational challenges that they would create. Therefore, it should be integral to these efforts to redefine retrievability to apply to the dual purpose cask, and not to apply to individual assemblies. (authors)

  19. Operation Cornerstone onsite radiological safety report for announced nuclear tests, October 1988--September 1989

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    Cornerstone was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site (NTS) from October 1, 1988, through September 30, 1989. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Radiation Protection Technicians (RPT) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage were provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

  20. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  1. Annual radiological environmental monitoring report: Watts Bar Nuclear Plant, 1992. Operations Services/Technical Programs

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This report describes the preoperational environmental radiological monitoring program conducted by TVA in the vicinity of the Watts Bar Nuclear Plant (WBN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas that will not be influenced by plant operations. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. During plant operations, results from stations near the plant will be compared with concentrations from control stations and with preoperational measurements to determine potential impacts to the public. Exposures calculated from environmental samples were contributed by naturally occurring radioactive materials, from materials commonly found in the environment as a result of atmospheric fallout, or from the operation of other nuclear facilities in the area. Since WBN has not operated, there has been no contribution of radioactivity from the plant to the environment.

  2. Environmental assessment report: Nuclear Test Technology Complex. [Construction and operation of proposed facility

    SciTech Connect (OSTI)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report.

  3. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  4. Essays on strategy: hostage rescue planning; maritime theater nuclear capability; strategic psychological operations

    SciTech Connect (OSTI)

    Brauer, R.F.; Thomas, R.E.; Kriesel, M.E.

    1985-01-01

    The essays in the volume won recognition in the 1984 Joint Chiefs of Staff Strategy Essay Competition. The volume contains three essays. The author of the first essay considers the requirements for successful planning of hostage rescues, specifically reviewing the Son Tay raid, the Mayaguez crisis, the Entebbe rescue, and the Iranian hostage rescue attempt. The author of the second essay looks at the US Navy's capability for maritime theater nuclear warfare, identifying problems and recommending improvements. The author of the third essay finds the United States lacking a national-level mechanism for coordinating military psychological operations and proposes a way to remedy the problem.

  5. Threatened and Endangered Species Evaluation for Operating Commercial Nuclear Power Generating Plants

    SciTech Connect (OSTI)

    Sackschewsky, Michael R.

    2004-01-15

    The Endangered Species Act (ESA) of 1973 requires that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered (T&E) species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The Office of Nuclear Reactor Regulation (NRR) staff have performed appropriate assessments of potential impacts to threatened or endangered species, and consulted with appropriate agencies with regard to protection of such species in authorizing the construction, operation, and relicensing of nuclear power generating facilities. However, the assessments and consultations concerning many facilities were performed during the 1970's or early 1980's, and have not been re-evaluated in detail or updated since those initial evaluations. A review of potential Endangered Species Act issues at licensed nuclear power facilities was completed in 1997. In that review 484 different ESA-listed species were identified as potentially occurring near one or more of the 75 facility sites that were examined. An update of the previous T&E species evaluation at this time is desired because, during the intervening 6 years: nearly 200 species have been added to the ESA list, critical habitats have been designated for many of the listed species, and significantly more information is available online, allowing for more efficient high-level evaluations of potential species presence near sites and the potential operation impacts. The updated evaluation included searching the NRC's ADAMS database to find any documents related to T&E species take, consultations, and evaluations of potential effects of operation on T&E species. This search recovered a total of approximately 100 documents from 13 sites. Sites that were in the relicensing or decommissioning processes were excluded from the ADAMS search. In general the ADAMS search did not reveal any serious deficiencies or compliance problems. The most notable finds were reports of takes of green sea turtles at Diablo Canyon. While these events were reported to both the NRC and to NOAA Fisheries, no record of interaction between the two federal agencies was found. Species potentially present at each site were determined via querying the Geographical, Environmental, and Siting Information System (GEn&SIS) database developed for the NRC by Lawrence Livermore National Laboratory. The results of these queries were compared against the 1997 review, and in the cases of sites that were in the relicensing process, with the results of those site specific evaluations. A total of 452 T&E species were identified as potentially occurring near one or more of the operating commercial nuclear power generating plants. Information about each of these species was gathered to support an assessment of the probability of occurrence at each of the reactor sites. Based on the assessments of which species are potentially affected at each site, and the information gathered through the ADAMS search, each site was assigned a priority value for follow-up evaluations. The priority listing did not include any sites that had entered the relicensing process, those where the licensee has indicated that they intend to enter the relicensing process before the end of 2005, or those that have entered the decommissioning process. Of the 39 remaining sites, those that were identified as the highest priority for follow-on evaluations are: Diablo Canyon, San Onofre, Crystal River, Harris, and Vogtle, followed by South Texas, Palo Verde, Salem, and Cooper.

  6. Design and Integrate Improved Systems for Nuclear Facility Ventilation and Exhaust Operations

    SciTech Connect (OSTI)

    Moore, Murray E.

    2014-04-15

    Objective: The objective of this R&D project would complete the development of three new systems and integrate them into a single experimental effort. However, each of the three systems has stand-alone applicability across the DOE complex. At US DOE nuclear facilities, indoor air is filtered and ventilated for human occupancy, and exhaust air to the outdoor environment must be regulated and monitored. At least three technical standards address these functions, and the Los Alamos National Laboratory would complete an experimental facility to answer at least three questions: (1) Can the drag coefficient of a new Los Alamos air mixer be reduced for better operation in nuclear facility exhaust stacks? (2) Is it possible to verify the accuracy of a new dilution method for HEPA filter test facilities? (3) Is there a performance-based air flow metric (volumetric flow or mass flow) for operating HEPA filters? In summary, the three new systems are: a mixer, a diluter and a performance-based metric, respectively. The results of this project would be applicable to at least four technical standards: ANSI N13.1 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities; ASTM F1471 Standard Test Method for Air Cleaning Performance of a High-Efficiency Particulate Air Filter System, ASME N511: In-Service Testing of Nuclear Air Treatment, Heating, Ventilating, and Air-Conditioning Systems, and ASME AG-1: Code On Nuclear Air And Gas Treatment. All of the three proposed new systems must be combined into a single experimental device (i.e. to develop a new function of the Los Alamos aerosol wind tunnel). Technical Approach: The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally (2006) designed to evaluate small air samplers (cf. US EPA 40 CFR 53.42). In 2009, the tunnel was modified for exhaust stack verifications per the ANSI N13.1 standard. In 2010, modifications were started on the wind tunnel for testing HEPA filters (cf. ASTM F1471 and ASME N511). This project involves three systems that were developed for testing the 24*24*11 (inch) HEPA filters (i.e. the already mentioned mixer, diluter and metric). Prototypes of the mixer and the diluter have been built and individually tested on a preliminary basis. However, the third system (the HEPA metric method) has not been tested, since that requires complete operability of the aerosol wind tunnel device. (The experimental wind tunnel has test aerosol injection, control and measurement capabilities, and can be heated for temperature dependent measurements.) Benefits: US DOE facilities that use HEPA filters and/or require exhaust stacks from their nuclear facility buildings will benefit from access to the new hardware (mixer and diluter) and performance-based metric (for HEPA filter air flow).

  7. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect (OSTI)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

  8. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    SciTech Connect (OSTI)

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

    2009-07-12

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

  9. Environmental dose assessment methods for normal operations at DOE nuclear sites

    SciTech Connect (OSTI)

    Strenge, D.L.; Kennedy, W.E. Jr.; Corley, J.P.

    1982-09-01

    Methods for assessing public exposure to radiation from normal operations at DOE facilities are reviewed in this report. The report includes a discussion of environmental doses to be calculated, a review of currently available environmental pathway models and a set of recommended models for use when environmental pathway modeling is necessary. Currently available models reviewed include those used by DOE contractors, the Environmental Protection Agency (EPA), the Nuclear Regulatory Commission (NRC), and other organizations involved in environmental assessments. General modeling areas considered for routine releases are atmospheric transport, airborne pathways, waterborne pathways, direct exposure to penetrating radiation, and internal dosimetry. The pathway models discussed in this report are applicable to long-term (annual) uniform releases to the environment: they do not apply to acute releases resulting from accidents or emergency situations.

  10. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    SciTech Connect (OSTI)

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

  11. Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement- The Operator Viewpoints

    Broader source: Energy.gov [DOE]

    Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company

  12. OECD/NEA study on the economics of the long-term operation of nuclear power plants

    SciTech Connect (OSTI)

    Lokhov, A.; Cameron, R.

    2012-07-01

    The OECD Nuclear Energy Agency (NEA) established the Ad hoc expert group on the Economics of Long-term Operation (LTO) of Nuclear Power Plants. The primary aim of this group is to collect and analyse technical and economic data on the upgrade and lifetime extension experience in OECD countries, and to assess the likely applications for future extensions. This paper describes the key elements of the methodology of economic assessment of LTO and initial findings for selected NEA member countries. (authors)

  13. A historical perspective of remote operations and robotics in nuclear facilities. Robotics and Intelligent Systems Program

    SciTech Connect (OSTI)

    Herndon, J.N.

    1992-12-31

    The field of remote technology is continuing to evolve to support man`s efforts to perform tasks in hostile environments. The technology which we recognize today as remote technology has evolved over the last 45 years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extended reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety. The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed largely due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Manipulation systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Viewing systems have included periscopes, shield windows, and television systems. Experience over the past 45 years indicates that maintenance system flexibility is essential to typical repair tasks because they are usually not repetitive, structured, or planned. Fully remote design (manipulation, task provisions, remote tooling, and facility synergy) is essential to work task efficiency. Work for space applications has been primarily research oriented with relatively few successful space applications, although the shuttle`s remote manipulator system has been quite successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus.

  14. Report to the US Nuclear Regulatory Commission on analysis and evaluation of operational data - 1987: Power reactors

    SciTech Connect (OSTI)

    1988-10-01

    This annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during 1987. The report is published in two volumes. NUREG-1272, Vol. 2, No. 1, covers Power Reactors and presents an overview of the operating experience of the nuclear power industry, with comments regarding the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year, and summarizes information from Licensee Event Reports, the NRC's Operations Center, and Diagnostic Evaluations. NUREG-1272, Vol. 2, No. 2, covers Nonreactors and presents a review of the nonreactors events and misadministration reports that were reported in 1987 and a brief synopsis of AEOD studies published in 1987. Each volume contains a list of the AEOD Reports issued for 1980-1987.

  15. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    SciTech Connect (OSTI)

    Ryu, Jun-hyung

    2013-07-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  16. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    SciTech Connect (OSTI)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

  17. Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

  18. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed from the MCO back to the K Basins.

  19. Development and operativity of a real-time radiological monitoring network centered on the nuclear power plant of Almaraz (Spain)

    SciTech Connect (OSTI)

    Baeza, A.; Miro, C.; Puerto, J.A. del; Rio, M. del; Ortiz, F.; Paniagua, J.M.

    1993-12-01

    This work presents the hardware and software characteristics of the environmental surveillance radiological network that has been installed around the nuclear power station of Almaraz (Spain). A description is given of the program RADLINE which allows radiological data to be logged in real time, and a study is made of the operativity of the network and the methodology followed in establishing the radiological pre-alert and alert levels.

  20. NNSA Authorizes Resumption of Nuclear Operations at Y-12 | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration NNSA Announces 2014 Security Professional of the Year Awards March 31, 2015 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced the recipients of the 2014 Bradley A. Peterson Federal and Contractor Security Professional of the Year Awards. Pamela Valdez from the Los Alamos Field Office will receive the federal award and Randy Fraser from Los Alamos National Laboratory (LANL) will receive the contractor award. The awards

  1. Supplement Analysis … Spent Nuclear Fuel and SRS H-Canyon Operations

    Energy Savers [EERE]

    DOE/EIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation U.S. Department of Energy Washington, DC November 2015 DOE/EIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation 1.0 INTRODUCTION The Department of Energy (DOE) has a continuing responsibility for safeguarding

  2. Requirements for Computer Based-Procedures for Nuclear Power Plant Field Operators Results from a Qualitative Study

    SciTech Connect (OSTI)

    Katya Le Blanc; Johanna Oxstrand

    2012-05-01

    Although computer-based procedures (CBPs) have been investigated as a way to enhance operator performance on procedural tasks in the nuclear industry for almost thirty years, they are not currently widely deployed at United States utilities. One of the barriers to the wide scale deployment of CBPs is the lack of operational experience with CBPs that could serve as a sound basis for justifying the use of CBPs for nuclear utilities. Utilities are hesitant to adopt CBPs because of concern over potential costs of implementation, and concern over regulatory approval. Regulators require a sound technical basis for the use of any procedure at the utilities; without operating experience to support the use CBPs, it is difficult to establish such a technical basis. In an effort to begin the process of developing a technical basis for CBPs, researchers at Idaho National Laboratory are partnering with industry to explore CBPs with the objective of defining requirements for CBPs and developing an industry-wide vision and path forward for the use of CBPs. This paper describes the results from a qualitative study aimed at defining requirements for CBPs to be used by field operators and maintenance technicians.

  3. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory.

  4. EIS-0373: Proposed Consolidation of Nuclear Operations Related to the Production of Radioisotope Power Systems

    Broader source: Energy.gov [DOE]

    NOTE: EIS-0373 has been cancelled. This EIS evaluates the environmental impacts of consolidating nuclear activities related to production of radioisotope power systems (RPS) for space and national security missions at a single DOE site: the preferred alternative is the Materials and Fuels Complex at Idaho National Laboratory.

  5. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

  6. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  7. Technical considerations in repowering a nuclear plant for fossil fueled operation

    SciTech Connect (OSTI)

    Patti, F.J.

    1996-03-01

    Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today`s world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal.

  8. Aging and service wear of air-operated valves used in safety-related systems at nuclear power plants

    SciTech Connect (OSTI)

    Cox, D.F.; McElhaney, K.L.; Staunton, R.H.

    1995-05-01

    Air-operated valves (AOVs) are used in a variety of safety-related applications at nuclear power plants. They are often used where rapid stroke times are required or precise control of the valve obturator is required. They can be designed to operate automatically upon loss of power, which is often desirable when selecting components for response to design basis conditions. The purpose of this report is to examine the reported failures of AOVs and determine whether there are identifiable trends in the failures related to predictable causes. This report examines the specific components that comprise a typical AOV, how those components fail, when they fail, and how such failures are discovered. It also examines whether current testing frequencies and methods are effective in predicting such failures.

  9. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: External lock operation in an external current mode for a 500 MHz nuclear magnetic resonance

    SciTech Connect (OSTI)

    Takahashi, Masato; Maeda, Hideaki; Ebisawa, Yusuke; Tennmei, Konosuke; Yanagisawa, Yoshinori; Nakagome, Hideki; Hosono, Masami; Takasugi, Kenji; Hase, Takashi; Miyazaki, Takayoshi; Fujito, Teruaki; Kiyoshi, Tsukasa; Yamazaki, Toshio

    2012-10-15

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb{sub 3}Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a {sup 7}Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

  10. Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal

    SciTech Connect (OSTI)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL; Proctor, Larry Duane [ORNL

    2012-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory utilizes a large cylindrical beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron absorbing and radiation emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (helium-3 and lithium-6) buildup in the reflector regions and its affect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to helium-3 buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge as well as during decay to assess the viability of transporting, storing, and ultimately disposing the reflector regions currently stored in the spent fuel pool. The post-irradiation curie inventories were used to determine whether the reflector regions are discharged as transuranic waste or become transuranic waste during the decay period for disposal purposes and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be transuranic waste at discharge and the other region was determined to become transuranic waste in less than 2 years after being discharged due to the initial uranium content (0.0044 weight percent uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).

  11. SEP operating history of the Dresden Nuclear Power Station Unit 2

    SciTech Connect (OSTI)

    Mays, G.T.; Harrington, K.H.

    1983-01-01

    206 forced shutdowns and power reductions were reviewed, along with 631 reportable events and other miscellaneous documentation concerning the operation of Dresden-2, in order to indicate those areas of plant operation that compromised plant safety. The most serious plant challenge to plant safety occurred on June 5, 1970; while undergoing power testing at 75% power, a spurious signal in the reactor pressure control system caused a turbine trip followed by a reactor scram. Subsequent erratic water level and pressure control in the reactor vessel, compounded by a stuck indicator pen on a water level monitor-recorder and inability of the isolation condenser to function, led to discharge of steam and water through safety valves into the reactor drywell. No significant contamination was discharged. There was no pressure damage or the reactor vessel of the drywell containment walls. Six areas of operation that should be of continued concern are diesel generator failures, control rod and rod drive malfunctions, radioactive waste management/health physics program problems, operator errors, turbine control valve and EHC problems, and HPCI failures. All six event types have continued to recur.

  12. Analysis of Flow in Pilot Operated Safety and Relief Valve of Nuclear Reactor Coolant System

    SciTech Connect (OSTI)

    Kwon, Soon-Bum; Lee, Dong-Won; Kim, In-Goo; Ahn, Hyung-Joon; Kim, Hho-Jung

    2004-07-01

    When the POSRV equipped in a nuclear power plant opens in instant by a failure in coolant system of PWR, a moving shock wave generates, and propagates downstream of the valve, inducing a complicated unsteadiness. The moving shock wave may exert severe load to the structure. In this connection, a method of gradual opening of the valve is used to reduce the load acting on the wall at the downstream of the POSRV. In the present study, experiments and calculations are performed to investigate the detail unsteady flow at the various pipe units and the effect of valve opening time on the flow downstream of the valve. In calculation by using of air as working fluid, 2-dimensional, unsteady compressible Navier-Stokes equations are solved by finite volume method. It was found that when the incident shock wave passes through the pipe unit, it may experience diffraction, reflection and interaction with a vortex. Furthermore, the geometry of the pipe unit affects the reflection type of shock wave and changes the load acting on the wall of pipe unit. It was also turned out that the maximum force acting on the wall of the pipe unit becomes in order of T-junction, 108 deg. elbow and branch in magnitude, respectively. And, the results obtained that show that the rapid pressure rise due to the moving shock wave by instant POSRV valve opening is attenuated by employing the gradual opening. (authors)

  13. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect (OSTI)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  14. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect (OSTI)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  15. Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). Supplement No. 12

    SciTech Connect (OSTI)

    Tam, P.S.

    1993-10-01

    Supplement No. 12 to the Safety Evaluation Report for the application filed by the Tennessee Valley Authority for license to operate Watts Bar Nuclear Plant, Units 1 and 2, Docket Nos. 50-390 and 50-391, located in Rhea County, Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation of (1) additional information submitted by the applicant since Supplement No. 11 was issued, and (2) matters that the staff had under review when Supplement No. 11 was issued.

  16. Safety evaluation report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391): Supplement No. 19

    SciTech Connect (OSTI)

    1995-11-01

    Supplement No. 19 to the Safety Evaluation Report for the application filed by the Tennessee Valley Authority for license to operate Watts Bar Nuclear Plant, Units 1 and 2, Docket Nos. 50-390 and 50-391, located in Rhea County Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation with (1) additional information submitted by the applicant since Supplement No. 18 was issued, and (2) matters that the staff had under review when Supplement No. 18 was issued.

  17. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  18. Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249

    SciTech Connect (OSTI)

    Devgun, Jas S.

    2013-07-01

    Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

  19. FirstEnergy | Open Energy Information

    Open Energy Info (EERE)

    Energy provider: energy transmission and distribution;Energy provider: power production; Research and development Website: www.firstenergycorp.com Coordinates: 41.083278,...

  20. Monthly/Annual Energy Review - nuclear section

    Reports and Publications (EIA)

    2015-01-01

    Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

  1. Top U.S. Nuclear Official Commends Industry for Submitting 3rd Combined Construction & Operating License Application to the NRC

    Broader source: Energy.gov [DOE]

    RICHMOND, VA - The U.S. Department of Energy (DOE) Assistant Secretary for Nuclear Energy Dennis Spurgeon today commended Dominion North Anna, LLC (Dominion) for submission of a combined...

  2. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  3. nuclear forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA chief visits New Mexico laboratories NNSA Hosts International Nuclear Forensics Workshop with Participants from Eight Countries Nuclear Forensics Operations Render Safe ...

  4. Nuclear Forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy ...

  5. nuclear controls

    National Nuclear Security Administration (NNSA)

    which "international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and...

  6. Operational Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operational Excellence /about/_assets/images/icon-70th.jpg Operational Excellence The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. aeiral shot of los alamos, new mexico What Los Alamos gets done as a premier national security science laboratory depends on how we do it The Laboratory's operations and business

  7. A probabilistic evaluation of the safety of Babcock and Wilcox nuclear reactor power plants with emphasis on historically observed operational events

    SciTech Connect (OSTI)

    Hsu, C.J.; Youngblood, R.W.; Fitzpatrick, R.G.; Amico, P.J.

    1989-03-01

    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Reactor Regulation, Division of Engineering and System Technology (A/D for Systems), US Nuclear Regulatory Commission. This study was requested by the NRC to assist their staff in assessing the risk significance of features of the Babcock and Wilcox (B and W) reactor plant design in the light of recent operational events. This study focuses on a critical review of submissions from the B and W Owners Group (BWOG) and as an independent assessment of the risk significance of ''Category C'' events at each operating B and W reactor. Category C events are those in which system conditions reach limits which require significant safety system and timely operator response to mitigate. A precursor study for each of the major B and W historical Category C events also was carried out. In addition, selected PRAs for B and W reactor plants and plants with other pressurized water reactor (PWR) designs were reviewed to appraise their handling of Category C events, thereby establishing a comparison between the risk profiles of B and W reactor plants and those of other PWR designs. The effectiveness of BWOG recommendations set forth in Appendix J of the BWOG SPIP (Safety and Performance Improvement Program) report (BAW-1919) also was evaluated. 49 refs., 21 figs., 52 tabs.

  8. Nuclear Safety Information Agreement Between the U.S. Nuclear...

    Energy Savers [EERE]

    Regulatory Commission, Office of Nuclear Material Safety and Safeguards, and the U.S. ... and nuclear material operations (DOE does not own or operate power reactors). ...

  9. U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)

    Broader source: Energy.gov [DOE]

    "This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak...

  10. Impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants. Case study: PWR during routine operations

    SciTech Connect (OSTI)

    Moeller, M.P.; Martin, G.F.; Haggard, D.L.

    1986-01-01

    The purpose of this report is to present data in support of evaluating the impact of fuel cladding failure events on occupational radiation exposure. To determine quantitatively whether fuel cladding failure contributes significantly to occupational radiation exposure, radiation exposure measurements were taken at comparable locations in two mirror-image pressurized-water reactors (PWRs) and their common auxiliary building. One reactor, Unit B, was experiencing degraded fuel characterized as 0.125% fuel pin-hole leakers and was operating at approximately 55% of the reactor's licensed maximum core power, while the other reactor, Unit A, was operating under normal conditions with less than 0.01% fuel pin-hole leakers at 100% of the reactor's licensed maximum core power. Measurements consisted of gamma spectral analyses, radiation exposure rates and airborne radionuclide concentrations. In addition, data from primary coolant sample results for the previous 20 months on both reactor coolant systems were analyzed. The results of the measurements and coolant sample analyses suggest that a 3560-megawatt-thermal (1100 MWe) PWR operating at full power with 0.125% failed fuel can experience an increase of 540% in radiation exposure rates as compared to a PWR operating with normal fuel. In specific plant areas, the degraded fuel may elevate radiation exposure rates even more.

  11. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  12. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    SciTech Connect (OSTI)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W. )

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs.

  13. Quarterly Nuclear Deployment Scorecard - October 2015 | Department...

    Energy Savers [EERE]

    Quarterly Nuclear Deployment Scorecard - October 2015 Quarterly Nuclear Deployment Scorecard - October 2015 News Updates The Nuclear Regulatory Commission has issued an operating...

  14. Quarterly Nuclear Deployment Scorecard - January 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2014 Quarterly Nuclear Deployment Scorecard - January 2014 News Updates Luminant ... Unistar Nuclear Operating Co. has formally withdrawn its COL application from the Nuclear ...

  15. Operation Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation Schedule Daily Hours of Operation

  16. Nuclear Forensics | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy initiative that establishes federal agency missions and institutionalizes roles and responsibilities to enable operational support for materials, pre-detonation device, and post-detonation nuclear or radiological forensics programs with the broader goal of attribution. Technical nuclear forensics utilizes the data from

  17. 1,"Braidwood Generation Station","Nuclear","Exelon Nuclear",2330

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 2,"Byron Generating ...

  18. INL @ work: Nuclear Reactor Operator

    ScienceCinema (OSTI)

    Russell, Patty

    2013-05-28

    INL @ work features jobs at the Idaho National Laboratory. Learn more about careers and energy research at INL's facebook site http://www.facebook.com/idahonationallaboratory

  19. Independent technical support for the frozen soil barrier installation and operation at the Fukushima Daiichi Nuclear Power Station (F1 Site)

    SciTech Connect (OSTI)

    Looney, Brian B.; Jackson, Dennis G.; Truex, Michael J.; Johnson, Christian D.

    2015-02-23

    TEPCO is implementing a number of water countermeasures to limit the releases and impacts of contaminated water to the surrounding environment. The diverse countermeasures work together in an integrated manner to provide different types, and several levels, of protection. In general, the strategy represents a comprehensive example of a “defense in depth” concept that is used for nuclear facilities around the world. One of the key countermeasures is a frozen soil barrier encircling the damaged reactor facilities. The frozen barrier is intended to limit the flow of water into the area and provide TEPCO the ability to reduce the amount of contaminated water that requires treatment and storage. The National Laboratory team supports the selection of artificial ground freezing and the incorporation of the frozen soil barrier in the contaminated water countermeasures -- the technical characteristics of a frozen barrier are relatively well suited to the Fukushima-specific conditions and the need for inflow reduction. Further, our independent review generally supports the TEPCO/Kajima design, installation strategy and operation plan.

  20. EIS-0426: Site-Wide Environmental Impact Statement for Continued Operation of the Department of Energy / National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada

    Broader source: Energy.gov [DOE]

    This Site-Wide EIS evaluates the potential environmental impacts of proposed alternatives for continued management and operation of the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site) and other U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)-managed sites in Nevada.

  1. Nuclear Detonation Detection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Detonation Detection NNSA builds the nation's operational sensors that monitor the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates the regional geophysical datasets enabling operation of the nation's ground-based seismic monitoring networks to detect and report underground detonations; and conducts research and development on nuclear detonation forensics, improvements in satellite operational systems to meet future

  2. Defense Nuclear Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Programs Defense Nuclear Security The Office of Defense Nuclear Security develops and implements NNSA security programs to protect, control, and account for materials, information, and facilities across the nuclear security enterprise. The Office of the Chief, Defense Nuclear Security (CDNS) executes responsibility for the overall direction and management of security programs employed across the nuclear security enterprise comprised of NNSA's operations and facilities. The CDNS is charged with

  3. Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Nuclear Safety The Nuclear Safety Program mission is to support the design, construction, operation, and deactivation and decommissioning of the Paducah and Portsmouth nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Major Responsibilities: Establish and implement nuclear safety requirements that utilize national consensus (or other government) standards or applicable external agency regulations (Nuclear Regulatory

  4. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    NNSA builds the nation's operational sensors that monitor the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates...

  5. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration ...

  6. nuclear bombs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear bombs

  7. nuclear fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear fusion

  8. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors

  9. 2013 Nuclear Workforce Development Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Myths Topics:  Can a Nuclear Reactor Explode Like a Bomb?  Will Nuclear Waste Be Around for Millions of Years?  Is Nuclear Energy Dangerous? Moderator: Suzy Hobbs Baker Founder, PopAtomic Studios & Director of Nuclear Literacy Project Panel Members: TJ Corder - Nuclear Engineer, Vogtle 3 & 4 Southern Company Jana Thames - Communications Specialist Southern Company Brian Dyke - Nuclear Auxiliary Operator Duke Energy Nathan Zohner North American Young Generation in Nuclear

  10. hrp | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    hrp Personnel Security Program NNSA is responsible for managing national nuclear security and supports several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure and Environment, Nuclear Security, Management and Administration and the Office of the Administrator.

  11. Powering the Nuclear Navy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. NNSA's Naval Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and ensure their safe, reliable and long-lived operation. Learn More USS George H.W. Bush conducts flight operations Concern for the Environment Protection of People

  12. Cask fleet operations study

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system.

  13. Operation of Grand Gulf Nuclear Station, Units 1 and 2, Dockets Nos. 50-416 and 50-417: Mississippi Power and Light Company, Middle South Energy, Inc. , South Mississippi Electric Power Association. Final environmental statement

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The information in this Final Environmental Statement is the second assessment of the environmental impacts associated with the construction and operation of the Grand Gulf Nuclear Station, Units 1 and 2, located on the Mississippi River in Claiborne County, Mississippi. The Draft Environmental Statement was issued in May 1981. The first assessment was the Final Environmental Statement related to construction, which was issued in August 1973 prior to issuance of the Grand Gulf Nuclear Station construction permits. In September 1981 Grand Gulf Unit 1 was 92% complete and Unit 2 was 22% complete. Fuel loading for Unit 1 is scheduled for December 1981. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the Station, and includes the staff responses to comments on the Draft Environmental Statement.

  14. SWiFT Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  15. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, 6-25-13

  16. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Admin Chg 2, dated 12-3-14, supersedes Admin Chg 1.

  17. The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018

    SciTech Connect (OSTI)

    Butcher, Ed; Connor, Donna; Keighley, Debbie

    2013-07-01

    The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

  18. Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1

    Energy Savers [EERE]

    Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction

  19. Review of four years of literature (1985, 1986, 1987 and 1988) for the physiological and psychological effects of the nuclear/biological/chemical and extended operations on soldier-performance program. Final report, September 1988-January 1989

    SciTech Connect (OSTI)

    Ramirez, T.L.; Pence, R.

    1988-12-30

    The purpose of this review was to continue gathering available literature applicable to the Physiological and Psychological Effects of Nuclear/Biological/Chemical and Extended Operations on Crew (P2NBC2) performance. Over 1300 abstracts were reviewed and approximately 500 of those were found which contained applicable information. The review is presented by year and an index of the bibliographic citations is also provided.

  20. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The Department of Energy (DOE), the National Nuclear Security Administration (NNSA) and the University of California (UC) have agreed on new management and operations contracts for ...

  1. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    the University of California for violations of nuclear safety rules at the Los Alamos National Laboratory (LANL) in New Mexico. The University of California operates LANL for ...

  2. NA 50 - Associate Administrator for Safety, Infrastructure and Operations

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration 50 - Associate Administrator for Safety, Infrastructure and Operations FY15

  3. United States-Japan Nuclear Security Working Group Fact Sheet...

    National Nuclear Security Administration (NNSA)

    Goal 1: Co-operation within the Integrated Support Centre for Nuclear Non-proliferation ... for strengthening nuclear non-proliferation and nuclear security capacity mainly ...

  4. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs). Supersedes DOE O 452.2D and DOE M 452.2-1A.

  5. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  6. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  7. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  8. Enterprise Assessments Targeted Review of Nuclear Reactor Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeted Review of Nuclear Reactor Facility Operations at Sandia National Laboratories - March 2016 Enterprise Assessments Targeted Review of Nuclear Reactor Facility Operations at ...

  9. Nuclear Safety Specialist Functional Area Qualification Standard

    Energy Savers [EERE]

    83-2007 November 2007 DOE STANDARD NUCLEAR SAFETY SPECIALIST FUNCTIONAL AREA QUALIFICATION ... Center (NTC) * Institute of Nuclear Power Operations (INPO) * American Institute ...

  10. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summer 2016. The NRC has issued combined licenses to Nuclear Innovation North America (NINA), STP Nuclear Operating Company, NINA Texas 3 LLC, NINA Texas 4 LLC, and the ...

  11. Quarterly Nuclear Deployment Scorecard - October 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2015 Quarterly Nuclear Deployment Scorecard - October 2015 News Updates The Nuclear Regulatory Commission has issued an operating license for Tennessee Valley Authority's ...

  12. Nuclear Safety Regulatory Framework

    Energy Savers [EERE]

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting

  13. Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report

    SciTech Connect (OSTI)

    Eugene S. Grecheck David P. Batalo

    2010-11-30

    This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.

  14. Metropolitan Edison Company SEF Grants (FirstEnergy Territory)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Examples of projects funded in the past are available on the program web site, along with details of the grant guidelines.

  15. FirstEnergy Service Company Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    Maintenance Costs Reduced Electricity Costs for Customers Improved Electric Service Reliability and Power Quality Reduced Costs from Equipment Failures, Distribution Line Losses...

  16. FirstEnergy (Potomac Edison) - Commercial and Industrial Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    CFL Fixture: 25 Screw-In CFL Fixture: 1 LED Exit Sign: 25 Lighting Controls: 25sensor Standard Lighting T8T5 Fixtures (Replacements): 10 - 65fixture Permanent Delamping...

  17. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or radiological incident. The NIT's mission is to coordinate NNSA assets for deployment, continually monitor deployment activities, and provide situational awareness of activities to NNSA management. The NIT is staffed and fully operational within two hours of notification

  18. 2013 Nuclear Workforce Development Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Impact Topics: Today's & Tomorrow's New Nuclear Energy Construction & the Workforce Outlook  Current New Nuclear Energy Construction Projects  Small Modular Reactor Developments  Nuclear Workforce Demo Moderator: Nora Swanson - Workforce Development Coordinator Southern Company Panel Members: Scott Macfarland - Manager, Corporate Workforce Planning SCANA Corporation Randy Johnson - Vice President, Operational Readiness Vogtle 3 &4 Southern Company Mary

  19. Nuclear / Radiological Advisory Team | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration / Radiological Advisory Team NRAT Logo NNSA's Nuclear / Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or radiological incidents. It is led by a Senior Energy Official who runs the NNSA field operation and who coordinates NNSA follow-on assets as needed. The NRAT is composed of scientists and technicians who can provide advice or conduct limited operations.

  20. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  1. Nuclear reactor apparatus

    DOE Patents [OSTI]

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  2. Powering the Nuclear Navy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Programs Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived

  3. Naval Nuclear Propulsion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion

  4. Psychological effects of sustained operations in a simulated NBC (nuclear, biological or chemical) environment on M1 tank crews. Technical report, May-June 1985

    SciTech Connect (OSTI)

    Munro, I.; Rauch, T.M.; Banderet, L.E.; Lussier, A.R.; Tharion, W.J.

    1987-07-03

    Forty-eight M1 crewmen were tested in a temperate climate under conditions simulating 72-hour operations in an area contaminated with chemical agents. Over 50% of the crewman voluntarily withdrew from the test, and maximum unit endurance did not exceed 32 hours. Two problems were found to be related to endurance failure. Soldiers who withdrew reported more intense symptoms associated with respiratory distress than did those who remained in the test. In addition, soldiers who withdrew experienced greater cognitive difficulties. Near-term countermeasures, assessed in some test iterations, showed no significant endurance-extending effects. Alternative solutions based on the identified problems were proposed.

  5. Steven Lawrence | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    stewardship and management, nuclear test readiness, crisis management, ... Other positions he has held included Project Operations Team Leader, Underground Test ...

  6. Mission | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Mission Mission Statement "Enhancing and ensuring the future of the Nuclear Security Enterprise through effective nuclear production operations" Mission Execute effective contract management and oversight to safely and securely maintain the nuclear weapon stockpile for the Nuclear Security Enterprise; provide enriched uranium for naval, research, and isotope production reactors, and support nonproliferation activities to reduce the global nuclear threat. Vision Make the world safer by

  7. Nuclear Explosive Safety Study Process

    Energy Savers [EERE]

    Superseding DOE-STD-3015-97 January 1997 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY PROCESS U.S. ... of high- consequence production, manufacturing, andor power plant operations. ...

  8. accreditation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA's safety office accredited and recognized for leadership in safe operation of defense nuclear facilities Savannah River Analytical Laboratories Achieve International Standard ...

  9. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, dated 6-25-13, cancels DOE O 422.1. Certified 12-3-14.

  10. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6. Blast measurements. Part 5. Measurement of density, temperature, and material velocity in an air shock produced by a nuclear explosion

    SciTech Connect (OSTI)

    Porzel, F.B.; Whitener, J.E.

    1985-09-01

    The results from laboratory tests and test firing were quite encouraging. It was concluded that: (1) the beta densitometer is a feasible device for the measurement of density as a function of time in the shock wave from a nuclear explosion. It is limited to pressure levels of 6 or 8 psi for bombs in the range of 50 kt, but is capable of higher-pressure levels on larger bombs where the interference from gamma rays is less serious; (2) dust-loading behind the shock wave is a major perturbation to the ideal hydrodynamics and can change the density by as large a factor as the shock itself; (3) the rise time at distances of 7,500 feet on Easy Shot was sharp within a resolution of approximately 0.2 msec; and (4) the field calibration used on Operation Greenhouse appeared reasonably accurate and was worthy of subsequent development.

  11. Sandia National Laboratories: Careers: Nuclear Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Engineering Nuclear Engineer Sandia's primary mission is ensuring that the U.S. nuclear arsenal is safe, secure, reliable, and capable of fully supporting our nation's deterrence policy. Nuclear engineers at Sandia work in multidisciplinary teams on a variety of projects that involve nuclear reactors, weapons, equipment, and information systems. For example, they design, develop, and test nuclear equipment and systems. They also monitor the testing, operation, and maintenance of nuclear

  12. General Engineer / Nuclear Engineer

    Broader source: Energy.gov [DOE]

    The Idaho Operations Office (DOE-ID) manages and oversees work done at the Idaho National Laboratory (INL), the DOE's lead nuclear energy laboratory in the United States. DOE-ID supports the...

  13. Nuclear Emergency Search Team

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20

    To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

  14. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT TO SAFELY AND EFFECTIVELY COMPLETE NUCLEAR CONSTRUCTION WORK

    SciTech Connect (OSTI)

    LESO KF; HAMILTON HM; FARNER M; HEATH T

    2010-01-14

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business construction subcontractors while performing high hazard work in a safe and productive manner. Previous to the Washington River Protection Solutions, LLC contract, Construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper describes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method. This method was implemented in the first quarter of Fiscal Year (FY) 2009, where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by DRS personnel. Each small contractor is mentored and supported utilizing the principles of the Construction Industry Institute (CII) Partnering process. Some of the key mentoring and partnering areas that are explored in this paper are, internal and external safety professional support, subcontractor safety teams and the interface with project and site safety teams, quality assurance program support to facilitate compliance with NQA-1, construction, team roles and responsibilities, work definition for successful fixed price contracts, scheduling and interface with project schedules and cost projection/accruals. The practical application of the CII Partnering principles, with the Construction Management expertise of URS, has led to a highly successful construction model that also meets small business contracting goals.

  15. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  16. Outage management and health physics issue, 2009

    SciTech Connect (OSTI)

    Agnihotri, Newal

    2009-05-15

    The focus of the May-June issue is on outage management and health physics. Major articles include the following: Planning and scheduling to minimize refueling outage, by Pat McKenna, AmerenUE; Prioritizing safety, quality and schedule, by Tom Sharkey, Dominion; Benchmarking to high standards, by Margie Jepson, Energy Nuclear; Benchmarking against U.S. standards, by Magnox North, United Kingdom; Enabling suppliers for new build activity, by Marcus Harrington, GE Hitachi Nuclear Energy; Identifying, cultivating and qualifying suppliers, by Thomas E. Silva, AREVA NP; Creating new U.S. jobs, by Francois Martineau, Areva NP. Industry innovation articles include: MSL Acoustic source load reduction, by Amir Shahkarami, Exelon Nuclear; Dual Methodology NDE of CRDM nozzles, by Michael Stark, Dominion Nuclear; and Electronic circuit board testing, by James Amundsen, FirstEnergy Nuclear Operating Company. The plant profile article is titled The future is now, by Julia Milstead, Progress Energy Service Company, LLC.

  17. Office Of Nuclear Energy

    Energy Savers [EERE]

    Operator Support Technologies for Fault Tolerance and Resilience Richard Vilim, Argonne National Laboratory Ken Thomas, Idaho National Laboratory Nuclear Energy Enabling Technology October 28-29, 2015 2 Project Overview § A nuclear plant operator presently takes a symptom- based approach to upsets § Not necessarily expected to diagnose a fault § Fault diagnosis is time consuming, approximate, and prone to error § Situational awareness is limited by old technologies 3 Project

  18. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  19. Principal Associate Director - Operations and Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Los Alamos National Laboratory. Leasure oversees directorates of Business Innovation Services; Environment, Safety and Health; Nuclear and High Hazard Operations; and...

  20. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  1. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  2. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs Office of Science Nuclear Physics science-innovationassetsimagesicon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that ...

  3. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › Updated EIA survey provides data on spent nuclear fuel in the United

  4. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  5. NNSA Selects Consolidated Nuclear Security, LLC to Manage the Consolidated

    National Nuclear Security Administration (NNSA)

    Contract for Nuclear Production Operations | National Nuclear Security Administration Selects Consolidated Nuclear Security, LLC to Manage the Consolidated Contract for Nuclear Production Operations January 08, 2013 The National Nuclear Security Administration (NNSA) today announced that Consolidated Nuclear Security, LLC (CNS) has been selected to be the management and operating contractor for the Y-12 National Security Complex in Oak Ridge, Tenn., and the Pantex Plant near Amarillo, Texas.

  6. Belgium Nuclear Security Summit: Fact Sheet | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear Security Summit: Fact Sheet March 27, 2012 As one of the leaders in nuclear technology development, Belgium's nuclear program has covered all aspects of nuclear fuel cycle including reprocessing and operated a reprocessing plant between 1966 and 1974. Belgium signed the NPT in 1975 as a non-weapons state, but has retained a leading nuclear technology research center and derives over 50% of its energy from nuclear power using 7 power reactors. SCK-CEN is one of the

  7. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Broader source: Energy.gov (indexed) [DOE]

    Daniel Poneman spoke at the Tokyo American Center today about nuclear power after Fukushima. ... to power generation and operational safety at civil nuclear plants, to deep ...

  8. Microsoft Word - Nuclear Safety Pamphlet Final September 1 2010...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Basic Overview of NUCLEAR SAFETY AT THE DEPARTMENT OF ENERGY Outreach & Awareness Series ... (DOE) is committed to conducting its nuclear operations in a manner that protects the ...

  9. REFRACTORY MATERIALS IN THE NUCLEAR INDUSTRY (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    REFRACTORY MATERIALS IN THE NUCLEAR INDUSTRY Citation Details In-Document Search Title: REFRACTORY MATERIALS IN THE NUCLEAR INDUSTRY (in French) In reactors operating at high ...

  10. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the subset of possible

  11. FAQS Qualification Card Nuclear Operations Specialist

    Broader source: Energy.gov [DOE]

    A key element for the Departments Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  12. Nuclear reactor characteristics and operational history

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) North Dakota Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 24 368 2010's 1,185 1,649 3,147 5,059 6,442 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 North Dakota Shale Gas Proved

  13. Emergency Operations Training Academy | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    to Analytical Risk Management Introduction to Radiation Introduction to Training and Drills Joint Information Center (JIC) Overview Managing Corrective Actions Overview Managing...

  14. Our Programs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Our Programs NNSA's program support is divided into several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure and Environment, Nuclear Security, Management and Administration and the Office of the Administrator. Each program area is focused on specific challenges. NNSA's program support is divided into several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure

  15. Management of National Nuclear Power Programs for assured safety

    SciTech Connect (OSTI)

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  16. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Supersedes DOE O 452.1D.

  17. Operations Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Research Analysts The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Operations Research Analyst, whose work is associated with the development and main- tenance of energy modeling systems. Responsibilities: Operations Research Analysts perform or participate in one or

  18. SPEAR Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface 1113 N. Kurita J. Langton Vacuum TSP's 1120 J. Corbett A. Terebilo MATLAB Applications - Basics 1121 F. Rafael Booster Kicker Upgrade, Operation Manual 1121...

  19. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  20. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  21. <...

  22. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  1. Nuclear Science

    Energy Savers [EERE]

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  2. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  3. Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2006, the National Nuclear Security Administration (NNSA) announced the selection of National Security Technologies, LLC (NSTec) to manage and operate the Nevada Test Site (NTS) for the NNSA Nevada Site Office. The contract, valued at approxi- mately $500 million annually, is for five years. There are poten- tially five additional perform- ance-based award-term years available under this contract. NSTec is made up of Northrop Grumman, AECOM, CH2M Hill, and Nuclear Fuel Services. Dr. James E.

  4. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  5. NEW - DOE O 452.2E, Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  6. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Davis Besse Unit 1",894,"5,185",32.8,"FirstEnergy Nuclear Operating Company" "Perry Unit 1","1,240","10,620",67.2,"FirstEnergy Nuclear Operating Company" "2

  7. nuclear | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact report from the 2015 event, detailing the many ways people were educated about all things nuclear as a result of the event. Nuclear Science Week is an international weeklong celebration to focus interest on... U.S-, Japan Exchange Best Practices on Nuclear Emergency Response Washington D.C.--The Department of Energy's

  8. Public Affairs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Public Affairs The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission

  9. Public Affairs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Public Affairs The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission

  10. SPECTR System Operational Test Report

    SciTech Connect (OSTI)

    W.H. Landman Jr.

    2011-08-01

    This report overviews installation of the Small Pressure Cycling Test Rig (SPECTR) and documents the system operational testing performed to demonstrate that it meets the requirements for operations. The system operational testing involved operation of the furnace system to the design conditions and demonstration of the test article gas supply system using a simulated test article. The furnace and test article systems were demonstrated to meet the design requirements for the Next Generation Nuclear Plant. Therefore, the system is deemed acceptable and is ready for actual test article testing.

  11. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  12. Enterprise Assessments Targeted Review of Nuclear Reactor Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations at Sandia National Laboratories - March 2016 | Department of Energy Nuclear Reactor Facility Operations at Sandia National Laboratories - March 2016 Enterprise Assessments Targeted Review of Nuclear Reactor Facility Operations at Sandia National Laboratories - March 2016 March 2016 Targeted Review of Nuclear Reactor Facility Operations at Sandia National Laboratories The U.S. Department of Energy independent Office of Enterprise Assessments (EA) conducted a review of nuclear

  13. GET TO KNOW National Nuclear Science Week

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GET TO KNOW National Nuclear Science Week January 23 - 27, 2012 www.nwinitiative.org Did You Know Nuclear Medicine heals many Americans. 18 million nuclear medicine procedures are performed each year among 305 million people in the United States. We depend on nuclear for electric power. 20 percent of our nation's electricity is generated from 104 operating reactors across the United States. Nearly half of South Carolina's electricity and one-fourth of Georgia's electric power come from nuclear

  14. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  15. Nuclear Physics: User/Researcher Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Operations Orientation CEBAF @ 12GeV CEBAF Status Screen Conferences, Workshops, and Summer Schools Nuclear Physics CUGA Archive Directory of Members Member ...

  16. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2015

    Energy Savers [EERE]

    to grant the Director of Nuclear Reactor Regulation authority to issue a full power operating license to ... Submitted Docketed Issued Safety 3 Environ. 4 Issued Southern ...

  17. Site Information | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Site Information Facilities & Projects Nuclear Operations Environment, Safety & Health Safeguards & Security Performance & Quality Assurance Programs NEPA Reading Room

  18. January 2016 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    was named a Meritorious Executive Winner. Erhart has 28 years of experience managing nuclear operations for the Department of Energy and the Department of Defense. Before...

  19. Questions and Answers | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios...

  20. Subscribe / Unsubscribe | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios...

  1. small buisness | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Congressional...

  2. Nuclear core positioning system

    DOE Patents [OSTI]

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  3. Nuclear Explosive Safety Study Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-27

    A Nuclear Explosive Safety Study (NESS) is performed on all DOE Nuclear Explosive Operations (NEOs) in accordance with DOE O 452.1D, Nuclear Explosive and Weapon Surety Program; DOE O 452.2D, Nuclear Explosive Safety; and DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes.

  4. DOE - NNSA/NFO -- Nuclear Testing Archive Fee Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Testing Archive > Fee Schedule NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Nuclear Testing Archive (NTA) Fee Schedule The U.S. Department of Energy National Nuclear Security Administration Nuclear Testing Archive (NTA) is a centralized repository of publicly releasable documents on the subject of the U.S. Nuclear Weapons Testing Program. The Nuclear Testing Archive is operated for the NNSA by NSTec. Normal services provided to the public by the Nuclear Testing

  5. 2013 Nuclear Workforce Development Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River Site Topics:  How are Robotics, Homeland Security & SRS Related?  What are Future Careers at SRS?  Why does SRS have a Gate? Moderator: Steve Hensel - Senior Fellow Engineer Savannah River Nuclear Solutions Panel Members: Steve Tibrea - Director, Research & Development Engineering Savannah River Nuclear Solutions Steve Howell - Deputy Director, Environmental Management Operations - Savannah River Nuclear Solutions Renee Spires - Program Manager Savannah River

  6. Donation Improves Nuclear Training, Education

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – A $32,000 donation from Washington River Protection Solutions (WRPS), the Hanford Tank Operations Contractor for EM’s Office of River Protection, is improving nuclear training and education at a local community college.

  7. 2013 Nuclear Workforce Development Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Workshop Topics:  Focusing on Your Strengths  Dressing for Success  Taking Advantage of Internships & Co-Op Programs Moderator: Renee Stewart - National Nuclear Security Administration Operations & Programs Savannah River Nuclear Solutions Panel Members: Nora Swanson - Workforce Development Coordinator Southern Company Andrew Bouldin - Workforce Strategies Team Leader Southern Company Scott Macfarland - Manager, Corporate Workforce Planning SCANA Corporation Career

  8. 1,"Millstone","Nuclear","Dominion Nuclear Conn Inc",2122.5

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Millstone","Nuclear","Dominion Nuclear Conn Inc",2122.5 2,"Middletown","Petroleum","...

  9. Reactor operation environmental information document

    SciTech Connect (OSTI)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  10. DOE fundamentals handbook: Nuclear physics and reactor theory

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  11. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  12. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  13. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  14. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E.

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  15. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date" 1,685,"5,918",98.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,685,"5,918",98.7

  16. Nuclear Navy

    SciTech Connect (OSTI)

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  17. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  18. DOE - NNSA/NFO -- Photo Library OPERATION TEAPOT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation Teapot NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Operation Teapot Operation Teapot consisted of 14 nuclear tests. The goal of the series was to test nuclear devices for possible inclusion in the nuclear weapons stockpile; improve military tactics, equipment and training; and study civil defense requirements. [ Full Text ] Instructions: Click the photograph THUMBNAIL to view the photograph details Click the Category, Number, or Date table header links

  19. Operating Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Strategies and Design Recommendations for Mitigating Local Damage Effects in Offshore Turbine Blades Phillip W. Richards phillip@gatech.edu Graduate Research Assistant Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA D. Todd Griffith dgriffi@sandia.gov Principal Member of the Technical Staff Sandia National Laboratories Albuquerque, New Mexico, USA Dewey H. Hodges dhodges@gatech.edu Professor Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA

  20. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  1. Owners of Nuclear Power Plants

    SciTech Connect (OSTI)

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  2. Enterprise Assessments Assessment of Selected Conduct of Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Operations CRAD Criteria Review and Approach ... contractor, Nuclear Waste Partnership, LLC (NWP). ... at the working level. EA also noted deficiencies in NWP management oversight of ...

  3. Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (~ii~,Richland Operations Office ~Z4TESO~Richland, Washington 99352 SEP 2 2009 CERTIFIED MAIL Ms. Sarah Washburn Heart of America Northwest 1314 N.E. 5 6 th Street Suite 100 Seattle, Washington 98105 Dear Ms. Washburn: FREEDOM OF INFORMATION ACT REQUEST (FOI 2009-0067) You requested, pursuant to the Freedom of Information Act (FOJA), the following documents relating to: 1 . "The authorization, decision to use, and actual use of any and all pesticides and herbicides anywhere within the

  4. Deborah Wilber | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Deborah Wilber Associate Administrator for Emergency Operations Deborah Wilber Deborah Wilber is the Associate Administrator for the Office of Emergency Operations, National Nuclear Security Administration (NNSA). In this role, she is responsible for emergency management policy and execution of emergency management support, to include the Continuity of Operations and Government programs, the Headquarters and Alternate Emergency Operations Centers, and the Emergency Communications Network across

  5. Topics in nuclear power

    SciTech Connect (OSTI)

    Budnitz, Robert J.

    2015-03-30

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  6. nit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nit Operations NNSA's Emergency Response Operations program acts as the headquarters command and control, functioning as the coordinating focal point for all deployed assets during a nuclear or radiological incident. It also acts as support to any national special security events, special events, the

  7. nrat | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nrat Operations NNSA's Emergency Response Operations program acts as the headquarters command and control, functioning as the coordinating focal point for all deployed assets during a nuclear or radiological incident. It also acts as support to any national special security events, special events, the...

  8. About Naval Reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Naval Reactors The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. NNSA's Naval Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and

  9. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or 1-888-246-2460 using the following timeframes

    using the following timeframes

    //A * ~ w r_ra (b11 II V &. l,4t~Cf..-"i National Nuclear Security Administration DOE/NV--325-Rev. lOa February 2015 Nevada National Security Site Waste Acceptance Criteria Prepared by U.S. Department of Energy National Nuclear Security Administration Nevada Field Office . Environmental Management Operations February 2015 Nevada National Security Site Waste Acceptance Criteria Disclaimer Notice

  10. A look back at Union Carbides FIRST 20 Years in Nuclear Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Union Carbide in Nuclear Energy Note: Union Carbide Nuclear Division, which started out as Carbide and Carbon Chemicals Company, operated the Atomic Energy CommissionEnergy ...

  11. Top U.S. Nuclear Official Commends Industry for Submitting 3rd...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Official Commends Industry for Submitting 3rd Combined Construction & Operating License Application to the NRC Top U.S. Nuclear Official Commends Industry for Submitting ...

  12. A look back at Union Carbides [first] 20 Years in Nuclear Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    first 20 Years in Nuclear Energy The Gaseous Diffusion Plants Note: Union Carbide Nuclear Division, which started out as Carbide and Carbon Chemicals Company, operated the...

  13. DOE-HDBK-1169-2003; DOE Handbook Nuclear Air Cleaning Handbook

    Office of Environmental Management (EM)

    Testing of high-efficiency nuclear air cleaning systems is required to achieve and maintain high performance and continued safe operation of nuclear facilities. In nonreactor ...

  14. Guide for Operational Configuration Management Program Part II

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-01-18

    This Standard presents the program criteria and implementation guidance for an operational configuration management (CM) program for Department of Energy (DOE) facilities. This Standard is applicable to DOE nuclear facilities in the operational phase.

  15. Nuclear Facility Risk Ranking | Department of Energy

    Energy Savers [EERE]

    Facility Risk Ranking Nuclear Facility Risk Ranking Nuclear Facility Risk Ranking The CNS has purview of over ninety EM nuclear facilities across the DOE complex. To ensure that limited resources are applied in a risk-informed and balanced approach, the CNS performed a methodical assessment of the EM nuclear facilities. This risk-informed approach provides a data-driven foundation on which to construct a balanced set of operating plans and staff assignments. 2015 Risk Analysis Methodology.jpg

  16. Pantex Plant | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Pantex Plant The Pantex Plant, near Amarillo, Texas, is charged with maintaining the safety, security and effectiveness of the nation's nuclear weapons stockpile. It is managed and operated by Consolidated Nuclear Security, LLC for the NNSA Production Office. Work performed at Pantex includes support of the nuclear weapons life extension programs; nuclear weapons dismantlement; the development, testing and fabrication of high explosive components; and interim storage and surveillance of

  17. Duncan - Rickover and the Nuclear Navy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operational Management » History » Historical Resources » History Publications » Duncan - Rickover and the Nuclear Navy Duncan - Rickover and the Nuclear Navy Francis Duncan. Rickcover and the Nuclear Navy: The Discipline of Technology. 1989. The text in each PDF is fully searchable. PDF icon DuncanRickoverandtheNuclearNavyComplete.pdf PDF icon DuncanRickoverandtheNuclearNavyPicturesOnly.pdf More Documents & Publications Hewlett and Duncan, Nuclear Navy, 1946-1962

  18. Gateway for Accelerated Innovation in Nuclear | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gateway for Accelerated Innovation in Nuclear Gateway for Accelerated Innovation in Nuclear In November 2015, DOE announced it is establishing the Gateway for Accelerated Innovation in Nuclear (GAIN) to provide the nuclear energy community with access to the technical, regulatory, and financial support necessary to move new or advanced nuclear reactor designs toward commercialization while ensuring the continued safe, reliable, and economic operation of the existing nuclear fleet. GAIN will

  19. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) – Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : • Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. • Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. • Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. • Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. • Supporting industry in helping to create a larger qualified nuclear supplier network. • Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. • Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. • Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  20. Operational health physics training

    SciTech Connect (OSTI)

    1992-06-01

    The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.

  1. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics /science-innovation/_assets/images/icon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad

  2. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.

  3. nuclear smuggling

    National Nuclear Security Administration (NNSA)

    13, 2015

    SHANGHAI, CHINA - Today, the Nuclear Security Administration's (NNSA) Principal Assistant Deputy Administrator for Defense...

  4. nuclear material

    National Nuclear Security Administration (NNSA)

    width"300" >WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Defense Threat Reduction...

  5. nuclear weapons

    National Nuclear Security Administration (NNSA)

    09, 2015

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful...

  6. nuclear forensics

    National Nuclear Security Administration (NNSA)

    serves as the premier technical leader in responding to and successfully resolving nuclear and radiological threats worldwide. When the need arises, NNSA is prepared to...

  7. NUCLEAR ENERGY

    Energy Savers [EERE]

    NUCLEAR ENERGY RESEARCH AND DEVELOPMENT ROADMAP Table of Contents List of Acronyms ................................................................................................... iii Executive Summary ............................................................................................... v 1. Introduction ...................................................................................................... 1 2. Background

  8. Conduct of Operations Requirements for DOE Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1990-07-09

    "To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

  9. National Nuclear Security Administration ENERGY U.S. DEPARTMENT OF

    National Nuclear Security Administration (NNSA)

    Operating Efficiently / Engaging Globally FY 2013 Annual Report Table of Contents 1 Operating Efficiently / Engaging Globally 2 Office of Nonproliferation and International Security 4 Office of Nuclear Safeguards and Security 5 Next Generations Safeguards Initiative (NGSI) 6 International Nuclear Safeguards Engagement Program (INSEP): First Engagement with Burma 7 Safeguards Technology Development 9 Safeguards Policy: IAEA Transit Matching Workshop 10 International Nuclear Security (INS) 12

  10. Calutron Operations | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Calutron Operations

  11. FRMAC Operations Manual

    SciTech Connect (OSTI)

    Frandsen, K.

    2010-05-01

    In the event of a major radiological incident, the Federal Radiological Monitoring and Assessment Center (FRMAC) will coordinate the federal agencies that have various statutory responsibilities. The FRMAC is responsible for coordinating all environmental radiological monitoring, sampling, and assessment activities for the response. This manual describes the FRMAC’s response activities in a radiological incident. It also outlines how FRMAC fits in the National Incident Management System (NIMS) under the National Response Framework (NRF) and describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the affected areas. In the event of a potential or existing major radiological incident, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is responsible for establishing and managing the FRMAC during the initial phases.

  12. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line via prompt gamma ray spectroscopy

  13. Civilian Nuclear Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civilian Nuclear Program Civilian Nuclear Program Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national ...

  14. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOE Patents [OSTI]

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  15. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System NMMSS ...

  16. Nuclear Structure and Nuclear Reactions | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations were carried out using nuclear density functional theory. The collective ... Nuclear Structure and Nuclear Reactions PI Name: James Vary PI Email: jvary@iastate.edu ...

  17. Nuclear Verification | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear ...

  18. Chernobyl Nuclear Accident | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Chernobyl Nuclear Accident Chernobyl Nuclear Accident Chernobyl, Ukraine A catastrophic nuclear accident occurs at Chernobyl Reactor 4 in the then Soviet Republic of Ukraine

  19. Nuclear Nonproliferation Program Offices | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... and monitor nuclear weapons production, proliferation, and nuclear explosions worldwide. ...

  20. defense nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear security | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear ...

  1. Nuclear Material Removal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Material Removal Once weapons-usable nuclear material is no longer required, the Office of Nuclear Material Removal works with global partners and facilities to ...

  2. Nuclear Nonproliferation Treaty | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Nuclear Nonproliferation Treaty The Treaty on the Non-Proliferation of Nuclear Weapons off ...

  3. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, ...

  4. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, International ...

  5. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  6. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colloquium Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Accelerator and Experimental Schedule Memos & Information Short Term Schedule (MCC Whiteboard) Nominal Dates for Bi-annual Beam Time Requests Forms for Beam Time Requests and Experiment

  7. WIPP Documents - Nuclear Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Safety DOE/WIPP-07-3372, Revision 4 WIPP Documented Safety Analysis Approved November 2013 The Documented Safety Analysis addresses all hazards (both radiological and nonradiological) and the controls necessary to provide adequate protection to the public, workers, and the environment. The WIPP DSA demonstrates the extent to which the Waste Isolation Pilot Plant can be operated safely with respect to workers, the public, and the environment. DOE/WIPP-07-3373, Revision 4 WIPP Technical

  8. Post detonation nuclear forensics

    SciTech Connect (OSTI)

    Davis, Jay

    2014-05-09

    The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.

  9. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOE Patents [OSTI]

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  10. Westinghouse TRU Solutions LLC Assumes WIPP Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Westinghouse TRU Solutions LLC Assumes WIPP Operations CARLSBAD, N.M., February 1, 2001 - Westinghouse TRU Solutions LLC (WTS) today assumed responsibility for the management and operation of the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). Heading up the new management team is Henry F. "Hank" Herrera, President and General Manager of WTS. A retired U.S. Navy Rear Admiral, Herrera has more than 27 years of nuclear operations and radioactive waste management

  11. Nuclear hybrid energy infrastructure

    SciTech Connect (OSTI)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  12. Arkansas Nuclear Profile - Arkansas Nuclear One

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,842,"6,607",89.6,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,993,"8,416",96.7,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  13. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,506,"3,954",89.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,512,"4,336",96.7,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  14. Nuclear Industry Job Descriptions Boilermaker

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or radiological incident. The NIT's mission is to coordinate NNSA assets for deployment, continually monitor deployment activities, and provide situational awareness of activities to NNSA management. The NIT is staffed and fully operational within two hours of notification

    Industry Job Descriptions Boilermaker Skilled craft who

  15. Planning | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Planning NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. Planning involves determining, in advance, what will be done in response to specific emergencies. What is an Emergency? An emergency is any unwanted

  16. Policy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Policy NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. Develops policy (Department of Energy (DOE) Orders) and guidance (DOE Guides) for NNSA on: Hazardous Materials Programs for Fixed Facilities/Sites Weapon

  17. Preparedness | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Preparedness NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. "Preparedness" is putting in place procedures, equipment, and personnel capabilities that will be needed to respond. An NNSA emergency

  18. Recovery | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Recovery NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder

  19. Inelastic X-ray and Nuclear Resonant Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD-IXN XSD-IXN Home Staff Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group operates beamlines at APS Sectors 3, 9 and 30....

  20. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  1. LANL continuity of operations plan

    SciTech Connect (OSTI)

    Senutovitch, Diane M

    2010-12-22

    The Los Alamos National Laboratory (LANL) is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is to ensure the safety, security, and reliability of the nation's nuclear stockpile. LANL emphasizes worker safety, effective operational safeguards and security, and environmental stewardship, outstanding science remains the foundation of work at the Laboratory. In addition to supporting the Laboratory's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines. To accomplish LANL's mission, we must ensure that the Laboratory EFs continue to be performed during a continuity event, including localized acts of nature, accidents, technological or attack-related emergencies, and pandemic or epidemic events. The LANL Continuity of Operations (COOP) Plan documents the overall LANL COOP Program and provides the operational framework to implement continuity policies, requirements, and responsibilities at LANL, as required by DOE 0 150.1, Continuity Programs, May 2008. LANL must maintain its ability to perform the nation's PMEFs, which are: (1) maintain the safety and security of nuclear materials in the DOE Complex at fixed sites and in transit; (2) respond to a nuclear incident, both domestically and internationally, caused by terrorist activity, natural disaster, or accident, including mobilizing the resources to support these efforts; and (3) support the nation's energy infrastructure. This plan supports Continuity of Operations for Los Alamos National Laboratory (LANL). This plan issues LANL policy as directed by the DOE 0 150.1, Continuity Programs, and provides direction for the orderly continuation of LANL EFs for 30 days of closure or 60 days for a pandemic/epidemic event. Initiation of COOP operations may be required to support an allhazards event, including a national security emergency, major fire, catastrophic natural disaster, man-made disaster, terrorism event, or technological disaster by rendering LANL buildings, infrastructure, or Technical Areas unsafe, temporarily unusable, or inaccessible.

  2. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    Volume 3 - Nuclear Safety Basis Program Review During Facility Operations and Transitions February 2015 i Standard Review Plan Volume 3 Nuclear Safety Basis Program Review during Facility Operations and Transitions Facility Life Cycle Applicability CD-1 CD-2 CD-3 CD-4 Operations and Transitions Decommissioning & Environmental Restoration February 2015 ii Table of Contents Acronyms

  3. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  4. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  5. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon

  6. Nuclear astrophysics and electron beams

    SciTech Connect (OSTI)

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  7. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy

    Page...

  8. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:nnsa.energy.govourmissionpoweringnavy

    Page...

  9. Nuclear option

    SciTech Connect (OSTI)

    Olson, P.S.

    1983-03-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.

  10. US Central Station Nuclear Electric Generating Units: significant milestones. (Status as of April 1, 1980)

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Construction and operational milestones are tabulated for US nuclear power plants. Data are presented on nuclear steam supply system orders. A schedule of commercial operation through 1990 is given.

  11. Nuclear Data

    SciTech Connect (OSTI)

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  12. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  13. Test Site Operations & Maintenance Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Site Operations & Maintenance Safety - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  14. DOE Names Interim Manager for Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Names Interim Manager for Idaho Operations Office Dennis Miotla, the Office of Nuclear Energy's Deputy Assistant Secretary Dennis Miotla for Nuclear Power Deployment, has been named the interim manager of the U.S. Department of Energy's Idaho Operations Office, while the Department recruits a permanent manager. Mr. Miotla will succeed Elizabeth Sellers, who has served as Idaho Operations Office Manager from April, 2003. Sellers plans to retire from federal service in February. "Under

  15. CRAD, Conduct of Operations- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  16. Nuclear Safety Software & Quality Assurance | Department of Energy

    Energy Savers [EERE]

    Safety Software & Quality Assurance Nuclear Safety Software & Quality Assurance Nuclear Safety Software & Quality Assurance In support of DOE O 410.1, Central Technical Authority Responsibilities Regarding Nuclear Safety Requirements, the Chief of Nuclear Safety (CNS) provides operational awareness, oversight, and assistance to Environmental Management (EM) Headquarters, field offices, and their contractors in the areas of nuclear safety Quality Assurance (QA) and Software Quality

  17. Nuclear energy is an important source of power, supplying 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear

  18. ARM - AMF2 Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Contacts Management and Operations Operations Overview ARM Links BCR | ECR ECO, EWO Extraview PIF, CAR, DQR & DQPR Operations Status System i.arm.gov AMF2 Deployment...

  19. EISPC White Paper on "State Approaches to Retention of Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    The Eastern Interconnection States' Planning Collaborative (EISPC) has released a white paper on "State Approaches to Retention of Nuclear Power Plants" that examines operational, ...

  20. Supporting the Comprehensive Nuclear-Test-Ban Treaty

    SciTech Connect (OSTI)

    Bowyer, Ted

    2014-11-20

    PNNL operates the only certified laboratory in the U.S. for the Comprehensive Nuclear-Test-Ban Treaty's International Monitoring System (IMS).

  1. Supporting the Comprehensive Nuclear-Test-Ban Treaty

    ScienceCinema (OSTI)

    Bowyer, Ted

    2014-06-12

    PNNL operates the only certified laboratory in the U.S. for the Comprehensive Nuclear-Test-Ban Treaty's International Monitoring System (IMS).

  2. Whats Next for Nuclear Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This White Paper was prepared by the Savannah River Site Community Reuse Organization ... nuclear power plant operators must safely store this fuel at their reactor sites. ...

  3. NNSA selects Consolidated Nuclear Security, LLC to manage the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration (NNSA) today ... Ridge, Tenn., and the Pantex Plant near Amarillo, Texas. ... unexercised option for Savannah River Tritium Operations at the ...

  4. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1982-11-01

    The list indicates percentage ownership of commercial nuclear power plants by utility companies as of September 1, 1982. The list includes all plants licensed to operate, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review. Part I lists plants alphabetically with their associated applicants and percentage ownership. Part II lists applicants alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses.

  5. Consolidated Nuclear Security announces additional leadership changes |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex Consolidated Nuclear ... Consolidated Nuclear Security announces additional leadership changes Posted: February 15, 2016 - 2:29pm OAK RIDGE, Tenn. - Effective today, Feb. 15, 2016, Michelle Reichert becomes the Deputy Enterprise Manager for Consolidated Nuclear Security, LLC (CNS), reporting directly to CNS President and CEO Morgan Smith. CNS is the managing and operating contractor for two key national security facilities: the Pantex Plant in Amarillo, Texas,

  6. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  7. Savannah River Site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Savannah River Site NNSA operates facilities at the Savannah River Site (SRS) to supply and process tritium, a radioactive form of hydrogen that is a vital component of nuclear ...

  8. Department of Energy Nuclear Safety Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-08

    It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Supersedes SEN-35-91.

  9. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  10. Operating Experience Committee Charter

    Broader source: Energy.gov [DOE]

    The Operating Experience Committee (OEC) charter provides a description of the OEC's purpose, background, membership, functions, and operations.

  11. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Spent Nuclear Fuel Release date: December 7, 2015 Next release date: Late 2018 Spent nuclear fuel data are

  12. nuclear testing | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    controls Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and

  13. Emergency Response | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a last line of defense in the event of

  14. About Emergency Response | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Emergency Response About Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a last line of

  15. Emergency Response | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Programs Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a last line of defense in the

  16. Geoff Beausoleil | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Geoff Beausoleil Manager - NNSA Production Office Our Leadership Geoffrey L. (Geoff) Beausoleil is the Manager for the National Nuclear Security Administration (NNSA) Production Office (NPO). In this capacity, he is responsible for the overall administration of the Management and Operating Contract for the Pantex and Y12 Plants, the day-to-day administration of the NPO, and oversight of Plant operations. The mission of the Y12 and Pantex Plants is to maintain the nuclear weapons stockpile;

  17. Materials challenges for nuclear systems

    SciTech Connect (OSTI)

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclear systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.

  18. donation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    donation NNSA's Y-12 & Pantex partner donates $10,000 for children's hospital Y-12's Site Manager Bill Tindal (right) presents a $10,000 donation to East Tennessee Children's Hospital CEO Keith Goodwin in support of the hospital's capital campaign. NNSA's management and operations partner Consolidated Nuclear Security (CNS) continued its legacy of community giving this

  19. sfo | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sfo Sandia National Laboratory Sandia Field Office Contact the Field Office Contract Administration & Business Management Emergency Information Facilities & Projects Nuclear Operations Environment, Safety & Health Public Affairs Safeguards & Security Performance and Quality Assurance Programs NEPA Reading Room... Sandia National Laboratories

  20. EMERGENCY SHUTDOWN FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Paget, J.A.; Koutz, S.L.; Stone, R.S.; Stewart, H.B.

    1963-12-24

    An emergency shutdown or scram apparatus for use in a nuclear reactor that includes a neutron absorber suspended from a temperature responsive substance that is selected to fail at a preselected temperature in excess of the normal reactor operating temperature, whereby the neutron absorber is released and allowed to fall under gravity to a preselected position within the reactor core is presented. (AEC)

  1. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  2. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Impact Topics: Today's & Tomorrow's New Nuclear Energy Construction & the Workforce Outlook Current New Nuclear Energy Construction Projects Small Modular...

  3. Waltzer Receives NNSA Gold Medal Award | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    overhaul of naval nuclear powered submarines. In 1991, he joined the Department of Energy's Savannah River Operations Office as a systems engineer for H-and F-Canyon operations. ...

  4. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Starr, C.

    1963-01-01

    This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

  5. The nuclear materials control technology briefing book

    SciTech Connect (OSTI)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  6. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N.

    1983-11-01

    Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

  7. Nuclear Fuels: Promise and Limitations

    SciTech Connect (OSTI)

    Harold F. McFarlane

    2012-03-01

    From 1950 through 1980, scientists, engineers and national leaders confidently predicted an early twenty-first century where fast breeder reactors and commercial nuclear fuel reprocessing were commonplace. Such a scenario seemed necessary for a world with the more than 1000 GWe of nuclear energy needed to meet such an ever-increasing thirst for energy. Thirty years later uranium reserves are increasing on pace with consumption, the growth of nuclear power has been slowed, commercial breeder reactors have yet to enter the marketplace, and less than a handful of commercial reprocessing plants operate. As Nobel Laureate Niels Bohr famously said, Prediction is very difficult, especially if its about the future. The programme for IChemEs 2012 conference on the nuclear fuel cycle features a graphic of an idealized nuclear fuel cycle that symbolizes the quest for a closed nuclear fuel cycle featuring careful husbanding of precious resources while minimizing the waste footprint. Progress toward achieving this ideal has been disrupted by technology innovations in the mining and petrochemical industries, as well as within the nuclear industry.

  8. Guidance for evaluation of operational emergency plans

    SciTech Connect (OSTI)

    1995-03-01

    The purpose of this document is to provide guidance for development of emergency plans for the USDOE Office of Defense Programs, Office of Energy Research, and Office of Environmental Management facilities. It gathers emergency planning policy and guidance from applicable federal regulations, DOE Orders and related guidance documents. This material, along with recommended good practices, is presented as a checklist against which emergency plans can be reviewed by DOE Headquarters. The Office of Emergency Response (DP-23), Office of Environment, Safety and Health Technical Support (ER-8), and Office of Transportation, Emergency Management and Analytical Services (EM-26) will use this checklist to evaluate plans submitted by DP, ER, and EM field elements. The scope of this document encompasses plans for operational emergencies at DOE facilities, both nuclear and non-nuclear. Operational emergencies, as defined in Attachment 2 to DOE Order 5500.1B (April 30, 1991) are ``significant accidents, incidents, events, or natural phenomena which seriously degrade the safety or security of DOE facilities. Operational Emergencies apply to DOE reactors and other DOE facilities (nuclear and non-nuclear) involved with hazardous materials; DOE-controlled nuclear weapons, components, or test devices; DOE safeguards and security events; and transportation accidents involving hazardous materials under DOE control.``

  9. Nuclear Security Enterprise | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Our Programs Defense Programs Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective ...

  10. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or ...

  11. nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    25M NNSA Grant for Nuclear Science and Security Research Working With PNNL Mentors, Engineering Students Deliver Prototype Safeguards Fixtures Shaping the future of nuclear ...

  12. nuclear science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Consortium Led by University of California, Berkeley Awarded 25M NNSA Grant for Nuclear Science and ...

  13. Nuclear Smuggling Detection and Deterrence | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Smuggling Detection and Deterrence The mission of the Nuclear Smuggling Detection and Deterrence program (NSDD) (formerly Second Line of Defense) is to strengthen the ...

  14. Nuclear Verification | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: ...

  15. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or ...

  16. Nuclear Suppliers Group & Regimes | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency ...

  17. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Controls | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  18. nuclear safety | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response ...

  19. nuclear material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response ...

  20. nuclear enterprise | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response ...

  1. nuclear technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response ...

  2. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics: Conducts R&D to advance analytic forensic capabilities related to nuclear detonations to improve the speed, accuracy, reliability, confidence, and specificity of ...

  3. Nuclear and Radiological Material Security | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This includes NNSA's work to advance physical protection standards for nuclear facilities and to strengthen nuclear safeguards, which are criteria for the physical security and the ...

  4. nuclear emergency | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home nuclear emergency nuclear emergency Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, and ...

  5. Process Monitoring for Nuclear Safeguards

    SciTech Connect (OSTI)

    Ehinger, Michael H [ORNL] [ORNL; Pomeroy, George D [ORNL] [ORNL; Budlong-Sylvester, Kory W [ORNL] [ORNL

    2009-01-01

    Process Monitoring has long been used to evaluate industrial processes and operating conditions in nuclear and non-nuclear facilities. In nuclear applications there is a recognized need to demonstrate the safeguards benefits from using advanced process monitoring on spent fuel reprocessing technologies and associated facilities, as a complement to nuclear materials accounting. This can be accomplished by: defining credible diversion pathway scenarios as a sample problem; using advanced sensor and data analysis techniques to illustrate detection capabilities; and formulating 'event detection' methodologies as a means to quantify performance of the safeguards system. Over the past 30 years there have been rapid advances and improvement in the technology associated with monitoring and control of industrial processes. In the context of bulk handling facilities that process nuclear materials, modern technology can provide more timely information on the location and movement of nuclear material to help develop more effective safeguards. For international safeguards, inspection means verification of material balance data as reported by the operator through the State to the international inspectorate agency. This verification recognizes that the State may be in collusion with the operator to hide clandestine activities, potentially during abnormal process conditions with falsification of data to mask the removal. Records provided may show material is accounted for even though a removal occurred. Process monitoring can offer additional fidelity during a wide variety of operating conditions to help verify the declaration or identify possible diversions. The challenge is how to use modern technology for process monitoring and control in a proprietary operating environment subject to safeguards inspectorate or other regulatory oversight. Under the U.S. National Nuclear Security Administration's Next Generation Safeguards Initiative, a range of potential safeguards applications for process monitoring are under conceptual development and evaluation. This paper reports on a study of process monitoring for a sample problem involving spent fuel reprocessing with aqueous reprocessing technologies. This includes modeling the processes in the context of a nuclear material diversion scenario and measuring the associated process chemistry. A systems-centric model is applied using actual and simulated plant data, advanced sensors, anomaly detection methods, statistical analysis and data authentication methods, to help illustrate the benefits of process monitoring applications.

  6. Surrogate Spent Nuclear Fuel Vibration Integrity Investigation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading encountered during road or rail shipment. ORNL has been developing testing capabilities that can be used to improve our understanding of the impacts of vibration loading on SNF integrity, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety of SNF storage and transportation operations.

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    FirstEnergy (MetEdison, Penelec, Penn Power, West Penn Power)- Residential Energy Efficiency Programs FirstEnergy's Residential Incentive Program offers rebates on the purchase of...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    FirstEnergy (Potomac Edison)- Commercial and Industrial Efficiency Rebate Program FirstEnergy company Potomac Edison offers rebates to eligible commercial, industrial,...

  9. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities Standard Review Plan Volume 2 -- Nuclear Safety Basis Program Review During Design February 2015 i Standard Review Plan Volume 2 Nuclear Safety Basis Program Review during Design Facility Life Cycle Applicability CD-1 CD-2 CD-3 CD-4 Operations and Transitions Decommissioning & Environmental Restoration February 2015 ii Table of Contents Acronyms

  10. Nuclear | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Moving Forward to Address Nuclear Waste Storage and Disposal Three trucks transport nuclear waste

  11. Penelec SEF of the Community Foundation for the Alleghenies Grant Program (FirstEnergy Territory)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Examples of projects funded in the past are available on the program web site, along with details of the grant guidelines.

  12. FirstEnergy (MetEdison, Penelec, Penn Power, West Penn Power...

    Broader source: Energy.gov (indexed) [DOE]

    Honeywell Website http:www.firstenergycorp.comenergyefficiencypennsylvaniaindex.html Funding Source Pennsylvania Electric Company (Penelec), Metropolitan Edison Company...

  13. FirstEnergy (MetEdison, Penelec, Penn Power, West Penn Power)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    First Energy as a parent company administers the energy efficiency program for Metropolitan Edition (Met-Ed), Pennsylvania Electric (Penelec), Pennsylvania Power (Penn Power), and West Penn Power. ...

  14. Nuclear Weapons Complex reconfiguration study

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

  15. Labor Standards for DOE Management and Operating Contracts

    Broader source: Energy.gov [DOE]

    This Flash is issued to provide you an Acquisition Letter containing information and guidance regarding application of labor standards at the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) management and operating (M&O) contract facilities.

  16. Survey of methods for improving operator acceptance of computerized aids

    SciTech Connect (OSTI)

    Frey, P. R.; Kisner, R. A.

    1982-04-01

    The success of current attempts to improve the operational performance and safety of nuclear power plants by installing computerized operational aids in the control rooms is dependent, in part, on the operator's attitude toward the aid. Utility experience with process computer systems indicates that problems may already exist with operator acceptance of computerized aids. The growth of the role that computers have in nuclear power plants makes user acceptance of computer technology an important issue for the nuclear industry. The purpose of this report is to draw from the literature factors related to user acceptance of computerized equipment that may also be applicable to the acceptance of computerized aids used in the nuclear power plant control room.

  17. Operating Experience Level 3, DOE Occupational Radiation Exposures for 2013

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document provides an overview summary of radiation doses from occupational exposures at the Department of Energy (DOE), including the National Nuclear Security Administration for the year 2013.

  18. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

  19. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Adm Chg 1, dated 4-2-13, supersedes DOE O 425.1D.

  20. Personnel Selection, Qualification, and Training Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12

    To establish selection, qualification, and training requirements for management and operating (M&O) contractor personnel involved in the operation, maintenance, and technical support of Department of Energy and National Nuclear Security Administration Category A and B reactors and non-reactor nuclear facilities. Canceled by DOE O 426.2

  1. United States Department of Energy, Nevada Operations Office, completion report Operation KLAXON, Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), Completion Report provides a summary of activities conducted at the Nevada Test Site (NTS) between October 1, 1992, and September 30, 1993, associated with Operation KLAXON. (In the past, each annual Completion Report dealt with a series of underground nuclear detonations; however, because no nuclear tests were conducted during FY 1993, this Report summarizes continuing nonnuclear and nuclear test readiness activities at the NTS sponsored by DOE/NV.) The report serves as a reference for those involved with the planning and execution of Operation KLAXON and also serves as a planning guide for future operations. Information in the report covers the logistics and management of activities. Scientific information and data associated with NTS activities are presented in technical documents published by participating agencies. In September 1992, Congress legislated a nine-month moratorium on the testing of nuclear weapons. The bill also provided for a resumption of testing (with no more than five tests per year, or a total of 15 during the next three years) in July 1993, and mandated an end to nuclear testing, entirely, by 1996. President Bush signed the bill into law in October 1992.

  2. Stack Monitor Operating Experience Review

    SciTech Connect (OSTI)

    L. C. Cadwallader; S. A. Bruyere

    2009-05-01

    Stack monitors are used to sense radioactive particulates and gases in effluent air being vented from rooms of nuclear facilities. These monitors record the levels and types of effluents to the environment. This paper presents the results of a stack monitor operating experience review of the U.S. Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS) database records from the past 18 years. Regulations regarding these monitors are briefly described. Operating experiences reported by the U.S. DOE and in engineering literature sources were reviewed to determine the strengths and weaknesses of these monitors. Electrical faults, radiation instrumentation faults, and human errors are the three leading causes of failures. A representative all modes failure rate is 1E-04/hr. Repair time estimates vary from an average repair time of 17.5 hours (with spare parts on hand) to 160 hours (without spare parts on hand). These data should support the use of stack monitors in any nuclear facility, including the National Ignition Facility and the international ITER project.

  3. ARM - NSA Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlaskaNSA Operations NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site...

  4. Crane Operation Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crane Operational Training Crane Operational Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY Crane Training - Information Reduces Risk Crane...

  5. nuclear science week | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    science week Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact report from the 2015 event, detailing the many ways people were educated about all things nuclear as a result of the event. Nuclear Science Week is an international weeklong celebration to focus interest on

  6. U. S. Department of Energy Savannah River Operations Office - Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Savannah River Operations Office Mission Welcome to the Savannah River Operations Office (DOE-SR) website. DOE-SR is a U.S. Department of Energy (DOE) organization that serves as the landlord for site resources and is responsible for overseeing the work performed by the Savannah River Site's (SRS) contractors. The Savannah River Site (SRS) is a key DOE industrial complex dedicated to; environmental cleanup, nuclear weapons stockpile stewardship, and nuclear materials disposition, in

  7. Nevada National Security Site operator recognized for green fleet |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Blog Nevada National Security Site operator recognized for green fleet Friday, October 9, 2015 - 3:39pm The management and operating contractor for the National Nuclear Security Administration's (NNSA) Nevada National Security Site, has been recognized for having one of the cleanest, most fuel-efficient vehicle fleets in the nation. Competing with more than 38,000 public fleets, National Security Technologies' (NSTec) Fleet, Fuel & Equipment

  8. Operational Guidelines/Radiological Emergency Response | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Operational Guidelines/Radiological Emergency Response Operational Guidelines/Radiological Emergency Response This page provides information and resources concerning the development of operational guidelines as part of planning guidance for protection and recovery following Radiological Dispersal Device (RDD) and/or Improvised Nuclear Device (IND) incidents. Operational Guidelines Technical (OGT) Manual, 2009 RESRAD-RDD Complementing Software to OGT Manual EPA Protective Action

  9. PIA - Savannah River Site Management and Operating Contractor (HRMS) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor (HRMS) PDF icon PIA - Savannah River Site Management and Operating Contractor (HRMS) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA -

  10. Nuclear Deterrence and Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Deterrence and Stockpile Stewardship Nuclear Deterrence and Stockpile Stewardship Los Alamos' mission is to solve national security challenges through scientific excellence. April 12, 2012 A B-2 Spirit bomber refuels from a KC-135 Stratotanker A B-2 Spirit bomber refuels from a KC-135 Stratotanker. Contact Operator Los Alamos National Laboratory (505) 667-5061 Charlie McMillan, Director: "For the last 70 years there has not been a world war, and I have to think that our strong

  11. Revolution in nuclear detection affairs

    SciTech Connect (OSTI)

    Stern, Warren M.

    2014-05-09

    The detection of nuclear or radioactive materials for homeland or national security purposes is inherently difficult. This is one reason detection efforts must be seen as just one part of an overall nuclear defense strategy which includes, inter alia, material security, detection, interdiction, consequence management and recovery. Nevertheless, one could argue that there has been a revolution in detection affairs in the past several decades as the innovative application of new technology has changed the character and conduct of detection operations. This revolution will likely be most effectively reinforced in the coming decades with the networking of detectors and innovative application of anomaly detection algorithms.

  12. Approved: 6-29-2010, Conduct of Operations, DOE O 422.1

    Broader source: Energy.gov [DOE]

    1. PURPOSE. The objective of this Order is to define the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear...

  13. FFTF A History of Safety & Operational Excellence

    SciTech Connect (OSTI)

    NIELSEN, D L

    2002-06-26

    The Fast Flux Test Facility (FFTF) is a 400-megawatt, sodium-cooled, fast neutron flux reactor owned by the United States Department of Energy (DOE) at the Hanford Site. The reactor was designed and built in the late 1970s and brought on line in 1982 during a period when world interest in development of a liquid metal breeder reactor was high. For approximately 10 years, FFTF operated successfully as a national research facility testing advanced nuclear fuels, materials, components, active and passive reactor safety technologies, and gaining operating experience for the next generation of nuclear reactors. FFTF also produced a wide variety of high purity medical isotopes, made tritium for the U.S. fusion research program, and provided international testing support. The reactor was last operated in 1992 and is proceeding with deactivation.

  14. Pyrochemical Treatment of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

    2005-10-01

    Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energys Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

  15. Effective citizen advocacy of beneficial nuclear technologies

    SciTech Connect (OSTI)

    McKibben, J. Malvyn; Wood, Susan

    2007-07-01

    In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)

  16. nuclear threat science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    threat science Counterterrorism Counterterrorism Policy and Cooperation Nuclear Threat Science Office of Nuclear Threat Science The Office of Nuclear Threat Science is responsible for overseeing the Nuclear Counterterrorism Program, an NNSA program that sustains specialized expertise and integrates and executes key activities to advise and enable technical aspects of U.S. Government nuclear counterterrorism and... Office of Counterterrorism Policy and Cooperation The 2011 National Strategy for

  17. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  18. SRNS signs on as industry partner for Nuclear Engineering Technology

    National Nuclear Security Administration (NNSA)

    Education | National Nuclear Security Administration SRNS signs on as industry partner for Nuclear Engineering Technology Education Tuesday, August 12, 2014 - 12:08pm Augusta Technical College recently announced a formal Agreement of Understanding with Georgia Power and Savannah River Site management and operating contractor Savannah River Nuclear Solutions (SRNS) in support of the College's Nuclear Engineering Technology Program. The agreement recognizes SRNS as an industry partner, which

  19. Office of Nuclear Safety and Environmental Assessments | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nuclear Safety and Environmental Assessments Office of Nuclear Safety and Environmental Assessments MISSION The Office of Nuclear Safety and Environmental Assessments conducts assessments to provide critical feedback and objective information on programs and performance in protecting our workers, the public and environment from radiological hazards with a focus on hazardous nuclear facilities and operations.This information provides assurance to our stakeholders and identifies areas

  20. Optimally moderated nuclear fission reactor and fuel source therefor

    DOE Patents [OSTI]

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  1. Lieutenant General Frank G. Klotz, USAF (Ret.) | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Lieutenant General Frank G. Klotz, USAF (Ret.) Under Secretary for Nuclear Security and NNSA Administrator Our Leadership Lieutenant General Frank G. Klotz, United States Air Force (Ret.), was confirmed by the Senate on Tuesday, April 8, 2014, as the Department of Energy's Under Secretary for Nuclear Security and Administrator for the National Nuclear Security Administration (NNSA). As Under Secretary for Nuclear Security, Klotz is responsible for the management and operation

  2. More About NNSA's Naval Reactors Office | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration More About NNSA's Naval Reactors Office The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe,

  3. Deputy Secretary of Energy Reviews Leading Nuclear Counterterrorism Assets

    National Nuclear Security Administration (NNSA)

    at Andrews Air Force Base | National Nuclear Security Administration Deputy Secretary of Energy Reviews Leading Nuclear Counterterrorism Assets at Andrews Air Force Base September 09, 2009 WASHINGTON, D.C. - Deputy Secretary of Energy Daniel Poneman toured the National Nuclear Security Administration's (NNSA) emergency operations facility at Andrews Air Force Base today to receive a demonstration of NNSA's nuclear and radiological incident response capabilities and thank the team for the

  4. Nuclear Waste Assessment System for Technical Evaluation (NUWASTE)

    Office of Environmental Management (EM)

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting

  5. Nuclear Weapons Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Policy Act Signed Nuclear Waste Policy Act Signed Washington, DC President Reagan signs the Nuclear Waste Policy Act of 1982, the Nation's first comprehensive nuclear waste legislation

    Nuclear Weapons Journal Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2, 2009 Issue 2, 2009 Issue 1, 2009 Issue 1, 2009 Issue 1, 2008 Issue 1, 2008 Issue 1, 2007 Issue 1, 2007 Issue 2, 2006 Issue 2, 2006

  6. Operation Warfighter Internship Fair

    Broader source: Energy.gov [DOE]

    Attendees: Participants of Operation Warfighter Program Cost: Free Supports: Veteran and Disability Employment Programs

  7. Operating Experience Committee Charter

    Broader source: Energy.gov [DOE]

    The Operating Experience Committe Charter explains the purpose of the Department of Energy (DOE) Operating Experience Committee (OEC), which is to support line management within DOE and the DOE community in developing and sustaining effective oeprating experience programs so that lessons from inernal and external operating experience lead to improvement in future operational and safety performance.

  8. ARM - SGP Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Operations Routine Operations SGP central facility offices. SGP central facility offices. The overwhelming majority of the measurements

  9. Render Safe | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Emergencies Render Safe NNSA's Render Safe operations involve the deployment of the Accident Response Group (ARG), the Joint Technical Operations Team (JTOT), and the implementation of Radiological Triage. The support provided to federal, state, and local authorities by these assets involves operations to safely recover and secure a radiological device or a lost or stolen U.S. nuclear weapon. Radiological Triage provides 24-hour support to analyze data and confirm the identities of the

  10. Fifty years of nuclear fission: Nuclear data and measurements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and ...

  11. New York Nuclear Profile - Nine Mile Point Nuclear Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,630,"5,294",95.9,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  12. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date" 1,581,"4,948",97.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,581,"4,948",97.2

  13. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,855,"6,755",90.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  14. California Nuclear Profile - San Onofre Nuclear Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,"1,070","6,989",74.6,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  15. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Nuclear Controls Challenge: Detect/deter illicit transfers of nuclear/dual-use materials, technology, and commodities. Solution: Build domestic and international capacity to implement and meet export control obligations. Related Topics international security international security policy NIS nuclear controls safeguards safeguards and security verification Related News Nuclear Verification Nonproliferation International Nuclear Safeguards Nonproliferation Policy Nonproliferation and Arms

  16. Nuclear War Against Cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements, implement regimes to reduce nuclear weapons, and detect and dismantle undeclared nuclear programs. Specific subprogram activities include: Implementing current and developing future

  17. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  18. NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  19. Nuclear reactor

    DOE Patents [OSTI]

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  20. NNSA Completes Security Upgrades at Nuclear Site in Moscow | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Contract to Honeywell FM&T | National Nuclear Security Administration Awards Kansas City National Security Campus Follow-on Management & Operating Contract to Honeywell FM&T July 10, 2015 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced the award to Honeywell Federal Manufacturing and Technologies, LLC, to be the management and operating contractor for the National Security Campus (NSC) in Kansas City, Missouri. "Our

  1. Materials challenges for nuclear systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  2. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science...

  3. Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Nuclear Safety The Office of Nuclear Safety establishes and maintains nuclear safety policy, requirements, and guidance including policy and requirements relating to ...

  4. SC e-journals, Nuclear

    Office of Scientific and Technical Information (OSTI)

    Nuclear Annals of Nuclear Energy Annual Review of Nuclear and Particle Science Atomic Data & Nuclear Data Tables Atomic Energy BMC Medical Physics - OAJ Cancer Prevention Journals ...

  5. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS).

  6. npo | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    npo NNSA NPO M&O Contract Placement Team receives DOE 2015 Secretary's Achievement Award The National Nuclear Security Administration's (NNSA) Production Office (NPO) Management and Operating (M&O) Contract Placement team recently received the 2014 Secretary of Energy Achievement Award for their efforts in fostering innovation through efficient procurement strategy. Through... Pantex, Y-12 celebrate 'One Team, Better Together' Thousands of employees at the Pantex Plant and the Y-12

  7. supercompuring | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    supercompuring NNSA's missions get a boost from brain-inspired, radically different computer design The first computers to contribute to the nation's nuclear security work used thousands of vacuum tubes-which resembled fat light bulbs that gave off lots of heat-and consumed 125 kW of power to perform around 1,900 operations per second. This month NNSA's Lawrence Livermore National Laboratory (

  8. supercomputer | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    supercomputer NNSA's missions get a boost from brain-inspired, radically different computer design The first computers to contribute to the nation's nuclear security work used thousands of vacuum tubes-which resembled fat light bulbs that gave off lots of heat-and consumed 125 kW of power to perform around 1,900 operations per second. This month NNSA's Lawrence Livermore National Laboratory (... Two of the World's Most Powerful Computers work for NNSA Two NNSA supercomputers-Trinity and

  9. donations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    donations NNSA's Y-12 & Pantex partner donates $10,000 for children's hospital Y-12's Site Manager Bill Tindal (right) presents a $10,000 donation to East Tennessee Children's Hospital CEO Keith Goodwin in support of the hospital's capital campaign. NNSA's management and operations partner Consolidated Nuclear Security (CNS) continued its legacy of community giving this... Pantex kicks off United Way campaign Clarence Rashada holds up a sign expressing Pantexans' support during the United

  10. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S. ...

  11. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  12. CRAD, Conduct of Operations- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2006 Commencement of Operations assessment of the Conduct of Operations program at the Idaho Accelerated Retrieval Project Phase II.

  13. Nuclear Security Enterprise | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Study options for ensuring the safety, security, and reliability of nuclear warheads on a ... required to ensure the long-term safety, security, and reliability of the nuclear arsenal.

  14. Nuclear Incident Team | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Nuclear Incident Team Nuclear Incident Team Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, ...

  15. LANL names new head of Nuclear and High Hazard Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    names new Fellows for 2014 Monday, December 15, 2014 - 11:16am Los Alamos National Laboratory has named five new Fellows this week. The honorees this year are Christopher L. Fryer, Herbert O. Funsten, John C. Gordon, Jaqueline L. Kiplinger and David S. Moore. The Fellows are selected for sustained, high-level achievements in programs of importance to LANL and a fundamental or important discovery that has led to widespread use. In addition, the Fellows are selected for having become a recognized

  16. Joint Technical Operations Team | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Furthermore, the JTOT provides real-time technical support to other deployed NNSA emergency response assets through the JTOT Home Team. Mission The JTOT mission is to provide ...

  17. Pantex operator supports women in STEM luncheon | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Related Topics engineering pantex STEM women Related News Who's on FIRST? Inspiring STEM through robotics Wind farm generating more renewable energy than expected for Pantex NNSA ...

  18. Chief Operating Officer

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration (BPA) is a federal power marketing administration (PMA) that sells wholesale electricity from 31 federal dams and one nuclear plant, providing about one-third of...

  19. Microsoft Word - NMMSS Operations

    National Nuclear Security Administration (NNSA)

    EnergyNNSA Peter Dessaules (301) 903-4525 Pete.Dessaules@nnsa.doe.gov Nuclear Regulatory Commission Mirabelle Shoemaker (301) 415-7363 Mirabelle.shoemaker@nrc.gov www.nnsa.energy....

  20. Sandia's Nuclear Weapons Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Mission Ensuring that the nation's stockpile is safe, secure and effective, and that it meets military requirements America's Nuclear Weapons Systems Engineering Laboratory Sandia is responsible for all non-nuclear components of the nuclear explosive package to create a militarily effective and logistically sustainable U.S. nuclear deterrent. The nation's nuclear weapons meet the highest reliability requirements: they must always work when needed and authorized. They must meet

  1. Nuclear Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services » Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of Nuclear Energy (NE) on complex science and technical issues that arise in the planning, managing, and implementation of DOE's nuclear energy program. NEAC periodically reviews the elements of the NE program and based on these

  2. Climate Data Operators (CDO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 34, GRIB including SZIP compression, ...

  3. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  4. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Our Programs Nonproliferation Nonproliferation and Arms Control Nuclear Controls Challenge: Detectdeter illicit transfers of nucleardual-use materials, technology, ...

  5. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Summit U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... Statement on Signing of the Administrative Arrangement to the Agreement

  6. nuclear navy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    navy Naval Nuclear Propulsion Plants U.S. naval nuclear propulsion plants use a pressurized-water reactor design that has two basic systems: the primary system and the secondary system. The primary system circulates ordinary water in an all-welded, closed loop consisting of the reactor vessel, piping, pumps, and steam... Protection of People The policy of the U.S. Naval Nuclear Propulsion Program is to reduce personnel exposure to ionizing radiation associated with naval nuclear propulsion

  7. Nuclear Materials Information Program | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Information Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  8. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  9. International Nuclear Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    International Nuclear Security The International Nuclear Security program collaborates with partners world-wide to improve the security of proliferation-sensitive materials, particularly weapons-usable nuclear material in both civilian and non-civilian use in key countries. As part of these efforts, INS works with partner countries to: Upgrade and sustain physical security and material control and accounting systems; Develop national-level nuclear security infrastructure in areas such as

  10. nuclear smuggling | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear smuggling NNSA Deputy Administrator Creedon Travels to China In March, National Nuclear Security Administration (NNSA) Principal Deputy Administrator Madelyn Creedon traveled to China to participate in activities related to NNSA's cooperative engagement with various Chinese ministries on nuclear security. Creedon was accompanied by Principal Assistant... Apex Gold discussion fosters international cooperation in run-up to 2016 Nuclear Security Summit Participants in Apex Gold at Lawrence

  11. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Iowa Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable 1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 0.3 Total 14,592 100.0 57,509 100.0 Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1

  12. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    20 Kansas Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable 1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100.0 * = Absolute percentage less than 0.05. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report."

  13. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Nebraska Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,363 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,849 23.5 375 1.0 Other Renewable 1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1

  14. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    60 Vermont Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable 1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 - = No data reported. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net

  15. HOMOGENEOUS NUCLEAR REACTOR

    DOE Patents [OSTI]

    Hammond, R.P.; Busey, H.M.

    1959-02-17

    Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

  16. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  17. State Nuclear Profiles 2010

    Gasoline and Diesel Fuel Update (EIA)

    5 Iowa Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable 1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 0.3 Total 14,592 100.0 57,509 100.0 Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1

  18. State Nuclear Profiles 2010

    Gasoline and Diesel Fuel Update (EIA)

    20 Kansas Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable 1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100.0 * = Absolute percentage less than 0.05. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report."

  19. State Nuclear Profiles 2010

    Gasoline and Diesel Fuel Update (EIA)

    7 Nebraska Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,363 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,849 23.5 375 1.0 Other Renewable 1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1

  20. State Nuclear Profiles 2010

    Gasoline and Diesel Fuel Update (EIA)

    60 Vermont Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable 1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 - = No data reported. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net

  1. Nuclear fuel electrorefiner

    DOE Patents [OSTI]

    Ahluwalia, Rajesh K.; Hua, Thanh Q.

    2004-02-10

    The present invention relates to a nuclear fuel electrorefiner having a vessel containing a molten electrolyte pool floating on top of a cadmium pool. An anodic fuel dissolution basket and a high-efficiency cathode are suspended in the molten electrolyte pool. A shroud surrounds the fuel dissolution basket and the shroud is positioned so as to separate the electrolyte pool into an isolated electrolyte pool within the shroud and a bulk electrolyte pool outside the shroud. In operation, unwanted noble-metal fission products migrate downward into the cadmium pool and form precipitates where they are removed by a filter and separator assembly. Uranium values are transported by the cadmium pool from the isolated electrolyte pool to the bulk electrolyte pool, and then pass to the high-efficiency cathode where they are electrolytically deposited thereto.

  2. Paducah Operations Timeline | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Timeline Paducah Operations Timeline Paducah Operations Timeline

  3. Calutron Operators | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operators Calutron Operators Young women recruited to operate the calutrons

  4. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  5. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Practice in Nuclear Medicine Radiopharmacy Patient Care Medical Imaging & Computers Moderator: Deborah M. Gibbs, MEd, PET, CNMT Lead Nuclear Medicine PET Facility...

  6. Nuclear Energy Advisory Committee

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

  7. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Energy, Energy Efficiency, News, News & Events, Nuclear Energy Sandia's Brayton-Cycle Turbine Boosts Small...

  8. Nuclear Energy Systems Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  9. Nuclear and Particle Futures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear and Particle Futures Nuclear and Particle Futures The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar ...

  10. Advancing Global Nuclear Security

    Broader source: Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  11. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  12. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    High construction costs for nuclear plants, especially relative to natural-gas-fired plants, make other options for new nuclear capacity uneconomical even in the alternative...

  13. Nuclear Security Summit

    National Nuclear Security Administration (NNSA)

    Joint Research Centre and the United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material http:...

  14. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... of September 24, 2011 3 The Department of Energy (DOE) National Nuclear Security ...

  15. Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  16. Sandia Energy Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    afety-expert-elected-to-national-academy-of-engineeringfeed 0 Sandia Teaches Nuclear Safety Course http:energy.sandia.govsandia-teaches-nuclear-safety-course http:...

  17. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  18. International Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and Member States to implement and meet safeguards obligations. The Office of International Nuclear Safeguards develops and supports the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new

  19. Manhattan Project: Nuclear Proliferation, 1949-Present

    Office of Scientific and Technical Information (OSTI)

    Joe 1, the first Soviet atomic test, August 29, 1949. NUCLEAR PROLIFERATION (1949-Present) Events > Postscript -- The Nuclear Age, 1945-Present Informing the Public, August 1945 The Manhattan Engineer District, 1945-1946 First Steps toward International Control, 1944-1945 Search for a Policy on International Control, 1945 Negotiating International Control, 1945-1946 Civilian Control of Atomic Energy, 1945-1946 Operation Crossroads, July 1946 The VENONA Intercepts, 1946-1980 The Cold War,

  20. Railroad transportation of spent nuclear fuel

    SciTech Connect (OSTI)

    Wooden, D.G.

    1986-03-01

    This report documents a detailed analysis of rail operations that are important for assessing the risk of transporting high-level nuclear waste. The major emphasis of the discussion is towards ''general freight'' shipments of radioactive material. The purpose of this document is to provide a basis for selecting models and parameters that are appropriate for assessing the risk of rail transportation of nuclear waste.