Powered by Deep Web Technologies
Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear reactor characteristics and operational history  

Gasoline and Diesel Fuel Update (EIA)

1. Capacity and Generation, Table 3. Characteristics and Operational History 1. Capacity and Generation, Table 3. Characteristics and Operational History Table 2. U.S. Nuclear Reactor Ownership Data PDF XLS Plant/Reactor Name Generator ID Utility Name - Operator Owner Name % Owned Arkansas Nuclear One 1 Entergy Arkansas Inc Entergy Arkansas Inc 100 Arkansas Nuclear One 2 Entergy Arkansas Inc Entergy Arkansas Inc 100 Beaver Valley 1 FirstEnergy Nuclear Operating Company FirstEnergy Nuclear Generation Corp 100 Beaver Valley 2 FirstEnergy Nuclear Operating Company FirstEnergy Nuclear Generation Corp 100 Braidwood Generation Station 1 Exelon Nuclear Exelon Nuclear 100 Braidwood Generation Station 2 Exelon Nuclear Exelon Nuclear 100 Browns Ferry 1 Tennessee Valley Authority Tennessee Valley Authority 100

2

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce...

3

FirstEnergy | Open Energy Information  

Open Energy Info (EERE)

FirstEnergy FirstEnergy Jump to: navigation, search Name FirstEnergy Address 76 South Main Street Place Akron, Ohio Zip 44308 Sector Biomass, Carbon, Services, Vehicles Product Energy provider: energy transmission and distribution;Energy provider: power production; Research and development Website http://www.firstenergycorp.com Coordinates 41.083278°, -81.518229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.083278,"lon":-81.518229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program  

Broader source: Energy.gov (indexed) [DOE]

FirstEnergy (Potomac Edison) - Municipal and Street Lighting FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program (Maryland) FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program (Maryland) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Maryland Program Type Utility Rebate Program Rebate Amount '''Street Lighting'''br/> High Pressure Sodium Fixtures: $10 - $50/unit LED/Induction Fixtures: $50 '''Traffic/Pedestrian Signals''' Lamp/Signal/Arrows: $35/unit Provider FirstEnergy (Potomac Edison) FirstEnergy offers several incentives for non-residential and municipal customers to upgrade traffic signals, pedestrian signals, street lights to more efficient fixtures. The Municipal Lighting Incentive Program offers

5

Metropolitan Edison Company SEF Loans (FirstEnergy Territory) | Department  

Broader source: Energy.gov (indexed) [DOE]

Metropolitan Edison Company SEF Loans (FirstEnergy Territory) Metropolitan Edison Company SEF Loans (FirstEnergy Territory) Metropolitan Edison Company SEF Loans (FirstEnergy Territory) < Back Eligibility Commercial Industrial Local Government Nonprofit Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Heating & Cooling Solar Heating Water Heating Wind Maximum Rebate $500,000 (generally) Program Info State Pennsylvania Program Type Local Loan Program Rebate Amount Varies according to project Provider Berks County Community Foundation FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund in 2000 with an initial contribution of $5.7 million. The fund later received an additional contribution of $2.5 million

6

Metropolitan Edison Company SEF Grants (FirstEnergy Territory) | Department  

Broader source: Energy.gov (indexed) [DOE]

Metropolitan Edison Company SEF Grants (FirstEnergy Territory) Metropolitan Edison Company SEF Grants (FirstEnergy Territory) Metropolitan Edison Company SEF Grants (FirstEnergy Territory) < Back Eligibility Commercial Industrial Local Government Nonprofit Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Heating & Cooling Solar Heating Water Heating Wind Maximum Rebate Varies; $25,000 for some types of projects Program Info State Pennsylvania Program Type Local Grant Program Rebate Amount Varies according to project Provider Berks County Community Foundation FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund in 2000 with an initial contribution of $5.7 million. The fund later received an additional contribution of $2.5 million

7

Operations | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Operations Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations Operations NNSA's Emergency Response Operations program acts as the headquarters command and control, functioning as the coordinating focal point for all

8

Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Operations Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations Operations NNSA's Emergency Response Operations program acts as the headquarters command and control, functioning as the coordinating focal point for all

9

FirstEnergy (Potomac Edison) - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Potomac Edison) - Residential Energy Efficiency Rebate Potomac Edison) - Residential Energy Efficiency Rebate Program FirstEnergy (Potomac Edison) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Room AC/Room AC Recycling: Limit 3 All Other Appliances: Limit 1 per household Home Performance Programs: 15% of cost for insulation Program Info Expiration Date 12/31/2014 State Maryland Program Type Utility Rebate Program Rebate Amount Refrigerator-Freezers: Up to $150 Freezers: $75 Room AC: $25 Clothes Washer: Up to $100

10

FirstEnergy (Mon Power and Potomac Edison) - Business Lighting Incentive  

Broader source: Energy.gov (indexed) [DOE]

FirstEnergy (Mon Power and Potomac Edison) - Business Lighting FirstEnergy (Mon Power and Potomac Edison) - Business Lighting Incentive Program (West Virginia) FirstEnergy (Mon Power and Potomac Edison) - Business Lighting Incentive Program (West Virginia) < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Schools State Government Tribal Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State West Virginia Program Type Utility Rebate Program Rebate Amount Lighting Incentive: $0.05/kWh first year savings FirstEnergy's West Virginia's utilities (Mon Power and Potomac Edison) offer the Business Lighting Incentive Program in accordance with the December 30, 2011, order issued by the Public Service Commission (PSC). This program is designed to help meet the state's goals to reduce both

11

FirstEnergy (Potomac Edison) - LEED for New Construction Program (Maryland)  

Broader source: Energy.gov (indexed) [DOE]

FirstEnergy (Potomac Edison) - LEED for New Construction Program FirstEnergy (Potomac Edison) - LEED for New Construction Program (Maryland) FirstEnergy (Potomac Edison) - LEED for New Construction Program (Maryland) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Design/Construction Review: $5,000 General Incentive: $15,000 Program Info Start Date 05/01/2012 State Maryland Program Type Utility Rebate Program Rebate Amount Design/Construction Review: 50% of total LEED certification fees General Incentive: $0.05/kWh of projected savings FirstEnergy offers incentives for non-residential customers who construct

12

FirstEnergy Generation Corp | Open Energy Information  

Open Energy Info (EERE)

Generation Corp Generation Corp Jump to: navigation, search Name FirstEnergy Generation Corp Place Ohio Utility Id 6389 Utility Location Yes Ownership W NERC Location RFC NERC RFC Yes Activity Generation Yes Activity Buying Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=FirstEnergy_Generation_Corp&oldid=410695" Categories: EIA Utility Companies and Aliases

13

FirstEnergy (West Penn Power) - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

West Penn Power) - Residential Energy Efficiency West Penn Power) - Residential Energy Efficiency Rebate Program FirstEnergy (West Penn Power) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Room AC/Room AC Recycling: Limit 3 All Other Appliances: Limit 1 per household Program Info State Pennsylvania Program Type Utility Rebate Program Rebate Amount Walk-Through Audit: Reduced customer fee of $50 Whole House Audit: $300 CFL's: $1.50 Clothes Washer: $75 Refrigerator: $50 Freezer: $25 Room AC: $25 Dehumidifiers: $10 Refrigerator Recycling: $50 Freezer Recycling: $50 Room AC Unit Recycling: $25

14

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

15

Operational Analysis of Multiregional Nuclear Reactor Kinetics  

Science Journals Connector (OSTI)

......Operational Analysis of Multiregional Nuclear Reactor Kinetics NASSAR H. S. HAIDAR...analytically for a multiregional nuclear reactor whose subregions are of arbitrary...Operational Analysis of Multiregional Nuclear Reactor Kinetics NASSAU H. S. HAIDAR......

NASSAR H. S. HAIDAR

1983-05-01T23:59:59.000Z

16

Safety of Nuclear Explosive Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

2001-08-07T23:59:59.000Z

17

FirstEnergy (West Penn Power) - Commercial and Industrial Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

FirstEnergy (West Penn Power) - Commercial and Industrial Energy FirstEnergy (West Penn Power) - Commercial and Industrial Energy Efficiency Rebate Program (Pennsylvania) FirstEnergy (West Penn Power) - Commercial and Industrial Energy Efficiency Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Contact Allegheny Power Program Info State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom Lighting Incentive: 0.05/kWh saved annually Screw-In CFL Lamp: $1 Hard-Wired CFL Lamp: $15 Lighting Controls: $35/sensor Street Lights (w/ Photocell Sensor): $140 - $800 Outdoor Area Lights (w/ Photocell Sensor): $65 - $100

18

FirstEnergy (MetEdison, Penelec, Penn Power) - Commercial and Industrial  

Broader source: Energy.gov (indexed) [DOE]

FirstEnergy (MetEdison, Penelec, Penn Power) - Commercial and FirstEnergy (MetEdison, Penelec, Penn Power) - Commercial and Industrial Energy Efficiency Program FirstEnergy (MetEdison, Penelec, Penn Power) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Program Info Funding Source MetEdison, Penelec, and Penn Power State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom Lighting Incentive: 0.05/kWh saved annually Screw-In CFL Lamp: $1 Hard-Wired CFL Lamp: $15 Lighting Controls: $35/sensor Street Lights (w/ Photocell Sensor): $140 - $800 Outdoor Area Lights (w/ Photocell Sensor): $65 - $100 LED Traffic/Pedestrian Signals: $20 - 30.67/unit

19

Nuclear Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

20

Infrastructure and Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Operations | National Nuclear Security Administration Operations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Infrastructure and Operations Home > About Us > Our Operations > Infrastructure and Operations Infrastructure and Operations NNSA's missions require a secure production and laboratory infrastructure meeting immediate and long term needs. The Associate Administrator for

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Emergency Operations Training Academy | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Operations Training Academy | National Nuclear Security Operations Training Academy | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Emergency Operations Training Academy Home > About Us > Our Programs > Emergency Response > Training > Emergency Operations Training Academy Emergency Operations Training Academy Rotating image showing pictures of Classroom, Online and Hands on trainings

22

Nuclear Safety Research and Development Program Operating Plan...  

Broader source: Energy.gov (indexed) [DOE]

Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating...

23

emergency operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Congressional...

24

FirstEnergy Service Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Company Smart Grid Project Company Smart Grid Project Jump to: navigation, search Project Lead FirstEnergy Service Company Country United States Headquarters Location Akron, Ohio Additional Benefit Places Pennsylvania Recovery Act Funding $57,470,137.00 Total Project Value $114,940,273.00 Coverage Area Coverage Map: FirstEnergy Service Company Smart Grid Project Coordinates 41.0814447°, -81.5190053° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

25

Nuclear reactor characteristics and operational history  

Gasoline and Diesel Fuel Update (EIA)

Nuclear > U.S. reactor operation status tables Nuclear > U.S. reactor operation status tables Nuclear Reactor Operational Status Tables Release date: November 22, 2011 Next release date: November 2012 See also: Table 1. Capacity and Generation, Table 2. Ownership Data Table 3. Nuclear Reactor Characteristics and Operational History PDF XLS Plant Name Generator ID Type Reactor Supplier and Model Construction Start Grid Connection Original Expiration Date License Renewal Application License Renewal Issued Extended Expiration Arkansas Nuclear One 1 PWR Babcock&Wilcox, Lower Loop 10/1/1968 8/17/1974 5/20/2014 2/1/2000 6/20/2001 5/20/2034 Arkansas Nuclear One 2 PWR Combustion Eng. 7/1/1971 12/26/1978 7/17/2018 10/15/2003 6/30/2005 7/17/2038

26

Nuclear reactor characteristics and operational history  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear > U.S. reactor operation status tables Nuclear > U.S. reactor operation status tables Nuclear Reactor Operational Status Tables Release date: November 22, 2011 Next release date: November 2012 See also: Table 2. Ownership Data, Table 3. Characteristics and Operational History Table 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor PDF XLS Plant/Reactor Name Generator ID State Type 2009 Summer Capacity Net MW(e)1 2010 Annual Generation Net MWh2 Capacity Factor Percent3 Arkansas Nuclear One 1 AR PWR 842 6,607,090 90 Arkansas Nuclear One 2 AR PWR 993 8,415,588 97 Beaver Valley 1 PA PWR 892 7,119,413 91 Beaver Valley 2 PA PWR 885 7,874,151 102 Braidwood Generation Station 1 IL PWR 1,178 9,196,689 89

27

Nuclear Facility Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Operations Facility Operations Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. The Idaho Operations Office oversees these contract activities in accordance with DOE directives. INL is a multi-program laboratory In addition to enabling the Office of Nuclear Energy to develop space power systems and advanced fuel cycle and reactor technologies, INL facilities are used by the National Nuclear Security Administration and other DOE offices, together with other Federal agencies such as the Department of

28

Hazard Analysis Reports for Nuclear Explosive Operations  

Broader source: Energy.gov (indexed) [DOE]

NA-STD-3016-2006 NA-STD-3016-2006 May 2006 DOE LIMITED STANDARD HAZARD ANALYSIS REPORTS FOR NUCLEAR EXPLOSIVE OPERATIONS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-NA-STD-3016-2006 iii FORWARD This Department of Energy (DOE)/National Nuclear Security Administration (NNSA) technical standard is approved for use by the Assistant Deputy Administrator for Military Application and Stockpile Operations (NA-12), and is available for use to prepare Nuclear Explosive Operation (NEO) Hazard Analysis Reports (HARs) as required by 10 CFR 830, "Nuclear Safety Management." This Standard is

29

Digital computer operation of a nuclear reactor  

DOE Patents [OSTI]

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, Robert W. (Richland, WA)

1984-01-01T23:59:59.000Z

30

Digital computer operation of a nuclear reactor  

DOE Patents [OSTI]

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, R.W.

1982-06-29T23:59:59.000Z

31

Nuclear Power 2010 Program: Combined Construction and Operating...  

Broader source: Energy.gov (indexed) [DOE]

Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design...

32

Microsoft PowerPoint - 3_Chris Wolff _Wensday_NMMSS_2014_Powerpoint...  

National Nuclear Security Administration (NNSA)

*Kim Medved, FirstEnergy Nuclear Operating Company *Bill Herwig, South Carolina Electric & Gas *Tom Morello, Constellation Energy Nuclear Group *Alan Krichinsky, Oak Ridge...

33

DHS/National Operations Center | National Nuclear Security Administrat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our History Who We Are Our Leadership Our Locations Budget Our Operations...

34

Operational Experience in Nuclear Power Stations [and Discussion  

Science Journals Connector (OSTI)

...Operational Experience in Nuclear Power Stations...self-sustaining nuclear reaction to the present...time large-scale generation of electrical power from nuclear energy has become...the C.E.G.B. reactors have been in service...

1974-01-01T23:59:59.000Z

35

CRAD, Nuclear Reactor Facility Operations - December 4, 2014...  

Energy Savers [EERE]

Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) December 4, 2014...

36

National Nuclear Security Administration (NNSA) Operating Principles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operating Principles Operating Principles Our wtis.sion is vitcrl ~ r i r l urgent - rue corrstnntly jOcus on missiort outconles. - US nuclear security is the fundamental mission of the NNSA and its laboratories, plants, and test site. - Mission managers bear responsibility for achieving mission outcomes. - Support managers provide technical assistance and support to enable mission delivery. - Our activities reflect a mission-focused, high performing. high reliability enterprise consistently delivering on its commitmerits and addressing national needs. - We constantly strive to drive innovation and reduce barriers to effectively and collaboratively accomplish our mission. Scierrce crnd fecltnology lie crt the hetrrt ?four mission. - The NNSA and its laboratories, plants, and test site are resources to organizations in the US Government

37

FAQS Qualification Card - Nuclear Operations Specialist | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Operations Specialist Nuclear Operations Specialist FAQS Qualification Card - Nuclear Operations Specialist A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-NuclearOperationsSpecialist.docx Description Nuclear Operations Specialist Qualification Card More Documents & Publications

38

Emergency Operations Training Academy | National Nuclear Security...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emergency Operations Training Academy Emergency Operations Training Academy Emergency Operations Training Academy The Office of Emergency Operations, NA-40-The Emergency Operations...

39

QUOTIENTS, EXACTNESS AND NUCLEARITY IN THE OPERATOR SYSTEM CATEGORY  

E-Print Network [OSTI]

QUOTIENTS, EXACTNESS AND NUCLEARITY IN THE OPERATOR SYSTEM CATEGORY ALI S. KAVRUK, VERN I. PAULSEN system category. We define operator system quotients and exactness in this setting and refine the notion of nuclearity by studying operator systems that preserve various pairs of tensor products. One of our main goals

40

Table 3. Nuclear Reactor Characteristics and Operational History  

U.S. Energy Information Administration (EIA) Indexed Site

3. Nuclear Reactor Characteristics and Operational History" "Plant Name","Generator ID","Type","Reactor Supplier and Model","Construction Start","Grid Connection","Commercial...

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Our Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

42

Nuclear Safety Research and Development Program Operating Plan | Department  

Broader source: Energy.gov (indexed) [DOE]

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

43

Nuclear Power 2010 Program: Combined Construction and Operating License &  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power 2010 Program: Combined Construction and Operating Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States. As with all significant endeavors, there are lessons to be learned from the

44

Construction or Extended Operation of Nuclear Plant (Vermont) | Department  

Broader source: Energy.gov (indexed) [DOE]

Construction or Extended Operation of Nuclear Plant (Vermont) Construction or Extended Operation of Nuclear Plant (Vermont) Construction or Extended Operation of Nuclear Plant (Vermont) < Back Eligibility Investor-Owned Utility Utility Program Info State Vermont Program Type Siting and Permitting Any petition for approval of construction of a nuclear energy generating plant within the state, or any petition for approval of the operation of a nuclear energy generating plant beyond the date established in a certificate of public good issued under this title, must be submitted to the public service board no later than four years before the date upon which the approval may take effect. Upon receipt of a petition for approval of construction or operation as provided under this section, the public service board shall notify the

45

Nuclear Facility Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied...

46

EIS-0373: Proposed Consolidation of Nuclear Operations Related to the  

Broader source: Energy.gov (indexed) [DOE]

373: Proposed Consolidation of Nuclear Operations Related to 373: Proposed Consolidation of Nuclear Operations Related to the Production of Radioisotope Power Systems EIS-0373: Proposed Consolidation of Nuclear Operations Related to the Production of Radioisotope Power Systems Summary NOTE: EIS-0373 has been cancelled. This EIS evaluates the environmental impacts of consolidating nuclear activities related to production of radioisotope power systems (RPS) for space and national security missions at a single DOE site: the preferred alternative is the Materials and Fuels Complex at Idaho National Laboratory. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download January 9, 2013 EIS-0373: Notice of Cancellation of an Environmental Impact Statement Proposed Consolidation of Nuclear Operations Related to the Production of

47

Lempke receives Sandia Emergency Operations Center tour | National Nuclear  

National Nuclear Security Administration (NNSA)

receives Sandia Emergency Operations Center tour | National Nuclear receives Sandia Emergency Operations Center tour | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Lempke receives Sandia Emergency Operations Center tour Lempke receives Sandia Emergency Operations Center tour Posted By Office of Public Affairs NNSA Blog Brian Bielecki, Director & Facility Security Officer for Security &

48

Institute of Nuclear Power Operations 1994 annual report  

SciTech Connect (OSTI)

This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

NONE

1994-12-31T23:59:59.000Z

49

operations center | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Our Operations Media Congressional Testimony Fact Sheets Newsletters Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home ...

50

Emergency Operations Training Academy | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Introduction Monitoring Division Mgr Training, Adv NARAC Dispersion Modeling NARAC Web Operations Overview of Consequence Management Overview of the DOENNSA Emergency...

51

Nuclear Power 2010 Program: Combined Construction and Operating License &  

Broader source: Energy.gov (indexed) [DOE]

Power 2010 Program: Combined Construction and Operating Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States. As with all significant endeavors, there are lessons to be learned from the

52

LMFBR operation in the nuclear cycle without fuel reprocessing  

SciTech Connect (OSTI)

Substantiation is given to expediency of investigation of nuclear power (NP) development with fast reactors cooled by lead-bismuth alloy operating during extended time in the open nuclear fuel cycle with slightly enriched or depleted uranium make-up. 9 refs., 1 fig., 6 tabs.

Toshinsky, S.I. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)

1997-12-01T23:59:59.000Z

53

Operation TEAPOT, 1955 continental nuclear weapons test series. Technical report  

SciTech Connect (OSTI)

This report describes the activities of an estimated 11,000 DOD personnel, both military and civilian, in Operation TEAPOT, the fifth atmospheric nuclear weapons testing series conducted in Nevada from 18 February to 15 May 1955. Activities engaging DOD personnel included Exercise Desert Rock VI observer programs, troop tests, and technical service programs; AEC scientific and diagnostic experiments to evaluate the effects of the nuclear device; DOD operational programs; and air support.

Ponton, J.; Maag, C.; Wilkinson, M.; Shepanek, R.F.

1981-11-23T23:59:59.000Z

54

Nuclear Power - Operation, Safety and Environment  

E-Print Network [OSTI]

as operation, safety, environment and radiation effects. The book is not offering a comprehensive coverage of the material in each area. Instead, selected themes are highlighted by authors of individual chapters representing contemporary interests worldwide...

55

US nuclear power plant operating cost and experience summaries  

SciTech Connect (OSTI)

NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

Kohn, W.E.; Reid, R.L.; White, V.S.

1998-02-01T23:59:59.000Z

56

Training program requirements for remote equipment operators in nuclear facilities  

SciTech Connect (OSTI)

One of the most neglected areas in the engineering development of remotely operated equipment applications in nuclear environments is the planning of adequate training programs for the equipment operators. Remote equipment accidents cannot be prevented solely by engineered safety features on the equipment. As a result of the experiences in using remote equipment in the recovery effort at Three Mile Island Unit 2 (TMI-2), guidelines for the development of remote equipment operator training programs have been generated. The result is that a successful education and training program can create an environment favorable to the safe and effective implementation of a remote equipment program in a nuclear facility.

Palau, G.L.; Auclair, K.D.

1986-01-01T23:59:59.000Z

57

Nuclear Power - Deployment, Operation and Sustainability  

E-Print Network [OSTI]

t e su bmersion time. In addition, the high specific energy, or energy per unit weight of nuclear fuel, eliminat e s the need for consta n t refuel i n g by fleets of vulner a b l e tanke r s follo w i n g a fleet of surfa c e or subsur f a c e... onal Labora t o r y (INL) in 1989. The section of the hull containi n g the reactor rested in a ?sea tank? of water 40 feet deep and 50 feet in diameter. The purpose of the water was to help the shiel di n g designe r s stud y the ?backsca t t e r...

58

Wolf Creek Nuclear Operating Corporation | Open Energy Information  

Open Energy Info (EERE)

Wolf Creek Nuclear Operating Corporation Wolf Creek Nuclear Operating Corporation Jump to: navigation, search Name Wolf Creek Nuclear Operating Corporation Place Burlington, Kansas Zip 66839-0411 Product Wolf Creek Nuclear Operating Corporation operates the Wolf Creek Generating Station, Kansas' first nuclear power generating station, for three utility owners in Kansas and Missouri. Coordinates 44.446275°, -108.431704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.446275,"lon":-108.431704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Operating nuclear plant feedback to ASME and French codes  

SciTech Connect (OSTI)

The French have an advantage in nuclear plant operating experience feedback due to the highly centralized nature of their nuclear industry. There is only one utility in charge of design as well as operations (EDF) and only one reactor vendor (Framatome). The ASME Code has played a key role in resolving technical issues in the design and operation of nuclear plants since the inception of nuclear power. The committee structure of the Code brings an ideal combination of senior technical people with both broad and specialized experience to bear on complex how safe is safe enough technical issues. The authors now see an even greater role for the ASME Code in a proposed new regulatory era for the US nuclear industry. The current legalistic confrontational regulatory era has been quite destructive. There now appears to be a real opportunity to begin a new era of technical consensus as the primary means for resolving safety issues. This change can quickly be brought about by having the industry take operating plant problems and regulatory technical issues directly to the ASME Code for timely resolution. Surprisingly, there is no institution in the US nuclear industry with such a mandate. In fact, the industry is organized to feedback through the Nuclear Regulatory Commission issues which could be far better resolved through the ASME Code. Major regulatory benefits can be achieved by closing this loop and providing systematic interaction with the ASME Code. The essential elements of a new regulatory era and ideas for organizing US institutional industry responsibilities, taken from the French experience, are described in this paper.

Journet, J. [Electricite de France, Clamart (France); O`Donnell, W.J. [O`Donnell Consulting Engineers, Bethel Park, PA (United States)

1996-12-01T23:59:59.000Z

60

20 - Licensing for nuclear power plant siting, construction and operation  

Science Journals Connector (OSTI)

Abstract: This chapter addresses the need for licensing of nuclear power plants, and how such licenses can be requested by an applicant and granted by a regulatory authority. The licensing process is country dependent, although based on the common principle that the applicant must demonstrate that the proposed nuclear power plant will comply with the established regulations, and that it will operate safely without undue risks to the health and safety of plant personnel, the population and the environment. During the construction and operational phases the regulatory authority ensures compliance with the the license conditions through evaluation, monitoring and inspection. The license may be a single document covering all the phases in the life of the plant, or a set of consecutive documents requested and issued for different phases, which may include design certification, site approval, design and construction, commissioning and operation, design changes during operation, life extension and, finally, decommissioning.

A. Alonso; S.K. Sharma; D.F. Torgerson

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nuclear Safety Reserch and Development Program Operating Plan  

Broader source: Energy.gov (indexed) [DOE]

Safety Research and Development Safety Research and Development Program Operating Plan Office of Nuclear Safety Office of Health, Safety and Security U.S. Department of Energy June 2012 INTENTIONALLY BLANK NSR&D Program Operating Plan June 2012 Table of Contents 1.0 INTRODUCTION................................................................................................................. 1 2.0 BACKGROUND ................................................................................................................... 1 3.0 OBJECTIVES ....................................................................................................................... 2 4.0 NSR&D PROGRAM PROCESSES .................................................................................... 3

62

Integrating Nuclear Energy to Oilfield Operations Two Case Studies  

SciTech Connect (OSTI)

Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.

Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

2011-11-01T23:59:59.000Z

63

The nuclear heated steam reformer Design and semitechnical operating experiences  

Science Journals Connector (OSTI)

Good operating experiences of the EVA I- and EVA II-plant have been described. Therin the comparison of the different catalyst concepts has been given. Further the behaviour of the bundle of EVA II plant by isolation of individual reformer tubes as well as the performance of the bundle under transient conditions have been explained. Different design concepts for a nuclear heated steam reformer based on the concentric tubes and baffles have been given. Main points of studies are constructional details, thermohydraulic of the bundle and stress analysis. It can be shown that the present standard of knowledge allows the application of the steam reformer for coal refinement with nuclear heat.

J. Singh; H.F. Niessen; R. Harth; H. Fedders; H. Reutler; W. Panknin; W.D. Mller; H.G. Harms

1984-01-01T23:59:59.000Z

64

Resilience and Procedure Use in the Training of Nuclear Power Plant Operating Crews.  

E-Print Network [OSTI]

?? Control room operating crews are a crucial component in maintaining the safety of nuclear power plants. The primary support to operators during disturbances or (more)

Gustavsson, Pr

2011-01-01T23:59:59.000Z

65

Seismic functionality of essential relays in operating nuclear plants  

Science Journals Connector (OSTI)

The regulatory criteria for licensing of nuclear power plants require that certain safety-related equipment and systems be designed to function during and following a postulated, design basis earthquake. Demonstration of seismic adequacy must be performed and formally documented by shake-table testing, analysis or other specified methods. Since many older, operating nuclear power plants were designed and constructed prior to the issuance of the current seismic qualification criteria, the NRC has questioned whether the seismic adequacy of the essential equipment has been adequately demonstrated and documented. This concern is identified in Unresolved Safety Issue A-46, Seismic Qualification of Equipment in Operating Nuclear Power Plants. In response to this concern, a group of affected plant owners, the Seismic Qualification Utility Group (SQUG), with support from the Electric Power Research Institute (EPRI), has undertaken a program to demonstrate the seismic adequacy of essential equipment by the use of actual experience with such equipment in plants which have undergone significant earthquakes and by the use of available seismic qualification data for similar equipment. An important part of this program is the development of data and the methodology for verifying the functionality of electrical relays used in essential circuits needed for plant shutdown during a seismic event. This paper describes this part of the Seismic Qualification Utility Group program. The relay functionality evaluation methodology is being developed under EPRI Project No. RP2849-1.

W.R. Schmidt; R.P. Kassawara

1988-01-01T23:59:59.000Z

66

Projection Operator Formalisms and the Nuclear Shell Model  

E-Print Network [OSTI]

The shell model solve the nuclear many-body problem in a restricted model space and takes into account the restricted nature of the space by using effective interactions and operators. In this paper two different methods for generating the effective interactions are considered. One is based on a partial solution of the Schrodinger equation (Bloch-Horowitz or the Feshbach projection formalism) and other on linear algebra (Lee-Suzuki). The two methods are derived in a parallel manner so that the difference and similarities become apparent. The connections with the renormalization group are also pointed out.

B. K. Jennings

2005-04-13T23:59:59.000Z

67

Savannah River Operations Office Interim Management of Nuclear  

Broader source: Energy.gov (indexed) [DOE]

0 0 Federal Register / Vol. 62, No. 70 / Friday, April 11, 1997 / Notices 1 The term ''failed'' means that the cladding on the fuel has been breached. The ROD, 60 Fed. Reg. 65300 (December 19, 1995), stated that failed fuel is indicated by gas releases from a fuel storage canister or visible failure of the cladding or canisters. select samples for specialized surveys for example on children's services or on access for persons with disabilities. [FR Doc. 97-9341 Filed 4-10-97; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Savannah River Operations Office Interim Management of Nuclear Materials at the Savannah River Site AGENCY: Department of Energy. ACTION: Supplemental record of decision and supplement analysis determination. SUMMARY: The U.S. Department of Energy (DOE) prepared a final

68

Identification of good practices in the operation of nuclear power plants  

E-Print Network [OSTI]

This work developed an approach to diagnose problems and identify good practices in the operation of nuclear power plants using the system dynamics technique. The research began with construction of the ORSIM (Nuclear Power ...

Chen, Haibo, 1975-

2005-01-01T23:59:59.000Z

69

Concept of Operations for Nuclear Warhead Embedded Sensors  

SciTech Connect (OSTI)

Embedded arms-control-sensors provide a powerful new paradigm for managing compliance with future nuclear weapons treaties, where deployed warhead numbers will be reduced to 1000 or less. The CONOPS (Concept of Operations) for use with these sensors is a practical tool with which one may help define design parameters, including size, power, resolution, communications, and physical structure. How frequently must data be acquired and must a human be present? Will such data be acquired for only stored weapons or will it be required of deployed weapons as well? Will tactical weapons be subject to such monitoring or will only strategic weapons apply? Which data will be most crucial? Will OSI's be a component of embedded sensor data management or will these sensors stand alone in their data extraction processes? The problem space is massive, but can be constrained by extrapolating to a reasonable future treaty regime and examining the bounded options this scenario poses. Arms control verification sensors, embedded within the warhead case or aeroshell, must provide sufficient but not excessively detailed data, confirming that the item is a nuclear warhead and that it is a particular warhead without revealing sensitive information. Geolocation will be provided by an intermediate transceiver used to acquire the data and to forward the data to a central processing location. Past Chain-of-Custody projects have included such devices and will be primarily responsible for adding such indicators in the future. For the purposes of a treaty regime a TLI will be verified as a nuclear warhead by knowledge of (a) the presence and mass of SNM, (b) the presence of HE, and (c) the reporting of a unique tag ID. All of these parameters can be obtained via neutron correlation measurements, Raman spectroscopy, and fiber optic grating fabrication, respectively. Data from these sensors will be pushed out monthly and acquired nearly daily, providing one of several verification layers in depth, including on-site inspections, NTM, declarations, and semi-annual BCC meetings. Human intervention will not be necessary. The sheer numbers, small size, and wide distribution of warhead TLIs will mandate the added level of remote monitoring that Embedded Sensors can provide. This multilayer protection will limit the need to increase the frequency of OSIs, by adding confidence that declared TLIs remain as declared and that no undeclared items enter the regime without the other States Party's knowledge. Acceptance of Embedded arms control Sensor technologies will require joint development by all State's Parties involved. Principles of operation and robustness of technologies must be individually evaluated to sustain confidence in the strength of this system against attack. Weapons designers must be assured that these sensors will in no way impact weapon performance and operation, will not affect weapons security and safety, and will have a neutral impact upon weapon system surety. Each State's Party will need to conduct an in depth review of their weapons lifecycle to determine where moves may be reduced to minimize vulnerabilities and where random selection may be used to minimize the ability to make undeclared changes. In the end Verification is a political measure, not a technical one. If the potential users can gain sufficient confidence in the application of Embedded arms control Sensors, they could constitute the final layer of glue to hold together the next Nuclear Arms Control agreement.

Rockett, P D; Koncher, T R

2012-05-16T23:59:59.000Z

70

U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy Oak Ridge Operations Nuclear Facility U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions More Documents & Publications Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1, Conduct of Operations. U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility

71

Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon  

E-Print Network [OSTI]

Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon Gipsa of nuclear power plants. Unfortunately, today's policies present a major drawback. Indeed, these monitoring is illustrated through experimental data. 1. Introduction Nuclear power provides about 14% of the world

Boyer, Edmond

72

Functional segmentation of dynamic nuclear images by cross-?B-energy operator  

Science Journals Connector (OSTI)

We describe a new segmentation method of dynamic nuclear medicine images based on the cross-@J"B-energy operator. @J"B is a nonlinear measure which quantifies the interaction between two time-signals including their first and second derivatives. Similarity ... Keywords: Cross-?B-energy operator, Functional segmentation, Nuclear cardiac images, Time activity curve

Abdel-Ouahab Boudraa; Jean-Christophe Cexus; Habib Zaidi

2006-12-01T23:59:59.000Z

73

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

74

KCP operations began 65 years ago today | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Corporation signed a prime contract to operate the Kansas City Plant for the Atomic Energy Commission. Today, the Kansas City Plant is celebrating 65 years of delivering on...

75

U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility  

Broader source: Energy.gov (indexed) [DOE]

Energy, Oak Ridge Operations Office Nuclear Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] "This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak Ridge Reservation. By completing this self-study guide, the reader will fulfill ORO Safety Basis Qualification Standard Competency 1, 2 (Part 1), or 7 (Part 1) and gain a familiarity level of knowledge regarding the following:

76

U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy, Oak Ridge Operations Office Nuclear U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] "This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak Ridge Reservation. By completing this self-study guide, the reader will fulfill ORO Safety Basis Qualification Standard Competency 1, 2 (Part 1), or 7 (Part 1) and gain a familiarity level of knowledge regarding the following:

77

The LPMS-V installation and operational experience at Arkansas nuclear one  

SciTech Connect (OSTI)

This paper describes a new replacement system for the existing vibrations and loose parts monitoring system for the Arkansas Nuclear One (ANO) units 1 and 2, in Russellville, Arkansas. The installation and operational history are also discussed.

Lexa, A.F. [Babcock and Wilcox Company, Lynchburg, VA (United States)]: Hudson, E. [Entergy Operations, Inc., Russelville, AR (United States)

1995-12-31T23:59:59.000Z

78

Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

Sheaffer, M.K.; Keeton, S.C.

1993-09-20T23:59:59.000Z

79

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - EM Statement - November 24, 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Defense Nuclear Facilities Safety Board Public Meeting on Defense Nuclear Facilities Safety Board Public Meeting on Oversight of Complex High Hazard Nuclear Operations Statement of Dr. Ines Triay Assistant Secretary, DOE Office of Environmental Management November 24, 2009 Good morning Mr. Vice Chairman and Members of the Defense Nuclear Facilities Safety Board. I appreciate the opportunity to be here today to represent the Department of Energy's Office of Environmental Management (EM) and address the actions our office has taken regarding oversight of complex high hazard nuclear operations. My remarks cover the six topics you provided to the Secretary in your letter dated August 25, 2009. Expectations of the senior Department of Energy (DOE) leadership with respect to safety philosophy and safety management approach.

80

DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its  

Broader source: Energy.gov (indexed) [DOE]

DOE Selects Savannah River Nuclear Solutions, LLC to Manage and DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its Savannah River Site DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its Savannah River Site January 10, 2007 - 10:24am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Savannah River Nuclear Solutions (SRNS), LLC has been selected as the management and operating contractor for DOE's Savannah River Site (SRS) in Aiken, South Carolina. The contract is a cost-plus award-fee contract valued at approximately $800 million per year and is for a five-year base period with the option to extend it for up to five additional years. SRNS is a limited liability corporation consisting of Fluor Federal Services, Inc., Honeywell International, Inc., and Newport News

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Nuclear Solutions, LLC to Manage and Savannah River Nuclear Solutions, LLC to Manage and Operate its Savannah River Site DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its Savannah River Site January 10, 2007 - 10:24am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Savannah River Nuclear Solutions (SRNS), LLC has been selected as the management and operating contractor for DOE's Savannah River Site (SRS) in Aiken, South Carolina. The contract is a cost-plus award-fee contract valued at approximately $800 million per year and is for a five-year base period with the option to extend it for up to five additional years. SRNS is a limited liability corporation consisting of Fluor Federal Services, Inc., Honeywell International, Inc., and Newport News

82

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - NNSA Statement - November 24, 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Defense Nuclear Facilities Safety Board Public Meeting on Defense Nuclear Facilities Safety Board Public Meeting on Oversight of Complex, High Hazard Nuclear Operations Statement of Garrett Harencak, BRIG GEN, USAF Principal Assistant Deputy Administrator for Military Application Office of Defense Programs November 24, 2009 Good Morning, Mr. Vice-Chairman. I appreciate the opportunity to speak to the Board this morning regarding the Defense Programs approach to ensuring the safe management and operation of the nuclear security enterprise. Defense Programs Safety Approach and Safety Philosophy Consistent with the rest of the Department of Energy, the foundation of Defense Program's safety philosophy is Integrated Safety Management (ISM). Defense Programs and its Management and Operating Contractors continue to mature their implementation of ISM.

83

Transition Operators Entering Neutrinoles Double Electron Capture to Excited Nuclear States  

E-Print Network [OSTI]

We construct the effective transition operators relevant for neutrinoless double electron capture leading to final nuclear states different than $0^{+}$. From the structure of these operators we see that, if such a process is observed experimentally, it will be very helpful in singling out the very important light neutrino mass contribution from the other lepton violating mechanisms

J. D. Vergados

2011-08-02T23:59:59.000Z

84

An analysis of nuclear power plant operating costs: A 1995 update  

SciTech Connect (OSTI)

Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

NONE

1995-04-21T23:59:59.000Z

85

Human-centered HMI design to support cognitive process of operators in nuclear power plants  

SciTech Connect (OSTI)

In this study, an operation advisory system to aid cognitive process of operators is proposed for advanced main control rooms (MCRs) in future nuclear power plants (NPPs). As MCRs are fully digitalized and designed based on computer technologies, MCRs have much evolved by improving human-machine interface (HMI) design and by adapting automation or support systems for helping operator's convenient operation and maintenance. Various kinds of support systems for operators are developed or developing for advanced MCRs. The proposed system is suggesting a design basis about 'What kinds of support systems are most efficient and necessary for MCR operators ' and 'how to use them together.' In this paper, the operator's operation processes are analyzed based on a human cognitive process model and appropriate support systems that support each activity of the human cognitive process are suggested. Also, the proposed support system is evaluated using Bayesian belief network model and human error probabilities in order to estimate its effect. (authors)

Lee, S. J.; Seong, P. H. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

2006-07-01T23:59:59.000Z

86

Applications of neural networks to monitoring and decision making in the operation of nuclear power plants  

SciTech Connect (OSTI)

Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of noise'' data from TVA's Sequoyah Nuclear Power Plant, and (5) examination of the NRC's database of Letter Event Reports'' for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States) Oak Ridge National Lab., TN (United States))

1990-01-01T23:59:59.000Z

87

Operator support for ageing nuclear critical infrastructure systems: integrating ecological interface design with prospect theory  

Science Journals Connector (OSTI)

Operator support is essential for making decisions involving ageing infrastructure. In particular, ageing plants may have deviated from their original condition into a new state with a less predictable set of possible actions and outcomes. Standard procedures and practices may be insufficient to handle the risks and vulnerabilities of ageing nuclear infrastructure. Operator support must be designed with an understanding of how operators make decisions under uncertainty and a view to supporting unexpected situations. Prospect theory (PT) and ecological interface design (EID) are proposed as two complementary approaches for guiding operator support. PT describes how people make decisions under uncertainty and EID is an interface design approach for aiding operators with the problem-solving process in unanticipated situations. We suggest that these two approaches can be integrated to improve complex decision making in ageing nuclear plants.

Catherine Burns; Ali Asgary; Jason K. Levy

2005-01-01T23:59:59.000Z

88

Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors  

SciTech Connect (OSTI)

The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

OHara J. M.; Higgins, J.; DAgostino, A.

2012-01-17T23:59:59.000Z

89

Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Workshop  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume II, reports the results of an industry-wide workshop held on May 28 and 29, 1986, to discuss the technical issues associated with aging of nuclear service emergency diesel generators. The technical issues discussed most extensively were: man/machine interfaces, component interfaces, thermal gradients of startup and cooldown and the need for an accurate industry database for trend analysis of the diesel generator system.

Hoopingarner, K.R.; Vause, J.W.

1987-08-01T23:59:59.000Z

90

Sustainable Forward Operating Base Nuclear Power Evaluation (Relationship Mapping System) Users Manual  

SciTech Connect (OSTI)

The Sustainable Forward Operating Base (FOB) Nuclear Power Evaluation was developed by the Idaho National Laboratory Systems Engineering Department to support the Defense Advanced Research Projects Agency (DARPA) in assessing and demonstrating the viability of deploying small-scale reactors in support of military operations in theatre. This document provides a brief explanation of how to access and use the Sustainable FOB Nuclear Power Evaluation utility to view assessment results as input into developing and integrating the program elements needed to create a successful demonstration.

Not Listed

2012-01-01T23:59:59.000Z

91

An adaptive simulation model for analysis of nuclear material shipping operations  

SciTech Connect (OSTI)

Los Alamos has developed an advanced simulation environment designed specifically for nuclear materials operations. This process-level simulation package, the Process Modeling System (ProMoS), is based on high-fidelity material balance criteria and contains intrinsic mechanisms for waste and recycle flows, contaminant estimation and tracking, and material-constrained operations. Recent development efforts have focused on coupling complex personnel interactions, personnel exposure calculations, and stochastic process-personnel performance criteria to the material-balance simulation. This combination of capabilities allows for more realistic simulation of nuclear material handling operations where complex personnel interactions are required. They have used ProMoS to assess fissile material shipping performance characteristics at the Los Alamos National Laboratory plutonium facility (TA-55). Nuclear material shipping operations are ubiquitous in the DOE complex and require the largest suite of varied personnel interacting in a well-timed manner to accomplish the task. They have developed a baseline simulation of the present operations and have estimated the operational impacts and requirement of the pit production mission at TA-55 as a result of the SSM-PEIS. Potential bottlenecks have been explored and mechanisms for increasing operational efficiency are identified.

Boerigter, S.T.; Sena, D.J.; Fasel, J.H.

1998-12-31T23:59:59.000Z

92

Comparing cultural profiles of MCR operators with those of non-MCR operators working in domestic Nuclear Power Plants  

Science Journals Connector (OSTI)

Abstract Operation experience of complex socio-technical systems such as Nuclear Power Plants (NPPs) shows that most significant events are attributable to human error. Thus, various kinds of Human Reliability Analysis (HRA) techniques were used to manage human error for safety-critical tasks. However, a lack of available HRA data is a critical issue in conducting an HRA. For this reason, many researchers have tried to provide HRA data extracted from simulated emergency conditions. Unfortunately, it is still doubtful to directly use these HRA data because different operational cultures may result in different human performances even under a similar task context. From this concern, previous studies claimed that Main Control Room (MCR) operators working in different \\{NPPs\\} share very similar cultural profile. In order to confirm this claim, the culture profiles of operating personnel (i.e., non-MCR and MCR operators) working in domestic \\{NPPs\\} are compared. As a result, although some discrepancies are observed, it is positive to say that operating personnel of \\{NPPs\\} share similar cultural profiles to some extent. This result can be regarded as the first step to provide technical underpinnings that are helpful for understanding human performance data collected from different countries.

Jinkyun Park; Wondea Jung

2015-01-01T23:59:59.000Z

93

Theoretical uncertainties in the nuclear matrix elements of neutrinoless double beta decay: The transition operator  

SciTech Connect (OSTI)

We explore the theoretical uncertainties related to the transition operator of neutrinoless double-beta (0???) decay. The transition operator used in standard calculations is a product of one-body currents, that can be obtained phenomenologically as in Tomoda [1] or imkovic et al. [2]. However, corrections to the operator are hard to obtain in the phenomenological approach. Instead, we calculate the 0??? decay operator in the framework of chiral effective theory (EFT), which gives a systematic order-by-order expansion of the transition currents. At leading orders in chiral EFT we reproduce the standard one-body currents of Refs. [1] and [2]. Corrections appear as two-body (2b) currents predicted by chiral EFT. We compute the effects of the leading 2b currents to the nuclear matrix elements of 0??? decay for several transition candidates. The 2b current contributions are related to the quenching of Gamow-Teller transitions found in nuclear structure calculations.

Menndez, Javier [Institut fr Kernphysik, Technische Universitt Darmstadt, 64289 Darmstadt, Germany and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fr Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

2013-12-30T23:59:59.000Z

94

Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study  

SciTech Connect (OSTI)

Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators.

Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

1987-08-01T23:59:59.000Z

95

Report to the US Nuclear Regulatory Commission on Analysis and Evaluation of Operational Data, 1986  

SciTech Connect (OSTI)

This annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during calendar year 1986. Comments and observations are provided on operating experience at nuclear power plants and other NRC licensees, including results from selected AEOD studies; summaries of abnormal occurrences involving US nuclear plants; reviews of licensee event reports and their quality, reactor scram experience from 1984 to 1986, engineered safety features actuations, and the trends and patterns analysis program; and assessments of nonreactor and medical misadministration events. In addition, the report provides the year-end status of all recommendations included in AEOD studies, and listings of all AEOD reports issued from 1980 through 1986.

none,

1987-05-01T23:59:59.000Z

96

Review of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations, January 2013  

Broader source: Energy.gov (indexed) [DOE]

of the of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background ........................................................................................................................................... 1 4.0 Methodology ......................................................................................................................................... 2

97

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - HSS Statement draft, November 24, 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-20-09 -20-09 1 Defense Nuclear Facilities Safety Board Public Meeting on Oversight of Complex, High Hazard Nuclear Operations Statement of Mr. Glenn Podonsky Chief Health, Safety and Security Officer U. S. Department of Energy November 24, 2009 INTRODUCTION Mr. Vice Chairman and Members of the Defense Nuclear Facilities Safety Board (DNFSB or "Board"), I am pleased to have this opportunity to discuss the Department's actions in response to the Board's Recommendation 2004-1 and other significant recommendations, initiatives, and management actions affecting nuclear safety in the Department. As the Department's Chief Health, Safety and Security Officer, I am here to update you on what we are doing and where we stand on pertinent issues, including our commitment to programs and processes aimed at the safe

98

Long-Term Environmental Monitoring of an Operating Deep Geologic Nuclear Waste Repository  

SciTech Connect (OSTI)

In the present energy dilemma in which we find ourselves, the magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. Nuclear energy must be a major portion of the distribution. One often-cited strategic hurdle to the commercial production of nuclear energy is the apparent lack of an acceptable nuclear waste repository. This issue has been quietly addressed at the U. S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP; see http://www.wipp.energy.gov), the closest population center of significant size being Carlsbad, New Mexico. WIPP has been operating for about nine years, disposing of over 250,000 drum-equivalents of nuclear waste. From the standpoint of addressing operational and environmental risk, as well as public fear, WIPP has had extensive human health and environmental monitoring. The Carlsbad Environmental Monitoring and Research Center is in the Institute for Energy and the Environment, in the College of Engineering at New Mexico State University. Located in Carlsbad, NM, CEMRC has been the independent monitoring facility for the area around WIPP from 1993 to the present, i.e., from six years before disposal operations began to nine years of waste disposal operations (www.cemcr.org). Based on the radiological analyses of monitoring samples completed to date for area residents and site workers, and for selected aerosols, soils, sediments, drinking water and surface waters, there is no evidence of increases in radiological contaminants in the region of WIPP that could be attributed to releases from WIPP. Levels of radiological and non-radiological analytes measured since operations began in 1999 have been within the range of baseline levels measured previously, and are within the ranges measured by other entities at the State and local levels since well before disposal phase operations began in 1999. (authors)

Conca, J.; Kirchner, Th.; Monk, J.; Sage, S. [Carlsbad Environmental Monitoring and Research Center, IEE NMSU, 1400 University Drive, Carlsbad, NM (United States)

2008-07-01T23:59:59.000Z

99

Analysis of Operation TEAPOT nuclear test BEE radiological and meteorological data  

SciTech Connect (OSTI)

This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the BEE nuclear test of Operation TEAPOT. Inconsistencies in the radiological data and their resolution are discussed. The methods of normalizing the radiological data to a standard time and estimating fallout-arrival times are presented. The meteorological situations on event day and the following day are described. A comparison of the WSNSO fallout analysis with an analysis performed in the 1950's is presented. The radiological data used to derive the WSNSO fallout pattern are tabulated in an appendix.

Quinn, V.E.

1986-08-01T23:59:59.000Z

100

Analysis of operation TEAPOT nuclear test ZUCCHINI radiological and meterological data  

SciTech Connect (OSTI)

This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the ZUCCHINI nuclear test of Operation TEAPOT. Inconsistencies in the radiological data and their resolution are discussed. The methods of normalizing the radiological data to a standard time and estimating fallout-arrival times are presented. The meteorological situations on event day and the following day are described. A comparison of the WSNSO fallout analysis with an analysis performed in the 1950's is presented. The radiological data used to derive the WSNSO 1986 fallout pattern are tabulated in an appendix.

Quinn, V.E.

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Concept of development of nuclear power based on LMFBR operation in open nuclear fuel cycle  

SciTech Connect (OSTI)

The preliminary assessments performed show that it is reasonable to investigate in the future the possibilities of FBR efficient operation with the open NFC. To improve its safety it is expedient to use the lead-bismuth alloy as a coolant. In order to operate with depleted uranium make-up it is necessary to meet a number of requirements providing the reactor criticality due to plutonium build-up and BR > 1. These requirements are as follows: a large core (20--25 m{sup 3}); a high fuel volume fraction (> 60%); utilization of dense metallic fuel; a high fuel burn-up--at a level of 20% of h.a. Making use of these reactors should allow the NP fuel base to be extended more than 10 times without making NFC closed. It provides improving NP safety during a sufficiently long stage of its development.

Toshinsky, G.I. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation)

1996-08-01T23:59:59.000Z

102

Operational air pollution prediction and doses calculation in case of nuclear emergency at Krko Nuclear Power Plant  

Science Journals Connector (OSTI)

The paper presents fully operational air pollution prediction and doses calculation system working in 2/24/7/365 mode for more than a decade in Krko Nuclear Power Plant (NPP). Krko NPP lies in complex terrain in Slovenia very close to Croatia border. A dedicated software is available for detailed estimation of possible radioactive emission (source term). This part of the procedure is used by trained NPP operators and then automatically coupled with dilution coefficients to obtain radionuclide air pollution concentrations. As radioactive material causes dose also with distant cloud shine not only by direct touch or inhalation, special procedure is implemented for dose estimation. We present in detail our algorithm for distant cloud shine estimation based on dilution coefficients calculation. The paper concludes by stressing the importance of correct air pollution prediction with best possible modelling techniques where achieving time and space accurate modelling is required for proper population protection.

Primož Mlakar; Marija Zlata Božnar; Borut Breznik

2014-01-01T23:59:59.000Z

103

Use of neural networks in the operation of nuclear power plants  

SciTech Connect (OSTI)

Application of neural networks to the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (a) diagnosing specific abnormal conditions, (b) detection of the change of mode of operation, (c) signal validation, (d) monitoring of check valves, (e) modeling of the plant thermodynamics, (f) emulation of core reload calculations, (g) analysis of temporal sequences in NRC's licensee event report,'' (h) monitoring of plant parameters, and (i) analysis of plant vibrations. Each of these projects and its status are described briefly in this article. the objective of each of these projects is to enhance the safety and performance of nuclear plants through the use of neural networks. 6 refs.

Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

104

Review of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations, January 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review of the Review of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background ........................................................................................................................................... 1 4.0 Methodology ......................................................................................................................................... 2

105

Experience in operating and upgrading the No. 5 unit of the Novovoronezh nuclear power plant practical base for developing a reliable source of nuclear energy  

Science Journals Connector (OSTI)

The No. 5 unit of the Novovoronezh nuclear power plant, starting commercial operations on September 26, 1980, is the first power-generating unit with a 1000 MW VVER in our country. The assimilation of its power g...

I. L. Vitkovskii

2011-03-01T23:59:59.000Z

106

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - NNSA Lines of Inquiry, November 24, 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Written Reponse to DNFSB Lines of Inquiry Garrett Harencak, BRIG GEN, USAF Principal Assistant Deputy Administrator for Military Application DNFSB Public Meeting Oversight of Complex, High-Hazard Nuclear Operations 1. Expectations of the senior Department leadership with respect to safety philosophy and safety management approach. LOI 1.1, What are your nuclear safety goals? Secretary of Energy Notice 35-91, Nuclear Safety Policy, established nuclear safety goals for DOE. The goals in this notice have not been updated or revised since its publication. The notice states: DOE has adopted two quantitative safety goals to limit the risks of fatalities associated with its nuclear operations. These goals are the same as those established for nuclear power plants by the Nuclear Regulatory Commission

107

The Application of Performance Assessment to Make Regulatory and Operational Changes in an Operating Nuclear Waste Repository  

SciTech Connect (OSTI)

This paper describes how performance assessment (PA) is used to support changes to the regulatory basis of the Waste Isolation Pilot Plant (WIPP). The WIPP, located near Carlsbad, New Mexico is operated by the U.S. Department of Energy (DOE) as the nation's only deep geologic repository for the disposal of transuranic nuclear waste. In 1998, the Environmental Protection Agency (EPA) certified that the WIPP met the performance requirements of 40 CFR Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes. A PA analysis of long term (10,000 year) repository performance successfully demonstrated that the probability and consequences of potential long-term releases of radionuclides to the accessible environment would be well below the established limits. These results were key in obtaining WIPP's initial certification, allowing the first shipment and disposal of nuclear waste in March of 1999. As disposal operations have taken place over the last eight years, changes have been identified in the regulatory and operational realms of the facility that would enhance waste disposal efficiency. Such changes, however, cannot be made without prior consent of the EPA. Therefore, changes planned by the DOE must be thoroughly described and supported by varying degrees of the same type of analyses that were conducted to demonstrate the WIPP's containment capabilities as presented in the initial compliance application submitted to EPA in 1996. Such analyses are used to identify the impacts or benefits of implementing the planned change. The DOE has successfully used performance assessment analyses for the approval of changes such as: 1) the disposal of super-compacted waste forms, and; 2) the adoption of new parameters and modeling assumptions In some cases the planned changes are simpler in nature than those listed above, and therefore only require targeted or simplified PA analyses to demonstrate the effect on performance. Targeted analyses have been used to successfully gain approval of the following: 1) a reduction in the amount of magnesium oxide (MgO) chemical buffer backfill that must be emplaced in the repository 2) a change in the repository mining/disposal horizon In addition to these approved changes, the DOE has used PA analyses to support the following planned change requests that await EPA's approval: 1) panel closure redesign 2) further reduction in the MgO-to-waste ratio Finally, this paper will discuss some of the changes that the DOE is currently preparing and plans to submit to the EPA for approval in the near future. This paper will describe how a set of analytical tools initially used to open the WIPP continues to have a role in making the repository more efficient and adaptable as variations in waste streams, operational demands, and other dynamic forces change the operating environment over time. (authors)

Patterson, R. [Department of Energy, Carlsbad Field Office, Carlsbad, NM (United States); Kirkes, R. [John Hart and Associates, P.A., Albuquerque, NM (United States)

2008-07-01T23:59:59.000Z

108

Regional long-term co-operation in the field of nuclear and radiation emergency preparedness  

Science Journals Connector (OSTI)

......information concerning energy policy, nuclear programme, nuclear safety...progressive governmental policy and interest to increase nuclear safety in the region. In...information concerning energy policy, nuclear programme, nuclear safety......

V. Sladek; E. Metke; K. Janko; J.-K. Hohenberg; P. Hofer

2004-06-01T23:59:59.000Z

109

CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing  

Office of Legacy Management (LM)

tudies/B ackground tudies/B ackground Book 1 CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing Areas Vol. 11, April 1988 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. CERCLA PRELIMINARY ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE WCILEAR WEAPONS T E S r n G AREAS Prepared by Water Resources Center Desert Research Institute University of Nevada System ,Prepared for U . S . Department of Energy Nevada Operations Office Las Vegas, Nevada under contract DE-AC08-85NV10384 A p r i l 1988 CONTENTS VOLUME I I. INTRODUCTION 1.1 11. NEVADA TEST SITE TESTING AREAS 2.1 Frenchman Flat (Area 5) 2.1.1 2.2 Yucca Flat (Areas 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, and 15)

110

Development of a hybrid intelligent system for on-line real-time monitoring of nuclear power plant operations  

E-Print Network [OSTI]

A nuclear power plant (NPP) has an intricate operational domain involving systems, structures and components (SSCs) that vary in scale and complexity. Many of the large scale SSCs contribute to the lost availability in the ...

Yildiz, Bilge, 1976-

2003-01-01T23:59:59.000Z

111

November 24, 2009, Board Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - Transcript  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neal R. Gross & Co., Inc. Neal R. Gross & Co., Inc. 202-234-4433 Page 1 UNITED STATES OF AMERICA + + + + + DEFENSE NUCLEAR FACILITIES SAFETY BOARD + + + + + OVERSIGHT OF COMPLEX, HIGH-HAZARD NUCLEAR OPERATIONS + + + + + TUESDAY NOVEMBER 24, 2009 + + + + + The Board met in the DNFSB Hearing Room at 625 Indiana Avenue, N.W., Suite 700, Washington, DC 20004, at 9:00 a.m., John E. Mansfield, Vice Chairman, presiding. UPRESENTU : JOHN E. MANSFIELD, Ph.D., Vice Chairman JOSEPH F. BADER, Board Member LARRY W. BROWN, Board Member PETER S. WINOKUR, Ph.D., Board Member USTAFF PRESENTU : RICHARD A. AZZARO, General Counsel TIMOTHY J. DWYER, Technical Director BRIAN GROSNER, General Manager RICHARD E. TONTODONATO, Deputy Technical Director Neal R. Gross & Co., Inc.

112

International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, October 4-8, 2004.  

E-Print Network [OSTI]

for assuring quality of software. In the area of nuclear power plant control systems, testing on softwareThe 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, October 4-8, 2004. Paper ID. N6P298 Direct Control Flow Testing on Function Block Diagrams

113

Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1  

SciTech Connect (OSTI)

The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

NONE

1995-08-01T23:59:59.000Z

114

Utilization of the Philippine Research Reactor as a training facility for nuclear power plant operators  

SciTech Connect (OSTI)

The Philippines has a 1-MW swimming-pool reactor facility operated by the Philippine Atomic Energy Commission (PAEC). The reactor is light-water moderated and cooled, graphite reflected, and fueled with 90% enriched uranium. Since it became critical in 1963 it has been utilized for research, radioisotope production, and training. It was used initially in the training of PAEC personnel and other research institutions and universities. During the last few years, however, it has played a key role in training personnel for the Philippine Nuclear Power Project (PNPP).

Palabrica, R.J.

1981-01-01T23:59:59.000Z

115

DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA  

SciTech Connect (OSTI)

The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

2009-07-12T23:59:59.000Z

116

Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

2013-07-03T23:59:59.000Z

117

Applications of neural networks to monitoring and decision making in the operation of nuclear power plants. Summary  

SciTech Connect (OSTI)

Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of ``noise`` data from TVA`s Sequoyah Nuclear Power Plant, and (5) examination of the NRC`s database of ``Letter Event Reports`` for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

1990-12-31T23:59:59.000Z

118

Minimization of formation of wastes from the operation of Czechoslovak nuclear power plants  

SciTech Connect (OSTI)

The problem of generation of liquid radioactive wastes at VVER 440 reactor type nuclear power plants at Jaslovske Bohunice, and Dukovany is discussed. Treatment processes at the NPPs are described. The process during which the operating liquid radioactive wastes emerge is analyzed and the major contributors are identified. The technical approaches to the optimization of the performance of the purification stations that have been implemented at the NPPs with the aim to reduce the generation of radioactive wastes are outlined. The basic results of investigation into the potential of membrane processes are given, as are the results of pilot scale experiments concerned with the use of reverse osmosis in the purification of selected water streams. Attention is also devoted to technical solutions that have been introduced in the design of the Temelin NPP. These solutions are based on the acquired experience and recommendations of foreign experts.

Stepanek, J.; Mohyla, O. [DIAMO, Prague (Czech Republic); Kniz, I.; Zboray, L. [Nuclear Power Plant, Jaslovske Bohunice (Slovakia); Cada, K.; Wild, J. [Nuclear Power Plant, Dukovany (Czech Republic); Seifert, P. [Nuclear Power Plant, Temelin (Czech Republic); Lastovicka, Z. [Energoproject Prague (Czech Republic)

1993-12-31T23:59:59.000Z

119

OECD/NEA study on the economics of the long-term operation of nuclear power plants  

SciTech Connect (OSTI)

The OECD Nuclear Energy Agency (NEA) established the Ad hoc expert group on the Economics of Long-term Operation (LTO) of Nuclear Power Plants. The primary aim of this group is to collect and analyse technical and economic data on the upgrade and lifetime extension experience in OECD countries, and to assess the likely applications for future extensions. This paper describes the key elements of the methodology of economic assessment of LTO and initial findings for selected NEA member countries. (authors)

Lokhov, A.; Cameron, R. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

2012-07-01T23:59:59.000Z

120

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters  

Broader source: Energy.gov [DOE]

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters.

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method for loading, operating, and unloading a ball-bed nuclear reactor  

SciTech Connect (OSTI)

This patent describes a method of operating a ball-bed nuclear reactor with fuel element balls. Some have a fissionable material content different from that of others of the balls. It consists of: initially partly filling a reactor core with fuel balls of sufficient fissionable material content for establishing criticality and a desired level of power production at the completion of the partial filling and then, without any further filling of the reactor cavern, starting reactor operation; thereafter without any removal of fuel balls from the reactor cavern, filling fuel balls continually or in groups at relatively short intervals into the reactor cavern during increasing burning up of the fuel balls already, for compensation of the diminishing fissionable material content of the reactor core constituted by the fuel balls until a final total quantity of filling is reached; after the final filling quantity is reached and burning up has occurred, shutting down the reactor, cooling it off, releasing the pressure in the cavern, and thereafter unloading all the fuel balls from the reactor cavern, unloading being begun when the reactor is shut down and being completed before the reactor is restarted.

Teuchert, E.; Haas, K.A.; Gerwin, H.

1987-09-22T23:59:59.000Z

122

Sliding Mode Control for Pressurized-Water Nuclear Reactors in load following operations with bounded xenon oscillations  

Science Journals Connector (OSTI)

Abstract One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, sliding mode control (SMC) which is a robust nonlinear controller is designed to control the Pressurized-Water Nuclear Reactor (PWR) power for the load-following operation problem that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The reactor core is simulated based on the two-point nuclear reactor model and one delayed neutron group. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability. Results show that the proposed controller for the load-following operation is sufficiently effective so that the xenon oscillations are kept bounded in the considered region.

G.R. Ansarifar; S. Saadatzi

2015-01-01T23:59:59.000Z

123

Report to the US Nuclear Regulatory Commission on analysis and evaluation of operational data - 1987: Power reactors  

SciTech Connect (OSTI)

This annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during 1987. The report is published in two volumes. NUREG-1272, Vol. 2, No. 1, covers Power Reactors and presents an overview of the operating experience of the nuclear power industry, with comments regarding the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year, and summarizes information from Licensee Event Reports, the NRC's Operations Center, and Diagnostic Evaluations. NUREG-1272, Vol. 2, No. 2, covers Nonreactors and presents a review of the nonreactors events and misadministration reports that were reported in 1987 and a brief synopsis of AEOD studies published in 1987. Each volume contains a list of the AEOD Reports issued for 1980-1987.

none,

1988-10-01T23:59:59.000Z

124

Implementation of the MPC and A Operations Monitoring (MOM) System at IRT-T FSRE Nuclear Power Institute (NPI)  

SciTech Connect (OSTI)

The Material Protection, Control and Accounting (MPC&A) Program has been working since 1994 with nuclear sites in Russia to upgrade the physical protection (PP) and material control and accounting (MC&A) functions at facilities containing weapons usable nuclear material. In early 2001, the MPC&A program initiated the MPC&A Operations Monitoring (MOM) Project to monitor facilities where MPC&A upgrades have been installed to provide increased confidence that personnel are present and vigilant, provide confidence that security procedures are being properly performed and provide additional assurance that nuclear materials have not been stolen. The MOM project began as a pilot project at the Moscow State Engineering Physics Institute (MEPhI) and a MOM system was successfully installed in October 2001. Following the success of the MEPhI pilot project, the MPC&A Program expanded the installation of MOM systems to several other Russian facilities, including the Nuclear Physics Institute (NPI) in Tomsk. The MOM system was made operational at NPI in October 2004. This paper is focused on the experience gained from operation of this system and the objectives of the MOM system. The paper also describes how the MOM system is used at NPI and, in particular, how the data is analyzed. Finally, potential expansion of the MOM system at NPI is described.

Sitdikov,I.; Zenkov, A.; Tsibulnikov, Y.; Duncan, C.; Brownell, L.; Pratt, W.T.; Carbonaro, J.; White, R.M.; Coffing, J.A.

2008-07-13T23:59:59.000Z

125

Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon  

Science Journals Connector (OSTI)

Using selective laser extraction technique combined with sensitive ion-counting mass spectrometry, we have analyzed the isotopic structure of fission noble gases in U-free La-Ce-Sr-Ca aluminous hydroxy phosphate associated with the 2 billion yr old Oklo natural nuclear reactor. In addition to elevated abundances of fission-produced Zr, Ce, and Sr, we discovered high (up to 0.03??cm3???STP/g) concentrations of fission Xe and Kr, the largest ever observed in any natural material. The specific isotopic structure of xenon in this mineral defines a cycling operation for the reactor with 30-min active pulses separated by 2.5h dormant periods. Thus, nature not only created conditions for self-sustained nuclear chain reactions, but also provided clues on how to retain nuclear wastes, including fission Xe and Kr, and prevent uncontrolled runaway chain reaction.

A. P. Meshik; C. M. Hohenberg; O. V. Pravdivtseva

2004-10-27T23:59:59.000Z

126

Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report  

SciTech Connect (OSTI)

The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

Not Available

1993-09-01T23:59:59.000Z

127

Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

Murray, A.M.; Marra, J.E.; Wilmarth, W.R. [Savannah River National Laboratory, Aiken, SC 29808 (United States); McGuire, P.W.; Wheeler, V.B. [Department of Energy-Savannah River Operations Office, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

128

Regulatory analysis for amendments to regulations for the environmental review for renewal of nuclear power plant operating licenses. Final report  

SciTech Connect (OSTI)

This regulatory analysis provides the supporting information for a proposed rule that will amend the Nuclear Regulatory Commission`s environmental review requirements for applications for renewal of nuclear power plant operating licenses. The objective of the proposed rulemaking is to improve regulatory efficiency by providing for the generic evaluation of certain environmental impacts associated with nuclear plant license renewal. After considering various options, the staff identified and analyzed two major alternatives. With Alternative A, the existing regulations would not be amended. This option requires that environmental reviews be performed under the existing regulations. Alternative B is to assess, on a generic basis, the environmental impacts of renewing the operating license of individual nuclear power plants, and define the issues that will need to be further analyzed on a case-by-case basis. In addition, Alternative B removes from NRC`s review certain economics-related issues. The findings of this assessment are to be codified in 10 CFR 51. The staff has selected Alternative B as the preferred alternative.

NONE

1996-05-01T23:59:59.000Z

129

Nuclear Returns  

Science Journals Connector (OSTI)

Nuclear Returns ... For the first time since 1978, the Nuclear Regulatory Commission has given the green light for a new U.S. nuclear power plant. ... NRC granted a license to Southern Co. to build and operate twin 1,100-MW reactors adjacent to two operating nuclear power plants at its Vogtle nuclear facility, near Waynesboro, Ga. ...

JEFF JOHNSON

2012-02-19T23:59:59.000Z

130

Time-Dependent Reliability Analysis of Nuclear Reactor Operators Using Probabilistic Network Models  

Science Journals Connector (OSTI)

Human factors are very important for the reliability of a nuclear power plant. Human behavior has essentially time-dependent nature. The details of thinking and decision making processes are important for deta...

Yoshiaki Oka; Kenji Miyata; Hideki Kodaira

1988-01-01T23:59:59.000Z

131

Requirements for Computer Based-Procedures for Nuclear Power Plant Field Operators Results from a Qualitative Study  

SciTech Connect (OSTI)

Although computer-based procedures (CBPs) have been investigated as a way to enhance operator performance on procedural tasks in the nuclear industry for almost thirty years, they are not currently widely deployed at United States utilities. One of the barriers to the wide scale deployment of CBPs is the lack of operational experience with CBPs that could serve as a sound basis for justifying the use of CBPs for nuclear utilities. Utilities are hesitant to adopt CBPs because of concern over potential costs of implementation, and concern over regulatory approval. Regulators require a sound technical basis for the use of any procedure at the utilities; without operating experience to support the use CBPs, it is difficult to establish such a technical basis. In an effort to begin the process of developing a technical basis for CBPs, researchers at Idaho National Laboratory are partnering with industry to explore CBPs with the objective of defining requirements for CBPs and developing an industry-wide vision and path forward for the use of CBPs. This paper describes the results from a qualitative study aimed at defining requirements for CBPs to be used by field operators and maintenance technicians.

Katya Le Blanc; Johanna Oxstrand

2012-05-01T23:59:59.000Z

132

Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations  

Science Journals Connector (OSTI)

One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, a robust nonlinear model predictive control for the load-following operation problem is proposed that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The controller imposes restricted state constraints on the predicted trajectory during optimization which guarantees robust satisfaction of state constraints without restoring to a minmax optimization problem. Simulation results show that the proposed controller for the load-following operation is so effective so that the xenon oscillations kept bounded in the given region.

H. Eliasi; M.B. Menhaj; H. Davilu

2011-01-01T23:59:59.000Z

133

May 21, 2004, Board letter forwarding Recommendation 2004-1, Oversight of Complex, High-Hazard Nuclear Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

John I Conway, Chdmnm A J Fggenberger, Vice C h u m a n John F Mmsfield R Bruce lMalrhews 625 Indmna Avenue, NW, Suite 700, Washmgton, D C 20004-290 1 (202) 694-7000 May 2 1,2004 The Honorable Spencer Abraham Secretary of Energy 1000 Independence Avenue, SW Washington, DC 20585- 1000 Dear Secretary Abraham: On May 2 1 , 2004, the Defense Nuclear Facilities Safety Board (Board), in accordance with 42 U.S.C. 8 2286d(a), unanimously approved Recommendation 2004-1, which is enclosed for your consideration. Recommendation 2004- 1 deals with Oversight of Complex, High-Hazard Nuclear Operations. After your receipt of this recommendation and as required by 42 U.S.C. 0 2286d(a), the Board will promptly make it available to the public. The Board believes that the

134

System dynamics modeling for human performance in nuclear power plant operation  

E-Print Network [OSTI]

Perfect plant operation with high safety and economic performance is based on both good physical design and successful organization. However, in comparison with the affection that has been paid to technology research, the ...

Chu, Xinyuan

2006-01-01T23:59:59.000Z

135

U.S. Department of Energy Oak Ridge Operations Nuclear Facility...  

Broader source: Energy.gov (indexed) [DOE]

Guide Review Questions More Documents & Publications Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1,...

136

U.S. Department of Energy, Oak Ridge Operations Office Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

Orders Self-Study Program Safety Basis Documentation Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1,...

137

November 24, 2009, Board Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - Transcript  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-234-4433 2-234-4433 Neal R. Gross & Co., Inc. Page 1 UNITED STATES OF AMERICA + + + + + DEFENSE NUCLEAR FACILITIES SAFETY BOARD + + + + + WEDNESDAY MAY 12, 2010 + + + + + The Board met in the DNFSB Hearing Room at 625 Indiana Avenue, N.W., Suite 300, Washington, D.C., Peter S. Winokur, Chairman, presiding. PRESENT: PETER S. WINOKUR, Chairman JOHN E. MANSFIELD, Vice Chairman JOSEPH F. BADER, Board Member LARRY W. BROWN, Board Member JESSIE H. ROBERSON, Board Member STAFF PRESENT: RICHARD A. AZZARO, General Counsel TIMOTHY J. DWYER, Technical Director

138

Study of power distribution in the CZP, HFP and normal operation states of VVER-1000 (Bushehr) nuclear reactor core by coupling nuclear codes  

Science Journals Connector (OSTI)

Abstract In this research, the simulation of one-sixth of VVER-1000 (Bushehr) reactor core is carried out by WIMS-D4 nuclear code, based on symmetry of core and also by information obtained from FSAR. The cross sections of some nuclides are obtained by WIMS-D4 from the beginning of cycle (BOC) to the end of cycle (EOC), and they are transferred into the CITATION code as inputs. In the next stage, the amounts of neutron fluxes and power of reactor core are obtained by CITATION code in the CZP and HFP states. Then, the received products are returned again into the extended program cycle, thereby distributions of neutron fluxes and power are finally depicted. In the meantime, the space distribution of neutron fluxes and power throughout the core are presented during the normal operation by this simulation. It can be inferred that if the reactor operation continues, a flat power distribution will be made in the reactor core that might cause maximum power.

Mohsen Rafiei Karahroudi; Seyed Alireza Mousavi Shirazi

2015-01-01T23:59:59.000Z

139

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - Chairman's Opening Statement - May 12, 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHAIRMAN'S OPENING STATEMENT CHAIRMAN'S OPENING STATEMENT GOOD MORNING. MY NAME IS PETER WINOKUR AND I AM THE CHAIRMAN OF THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD. I WILL PRESIDE OVER THIS PUBLIC MEETING AND HEARING. I WOULD LIKE TO INTRODUCE THE MEMBERS OF THE SAFETY BOARD WHO ARE ALL PRESENT HERE TODAY. TO MY IMMEDIATE LEFT IS DR. JOHN MANSFIELD, AND TO HIS LEFT IS MR. JOSEPH BADER. ON MY RIGHT IS MR. LARRY BROWN, AND TO HIS RIGHT IS MS. JESSIE ROBERSON. WE FIVE CONSTITUTE THE BOARD. THE BOARD'S GENERAL COUNSEL, RICHARD AZZARO, IS SEATED TO MY FAR LEFT, AND NEXT TO HIM IS THE BOARD'S GENERAL MANAGER, BRIAN GROSNER. THE BOARD'S TECHNICAL DIRECTOR, TIMOTHY DWYER, IS SEATED TO MY FAR RIGHT. SEVERAL MEMBERS OF OUR STAFF CLOSELY INVOLVED WITH OVERSIGHT OF THE DEPARTMENT OF ENERGY'S DEFENSE

140

Nuclear Power 2010 Program Lessons Learned Report on the Combined Construction and Operating License/Design Certification Demonstration Projects  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power 2010 Program Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report August 30, 2012 Prepared by Longenecker and Associates DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An Overview of strategic measures to assess workforce needs and ensure technology transfer to meet current and future nuclear power operations  

SciTech Connect (OSTI)

Between 1956 and 1989, the number of operating commercial nuclear power plants in the United States increased from none to 109. With the exception of a few plants that were still in final construction, no new nuclear power plants were ordered in the United States as the new millennium began. In 2005, the federal government pronounced the need for new electric power generating systems during the first quarter of the 21. century. The need comes from a desire to curb our reliance on fossil fuels, as well as to provide for a cleaner environment. One of those fuel systems noted was nuclear energy. Given the time between the last active period of nuclear power plant development and construction, there is a need to supply a talented and well-prepared workforce to operate the new plants. It will also be necessary to assess the needs of our current fleet of operating nuclear power plants, of which many are in the process of re-licensing, yet also facing an aging plant workforce. This paper will review and discuss measures to assess diverse workforce needs and technology transfer to meet current licensing requirements as that of future nuclear power plant development in the United States. (authors)

Vincenti, J.R. [acuri.net, 1344 Curtin Street, State College, PA (United States); Stigers, R.A. [Senior Health Physicist-Radwaste, PPL Susquehanna, Berwick, PA (United States)

2007-07-01T23:59:59.000Z

142

"1. W A Parish","Coal","NRG Texas Power LLC",3664 "2. South Texas Project","Nuclear","STP Nuclear Operating Co",2560  

U.S. Energy Information Administration (EIA) Indexed Site

Texas" Texas" "1. W A Parish","Coal","NRG Texas Power LLC",3664 "2. South Texas Project","Nuclear","STP Nuclear Operating Co",2560 "3. Martin Lake","Coal","TXU Generation Co LP",2425 "4. Comanche Peak","Nuclear","TXU Generation Co LP",2406 "5. Monticello","Coal","TXU Generation Co LP",1890 "6. Sabine","Gas","Entergy Texas Inc.",1814 "7. Limestone","Coal","NRG Texas Power LLC",1689 "8. Fayette Power Project","Coal","Lower Colorado River Authority",1641 "9. Forney Energy Center","Gas","FPLE Forney LP",1640

143

Report on Follow-up Inspection of the Double Funding of Security for Special Nuclear Material at Richland Operations, IG-0378  

Broader source: Energy.gov (indexed) [DOE]

1 1 INFORMATION: Report on "Follow-up Inspection of the Double Funding of Security for Special Nuclear Material at the Richland Operations Office" The Secretary BACKGROUND: On June 3, 1993, the Deputy Assistant Inspector General for Inspections issued a Letter Report to the Department's Acting Chief Financial Officer which stated that during Fiscal Year 1993 the Department had requested and received $60 million, double the funding needed, for the safeguard and security of special nuclear material at the Richland Operations Office. In response to that Report, the Acting Chief Financial Officer took control of the funds and placed them into a management reserve account. A follow-up inspection was initiated to:

144

Monthly/Annual Energy Review - nuclear section  

Reports and Publications (EIA)

Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

2015-01-01T23:59:59.000Z

145

Expert Identity construct in analysing prerequisites for expertise development: a case study of nuclear power plant operators on-the-job training  

Science Journals Connector (OSTI)

This article discusses how shifting the focus of research to the emotional side of human actions and cognition could create new perspectives on the problem of how to support the human operator in the control of rare disturbances. A new construct, Expert ... Keywords: Emotions, Expert Identity, Nuclear power plant, On-the-job training, Process control, Work analysis

Maaria Nuutinen

2005-11-01T23:59:59.000Z

146

Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon  

E-Print Network [OSTI]

of variability of the long-term fundamental physical constants [5,6] to storage of nuclear wastes in geological on how to retain nuclear wastes, including fission Xe and Kr, and prevent uncontrolled runaway chain

147

Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility  

SciTech Connect (OSTI)

As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the add a source basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.

Cherkas, Dmytro

2011-10-01T23:59:59.000Z

148

Supplement Analysis for the Final Environmental Impact Statement for the Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components  

Broader source: Energy.gov (indexed) [DOE]

D D E P A R T M E N T O F E N E R G Y U N I T E D S T A T E S O F A M E R I C A SUPPLEMENT ANALYSIS FOR THE FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE CONTINUED OPERATION OF THE PANTEX PLANT AND ASSOCIATED STORAGE OF NUCLEAR WEAPON COMPONENTS DOE/EIS-0225/SA-03 United States Department of Energy National Nuclear Security Administration Pantex Site Operations P.O. Box 30030 Amarillo, Texas 79120-0030 February 2003 i Summary The U.S. Department of Energy's (DOE's) National Environmental Policy Act (NEPA) Implementing Procedures at 10 CFR 1021.330(d) require evaluation of its site-wide environmental impact statements (EISs) at least every 5 years by preparation of a supplement analysis (SA), as provided in 10 CFR 1021.314. Based on the SA, a determination is made as to whether the existing EIS remains

149

Light Water Reactor Sustainability (LWRS) Initiative Science-Based R&D to Extend Nuclear Plant Operation  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Nuclear Energy Updates Dr. Pete Lyons Acting Assistant Secretary for Nuclear Energy U.S. Department of Energy December 9, 2010 NEAC Meeting Leadership Changes Pete Miller retired Pete Lyons - Acting NE-1 Shane Johnson - Acting NE-2 Dennis Miotla - Acting COO Monica Regalbuto - Acting DAS for Fuel Cycle Technologies John Herczeg- Acting ADAS for Fuel Cycle Technologies John Kelly - DAS for Nuclear Reactor Technologies Bob Boudreau- Acting ADAS International Nuclear Energy Coop Monica Regalbuto John Kelly NE University Programs (NEUP) - Overview and FY 2011 Schedule NEUP FY 2011 Solicitations Schedule RPA/FOA Pre- Applications Proposals Due Awards Announced R&D (PS and Blue Sky) Oct. '10 Dec. '10 Feb. '11 May '11 Integrated Research Projects (IRP) Dec. '10 Late Jan '11

150

Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249  

SciTech Connect (OSTI)

Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC1, Chicago, IL (United States)] [Nuclear Power Technologies, Sargent and Lundy LLC1, Chicago, IL (United States)

2013-07-01T23:59:59.000Z

151

Aspects of operational radiation protection during dismantling of nuclear facilities relevant for the estimation of internal doses  

Science Journals Connector (OSTI)

......its decommissioning plan. In that period...including clearance from regulatory control, and to...analysis includes a review of the documentation...decommissioning standard review plan. NUREG 1727. 6...Journal Article Review | Humans Nuclear......

T. Labarta

2007-04-01T23:59:59.000Z

152

Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Numbers 50-390 and 50-391). Supplement Number 13  

SciTech Connect (OSTI)

This report supplements the Safety Evaluation Report (SER), NUREG-0847 (June 1982), Supplement No. 1 (September 1982), Supplement No. 2 (January 1984), Supplement No. 3 (January 1985), Supplement No. 4 (March 1985), Supplement No. 5 (November 1990), Supplement No. 6 (April 1991), Supplement No. 7 (September 1991), Supplement No. 8 (January 1992), Supplement No. 9 (June 1992), Supplement No. 10 (October 1992), Supplement No. 11 (April 1993), and Supplement No. 12 (October 1993), issued by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the outstanding and confirmatory items, and proposed license conditions identified in the SER. These issues relate to: Design criteria -- structures, components, equipment, and systems; Reactor; Instrumentation and controls; Electrical power systems; Auxiliary systems; Conduct of operations; Accident analysis; and Quality assurance.

Not Available

1994-04-01T23:59:59.000Z

153

Nuclear Science & Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

154

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - Statement of Thomas P. DAgostino - May 12, 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Thomas P. D'Agostino of Thomas P. D'Agostino Administrator, National Nuclear Security Administration Defense Nuclear Facilities Safety Board Public Hearing on Line and Independent Oversight May 12, 2010 Mr. Chairman, members of the Board, thank you for this opportunity to meet with you in this public forum to discuss effective oversight of our nuclear facilities. You provided written lines of inquiry prior to this meeting, and my formal response is organized around them. Of course, I will also be happy to answer any additional questions you may have. Let me begin by describing our overall oversight approach as it currently exists. I will discuss its effectiveness, point out both its strengths and weaknesses, and use it as a basis for describing the changes we are considering. I will then discuss our approach to

155

U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)  

Broader source: Energy.gov [DOE]

"This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak...

156

July 24, 2006, Department letter providing status and path forward for the 2004-1 implementation plan, Oversight of Complex, High-Hazard Nuclear Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 24, 2006 July 24, 2006 The Honorable A. J. Eggenberger Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, DC 20004-294 1 Dear Mr. Chairman: In June 2005, I provided you with a copy of the Department's revised Implementation Plan to Improve Oversight of Nuclear Operations in response to Board recommendation 2004- 1 . Since that time, the Department has completed numerous planned actions and has learned from this experience how best to sustain real improvement in this area. Based on the feedback to date, we are preparing to make a course correction on our implementation plan to improve its effectiveness and to bolster line management accountability. To this end, we plan to revise our 2004-1 implementation plan and provide you with this revision by

157

Countering Nuclear Terrorism | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Countering Nuclear Terrorism | National Nuclear Security Administration Countering Nuclear Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Countering Nuclear Terrorism Home > Our Mission > Countering Nuclear Terrorism Countering Nuclear Terrorism NNSA provides expertise, practical tools, and technically informed policy

158

Nuclear Forensics | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Forensics | National Nuclear Security Administration Forensics | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Forensics Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Nuclear Forensics Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security

159

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

2014-07-10T23:59:59.000Z

160

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

2015-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - Vice Chairman's Opening Statement - November 24, 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VICE CHAIRMAN'S OPENING STATEMENT VICE CHAIRMAN'S OPENING STATEMENT GOOD MORNING. MY NAME IS JOHN MANSFIELD AND I AM THE VICE CHAIRMAN OF THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD. I WILL PRESIDE OVER THIS PUBLIC MEETING AND HEARING. I WOULD LIKE TO INTRODUCE THE MEMBERS OF THE SAFETY BOARD WHO ARE PRESENT HERE TODAY. TO MY IMMEDIATE LEFT IS MR. JOSEPH BADER. AND TO HIS LEFT IS DR. PETER WINOKUR. ON MY RIGHT IS MR. LARRY BROWN. WE FOUR CONSTITUTE THE BOARD. THE BOARD'S GENERAL COUNSEL, RICHARD AZZARO, IS SEATED TO MY FAR LEFT, AND NEXT TO HIM IS THE BOARD'S GENERAL MANAGER, BRIAN GROSNER. THE BOARD'S TECHNICAL DIRECTOR, TIM DWYER, IS SEATED TO MY FAR RIGHT. SEVERAL MEMBERS OF OUR STAFF CLOSELY INVOLVED WITH OVERSIGHT OF THE DEPARTMENT OF ENERGY'S DEFENSE NUCLEAR FACILITIES ARE ALSO

162

Radiation source rate estimation through data assimilation of gamma dose rate measurements for operational nuclear emergency response systems  

Science Journals Connector (OSTI)

This paper presents an evaluation of an innovative data assimilation method that has been recently developed in NCSR Demokritos for estimating an unknown emission rate of radionuclides in the atmosphere, with real-scale experimental data. The efficient algorithm is based on the assimilation of gamma dose rate measured data in the Lagrangian atmospheric dispersion model DIPCOT and uses variational principles. The DIPCOT model is used in the framework of the nuclear emergency response system (ERS) RODOS. The evaluation is performed by computational simulations of dispersion of Ar-41 that was emitted routinely by the Australian Nuclear Science and Technology Organisation's (ANSTO) previous research reactor, HIFAR, located in Sydney, Australia. In this paper the algorithm is evaluated against a more complicated case than the others used in previous studies: there was only one monitoring station available each day and the site topography is characterised as moderately complex. Overall the estimated release rate approaches the real one to a very satisfactory degree as revealed by the statistical indicators of errors.

Vasiliki Tsiouri; Spyros Andronopoulos; Ivan Kovalets; Leisa L. Dyer; John G. Bartzis

2012-01-01T23:59:59.000Z

163

Nuclear / Radiological Advisory Team | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

/ Radiological Advisory Team | National Nuclear Security / Radiological Advisory Team | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear / Radiological Advisory Team Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations > Nuclear / Radiological Advisory Team Nuclear / Radiological Advisory Team

164

IDAHO STATE UNIVERSITY Chad Pope Department of Nuclear Engineering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nuclear safety, nuclear criticality safety, nuclear facility operations and pyroprocessing. He teaches courses in reactor physics, nuclear criticality safety, Monte Carlo...

165

Nuclear reactors in the United States  

Science Journals Connector (OSTI)

Nuclear reactors in the United States ... A chart listing the operating and planned nuclear reactors in the United States. ... Nuclear / Radiochemistry ...

Hubert N. Alyea

1956-01-01T23:59:59.000Z

166

Light Water Reactor Sustainability (LWRS) Initiative Science-Based R&D to Extend Nuclear Plant Operation  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 New Program Proposal for Fiscal Year 2011 - Modified Open Cycle Carter "Buzz" Savage Nuclear Energy Advisory Committee Meeting April 29, 2010 Washington, DC April 29, 2010 Recycle of Used Fuel Option to recycle used fuel has been the subject of much debate and discussion. Nonproliferation issues and economics have limited recycle options. Recycle of used fuel enables increased utilization of uranium resource and potential waste management benefits. - Once through fuel cycle uses less than 1% of energy value of the uranium. Courtesy AREVA 2 April 29, 2010 Summary of Fuel Cycle Options 3 Once-Through Fuel Cycle - One pass through reactor, used fuel directly disposed in a geologic repository. Modified Open Cycle - No or limited separations steps and

167

Nuclear Deterrence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Deterrence Nuclear Deterrence Nuclear Deterrence LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 A B-2 Spirit bomber refuels from a KC-135 Stratotanker A B-2 Spirit bomber refuels from a KC-135 Stratotanker. Contact Operator Los Alamos National Laboratory (505) 667-5061 Charlie McMillan, Director: "For the last 70 years there has not been a world war, and I have to think that our strong deterrent has something to do with that fact." Mission nuclear weapons Charlie McMillan, Director of Los Alamos National Laboratory 1:06 Director McMillan on nuclear deterrence While the role and prominence of nuclear weapons in U.S. security policy

168

Review and evaluation of Transamerica Delaval, Inc. , diesel engine reliability and operability: Grand Gulf Nuclear Station Unit 1  

SciTech Connect (OSTI)

PNL and its consultants conclude that the TDI diesel engines at the GGNS have the needed operability and reliability to fulfill their intended (auxiliary) emergency power function for the first refueling cycle. This conclusion is reached with a number of understandings regarding limits to the engine requirements, NRC concurrence with MP and L findings/conclusions regarding items to be supplied to NRC, limitations on the engine Brake Mean Effective Pressure (BMEP), and MP and L's implementation of the modifications to their proposed surveillance and maintenance program.

Not Available

1984-07-01T23:59:59.000Z

169

Innovations in Nuclear Infrastructure  

Broader source: Energy.gov (indexed) [DOE]

Innovations in Nuclear Infrastructure Innovations in Nuclear Infrastructure and Education (INIE) Innovations in Nuclear Infrastructure and Education (INIE) Presented to the Nuclear Energy Research Advisory Committee Crystal City, Virginia John Gutteridge Director, University Programs Office of Nuclear Energy, Science and Technology September 30 - October 1, 2002 Office of Nuclear Energy, Science and Technology Gutteridge/Sep-Oct_02 INIE-NERAC.ppt (2) INIE The Stimuli .... INIE The Stimuli .... 6 Declining number of operating university research/training reactors 6 Dwindling student population in nuclear engineering 6 Closing or loss of identity of university nuclear engineering programs 6 Looming shortage of nuclear engineering graduates 6 Threat of additional reactor closures -- Cornell, Michigan, MIT

170

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

171

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

172

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

173

Arkansas Nuclear Profile - Arkansas Nuclear One  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

174

NRC okays nuclear merger at Entergy Corp  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission (NRC) has approved the consolidation of Entergy Corp's nuclear operations into the utility's proposed nuclear management company, Entergy Operations Inc. The NRC action is a significant step in a consolidation process that would place operational responsibility for Entergy's nuclear plants in Mississippi, Arkansas, and Louisiana with Entergy Operations. The NRC action would authorize transfer of the operating licenses for Arkansas Nuclear One (ANO) at Russellville, Ark, Waterford-3 at Taft, La, and Grand Gulf-1 at Port Gibson, Miss, to Entergy Operations. A consolidated nuclear organization will allow for a more focused management structure in its nuclear operations and will result in greater operational efficiencies.

Not Available

1990-02-01T23:59:59.000Z

175

Nuclear Nonproliferation Program Offices | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nonproliferation Program Offices | National Nuclear Security Nonproliferation Program Offices | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Nonproliferation Program Offices Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices Nuclear Nonproliferation Program Offices One of the gravest threats the United States and the international

176

Nuclear Nonproliferation Program Offices | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nonproliferation Program Offices | National Nuclear Security Nonproliferation Program Offices | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Nonproliferation Program Offices Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices Nuclear Nonproliferation Program Offices One of the gravest threats the United States and the international

177

Nuclear Operations Application to Environmental Restoration at Corrective Action Unit 547, Miscellaneous Contaminated Waste Sites, at the Nevada National Security Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office has responsibility for environmental restoration at the Nevada National Security Site (formerly the Nevada Test Site). This includes remediation at locations where past testing activities have resulted in the release of plutonium to the environment. One of the current remediation efforts involves a site where an underground subcritical nuclear safety test was conducted in 1964. The underground test was vented through a steel pipe to the surface in a closed system where gas samples were obtained. The piping downstream of the gas-sampling apparatus was routed belowground to a location where it was allowed to vent into an existing radioactively contaminated borehole. The length of the pipe above the ground surface is approximately 200 meters. This pipe remained in place until remediation efforts began in 2007, at which time internal plutonium contamination was discovered. Following this discovery, an assessment was conducted to determine the quantity of plutonium present in the pipe. This site has been identified as Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites. The quantity of plutonium identified at CAU 547 exceeded the Hazard Category 3 threshold but was below the Hazard Category 2 threshold specified in DOE Standard DOE-STD-1027-92. This CAU, therefore, was initially categorized as a Hazard Category 3 environmental restoration site. A contaminated facility or site that is initially categorized as Hazard Category 3, however, may be downgraded to below Hazard Category 3 if it can be demonstrated through further analysis that the form of the material and the energy available for release support reducing the hazard category. This is an important consideration when performing hazard categorization of environmental restoration sites because energy sources available for release of material are generally fewer at an environmental restoration site than at an operating facility and environmental restoration activities may result in the complete removal of source material.

Kevin Cabble (NSO), Mark Krauss and Patrick Matthews (N-I)

2011-03-03T23:59:59.000Z

178

Nuclear Energy & Energy Security  

Science Journals Connector (OSTI)

Safety issues related to use of nuclear energy and secure operation of nuclear installations are mail stones of great importance. Although none of technologies producing energy are absolutely safe it is obvious t...

Jumber Mamasakhlisi

2010-01-01T23:59:59.000Z

179

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration  

E-Print Network [OSTI]

, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL ­ Supply chains and logistics ­ Systems of systems (e.g., the nuclear fuel cycle, fleet management) #12

Langerhans, Brian

180

Optimization of automation: I. Estimation method of cognitive automation rates reflecting the effects of automation on human operators in nuclear power plants  

Science Journals Connector (OSTI)

Abstract Since automation was introduced in various industrial fields, the concept of the automation rate has been used to indicate the inclusion proportion of automation among all work processes or facilities. Expressions of the inclusion proportion of automation are predictable, as is the ability to express the degree of the enhancement of human performance. However, many researchers have found that a high automation rate does not guarantee high performance. Therefore, to reflect the effects of automation on human performance, this paper proposes a new estimation method of the automation rate that considers the effects of automation on human operators in nuclear power plants (NPPs). Automation in \\{NPPs\\} can be divided into two types: system automation and cognitive automation. Some general descriptions and characteristics of each type of automation are provided, and the advantages of automation are investigated. The advantages of each type of automation are used as measures of the estimation method of the automation rate. One advantage was found to be a reduction in the number of tasks, and another was a reduction in human cognitive task loads. The system and the cognitive automation rate were proposed as quantitative measures by taking advantage of the aforementioned benefits. To quantify the required human cognitive task loads and thus suggest the cognitive automation rate, Conants information-theory-based model was applied. The validity of the suggested method, especially as regards the cognitive automation rate, was proven by conducting experiments. The result showed that a decreased rate of the operator working time was significantly related to the cognitive automation rate and that the calculation of the cognitive task load was useful as a measure of the cognitive automation rate.

Seung Min Lee; Jong Hyun Kim; Poong Hyun Seong

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration  

E-Print Network [OSTI]

, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL

Siefert, Chris

182

Home Office Expenses Submitted by Fluor Federal Services, Inc., on Savannah River Nuclear Solutions, LLC's U.S. Department of Energy Management & Operating (M&O) Contract No. DE-AC09-08SR22470  

Broader source: Energy.gov (indexed) [DOE]

Home Office Expenses Submitted by Fluor Home Office Expenses Submitted by Fluor Federal Services, Inc., on Savannah River Nuclear Solutions, LLC's U.S. Department of Energy Management & Operating (M&O) Contract No. DE-AC09-08SR22470 OAS-L-13-08 April 2013 Department of Energy Washington, DC 20585 April 19, 2013 MEMORANDUM FOR THE MANAGER, SAVANNAH RIVER OPERATIONS OFFICE FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Home Office Expenses Submitted by Fluor Federal Services, Inc., on Savannah River Nuclear Solutions, LLC's U.S. Department of Energy Management & Operating (M&O) Contract No. DE-AC09-08SR22470" BACKGROUND The attached report presents the results of an audit of home office expenses submitted by Fluor

183

INL @ work: Nuclear Reactor Operator  

ScienceCinema (OSTI)

INL @ work features jobs at the Idaho National Laboratory. Learn more about careers and energy research at INL's facebook site http://www.facebook.com/idahonationallaboratory

Russell, Patty

2013-05-28T23:59:59.000Z

184

Office of Nuclear Threat Science | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Threat Science | National Nuclear Security Administration Nuclear Threat Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Nuclear Threat Science Home > About Us > Our Programs > Counterterrorism and Counterproliferation > Office of Nuclear Threat Science Office of Nuclear Threat Science

185

Nuclear Security Enterprise | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Enterprise | National Nuclear Security Administration Enterprise | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Security Enterprise Home > About Us > Our Programs > Defense Programs > Nuclear Security Enterprise Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective nuclear deterrent through the

186

Nuclear Energy  

Science Journals Connector (OSTI)

Nuclear Energy ... A brief summary of the history and key concepts of nuclear energy. ... Nuclear / Radiochemistry ...

Charles D. Mickey

1980-01-01T23:59:59.000Z

187

Public comments on the proposed 10 CFR Part 51 rule for renewal of nuclear power plant operating licenses and supporting documents: Review of concerns and NRC staff response. Volume 1  

SciTech Connect (OSTI)

This report documents the Nuclear Regulatory Commission (NRC) staff review of public comments provided in response to the NRC`s proposed amendments to 10 Code of Federal Regulations (CFR) Part 51, which establish new requirements for the environmental review of applications for the renewal of operating licenses of nuclear power plants. The public comments include those submitted in writing, as well as those provided at public meetings that were held with other Federal agencies, State agencies, nuclear industry representatives, public interest groups, and the general public. This report also contains the NRC staff response to the various concerns raised, and highlights the changes made to the final rule and the supporting documents in response to these concerns.

NONE

1996-05-01T23:59:59.000Z

188

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy s National Nuclear Security Administration  

E-Print Network [OSTI]

, for the United States Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000. Hypergraph on FErari ­ Optimization of FFC generated code ­ Equivalent to optimizing matrix-vector product code ­ Graph

Wolf, Michael M.

189

Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety and Security Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction ......................................................................................................................... 1 2.0 Department-wide Action Plan for the Columbia Accident and Davis-Besse Event ........... 3 3.0 Comprehensive Operating Experience Program ................................................................. 5

190

Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1  

Broader source: Energy.gov (indexed) [DOE]

Safety and Security Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction ......................................................................................................................... 1 2.0 Department-wide Action Plan for the Columbia Accident and Davis-Besse Event ........... 3 3.0 Comprehensive Operating Experience Program ................................................................. 5

191

Nuclear Forensics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear...

192

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

2009-04-14T23:59:59.000Z

193

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

2009-04-14T23:59:59.000Z

194

The Office of Nuclear Verification | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nuclear Verification | National Nuclear Security Nuclear Verification | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The Office of Nuclear Verification Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security > The Office of Nuclear Verification The Office of Nuclear Verification

195

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Eisenhower Halts Nuclear Weapons Testing Eisenhower Halts Nuclear Weapons Testing August 22, 1958 Washington, DC Eisenhower Halts Nuclear Weapons Testing

196

continuity program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our History Who We Are Our Leadership Our Locations Budget Our Operations...

197

October 2014 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Harrington, NNSA Deputy Administrator, Defense Nuclear Nonproliferation; and Morgan Smith, Chief Operating Officer, Consolidated Nuclear Security. The free course taught at...

198

DOE/EIS-0373D; Draft Environmental Impact Statement for the Proposed Consolidation of Nuclear Operations Related to Production of Radioisotope Power Systems  

Broader source: Energy.gov (indexed) [DOE]

For For additional information or for copies of this Draft EIS, contact: AVAILABILITY OF THE DRAFT CONSOLIDATION EIS Printed with soy ink on recycled paper Timothy A. Frazier, EIS Document Manager NE-50/Germantown Building Office of Nuclear Energy, Science and Technology U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585-1290 Telephone: 1-800-919-3706 E-mail: ConsolidationEIS@nuclear.energy.gov This document is available on the Office of Nuclear Energy, Science and Technology's Website (http://consolidationeis.doe.gov) for viewing and downloading. TABLE OF CONTENTS vii TABLE OF CONTENTS Cover Sheet ..................................................................................................................................................................iii Table of Contents ........................................................................................................................................................vii

199

Nuclear Security 101 | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

101 | National Nuclear Security Administration 101 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Nuclear Security 101 Fact Sheet Nuclear Security 101 Mar 23, 2012 The goal of United States Government's nuclear security programs is to prevent the illegal possession, use or transfer of nuclear material,

200

Nuclear Security | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Security Home > About Us > Our Programs > Nuclear Security Nuclear Security The Office of Defense Nuclear Security (DNS) is responsible for the development and implementation of security programs for NNSA. In this capacity, DNS is the NNSA line management organization responsible for

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear Security 101 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

101 | National Nuclear Security Administration 101 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Nuclear Security 101 Fact Sheet Nuclear Security 101 Mar 23, 2012 The goal of United States Government's nuclear security programs is to prevent the illegal possession, use or transfer of nuclear material,

202

Nuclear Security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Security Home > About Us > Our Programs > Nuclear Security Nuclear Security The Office of Defense Nuclear Security (DNS) is responsible for the development and implementation of security programs for NNSA. In this capacity, DNS is the NNSA line management organization responsible for

203

Nuclear Energy Research Brookhaven National  

E-Print Network [OSTI]

Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National&T Department #12;Nuclear Energy Today 435 Operable Power Reactors, 12% electrical generation (100 in US, 19

Ohta, Shigemi

204

Trial operation of material protection, control, and accountability systems at two active nuclear material handling sites within the All-Russian Institute of Experimental Physics (VNIIEF)  

SciTech Connect (OSTI)

This paper discusses Russian Federal Nuclear Center (RFNC)-VNIIEF activities in the area of nuclear material protection, control, and accounting (MPC and A) procedures enhancement. The goal of such activities is the development of an automated systems for MPC and A at two of the active VNIIEF research sites: a research (reactor) site and a nuclear material production facility. The activities for MPC and A system enhancement at both sites are performed in the framework of a VNIIEF-Los Alamos National Laboratory contract with participation from Sandia National Laboratories, Lawrence Livermore National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and PANTEX Plant in accordance with Russian programs supported by MinAtom. The American specialists took part in searching for possible improvement of technical solutions, ordering equipment, and delivering and testing the equipment that was provided by the Americans.

Skripka, G.; Vatulin, V.; Yuferev, V. [VNIIEF, Sarov (Russian Federation)] [and others

1997-11-01T23:59:59.000Z

205

Office of Nuclear Threat Science | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Threat Science | National Nuclear Security Administration Threat Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Nuclear Threat Science Home > About Us > Our Programs > Counterterrorism and Counterproliferation > Office of Nuclear Threat Science Office of Nuclear Threat Science

206

Plutonium and Reprocessing of Spent Nuclear Fuel  

Science Journals Connector (OSTI)

...might spawn nuclear terrorism. Less than...reprocessing plant. The U.S. nuclear-energy...current fleet of power reactors (15...operational risk of transmutation...future of nuclear power is clarified...constructed plant increased...

Frank N. von Hippel

2001-09-28T23:59:59.000Z

207

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration  

E-Print Network [OSTI]

, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL Sandia National Laboratories CSRI Student Seminar July 2008 #12;Motivation · Graph algorithms perform extremely well on multithreaded architectures like the Cray MTA-2. ­ Won IC graph benchmarking contest

Devine, Karen

208

Simulation of operational transients in a VVER-1000 nuclear power plant using the RELAP5/MOD3.2 computer program  

E-Print Network [OSTI]

A RELAP5/MOD3.2 nodalization model of a VVER-1OOO (V-320) nuclear power plant was updated, improved and validated against available experimental data. The data included integrated test results obtained from actual power plant testing. The steady...

Moscalu, Dionisie Radu

1999-01-01T23:59:59.000Z

209

Forecast of criticality experiments and experimental programs needed to support nuclear operations in the United States of America: 1994--1999  

SciTech Connect (OSTI)

This Forecast is generated by the Chair of the Experiment Needs Identification Workgroup (ENIWG), with input from Department of Energy and the nuclear community. One of the current concerns addressed by ENIWG was the Defense Nuclear Facilities Safety Board`s Recommendation 93-2. This Recommendation delineated the need for a critical experimental capability, which includes (1) a program of general-purpose experiments, (2) improving the information base, and (3) ongoing departmental programs. The nuclear community also recognizes the importance of criticality theory, which, as a stepping stone to computational analysis and safety code development, needs to be benchmarked against well-characterized critical experiments. A summary project of the Department`s needs with respect to criticality information includes (1) hands-on training, (2) criticality and nuclear data, (3) detector systems, (4) uranium- and plutonium-based reactors, and (5) accident analysis. The Workgroup has evaluated, prioritized, and categorized each proposed experiment and program. Transportation/Applications is a new category intended to cover the areas of storage, training, emergency response, and standards. This category has the highest number of priority-1 experiments (nine). Facilities capable of performing experiments include the Los Alamos Critical Experiment Facility (LACEF) along with Area V at Sandia National Laboratory. The LACEF continues to house the most significant collection of critical assemblies in the Western Hemisphere. The staff of this facility and Area V are trained and certified, and documentation is current. ENIWG will continue to work with the nuclear community to identify and prioritize experiments because there is an overwhelming need for critical experiments to be performed for basic research and code validation.

Rutherford, D.

1994-03-01T23:59:59.000Z

210

Nuclear and Radiological Engineering and Medical Physics Programs  

E-Print Network [OSTI]

Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Year Enrollment - Fall Semester Undergraduate Graduate #12; Nuclear Power Industry Radiological Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants

Weber, Rodney

211

Nuclear energy in Argentina  

Science Journals Connector (OSTI)

After early interest in the possible uses of uranium in 1937, Argentina's scientists and politicians showed an inclination to support nuclear development that has kept quite steady compared with other areas. The Argentinean government prohibited the export of uranium in 1945, because of the emerging possibility of producing nuclear energy. The creation of the Atomic Energy Commission soon followed, and the first experimental reactor was set critical in 1958. Since then, nuclear development has allowed the successful operation of two nuclear power reactors, a quite integrated nuclear fuel cycle, and sustained activity in the development, production and use of radioisotopes. Nowadays an Argentinean company competes with success in the experimental nuclear reactor market. After a period in which the nuclear sector has been largely ignored in the official interest, Argentina's authorities have launched a comprehensive plan intended to rehabilitate all aspects of nuclear activity.

Gabriel N. Barcelo

2007-01-01T23:59:59.000Z

212

Nuclear Safety Regulatory Framework  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting DOE Directives & Manuals DOE Standards Central Technical Authorities (CTA) Office of Health, Safety, and Security (HSS) Line Management SSO/ FAC Reps 48 CFR 970 48 CFR 952 Federal Acquisition Regulations External Oversight *Defense Nuclear Facility

213

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

214

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

215

California Nuclear Profile - San Onofre Nuclear Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

216

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

217

Nuclear Safety Information Agreement Between the U.S. Nuclear...  

Office of Environmental Management (EM)

Operations (NRC)), Jim O'Brien, Director, Office of Nuclear Safety (EHSS DOE), Robert Johnson (Chief, Fuel Manufacturing Branch (NRC)) Front Row: Matt Moury, Associate Under...

218

ldrd | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Congressional...

219

Powering the Nuclear Navy | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powering the Nuclear Navy Powering the Nuclear Navy Home > About Us > Our Programs > Powering the Nuclear Navy Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. NNSA's Navy Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and ensure their safe, reliable and long-lived operation. This budget requests more than $1 billion to power a modern nuclear Navy: Continuation of design and development work for the OHIO-class

220

GTRI's Nuclear and Radiological Material Protection | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protection | National Nuclear Protection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog GTRI's Nuclear and Radiological Material Protection Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative > GTRI's Nuclear and Radiological Material Protection GTRI's Nuclear and Radiological Material Protection

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Office of Nuclear Safeguards and Security | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Safeguards and Security | National Nuclear Security Safeguards and Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The Office of Nuclear Safeguards and Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security > The Office of Nuclear Safeguards and Security The Office of Nuclear Safeguards and Security

222

Nuclear Plant Dynamics and Safety - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis > Nuclear Plant Dynamics and Safety Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Nuclear Plant Dynamics and Safety Bookmark and Share Activities in Nuclear Plant Dynamics and Safety research and development fulfill a primary goal of the Nuclear Engineering (NE) Division to promote improvements in safe and reliable operation of present and future

223

Nuclear Emergency Search Team  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

1991-09-20T23:59:59.000Z

224

International | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

International | National Nuclear Security Administration International | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog International Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > International International U.S. Department of Energy / U.S. Nuclear Regulatory Commission

225

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

2006-06-12T23:59:59.000Z

226

Nuclear Deployment Scorecards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards October 31, 2013 Quarterly Nuclear Deployment Scorecard - October 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. August 8, 2013 Quarterly Nuclear Deployment Scorecard - July 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. May 1, 2013 Quarterly Nuclear Power Deployment Scorecard - April 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, and new plant construction progress.

227

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Programs >> Nuclear Energy Error Error Nuclear Energy Home - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Energy Home - RCC * Increasing...

228

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

229

Operations Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Standards BPA Operations Information (OPI) Transmission Services operates and plans for regional and national system needs. Transmission Services coordinates system operation and...

230

A Nuclear Family: Y-12 National Security Complex | National Nuclear  

National Nuclear Security Administration (NNSA)

Nuclear Family: Y-12 National Security Complex | National Nuclear Nuclear Family: Y-12 National Security Complex | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > A Nuclear Family: Y-12 National Security Complex A Nuclear Family: Y-12 National Security Complex Posted By Office of Public Affairs Nuclear family "A Nuclear Family: Y-12 National Security Complex" is a four episode

231

Announcements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Announcements | National Nuclear Security Administration Announcements | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Announcements Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitations > Environmental Program Services Contract > Announcements

232

National Nuclear Data Center Nuclear Data Portal www.nndc.bnl.gov  

E-Print Network [OSTI]

National Nuclear Data Center #12;Nuclear Data Portal www.nndc.bnl.gov Nuclear Data Portal New generation of nuclear data services, using modern and powerful DELL servers, Sybase relational database software, Linux operating system, and Java programming language. The Portal includes nuclear structure

Ohta, Shigemi

233

Presentation, Safety from the Operator's Perspective: We are...  

Broader source: Energy.gov (indexed) [DOE]

Do September 30, 2005 A presentation by Jim Ellis, President and CEO, Institute of Nuclear Power Operators (INPO), Safety from the Operator's Perspective: We Are All in this...

234

los alamos field office | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our History Who We Are Our Leadership Our Locations Budget Our Operations...

235

Alarm Response Training Academy opens at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Harrington, NNSA Deputy Administrator, Defense Nuclear Nonproliferation; and Morgan Smith, Chief Operating Officer, Consolidated Nuclear Security. The free course taught at...

236

EPA Notice of Availability of the Draft Environmental Impact Statement for the Proposed Consolidation of Nuclear Operations Related to Production of Radioisotope Related to Production of Radioisotope Power Systems (DOE/EIS-0373D) (07/01/05)  

Broader source: Energy.gov (indexed) [DOE]

32 32 Federal Register / Vol. 70, No. 126 / Friday, July 1, 2005 / Notices Severity and Resistance to Control, Amador Ranger District, Eldorado National Forest, Amado County, CA,Wait Period Ends: 08/01/2005, Contact: Patricia Ferrell 530-642- 5146. EIS No. 20050264, Draft EIS, NPS, ID, Minidoka Internment National Monument (Former Minidoka Relocation Center) , General Management Plan, Implementation, Jerome County, ID, Comment Period Ends: 09/19/2005, Contact: Neil King 208-837-4793. EIS No. 20050265, Final EIS, NPS, AZ, Chiricahua National Monument Fire Management Plan (FMP), Implementation, AZ, Wait Period Ends: 08/01/2005, Contact: Alan Whalon 520-824-3560. EIS No. 20050266, Draft EIS, DOE, 00, Proposed Consolidation of Nuclear Operations Related to Production of

237

Nuclear Debate  

Science Journals Connector (OSTI)

Nuclear Debate ... This month, the Senate will consider the nominations of two women to serve on the Nuclear Regulatory Commission. ... Svinicki is a nuclear engineer with experience in the Department of Energys nuclear energy programs. ...

JEFF JOHNSON

2012-06-11T23:59:59.000Z

238

Operating Experience Summary, 2014-06  

Office of Environmental Management (EM)

oversight of work; and (6) safety programs such as Integrated Safety Management, Conduct of Operations, and Human Performance, including error precursors and nuclear culture...

239

Office of Nuclear Warhead Protection | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Warhead Protection | National Nuclear Security Warhead Protection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Office of Nuclear Warhead Protection Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices > Office of International Material Protection and Cooperation > Material Protection, Control and Accounting

240

Conduct of Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 2, dated 12-3-14, cancels Admin Chg 1.

2010-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Y-12 Enriched Uranium Operations Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

242

Nuclear Science Division: 1993 Annual report  

SciTech Connect (OSTI)

This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

Myers, W.D. [ed.

1994-06-01T23:59:59.000Z

243

Nuclear photonics  

SciTech Connect (OSTI)

With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

2012-07-09T23:59:59.000Z

244

Amended NOI to Prepare an EIS for the Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components  

Broader source: Energy.gov (indexed) [DOE]

61 61 Federal Register / Vol. 60, No. 121 / Friday, June 23, 1995 / Notices operating facilities primarily or inherently devoted to religious instruction or worship, or engaging in any form of religious proselytization; and (7) providing a direct benefit to (a) a business organized for profit, (b) a labor union, (c) a partisan political organization, (d) a nonprofit organization that fails to comply with the restrictions contained in section 501(c) of the Internal Revenue Code of 1986, or (e) an organization engaged in the religious activities described in paragraph (6) above, unless Corporation assistance is not used to support those religious activities. Eligible Applicants Governors may apply on behalf of the following eligible entities: non-profit organizations, states, subdivisions of

245

Nuclear knowledge development in Armenia  

Science Journals Connector (OSTI)

Armenia has rather a rich history of nuclear knowledge development. During the last several decades, depending upon circumstances related to the Armenian Nuclear Power Plant main milestones ?? construction, putting into operation, shutdown and restarting ?? nuclear knowledge has had its ups and downs. Though it has a high level of development, there is still a need to preserve accumulated nuclear knowledge through appropriate processes.

A.A. Gevorgyan

2008-01-01T23:59:59.000Z

246

Newsletters | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Newsletters | National Nuclear Security Administration Newsletters | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Newsletters Home > Media Room > Newsletters Newsletters NNSA publishes a monthly newsletter featuring current events and activities across the nuclear security enterprise. Online archives are available back

247

Speeches | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Speeches | National Nuclear Security Administration Speeches | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Speeches Home > Media Room > Speeches Speeches NNSA officials frequently speak at public events around the world on topics ranging from nuclear security to infrastructure and strategic planning.

248

Speeches | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Speeches | National Nuclear Security Administration Speeches | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Speeches Home > Media Room > Speeches Speeches NNSA officials frequently speak at public events around the world on topics ranging from nuclear security to infrastructure and strategic planning.

249

Management of National Nuclear Power Programs for assured safety  

SciTech Connect (OSTI)

Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

Connolly, T.J. (ed.)

1985-01-01T23:59:59.000Z

250

Electric Power Produced from Nuclear Reactor | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Power Produced from Nuclear Reactor | National Nuclear Security Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor December 20, 1951 Arco, ID Electric Power Produced from Nuclear Reactor

251

Italy Nuclear Security Summit: Fact Sheet | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Italy Nuclear Security Summit: Fact Sheet | National Nuclear Security Italy Nuclear Security Summit: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Italy Nuclear Security Summit: Fact Sheet Fact Sheet Italy Nuclear Security Summit: Fact Sheet Mar 26, 2012 Between the 1960s and mid-1980s, Italy had an ambitious nuclear power

252

Reducing emissions to improve nuclear test detection | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing emissions to improve nuclear test detection | National Nuclear Reducing emissions to improve nuclear test detection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Reducing emissions to improve nuclear test detection Reducing emissions to improve nuclear test detection Posted By Office of Public Affairs In early November, medical isotope producers met with nuclear explosion

253

GTRI: Reducing Nuclear Threats | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Reducing Nuclear Threats | National Nuclear Security Administration Reducing Nuclear Threats | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Reducing Nuclear Threats Fact Sheet GTRI: Reducing Nuclear Threats Apr 12, 2013 Mission In 2004, NNSA established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible,

254

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2015-01-26T23:59:59.000Z

255

Use of Organometallic Polymers for Pre-Heat Shields for Targets in Inertial-Confinement Nuclear Fusion  

Science Journals Connector (OSTI)

Nuclear fusion, the energy process operating in the sun ... radioactive wastes associated with nuclear fission. Harnessing nuclear fusion, however, has proven to be a...

John E. Sheats; Fred Hessel; Louis Tsarouhas

1985-01-01T23:59:59.000Z

256

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network [OSTI]

Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

257

Future Trends in Nuclear Power Generation [and Discussion  

Science Journals Connector (OSTI)

...Future Trends in Nuclear Power Generation [and Discussion...the Calder Hall reactors were ordered...building and operating nuclear power stations...situations, a high nuclear share of new capacity...1980s. The fast reactor, prototypes of...

1974-01-01T23:59:59.000Z

258

Office of Nuclear Safety Basis and Facility Design  

Broader source: Energy.gov [DOE]

The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

259

Operational Excellence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Facilities...

260

Chapter 30 - Nuclear Energy and Safety  

Science Journals Connector (OSTI)

Safety in nuclear industries is a very serious topic due to its greater accident consequence as seen in Chernobyl, and also due to the pictorial perceptions of nuclear accidents being similar to the Hiroshima and Nagasaki nuclear explosions. This chapter points out some important safety aspects of the nuclear industry. Beginning with the current laws and regulations of nuclear safety, this chapter reviews different types of nuclear reactors, nuclear waste treatment systems, reliability of nuclear system, operations of reactors, incident reporting, and a short review of previous accident history. Finally, historical Rasmussen reports are reviewed.

Sam Mannan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

Ethics, Implementa- tion, Uncertainties. Nuclear Energy Agency, Organization for Economic Co- Operation and Development,

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

262

Procurement | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procurement | National Nuclear Security Administration Procurement | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Procurement Home > About Us > Our Operations > Acquisition and Project Management > Small Business > Procurement Procurement NNSA's Small Business program serves as the Info-structure through which NNSA effectively disseminates information regarding our small business

263

Nuclear Fusion  

Science Journals Connector (OSTI)

Although not yet developed at the commercial stage, nuclear fusion technology is still being considered as a ... used in nuclear warfare. Since research in nuclear fusion for the production of energy started abou...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

264

Nuclear Nonproliferation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Nonproliferation As more countries embrace nuclear power as a cost-effective and clean alternative to fossil fuels, the need exists to ensure that the nuclear fuel cycle is...

265

Nuclear Weapons Testing Resumes | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing Resumes | National Nuclear Security Administration Testing Resumes | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 Washington, DC Nuclear Weapons Testing Resumes The Soviet Union breaks the nuclear test moratorium and the United States

266

National Nuclear Science Week live talks today | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Week live talks today | National Nuclear Security Science Week live talks today | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > National Nuclear Science Week live talks today National Nuclear Science Week live talks today Posted By Office of Public Affairs National Nuclear Science Week Students and teachers today will get the chance to talk live with nuclear

267

National Nuclear Science Week live talks today | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Science Week live talks today | National Nuclear Security Science Week live talks today | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > National Nuclear Science Week live talks today National Nuclear Science Week live talks today Posted By Office of Public Affairs National Nuclear Science Week Students and teachers today will get the chance to talk live with nuclear

268

Nuclear Navy Turns 50 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Navy Turns 50 | National Nuclear Security Administration Navy Turns 50 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Navy Turns 50 Nuclear Navy Turns 50 August 01, 1998 Washington, DC Nuclear Navy Turns 50 Crew members of the U.S.S. Enterprise, the first nuclear-powered aircraft

269

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear  

National Nuclear Security Administration (NNSA)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing July 03, 1993 Washington, DC

270

Nuclear Navy Turns 50 | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Navy Turns 50 | National Nuclear Security Administration Navy Turns 50 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Navy Turns 50 Nuclear Navy Turns 50 August 01, 1998 Washington, DC Nuclear Navy Turns 50 Crew members of the U.S.S. Enterprise, the first nuclear-powered aircraft

271

Nuclear Weapons Life Cycle | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle | National Nuclear Security Administration Life Cycle | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Weapons Life Cycle Home > Our Mission > Managing the Stockpile > Nuclear Weapons Life Cycle Nuclear Weapons Life Cycle Nuclear weapons are developed, produced, and maintained in the stockpile, and then retired and dismantled. This sequence of events is known as the

272

Nuclear Engineering Nuclear Criticality Safety  

E-Print Network [OSTI]

Nuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear, and neutron spectra. The NE nuclear criticality safety (NCS) capabilities are based on a staff with decades

Kemner, Ken

273

National Nuclear Security Administration  

Broader source: Energy.gov (indexed) [DOE]

National Nuclear Security Administration Finding of No Significant Impact for the Construction and Operation of a New Office Building and Related Structures within TA-3 at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Los Alamos Area Office 528 35th Street Los Alamos, N M 8 7 5 4 4 DEPARTMENT OF ENERGY. NATIONAL NUCLEAR SECUIRTY ADMINISTRATION FINDING OF NO SIGNIFICANT INIPACT Construction and Operation of a New Office Building and Related Structures withinTA-3 at Los Alarnos National Laboratory, Los Alamos. New Mexico FINAL ENVIRONMENTAL ASSESSMENT: The Environmental Assessment (EA) for Construction and Operation of a New Office Building and Related Structures within TA-3 at L os Alamos National Laboratory, Los Alamos, New Mexico (DOE/EA- 7 375)

274

Nuclear Facility Design  

Broader source: Energy.gov (indexed) [DOE]

Design Design FUNCTIONAL AREA GOAL: Headquarters and Field organizations and their contractors ensure that nuclear facilities are designed to assure adequate protection for the public, workers, and the environment from nuclear hazards. REQUIREMENTS:  10 CFR 830.120  10 CFR 830 subpart B  DOE O 413.3  DOE O 420.1B  DOE O 414.1C  DOE O 226.1  DOE M 426.1  DEAR 970-5404-2 Guidance:  DOE G 420.1-1  Project Management Practices, Integrated Quality ( Rev E, June 2003)  DOE Implementation Plan for DNSB Recommendation 2004-2 Performance Objective 1: Contractor Program Documentation Contracts between and the contractors who operate nuclear facilities contain adequate requirements concerning the conduct of nuclear facility safety design for nuclear facility capital projects and major modifications and the

275

NUCLEAR REACTORS.  

E-Print Network [OSTI]

??Nuclear reactors are devices containing fissionable material in sufficient quantity and so arranged as to be capable of maintaining a controlled, self-sustaining NUCLEAR FISSION chain (more)

Belachew, Dessalegn

2010-01-01T23:59:59.000Z

276

nuclear reactor  

Science Journals Connector (OSTI)

...a complex atomic apparatus used to obtain energy from nuclear fission chain reaction. Used to produce nuclear energy, radioactive isotopes, and artificial elements.... atomic pile ...

2009-01-01T23:59:59.000Z

277

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Idaho National Laboratory is the Department of Energy's lead nuclear energy research and development facility. Building upon its legacy responsibilities,...

278

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

279

Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

280

Nuclear Energy Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

December 9, 2010 L'Enfant Plaza Hotel Washington, D.C. Committee Members Participating John Ahearne Raymond Juzaitis Ashok Bhatnagar William Martin, Chair Dana Christensen Carl Paperiello Thomas Cochran Burton Richter Michael Corradini John Sackett Marvin Fertel Allen Sessoms Donald Hintz Neil Todreas Committee Members Absent Brew Barron Susan Ion Other Participants: Richard Black, Director, Office of Advanced Reactor Concepts, Office of Nuclear Energy, USDOE Nancy Carder, Medical University of South Carolina, NEAC Support Staff David Hill, Director, Institute for Nuclear Energy Science and Technology, Idaho National Laboratory Shane Johnson, Chief Operating Officer, Office of Nuclear Energy, USDOE

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 2, APRIL 2010 807 Integrated Robust and Resilient Control of Nuclear  

E-Print Network [OSTI]

and Resilient Control of Nuclear Power Plants for Operational Safety and High Performance Xin Jin, Student & Secure (IRIS) simulator of nuclear power plants. Index Terms--Emergency operation, nuclear power plant Lyapunov equation. Reference Signals. Temperatures of the nuclear power plant. Sampling time. Controller

Ray, Asok

282

Nuclear Fabrication Consortium  

SciTech Connect (OSTI)

This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) â?? Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : â?¢ Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. â?¢ Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. â?¢ Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. â?¢ Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. â?¢ Supporting industry in helping to create a larger qualified nuclear supplier network. â?¢ Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. â?¢ Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. â?¢ Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

Levesque, Stephen

2013-04-05T23:59:59.000Z

283

International Energy Outlook 2001 - Nuclear  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Power Nuclear Power picture of a printer Printer Friendly Version (PDF) Nuclear power is projected to represent a growing share of the developing world’s electricity consumption from 1999 through 2020. New plant construction and license extensions for existing plants are expected to produce a net increase in world nuclear capacity. Nuclear power plants generated electricity in 29 countries in 1999. A total of 433 nuclear power reactors were in operation (Figure 61), including 104 in the United States, 59 in France, and 53 in Japan. The largest national share of electricity from nuclear power was in France, at 75 percent (Figure 62). Belgium, Bulgaria, France, Lithuania, Slovenia, Slovakia, Sweden, Ukraine, and South Korea depended on nuclear power for at least 40

284

Supercomputers | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercomputers | National Nuclear Security Administration Supercomputers | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Supercomputers Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Supercomputers

285

Our Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Programs Home > About Us > Our Programs Our Programs NNSA's program support is divided into several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure and Environment, Nuclear Security, Management and

286

B53 Nuclear Bomb Dismantlement | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

B53 Nuclear Bomb Dismantlement | National Nuclear Security Administration B53 Nuclear Bomb Dismantlement | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > B53 Nuclear Bomb Dismantlement B53 Nuclear Bomb Dismantlement B53 Nuclear Bomb Dismantlement The elimination of the B53 by Department of Energy's National Nuclear Security Administration (NNSA) is consistent with the goal President Obama announced in his April 2009 Prague speech to reduce the number of nuclear weapons. The President said, "We will reduce the role of nuclear weapons in our national security strategy, and urge others to do the same." The dismantlement of the last remaining B53 ensures that the system will never again be part of the U.S. nuclear weapons stockpile. As a key part of its national security mission, NNSA is actively responsible for safely dismantling weapons that are no longer needed, and disposing of the excess material and components.

287

Nuclear Matter and Nuclear Dynamics  

E-Print Network [OSTI]

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

288

Nuclear reactor multiphysics via bond graph formalism  

E-Print Network [OSTI]

This work proposes a simple and effective approach to modeling nuclear reactor multiphysics problems using bond graphs. Conventional multiphysics simulation paradigms normally use operator splitting, which treats the ...

Sosnovsky, Eugeny

2014-01-01T23:59:59.000Z

289

Responding to Emergencies | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

or radioactive device. Learn More First Responders Consequence Management Render Safe Operations Nuclear Forensics Related Topics narac arg ams frmac rap nest responding to...

290

Nuclear Explosive Safety Study Functional Area Qualification Standard  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

A Nuclear Explosive Safety Study (NESS) is performed on all DOE Nuclear Explosive Operations (NEOs) in accordance with DOE O 452.1D, Nuclear Explosive and Weapon Surety Program; DOE O 452.2D, Nuclear Explosive Safety; and DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes.

2010-05-27T23:59:59.000Z

291

NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944  

E-Print Network [OSTI]

#12;#12;11 #12;2 NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944 Nuclear fission discovered Oak Ridge selected as site for World War II Manhattan Project First sustained and controlled nuclear 430 nuclear power reactors are operating in the world, and 103 nuclear power plants produce 20

Pennycook, Steve

292

Nuclear Waste Management using Electrometallurgical Technology - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Technology Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Bookmark and Share The NE system engineering activities involve the conceptual design, through the manufacturing and qualification testing of the Mk-IV and Mk-V electrorefiner and the cathode processor. These first-of-a-kind large scale

293

Nuclear Power - System Simulations and Operation  

E-Print Network [OSTI]

experi e n c e with water cooled and water modera t e d therma l reacto r s , based on fission of uranium- 2 3 5 . Neverthe l es s , the metho d o l o gi c al achie v e me n t s in simul a t i o n menti o n e d be low can defin it e l y be used... ul i c proce ss e s insid e the primary circuit of a pressurized water reactor (PWR) we can use the RELAP progra m (dev e l o p ed in the USA), the ATHLET code (devel o p ed in German y ) or the CATHARE cod e (deve l o p ed in Franc e ) . Several...

294

Nuclear choices  

SciTech Connect (OSTI)

This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects and uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.

Wolfson, R.

1991-01-01T23:59:59.000Z

295

Advances in Metallic Nuclear Fuel  

Science Journals Connector (OSTI)

Metallic nuclear fuels have generated renewed interest for advanced ... operations is excellent. Ongoing irradiation tests in Argonne-Wests Idaho-based Experimental Breeder Reactor ... fast reactor (IFR) concept...

B. R. Seidel; L. C. Walters; Y. I. Chang

1987-04-01T23:59:59.000Z

296

Human Costs of Nuclear Power  

Science Journals Connector (OSTI)

...final storage elsewhere. The sole reprocessing plant for fuel rods from operating nuclear power plants is located in West Valley, New York. Although the radionuclide mix-ture released from this facility differs considerably from that of a power...

L. A. Sagan

1972-08-11T23:59:59.000Z

297

NMMSS Reports | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Reports | National Nuclear Security Administration Reports | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NMMSS Reports Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > NMMSS Information, Reports & Forms > NMMSS Reports NMMSS Reports U.S. Department of Energy / U.S. Nuclear Regulatory Commission

298

SAMS Overview | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

SAMS Overview | National Nuclear Security Administration SAMS Overview | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog SAMS Overview Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > SAMS Overview SAMS Overview U.S. Department of Energy / U.S. Nuclear Regulatory Commission

299

Nuclear Safety (Pennsylvania) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Safety and Operational Guidelines Provider Pennsylvania Department of Environmental Protection The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the activities associated with management and disposal of a low-level radioactive waste disposal facility in Pennsylvania and provides planning and support for Bureau response to incidents involving nuclear power plants and/or radioactive material in

300

Nuclear Radiological Threat Task Force Established | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiological Threat Task Force Established | National Nuclear Radiological Threat Task Force Established | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Radiological Threat Task Force Established Nuclear Radiological Threat Task Force Established November 03, 2003 Washington, DC Nuclear Radiological Threat Task Force Established

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Office of Nuclear Controls | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Controls | National Nuclear Security Administration Controls | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The Office of Nuclear Controls Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security > The Office of Nuclear Controls The Office of Nuclear Controls Certain terrorist groups and states are attempting to acquire WMD dual-use

302

Nuclear Security Centers of Excellence: Fact Sheet | National Nuclear  

National Nuclear Security Administration (NNSA)

Centers of Excellence: Fact Sheet | National Nuclear Centers of Excellence: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Nuclear Security Centers of Excellence: Fact Sheet Fact Sheet Nuclear Security Centers of Excellence: Fact Sheet Mar 23, 2012 A Center of Excellence (COE) for nuclear security is a centralized location

303

Nuclear Security Centers of Excellence: Fact Sheet | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centers of Excellence: Fact Sheet | National Nuclear Centers of Excellence: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Nuclear Security Centers of Excellence: Fact Sheet Fact Sheet Nuclear Security Centers of Excellence: Fact Sheet Mar 23, 2012 A Center of Excellence (COE) for nuclear security is a centralized location

304

OPERATIONS (OPS)  

Broader source: Energy.gov (indexed) [DOE]

OPS) OPS) OBJECTIVE OPS.1 The formality and discipline of operations is adequate to conduct work safely and programs are in place to maintain this formality and discipline. (CR 13) Scope: The Conduct of Operations Program was evaluated during the recent KE Basin FTS ORR and was found to be adequately implemented. Based on this result and the subsequent program enhancements, the scope of the review is to be limited to the SWS operating and maintenance evolutions. Criteria * Programmatic elements of conduct of operations are in place for SWS operations. (DOE Order 5480.19) * The SWS operations personnel adequately demonstrate the principles of conduct of operations requirements during the shift performance period. (DOE Order 5480.19)

305

2012 Nuclear Safety Workshop Presentations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations Wednesday, September 19 - Plenary Session September 19, 2012 Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company September 19, 2012 A Commissioner's Perspective on USNRC Actions in Response to the Fukushima Nuclear Accident Presenter: Honorable William C. Ostendorff, Commissioner US Nuclear Regulatory Commission September 19, 2012 International Perspective on Fukushima Accident Presenter: Miroslav Lipár, Head, Operational Safety Section, Department of

306

Nuclear education and knowledge management in the Czech Republic  

Science Journals Connector (OSTI)

As a nuclear energy user, the Czech Republic needs a number of nuclear specialists for the operation of Nuclear Power Plants (NPPs) and the Research and Development (R&D) of new nuclear devices. They are educated in few technical universities and the educational institutions of industrial companies. A main role is played in nuclear education by the Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University (CTU) in Prague, which operates the VR-1 training reactor. The Czech Nuclear Education Network (CENEN) was established for better cooperation, preservation and further development of higher nuclear education and expertise.

K. Matejka; O. Huml

2010-01-01T23:59:59.000Z

307

defense nuclear security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

nuclear security | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

308

Chernobyl Nuclear Accident | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Chernobyl Nuclear Accident | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

309

Countering Nuclear Terrorism and Trafficking | National Nuclear...  

National Nuclear Security Administration (NNSA)

Countering Nuclear Terrorism and Trafficking | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

310

Nuclear & Uranium - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Find statistics on nuclear operable units, nuclear electricity net Find statistics on nuclear operable units, nuclear electricity net generation, nuclear share of electricity net generation, and capacity factor. + EXPAND ALL Summary Additional Formats Nuclear Overview: PDF CSV XLS Monthly statistics on nuclear operable units, nuclear electricity net generation, nuclear share of electricity net generation, and capacity factor. PDFXLS Annual statistics on nuclear generating units, power plants operations, and uranium. › Nuclear Generating Units, 1955-2010 › PDF XLS Nuclear Power Plant Operations, 1957-2010 › PDF XLS Uranium Overview, 1949-2010 › PDF XLS Uranium & Nuclear Fuel Additional Formats U.S. Uranium Reserves Estimates › Release Date: July 2010 The U.S. Energy Information Administration (EIA) has updated its estimates of uranium reserves for year-end 2008. This represents the first revision of the estimates since 2004. PDF

311

National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

National Nuclear Security Administration National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Learn More NNSA DOE removes all remaining HEU from Hungary Learn More DOE removes all remaining HEU from Hungary Tiffany A. Blanchard-Case receives 2013 Linton Brooks Medal

312

Nuclear code of ethics  

Science Journals Connector (OSTI)

The nuclear industry is inseparable from the other techniques making up our industrial society. It is not an excrescence that can be lanced without impinging upon the other sectors of this society, one of whose aspects is its interrelativity. The ethical question concerning nuclear energy in its application, its operation, its use, is part of a wider question from which it cannot be separated: the question of development and of technical progress. It is one of the impressive aspects of nuclear energy, either because its technology and performance are admired, or because its effects are feared and its potential perils denounced. Nuclear energy is a fruit of the irreversible progress of scientific and technical knowledge, which brought it into being, and whose expansion it now largely ensures. It derives from the profound dynamics of human beings wishing to put their knowledge at the service of humanity, for its well-being and its development.

World Council of Nuclear Workers

2005-01-01T23:59:59.000Z

313

International Nuclear Security  

SciTech Connect (OSTI)

This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

Doyle, James E. [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

314

SPEAR Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interface 1113 N. Kurita J. Langton Vacuum TSP's 1120 J. Corbett A. Terebilo MATLAB Applications - Basics 1121 F. Rafael Booster Kicker Upgrade, Operation Manual 1121...

315

operations center  

National Nuclear Security Administration (NNSA)

1%2A en Operations Center http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismoperationscenter

...

316

Nuclear power expansion: thinking about uncertainty  

SciTech Connect (OSTI)

Nuclear power is one of many options available to achieve reduced carbon dioxide emissions. The real-option value model can help explain the uncertainties facing prospective nuclear plant developers in developing mitigation strategies for the development, construction, and operation of new nuclear plants. (author)

Holt, Lynne; Sotkiewicz, Paul; Berg, Sanford

2010-06-15T23:59:59.000Z

317

Owners of nuclear power plants  

SciTech Connect (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

318

Consequence Management | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Consequence Management | National Nuclear Security Administration Consequence Management | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Consequence Management Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Consequence Management Consequence Management NNSA's Consequence Management operations involve the deployment of the

319

Subscribe / Unsubscribe | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Subscribe / Unsubscribe | National Nuclear Security Administration Subscribe / Unsubscribe | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Subscribe / Unsubscribe Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitations > Environmental Program Services Contract >

320

Sources Sought | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sources Sought | National Nuclear Security Administration Sources Sought | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Sources Sought Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitations > Environmental Program Services Contract > Sources Sought

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Questions and Answers | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Questions and Answers | National Nuclear Security Administration Questions and Answers | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Questions and Answers Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitations > Environmental Program Services Contract >

322

Request for Proposal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Request for Proposal | National Nuclear Security Administration Request for Proposal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Request for Proposal Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitations > Environmental Program Services Contract >

323

Reading Room | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Reading Room | National Nuclear Security Administration Reading Room | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Reading Room Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitations > Environmental Program Services Contract > Reading Room

324

Nuclear Science  

Broader source: Energy.gov (indexed) [DOE]

Science Science and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE) Sourcebook. We have evolved and improved! The core mission of the Sourcebook has not changed, however. Our purpose is to facilitate interaction among faculty, students, industry, and government agencies to accomplish nuclear research, teaching and service activities. Since 1986 we have compiled critical information on nuclear

325

Nuclear reactions  

Science Journals Connector (OSTI)

Much reference has been made in the last chapter to nuclear energy levels and their various properties (e.g ... ways of doing this the use of nuclear reactions, and studies of how excited nuclei...

R. J. Blin-Stoyle FRS

1991-01-01T23:59:59.000Z

326

nuclear security  

National Nuclear Security Administration (NNSA)

3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

327

Topics in Nuclear Power  

SciTech Connect (OSTI)

The 104 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and some designers are taking a second look at the economies of smaller, modular reactors.

Budnitz, Robert J. [Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2011-11-04T23:59:59.000Z

328

Nuclear Criticality Safety | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Criticality Safety Criticality Safety SHARE Criticality Safety Nuclear Criticality Safety ORNL is the lead national laboratory responsible for supporting the National Nuclear Security Administration (NNSA) in managing the US Nuclear Criticality Safety Program. NCSP is chartered to maintain the technical infrastructure (integral experiments, computational tools, training, data, etc.) needed to support safe, efficient fissionable material operations. ORNL has extensive expertise in the area of nuclear criticality safety (NCS) based upon years of experience in the following areas: Operations Support: providing fissionable material operations support for enrichment, fabrication, production, and research; Critical Experiments: performing experiments at the Y-12 Critical Experiment Facility;

329

Accomplishments | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accomplishments | National Nuclear Security Administration Accomplishments | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Accomplishments Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > About ASC > Accomplishments

330

Testimonials | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Testimonials | National Nuclear Security Administration Testimonials | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Testimonials Home > Federal Employment > Working at NNSA > Testimonials Testimonials At the NNSA, you will have the opportunity to work with some of the brightest professionals in the world who routinely tackle highly complex

331

Compensation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Compensation | National Nuclear Security Administration Compensation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Compensation Home > Federal Employment > Working at NNSA > Compensation Compensation Whether you're a new college graduate, someone with industry experience looking to move into a Federal job or a current government employee looking

332

Overview | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Overview | National Nuclear Security Administration Overview | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Overview Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > About ASC > Overview Overview

333

Nuclear weapon system risk assessment  

SciTech Connect (OSTI)

Probabilistic risk assessment (PRA) is a process for evaluating hazardous operations by considering what can go wrong, the likelihood of these undesired events, and the resultant consequences. Techniques used in PRA originated in the 1960s. Although there were early exploratory applications to nuclear weapons and other technologies, the first major application of these techniques was in the Reactor Safety Study, WASH-1400, {sup 1} in which the risks of nuclear power accidents were thoroughly investigated for the first time. Recently, these techniques have begun to be adapted to nuclear weapon system applications. This report discusses this application to nuclear weapon systems.

Carlson, D.D.

1993-11-01T23:59:59.000Z

334

Accomplishments | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Accomplishments | National Nuclear Security Administration Accomplishments | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Accomplishments Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > About ASC > Accomplishments

335

Contact | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Contact | National Nuclear Security Administration Contact | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Contact Home > About Us > Our Locations > Albuquerque Complex > Federal Asian Pacific American Council - New Mexico Chapter Albuquerque, NM > Contact Contact "Promoting Equal Opportunity and Cultural Diversity for APAs in Government"

336

A look back at Union Carbides FIRST 20 Years in Nuclear Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbide's FIRST 20 Years in Nuclear Energy The Y-12 Plant Milestones Note: Union Carbide Nuclear Division, which started out as Carbide and Carbon Chemicals Company, operated...

337

A look back at Union Carbides FIRST 20 Years in Nuclear Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Union Carbide in Nuclear Energy Note: Union Carbide Nuclear Division, which started out as Carbide and Carbon Chemicals Company, operated the Atomic Energy CommissionEnergy...

338

Top U.S. Nuclear Official Commends Industry for Submitting 3rd...  

Energy Savers [EERE]

Nuclear Official Commends Industry for Submitting 3rd Combined Construction & Operating License Application to the NRC Top U.S. Nuclear Official Commends Industry for Submitting...

339

Nuclear Ukraine  

Science Journals Connector (OSTI)

... SIR - Your article (Nature 365, 599; 1993) on the US-Ukraine stalemate over nuclear weapons prompts the following remarks. The United States made a mistake ... nuclear weapons prompts the following remarks. The United States made a mistake in not recognizing Ukraine as a legitimate successor state to the Soviet nuclear arsenal and is still insisting that ...

Arno Arrak

1994-01-13T23:59:59.000Z

340

Nuclear Engineer (Nuclear Safety Specialist)  

Broader source: Energy.gov [DOE]

A successful candidate of this position will serve as a Nuclear Engineer (Nuclear Safety Specialist) responsible for day-to-day technical monitoring, and evaluation of aspects of authorization...

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS  

National Nuclear Security Administration (NNSA)

http://www.nnsa.energy.gov Office of Nuclear Weapon Surety and Quality http://www.nnsa.energy.gov Office of Nuclear Weapon Surety and Quality SUPPLEMENTAL DIRECTIVE Approved: 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Defense Programs NA SD 452.4 NA SD 452.4 1 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE 1. PURPOSE. This NNSA Supplemental Directive (SD) supports the requirements of DOE O 452.4B, Security and Use Control of Nuclear Explosives and Nuclear Weapons. Specifically, this SD supports the Order's requirements to implement deliberate unauthorized use (DUU) preventive measures for nuclear explosive operations (NEO) and associated activities and to perform independent evaluations to determine if NEOs

342

Overview of the nuclear fuel cycle  

SciTech Connect (OSTI)

The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity.

Leuze, R.E.

1982-01-01T23:59:59.000Z

343

NPT Compliance | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Compliance | National Nuclear Security Administration Compliance | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NPT Compliance Home > Our Mission > Managing the Stockpile > NPT Compliance NPT Compliance Maintaining the safety, security and effectiveness of the nuclear deterrent without nuclear testing - especially at lower numbers - requires

344

Change Request Forms | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Change Request Forms | National Nuclear Security Administration Change Request Forms | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Change Request Forms Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > NMMSS Information, Reports & Forms > Change Request Forms Change Request Forms

345

International Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration International Programs Home > About Us > Our Programs > Emergency Response > International Programs International Programs NNSA prepares for nuclear and radiological emergencies across the globe.

346

Action Codes Table | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Action Codes Table | National Nuclear Security Administration Action Codes Table | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Action Codes Table Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > NMMSS Information, Reports & Forms > Code Tables > Action Codes Table

347

Congressional Testimony | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Congressional Testimony | National Nuclear Security Administration Congressional Testimony | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Congressional Testimony Home > Media Room > Congressional Testimony Congressional Testimony NNSA officials frequently testify before Congressional committees and subcommittees on matters of nuclear and national security.

348

Presidential Initiatives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Presidential Initiatives | National Nuclear Security Administration Presidential Initiatives | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Presidential Initiatives Home > About Us > Our Programs > Nonproliferation > Countering Nuclear Terrorism and Trafficking > Presidential Initiatives Presidential Initiatives Bratislava Nuclear Security Initiative: President Putin and President

349

U. S. Department of Energy Savannah River Operations Office ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supervising Federal facility representatives, who are responsible for overseeing conduct of operations by the contractor for nuclear material processing and storage...

350

Dennis Yates Of Savannah River Operations Named 2013 Facility...  

Office of Environmental Management (EM)

River Site. The HB-Line is part of the H-Canyon, which conducts hazardous nuclear chemistry, packaging, and processing operations on plutonium and transuranic materials. Mr....

351

Office of Nuclear Safety - Directives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives The HSS Office of Nuclear Safety is the responsible office for the development, interpretation, and revision of the following Department of Energy (DOE) directives. Go to DOE's Directives Web Page to view these directives. DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment.

352

Budget | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Budget | National Nuclear Security Administration Budget | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Budget Home > About Us > Budget Budget Full details of the President's FY14 budget for NNSA can be found here. We're keeping the American people safe. President Obama has laid out the most ambitious view of nuclear security in decades. Our

353

Nuclear Energy | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Nuclear Energy Argonne has contributed to the development of civilian nuclear power for over 50 years. Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play an increasing role in worldwide power generation as advanced reactor designs and improved fuel-cycle technologies are brought into commercial application. Nearly every commercial reactor in operation today was developed from Argonne research. Building on this heritage, we are supporting the reliable, safe and secure use of nuclear power worldwide - and fostering its increased use in the future by incorporating science and engineering

354

Budget | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Budget | National Nuclear Security Administration Budget | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Budget Home > About Us > Budget Budget Full details of the President's FY14 budget for NNSA can be found here. We're keeping the American people safe. President Obama has laid out the most ambitious view of nuclear security in decades. Our

355

Design operators  

E-Print Network [OSTI]

Design operators is a thesis that investigates the nature and characteristics of the design process by examining the interaction of computation with architectural design. The effects of the introduction of these media in ...

Dritsas, Stylianos, 1978-

2004-01-01T23:59:59.000Z

356

Business Operations  

Office of Energy Efficiency and Renewable Energy (EERE)

The Office of Business Operations is the central organization for all Office of Energy Efficiency and Renewable Energy (EERE) business products, processes, and systems. The three main offices of...

357

Operating Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

1997-03-28T23:59:59.000Z

358

Comparing PRAs with operating experience  

SciTech Connect (OSTI)

Probabilistic Risk Assessment is widely used to estimate the frequencies of rare events, such as nuclear power plant accidents. An obvious question concerns the extent to which PRAs conform to operating experience--that is, do PRAs agree with reality? The authors discuss a formal methodology to address this issue and examine its performance using plant-specific data.

Picard, R.R.; Martz, H.F.

1998-12-01T23:59:59.000Z

359

Operation REDWING 1956. Technical report  

SciTech Connect (OSTI)

REDWING was a 17-detonation atmospheric nuclear weapons test series conducted in the Marshall Islands at Enewetak and Bikini atolls in spring and summer 1956. This is a report of DOD personnel in REDWING with an emphasis on operations and radiological safety.

Bruce-Henderson, S.; Gladeck, F.R.; Hallowell, J.H.; Martin, E.J.; McMullan, F.W.

1982-08-01T23:59:59.000Z

360

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.  

E-Print Network [OSTI]

, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL) University of New Mexico, Albuquerque, NM, USA 13) General Atomics, San Diego, CA, USA 14) Mission Research

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services GNEP would build and strengthen a reliable international fuel services consortium under which "fuel supplier nations" would choose to operate both nuclear power plants and fuel production and handling facilities, providing reliable fuel services to "user nations" that choose to only operate nuclear power plants. This international consortium is a critical component of the GNEP initiative to build an improved, more proliferation-resistant nuclear fuel cycle that recycles used fuel, while Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services More Documents & Publications

362

Tank Farm Operations Surveillance Automation Analysis  

SciTech Connect (OSTI)

The Nuclear Operations Project Services identified the need to improve manual tank farm surveillance data collection, review, distribution and storage practices often referred to as Operator Rounds. This document provides the analysis in terms of feasibility to improve the manual data collection methods by using handheld computer units, barcode technology, a database for storage and acquisitions, associated software, and operational procedures to increase the efficiency of Operator Rounds associated with surveillance activities.

MARQUEZ, D.L.

2000-12-21T23:59:59.000Z

363

International Energy Outlook 1999 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

nuclear.jpg (5137 bytes) nuclear.jpg (5137 bytes) Nuclear electricity generation remains flat in the IEO99 reference case, representing a declining share of the world’s total electricity consumption. Net reductions in nuclear capacity are projected for most industrialized nations. In 1997, a total of 2,276 billion kilowatthours of electricity was generated from nuclear power worldwide, providing 17 percent of the world’s electricity generation. Among the countries with operating nuclear power plants, national dependence on nuclear power for electricity varies greatly (Figure 53). Ten countries met at least 40 percent of their total electricity demand with generation from nuclear reactors. The prospects for nuclear power to maintain a significant share of worldwide electricity generation are uncertain, despite projected growth of

364

ORISE: Operations Support and Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Securing the Golden State Amber Waves 2012 Bureau of Reclamation Emergency Management Issues Special Interest Group Golden Guardian Joint Information Center Preventing Nuclear Smuggling Program Training and Technology Support Resources How to Work With Us Contact Us Oak Ridge Institute for Science Education Operations Support and Planning Operations Support and Planning The Oak Ridge Institute for Science and Education (ORISE) provides operations and planning support to the U.S. Department of Energy (DOE), Federal Emergency Management Agency and other government agencies for their counterterrorism and emergency response readiness programs. ORISE's planning, logistical and administrative support areas are focused on enhancing the radiological preparedness and response coordination

365

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,Summary of Nuclear Power Plant Operating Experience for

Nero, A.V.

2010-01-01T23:59:59.000Z

366

A Safer Nuclear Enterprise  

Science Journals Connector (OSTI)

...2012 at the Nuclear Security...leadership in nuclear enterprise...multinational assessment of emerging risks and consequences...to assess nuclear risks in...or nuclear terrorism. States...and nuclear power. Since 1945...nuclear power plant can mean...

Sidney D. Drell; George P. Shultz; Steven P. Andreasen

2012-06-08T23:59:59.000Z

367

Nuclear astrophysics  

SciTech Connect (OSTI)

The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

Haxton, W.C.

1992-12-31T23:59:59.000Z

368

Nuclear astrophysics  

SciTech Connect (OSTI)

The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

Haxton, W.C.

1992-01-01T23:59:59.000Z

369

Nuclear Counterterrorism  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Cancels DOE O 457.1 and DOE M 457.1-1.

2013-08-26T23:59:59.000Z

370

National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wnchington, DC 20585 Wnchington, DC 20585 July 13, 2010 OFFICE O F THE ADMINISTRATOR 'l'he Honorable Peter S. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, D.C. 20004 [>ear Mr. Chairman: By the direction of the Secretary of Energy, the enclosed is the Department's Implementation Plan (Plan) for Defense Nuclear Facilities Safety Board (Board) Recommendation 2009-2, Los Alamos Nutional Luhorutory Plutoniu?lt Fucilitj. Sr i s m ic Sufety. The Plan provides the Department's approach for implementing near-term actions to reduce the consequences of seismically-induced events at the Los Alamos National Laboratory Plutonium Facility, and longer-tcrm actions to ensure continued safe operation of the facility. Mr. James .I. McConnell. Assistant Deputy Administrator for Nuclear Safety and

371

BOREAS Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study Area Operations/Thompson Airport (NSA-Ops) Study Area Operations/Thompson Airport (NSA-Ops) NSA Operations (NSA-Ops) The Keewatin Air Hanger: site of BOREAS Ops 1994 Dr. Piers Sellers working in Ops, 1994 BOREAS "Air Force" The NASA C-130 The University of Wyoming King Air The NASA Helicopter The NRC Twin Otter The NCAR Electra The Ontario Chieftain Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help |

372

SSA Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Operations (SSA-Ops) Area Operations (SSA-Ops) "BOREAS Ops" was located at the Snodrifters Lodge, in Candle Lake, Saskatchewan. Radiosonde balloon launch at Ops The NASA Helicopter lands at Ops A meeting at the Snodrifter's Lodge Release of a radiosonde at the SSA operations center in Candle Lake. Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help | User Services - Tel: +1 (865) 241-3952 or E-mail: uso@daac.ornl.gov

373

Nuclear Power  

Science Journals Connector (OSTI)

Nuclear Power ... THIS WEEKS issue contains six letters on nuclear power, a representative sample of the letters C&EN received in response to the editorial, Resist Hysteria, I wrote shortly after the earthquake and tsunami in Japan devastated the Fukushima Daiichi Nuclear Power Station (C&EN, March 21, page 5). ... Four of the six letters take sharp issue with the primary point I made in the editorial, which was that, despite the severity of the situation in Japan, nuclear power remains an essential component of our overall energy mix for the near to mid-term because it will help us avert the worst impacts of global climate disruption. ...

RUDY M. BAUM

2011-05-09T23:59:59.000Z

374

NUCLEAR STUDIES  

Science Journals Connector (OSTI)

Japanese nuclear power plant crisis sparks examination of U.S. REACTORS ... Calls are particularly zeroing in on reactors similar in location and design to those in Japan. ...

JEFF JOHNSON

2011-04-04T23:59:59.000Z

375

NIF's Operations Support Building awarded LEED certification | National  

National Nuclear Security Administration (NNSA)

NIF's Operations Support Building awarded LEED certification | National NIF's Operations Support Building awarded LEED certification | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NIF's Operations Support Building awarded LEED certification NIF's Operations Support Building awarded LEED certification Posted By Office of Public Affairs

376

Hospital response for children as a vulnerable population in radiological/nuclear incidents  

Science Journals Connector (OSTI)

......hospital's response to a nuclear or radiological emergency...Stronger links between nuclear medicine programs and...operations and preparedness policies need to include paediatric...Infectious Disease. Policy statement: chemical-biological...population in radiological/nuclear incidents. | Emergency......

Brenda Conway; Jordan Pike

2010-11-01T23:59:59.000Z

377

Nuclear radiation electronic gear  

Science Journals Connector (OSTI)

Nuclear radiation electronic gear ... Examines the line of nuclear radiation instrumentation offered by Nuclear-Chicago Corporation and Victoreen Instrument Company. ... Nuclear / Radiochemistry ...

S. Z. Lewin

1961-01-01T23:59:59.000Z

378

Nuclear Weapons Journal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Weapons Journal Nuclear Weapons Journal x The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2,...

379

Nuclear Forces and Nuclear Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forces and Nuclear Systems Forces and Nuclear Systems Our goal is to achieve a description of nuclear systems ranging in size from the deuteron to nuclear matter and neutron stars using a single parameterization of the nuclear forces. Our work includes both the construction of two- and three-nucleon potentials and the development of many-body techniques for computing nuclear properties with these interactions. Detailed quantitative, computationally intense studies are essential parts of this work. In the last decade we have constructed several realistic two- and three-nucleon potential models. The NN potential, Argonne v18, has a dominant charge-independent piece plus additional charge-dependent and charge-symmetry-breaking terms, including a complete electromagnetic interaction. It fits 4301 pp and np elastic scattering data with a chi**2

380

The Evolution of Nuclear Power Generation for Mars  

Science Journals Connector (OSTI)

Among the available energy alternatives nuclear power offers important advantages and in many cases is the only viable alternative given actual operation conditions on Mars. We know that nuclear is the most co...

Liviu Popa-Simil

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

TABLE 2. U.S. Nuclear Reactor Ownership Data  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. Nuclear Reactor Ownership Data" "PlantReactor Name","Generator ID","Utility Name - Operator","Owner Name","% Owned" "Arkansas Nuclear One",1,"Entergy Arkansas...

382

Gen. Frank Klotz tours NNSS | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

offers one of the safest, most secure locations anywhere in the U.S. weapons complex to conduct nuclear explosive operations. Scientists at DAF work on special nuclear material,...

383

Post detonation nuclear forensics  

SciTech Connect (OSTI)

The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.

Davis, Jay [The Hertz Foundation, 2300 First Street, Suite 250, Livermore, California (United States)

2014-05-09T23:59:59.000Z

384

Substation Operation  

Science Journals Connector (OSTI)

... THIS book is intended to help the workman to understand the principles of substation operation. It is a good attempt at giving somewhat advanced technical knowledge in such ... ." We are told not to use water to put out a fire at a substation before the station has been made completely " dead." The reason given for this ...

1925-08-01T23:59:59.000Z

385

Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

386

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

387

Notice of Availability | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Notice of Availability | National Nuclear Security Administration Notice of Availability | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Notice of Availability Home > About Us > Our Operations > NNSA Office of General Counsel > National Environmental Policy Act (NEPA) > NEPA Reading Room > Notice of Availability Notice of Availability

388

Reasonable Accommodations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Reasonable Accommodations | National Nuclear Security Administration Reasonable Accommodations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Reasonable Accommodations Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Reasonable Accommodations Reasonable Accommodations For information and guidance on Reasonable Accommodations, contact the

389

Small Business | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Small Business Home > About Us > Our Operations > Acquisition and Project Management > Small Business Small Business NNSA's Small Business program serves as the Info-structure through which NNSA effectively disseminates information regarding our small business

390

Small Business Toolbox | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Toolbox | National Nuclear Security Administration Toolbox | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Small Business Toolbox Home > About Us > Our Operations > Acquisition and Project Management > Small Business > Small Business Toolbox Small Business Toolbox NNSA's Small Business program serves as the Info-structure through which

391

Major Contract Solicitation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Solicitation | National Nuclear Security Administration Solicitation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Major Contract Solicitation Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitation Major Contract Solicitation Pantex Plant Wind Farm Acquisition Y-12 National Security Complex, Pantex Plant, with Option for

392

Contractor Human Resources | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contractor Human Resources | National Nuclear Security Administration Contractor Human Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Contractor Human Resources Home > About Us > Our Operations > Acquisition and Project Management > Contractor Human Resources Contractor Human Resources Welcome The Contractor Human Resources mission is to provide expert advice and

393

Previous Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Previous Sandia National Laboratories | National Nuclear Security Previous Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Previous Sandia National Laboratories Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Sandia National Laboratories > Previous Sandia

394

Workforce Statistics - NNSA | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

NNSA | National Nuclear Security Administration NNSA | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - NNSA Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NNSA Workforce Statistics - NNSA NNSA FY13 NNSA Semi Annual Workforce Diversity Report

395

EEO Annual Training | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Annual Training | National Nuclear Security Administration Annual Training | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog EEO Annual Training Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > EEO Annual Training EEO Annual Training OCR's mission: Promote and advocate Equal Employment Opportunity/Affirmative Action

396

Frequently Asked Questions | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frequently Asked Questions | National Nuclear Security Administration Frequently Asked Questions | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Frequently Asked Questions Home > About Us > Our Operations > Management and Budget > Human Resources > Pay-banding > Frequently Asked Questions Frequently Asked Questions General What is a demonstration project?

397

Nuclear options  

Science Journals Connector (OSTI)

... sad if transient commercial expediency led the country to take risks now by adopting nuclear reactor designs from abroad which are in some respects technically less sound than those produced at ... much lower priority. It can be anticipated, however; that although the types of nuclear reactor selected as the best that Britain could build next may be suitable for unit designs ...

G. R. Bainbridge

1974-06-21T23:59:59.000Z

398

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.  

E-Print Network [OSTI]

, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL with high-number wire arrays The conversion of Sandia's Particle Beam Fusion Accelerator II (PBFA II output ~1.6 MJ ~200 TW Marx 11.4 MJ water vacuum Electrical to x-ray energy Conversion efficiency ~ 15

399

Events | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events | National Nuclear Security Administration Events | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Events Home > Media Room > Events Events Learn more about upcoming events in your community and find out how to request NNSA involvement at your next event. Event Nov 2, 2011 Webinar: Proposed Changes to the CFR Part 810 Regulation

400

Nonproliferation | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation Home > About Us > Our Programs > Nonproliferation Nonproliferation One of the gravest threats the United States and the international community face is the possibility that terrorists or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA,

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Programs Home > Field Offices > Welcome to the Sandia Field Office > Programs Programs The SFO Programs office is responsible for direction, day-to-day oversight and contract administration activities in support of the technical

402

Pollux | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Pollux | National Nuclear Security Administration Pollux | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Pollux Pollux Pollux The National Nuclear Security Administration (NNSA) announced that Pollux, a subcritical experiment, was successfully conducted at its Nevada National Security Site (NNSS). This video is of the vessel containing the Pollux experiment.

403

Weapons | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Weapons | National Nuclear Security Administration Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Weapons Home > Our Mission > Managing the Stockpile > Weapons Weapons The New START Treaty, which was signed in 2010, between the United States and Russian Federation will cap the strategic deployed nuclear arsenals of each country at 1,550 warheads, a nearly 75% reduction compared with the

404

Leadership | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Leadership | National Nuclear Security Administration Leadership | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Leadership Home > Field Offices > Welcome to the Livermore Field Office > Leadership Leadership Kimberly D. Lebak, Manager Kim Lebak became the Livermore Site Manager in January, 2012 for the National Nuclear Security Administration of the U.S. Department of Energy.

405

Events | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Events | National Nuclear Security Administration Events | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Events Home > Media Room > Events Events Learn more about upcoming events in your community and find out how to request NNSA involvement at your next event. Event Nov 2, 2011 Webinar: Proposed Changes to the CFR Part 810 Regulation

406

Conduct of Operations Requirements for DOE Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

"To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

1990-07-09T23:59:59.000Z

407

Application for presidential permit OE Docket No. PP-230-4 International  

Broader source: Energy.gov (indexed) [DOE]

Response to Late Motion to Intervene Response to Late Motion to Intervene from FirstEnergy Service Corporation Application for presidential permit OE Docket No. PP-230-4 International Transmission Company: Response to Late Motion to Intervene from FirstEnergy Service Corporation Response from International Transmission Company to late motion to intervene from FirstEnergy Service Corporation in the matter of the application for a presidential permit authorizing International Transmission Company to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border. PP-230-4 International Transmission Company More Documents & Publications Application for presidential permit OE Docket No. PP-230-4 International Transmission Company: Response to Late Motion to Intervene of New York

408

Nuclear Reactor Materials and Fuels  

Science Journals Connector (OSTI)

Nuclear reactor materials and fuels can be classified into six categories: Nuclear fuel materials Nuclear clad materials Nuclear coolant materials Nuclear poison materials Nuclear moderator materials

Dr. James S. Tulenko

2012-01-01T23:59:59.000Z

409

Operation Poorman  

SciTech Connect (OSTI)

The objectives of Operation Poorman were to design and build a portable seismic system and to set up and use this system in a cold-weather environment. The equipment design uses current technology to achieve a low-power, lightweight system that is configured into three modules. The system was deployed in Alaska during wintertime, and the results provide a basis for specifying a mission-ready seismic verification system.

Pruvost, N.; Tsitouras, J.

1981-03-18T23:59:59.000Z

410

GEOHYDROLOGICAL STUDIES FOR NUCLEAR WASTE ISOLATION AT THE HANFORD RESERVATION -- Vol. I: Executive Summary; Vol. II: Final Report  

E-Print Network [OSTI]

NUCLEAR WASTE ISOLATION AT THE HANFORD RESERVATION Volume I:of Washington state." Rockwell Hanford Operations Topicalmodel evaluation at the Hanford nuclear waste facility."

Apps, J.

2010-01-01T23:59:59.000Z

411

Microsoft PowerPoint - Why Nuclear Energy New Template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Nuclear Energy? Why Nuclear Energy? Why Nuclear Energy? Nuclear energy already meets a significant share of the world's energy needs * There are 441 nuclear reactors in operation in 31 countries * These plants generate electricity for nearly a billion people, and account for 17% of the world's electricity production * The U.S. has 103 operating reactors producing 20% of the nation's electricity * Illinois leads all states with the highest share of nuclear (51%) * Technology significantly developed at Argonne forms the basis of all nuclear energy systems used worldwide Nuclear power is reliable and economical * In 2001, U.S. nuclear plants produced electricity for 1.68 cents per kilowatt-hour on average, second only to hydroelectric power among baseload generation options * U.S. nuclear power plant performance has steadily

412

Conduct of operations training - An innovative approach to team building  

SciTech Connect (OSTI)

The conduct of nuclear power plant operations is a key parameter for station management and regulators alike. Indeed, the basic methods and demeanor in which operating crews approach overall plant operations is perhaps the principal factor leading to safe and efficient operations. Hence, Commonwealth Edison's Zion Station has initiated an innovative and positive training program designed to increase operator awareness of conducting station operations in an attentive, diligent, and conscientious manner. This Conduct of Operations Training Program is a collaborative joint effort between Commonwealth Edison and the Westinghouse Nuclear Training Center. In particular, the key managers of Zion's operating department brainstormed various philosophies and strategies with senior training staff members of the Westinghouse Nuclear Training Center. The outcome of these sessions has formed the skeleton of an intensified, one-day Conduct of Operations course. Several unique aspects of this innovative course are described.

Widen, W.C.; Kurth, W.; Broccolo, A.

1987-01-01T23:59:59.000Z

413

Our Mission | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Mission | National Nuclear Security Administration Mission | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Our Mission Home > Our Mission Our Mission NNSA is responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. It also responds to nuclear and radiological emergencies in the United States

414

Site map | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

map | National Nuclear Security Administration map | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Site map Site map Front page Front page of National Nuclear Security Administration NNSA Site Navigation Our Mission Managing the Stockpile Stockpile Stewardship Program Quarterly Experiments Dismantlement and Disposition Weapons NPT Compliance

415

Material Control & Accountability | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Control & Accountability | National Nuclear Security Control & Accountability | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Material Control & Accountability Home > About Us > Our Programs > Nuclear Security > Material Control & Accountability Material Control & Accountability Safeguards First Principles Initiative

416

Planning for Emergencies | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

for Emergencies | National Nuclear Security Administration for Emergencies | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Planning for Emergencies Home > About Us > Our Programs > Emergency Response > Planning for Emergencies Planning for Emergencies Emergency Management is the application of the necessary resources to

417

First Responders | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Responders | National Nuclear Security Administration Responders | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration First Responders Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders First Responders NNSA's first responders include the Radiological Assistance Program (RAP)

418

Material Control & Accountability | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Control & Accountability | National Nuclear Security Control & Accountability | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Material Control & Accountability Home > About Us > Our Programs > Nuclear Security > Material Control & Accountability Material Control & Accountability Safeguards First Principles Initiative

419

Media Room | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Media Room | National Nuclear Security Administration Media Room | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Media Room Home > Media Room Media Room NNSA's Office of Congressional, Intergovernmental, and Public Affairs regularly updates the web site with current press releases, newsletters,

420

Military Academic Collaborations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Academic Collaborations | National Nuclear Security Administration Academic Collaborations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Military Academic Collaborations Home > About Us > Our Programs > Defense Programs > Military Academic Collaborations Military Academic Collaborations The National Nuclear Security Administration (NNSA) Office of Defense

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Emergency Information | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Information | National Nuclear Security Administration Information | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Emergency Information Home > Field Offices > Welcome to the Sandia Field Office > Emergency Information Emergency Information The Sandia Field Office (SFO) Emergency Management System is designed to

422

Institutional Research & Development | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

423

Federal Employment | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Employment | National Nuclear Security Administration Employment | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Federal Employment Home > Federal Employment Federal Employment NNSA offers exciting opportunities for professionals with diverse educational backgrounds and experience. You may have a college degree in

424

Physical Security Systems | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physical Security Systems | National Nuclear Security Administration Physical Security Systems | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Physical Security Systems Home > About Us > Our Programs > Nuclear Security > Physical Security Systems Physical Security Systems After the 9/11 terrorist attacks, NNSA took steps to protect its critical

425

Physical Security Systems | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Physical Security Systems | National Nuclear Security Administration Physical Security Systems | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Physical Security Systems Home > About Us > Our Programs > Nuclear Security > Physical Security Systems Physical Security Systems After the 9/11 terrorist attacks, NNSA took steps to protect its critical

426

Collaboration Topics - System Software | National Nuclear Security  

National Nuclear Security Administration (NNSA)

System Software | National Nuclear Security System Software | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Collaboration Topics - System Software Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

427

Working with Interpreters | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Working with Interpreters | National Nuclear Security Administration Working with Interpreters | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Working with Interpreters Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

428

Management and Administration | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management and Administration | National Nuclear Security Administration Management and Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Management and Administration Home > About Us > Our Programs > Powering the Nuclear Navy > Management and Administration Management and Administration NNSA's Naval Reactors is committed to excellence and dedicated to meeting

429

Federal Employment | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Employment | National Nuclear Security Administration Employment | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Federal Employment Home > Federal Employment Federal Employment NNSA offers exciting opportunities for professionals with diverse educational backgrounds and experience. You may have a college degree in

430

High Explosives Application Facility | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Explosives Application Facility | National Nuclear Security Explosives Application Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration High Explosives Application Facility Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development >

431

(Nuclear theory). [Research in nuclear physics  

SciTech Connect (OSTI)

This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

Haxton, W.

1990-01-01T23:59:59.000Z

432

Nuclear Astrophysics  

E-Print Network [OSTI]

Nuclear physics has a long and productive history of application to astrophysics which continues today. Advances in the accuracy and breadth of astrophysical data and theory drive the need for better experimental and theoretical understanding of the underlying nuclear physics. This paper will review some of the scenarios where nuclear physics plays an important role, including Big Bang Nucleosynthesis, neutrino production by our sun, nucleosynthesis in novae, the creation of elements heavier than iron, and neutron stars. Big-bang nucleosynthesis is concerned with the formation of elements with A nuclear physics inputs required are few-nucleon reaction cross sections. The nucleosynthesis of heavier elements involves a variety of proton-, alpha-, neutron-, and photon-induced reactions, coupled with radioactive decay. The advent of radioactive ion beam facilities has opened an important new avenue for studying these processes, as many involve radioactive species. Nuclear physics also plays an important role in neutron stars: both the nuclear equation of state and cooling processes involving neutrino emission play a very important role. Recent developments and also the interplay between nuclear physics and astrophysics will be highlighted.

Carl R. Brune

2005-02-28T23:59:59.000Z

433

nuclear security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

security | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

434

Nuclear Incident Team | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Incident Team | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

435

nuclear navy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

navy | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

436

nuclear threat science | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

threat science | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

437

Nuclear Radius and Nuclear Forces  

Science Journals Connector (OSTI)

The difference between the radius of the nuclear matter distribution and the nuclear force radius, RN?1.4A1310-13 cm, for heavy nuclei (A>100) is interpreted as a consequence of the finite range of nuclear forces. Assuming that the nuclear matter distribution coincides with the charge distribution as determined at Stanford (RC=1.12A1310-13 cm is the distance at which the charge density falls to one half value) we sum up the nuclear interactions of an incident nucleon for various proposed internucleon potentials, V(r). We also evaluate contributions from the spin, charge, and matter polarizations induced in the nuclear distributions by the incident nucleon as a test of the convergence of these calculations. The aim here is to infer some features of nuclear forces which satisfy saturation requirements and at the same time give rise to an appreciable nuclear attraction for an incident nucleon at RN. Analyses of the scattering of neutrons and protons by heavy nuclei suggest a nuclear attraction ?14 Mev at a distance RN.These considerations are primarily sensitive to the long range behavior of the direct, central part of V(r). The key point which emerges from them is that the nuclear forces must contain long range (~ meson Compton wavelength) direct, central attractions which will be felt by an incident nucleon at RN before the shorter range repulsions (hard cores, many-body forces, or exchange interactions), which are responsible for saturation, become effective. Such interactions can be constructed phenomenologically, but are not found in recent meson-theoretically deduced potentials.

S. D. Drell

1955-10-01T23:59:59.000Z

438

Nuclear condensation  

Science Journals Connector (OSTI)

This work draws an analogy between a heated nucleus breaking up into clusters and a liquid undergoing a phase transition to a gas in which droplets appear. The critical temperature and density in the nucleus are investigated using a Skyrme effective interaction and finite temperature Hartree-Fock theory. The energy and pressure as a function of density are calculated. The effects of compressibility, effective mass, and binding energy per particle on the critical temperature and critical density of nuclear systems is developed. In some cases, analytic expressions for these quantities can be obtained.NUCLEAR REACTIONS Phase transitions in hot nuclear matter.

H. Jaqaman; A. Z. Mekjian; L. Zamick

1983-06-01T23:59:59.000Z

439

Nuclear War  

SciTech Connect (OSTI)

Several chapters in Last Aid warrant the attention of the medical profession. What is known and not known about acute biologic effects following a nuclear explosion is described. The social, physical, and environmental impact of nuclear war on urban population centers is described. How nuclear weapons could affect the composition of the ozone layer and the effects this could have on human survival, including possible interruption of the aquatic ecosystem to produce single-cell organisms for the food cycle, especially seafood is noted.

MacLeod, G.K.

1983-01-01T23:59:59.000Z

440

Nuclear Power Plants and Their Fuel as Terrorist Targets  

Science Journals Connector (OSTI)

...applied to terrorism. To tell...Shipment Risk Estimates...Director of Nuclear Control Institute...said that an attack on a plant could make a huge...believe nuclear power is being...operation of nuclear facilities...applied to terrorism. To...Shipment Risk Estimates...Director of Nuclear Control Institute...said that an attack on a plant could make...believe nuclear power is being...

Douglas M. Chapin; Karl P. Cohen; W. Kenneth Davis; Edwin E. Kintner; Leonard J. Koch; John W. Landis; Milton Levenson; I. Harry Mandil; Zack T. Pate; Theodore Rockwell; Alan Schriesheim; John W. Simpson; Alexander Squire; Chauncey Starr; Henry E. Stone; John J. Taylor; Neil E. Todreas; Bertram Wolfe; Edwin L. Zebroski

2002-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Categorical Exclusion Determinations: Idaho Operations Office | Department  

Broader source: Energy.gov (indexed) [DOE]

January 25, 2011 January 25, 2011 CX-005187: Categorical Exclusion Determination Hex Block Shipment Project CX(s) Applied: B3.6 Date: 01/25/2011 Location(s): Idaho Office(s): Nuclear Energy, Idaho Operations Office January 5, 2011 CX-004926: Categorical Exclusion Determination Radioactive Waste Management Complex ? Analytical Laboratory Operations CX(s) Applied: B3.1 Date: 01/05/2011 Location(s): Idaho Office(s): Nuclear Energy, Idaho Operations Office December 10, 2010 CX-004645: Categorical Exclusion Determination CPP-663 Heating, Ventilation and Air Conditioning Systems Upgrade CX(s) Applied: B2.1 Date: 12/10/2010 Location(s): Idaho Office(s): Idaho Operations Office November 16, 2010 CX-004561: Categorical Exclusion Determination Idaho Nuclear Technology and Engineering Center - Light Water Breeder

442

Introduction: Off-site nuclear emergency management?capabilities and challenges  

Science Journals Connector (OSTI)

......those concerned with nuclear emergency and post...management (in either a policy, operational or...area whether in an policy, operational or...Introduction: off-site nuclear emergency management...those concerned with nuclear emergency and post...management (in either a policy, operational or......

Johann-Klaus Hohenberg; Neale Kelly

2004-06-01T23:59:59.000Z

443

U.S. Navy Launches First Nuclear Sub | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Navy Launches First Nuclear Sub | National Nuclear Security Navy Launches First Nuclear Sub | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > U.S. Navy Launches First Nuclear Sub U.S. Navy Launches First Nuclear Sub January 21, 1954 Thames River (Groton, Conn.) U.S. Navy Launches First Nuclear Sub

444

U.S. No Longer Building Any Nuclear Weapons | National Nuclear Security  

National Nuclear Security Administration (NNSA)

No Longer Building Any Nuclear Weapons | National Nuclear Security No Longer Building Any Nuclear Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > U.S. No Longer Building Any Nuclear Weapons U.S. No Longer Building Any Nuclear Weapons May 10, 1992 Washington, DC U.S. No Longer Building Any Nuclear Weapons

445

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

446

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

National Nuclear Security Administration (NNSA)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

447

Climate Change, Nuclear Power and Nuclear  

E-Print Network [OSTI]

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

448

Supporting the Comprehensive Nuclear-Test-Ban Treaty  

SciTech Connect (OSTI)

PNNL operates the only certified laboratory in the U.S. for the Comprehensive Nuclear-Test-Ban Treaty's International Monitoring System (IMS).

Bowyer, Ted

2014-11-20T23:59:59.000Z

449

Supporting the Comprehensive Nuclear-Test-Ban Treaty  

ScienceCinema (OSTI)

PNNL operates the only certified laboratory in the U.S. for the Comprehensive Nuclear-Test-Ban Treaty's International Monitoring System (IMS).

Bowyer, Ted

2014-06-12T23:59:59.000Z

450

EGS 01-01: Nuclear Weapon Program Enforcement Issues  

Office of Environmental Management (EM)

OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for...

451

Enforcement Guidance Supplement 01-01, Nuclear Weapon Program...  

Office of Environmental Management (EM)

OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for...

452

2010 NMMSS Users Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Congressional...

453

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network [OSTI]

Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the...

Kengy Barty

2012-02-17T23:59:59.000Z

454

Principal Media Contact: Lindsey Evans Savannah River Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluor-led company whose members are Fluor Federal Services, Newport News Nuclear and Honeywell, responsible for the management and operations of the Department of Energy's...

455

Principal Media Contact: DT Townsend Savannah River Nuclear Solutions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluor-led company whose members are Fluor Federal Services, Newport News Nuclear and Honeywell, responsible for the management and operations of the Department of Energy's...

456

Louisiana Nuclear Energy and Radiation Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality is responsible for the regulation of nuclear energy safety, permitting and radiation safety and control in Louisiana. The Department operates...

457

Operational Guidelines/Radiological Emergency Response  

Broader source: Energy.gov [DOE]

Operational Guidelines/Radiological Emergency Response. Provides information and resources concerning the development of Operational Guidelines as part of planning guidance for protection and recovery following Radiological Dispersal Device (RDD) and/or Improvised Nuclear Device (IND) incidents. Operational Guidelines Technical (OGT) Manual, 2009 RESRAD-RDD Complementing Software to OGT Manual EPA Protective Action Guidelines (2013), Interim Final Federal Radiological Monitoring and Assessment Center (FRMAC) Federal Radiological Preparedness Coordinating Committee (FRPCC)

458

Nuclear Medicine  

Science Journals Connector (OSTI)

Nuclear medicine is the branch of medicine that is concerned with the use of in the diagnosis, management, and treatment of disease. It usually uses small amounts of radioactive materials or , substances th...

2008-01-01T23:59:59.000Z

459

Nuclear viscosity  

Science Journals Connector (OSTI)

The decay rate of momentum in a nuclear reaction is given by an exact formula expressed in terms of the T matrix. A special case, where a viscosity coefficient can be estimated, is considered.

B. Giraud; J. Le Tourneux; E. Osnes

1975-01-01T23:59:59.000Z

460

Nuclear Waste  

Science Journals Connector (OSTI)

Nuclear waste is radioactive material no longer considered valuable...238U, 235U, and 226Ra (where the latter decays to 222Rn gas by emitting an alpha particle) or formed through fission of fissile radioisotopes ...

Rob P. Rechard

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nuclear Golf  

E-Print Network [OSTI]

Broadcast Transcript: Pay no attention to that nuclear warhead behind the 18th hole; just shout "Fore!" and drive your Titleist down the fairway. In a development that is bizarre even by North Korean standards, the country ...

Hacker, Randi; Tsutsui, William

2006-12-06T23:59:59.000Z

462

Nuclear Fuels  

Science Journals Connector (OSTI)

The core of a nuclear reactor is composed of a controlled critical configuration of a fissile material, which in strict a sense is the fuel. This fissile material is contained in a matrix, normally a ceramic c...

Rudy J. M. Konings; Thierry Wiss

2011-01-01T23:59:59.000Z

463

Nuclear Energy!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

driver, see the Nuclear Clean Air Energy race car and receive a special clean energy patch on October 21 from 6:30 - 7:30 p.m. Space is limited RSVP by October 4 Hands-on...

464

Nuclear forces  

SciTech Connect (OSTI)

These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

Machleidt, R. [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States)

2013-06-10T23:59:59.000Z

465

Nuclear sizes and the isotope shift  

Science Journals Connector (OSTI)

Darwin-Foldy nuclear-size corrections in electronic atoms and nuclear radii are discussed from the nuclear-physics perspective. The interpretation of precise isotope-shift measurements is formalism dependent, and care must be exercised in interpreting these results and those obtained from relativistic electron scattering from nuclei. We strongly advocate that the entire nuclear-charge operator be used in calculating nuclear-size corrections in atoms rather than relegating portions of it to the nonradiative recoil corrections. A preliminary examination of the intrinsic deuteron radius obtained from isotope-shift measurements suggests the presence of small meson-exchange currents (exotic binding contributions of relativistic order) in the nuclear charge operator, which contribute approximately 12%.

J. L. Friar; J. Martorell; D. W. L. Sprung

1997-12-01T23:59:59.000Z

466

Nuclear Physics for Nuclear Fusion  

SciTech Connect (OSTI)

The nuclear fusion data for deuteron-triton resonance near 100 keV are found to be consistent with the selective resonant tunneling model. The feature of this selective resonant tunneling is the selectivity. It selects not only the energy level, but also the damping rate (nuclear reaction rate). When the Coulomb barrier is thin and low, the resonance selects the fast reaction channel; however, when the Coulomb barrier is thick and high, the resonance selects the slow reaction channel. This mechanism might open an approach toward fusion energy with no strong nuclear radiation.

Li Xingzhong [Tsinghua University (China)

2002-01-15T23:59:59.000Z

467

Department of Energy Nuclear Safety Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

2011-02-08T23:59:59.000Z

468

Nuclear Safety Enforcement Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Letter, NEL-2013-01 - January 7, 2013 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant October 4, 2012 Preliminary Notice of...

469

Transuranium Elements in the Nuclear Fuel Cycle  

Science Journals Connector (OSTI)

Transuranium elements, neptunium, plutonium, americium, and curium, are formed via neutron capture processes of actinides, and are mainly by-products of fuel irradiation during the operation of a nuclear react...

Thomas Fanghnel; Jean-Paul Glatz; Rudy J. M. Konings

2010-01-01T23:59:59.000Z

470

Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement  

Broader source: Energy.gov (indexed) [DOE]

Facts and Lessons of the Fukushima Nuclear Accident and Safety Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints September 19, 2012 Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company Topics Covered: How Tsunami Struck Fukushima Sites Tsunami Height Estimation How we responded in the Recovery Process Safety Improvement and Further Enhancement of Nuclear Safety Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints More Documents & Publications January2005 NNSANews Meeting Materials: June 15, 2011

471

Department of Energy and Nuclear Regulatory Commission Increase Cooperation  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Regulatory Commission Increase Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership July 17, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) expanded cooperation for President Bush's Global Nuclear Energy Partnership (GNEP) through a Memorandum of Understanding (MOU) that was signed on Friday by DOE's GNEP Deputy Program Manager Paul Lisowski and NRC Executive Director for Operations Luis Reyes. The MOU establishes the foundation for increased cooperation between DOE and NRC on technological research and engineering studies and marks another important milestone

472

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

National Nuclear Security Administration (NNSA)

Removing Vulnerable Civilian Nuclear and Radiological Material | Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material Fact Sheet GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material

473

NNSA Helps Vietnam Establish Nuclear, Radiological Emergency Management  

National Nuclear Security Administration (NNSA)

Helps Vietnam Establish Nuclear, Radiological Emergency Management Helps Vietnam Establish Nuclear, Radiological Emergency Management System | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Helps Vietnam Establish Nuclear, Radiological Emergency ... Press Release NNSA Helps Vietnam Establish Nuclear, Radiological Emergency Management

474

NNSA employees selected for Nuclear Scholars Initiative program | National  

National Nuclear Security Administration (NNSA)

employees selected for Nuclear Scholars Initiative program | National employees selected for Nuclear Scholars Initiative program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA employees selected for Nuclear Scholars Initiative program NNSA employees selected for Nuclear Scholars Initiative program Posted By Office of Public Affairs

475

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on NRC International Regulators Conference on Nuclear on NRC International Regulators Conference on Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security

476

First Graduates of Nuclear Security Education Program Announced | National  

National Nuclear Security Administration (NNSA)

Graduates of Nuclear Security Education Program Announced | National Graduates of Nuclear Security Education Program Announced | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > First Graduates of Nuclear Security Education Program Announced Press Release First Graduates of Nuclear Security Education Program Announced

477

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Removing Vulnerable Civilian Nuclear and Radiological Material | Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material Fact Sheet GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material

478

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

National Nuclear Security Administration (NNSA)

on NRC International Regulators Conference on Nuclear on NRC International Regulators Conference on Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security

479

Chapter 17 - Nuclear Fusion  

Science Journals Connector (OSTI)

Publisher Summary Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source, as well as adequate fuel to power civilization for times long compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. This chapter introduces the physics, advantages, difficulties, progress, economics and prospects for fusion energy power plants. Nuclear fusion is the process, in which light nuclei can release large amounts of energy if they combine, or fuse, into heavier nuclei. The principal nuclear reactions which have been considered for reactor concepts involve reactions of isotopes of the two lightest elements: hydrogen and helium. The fuel costs for fusion reactors will be negligible in comparison with the value of the electricity produced. It is difficult to precisely assess the cost of fusion-generated electricity until there is experience with an operating power plant, since the cost will be dependent upon the reliability and the frequency and expense of maintenance, both of which are likely to improve with the hindsight of experience. A fusion reactor does not directly emit CO2 or other greenhouse gases, or any combustion products that contribute to acid rain, and the indirect emissions due to factors like fuel gathering and transport, plant construction and maintenance, and activated parts storage would be small. Thus, fusion power would not have appreciable adverse effects upon global warming, atmospheric quality or acidification of the oceans, lakes and streams.

Larry R. Grisham

2008-01-01T23:59:59.000Z

480

Nuclear Fuel Cycle and Waste Management Technologies - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Fuel Cycle and Nuclear Fuel Cycle and Waste Management Technologies Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Fuel Cycle and Waste Management Technologies Overview Bookmark and Share Much of the NE Division's research is directed toward developing software and performing analyses, system engineering design, and experiments to support the demonstration and optimization of the electrometallurgical

Note: This page contains sample records for the topic "firstenergy nuclear operating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Operations monitoring concept. Consolidated Fuel Reprocessing Program  

SciTech Connect (OSTI)

Operations monitoring is a safeguards concept which could be applied in future fuel cycle facilities to significantly enhance the effectiveness of an integrated safeguards system. In general, a variety of operations monitoring techniques could be developed for both international and domestic safeguards application. The goal of this presentation is to describe specific examples of operations monitoring techniques as may be applied in a fuel reprocessing facility. The operations monitoring concept involves monitoring certain in-plant equipment, personnel, and materials to detect conditions indicative of the diversion of nuclear material. An operations monitoring subsystem should be designed to monitor operations only to the extent necessary to achieve specified safeguards objectives; there is no intent to monitor all operations in the facility. The objectives of the operations monitoring subsystem include: verification of reported data; detection of undeclared uses of equipment; and alerting the inspector to potential diversion activities. 1 fig.

Kerr, H.T.

1985-01-01T23:59:59.000Z

482

High level nuclear waste  

SciTech Connect (OSTI)

The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

Crandall, J L

1980-01-01T23:59:59.000Z

483

Categorical Exclusion Determinations: Idaho Operations Office | Department  

Broader source: Energy.gov (indexed) [DOE]

November 28, 2011 November 28, 2011 CX-007774: Categorical Exclusion Determination Rensselaer Infrastructure Upgrade to Enhance Research and Education in Nuclear Engineering - Rensselaer Polytechnic Institute CX(s) Applied: B3.6 Date: 11/28/2011 Location(s): New York Offices(s): Nuclear Energy, Idaho Operations Office November 28, 2011 CX-007773: Categorical Exclusion Determination An Integrated Upgrade of Scientific Equipment for Strengthening the Research and Education in Nuclear Energy at the Ohio State University CX(s) Applied: B1.2, B3.6 Date: 11/28/2011 Location(s): Ohio Offices(s): Nuclear Energy, Idaho Operations Office November 28, 2011 CX-007772: Categorical Exclusion Determination Idaho National Laboratory Asphalt Repair Project - North Wind Services, LLC CX(s) Applied: B1.3

484

Anne Harrington | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Anne Harrington | National Nuclear Security Administration Anne Harrington | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Leadership > Anne Harrington Anne Harrington Deputy Administrator for Defense Nuclear Nonproliferation Anne Harrington Anne Harrington was sworn in as Deputy Administrator for Defense Nuclear Nonproliferation for the National Nuclear Security Administration in

485

NMMSS II Training | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

II Training | National Nuclear Security Administration II Training | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NMMSS II Training Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > Training > NMMSS II Training NMMSS II Training U.S. Department of Energy / U.S. Nuclear Regulatory Commission

486

Design Basis Threat | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Design Basis Threat | National Nuclear Security Administration Design Basis Threat | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Design Basis Threat Home > About Us > Our Programs > Nuclear Security > Design Basis Threat Design Basis Threat NNSA has taken aggressive action to improve the security of its nuclear weapons material (often referred to as special nuclear material, or SNM)

487

Nuclear Energy-Depend On It Helping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy-Depend On It Helping to Power America for More Than Five Decades Past, Present, and Future ... The United States introduced nuclear energy into our domestic electricity production in 1957 and now produces approximately 20 percent of our total electricity and 70 percent of our low-carbon electricity from nuclear energy, according to the Energy Information Administration. More than 100 U.S. commercial nuclear power reactors provide reliable, affordable electricity in 31 states. Nuclear energy can help meet our Nation's need for dependable electricity into the future. The use of nuclear power is increasing around the world: z 29 countries worldwide operate a total of 437 nuclear reactors for electricity generation, with 55 new nuclear reactors under construction in 14 countries.

488

Computer aided nuclear reactor modeling  

E-Print Network [OSTI]

Nuclear reactor modeling is an important activity that lets us analyze existing as well as proposed systems for safety, correct operation, etc. The quality of a analysis is directly proportional to the quality of the model used. In this work we look...

Warraich, Khalid Sarwar

2012-06-07T23:59:59.000Z

489

Tapping nuclear`s growth potential: Reaching into the next 50 years  

SciTech Connect (OSTI)

Restructuring of the electricity business heralds significant changes in nuclear operations. The organization of the entire electric industry will be different as the vertically integrated monopolies that formerly provided electricity are replaced by separate companies, specializing in specific functions. Among them will likely be generating companies and a limited number of highly proficient nuclear operating companies. Producing electricity as a commodity in a competitive market will call for price-driven performance. The safety focus of nuclear operations is the constant that will carry over into the competitive electricity business.

Shanks, C. [Entergy Nuclear, Inc., Jackson, MS (United States)

1997-12-01T23:59:59.000Z

490

computational infrastructure for nuclear astrophysics Michael Smith, Physics Division, Oak Ridge Na:onal Lab coordinator@nucastrodata.org  

E-Print Network [OSTI]

computational infrastructure for nuclear astrophysics Michael Smith, Physics Division, Oak Ridge Na:onal Lab coordinator@nucastrodata.org #12;computational infrastructure for nuclear astrophysics system overview ·work with nuclear information, reaction rates, & simulations ·operates "in

491

Nuclear Induction  

Science Journals Connector (OSTI)

The magnetic moments of nuclei in normal matter will result in a nuclear paramagnetic polarization upon establishment of equilibrium in a constant magnetic field. It is shown that a radiofrequency field at right angles to the constant field causes a forced precession of the total polarization around the constant field with decreasing latitude as the Larmor frequency approaches adiabatically the frequency of the r-f field. Thus there results a component of the nuclear polarization at right angles to both the constant and the r-f field and it is shown that under normal laboratory conditions this component can induce observable voltages. In Section 3 we discuss this nuclear induction, considering the effect of external fields only, while in Section 4 those modifications are described which originate from internal fields and finite relaxation times.

F. Bloch

1946-10-01T23:59:59.000Z

492

Collaborating Organizations - Nuclear Data Program, Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collaborating Organizations Collaborating Organizations Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM)