Powered by Deep Web Technologies
Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Blank fire configuration for automatic pistol  

DOE Patents [OSTI]

A pistol configured to fire blank cartridges includes a modified barrel with a breech portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breech portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retention rod projects from the barrel anchor and receives a shortened recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from a slide so that when the pistol is fired, the slide moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breech portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired.

Teague, Tommy L. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

2

Generator configuration for solid oxide fuel cells  

DOE Patents [OSTI]

Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

Reichner, Philip (Plum Boro, PA)

1989-01-01T23:59:59.000Z

3

Fire hazard analysis for the fuel supply shutdown storage buildings  

SciTech Connect (OSTI)

The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

REMAIZE, J.A.

2000-09-27T23:59:59.000Z

4

Fuel Treatment, Prescribed Fire, and Fire Restoration: Are the Benefits Worth It?  

E-Print Network [OSTI]

Fuel Treatment, Prescribed Fire, and Fire Restoration: Are the Benefits Worth It? Chairs: Susan Husari and Melanie Miller #12;Applying Simulation and Optimization to Plan Fuel Treatments at Landscape Scales1 J. Greg Jones,2 Jimmie D. Chew,2 Hans R. Zuuring3 Abstract Fuel treatment activities are analyzed

Standiford, Richard B.

5

High temperature solid electrolyte fuel cell configurations and interconnections  

DOE Patents [OSTI]

High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

6

VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.  

SciTech Connect (OSTI)

The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

2004-10-01T23:59:59.000Z

7

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents [OSTI]

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

1998-04-21T23:59:59.000Z

8

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents [OSTI]

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

9

A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.  

SciTech Connect (OSTI)

This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

2011-12-20T23:59:59.000Z

10

fire & fuels management Spruce Beetle-Induced Changes to Engelmann  

E-Print Network [OSTI]

. Keywords: crown fire, bark beetles, heat of combustion, fire behavior, time to ignition E ngelmann spruce

11

Proceedings of 4th Fire Behavior and Fuels Conference, July 1 4, 2013, St. Petersburg, Russia  

E-Print Network [OSTI]

Proceedings of 4th Fire Behavior and Fuels Conference, July 1 ­ 4, 2013, St. Petersburg, Russia Fire Behavior and Fuels Conference, July 1 ­ 4, 2013, St. Petersburg, Russia Published

12

Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels  

E-Print Network [OSTI]

that fire spread was largely determined by the heat sink, heat of combustion, and fuel bed depth. We found

Johnson, Edward A.

13

Development of a co-firing fuel from biomass-derived binder and crushed coal.  

E-Print Network [OSTI]

??The focus of this work was the development of a co-firing boiler fuel for use in the coal power plant industry. This fuel, known as… (more)

Friend, Andrew

2013-01-01T23:59:59.000Z

14

Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study  

E-Print Network [OSTI]

] Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide mastication (mechanical forest thinning) and fire convert biomass to black carbon is essential moisture and its role in dictating both the quantity and quality of the carbon produced in masticated fuel

15

Ecological Modelling 180 (2004) 135151 Simulating forest fuel and fire risk dynamics across  

E-Print Network [OSTI]

fuel module tracks fine fuel, coarse fuel and live fuel for each cell on a landscape. Fine fuel age (the oldest age cohorts) in combination with disturbance history. Live fuels, also called canopyEcological Modelling 180 (2004) 135­151 Simulating forest fuel and fire risk dynamics across

He, Hong S.

16

Plasma Fueling, Pumping, and Tritium Handling Considerations for FIRE  

SciTech Connect (OSTI)

Tritium pellet injection will be utilized on the Fusion Ignition Research Experiment (FIRE) for efficient tritium fueling and to optimize the density profile for high fusion power. Conventional pneumatic pellet injectors, coupled with a guidetube system to launch pellets into the plasma from the high, field side, low field side, and vertically, will be provided for fueling along with gas puffing for plasma edge density control. About 0.1 g of tritium must be injected during each 10-s pulse. The tritium and deuterium will be exhausted into the divertor. The double null divertor will have 16 cryogenic pumps located near the divertor chamber to provide the required high pumping speed of 200 torr-L/s.

Fisher, P.W.; Foster, C.A.; Gentile, C.A.; Gouge, M.J.; Nelson, B.E.

1999-11-13T23:59:59.000Z

17

Microgravity Laminar Diffusion Flame In A Perpendicular Fuel And Oxidizer Streams Configuration   

E-Print Network [OSTI]

Fuel is injected through a porous flat plate perpendicular to a stream of oxidizer flowing parallel to the surface of the burner for regimes corresponding to fire scenario in spacecrafts. Particle Image Velocimetry is ...

Brahmi, Lynda; Vietoris, Thomas; Rouvreau, Sebastien; Joulain, Pierre; David, L; Torero, Jose L

2005-01-01T23:59:59.000Z

18

Fire loading calculations for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect (OSTI)

Fire loading analyses were provided for the N Reactor Fuel Supply Buildings 3712, 3716, 303A, 303B, 303E, 303G, and 303K. Fire loading calculations, maximum temperatures, and fire durations were provided to support the safety analyses documentation. The ``combustibles`` for this document include: wood, cardboard, cloth, and plastic, and does not include the uranium and fuel assembly loading. The information in this document will also be used to support the fire hazard analysis for the same buildings, therefore, it is assumed that sprinkler systems do not work, or the maximum possible fire loss is assumed.

Myott, C.F.

1994-01-24T23:59:59.000Z

19

Apparatus tube configuration and mounting for solid oxide fuel cells  

DOE Patents [OSTI]

A generator apparatus is made containing long, hollow, tubular, fuel cells containing an inner air electrode, an outer fuel electrode, and solid electrolyte there between, placed between a fuel distribution board and a board which separates the combustion chamber from the generating chamber, where each fuel cell has an insertable open end and in insertable, plugged, closed end, the plugged end being inserted into the fuel distribution board and the open end being inserted through the separator board where the plug is completely within the fuel distribution board. 3 figures.

Zymboly, G.E.

1993-09-14T23:59:59.000Z

20

Fire Effects and Fuel Management in Mediterranean Ecosystems in Spain1  

E-Print Network [OSTI]

Fire Effects and Fuel Management in Mediterranean Ecosystems in Spain1 Ricardo VĂ©lez2 1 Presented, California. 2 Doctor Ingeniero de Montes, ICONA - Forest Fire Section, Madrid Spain. Abstract: Forest fuels in the Mediterranean eco- systems of Spain are characterized by generalized pyrophytism and large accumulations

Standiford, Richard B.

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1  

E-Print Network [OSTI]

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here, the term biomass includes organic matter produced as a result of photosynthesis as well as municipal

Wooldridge, Margaret S.

22

Stack configurations for tubular solid oxide fuel cells  

DOE Patents [OSTI]

A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

Armstrong, Timothy R. (Clinton, TN); Trammell, Michael P. (Clinton, TN); Marasco, Joseph A. (Kingston, TN)

2010-08-31T23:59:59.000Z

23

Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositional VariationCluster) |About Us2.1Conferencing

24

Proceedings of 4th Fire Behavior and Fuels Conference, July 1-4, 2013, St. Petersburg, Russia  

E-Print Network [OSTI]

Proceedings of 4th Fire Behavior and Fuels Conference, July 1-4, 2013, St. Petersburg, Russia and 513 #12;Proceedings of 4th Fire Behavior and Fuels Conference, July 1-4, 2013, St. Petersburg, Russia

25

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

J. Hnat; L.M. Bartone; M. Pineda

2001-07-13T23:59:59.000Z

26

Update of waste fuel firing experience in Foster Wheeler circulating fluidized bed boilers  

SciTech Connect (OSTI)

As the costs and availability of more conventional fuels continue to escalate, more and more customers are investigating and choosing operation with lower cost waste or alternative fuels. Details of units firing waste or alternative fuels which have been in active service for many years are summarized, and the fuel analyses are given. This chapter gives a general overview of the projects that are or will be firing waste or alternative fuels, namely, the Mt. Carmel Manitowoc, NISCO and HUNOSA units. The experience of the four operating units has demonstrated that waste and alternative fuels can be successfully and economically burned in an atmosphere circulating fluidized bed unit while meeting permitted emission requirements.

Abdulally, I.F.; Reed, K.A.

1993-12-31T23:59:59.000Z

27

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

J. Hnat; L.M. Bartone; M. Pineda

2001-10-31T23:59:59.000Z

28

North Portal Fuel Storage System Fire Hazard Analysis-ESF Surface Design Package ID  

SciTech Connect (OSTI)

The purpose of the fire hazard analysis is to comprehensively assess the risk from fire within the individual fire areas. This document will only assess the fire hazard analysis within the Exploratory Studies Facility (ESF) Design Package ID, which includes the fuel storage system area of the North Portal facility, and evaluate whether the following objectives are met: 1.1.1--This analysis, performed in accordance with the requirements of this document, will satisfy the requirements for a fire hazard analysis in accordance with U.S. Department of Energy (DOE) Order 5480.7A. 1.1.2--Ensure that property damage from fire and related perils does not exceed an acceptable level. 1.1.3--Provide input to the ESF Basis For Design (BFD) Document. 1.1.4 Provide input to the facility Safety Analysis Report (SAR) (Paragraph 3.8).

N.M. Ruonavaara

1995-01-18T23:59:59.000Z

29

Effect of electrode configuration and electronic conductivity on current density distribution measurements in PEM fuel cells  

E-Print Network [OSTI]

EFFECT OF ELECTRODE CONFIGURATION AND ELECTRONIC CONDUCTIVITY ON CURRENT DENSITY DISTRIBUTION MEASUREMENTS IN PEM FUEL CELLS by Dilip Natarajan and Trung Van Nguyen* Department of Chemical and Petroleum Engineering University of Kansas... words: PEM fuel cells, conventional gas distributor, current density distribution, segmented electrode, mathematical modeling * Author to whom correspondence should be addressed ABSTRACT Current density and potential distribution measurements...

Natarajan, Dilip; Nguyen, Trung Van

2004-09-03T23:59:59.000Z

30

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS  

SciTech Connect (OSTI)

Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.

Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

2003-08-28T23:59:59.000Z

31

PrairieFire BioFuels Cooperative | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River EnergyCubePracticalPower,Wind

32

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents [OSTI]

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

33

Multi-Function Fuel-Fired Heat Pump  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward a Peaceful Nuclear Future Moving8,

34

Multi-function fuel-fired heat pump CRADA  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward a Peaceful Nuclear FutureSlide 1 DOEand

35

CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS  

SciTech Connect (OSTI)

Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO{sub x} emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A&M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters.

Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

2002-01-15T23:59:59.000Z

36

Method for firing a rotary kiln with pulverized solid fuel  

SciTech Connect (OSTI)

Disclosed is a method for firing a kiln as well as a method for producing cement clinker in which pulverized coal is initially entrained in an airflow of about 2% of the theoretical amount of air needed to combust the coal and transport it to a burner. Supplemental primary air heated sufficiently to vaporize volatiles in the coal is mixed with the coal flow in a burner, discharged into the kiln and hence ignited. Secondary combustion air heated to between 800 F to 1650 F and more is added in the kiln to effect the substantially complete combustion of the pulverized coal in the kiln.

Binasik, C.S.; Siegert, L.D.

1982-01-12T23:59:59.000Z

37

Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor  

SciTech Connect (OSTI)

A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)

Stauff, N.E.; Klim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States); Fiorina, C. [Politecnico di Milano, Milan (Italy); Franceschini, F. [Westinghouse Electric Company LLC., Cranberry Township, Pennsylvania (United States)

2013-07-01T23:59:59.000Z

38

Spent Fuel Transportation Package Response to the Baltimore Tunnel Fire Scenario  

SciTech Connect (OSTI)

On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB, the U.S. agency responsible for determining the cause of transportation accidents), to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation package designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the COBRA-SFS and ANSYS® computer codes to evaluate the thermal performance of different package designs. The staff concluded that larger transportation packages resembling the HOLTEC Model No. HI STAR 100 and TransNuclear Model No. TN-68 would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event with only minor damage to peripheral components. This is due to their sizable thermal inertia and design specifications in compliance with currently imposed regulatory requirements. The staff also concluded that some components of smaller transportation packages resembling the NAC Model No. LWT, despite placement within an ISO container, could degrade. USNRC staff evaluated the radiological consequences of the package responses to the Baltimore tunnel fire. Though components in some packages heated up beyond their service temperatures, the staff determined that there would be no significant dose as a result of the fire for any of these and similar packages.

Adkins, Harold E.; Cuta, Judith M.; Koeppel, Brian J.; Guzman, Anthony D.; Bajwa, Christopher S.

2006-11-15T23:59:59.000Z

39

PANEL DISCUSSION: Barriers to Fuel Management One of the traditional roles that prescribed fire has played in  

E-Print Network [OSTI]

must complement protection needs and provide a smooth transition to sustained ecosystem managementPANEL DISCUSSION: Barriers to Fuel Management One of the traditional roles that prescribed fire has played in the fire management arena is reduction of hazardous fuel buildups under controlled, well

Standiford, Richard B.

40

Proceedings of 4th Fire Behavior and Fuels Conference, July 1-4, 2013, St. Petersburg, Russia  

E-Print Network [OSTI]

Proceedings of 4th Fire Behavior and Fuels Conference, July 1-4, 2013, St. Petersburg, Russia, Russia F USDA Forest Service, Rocky Mountain Research Station 5775 W US Highway 10 Missoula MT 59808 G;Proceedings of 4th Fire Behavior and Fuels Conference, July 1-4, 2013, St. Petersburg, Russia Published

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents [OSTI]

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

Micheli, P.L.; Williams, M.C.; Parsons, E.L.

1995-09-12T23:59:59.000Z

42

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents [OSTI]

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

Micheli, Paul L. (Morgantown, WV); Williams, Mark C. (Morgantown, WV); Parsons, Edward L. (Morgantown, WV)

1995-01-01T23:59:59.000Z

43

Spent Fuel Transportation Cask Response to the Caldecott Tunnel Fire Scenario  

SciTech Connect (OSTI)

On April 7, 1982, a tank truck and trailer carrying 8,800 gallons of gasoline was involved in an accident in the Caldecott tunnel on State Route 24 near Oakland, California. The tank trailer overturned and subsequently caught fire. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook analyses to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by truck. The Fire Dynamics Simulator (FDS) code developed by National Institute of Standards and Technology (NIST) was used to determine the thermal environment in the Caldecott tunnel during the fire. The FDS results were used to define boundary conditions for a thermal transient model of a truck transport cask containing spent nuclear fuel. The Nuclear Assurance Corporation (NAC) Legal Weight Truck (LWT) transportation cask was selected for this evaluation, as it represents a typical truck (over-the-road) cask, and can be used to transport a wide variety of spent nuclear fuels. Detailed analysis of the cask response to the fire was performed using the ANSYS® computer code to evaluate the thermal performance of the cask design in this fire scenario. This report describes the methods and approach used to assess the thermal response of the selected cask design to the conditions predicted in the Caldecott tunnel fire. The results of the analysis are presented in detail, with an evaluation of the cask response to the fire. The staff concluded that some components of smaller transportation casks resembling the NAC LWT, despite placement within an ISO container, could degrade significantly. Small transportation casks similar to the NAC LWT would probably experience failure of seals in this severe accident scenario. USNRC staff evaluated the radiological consequences of the cask response to the Caldecott tunnel fire. Although some components heated up beyond their service temperatures, the staff determined that there would be no significant release as a result of the fire for the NAC LWT and similar casks.

Adkins, Harold E.; Koeppel, Brian J.; Cuta, Judith M.

2007-01-01T23:59:59.000Z

44

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

SciTech Connect (OSTI)

The following are proposed activities for quarter 3 (12/15/00-3/14/01): (1) Conduct TGA and fuel characterization studies - Task 1; (2) Continue to perform re-burn experiments. - Task 2; (3) Design fixed bed combustor. - Task 3; and (4) Modify the PCGC2 code to include moisture evaporation model - Task 4. The following were achieved During Quarter 3 (12/15/0-3/14/01): (1) Conducted TGA and Fuel Characterization studies (Appendix I). A comparison of -fuel properties, TGA traces etc is given in Appendix I. Litter has 3 and 6 times more N compared to coal on mass and heat basis. The P of litter is almost 2 % (Task 1). Both litter biomass (LB) and feedlot biomass (FB) have been pulverized. The size distributions are similar for both litter and FB in that 75 % pass through 150 {micro}m sieve while for coal 75 % pass through 60 {micro}m sieve. Rosin Rammler curve parameters are given. The TGA characteristics of FB and LB are similar and pyrolysis starts at 100 C below that of coal; (2) Reburn experiments with litter and with FB have been performed (Appendix II) -Task 2. Litter is almost twice effective (almost 70--90 % reduction) compared to coal in reducing the NOx possibly due to presence of N in the form of NH{sub 3}; (3) Designed fixed bed gasifier/combustor (Appendix III) - Task 3; and (4) Modified PCGC2 to include moisture evaporation model in coal and biomass particles. (Appendix IV) - Task 4.

Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

2001-05-10T23:59:59.000Z

45

Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures  

SciTech Connect (OSTI)

Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown.

Siefken, L.J.

1999-01-01T23:59:59.000Z

46

Anode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12  

E-Print Network [OSTI]

on the anode, producing a complex response in fuel cell power output. Under optimized gas compositions and flowAnode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12 Zongping of anode-supported, thin-film, single chamber fuel cells (SCFCs) have been investigated. Cells, in which Ni

Haile, Sossina M.

47

A Review of Materials for Gas Turbines Firing Syngas Fuels  

SciTech Connect (OSTI)

Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

2009-05-01T23:59:59.000Z

48

Utilization of coal-water fuels in fire-tube boilers. Final report, October 1990--August 1994  

SciTech Connect (OSTI)

The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.

Sommer, T.; Melick, T.; Morrison, D.

1994-12-31T23:59:59.000Z

49

Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods  

SciTech Connect (OSTI)

A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.”(Reference 1) The experiment studied in this evaluation was the first of the series and had the fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, , and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configurations are described in Sections 1.3, 1.4 and 1.7, respectively. Information for this evaluation was compiled from References 1 and 2, reports on subsequent experiments in the series , and the experimental logbook, and from communication with the experimenter, John T. Mihalczo.

Margaret A. Marshall

2013-03-01T23:59:59.000Z

50

Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods  

SciTech Connect (OSTI)

A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.”(Reference 1) The experiment studied in this evaluation was the first of the series and had the fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, , and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configurations are described in Sections 1.3, 1.4 and 1.7, respectively. Information for this evaluation was compiled from References 1 and 2, reports on subsequent experiments in the series , and the experimental logbook, and from communication with the experimenter, John T. Mihalczo.

Margaret A. Marshall

2012-09-01T23:59:59.000Z

51

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

52

Dilution-based emissions sampling from stationary sources: part 2 - gas-fired combustors compared with other fuel-fired systems  

SciTech Connect (OSTI)

With the recent focus on fine particle matter (PM2.5), new, self- consistent data are needed to characterize emissions from combustion sources. Emissions data for gas-fired combustors are presented, using dilution sampling as the reference. The sampling and analysis of the collected particles in the presence of precursor gases, SO{sub 2}, nitrogen oxide, volatile organic compound, and NH{sub 3} is discussed; the results include data from eight gas fired units, including a dual- fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of {approximately}10{sup -4} lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with {approximately} 5 x 10{sup -3} lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of {approximately} 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas- fired combustor particles are low in concentration. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon is found on the particle collector and a backup filter. It is likely that measurement artifacts are positively biasing 'true' particulate carbon emissions results. 49 refs., 1 fig., 12 tabs.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.C.O.; Loos, K.R.; Hidy. G.M. [GE Energy, Santa Ana, CA (United States)

2007-01-15T23:59:59.000Z

53

MJG:TTM, 3/01 Plasma Fueling Program FIRE Fueling and Pumping Design  

E-Print Network [OSTI]

DRIVE (3X) D-T LIQUIFIER SCREW EXTRUDER HEAT SHIELD BARREL GUARD VACUUM GUN BLOCK PELLET CUTTER FAST 80 K 20 K SINGLE- STAGE CRYO- COOLER 2-STAGE CRYO- COOLER D-T FEED VACUUM PROPELLANT GAS EXTRUDER/DIII-D injector ·Employing new cryocooler and continuous extruder technology #12;PWF:6/6/01 Review Plasma Fueling

54

Low NOx modifications on front-fired pulverized coal fuel burners  

SciTech Connect (OSTI)

Burner optimizations and modifications were performed on Public Service of New Hampshire`s Schiller Units 4, 5, and 6. These are Foster-Wheeler 50 MWg pulverized coal and No.6 fuel oil-fired boilers with six burners each. Burner optimizations consisted of fuel flow, primary air, secondary air testing and balancing. Burner modifications consisted of the addition of circumferentially and radially staged flame stabilizers, circumferentially-staged coal spreaders, and modifications to the existing pulverized coal pipe. NO{sub x} emissions on Unit 6 of .41 lb/mmBtu were achieved at optimized burner settings at full load with all burners in service and without the use of overfire air or bias firing. This represented a 50% NO{sub x} reduction from the average pre-modification baseline NO{sub x} emissions of .81 lb/mmBtu prior to the optimizations and burner modification program. NO{sub x} emissions as low as .38 lb/mmBtu were achieved with the use of overfire air. There was essentially no quantifiable change in LOIs (baseline LOIs averaged 40%). Furnace excess O{sub 2} as low as 1.2% was achieved with CO emissions of less than 200 ppm. Total installed costs including the overfire air system were approximately $7/kW.

Owens, B.; Hitchko, M. [Public Service of New Hampshire, Manchester, NH (United States); Broderick, R.G. [RJM Corp., Ridgefield, CT (United States)

1996-01-01T23:59:59.000Z

55

Poster Session--Fuel Consumption During Prescribed Fires in Big Sage--Wright, Ottmar USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 363  

E-Print Network [OSTI]

Poster Session--Fuel Consumption During Prescribed Fires in Big Sage--Wright, Ottmar USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 363 Fuel Consumption During Prescribed Fires in Big Sage Ecosystems1 Clinton S. Wright2 and Roger D. Ottmar2 Introduction Fuel consumption was evaluated for a series

Standiford, Richard B.

56

Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations  

SciTech Connect (OSTI)

This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

Dr. Pavel V. Tsvetkov

2009-05-20T23:59:59.000Z

57

Co-firing high sulfur coal with refuse derived fuels. Quarterly report, October - December 1996  

SciTech Connect (OSTI)

The objectives of this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the effect of S0{sub 2} on the formation of chlorine during combustion processes was examined. To simulate the conditions used in the AFBC system, experiments were conducted in a quartz tube in an electrically heated furnace. The principle analytical technique used for identification of the products from this study was GC/MS. The evolved gas was trapped by an absorbent and analyzed with a GC/MS system. The preliminary results indicate an inhibiting effect of S0{sub 2} on the Deacon Reaction. Secondly, information on the evolution of chlorine, sulfur and organic compounds from coals 95031 and 95011 were studied with the AFBC system. 2 figs., 1 tab.

Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

1996-12-01T23:59:59.000Z

58

Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 6, January--March 1996  

SciTech Connect (OSTI)

The objectives for this quarter of study on the co-firing of high sulfur coals with refuse derived fuels were two-fold. First, the effects of different experimental parameters such as temperature, flow rates and reaction times on the formation of chlorinated organic compounds were studied using the tubular furnace as a reactor followed by GC/MS analysis. Secondly, the effect of fuel/air ratio on the flue gas composition and combustion efficiency were studied with the AFBC system.

Pan, W.P.; Riley, J.T.; Lloyd, W.G.

1996-02-29T23:59:59.000Z

59

Plasma Fueling, Pumping, and Tritium Handling Considerations for FIRE P.W. Fisher', M. J.Gouge', C. A. Foster',B. E. Nelson', C. A. Gentile' andthe FIRE StudyTeam  

E-Print Network [OSTI]

Plasma Fueling, Pumping, and Tritium Handling Considerations for FIRE P.W. Fisher', M. J.Gouge', C,P.O.Box 2009,OakRidge,TN 3783l-8071 *PrincetonPlasmaPhysicsLaboratory, P.O.Box 451,Princeton,NJ 08543 Abstract-Tritium pellet injection will be utilized on the Fusion Ignition Research Experiment (FIRE) for efficient tritium

60

Optimized cell configurations for stable LSCF-based solid oxide fuel cells  

DOE Patents [OSTI]

Lanthanum strontium cobalt iron oxides (La(1-x)SrxCoyFe1-yO3-f; (LSCF) have excellent power density (>500 mW/cm2 at 750.degree. C.). When covered with a metallization layer, LSCF cathodes have demonstrated increased durability and stability. Other modifications, such as the thickening of the cathode, the preparation of the device by utilizing a firing temperature in a designated range, and the use of a pore former paste having designated characteristics and combinations of these features provide a device with enhanced capabilities.

Kim, Jin Yong (Richland, WA); Sprenkle, Vincent L. (Richland, WA); Canfield, Nathan L. (Richland, WA); Meinhardt, Kerry D. (Kennewick); WA, Chick, Lawrence A. (West Richland, WA)

2012-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Creating a fuels baseline and establishing fire frequency relationships to develop a landscape management strategy at the Savannah River Site.  

SciTech Connect (OSTI)

USDA Forest Service Proceedings RMRS-P-41. pp 351-366. Abstract—The Savannah River Site is a Department of Energy Nuclear Defense Facility and a National Environmental Research Park located in the upper coastal plain of South Carolina. Prescribed burning is conducted on 15,000 to 20,000 ac annually. We modifi ed standard forest inventory methods to incorporate a complete assessment of fuel components on 622 plots, assessing coarse woody debris, ladder fuels, and the litter and duff layers. Because of deficiencies in south-wide data on litter-duff bulk densities, which are the fuels most often consumed in prescribed fires, we developed new bulk density relationships. Total surface fuel loading across the landscape ranged from 0.8 to 48.7 tons/ac. The variables basal area, stand age, and site index were important in accounting for variability in ladder fuel, coarse woody debris, and litter-duff for pine types. For a given pine stand condition, litter-duff loading decreased in direct proportion to the number of burns in the preceding thirty years. Ladder fuels for loblolly and longleaf increased in direct proportion to the years since the last prescribed burn. The pattern of fuel loading on the SRS reflects stand dynamics, stand management and fire management. It is suggested that the Forest Inventory and Analysis Program can easily modify sampling protocols to incorporate collection of fuels data.

Parresol, Bernard R.; Shea, Dan; Ottmar, Roger.

2006-10-01T23:59:59.000Z

62

PEM fuel cell and energy storage unit configuration for vehicle applications.  

E-Print Network [OSTI]

??In the current “future” automobile market; fuel cells have shown to be an alternative to the classic power sources like internal combustion engines. But in… (more)

Thota, Kalpana.

2007-01-01T23:59:59.000Z

63

Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations  

E-Print Network [OSTI]

Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced 2013 Available online 5 November 2013 Keywords: Microbial fuel cells Refinery wastewater Biodegradability Separator electrode assembly a b s t r a c t The effectiveness of refinery wastewater (RW

64

Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels  

E-Print Network [OSTI]

DEVELOPMENT, APPLICATION AND PERFORMANCE OF VENTURI REGISTER L. E. A. BURNER SYSTEM FOR FIRING OIL AND GAS FUELS A. D. Cawte CEA Combustion, Inc. Stamford, Connecticut INTRODUCTION The effect of reducing excess air as a means of curtailing..., extensive investigation work was undertaken us ing the water analog model techniques developed by Associated British Combustion for burner design. The development work resulted in the burner design known today as the Venturi Register, LEA (low excess air...

Cawte, A. D.

1979-01-01T23:59:59.000Z

65

Low cost fuel cell diffusion layer configured for optimized anode water management  

DOE Patents [OSTI]

A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

2013-08-27T23:59:59.000Z

66

Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices  

SciTech Connect (OSTI)

Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-07-17T23:59:59.000Z

67

Performance of a small scale boiler burner in the firing of fuel blends  

E-Print Network [OSTI]

, partially composted feedlot manure, and finished composted feedlot manure. Performance characteristics and emission data were taken for each case. A summary of the results is as follows: (I) sulfur Wyoming coal was fired and a gasification efficiency...

Frazzitta, Stephen

1993-01-01T23:59:59.000Z

68

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect (OSTI)

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

69

Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants  

SciTech Connect (OSTI)

One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

2001-01-01T23:59:59.000Z

70

Direct Gas Fired Air Heating For 40 to 50% Fuel Savings  

E-Print Network [OSTI]

the safety aspects of direct gas fired air heating, the most important qUe~tion is whether there would be a harmful build up of carbon monoxide within the building as a result of!the products of combustion being released directly into the air stream.... The unvented infrared heaterslhave long been proven safe from this standpoint. By looking at the fundamental chemistry of combustion! of natural gas, the direct gas-fired make-up air heaters can be shown to produce lower concentrationsII of carbon monoxide...

Searcy, J. A.

1979-01-01T23:59:59.000Z

71

Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996  

SciTech Connect (OSTI)

The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

1996-05-31T23:59:59.000Z

72

Co-firing High Sulfur Coal with Refuse Derived Fuels. Technical Progress Report {number_sign}11  

SciTech Connect (OSTI)

The objective of this quarter of study was to prepare fuel pellets containing PVC, newspaper and plastics to be co-fired with coal in the AFBC combustor. The Western Kentucky University atmospheric fluidized bed combustion system requires the fuel to fall from a bunker into a lock-hopper, and from there into a mixing box where the fuel is auger-fed under pressure into the bottom of the fluidized bed. The fuel must flow freely out of the bunker and through the lock- hopper for proper feeding into the combustor. In order for the fuel to continuously fall through these units and into the mixing box during combustion, the density of the fuel and the size of the particles must meet certain requirements. The particles must be no larger than 3/8 inches in diameter and must have a density approaching that of coal. Loose materials such as sawdust, shredded paper products and most shredded plastics do not feed properly in the WKU AFBC system. Bridging and blockage of feed chutes result, even with constant vibration of parts of the feed mechanism. It is not possible to run the AFBC system powered solely by these loose materials.

Pan, Wei-Ping; Riley, John T.; Lloyd, William G.

1997-05-31T23:59:59.000Z

73

Mapping surface fuels using LIDAR and multispectral data fusion for fire behavior modeling  

E-Print Network [OSTI]

, LIDAR derived data provides accurate estimates of surface fuel parameters efficiently and accurately over extensive areas of forests. This study demonstrates the importance of using accurate maps of fuel models derived using new LIDAR remote sensing...

Mutlu, Muge

2009-05-15T23:59:59.000Z

74

Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMoving Away from Silos MovingContractors

75

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummary ReportRemovable

76

Fossil Fuel-fired Peak Heating for Geothermal Greenhouses | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFile Jump to:ForseoMcKinley,Worth,Foss and

77

Multi-Function Fuel-Fired Heat Pump | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012 Monthly ProjectEnterprisesRepair0,

78

Fuel supply system and method for coal-fired prime mover  

DOE Patents [OSTI]

A coal-fired gas turbine engine is provided with an on-site coal preparation and engine feeding arrangement. With this arrangement, relatively large dry particles of coal from an on-site coal supply are micro-pulverized and the resulting dry, micron-sized, coal particulates are conveyed by steam or air into the combustion chamber of the engine. Thermal energy introduced into the coal particulates during the micro-pulverizing step is substantially recovered since the so-heated coal particulates are fed directly from the micro-pulverizer into the combustion chamber.

Smith, William C. (Morgantown, WV); Paulson, Leland E. (Morgantown, WV)

1995-01-01T23:59:59.000Z

79

Load Preheating Using Flue Gases from a Fuel-Fired Heating System |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhenJuly 28,TheEnergy LintgramSME33Department

80

Alternative Fuels Data Center: Rio Rico Fire District Turns Grease Into  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill SafetyVehicleRhode

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Diagnostic development for determining the joint temperature/soot statistics in hydrocarbon-fueled pool fires : LDRD final report.  

SciTech Connect (OSTI)

A joint temperature/soot laser-based optical diagnostic was developed for the determination of the joint temperature/soot probability density function (PDF) for hydrocarbon-fueled meter-scale turbulent pool fires. This Laboratory Directed Research and Development (LDRD) effort was in support of the Advanced Simulation and Computing (ASC) program which seeks to produce computational models for the simulation of fire environments for risk assessment and analysis. The development of this laser-based optical diagnostic is motivated by the need for highly-resolved spatio-temporal information for which traditional diagnostic probes, such as thermocouples, are ill-suited. The in-flame gas temperature is determined from the shape of the nitrogen Coherent Anti-Stokes Raman Scattering (CARS) signature and the soot volume fraction is extracted from the intensity of the Laser-Induced Incandescence (LII) image of the CARS probed region. The current state of the diagnostic will be discussed including the uncertainty and physical limits of the measurements as well as the future applications of this probe.

Casteneda, Jaime N.; Frederickson, Kraig; Grasser, Thomas W.; Hewson, John C.; Kearney, Sean Patrick; Luketa, Anay Josephine

2009-09-01T23:59:59.000Z

82

Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid  

DOE Patents [OSTI]

A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

Geisbrecht, Rodney A. (New Alexandria, PA); Holcombe, Norman T. (McMurray, PA)

2006-02-07T23:59:59.000Z

83

Proof of concept for integrating oxy-fuel combustion and the removal of all pollutants from a coal fired flame  

SciTech Connect (OSTI)

The USDOE/Albany Research Center and Jupiter Oxygen Corporation, working together under a Cooperative Research and Development Agreement, have demonstrated proof-of-concept for the integration of Jupiter’s oxy-fuel combustion and an integrated system for the removal of all stack pollutants, including CO2, from a coal-fired flame. The components were developed using existing process technology with the addition of a new oxy-coal combustion nozzle. The results of the test showed that the system can capture SOx, NOx, particulates, and even mercury as a part of the process of producing liquefied CO2 for sequestration. This is part of an ongoing research project to explore alternative methods for CO2 capture that will be applicable to both retrofit and new plant construction.

Ochs, Thomas L.; Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Gross, Alex (Jupiter Oxygen Corp.); Summers, Cathy A.; Simmons, William (CoalTeck LLC); Schoenfield, Mark (Jupiter Oxygen Corp.); Turner, Paul C.

2005-01-01T23:59:59.000Z

84

Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference  

SciTech Connect (OSTI)

The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

Geiling, D.W. [ed.

1993-08-01T23:59:59.000Z

85

Co-firing biomass  

SciTech Connect (OSTI)

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

86

Co-firing high sulfur coal with refuse derived fuels. Final report  

SciTech Connect (OSTI)

This project was designed to evaluate the combustion performance of and emissions from a fluidized bed combustor during the combustion of mixtures of high sulfur and/or high chlorine coals and municipal solid waste (MSW). The project included four major tasks, which were as follows: (1) Selection, acquisition, and characterization of raw materials for fuels and the determination of combustion profiles of combination fuels using thermal analytical techniques; (2) Studies of the mechanisms for the formation of chlorinated organics during the combustion of MSW using a tube furnace; (3) Investigation of the effect of sulfur species on the formation of chlorinated organics; and (4) Examination of the combustion performance of combination fuels in a laboratory scale fluidized bed combustor. Several kinds of coals and the major combustible components of the MSW, including PVC, newspaper, and cellulose were tested in this project. Coals with a wide range of sulfur and chlorine contents were used. TGA/MS/FTIR analyses were performed on the raw materials and their blends. The possible mechanism for the formation of chlorinated organics during combustion was investigated by conducting a series of experiments in a tube furnace. The effect of sulfur dioxide on the formation of molecular chlorine during combustion processes was examined in this study.

Pan, W.P.; Riley, J.T.; Lloyd, W.G.

1997-11-30T23:59:59.000Z

87

Oxy-fuel combustion systems for pollution free coal fired power generation  

SciTech Connect (OSTI)

Jupiter Oxygen's patented oxy-fuel combustion systems1 are capable of economically generating power from coal with ultra-low emissions and increased boiler efficiency. Jupiter's system uses pure oxygen as the combustion agent, excluding air and thus nitrogen, concentrating CO2 and pollutants for efficient capture with near zero NOx production, reducing exhaust mass flow, and increasing radiant heat transfer. Flue-gas recirculation rates can be varied to add flexibility to new boiler designs using this technology. Computer modeling and thermal analysis have identified important design considerations in retrofit applications.

Ochs, Thomas L.; Oryshchyn, Danylo B.; Gross, Dietrich (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Gross, Alex (Jupiter Oxygen Corp.); Dogan, Cindy; Summers, Cathy A.; Simmons, William (CoalTeck LLC); Schoenfeld, Mark (Jupiter Oxygen Corp.)

2004-01-01T23:59:59.000Z

88

Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15--August 15, 1996  

SciTech Connect (OSTI)

The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers is also evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) was conducted with a proven coal-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrind circuit was recently installed and was evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and was used to generate baseline data firing No. 6 fuel oil and fire CWSF. A temporary storage system for No. 6 fuel oil was installed and modifications to the existing CWSF handling and preheating system were made to accommodate No. 6 oil.

Miller, B.G.; Scaroni, A.W.

1997-06-03T23:59:59.000Z

89

Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies  

SciTech Connect (OSTI)

The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

2011-12-22T23:59:59.000Z

90

Co-firing high sulfur coal with refuse derived fuels. Technical report {number_sign}4  

SciTech Connect (OSTI)

In order to study combustion performance under conditions similar to that in the AFBC system, the authors conducted a series of experiments at a heating rate of 100 C/min using the TGA/FTIR/MS system. Results indicate that more hydrocarbons are evolved at the faster heating rate, owing to incomplete combustion of the fuel. Chlorinated organic compounds can be formed at high heating rates. Certain oxidation products such as organic acids and alcohols are obtained at the slow heating rate. To simulate the conditions used in the atmospheric fluidized bed combustor (AFBC) at Western Kentucky University, studies were also conducted using a quartz tube in a tube furnace. The temperature conditions were kept identical to those of the combustor. The products evolved from the combustion of coal, PVC, and mixtures of the two were trapped in suitable solvents at different temperatures, and analyzed using the Shimadzu GC/MS system. The detection limits and the GC/MS analytical parameters were also established. The experiments were conducted keeping in mind the broader perspective; that of studying conditions conducive to the formation of chlorinated organic compounds from the combustion of coal/MSW blends. 32 figs., 16 tabs.

Pan, W.P.; Riley, J.T.; Lloyd, W.G.

1995-08-03T23:59:59.000Z

91

Control of SO{sub 2} and NOx emissions from fossil fuel-fired power plants: Research and practice of TPRI  

SciTech Connect (OSTI)

The generation of electric power in China has been dominated by coal for many years. By the end of 1990, total installed generating capacity reached 135 GW, of which fossil fuel-fired plants accounted for 74 percent. The total electricity generated reached 615 TWh, with fossil fuels accounting for 80.5 percent. About 276 million tons of raw coal are consumed in these fossil fuel-burning units per year, accounting for about 25 percent of the total output of the country. According to the government, by the year 2000, the total installed capacity of Chinese power systems should be at least 240 GW, of which fossil fuels will account for about 77 percent. The coal required for power generation will increase to about 530 million tons per year, accounting for about 38 percent of the total coal output. So, it is obvious that coal consumed in coal-fired power plants occupies a very important place in the national fuel balance. The current environmental protection standards, which are based on ground-level concentrations of pollutants, do not effectively lead to the control of pollution emission concentrations or total SO{sub 2} emissions. Due to the practical limitations of the Chinese economy, there is a limited capability to introduce advanced sulfur emission control technologies. Thus, except for the two 360 MW units imported from Japan for the Luohuang Power Plant in Shichuan province, all the other fossil fuel-fired units have not yet adopted any kind of SO{sub 2} removal measures. The Luohuang units are equipped with Mitsubishi limestone flue gas desulfurization systems. Because of the lack of effective pollution control technologies, large areas of the country have been seriously polluted by SO{sub 2}, and some of them even by acid rain.

Ming-Chuan Zhang

1993-12-31T23:59:59.000Z

92

Adding Fuel to the Fire; the Effect of Political Unrest on Forest Burning in Sub-Saharan Africa   

E-Print Network [OSTI]

The connection between forest fires and political unrest has been noted throughout the literature (see Thomas, 2012,) and in a number of countries including; Malawi, Madagascar, Kenya and Ethiopia (Kull, 2002, Hoffmann et ...

Duff, Alice

2012-11-29T23:59:59.000Z

93

Configurations The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Testing Configurations The PSEL's infrastructure addresses critical issues of PV reliability and power availability. The lab offers four different load configuration...

94

Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16  

SciTech Connect (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

DeLallo, M.; Zaharchuk, R.

1994-01-01T23:59:59.000Z

95

Fire Behavior at the Landscape Scale  

E-Print Network [OSTI]

Fire Behavior at the Landscape Scale Scott Stephens, ESPMScott Stephens, ESPM DepartmentStrategies for Landscape Fuel TreatmentsLandscape Fuel Treatments Fire Containment · Fuelbreaks Fire Modification · Area (WUI) ·· Maintenance? Must maintain into futureMaintenance? Must maintain into future #12;Tyee Fire

Stephens, Scott L.

96

Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods (1.506-cm Pitch)  

SciTech Connect (OSTI)

A series of critical experiments were completed from 1962–1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967.a The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were performed to determine critical reflector arrangements, relative fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector” (see Reference 1). The experiment studied in this evaluation was the second of the series and had the fuel rods in a 1.506-cm-triangular pitch. One critical configuration was found (see Reference 3). Once the critical configuration had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U,bc and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configuration are described in Sections 1.3, 1.4, and 1.7, respectively.

Margaret A. Marshall

2013-03-01T23:59:59.000Z

97

CRITICAL CONFIGURATION FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)  

SciTech Connect (OSTI)

A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950’s efforts were made to study “power plants for the production of electrical power in space vehicles”. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of 253 unmoderated stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.” The first two experiments in the series were evaluated in HEU-COMP-FAST-001 (SCCA-FUND-EXP-001) and HEU-COMP-FAST-002 (SCCA-FUND-EXP-002). The first experiment had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank (References 1 and 2). The second experiment in the series, performed in early 1963, had the 253 fuel tubes at a 1.506-cm triangular lattice in a 25.96 cm OD core tank and graphite reflectors on all sides. The third set of experiments in the series, performed in mid-1963, which is studied in this evaluation, used beryllium reflectors. The beryllium reflected system was the preferred reactor configuration for this application because of the small thickness of the reflector. The two core configurations had the 253 fuel tubes at a 1.506-cm triangular lattice and arranged in 7-tube clusters. The experiments have been determined to represent acceptable benchmark experiments. Information for this evaluation was compiled from published reports on all three parts of the experimental series (Reference 1-5) and the experimental logbook as well as from communication with the experimenter, John T. Mihalczo.

Margaret A. Marshall

2012-05-01T23:59:59.000Z

98

Innovative fossil fuel fired vitrification technology for soil remediation. Volume 1, Phase 1: Annual report, September 28, 1992--August 31, 1993  

SciTech Connect (OSTI)

Vortex has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program with the Department of Energy (DOE) Morgantown Energy Technology Center (METC). The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conversation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and will not leach to the environment--as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC system design. This topical report will present a summary of the activities conducted during Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The report includes the detail technical data generated during the experimental program and the design and cost data for the preliminary Phase 2 plant.

Not Available

1993-08-01T23:59:59.000Z

99

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

SciTech Connect (OSTI)

Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-08-13T23:59:59.000Z

100

Critical Configuration and Physics Mesaurements for Graphite Reflected Assemblies of U(93.15)O2 Fuel Rods (1.27-CM Pitch)  

SciTech Connect (OSTI)

A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory's Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950's efforts were made to study 'power plants for the production of electrical power in space vehicles'. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in FY 1964, 1965, and 1966. A summary of the program's effort was compiled in 1967. The delayed critical experiments served as a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated 253 stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. 'The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.' The experiment studied within this evaluation was the first of the series and had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Information for this evaluation was compiled from Reference 1 and 2, reports on subsequent experiments in the series, and the experimental logbook as well as from communication with the experimenter, John T. Mihalczo.

Margaret A. Marshall

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Module Configuration  

DOE Patents [OSTI]

A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

Oweis, Salah (Ellicott City, MD); D'Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

2002-06-04T23:59:59.000Z

102

Dirac GPU Cluster Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSCDiesel prices top $4Configuration Node and

103

CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)  

SciTech Connect (OSTI)

Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI scintillator and the other foil on the other NaI detector and the activities measured simultaneously. The activation of a particular foil was compared to that of the normalization foil by dividing the count rate for each foil by that of the normalization foil. To correct for the differing efficiencies of the two NaI detectors, the normalization foil was counted in Detector 1 simultaneously with the foil at position x in Detector 2, and then the normalization foil was counted simultaneously in Detector 2 with the foil from position x in Counter 1. The activity of the foil from position x was divided by the activity of the normalization foil counted simultaneously. This resulted in obtaining two values of the ratio that were then averaged. This procedure essentially removed the effect of the differing efficiencies of the two NaI detectors. Differing efficiencies of 10% resulted in errors in the ratios measured to less than 1%. The background counting rates obatined with the foils used for the measurements on the NaI detectors before their irradiation measurement were subtracted from all count rates. The results of the cadmium ratio measurements are given in Table 1.3-1 and Figure 1.3-1. “No correction has been made for self shielding in the foils” (Reference 3).

Margaret A. Marshall

2014-03-01T23:59:59.000Z

104

CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH)  

SciTech Connect (OSTI)

Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI scintillator and the other foil on the other NaI detector and the activities measured simultaneously. The activation of a particular foil was compared to that of the normalization foil by dividing the count rate for each foil by that of the normalization foil. To correct for the differing efficiencies of the two NaI detectors, the normalization foil was counted in Detector 1 simultaneously with the foil at position x in Detector 2, and then the normalization foil was counted simultaneously in Detector 2 with the foil from position x in Counter 1. The activity of the foil from position x was divided by the activity of the normalization foil counted simultaneously. This resulted in obtaining two values of the ratio that were then averaged. This procedure essentially removed the effect of the differing efficiencies of the two NaI detectors. Differing efficiencies of 10% resulted in errors in the ratios measured to less than 1%. The background counting rates obatined with the foils used for the measurements on the NaI detectors before their irradiation measurement were subtracted from all count rates. The results of the cadmium ratio measurements are given in Table 1.3-1 and Figure 1.3-1. “No correction has been made for self shielding in the foils” (Reference 3).

Margaret A. Marshall

2013-03-01T23:59:59.000Z

105

Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler  

SciTech Connect (OSTI)

This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

Sharon Falcone Miller; Bruce G. Miller [Pennsylvania State University, University Park, PA (United States). Energy Institute

2007-12-15T23:59:59.000Z

106

Carver Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAYCareers The

107

DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used with all oil burner installations. The other possible failure mode had been attributed to fuel degradation and this became the main focus of the evaluation. The degradation of fuel usually occurs faster under higher temperature conditions. To preclude this as much as possible controls that provided for a post-purge of combustion airflow after burner shut down were selected. This provided a short period of time where the burner's combustion air blower continues to operate after the flame has gone out. This tends to cool the nozzle and in turn the fuel inside the small flow pathways inside the nozzle components. This study concludes that the use of low capacity nozzles is possible but only when the temperature and thermal mass environment of the combustion chamber result in a relatively ''cool'' condition. This was accomplished in one long-term experiment that essentially operated for a full heating season equivalent with no evidence of nozzle plugging or failure. The nozzle body surface temperature was kept at or below 150 F during the duration of the trial. On the other hand, a second system was studied that ended in a partial nozzle blockage and a system failure. In this ''hot environment'' system the nozzle body temperature reached 210 F. This occurred at close to a full heating season equivalent, yet it still would have resulted in a no-heat complaint by the homeowner.

MCDONALD,R.J.

2007-05-01T23:59:59.000Z

108

Configurations The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositional VariationCluster) |AboutFlexibility in

109

System Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object Damage 3Nationalmimic key features ofMIT

110

Edison Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the Future of DOEEarthAlamos

111

Franklin Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohn

112

Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 5, [October--December 1995  

SciTech Connect (OSTI)

Studies involving the tubular furnace are in the process of identifying the ideal experimental coal-to-refuse derived fuel(RDF) ratio for use in the AFBC system. A series of experiments with this furnace has been performed to determine the possible chemical pathway for formation of chlorinated organic compounds during the combustion of various RDF sources. Phenol and chlorine appear to be likely reactants necessary for the formation of these compounds. The main goal of these experiment is to determine the exact experimental conditions for the formation of chlorinated organic compounds, as well as methods to inhibit their development. Work on the fluidized bed combustor has involved five combustion runs, in which a combustion efficiency of greater than 96% and with a consistent CO{sub 2} concentration of approximately 13% was obtained. Modifications responsible for these improvements include the addition of the underbed fuel feed system and revision of the flue gas sampling system. New methods of determining combustion efficiency and percentage of SO{sub 2} capture using TG techniques to analyze combustion products are being developed. The current outlook using this TGA/FTIR method is very promising, since previously obscured reactions are being studied. the analysis of combustion products is revealing a more complete picture of the combustion process within the AFBC system.

Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

1995-11-30T23:59:59.000Z

113

BlueFire Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)andDepartment13,EnergyBlueFire

114

Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 8, July 1996--August 1996  

SciTech Connect (OSTI)

The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GC/MS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

1996-08-31T23:59:59.000Z

115

Development of a Novel Oxygen Supply Process and its Integration with an Oxy-Fuel Coal-Fired Boiler  

SciTech Connect (OSTI)

BOC, the world's second largest industrial gas company, has developed a novel high temperature sorption based technology referred to as CAR (Cyclic Autothermal Recovery) for oxygen production and supply to oxy-fuel boilers with flue gas recycle. This technology is based on sorption and storage of oxygen in a fixed bed containing mixed ionic and electronic conductor materials. The objective of the proposed work was to construct a CAR PDU that was capable of producing 10-scfm of oxygen, using steam or recycled flue gas as the sweep gas, and install it in the Combustion Test Facility. The unit was designed and fabricated at BOC/The Linde Group, Murray Hill, New Jersey. The unit was then shipped to WRI where the site had been prepared for the unit by installation of air, carbon dioxide, natural gas, nitrogen, computer, electrical and infrastructure systems. Initial experiments with the PDU consisted of flowing air into both sides of the absorption systems and using the air heaters to ramp up the bed temperatures. The two beds were tested individually to operational temperatures up to 900 C in air. The cycling process was tested where gases are flowed alternatively from the top then bottom of the beds. The PDU unit behaved properly with respect to flow, pressure and heat during tests. The PDU was advanced to the point where oxygen production testing could begin and integration to the combustion test facility could occur.

None

2006-12-31T23:59:59.000Z

116

Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control  

SciTech Connect (OSTI)

Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

Robert A. Carrington; William C. Hecker; Reed Clayson

2008-06-01T23:59:59.000Z

117

Unified Fire Recovery Command Center  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Checking Propane Tanks Checking Home Heating Oil Tanks Miscellaneous Safety Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Removing Debris Heating Fuels or heat penetrated the bark. Where fire has burnt deep into the tree trunk, the tree should be considered

118

A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report  

SciTech Connect (OSTI)

This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

Not Available

1993-07-01T23:59:59.000Z

119

A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report  

SciTech Connect (OSTI)

This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

Not Available

1993-07-01T23:59:59.000Z

120

Solid waste drum array fire performance  

SciTech Connect (OSTI)

Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided.

Louie, R.L. [Westinghouse Hanford Co., Richland, WA (United States); Haecker, C.F. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L. [Hughes Associates, Inc., Baltimore, MD (United States)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Combustion and fuel characterization of coal-water fuels  

SciTech Connect (OSTI)

Activities conducted under this contract include studies on the combustion and fireside behavior of numerous coal-water fuels (CWFs). The work has been broken down into the following areas: Task 1 -- Selection of Candidate Fuels; Task 2 -- Bench Scale Tests; Task 3 -- CWF Preparation and Supply; Task 4 -- Combustion Characterization; Task 5 -- Ash Deposition and Performance Testing; Task 6 -- Commercial Applications. This report covers Task 6, the study of commercial applications of CWFs as related to the technical and economic aspects of the conversion of existing boilers and heaters to CWF firing. This work involves the analysis of seven units of various sizes and configurations firing several selected CWFs. Three utility boilers, two industrial boilers, and two process heater designs are included. Each of the units was considered with four primary selected CWFs. A fifth fuel was considered for one of the utility units. A sixth fuel, a microfine grind CWF, was evaluated on two utility units and one industrial unit. The particular fuels were chosen with the objective of examining the effects of coal source, ash level, ash properties, and beneficiation on the CWF performance and economics of the seven units. 10 refs., 81 figs., 80 tabs.

Beal, H.R.; Gralton, G.W.; Gronauer, T.W.; Liljedahl, G.N.; Love, B.F.

1987-06-01T23:59:59.000Z

122

Synthesis and Summary: Land Use Decisions and Fire Risk1  

E-Print Network [OSTI]

was spent in fire suppres- sion. The bill for all costs and damages amounted to more than $1 billion. Given of fuel management and fire protection. The complexity of watershed manage- ment was defined growth on fuel management and fire protection, concerns stated or implied in all presentations. Jim Davis

Standiford, Richard B.

123

Savanna and shrubland fire behavior modeling in South Texas  

E-Print Network [OSTI]

The vegetation of South Texas has changed from mesquite savanna to mixed mesquite/acacia (Prosopis/Acacia) shrubland over the last hundred years. Fire reduction due to lack of fine fuel and suppression of fires is cited as reasons...

Streeks, Tamara Jean

2012-06-07T23:59:59.000Z

124

Investigation of a Fatal Fire in a Moving Vehicle   

E-Print Network [OSTI]

This paper summarizes the essentials of an investigation conducted by the authors to test conflicting scenarios regarding the cause and origin of an accidental fire. Fire investigators proposed that an underbody fuel-leak ...

Alvares, Norman; Staggs, Kirk; Rein, Guillermo

2007-01-01T23:59:59.000Z

125

Euclid Hardware and Software Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRD Epitaxial ThinHeatersEmailConfiguration

126

CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR GRAPHITE REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH)  

SciTech Connect (OSTI)

A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950’s efforts were made to study “power plants for the production of electrical power in space vehicles”. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of 253 unmoderated stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.” The first experiment in the series was evaluated in HEU-COMP-FAST-001. It had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank (References 1 and 2). The second experiment in the series, performed in early 1963, which is studied in this evaluation, had the 253 fuel tubes at a 1.506-cm triangular lattice in a 25.96 cm OD core tank and graphite reflectors on all sides. The experiment has been determined to represent an acceptable benchmark experiment. Information for this evaluation was compiled from published reports on all three parts of the experimental series (Reference 1-5) and the experimental logbook as well as from communication with the experimenter, John T. Mihalczo.

Margaret A. Marshall

2012-03-01T23:59:59.000Z

127

Load Preheating Using Flue Gases from a Fuel-Fired Heating System; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #9 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.1310 DOE

128

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #8 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy2-02 InspectionS10IS00719IG-17

129

FIRE WATCH FORM University Fire Marshal  

E-Print Network [OSTI]

FIRE WATCH FORM University Fire Marshal Guidance Document Approved by: R. Flynn Last revised by: R. These are regulations used by the University Fire Marshal and EH&S as guidance to meet compliance pertaining the impairment coordinator (The University Fire Marshal has been identified as the Impairment Coordinator for all

Pawlowski, Wojtek

130

FIRE PROTECTION IMPAIRMENTS University Fire Marshal  

E-Print Network [OSTI]

FIRE PROTECTION IMPAIRMENTS University Fire Marshal Guidance Document Approved by: R. Flynn Last system. These are regulations used by the University Fire Marshal and EH&S as guidance to meet compliance, the owner shall be considered the impairment coordinator (The University Fire Marshal has been identified

Pawlowski, Wojtek

131

Model Fire Protection Program  

Broader source: Energy.gov [DOE]

To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

132

Annual Fire Safety Report  

E-Print Network [OSTI]

2010 Annual Fire Safety Report University of California, Irvine HIGHER EDUCATION OPPORTUNITY to the Fire Safety in Student Housing Buildings of current or perspective students and employees be reported publish an annual fire safety report, keep a fire log, and report fire statistics to the Secretary

Loudon, Catherine

133

Fire suppressing apparatus. [sodium fires  

DOE Patents [OSTI]

Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubed depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.

Buttrey, K.E.

1980-12-19T23:59:59.000Z

134

Fire Protection  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO| Department ofNOT

135

Sandia National Laboratories: Fire Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora Museum OnFactFiber-opticAssessmentFire

136

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS  

SciTech Connect (OSTI)

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

Nsakala ya Nsakala; Gregory N. Liljedahl

2003-05-15T23:59:59.000Z

137

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect (OSTI)

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

138

Subtask 3.12 - Oxygen-Fired CFBC  

SciTech Connect (OSTI)

Traditionally, air is used as the source of oxygen for firing a combustion system. A fully oxygen-fired circulating fluidized-bed combustion (CFBC) system would result in the production of a flue gas stream consisting of mostly carbon dioxide and water. The concentrated carbon dioxide stream would be available for sequestering or other purposes. Temperatures in an oxygen-blown CFBC system would be controlled by a combination of flue gas recycle, solids recirculation, and by appropriately sizing and locating the amount of heat-transfer surface required. Flue gas recycle provides the additional gas required for adequate fluidization and circulation of solids replacing the nitrogen that would be present in an air-blown system. The amount of flue gas recycle will determine how much of the remaining heat from the coal combustion will have to be removed. If the amount of flue gas recycle required by increasing solids recirculation and oxygen staging is limited, introducing the pure oxygen at multiple locations in the combustor to result in a more even temperature profile should result in a more compact system, thus reducing initial capital costs for construction. The overall efficiency of the process should be greater than that of an air-blown system since less fuel is required for the creation of the same amount of energy. The Energy & Environmental Research Center (EERC) is in a unique position to advance this technology. It has a world-class CFBC pilot plant, has experience with firing a wide range of fuels in our air-fired CFBC pilot plant, has prior experience with oxygen-firing a slagging furnace system in a pulverized coal-fired mode with a bituminous coal, and has all of the components required for oxygen-firing right next to the CFBC pilot plant already in place. An engineering study was performed to identify methods, an overall appropriate configuration, and an operating strategy for a fully oxygen-fired CFBC pilot plant by: (1) developing a plan to optimize the amount of flue gas recycle required to control bed temperature; (2) determining how to best utilize the heat-transfer surfaces in a CFBC pilot plant, such as increased external bed surface, to more beneficially use increased solids recycle; (3) identifying appropriate methods for staged addition of the oxygen/recycled flue gas streams to maintain a good temperature profile in the combustor; and (4) determining the level of effort required to convert the EERC CFBC pilot plant to one that is oxygen-blown. The EERC additionally used its experience to consider what would be required for firing a wide range of fuels from biomass to low-rank coals to high-rank coals and petroleum cokes. These proposed modifications will be performed based upon obtaining the required funding.

Douglas Hajicek; Mark Musich; Ann Henderson

2007-02-28T23:59:59.000Z

139

Fire Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office FinalFinancingFingerprintingFinite

140

Firing of pulverized solvent refined coal  

DOE Patents [OSTI]

A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

Lennon, Dennis R. (Allentown, PA); Snedden, Richard B. (McKeesport, PA); Foster, Edward P. (Macungie, PA); Bellas, George T. (Library, PA)

1990-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fire Safety Training: Fire Modeling- NUREG 1934  

Broader source: Energy.gov [DOE]

Presenter: Frederick W. Mowrer, Ph.D., P.E. Director Fire Protection Engineering Programs - Cal Poly – SLO

142

Computational fire modeling for aircraft fire research  

SciTech Connect (OSTI)

This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.

Nicolette, V.F.

1996-11-01T23:59:59.000Z

143

Effects of alternate fuels report No. 8: analysis of degradiation of magnesia-based refractory bricks from a residual oil-fired rotary cement kiln  

SciTech Connect (OSTI)

Residual oil was used as an alternate fuel to natural gas to supply heat in a rotary cement kiln. Principal impurities in the residual oil were Ca, Fe, Mg, Na, Ni, P.S. and V. the kiln operators were concerned about the effects of these oil impurities on observed degradation of the magnesia-based bricks used as a liner in the burning zone of the kiln. Two degraded bricks, which had been in service for six to nine months, were analyzed to determine the role of fuel impurities on the observed degradation. The maximum hot-face temperature of the refractory during service was about 1500/sup 0/C. One brick had decreased in thickness about 45%, the about 15%. Various analytical measurements on these samples failed to reveal the presence of fuel impurities at or near the hot face of the bricks, and therefore it is concluded that the relatively short service life of these refractories was not due to use of residual oil as the fuel in the kiln. The observed degradation, therefore, was attributed to other reactions and to thermal mechanical conditions in the kiln, which inevitably resulted in extensive erosion of the bricks.

Federer, J.I.; Tennery, V.J.

1980-05-01T23:59:59.000Z

144

Why is Eastern Redcedar a Hazardous Fuel?  

E-Print Network [OSTI]

Why is Eastern Redcedar a Hazardous Fuel? Why is Eastern Redcedar a Hazardous Fuel? Homes built the destruction of fire-tolerant trees if a wildfire moves through the area. Creating fuel breaks (such ignite it. · When ERC grows in forests and wood- lands, it acts as a ladder fuel to allow fire to climb

Balasundaram, Balabhaskar "Baski"

145

Superclean coal-water slurry combustion testing in an oil-fired boiler  

SciTech Connect (OSTI)

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

146

Fire Protection Program Metrics  

Broader source: Energy.gov [DOE]

Presenter: Perry E. D ’Antonio, P.E., Acting Sr. Manager, Fire Protection - Sandia National Laboratories

147

Use of Prescribed Fire to Reduce Wildfire Robert E. Martin, J. Boone Kauffman, and Joan  

E-Print Network [OSTI]

reduces fire hazard and potential fire behavior primarily by reducing fuel quantity and continuity of excessive biomass; it has set the stage for high-intensity, high-fuel- consumption, stand-removal fires. These include maintenance of stand composition, increase in water quantity and quality, reduction

Standiford, Richard B.

148

Fire Foe: A Glovebox Fire Suppression System | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Envirogel Extinguishing Agent NRTL Qualification Fire Test Proof-of-Concept Testing Seismic Reliability Fire Foe: A Glovebox Fire Suppression System More Documents &...

149

CONFIGURATION MANAGEMENT (CM)  

Broader source: Energy.gov (indexed) [DOE]

Safety systems and mission critical systems are defined and a comprehensive Configuration Management systemprocedure to maintain control over the design and modifications of these...

150

Syngas into Fuel: Optofluidic Solar Concentrators  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Ohio State has developed an iron-based material and process for converting syngas—a synthetic gas mixture—into electricity, H2, and/or liquid fuel with zero CO2 emissions. Traditional carbon capture methods use chemical solvents or special membranes to separate CO2 from the gas exhaust from coal-fired power plants. Ohio State’s technology uses an iron-based oxygen carrier to generate CO2 and H2 from syngas in separate, pure product streams by means of a circulating bed reactor configuration. The end products of the system are H2, electricity, and/or liquid fuel, all of which are useful sources of power that can come from coal or syngas derived from biomass. Ohio State is developing a high-pressure pilot-scale unit to demonstrate this process at the National Carbon Capture Center.

None

2010-10-01T23:59:59.000Z

151

Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers  

SciTech Connect (OSTI)

In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW Conesville, Ohio plant and contrasted with the cryogenic air separation option (ASU). Design of a large scale CAR unit was completed to support this techno-economic assessment. Based on the finding that the overall cost potential of the CAR technology compared to cryogenic ASU is nominal at current performance levels and that the risks related to both material and process scale up are still significant, the team recommended not to proceed to Phase 2. CAR process economics continue to look attractive if the original and still 'realistic' target oxygen capacities could be realized in practice. In order to achieve this end, a new fundamental materials development program would be needed. With the effective oxygen capacities of the current CAR materials there is, however, insufficient economic incentive to use this commercially unproven technology in oxy-fuel power plant applications in place of conventional ASUs. In addition, it is now clear that before a larger scale pilot demonstration of the CAR technology is made, a better understanding of the impact of flue-gas impurities on the CAR materials and of thermal transients in the beds is required.

Krish Krishnamurthy; Divy Acharya; Frank Fitch

2008-09-30T23:59:59.000Z

152

Fire Classifications Fires involving the ordinary  

E-Print Network [OSTI]

, plastics, etc. Fires involving combustible or flammable liquids such as gasoline, kerosene, oils, grease is protected by various devices such as smoke detectors, sprinkler systems, and manual fire alarm pull stations. Manual pull stations are strategically located throughout the University. Usually located by each exit

Jia, Songtao

153

Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste  

SciTech Connect (OSTI)

The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through the system without requiring any equipment or process changes. (10) Although the above attempt failed, the plant is still interested in producing briquettes. (11) An economic analysis of investing in a production facility manufacturing such briquettes was conducted to determine the economic viability of the project. Such a project is estimated to have an internal rate of return of 14% and net present value of about $400,000. (12) An engineering independent study class (4 students) is now working on selecting a site near the power plant and determining the layout of the future plant that will produce briquettes.

H. Carrasco; H. Sarper

2006-06-30T23:59:59.000Z

154

Fire in Buildings   

E-Print Network [OSTI]

During the lifetime of any building in Canada it is probable that one or more "unwanted" fires will occur. "Fire Loss in Canada, 1959," the report of the Dominion Fire Commissioner, states that for the period 1950-1959 the average number of reported...

Shorter, G.

155

Stochastic Programming Model for Fuel Treatment Management  

E-Print Network [OSTI]

Due to the increased number and intensity of wild fires, the need for solutions that minimize the impact of fire are needed. Fuel treatment is one of the methods used to mitigate the effects of fire at a certain area. In this thesis, a two...

Kabli, Mohannad Reda A

2014-04-28T23:59:59.000Z

156

Fire Protection Program Manual  

SciTech Connect (OSTI)

This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

Sharry, J A

2012-05-18T23:59:59.000Z

157

Fire Protection Training | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO|Training Fire

158

Superclean coal-water slurry combustion testing in an oil-fired boiler  

SciTech Connect (OSTI)

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) demonstration and evaluation. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress is reported. 7 refs., 7 figs., 1 tab.

Miller, B.G.; Schobert, H.H.

1990-09-28T23:59:59.000Z

159

Client Configuration and Installation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina

160

ARM - Process Configuration Manager  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data Derived from NWP

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Kuwaiti oil fires: Composition of source smoke  

SciTech Connect (OSTI)

While the Kuwaiti oil-fire smoke plumes manifested a pronounced impact on solar radiation in the Gulf region (visibility, surface temperatures, etc.), smoke plume concentrations of combustion-generated pollutants suggest that the overall chemical impact on the atmosphere of the smoke from these fires was probably much less than anticipated. Combustion in the Kuwaiti oil fires was surprisingly efficient, releasing on average more than 93% of the combusted hydrocarbon fuels as carbon dioxide (CO{sub 2}). Correspondingly, combustion-produced quantities of carbon monoxide (CO) and carbonaceous particles were low, each {approximately} 2% by weight. The fraction of methane (CH{sub 4}) produced by the fires was also relatively low ({approximately} 0.2%), but source emissions of nonmethane hydrocarbons were high ({approximately} 2%). Processes other than combustion (e.g., volatilization) probably contributed significantly to the measured in-plume hydrocarbon concentrations. Substantially, different elemental to organic carbon ratios were obtained for aerosol particles from several different types of fires/smokes. Sulfur emissions (particulate and gaseous) measured at the source fires were lower ({approximately} 0.5%) than predicted based on average sulfur contents in the crude. Sulfur dioxide measurements (SO{sub 2}) reported herein, however, were both limited in actual number and in the number of well fires sampled. Nitrous oxide (N{sub 2}O) emissions from the Kuwaiti oil fires were very low and often could not be distinguished from background concentrations. About 25-30% of the fires produced white smoke plumes that were found to be highly enriched in sodium and calcium chlorides. 18 refs., 1 fig., 4 tabs.

Cofer, W.R. III; Cahoon, D.R. [Langley Research Center, Hampton, VA (United States); Stevens, R.K.; Pinto, J.P. [Environmental Protection Agency, Research Triangle Park, NC (United States); Winstead, E.L.; Sebacher, D.I. [Hughes STX Corp., Hampton, VA (United States); Abdulraheem, M.Y. [Kuwait Environmental Protection Dept., Kuwait City (Kuwait); Al-Sahafi, M. [Ministry of Defense and Aviation, Eastern Province (Saudi Arabia); Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Rasmussen, R.A. [Oregon Graduate Institute of Science and Technology, Beaverton, OR (United States)] [and others

1992-09-20T23:59:59.000Z

162

CONFIGURATION CHANGE PROPOSAL (CCP)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, JuneDid y ou know mostChange

163

E-Print Network 3.0 - advanced coal-fired systems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Collection: Fossil Fuels 13 Nuclear Engineering Graduate Program Summary: pollutants, a coal-fired power plant, in contrast, annually releases 10 billion kg of carbon...

164

Fire Safety Committee Membership List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO|Training FireFire

165

WILDLAND FIRE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.  

SciTech Connect (OSTI)

This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) and the Upton Ecological and Research Reserve (Upton Reserve) is based on the U.S. Fish & Wildlife Service (FWS) fire management planning procedures and was developed in cooperation with the Department of Energy (DOE) by Brookhaven Science Associates. As the Upton Reserve is contained within the BNL 5,265-acre site, it is logical that the plan applies to both the Upton Reserve and BNL. The Department of the Interior policy for managing wildland fires requires that all areas managed by FWS that can sustain fire must have an FMP that details fire management guidelines for operational procedures and specifies values to be protected or enhanced. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL/Upton Reserve Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered and threatened species and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL and the Upton Reserve. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of FWS, BNL, and the Upton Reserve. This Fire Management Plan is a modified version of the Long Island National Wildlife Refuge Complex Fire plan (updated in 2000), which contains all FWS fire plan requirements and is presented in the format specified by the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. FWS shall be, through an Interagency Agreement dated November 2000 (Appendix C), responsible for coordinating and implementing prescribed burns and fuel reduction projects in the Upton Reserve. Prescribed fire and fuel reduction in locations outside the Upton Reserve will be coordinated through the Natural Resource Management Program at BNL, and done in consultation with FWS. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by FWS, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel.

ENVIRONMENTAL AND WASTE MANAGEMENT SERVICES DIVISION

2003-09-01T23:59:59.000Z

166

Cyber Friendly Fire  

SciTech Connect (OSTI)

Cyber friendly fire (FF) is a new concept that has been brought to the attention of Department of Defense (DoD) stakeholders through two workshops that were planned and conducted by the Air Force Research Laboratory (AFRL) and research conducted for AFRL by the Pacific Northwest National Laboratory. With this previous work in mind, we offer a definition of cyber FF as intentional offensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission effectiveness of friendly or neutral forces. Just as with combat friendly fire, a fundamental need in avoiding cyber FF is to maintain situation awareness (SA). We suggest that cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system (and that populate the nodes), the nature of the activities or work performed, and the available defensive (and offensive) countermeasures that may be applied to thwart network attacks. A training implication is to raise awareness and understanding of these critical knowledge units; an approach to decision aids and/or visualizations is to focus on supporting these critical knowledge units. To study cyber FF, we developed an unclassified security test range comprising a combination of virtual and physical devices that present a closed network for testing, simulation, and evaluation. This network offers services found on a production network without the associated costs of a real production network. Containing enough detail to appear realistic, this virtual and physical environment can be customized to represent different configurations. For our purposes, the test range was configured to appear as an Internet-connected Managed Service Provider (MSP) offering specialized web applications to the general public. The network is essentially divided into a production component that hosts the web and network services, and a user component that hosts thirty employee workstations and other end devices. The organization's network is separated from the Internet by a Cisco ASA network security device that both firewalls and detects intrusions. Business sensitive information is stored in various servers. This includes data comprising thousands of internal documents, such as finance and technical designs, email messages for the organization's employees including the CEO, CFO, and CIO, the organization's source code, and Personally Identifiable client data. Release of any of this information to unauthorized parties would have a significant, detrimental impact on the organization's reputation, which would harm earnings. The valuable information stored in these servers pose obvious points of interest for an adversary. We constructed several scenarios around this environment to support studies in cyber SA and cyber FF that may be run in the test range. We describe mitigation strategies to combat cyber FF including both training concepts and suggestions for decision aids and visualization approaches. Finally, we discuss possible future research directions.

Greitzer, Frank L.; Carroll, Thomas E.; Roberts, Adam D.

2011-09-01T23:59:59.000Z

167

Environmental Health & Safety Fire Safety Unit  

E-Print Network [OSTI]

materials (gas, lighter fluid, charcoal, propane, solvents, etc.) All items powered by combustible fuels heat to start a fire if used improperly). Including but not limited to: George Foreman grills portable heating devices (space heaters of any type) What other items are not allowed in my room? Non

Portman, Douglas

168

Combustion Air Preheat and Radiant Heat Transfer in Fired Heaters - A Graphical Method for Design and Operating Analysis  

E-Print Network [OSTI]

The installation of combustion air preheat is a widely used technique for improving the fuel efficiency of existing fired heaters and fired tubular reactors. By increasing adiabatic flame temperature, combustion air preheat increases radiant section...

Grantom, R. L.

1981-01-01T23:59:59.000Z

169

Fire alarm system improvement  

SciTech Connect (OSTI)

This document contains the Fire Alarm System Test Procedure for Building 234-5Z, 200-West Area on the Hanford Reservation, Richland, Washington. This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the modifications to the Fire Protection systems function as required by project criteria. The ATP will test the Fire Alarm Control Panels, Flow Alarm Pressure Switch, Heat Detectors, Smoke Detectors, Flow Switches, Manual Pull Stations, and Gong/Door by Pass Switches.

Hodge, S.G.

1994-10-01T23:59:59.000Z

170

Draft August 2007 WILDLAND FIRE PROBABILITIES ESTIMATED FROM  

E-Print Network [OSTI]

. An alternative source of fire weather data for the NFDRS is global or regional scale weather analysis in digital the Experimental Climate Prediction Center at the Scripps Institution of Oceanography. The monthly average Fosberg of terrain, weather and fuel conditions represented by standard fuel models. Fuel moisture models use weather

Westerling, Anthony L.

171

PDSF Hardware Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/OP-Glycoprotein StructureStatisticsEmail

172

GASIFICATION BASED BIOMASS CO-FIRING - PHASE I  

SciTech Connect (OSTI)

Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

Babul Patel; Kevin McQuigg; Robert F. Toerne

2001-12-01T23:59:59.000Z

173

Fire Protection Database | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire Protection Database

174

Fire Protection Program | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs Find Jobs Clean energy jobsFire

175

Fire and Life Safety Information - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, Programs and EventsFiberFire

176

Contained Firing Facility | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration| National Nuclear SecurityContained Firing

177

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect (OSTI)

This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

2006-06-30T23:59:59.000Z

178

Fire protection design criteria  

SciTech Connect (OSTI)

This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, national Fire Protection Association Codes and Standards, and any other applicable DOE construction criteria. This Standard, along with other delineated criteria, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

NONE

1997-03-01T23:59:59.000Z

179

Critical Fire Weather Patterns  

E-Print Network [OSTI]

.1 Sundowner Winds FAT -- 1.1 Southeastern U.S. Fire Weather LIT -- 1.1 East Winds MFR -- 1.1 East Winds OLM

Clements, Craig

180

Gas reburning in tangentially-fired, wall-fired and cyclone-fired boilers  

SciTech Connect (OSTI)

Gas Reburning has been successfully demonstrated for over 4,428 hours on three coal fired utility boilers as of March 31, 1994. Typically, NO{sub x} reductions have been above 60% in long-term, load-following operation. The thermal performance of the boilers has been virtually unaffected by Gas Reburning. At Illinois Power`s Hennepin Station, Gas Reburning in a 71 MWe tangentially-fired boiler achieved an average NO{sub x} reduction of 67% from the original baseline NO{sub x} level of 0.75 lb NO{sub x}/10{sup 6} Btu over a one year period. The nominal natural gas input was 18% of total heat input. Even at 10% gas heat input, NO{sub x} reduction of 55% was achieved. At Public Service Company of Colorado`s Cherokee Station, a Gas Reburning-Low NO{sub x} Burner system on a 172 MWe wall-fired boiler has achieved overall NO{sub x} reductions of 60--73% in parametric and long-term testing, based on the original baseline NO{sub x} level of 0.73 lb/10{sup 6} Btu. NO{sub x} reduction is as high as 60--65% even at relatively low natural gas usage (5--10% of total heat input). The NO{sub x} reduction by Low NO{sub x} Burners alone is typically 30--40%. NO{sub x} reduction has been found to be insensitive to changes in recirculated flue gas (2--7% of total flue gas) injected with natural gas. At City Water, Light and Power Company`s Lakeside Station in Springfield, Illinois, Gas Reburning in a 33 MWe cyclone-fired boiler has achieved an average NO{sub x} reduction of 66% (range 52--77%) at gas heat inputs of 20--26% in long-term testing, based on a baseline NO{sub x} level of 1.0 lb/10{sup 6} Btu (430 mg/MJ). This paper presents a summary of the operating experience at each site and discusses the long term impacts of applying this technology to units with tangential, cyclone and wall-fired (with Low NO{sub x} Burner) configurations.

May, T.J. [Illinois Power Co., Decatur, IL (United States); Rindahl, E.G. [Public Service Co. of Colorado, Denver, CO (United States); Booker, T. [City Water Light and Power, Springfield, IL (United States)] [and others

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Model Baseline Fire Department/Fire Protection Engineering Assessment  

Broader source: Energy.gov [DOE]

The purpose of the document is to comprehensively delineate and rationalize the roles and responsibilities of the Fire Department and Fire Protection (Engineering).

182

Coal-fired diesel generator  

SciTech Connect (OSTI)

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

NONE

1997-05-01T23:59:59.000Z

183

Fuel cell generator  

DOE Patents [OSTI]

High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

Isenberg, Arnold O. (Forest Hills, PA)

1983-01-01T23:59:59.000Z

184

Alternate Fuels: Is Your Waste Stream a Fuel Source?  

E-Print Network [OSTI]

. The advancement of programmable controls has also dramatically increased the capability and reliability of Alternate Fuel Systems. 148 ESL-IE-92-04-24 Proceedings from the 14th National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992... ALTERNATE FUELS: IS YOUR WASTE STREAM A FUEL SOURCE? PHn, COERPER. MANAGER ALTERNATE FUEL SYSTEMS. CLEAVER-BROOKS. Mn,WAUKEE. WI ABSTRACT Before the year 2000. more than one quarter of u.s. businesses will be firing Alternate Fuels...

Coerper, P.

185

GASIFICATION BASED BIOMASS CO-FIRING  

SciTech Connect (OSTI)

Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

2003-01-01T23:59:59.000Z

186

Fire Protection System Account Request Form | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs Find Jobs Clean energy jobsFireFire

187

Re-evaluation of the 1995 Hanford Large Scale Drum Fire Test Results  

SciTech Connect (OSTI)

A large-scale drum performance test was conducted at the Hanford Site in June 1995, in which over one hundred (100) 55-gal drums in each of two storage configurations were subjected to severe fuel pool fires. The two storage configurations in the test were pallet storage and rack storage. The description and results of the large-scale drum test at the Hanford Site were reported in WHC-SD-WM-TRP-246, ''Solid Waste Drum Array Fire Performance,'' Rev. 0, 1995. This was one of the main references used to develop the analytical methodology to predict drum failures in WHC-SD-SQA-ANAL-501, 'Fire Protection Guide for Waste Drum Storage Array,'' September 1996. Three drum failure modes were observed from the test reported in WHC-SD-WM-TRP-246. They consisted of seal failure, lid warping, and catastrophic lid ejection. There was no discernible failure criterion that distinguished one failure mode from another. Hence, all three failure modes were treated equally for the purpose of determining the number of failed drums. General observations from the results of the test are as follows: {lg_bullet} Trash expulsion was negligible. {lg_bullet} Flame impingement was identified as the main cause for failure. {lg_bullet} The range of drum temperatures at failure was 600 C to 800 C. This is above the yield strength temperature for steel, approximately 540 C (1,000 F). {lg_bullet} The critical heat flux required for failure is above 45 kW/m{sup 2}. {lg_bullet} Fire propagation from one drum to the next was not observed. The statistical evaluation of the test results using, for example, the student's t-distribution, will demonstrate that the failure criteria for TRU waste drums currently employed at nuclear facilities are very conservative relative to the large-scale test results. Hence, the safety analysis utilizing the general criteria described in the five bullets above will lead to a technically robust and defensible product that bounds the potential consequences from postulated fires in TRU waste facilities, the means of storage in which are the Type A, 55-gal drums.

Yang, J M

2007-05-02T23:59:59.000Z

188

Fire science at LLNL: A review  

SciTech Connect (OSTI)

This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

Hasegawa, H.K. (ed.)

1990-03-01T23:59:59.000Z

189

Warpage Evolution of Screen Printed Multilayer Ceramics During Co-firing  

E-Print Network [OSTI]

-firing multilayer ceramics is a key processing technology to fabricate planar type Solid Oxide Fuel Cells (SOFC, multilayer, solid oxide fuel cell, cyclic loading dilatometry Abstract. Warpage evolution during co-firing of multilayer ceramics was systematically recorded and analyzed. LaSrMnO3 was screen printed on one side

Messing, Gary L.

190

Electronic firing systems and methods for firing a device  

DOE Patents [OSTI]

An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

Frickey, Steven J. (Boise, ID); Svoboda, John M. (Idaho Falls, ID)

2012-04-24T23:59:59.000Z

191

Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993  

SciTech Connect (OSTI)

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

192

Mitsubishi FGD plants for lignite fired boilers  

SciTech Connect (OSTI)

In order to respond to the increasing electric energy demand for sustaining economic growth, construction of coal-fired thermal power plants worldwide is indispensable. As a countermeasure for environmental pollution which otherwise may reach a serious proportion from the operation of these plants, construction of flue gas desulfurization (FGD) plants is being promoted. Among these power stations where lignite fuel is burnt, the FGD plants concerned have to be designed to cope with high gas volume and SO{sub x} concentration as well as violent fluctuations in their values caused by such features of lignite as high sulfur content, low calorific volume, and unstable properties. Mitsubishi Heavy Industries (MHI) has received construction awards for a total of seven (7) FGD plants for lignite-fired boilers in succession starting from that for CEZ as, Czech Republic followed by those for EGAT, Thailand in 1993. All these plants are presently operating satisfactorily since successful completion of their performance tests in 1996. Further, a construction award of three (3) more FGD plants for lignite-fired boilers was received from ENDESA (Spain) in 1995 which are now being outfitted and scheduled to start commercial operation in 1998. In this paper, the authors discuss the outline design of FGD plants for lignite-fired boilers based on experience of FGD plants constructed since 1970 for heavy oil--as well as black coal-fired boilers, together with items confirmed from the operation and design guideline hereafter.

Kotake, Shinichiro; Okazoe, Kiyoshi; Iwashita, Koichiro; Yajima, Satoru

1998-07-01T23:59:59.000Z

193

Direct hydrocarbon fuel cells  

DOE Patents [OSTI]

The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

Barnett, Scott A.; Lai, Tammy; Liu, Jiang

2010-05-04T23:59:59.000Z

194

Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products  

SciTech Connect (OSTI)

A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

2007-07-01T23:59:59.000Z

195

Power converter connection configuration  

DOE Patents [OSTI]

EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

Beihoff, Bruce C. (Wauwatosa, WI); Kehl, Dennis L. (Milwaukee, WI); Gettelfinger, Lee A. (Brown Deer, WI); Kaishian, Steven C. (Milwaukee, WI); Phillips, Mark G. (Brookfield, WI); Radosevich, Lawrence D. (Muskego, WI)

2008-11-11T23:59:59.000Z

196

FIRE HAZARDS ANALYSIS - BUSTED BUTTE  

SciTech Connect (OSTI)

The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

R. Longwell; J. Keifer; S. Goodin

2001-01-22T23:59:59.000Z

197

Flooding and Fire Ants  

E-Print Network [OSTI]

Fire ants can be a serious problem during and after a flood. This publication explains how to protect yourself when you must return to flooded structures or deal with storm debris....

Nester, Paul

2008-08-05T23:59:59.000Z

198

Wildland Fire Safety Enhancements  

Broader source: Energy.gov (indexed) [DOE]

OPERATIONS OFFICE MANAGERS DOE FUXD OFFICE MANAGERS BILL RIcHARDsoN L%@ WILDLAND FIRE SAFETY ENHAN&MENTS By memorandum dated October 22000, I directed several actions & part of a...

199

Safety, Security & Fire Report  

E-Print Network [OSTI]

2013 Safety, Security & Fire Report Stanford University #12;Table of Contents Public Safety About the Stanford University Department of Public Safety Community Outreach & Education Programs Emergency Access Transportation Safety Bicycle Safety The Jeanne Clery and Higher Education Act Timely Warning

Straight, Aaron

200

Fuel cell system combustor  

DOE Patents [OSTI]

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

Pettit, William Henry (Rochester, NY)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Forest Fuels ReductionForest Fuels Reduction Department of  

E-Print Network [OSTI]

are the soil management and watershed implications from alternative fuels reduction approaches? 3. How do and implement appropriate technologies to meet sustainable forest management objectives involving fuels Management 1. What should the size and distribution of the residual woody material be on-site from a fire

Bolding, M. Chad

202

Hanford Site Fire June 2000 AM  

SciTech Connect (OSTI)

The Hanford Site Fire on the morning of June 29, 2000. Fire crews working to contain a fire on the Hanford Site in June 2000.

2000-06-29T23:59:59.000Z

203

Improve the design of fire emergency relief systems  

SciTech Connect (OSTI)

In recognition of the potential severe consequences of a process vessel rupture under fire exposure, industry codes such as the National Fire Protection Association (NFPA) 30 and the American Petroleum Institute (API) Standard 2000 have been established for the specification of emergency relief systems (ERSs). The intent is to reduce the risk of human injury and asset losses associated with process plant fires. These codes are largely prescriptive in nature. That is, they provide specific details on how to achieve safe design. Prescriptive standards are easy to apply, because they are simplified approaches which generally apply to many (but not all) situations. But they also have limitations, including the tendency to result in, at best, suboptimal (overly conservative) designs, and in some instances potentially unsafe designs. As the fire community moves toward performance-based standards for building protection, perhaps it is time to consider a similar approach for vessel protection in a fire. The design issues addressed in this article include: Use of heat input based on actual fuel burning rate, heat of combustion, and flame emissive power, vs. NFPA 30 and API 2000 heat-input equations; Effect of drainage (from vessel to sump) on fire duration, rather than heat input; Use of risk assessment to determine the relative frequency of fire and process-induced incidents; and design for containment, rather than vessel protection when fire probability is low

Stickles, R.P.; Melhem, G.A.; Eckhardt, D.R.

1995-11-01T23:59:59.000Z

204

Subtask 2521E, "Interaction of Mass Fire and Its Envi-ronment, " sponsored by the Office of Civil Defense, Office of  

E-Print Network [OSTI]

fire in relation to air mass, fuel, and topog- raphy and to determine the effect of the fire system a nuclear weapon attack. The results are suggestive of possible future outputs of this work which could

Standiford, Richard B.

205

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern  

E-Print Network [OSTI]

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern

Stella, Carlo

206

Coal-fired high performance power generating system. Quarterly progress report, January 1--March 31, 1992  

SciTech Connect (OSTI)

This report covers work carried out under Task 2, Concept Definition and Analysis, and Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, ``Engineering Development of a Coal Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: > 47% thermal efficiency; NO{sub x}, SO{sub x} and Particulates {le} 25% NSPS; cost {ge} 65% of heat input; and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (FHTAF) which integrates several combustor and air heater designs with appropriate ash management procedures. The cycle optimization effort has brought about several revisions to the system configuration resulting from: (1) the use of Illinois No. 6 coal instead of Utah Blind Canyon; (2) the use of coal rather than methane as a reburn fuel; (3) reducing radiant section outlet temperatures to 1700F (down from 1800F); and (4) the need to use higher performance (higher cost) steam cycles to offset losses introduced as more realistic operating and construction constraints are identified.

Not Available

1992-12-31T23:59:59.000Z

207

EIA - Natural Gas Pipeline Network - Network Configuration & System Design  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S. Department of EnergyD e sNetwork Configuration

208

GCTool: Design, Analyze and Compare Fuel Cell Systems and Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GCTool: Design, Analyze and Compare Fuel Cell Systems and Power Plants GCTool allows you to design, analyze, and compare different fuel cell configurations, including automotive,...

209

Combustor nozzle for a fuel-flexible combustion system  

DOE Patents [OSTI]

A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

2011-03-22T23:59:59.000Z

210

Determination of Fire Enviroment in Stacked Cargo Containers with Radioactive Materials Packages  

SciTech Connect (OSTI)

Results from a Fire Test with a three-by-three stack of standard 6 m long International Standards Organization shipping containers containing combustible fuels and empty radioactive materials packages are reported and discussed. The stack is intended to simulate fire conditions that could occur during on-deck stowage on container cargo ships. The fire is initated by locating the container stack adjacent to a 9.8 x 6 m pool fire. Temperatures of both cargoes (empty and simulated radioactive materials packages) and containers are recorded and reported. Observations on the duration, intensity and spread of the fire are discussed. Based on the results, models for simulation of fire exposure of radioactive materials packages in such fires are suggested.

Arviso, M.; Bobbe, J.G.; Dukart, R.D.; Koski, J.A.

1999-05-01T23:59:59.000Z

211

Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios  

DOE Patents [OSTI]

A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

2006-01-03T23:59:59.000Z

212

Configuration Management Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Publications SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management Checklist NMMSS Software Quality Assurance Plan Software Configuration...

213

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration...  

Broader source: Energy.gov (indexed) [DOE]

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management...

214

A Fuel Cell Power Supply for Long Duration Balloon Flights Using Stored Cryogens  

E-Print Network [OSTI]

CA, (1966) LBNL-40618 A FUEL CELL POWER SUPPLY FOR LONGLBNL-40618 A FUEL CELL POWER SUPPLY FOR LONG DURATIONreport describes a fuel cell power supply configuration.

Green, Michael A.; Manikowski, A.; Noland, G.; Golden, R.L.

1997-01-01T23:59:59.000Z

215

Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA  

E-Print Network [OSTI]

Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA Kevin fuels to accumulate where previously frequent fires prevailed (Covington and Moore, 1994; Caprio management and mitigation is quantifying the fuel load and spatial arrangement of combustible material across

Stephens, Scott L.

216

EHSO TRAINING CLASSES Fire Safety Program Training  

E-Print Network [OSTI]

EHSO TRAINING CLASSES Fire Safety Program Training 1. Fire Safety (60 minutes) Instruction includes an actual fire eperience. 2. Fire Extinguisher Training (30 minutes) A practical demonstration on actual burnable liquid fires. This practical extinguisher training is a critical portion of the fire

217

FIRE Diagnostics Kenneth M. Young  

E-Print Network [OSTI]

FIRE Diagnostics Kenneth M. Young Princeton Plasma Physics Laboratory Workshop on Physics Issues. Young 5/2/00 #12;FIRE: Diagnostics Schedule 1 2YEAR 3 4 5 6 7 8 9 10 11 12 16151413 First Plasma Vac for FIRE PPPL May 1 - 3, 2000 #12;Role for the Plasma Measurements · 1) Provide data for physics studies

218

Cold Vacuum Drying facility fire protection system design description (SYS 24)  

SciTech Connect (OSTI)

This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings.

PITKOFF, C.C.

1999-07-06T23:59:59.000Z

219

Organic fuel cells and fuel cell conducting sheets  

DOE Patents [OSTI]

A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

2007-10-16T23:59:59.000Z

220

Injector having multiple fuel pegs  

DOE Patents [OSTI]

A fuel injector is provided, including a fuel injector body, a plurality of fuel vanes, and a plurality of fuel pegs. The injector body includes a manifold and an inlet. The manifold is configured for receiving fuel, and the inlet is configured for receiving air. The fuel vanes are located within the injector body and are positioned in a direction that is generally parallel with a longitudinal axis of the injector body to orient the air flowing from the inlet. The plurality of fuel pegs are fluidly connected to the manifold and are arranged within the plurality of fuel vanes. The plurality of fuel pegs are each spaced at a distance that is about equal between each of the plurality of fuel pegs.

Hadley, Mark Allan; Felling, David Kenton

2013-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Direct fired heat exchanger  

SciTech Connect (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

222

Annual Fire Protection Summary Information Reporting Guide | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUOAlaskaMoneyEnergy Fire Protection

223

Deep Trek Re-configurable Processor for Data Acquisition (RPDA)  

SciTech Connect (OSTI)

This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop a high-temperature Re-configurable Processor for Data Acquisition (RPDA). The RPDA development has incorporated multiple high-temperature (225C) electronic components within a compact co-fired ceramic Multi-Chip-Module (MCM) package. This assembly is suitable for use in down-hole oil and gas applications. The RPDA module is programmable to support a wide range of functionality. Specifically this project has demonstrated functional integrity of the RPDA package and internal components, as well as functional integrity of the RPDA configured to operate as a Multi-Channel Data Acquisition Controller. This report reviews the design considerations, electrical hardware design, MCM package design, considerations for manufacturing assembly, test and screening, and results from prototype assembly and characterization testing.

Bruce Ohme; Michael Johnson

2009-06-30T23:59:59.000Z

224

Efficiency and Environmental Impacts of Electricity Restructuring on Coal-fired Power Plants  

E-Print Network [OSTI]

Efficiency and Environmental Impacts of Electricity Restructuring on Coal-fired Power Plants Hei WITHOUT PERMISSION Abstract We investigate the impacts of electricity market restructuring on fuel recent years allows us to examine longer term impacts of restructuring; (2) the focus on coal-fired power

225

Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia  

E-Print Network [OSTI]

of carbon released from peat and forest fires in Indo- nesiasmoke clouds associated with peat and deforestation fires insmoke clouds associated with peat and deforestation fires in

Tosca, M. G; Randerson, J. T; Zender, C. S; Nelson, D. L; Diner, D. J; Logan, J. A

2011-01-01T23:59:59.000Z

226

Superclean coal-water slurry combustion testing in an oil-fired boiler. Quarterly technical progress report, November 15, 1989--February 15, 1990  

SciTech Connect (OSTI)

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the US Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) operations and disposition. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, slagging and fouling factors, erosion and corrosion limits, and fuel transport, storage, and handling can be accommodated in an oil-designed boiler. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress for this quarter is summarized.

Miller, B.G.; Walsh, P.M.; Elston, J.T.; Scaroni, A.W.

1990-04-06T23:59:59.000Z

227

Radiant-interchange configuration factors  

E-Print Network [OSTI]

RADIANT-INTERCHANGE CONFIGURATION FACTORS A Thesis By THOMAS E DW ARD RE D DIN Submitted to the Graduate College of the Texas A)M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1965 Major... wife, Dorene, whose patience and encouragement have been a constant source of inspiration. TABLE OF CONTENTS CHAPTER I . INTRODUCTION PAGE ~ 0 1 II. THE GEOMETRY OF THE BLACK BODY CONFIGURATION FACTOR. . . , . . . . . . . . . . . . . . . . 3 1...

Reddin, Thomas Edward

1965-01-01T23:59:59.000Z

228

A coal-fired combustion system for industrial process heating applications  

SciTech Connect (OSTI)

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

229

Hydrocarbon characterization experiments in fully turbulent fires : results and data analysis.  

SciTech Connect (OSTI)

As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. This report describes a set of fuel regression rates experiments to provide data for the development and validation of models. The experiments were performed with fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool was investigated and the total heat flux to the pool surface was measured. The importance of convection within the liquid fuel was assessed by restricting large scale liquid motion in some tests. These data sets provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.

Suo-Anttila, Jill Marie; Blanchat, Thomas K.

2011-03-01T23:59:59.000Z

230

Coal-fired furnace for testing of thermionic converters. Topical report  

SciTech Connect (OSTI)

The development of thermionic converter technology has progressed to make near-term applications interesting. One of these applications is the thermionic topping of a pulverized coal-fired central station powerplant. Up to now, thermionic converters have been flame tested using natural gas as fuel. A new test furnace is required for evaluation of thermionic converters in a coal-fired environment. The design and costs of a facility which adapts a coal-fired furnace built by Foster Wheeler Development Corporation (FWDC) for thermionic converter testing are discussed. Such a facility would be exempt from air pollution regulations because of its low firing rate.

Not Available

1980-10-01T23:59:59.000Z

231

Oregon Fire Marshall Letter  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota1 CleanbuttonbuttonWeb

232

CNG buses fire safety: learnings from recent accidents in France and Germany  

E-Print Network [OSTI]

"lessons to be learned" for CNG and other compressed fuels such as hydrogen. CNG BUS FIRE SAFETY STRATEGY- compressor, the exhaust pipe... in combination with combustible materials including polymeric materials, oil

Paris-Sud XI, Université de

233

Improving the heat, fire, and melt resistance of elastomeric seals on military gas masks  

E-Print Network [OSTI]

Improvised Explosive Devices (IED's) have wreaked havoc amongst American and Coalition troops. They have been the number one killer of Coalition forces. Many times the impact knock out fuel tanks which then catch on fire, ...

Hong, Charles S., M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

234

Firing Excess Refinery Butane in Peaking Gas Turbines  

E-Print Network [OSTI]

normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

Pavone, A.; Schreiber, H.; Zwillenberg, M.

235

Durham Fire Department 51 College Rd  

E-Print Network [OSTI]

information on what to do during an emergency. Students also receive annual fire drills to ensure hands-on practical traning of fire extinguisher that utilizes live fire exercises is available upon because most fires can be prevented. The best way to avoid fires is to avoid the hazards, which create

Pohl, Karsten

236

Compliant fuel cell system  

DOE Patents [OSTI]

A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY)

2009-12-15T23:59:59.000Z

237

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergyMaterials: SulfurRosenbaum sRotary Firing

238

ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-Arctic Cloud Experiment/SHEBA ARM

239

Fire and Ice Issue 9  

E-Print Network [OSTI]

Łs FIRE AND ICE # 9 IB FIRE ICE #9 A Blake/Avon slash fanzine r Available from: Kathleen Resch POBox 1766 Temple City, CA 91780 Kathleener@aol.com FIRE AND ICE # 9copyright © May, 2005 by Kathleen Resch for the contributors. No reprints... or reproduction without the written permission ofthe author/artist This is an amateur publication and is not p intended to infringe upon the rights ofany holders of"Blake's 7" copyrights. FIRE AND ICE 9 TABLE OF CONTENTS LEAVING ROOM 101 by Nova 2 TOO MANY...

Multiple Contributors

2005-01-01T23:59:59.000Z

240

ANNUAL SECURITY FIRE SAFETY REPORT  

E-Print Network [OSTI]

ANNUAL SECURITY AND FIRE SAFETY REPORT OCTOBER 1, 2013 DARTMOUTH COLLEGE http................................................................................................................................................................... 7 ANNUAL SECURITY REPORT........................................................................................................................9 PREPARATION OF THE REPORT AND DISCLOSURE OF CRIME STATISTICS

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Inductrack configuration - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningto FuelIndependentProcedures29,503 Site Map

242

Inductrack configuration - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningto FuelIndependentProcedures29,503 Site

243

CRAD, Configuration Management - Oak Ridge National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor February...

244

CRAD, Configuration Management - Oak Ridge National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope...

245

Fuel cell system with combustor-heated reformer  

DOE Patents [OSTI]

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

Pettit, William Henry (Rochester, NY)

2000-01-01T23:59:59.000Z

246

Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405  

SciTech Connect (OSTI)

The K Basin were constructed in the early 1950`s with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405`s Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities` Irradiated Fuel Storage Basins (K Basins).

Johnson, B.H.

1994-12-14T23:59:59.000Z

247

Fire Safety Committee Meeting Minutes- May 2014  

Broader source: Energy.gov [DOE]

DOE Fire Safety Committee Meeting Minutes, May, 2014 Topics included discussions on Fire modeling, revisions to DOE regulations and other important items relating to DOE and Fire Safety Community.

248

CRAD, Configuration Management Assessment Plan  

Broader source: Energy.gov [DOE]

The objective of this assessment is to determine whether a Configuration Management Program (CM) is in place which allows for the availability and retrievability of accurate information, improves response to design and operational decisions, enhances worker safety, increases facility safety and reliability, increases efficiency of work efforts, and helps maintain integrity of interfacing orders.

249

Stabilized fuel with silica support structure  

SciTech Connect (OSTI)

This report describes a stabilized fuel which is supported by a silica support structure. The silica support structure provides a low density, high porosity vehicle for safely carrying hydrocarbon fuels. The silica support structure for hydrocarbon fuel does not produce toxic material residues on combustion which would pose environmentally sensitive disposal problems. The silica stabilized fuel composition is useful as a low temperature, continuous burning fire starter for wood or charcoal.

Poco, J.F.; Hrubesh, L.W.

1991-12-31T23:59:59.000Z

250

Fire Danger Matrix  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified| DepartmentFinding

251

Fire Hazards Listing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified| DepartmentFindingHazards Listing

252

Mitigating Wildland Fires  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8Mistakes to Avoid Mistakes to Avoid There are

253

MARGINAL VALUATION OF FIRE EFFECTS  

E-Print Network [OSTI]

in the planning unit's land, resource and fire management plans. These goals and objectives can assist you with identifying the resources that are important to protect or improve through fire management activities. As you and cultural attributes of the landscape that have value. Defining the resource considered for value change 2

254

WHC fire hazards analysis policy  

SciTech Connect (OSTI)

The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

Evans, C.B.

1994-04-01T23:59:59.000Z

255

Test One: The ‘Uncontrolled’ Fire   

E-Print Network [OSTI]

The first of the Dalmarnock Fire Tests was a post-flashover compartment fire experiment held on July 25th, 2006, in a two-bedroom single-family flat on the 4th floor of the 23- storey reinforced concrete tower in Dalmarnock, ...

Abecassis Empis, Cecilia; Cowlard, Adam; Welch, Stephen; Torero, Jose L

2007-11-14T23:59:59.000Z

256

Fire and Ice Issue 2  

E-Print Network [OSTI]

^ $$% i&l /P^ \\0 rffej FIRE AND ICE AVAILABLE FROM Kathleen Resch PO Box 1766 Temple City, CA 91780 FIRE AND ICE II TABLE OF CONTENTS COVER by Phoenix FRONTISPIECE by Gayle Feyrer "Flashpoint" by Rachel Duncan 1 PEDESTAL by Thomas 2 "A Damn Fine...

Multiple Contributors

1993-01-01T23:59:59.000Z

257

ANNUAL SECURITY & FIRE SAFETY REPORT  

E-Print Network [OSTI]

ANNUAL SECURITY & FIRE SAFETY REPORT 2014 A guide to policies, procedures, practices, and programs implemented to keep students, faculty, and staff safe and facilities secure. www.montana.edu/reports/security.pdf #12;Inside this Report 2014 Annual Security and Fire Safety Report for Reporting Year 2013

Maxwell, Bruce D.

258

HTAR Client Configuration and Installation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of GoldHAWCHIGS

259

Inductrack configuration - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Name LastNewsControlled04948 Site

260

Inductrack configuration - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Name LastNewsControlled04948 Site51

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fire hazards analysis of central waste complex  

SciTech Connect (OSTI)

This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

Irwin, R.M.

1996-05-30T23:59:59.000Z

262

Fire protection guide for solid waste metal drum storage  

SciTech Connect (OSTI)

This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

Bucci, H.M.

1996-09-16T23:59:59.000Z

263

Please cite this article in press as: Linn, R.R., et al., Modeling wind fields and fire propagation following bark beetle outbreaks in spatially-heterogeneous pinyon-juniper woodland fuel complexes. Agric. Forest Meteorol. (2012), http://dx.doi.org/10.101  

E-Print Network [OSTI]

mortality Fire behavior FIRETEC Wind turbulence a b s t r a c t We used a physics-based model, HIGRAD to carry the fire through the discontinuous woodland stands without mortality, but 4.5 m/s winds at 7.5-mPlease cite this article in press as: Linn, R.R., et al., Modeling wind fields and fire propagation

264

Fossil fuels -- future fuels  

SciTech Connect (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

265

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company's Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline as-found'' configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

Not Available

1992-01-01T23:59:59.000Z

266

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 1, Baseline tests  

SciTech Connect (OSTI)

The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company`s Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline ``as-found`` configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

Not Available

1992-01-01T23:59:59.000Z

267

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect (OSTI)

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

268

Manufacturing Fuel Pellets from Biomass Introduction  

E-Print Network [OSTI]

Manufacturing Fuel Pellets from Biomass Introduction Wood pellets have increased tremendously pellet stoves or boilers over traditional wood-fired equipment due to their relative ease of use. As a result, the demand for fuel pellets has also grown quickly. However, wood is not the only suitable

Boyer, Elizabeth W.

269

Discretized configurations and partial partitions  

E-Print Network [OSTI]

We show that the discretized configuration space of $k$ points in the $n$-simplex is homotopy equivalent to a wedge of spheres of dimension $n-k+1$. This space is homeomorphic to the order complex of the poset of ordered partial partitions of $\\{1,\\...,n+1\\}$ with exactly $k$ parts. We also compute the Euler characteristic in two different ways, thereby obtaining a topological proof of a combinatorial recurrence satisfied by the Stirling numbers of the second kind.

Abrams, Aaron; Hower, Valerie

2010-01-01T23:59:59.000Z

270

Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD  

SciTech Connect (OSTI)

This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

Katherine Dombrowski

2009-12-31T23:59:59.000Z

271

Simulated combined abnormal environment fire calculations for aviation impacts.  

SciTech Connect (OSTI)

Aircraft impacts at flight speeds are relevant environments for aircraft safety studies. This type of environment pertains to normal environments such as wildlife impacts and rough landings, but also the abnormal environment that has more recently been evidenced in cases such as the Pentagon and World Trade Center events of September 11, 2001, and the FBI building impact in Austin. For more severe impacts, the environment is combined because it involves not just the structural mechanics, but also the release of the fuel and the subsequent fire. Impacts normally last on the order of milliseconds to seconds, whereas the fire dynamics may last for minutes to hours, or longer. This presents a serious challenge for physical models that employ discrete time stepping to model the dynamics with accuracy. Another challenge is that the capabilities to model the fire and structural impact are seldom found in a common simulation tool. Sandia National Labs maintains two codes under a common architecture that have been used to model the dynamics of aircraft impact and fire scenarios. Only recently have these codes been coupled directly to provide a fire prediction that is better informed on the basis of a detailed structural calculation. To enable this technology, several facilitating models are necessary, as is a methodology for determining and executing the transfer of information from the structural code to the fire code. A methodology has been developed and implemented. Previous test programs at the Sandia National Labs sled track provide unique data for the dynamic response of an aluminum tank of liquid water impacting a barricade at flight speeds. These data are used to validate the modeling effort, and suggest reasonable accuracy for the dispersion of a non-combustible fluid in an impact environment. The capability is also demonstrated with a notional impact of a fuel-filled container at flight speed. Both of these scenarios are used to evaluate numeric approximations, and help provide an understanding of the quantitative accuracy of the modeling methods.

Brown, Alexander L.

2010-08-01T23:59:59.000Z

272

Fire and Ice Issue 3  

E-Print Network [OSTI]

,fpl ^1 FIRE AND ICE Available from: Kathleen Resch PO Box 1766 Temple City,CA 91780 III © May, 1995 by Kathleen Resch for the contributors. No reprints or reproduction without the written permission of the author/artist. This is an amateur... publication and is not intended to infringe upon the rightsof "Blake's 7" copyright holders.. FIRE AND ICE TABLE OF CONTENTS THE GIFT by Pat Terra 1 "innerspace" by Pat Terra 24 WILD, BEAUTIFUL AND DAMNED by Gemini 25 SET THE NIGHT ON FIRE by Riley Cannon 40...

Multiple Contributors

1995-01-01T23:59:59.000Z

273

Calculating Fired Heater Efficiency  

E-Print Network [OSTI]

bills. A review of the Heat Loss and Input/Output methods of efficiency analyses is presented, along with a discussion of their relative accuracy. Examples cited include refinery mixed fuel gas, coal, and chemical recovery fueled applications, using.... 75 percent excess 02 (dry basis) -- a respectable operation. Eva luate boi ler effieiency when burning mixed refinery gas (at an oil refinery), coa1 (at a central power station) and black liquor (at a paper mill). The practical definition of LHV...

Harriz, J. T.; Ritter, E. L.

274

Firing of pulverized solvent refined coal  

DOE Patents [OSTI]

An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

1986-01-01T23:59:59.000Z

275

FIRE SAFETY PROGRAM TABLE OF CONTENTS  

E-Print Network [OSTI]

FIRE SAFETY PROGRAM TABLE OF CONTENTS Overview................................................................................................. 5 Health and Life Safety Fund........................................................................................................... 5 Hot work

Lin, Zhiqun

276

Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia  

E-Print Network [OSTI]

Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia), Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia, J. Geophys. Res., 116, D08207, doi:10.1029/2010JD015148. 1. Introduction [2] Peat and deforestation fires

Zender, Charles

277

Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler  

SciTech Connect (OSTI)

Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1995-12-31T23:59:59.000Z

278

Dimensional regularization in configuration space  

SciTech Connect (OSTI)

Dimensional regularization is introduced in configuration space by Fourier transforming in {nu} dimensions the perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regularized causal functions in {ital x} space have {nu}-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant analytic functions of {nu}. Several examples are discussed. {copyright} {ital 1996 The American Physical Society.}

Bollini, C.G. [Facultad de Ciencias Exactas de La Universidad de La Plata, Departamento de Fisica, C.C. 67 La Plata (Argentina)] [Facultad de Ciencias Exactas de La Universidad de La Plata, Departamento de Fisica, C.C. 67 La Plata (Argentina); [Comision de Investigaciones Cientificas de La Provincia de Buenos Aires, Buenos Aires (Argentina); Giambiagi, J.J. [Centro Brasileiro de Pesquisas Fisicas--CBPF, Rua Dr. Xavier Sigaud, 150, 22.290-180 Rio de Janeiro RJ, (Brasil)] [Centro Brasileiro de Pesquisas Fisicas--CBPF, Rua Dr. Xavier Sigaud, 150, 22.290-180 Rio de Janeiro RJ, (Brasil)

1996-05-01T23:59:59.000Z

279

FED pumped limiter configuration issues  

SciTech Connect (OSTI)

Impurity control in the Fusion Engineering Device (FED) is provided by a toroidal belt pumped limiter. Limiter design issues addressed in this paper are (1) poloidal location of the limiter belt, (2) shape of the limiter surface facing the plasma, and (3) whether the belt is pumped from one or both sides. The criteria used for evaluation of limiter configuration features were sensitivity to plasma-edge conditions and ease of maintenance and fabrication. The evaluation resulted in the selection of a baseline FED limiter that is located at the bottom of the device and has a flat surface with a single leading edge.

Haines, J.R.; Fuller, G.M.

1983-01-01T23:59:59.000Z

280

Multiple forearm robotic elbow configuration  

DOE Patents [OSTI]

A dual forearmed robotic elbow configuration comprises a main arm having a double elbow from which two coplanar forearms depend, two actuators carried in the double elbow for moving the forearms, and separate, independent end effectors, operated by a cable carried from the main arm through the elbow, is attached to the distal end of each forearm. Coiling the cables around the actuators prevents bending or kinking when the forearms are rotated 360 degrees. The end effectors can have similar or different capabilities. Actuator cannisters within the dual elbow are modular for rapid replacement or maintenance. Coarse and fine resolver transducers within the actuators provide accurate position referencing information.

Fisher, John J. (Wilmington, DE)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fire protection for relocatable structures  

SciTech Connect (OSTI)

This standard supersedes DOE/EV-0043, ``Standard on Fire Protection for Portable Structures.`` It was revised to address the numerous types of relocatable structures, such as trailers, tension-supported structures, and tents being used by DOE and contractors.

NONE

1995-06-01T23:59:59.000Z

282

Test Two: The ‘Controlled Fire’   

E-Print Network [OSTI]

The main objective of Test Two was to demonstrate the effectiveness of ventilation changes and smoke management on the growth of a compartment fire and to display the potential for these techniques to be incorporated ...

Cowlard, Adam; Steinhaus, Thomas; Abecassis Empis, Cecilia; Torero, Jose L

2007-11-14T23:59:59.000Z

283

Model Fire Protection Assessment Guide  

Broader source: Energy.gov [DOE]

This Assessment guide covers the implementation of the DOE's responsibility of assuring that DOE and the DOE Contractors have established Fire Protection Programs that are at the level required for the area being assessed.

284

Introduction to FireGrid   

E-Print Network [OSTI]

FireGrid is an ambitious and innovative project, seeking to develop the technology to support a new way of managing emergency response in the modern built environment. Specific novel aspects include the integration of ...

Welch, Stephen; Usmani, Asif; Upadhyay, Rochan; Berry, Dave; Potter, Stephen; Torero, Jose L

2007-11-14T23:59:59.000Z

285

A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992  

SciTech Connect (OSTI)

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

286

Incipient fire detection system  

DOE Patents [OSTI]

A method and apparatus for an incipient fire detection system that receives gaseous samples and measures the light absorption spectrum of the mixture of gases evolving from heated combustibles includes a detector for receiving gaseous samples and subjecting the samples to spectroscopy and determining wavelengths of absorption of the gaseous samples. The wavelengths of absorption of the gaseous samples are compared to predetermined absorption wavelengths. A warning signal is generated whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. The method includes receiving gaseous samples, subjecting the samples to light spectroscopy, determining wavelengths of absorption of the gaseous samples, comparing the wavelengths of absorption of the gaseous samples to predetermined absorption wavelengths and generating a warning signal whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. In an alternate embodiment, the apparatus includes a series of channels fluidically connected to a plurality of remote locations. A pump is connected to the channels for drawing gaseous samples into the channels. A detector is connected to the channels for receiving the drawn gaseous samples and subjecting the samples to spectroscopy. The wavelengths of absorption are determined and compared to predetermined absorption wavelengths is provided. A warning signal is generated whenever the wavelengths correspond.

Brooks, Jr., William K. (Newport News, VA)

1999-01-01T23:59:59.000Z

287

DEVELOPMENT OF OPTIMUM DESIGN CONFIGURATION AND  

E-Print Network [OSTI]

DEVELOPMENT OF OPTIMUM DESIGN CONFIGURATION AND PERFORMANCE FOR VERTICAL AXIS WIND TURBINE Prepared DESIGN CONFIGURATION AND PERFORMANCE FOR VERTICAL AXIS WIND TURBINE EISG AWARDEE Mechanical and Aerospace://www.energy.ca.gov/research/index.html. #12;Page 1 Development Of Optimum Design Configuration And Performance For Vertical Axis Wind Turbine

288

VLA HYBRID CONFIGURATIONS A Critical Look  

E-Print Network [OSTI]

VLA HYBRID CONFIGURATIONS A Critical Look Barry Clark EVLA Memo 180 July 2014 The VLA hybrid weeks (plus the two week hybrid), whereas going directly from one main configuration to another could 4.5%. 2. The time requests in the hybrid configuration are heavily weighted to the galactic center

Groppi, Christopher

289

Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility  

SciTech Connect (OSTI)

The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the facility as constructed and with planned operation at the time of document preparation. Changes in facility planned and actual operation require that the identified fire risks associated with the CVDF be re-evaluated. Consequently, formal documentation and future revision of this FHA may be required.

SINGH, G.

2000-09-06T23:59:59.000Z

290

FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology  

SciTech Connect (OSTI)

The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains {approx}10, self-driven currents of {approx}80%, fusion power {approx}150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm{sup -3} and neutron wall loading from 2-4 MWm{sup -2} which are at the levels expected from the ARIES-RS/AT design studies.

Dale M. Meade

2004-10-21T23:59:59.000Z

291

The radiological impact of the 2000 Hanford Fire (24-Command Fire).  

E-Print Network [OSTI]

??The range fire at the Hanford facility in late June 2000 coupled with the fire at Los Alamos during the same year have raised a… (more)

Henderson, Ashley David

2012-01-01T23:59:59.000Z

292

Conversion of raw carbonaceous fuels  

DOE Patents [OSTI]

Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

Cooper, John F. (Oakland, CA)

2007-08-07T23:59:59.000Z

293

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

294

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

295

Entrepreneurs Fueling Innovation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12,Materials |Review of the HanfordFireHanford

296

An integrated approach to fire penetration seal program management  

SciTech Connect (OSTI)

This paper discusses the utilization of a P.C. based program to facilitate the management of Entergy Operations Arkansas Nuclear One (ANO) fire barrier penetration seal program. The computer program was developed as part of a streamlining process to consolidate all aspects of the ANO Penetration Seal Program under one system. The program tracks historical information related to each seal such as maintenance activities, design modifications and evaluations. The program is integrated with approved penetration seal design details which have been substantiated by full scale fire tests. This control feature is intended to prevent the inadvertent utilization of an unacceptable penetration detail in a field application which may exceed the parameters tested. The system is also capable of controlling the scope of the periodic surveillance of penetration seals by randomly selecting the inspection population and generating associated inspection forms. Inputs to the data base are required throughout the modification and maintenance process to ensure configuration control and maintain accurate data base information. These inputs are verified and procedurally controlled by Fire Protection Engineering (FPE) personnel. The implementation of this system has resulted in significant cost savings and has minimized the allocation of resources necessary to ensure long term program viability.

Rispoli, R.D. [Entergy Operations, Russellville, AR (United States)

1996-07-01T23:59:59.000Z

297

Fire Ants and Their Control.  

E-Print Network [OSTI]

fire ant control usually are labeled only for certain treatment sites. The techniques for applying these products also vary with the treatment sites. Care must be taken to select the best combination of control agents and application methods... in each situation to attain optimum results. The Non-Control Option - Why Consider it? In areas where fire ants are not causing a problem, it may be best not to attempt any control measures. The reason is that a unit area, sue as an acre ofland, ill...

Hamman, Philip J.; Drees, Bastiaan M.; Vinson, S. Bradleigh

1986-01-01T23:59:59.000Z

298

Fire performance of gable frame structures  

E-Print Network [OSTI]

Fire protection engineering and structural engineering are two relevant but separated fields of study. Many experiments conducted by fire protection engineers are under certain ideal boundary conditions, which may not be ...

Qian, Congyi

2013-01-01T23:59:59.000Z

299

Fire and the Design of Buildings   

E-Print Network [OSTI]

Fire is one of the major hazards to life and property in buildings. Regulations in respect of fire safety therefore constitute a major part of every building bylaw. These regulations naturally influence the design of almost every building. Good...

McGuire, J

300

Independent Oversight Review of the Fire Protection Program at...  

Energy Savers [EERE]

(wdata) * System Design Description, Fire Suppression System, Plutonium Facility * Preventive Maintenance Procedures- Plutonium Facility Fire Protection (Various) *...

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

University Fire Marshal's 2014 Annual Fire InspectionTraining  

E-Print Network [OSTI]

of 2000 led to NYS Governor's Task Force on Campus Fire Safety #12;Results of the Governors Task Force inspection of all educational buildings in New York State Enhanced detection/alarms in dorms Install Residential Code Building Code #12;Impacts to Cornell Annual Inspections of all Cornell buildings

Pawlowski, Wojtek

302

Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United States  

E-Print Network [OSTI]

Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United Wildland fires can be an important source of greenhouse gases as well as black carbon emissions that have of climate response to fire emissions compared to other emission sources of GHG, aerosols, and black carbon

303

Metrics for measuring distances in configuration spaces  

SciTech Connect (OSTI)

In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices.

Sadeghi, Ali, E-mail: ali.sadeghi@unibas.ch; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland)] [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Lill, Markus A. [Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907 (United States)] [Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907 (United States)

2013-11-14T23:59:59.000Z

304

Fire Modeling Examples in a Nuclear World  

Broader source: Energy.gov [DOE]

Presenter: Mark Schairer, P.E.,Technical Manager, Fire Protection Engineering Division - Engineering Planning and Management (EPM), Inc.

305

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

306

Fire and the Compartmentation of Buildings   

E-Print Network [OSTI]

No building is free from the threat of fire. A designer, however, can ensure that only limited damage will result if fire breaks out by reducing the over-all fire risk. There are various means at his disposal, but the single design feature...

McGuire, J

307

FIRE AND CLIMATE CHANGE IN CALIFORNIA  

E-Print Network [OSTI]

FIRE AND CLIMATE CHANGE IN CALIFORNIA Changes in the Distribution and Frequency of Fire's California Climate Change Center JULY 2012 CEC5002012026 Prepared for: California Energy Commission to climate change has the potential to induce alteration of future fire activity. This research presents just

308

Spatiotemporal Dynamics of Insect-Fire Interactions  

E-Print Network [OSTI]

Spatiotemporal Dynamics of Insect-Fire Interactions A thesis presented by Heather Joan Lynch Heather Joan Lynch Spatiotemporal Dynamics of Insect-Fire Interactions Abstract Insect outbreaks on the dynamics and composition of forest ecosystems. Although it has long been speculated that forest fires

Moorcroft, Paul R.

309

Engine control system having fuel-based adjustment  

DOE Patents [OSTI]

A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

Willi, Martin L. (Dunlap, IL); Fiveland, Scott B. (Metamora, IL); Montgomery, David T. (Edelstein, IL); Gong, Weidong (Dunlap, IL)

2011-03-15T23:59:59.000Z

310

Results of initial operation of the Jupiter Oxygen Corporation oxy-fuel 15 MWth burner test facility  

SciTech Connect (OSTI)

Jupiter Oxygen Corporation (JOC), in cooperation with the National Energy Technology Laboratory (NETL), constructed a 15 MWth oxy-fuel burner test facility with Integrated Pollutant Removal (IPRTM) to test high flame temperature oxy-fuel combustion and advanced carbon capture. Combustion protocols include baseline air firing with natural gas, oxygen and natural gas firing with and without flue gas recirculation, and oxygen and pulverized coal firing with flue gas recirculation. Testing focuses on characterizing burner performance, determining heat transfer characteristics, optimizing CO2 capture, and maximizing heat recovery, with an emphasis on data traceability to address retrofit of existing boilers by directly transforming burner systems to oxy-fuel firing.

Thomas Ochs, Danylo Oryshchyn, Rigel Woodside, Cathy Summers, Brian Patrick, Dietrich Gross, Mark Schoenfield, Thomas Weber and Dan O'Brien

2009-04-01T23:59:59.000Z

311

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Specific Considerations Fossil Fuel Coal r. a. b. Normalliquid dominated) and fossil-fuel fired (either coal, oil,Specific Cons iderations Fossil Fuel Coal Oil 1. 1. 3. L 1

Nero, A.V.

2010-01-01T23:59:59.000Z

312

Conceptual configurations of an accelerator-driven subcritical system utilizing minor actinides  

SciTech Connect (OSTI)

This paper purposes an Accelerator-Driven Subcritical (ADS) system which utilizes the Minor Actinides (MAs) from the US spent nuclear fuel inventory. A mobile fuel concept with micro-particles suspended in the liquid metal is adopted in the purposed system to avoid difficulties of developing and testing new MAs solid fuel forms. Three ADS configurations were developed and analyzed using the Monte Carlo fuel burnup methodology. The analyses demonstrated the capabilities of the proposed system to utilize the MAs and to dispose of the US spent nuclear fuels. (authors)

Cao, Y.; Gohar, Y. [Nuclear Engineering Div., Argonne National Laboratory, 9700 South Cass Ave., IL 60439 (United States)

2012-07-01T23:59:59.000Z

313

Numerical prediction of heat-flux to massive calorimeters engulfed in regulatory fires with the cask analysis fire environment (CAFE) model  

SciTech Connect (OSTI)

Recent observations show that the thermal boundary conditions within large-scale fires are significantly affected by the presence of thermally massive objects. These objects cool the soot and gas near their surfaces, and these effects reduce the incoming radiant heat-flux to values lower than the levels expected from simple {sigma}T{sub fire}{sup 4} models. They also affect the flow and temperature fields in the fire far from their surfaces. The Cask Analysis Fire Environment (CAFE) code has been developed at Sandia National Laboratories to provide an enhanced fire boundary condition for the design of radioactive material packages. CAFE is a set of computer subroutines that use computational fluid mechanics methods to predict convective heat transfer and mixing. It also includes models for fuel and oxygen transport, chemical reaction, and participating-media radiation heat transfer. This code uses two-dimensional computational models so that it has reasonably short turnaround times on standard workstations and is well suited for design and risk studies. In this paper, CAFE is coupled with a commercial finite-element program to model a large cylindrical calorimeter fully engulfed in a pool fire. The time-dependent heat-flux to the calorimeter and the calorimeter surface temperature are determined for several locations around the calorimeter circumference. The variation of heat-flux with location is determined for calorimeters with different diameters and wall thickness, and the observed effects discussed.

KOSKI,JORMAN A.; SUO-ANTITLA,AHTI; KRAMER,M. ALEX; GREINER,MILES

2000-05-11T23:59:59.000Z

314

Configurations for short period rf undulators  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Several configurations for rf undulators energized at millimeter wavelengths and designed to produce coherent nanometer radiation from sub-GeV electron beams are analyzed and compared with one another. These configurations include a traveling-wave resonant ring, a standing wave resonator, and a resonator operating close to cutoff.

Kuzikov, S. V.; Jiang, Y.; Marshall, T. C.; Sotnikov, G. V.; Hirshfield, J. L.

2013-07-01T23:59:59.000Z

315

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015 7:00FuelFuelFuel

316

V-036: EMC Smarts Network Configuration Manager Database Authenticatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

36: EMC Smarts Network Configuration Manager Database Authentication Bypass Vulnerability V-036: EMC Smarts Network Configuration Manager Database Authentication Bypass...

317

Pigments which reflect infrared radiation from fire  

DOE Patents [OSTI]

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

Berdahl, P.H.

1998-09-22T23:59:59.000Z

318

Pigments which reflect infrared radiation from fire  

DOE Patents [OSTI]

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

Berdahl, Paul H. (Oakland, CA)

1998-01-01T23:59:59.000Z

319

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

SciTech Connect (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

Richard C. Logan

2002-03-28T23:59:59.000Z

320

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

SciTech Connect (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

J. L. Kubicek

2001-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Evolution of the Configuration Database Design  

SciTech Connect (OSTI)

The BABAR experiment at SLAC successfully collects physics data since 1999. One of the major parts of its on-line system is the configuration database which provides other parts of the system with the configuration data necessary for data taking. Originally the configuration database was implemented in the Objectivity/DB ODBMS. Recently BABAR performed a successful migration of its event store from Objectivity/DB to ROOT and this prompted a complete phase-out of the Objectivity/DB in all other BABAR databases. It required the complete redesign of the configuration database to hide any implementation details and to support multiple storage technologies. In this paper we describe the process of the migration of the configuration database, its new design, implementation strategy and details.

Salnikov, A

2006-04-19T23:59:59.000Z

322

Radiant, convective and heat release characterization of vegetation fire Frdric Morandini*, Yolanda Perez-Ramirez, Virginie Tihay, Paul-Antoine Santoni, Toussaint  

E-Print Network [OSTI]

of the fire and the involved combustion processes. The heat released during fire spread cannot be a to assess this quantity were also tested. Combustion efficiency and effective heat of combustion were mixpc , Specific heat of the mixture d Duct diameter (0.4 m) E Heat of combustion F view factor h Fuel

Paris-Sud XI, Université de

323

Development and testing of a commercial-scale coal-fired combustion system, Phase 3  

SciTech Connect (OSTI)

Within the commercial sector, oil and natural gas are the predominant fuels used to meet the space-heating needs of schools, office buildings, apartment complexes, and other similar structures. In general, these buildings require firing rates of 1 to 10 million Btu/hr. The objective of this program is to demonstrate the technical and economic viability of a coal-fired combustion system for this sector. The commercial-scale coal-water slurry (CWS)-fired space heating system will be a scale-up of a CWS-fired residential warm-air heating system developed by Tecogen under contract to the Department of Energy, Pittsburgh Energy Technology Center. This system included a patented nonslagging combustor known as IRIS, for Inertial Reactor with Internal Separation. This combustion technology, which has demonstrated high combustion efficiency using CWS fuels at input rates of 100,000 Btu/hr, will be scaled to operate at 2 to 5 millon Btu/hr. Along with the necessary fuel storage and delivery, heat recovery, and control equipment, the system will include pollution control devices to meet targeted values of NO{sub x}, S0{sub 2}, and particulate emissions. In general, the system will be designed to match the reliability, safety, turndown, and ignition performance of gas or oil-fired systems.

Litka, A.F.; Breault, R.W.

1991-10-01T23:59:59.000Z

324

Fire protection program fiscal year 1997 site support program plan - Hanford fire department  

SciTech Connect (OSTI)

The mission of the Hanford Fires Department (HFD) is to support the safe and timely cleanup of the Hanford Site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. this includes response to surrounding fire department districts under mutual aids agreements and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site. the fire department also provides site fire marshal overview authority, fire system testing, and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention and education.

Good, D.E., Westinghouse Hanford

1996-07-01T23:59:59.000Z

325

Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2  

SciTech Connect (OSTI)

The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline.

Good, D.E.

1995-09-01T23:59:59.000Z

326

Fire protection program fiscal year 1995 site support program plan, Hanford Fire Department  

SciTech Connect (OSTI)

The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report describes the specific responsibilities and programs that the HFD must support and the estimated cost of this support for FY1995.

Good, D.E.

1994-09-01T23:59:59.000Z

327

Iowa State Fire Marshall Amendment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota1 CleanbuttonbuttonWeb site and

328

DOE Standard: Fire protection design criteria  

SciTech Connect (OSTI)

The development of this Standard reflects the fact that national consensus standards and other design criteria do not comprehensively or, in some cases, adequately address fire protection issues at DOE facilities. This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, National Fire Protection Association (NFPA) Codes and Standards, and any other applicable DOE construction criteria. This Standard replaces certain mandatory fire protection requirements that were formerly in DOE 5480.7A, ``Fire Protection``, and DOE 6430.1A, ``General Design Criteria``. It also contains the fire protection guidelines from two (now canceled) draft standards: ``Glove Box Fire Protection`` and ``Filter Plenum Fire Protection``. (Note: This Standard does not supersede the requirements of DOE 5480.7A and DOE 6430.1A where these DOE Orders are currently applicable under existing contracts.) This Standard, along with the criteria delineated in Section 3, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

Not Available

1999-07-01T23:59:59.000Z

329

Electrical modeling of semiconductor bridge (SCB) BNCP detonators with electrochemical capacitor firing sets  

SciTech Connect (OSTI)

In this paper the authors describe computer models that simulate the electrical characteristics and hence, the firing characteristics and performance of a semiconductor bridge (SCB) detonator for the initiation of BNCP [tetraammine-cis-bis (5-nitro-2H-tetrazolato-N{sup 2}) cobalt(III) perchlorate]. The electrical data and resultant models provide new insights into the fundamental behavior of SCB detonators, particularly with respect to the initiation mechanism and the interaction of the explosive powder with the SCB. One model developed, the Thermal Feedback Model, considers the total energy budget for the system, including the time evolution of the energy delivered to the powder by the electrical circuit, as well as that released by the ignition and subsequent chemical reaction of the powder. The authors also present data obtained using a new low-voltage firing set which employed an advanced electrochemical capacitor having a nominal capacitance of 350,000 {micro}F at 9 V, the maximum voltage rating for this particular device. A model for this firing set and detonator was developed by making measurements of the intrinsic capacitance and equivalent series resistance (ESR < 10 m{Omega}) of a single device. This model was then used to predict the behavior of BNCP SCB detonators fired alone, as well as in a multishot, parallel-string configuration using a firing set composed of either a single 9 V electrochemical capacitor or two of the capacitors wired in series and charged to 18 V.

Marx, K.D. [Sandia National Labs., Livermore, CA (United States); Ingersoll, D.; Bickes, R.W. Jr. [Sandia National Labs., Albuquerque, NM (United States)

1998-11-01T23:59:59.000Z

330

Climate Change Fuel Cell Program  

SciTech Connect (OSTI)

A 200 kW, natural gas fired fuel cell was installed at the Richard Stockton College of New Jersey. The purpose of this project was to demonstrate the financial and operational suitability of retrofit fuel cell technology at a medium sized college. Target audience was design professionals and the wider community, with emphasis on use in higher education. ''Waste'' heat from the fuel cell was utilized to supplement boiler operations and provide domestic hot water. Instrumentation was installed in order to measure the effectiveness of heat utilization. It was determined that 26% of the available heat was captured during the first year of operation. The economics of the fuel cell is highly dependent on the prices of electricity and natural gas. Considering only fuel consumed and energy produced (adjusted for boiler efficiency), the fuel cell saved $54,000 in its first year of operation. However, taking into account the price of maintenance and the cost of financing over the short five-year life span, the fuel cell operated at a loss, despite generous subsidies. As an educational tool and market stimulus, the fuel cell attracted considerable attention, both from design professionals and the general public.

Alice M. Gitchell

2006-09-15T23:59:59.000Z

331

Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control  

SciTech Connect (OSTI)

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology advancements offer significant reductions in power requirements, which would improve plant efficiency and economics for the oxygen-fired technology. The second phase consisted of pilot-scale testing followed by a refined performance and economic evaluation of the O{sub 2} fired CFB concept. As a part of this workscope, ALSTOM modified its 3 MW{sub th} (9.9 MMBtu/hr) Multiuse Test Facility (MTF) pilot plant to operate with O{sub 2}/CO{sub 2} mixtures of up to 70 percent O{sub 2} by volume. Tests were conducted with coal and petroleum coke. The test objectives were to determine the impacts of oxygen firing on heat transfer, bed dynamics, potential agglomeration, and gaseous and particulate emissions. The test data results were used to refine the design, performance, costs, and economic models developed in Phase-I for the O{sub 2}-fired CFB with CO{sub 2} capture. Nsakala, Liljedahl, and Turek reported results from this study in 2004. ALSTOM identified several items needing further investigation in preparation for large scale demonstration of the oxygen-fired CFB concept, namely: (1) Operation and performance of the moving bed heat exchanger (MBHE) to avoid recarbonation and also for cost savings compared to the standard bubbling fluid bed heat exchanger (FBHE); (2) Performance of the back-end flash dryer absorber (FDA) for sulfur capture under high CO{sub 2}/high moisture flue gas environment using calcined limestone in the fly ash and using fresh commercial lime directly in the FDA; (3) Determination of the effect of recarbonation on fouling in the convective pass; (4) Assessment of the impact of oxygen firing on the mercury, other trace elements, and volatile organic compound (VOC) emissions; and (5) Develop a proposal-level oxygen-fired retrofit design for a relatively small existing CFB steam power plant in preparation for a large-scale demonstration of the O{sub 2} fired CFB concept. Hence, ALSTOM responded to a DOE Solicitation to address all these issues with further O{sub 2} fired MTF pilot testing and a subsequent retrofit design study of oxygen firing and CO{s

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2007-03-31T23:59:59.000Z

332

Synthetic Fuel  

ScienceCinema (OSTI)

Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

2010-01-08T23:59:59.000Z

333

Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility  

SciTech Connect (OSTI)

The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the generation of high-fidelity data from a turbulent oxy-coal flame for the validation of oxy-coal simulation models. Experiments were also conducted on the OFC to determine heat flux profiles using advanced strategies for O2 injection. This is important when considering retrofit of advanced O2 injection in retrofit configurations.

Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.

2014-08-01T23:59:59.000Z

334

Fuel Economy  

Broader source: Energy.gov [DOE]

The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

335

A configuration system for Siemens Airlink  

E-Print Network [OSTI]

A configuration system for Siemens Airlink Søren Løvborg Abstract Siemens Airlink is a railway for context-free grammars . . . . . . . . 41 4.7 Parse tree transforms

336

Gas-Fired Reciprocating Engines  

Broader source: Energy.gov [DOE]

The reciprocating, or piston-driven, engine is a widespread and well-known technology. Also called internal combustion engines, reciprocating engines require fuel, air, compression, and a combustion source to function. Depending on the ignition source, they generally fall into two categories: (1) spark-ignited engines, typically fueled by gasoline or natural gas, and (2) compression-ignited engines, typically fueled by diesel oil fuel.

337

Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.  

SciTech Connect (OSTI)

The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

NONE

2005-07-01T23:59:59.000Z

338

Cognitive abilities as influenced by family configuration  

E-Print Network [OSTI]

COGNITIVE ABILITIES AS INFLUENCED BY FAMILY CONFIGURATION A Thesis by Jani ce Leanne Pate Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1979... Major Subject; Psychology COGNITIVE ABILITIES AS INFLUENCED BY FAMILY CONFIGURATION A Thesis by Jani ce Leanne Pate Approved as to style and content by: Chairman of Committee ( y' ~ ' l~ ~ J Hember / Nember (Head of Department) August 1979...

Pate, Janice Leanne

2012-06-07T23:59:59.000Z

339

FIRE, A Next Step Option for Magnetic Fusion  

SciTech Connect (OSTI)

The next major frontier in magnetic fusion physics is to explore and understand the strong nonlinear coupling among confinement, MHD stability, self-heating, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. The Fusion Ignition Research Experiment (FIRE) Design Study has been undertaken to define the lowest cost facility to attain, explore, understand, and optimize magnetically confined fusion-dominated plasmas. The FIRE is envisioned as an extension of the existing Advanced Tokamak Program that could lead to an attractive magnetic fusion reactor. The FIRE activities have focused on the physics and engineering assessment of a compact, high-field tokamak with the capability of achieving Q approximately equal to 10 in the ELMy H-mode for a duration of about 1.5 plasma current redistribution times (skin times) during an initial burning-plasma science phase, and the flexibility to add Advanced Tokamak hardware (e.g., lower-hybrid current drive) later. The configuration chosen for FIRE is similar to that of ARIES-RS, the U.S. Fusion Power Plant study utilizing an Advanced Tokamak reactor. The key ''Advanced Tokamak'' features are: strong plasma shaping, double-null pumping divertors, low toroidal field ripple (<0.3%), internal control coils, and space for wall stabilization capabilities. The reference design point is R subscript ''o'' = 2.14 m, a = 0.595 m, B subscript ''t''(R subscript ''o'') = 10 T, I subscript ''p'' = 7.7 MA with a flattop time of 20 s for 150 MW of fusion power. The baseline magnetic fields and pulse lengths can be provided by wedged BeCu/OFHC toroidal-field (TF) coils and OFHC poloidal-field (PF) coils that are pre-cooled to 80 K prior to the pulse and allowed to warm up to 373 K at the end of the pulse. A longer-term goal of FIRE is to explore Advanced Tokamak regimes sustained by noninductive current drive (e.g., lower-hybrid current drive) at high fusion gain (Q > 5) for a duration of 1 to 3 current redistribution times.

Meade, D.M.

2002-09-12T23:59:59.000Z

340

Measurement and analysis of heating of paper with gas-fired infrared burner  

E-Print Network [OSTI]

. Gas-fired IR heaters produce combustion on the burner surface by ignition of a pre-mixed air and fuel streams. The combustion raises the surface temperature to ranges of 800-1,100°C to emit radiation, mainly in the medium IR range, which has a...

Husain, Abdullah Nadir

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Evaluation of air toxic emissions from advanced and conventional coal-fired power plants  

SciTech Connect (OSTI)

This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

Chu, P.; Epstein, M. [Electric Power Research Institute, Palo Alto, CA (United States); Gould, L. [Department of Energy, Pittsburgh, PA (United States); Botros, P. [Department of Energy, Morgantown, WV (United States)

1995-12-31T23:59:59.000Z

342

The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration  

E-Print Network [OSTI]

This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas...

Boyce, M. P.; Meher-Homji, C.; Ford, D.

1981-01-01T23:59:59.000Z

343

Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier  

SciTech Connect (OSTI)

Wildfire is a frequent perturbation in shrub steppe ecosystems, altering the flora, fauna, atmosphere, and soil of these systems. Research on the fire effects has focused mostly on natural ecosystems with essentially no attention on engineered systems like surface barriers. The scope of the project is to use a simulated wildfire to induce changes in an engineered surface barrier and document the effects on barrier performance. The main objective is to quantify the effects of burning and the resulting post-fire conditions on alterations in soil physical properties; hydrologic response, particularly the water balance; geochemical properties; and biological properties. A secondary objective is to use the lessons learned to maximize fire protection in the design of long-term monitoring systems based on electronic sensors. A simulated wildfire will be initiated, controlled and monitored at the 200-BP-1 barrier in collaboration with the Hanford Fire Department during the fall of 2008. The north half of the barrier will be divided into nine 12 x 12 m plots, each of which will be randomly assigned a fuel load of 2 kg m-2 or 4 kg m-2. Each plot will be ignited around the perimeter and flames allowed to carry to the centre. Any remaining unburned vegetation will be manually burned off using a drip torch. Progress of the fire and its effects will be monitored using point measurements of thermal, hydrologic, and biotic variables. Three measures of fire intensity will be used to characterize fire behavior: (1) flame height, (2) the maximum temperature at three vertical profile levels, and (3) total duration of elevated temperature at these levels. Pre-burn plant information, including species diversity, plant height, and canopy diameter will be measured on shrubs from the plots to be burned and from control plots at the McGee ranch. General assessments of shrub survival, recovery, and recruitment will be made after the fire. Near-surface soil samples will be collected pre- and post-burn to determine changes in the gravel content of the surface layer so as to quantify inflationary or deflationary responses to fire and to reveal the ability of the surface to resist post-fire erosive stresses. Measures of bulk density, water repellency, water retention, and hydraulic conductivity will be used to characterize changes in infiltration rates and water storage capacity following the fire. Samples will also be analyzed to quantify geochemical changes including changes in soil pH, cation exchange capacity, specific surface area, and the concentration of macro nutrients (e.g. N, P, K) and other elements such as Na, Mg, Ca, that are critical to the post-fire recovery revegetation. Soil CO2 emissions will be measured monthly for one year following the burn to document post-fire stimulation of carbon turnover and soil biogenic emissions. Surface and subsurface temperature measurements at and near monitoring installations will be used to document fire effects on electronic equipment. The results of this study will be used to bridge the gaps in knowledge on the effects of fire on engineered ecosystems (e.g. surface barriers), particularly the hydrologic and biotic characteristics that govern the water and energy balance. These results will also support the development of practical fire management techniques for barriers that are compatible with wildfire suppression strategies. Furthermore, lessons learned will be use to develop installation strategies needed to protect electronic monitoring equipment from the intense heat of fire and the potential damaging effects of smoke and fire extinguishing agents. Such information is needed to better understand long-term barrier performance under extreme conditions, especially if site maintenance and operational funding is lost for activities such as barrier revegetation.

Ward, Anderson L.; Berlin, Gregory T.; Cammann, Jerry W.; Leary, Kevin D.; Link, Steven O.

2008-09-29T23:59:59.000Z

344

Software Configuration Management Plan | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOEEnergy Smooth Brome Monitoring

345

Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility  

SciTech Connect (OSTI)

This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

JOHNSON, B.H.

1999-08-19T23:59:59.000Z

346

Alternative approach for fire suppression of class A, B and C fires in gloveboxes  

SciTech Connect (OSTI)

Department of Energy (DOE) Orders and National Fire Protection Association (NFPA) Codes and Standards require fire suppression in gloveboxes. Several potential solutions have been and are currently being considered at Los Alamos National Laboratory (LANL). The objective is to provide reliable, minimally invasive, and seismically robust fire suppression capable of extinguishing Class A, B, and C fires; achieve compliance with DOE and NFPA requirements; and provide value-added improvements to fire safety in gloveboxes. This report provides a brief summary of current approaches and also documents the successful fire tests conducted to prove that one approach, specifically Fire Foe{trademark} tubes, is capable of achieving the requirement to provide reliable fire protection in gloveboxes in a cost-effective manner.

Rosenberger, Mark S [Los Alamos National Laboratory; Tsiagkouris, James A [Los Alamos National Laboratory

2011-02-10T23:59:59.000Z

347

Transportation Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-TransmissionLaboratoryFuels

348

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing | ArgonnechallengingFryFuel

349

Fire Protection Account Request Form  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO| Department ofNOTFire

350

Fire Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual Data LessonType.Countries |Project

351

Gas cofiring in coal-fired stokers for emissions reduction and performance improvement  

SciTech Connect (OSTI)

Adding gas burners above the grate of a coal-fired stoker can be an economical method of reducing gaseous and particulate emissions and improving efficiency and operational flexibility. With this cofiring configuration, the improved heat distribution and mixing with the stoker combustion products can give reduced opacity, reduced emissions of particulate, NO{sub x} and SO{sub 2}, improved carbon burnout and lower overall ash, reduced excess air, faster load response, cleaner and quicker lightoffs, improved turndown at both lower and upper capacity limits, and improved performance with problematic coals. To develop and validate the cofiring technology, three cofire field experiments have been conducted. A 165,000 lb/hr spreader stoker and mass feed chain grate stokers rated at 40,000 and 75,000 lb/hr have been retrofit with gas burners and tested in the field. The two larger units used dual, opposed burners, while the smaller unit was retrofit with a single burner. With the spreader stoker, the primary benefits of gas cofire was reduction in opacity episodes with coal quality variability and recovery of lost derate. With the larger chain grate unit, the primary benefit was reduction of NO{sub x} and SO{sub 2} to within Title V limits and elimination of opacity episodes during startup and load swings. With the smaller chain grate, the primary benefit was ability to operate at low loads without unacceptable opacity excursions which had previously required a backup boiler. In all cases, the economics justified the capital burner system retrofit cost and incremental fuel costs.

Mason, H.B.; Drennan, S.; Chan, I.; Kinney, W.L.; Borland, D.

1996-12-31T23:59:59.000Z

352

Not So Permafrost Under Fire Viewport for Nuclear Fusion Hassle-Free Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddyof H-2 andNot So Permafrost Under Fire

353

Exxon Chemical's Coal-Fired Combined Cycle Power Technology  

E-Print Network [OSTI]

turbine arrangement with indirect heating of the air in the boile; convection section. The turbine exhaust is then used as pre-heated combustion air for the boiler. The air coil heats the 150 psig air from the standard gas turbine axial compressor... premium fuel (up to 2000 0 F permissible gas turbine tempera ture), CAT-PAC savings would double to 20%. Today, in an industrial coal-fired cogeneration plant, CAT-PAC can produce up to 75% more power for a given steam load, while maintaining...

Guide, J. J.

354

Cryogenic slurry for extinguishing underground fires  

DOE Patents [OSTI]

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

355

Issues in Numerical Simulation of Fire Suppression  

SciTech Connect (OSTI)

This paper outlines general physical and computational issues associated with performing numerical simulation of fire suppression. Fire suppression encompasses a broad range of chemistry and physics over a large range of time and length scales. The authors discuss the dominant physical/chemical processes important to fire suppression that must be captured by a fire suppression model to be of engineering usefulness. First-principles solutions are not possible due to computational limitations, even with the new generation of tera-flop computers. A basic strategy combining computational fluid dynamics (CFD) simulation techniques with sub-grid model approximations for processes that have length scales unresolvable by gridding is presented.

Tieszen, S.R.; Lopez, A.R.

1999-04-12T23:59:59.000Z

356

LNG fire and vapor control system technologies  

SciTech Connect (OSTI)

This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

1982-06-01T23:59:59.000Z

357

Flame quality monitor system for fixed firing rate oil burners  

DOE Patents [OSTI]

A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

Butcher, Thomas A. (Pt. Jefferson, NY); Cerniglia, Philip (Moriches, NY)

1992-01-01T23:59:59.000Z

358

No material is "fire proof;" however, proper use and assembly of fire-rated building materials  

E-Print Network [OSTI]

General No material is "fire proof;" however, proper use and assembly of fire-rated building materials can reduce a fire's spread and extend the amount of time it takes for a home to ignite and burn. (Structural assembly is the process of layering materials when building exterior walls and roof.) Your roof

359

Activate the nearest fire alarm pull station Call 911 to report the fire  

E-Print Network [OSTI]

as designated by emergency responders, well away from the building. Do not touch or disturb the objectActivate the nearest fire alarm pull station Call 911 to report the fire Notify and assist people not re-enter the building until authorized to do so by emergency personnel. When the fire alarm

Azevedo, Ricardo

360

(BSET) FIRE SAFETY ENGINEERING TECHNOLOGY CURRICULUM FOUR YEAR FIRE SAFETY CONCENTRATION CURRICULUM  

E-Print Network [OSTI]

. ETFS 4323 3 Intro to Performance-based Fire Safety8 ETFS 32338 3 Ethical Issues and Cultural Critique3(BSET) FIRE SAFETY ENGINEERING TECHNOLOGY CURRICULUM FOUR YEAR FIRE SAFETY CONCENTRATION CURRICULUM 3 Technical Drawing I ETGR 1103 2 Western Culture and Hist. Awareness LBST 2101 3 Total Hours 16

Raja, Anita

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Test burning of tire-derived fuel in solid fuel combustors  

SciTech Connect (OSTI)

This study was commissioned to determine the overall viability of utilizing scrap tire chips, known as tire-derived fuel (TDF), as a supplemental fuel in conventional coal-fired boilers. The study involved actual tests at Monsanto Company`s W.G. Krummrich Plant in Sauget, Illinois, as well as general extrapolations as to the feasibility of using TDF at other sites. This report will show that TDF can be an excellent supplemental fuel supply, providing a cost-effective fuel source while helping to alleviate the dilemma of scrap tire disposal.

Dennis, D.C. [Monsanto Copany, Sauget, IL (United States)

1994-12-31T23:59:59.000Z

362

State of Michigan Bulletin Regarding E85 Fuel Dispensers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota1A2: ManufacturerState Fire

363

http://www.cityofnorthlasvegas.com/departments/fire/fire.shtm  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA ReviewManual 8400 -EconomicSearch I

364

Coal-fired high performance power generating system. Final report  

SciTech Connect (OSTI)

As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

NONE

1995-08-31T23:59:59.000Z

365

Climate regulation of fire emissions and deforestation in equatorial Asia  

E-Print Network [OSTI]

different types of fire, with peat fires emitting up to fourof carbon released from peat and forest fires in IndonesiaM, Wo¨sten H, Page S (2006) PEAT-CO2: assessment of CO2

2008-01-01T23:59:59.000Z

366

Real-time fire detection in low quality video  

E-Print Network [OSTI]

Motivation for a Robust Video-based Fire Detection SystemFigure 3.1: Screen shots of training videos with fire inshots of training videos with no fire in them. . . . . . .

True, Nicholas James

2010-01-01T23:59:59.000Z

367

The Influence of Travelling Fires on a Concrete Frame   

E-Print Network [OSTI]

. Current structural fire design methods do not account for these types of fires. This paper applies a novel methodology for defining a family of possible heating regimes to a framed concrete structure using the concept of travelling fires. A finite...

Law, Angus; Stern-Gottfried, Jamie; Gillie, Martin; Rein, Guillermo

2011-01-01T23:59:59.000Z

368

Low NOx nozzle tip for a pulverized solid fuel furnace  

DOE Patents [OSTI]

A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

2014-04-22T23:59:59.000Z

369

Biodiesel Fuel  

E-Print Network [OSTI]

publication 442-880 There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel. ASTM standard for biodiesel (ASTM D6751) Biodiesel fuel, hereafter referred to as simply biodiesel,

unknown authors

370

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015

371

Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel  

SciTech Connect (OSTI)

Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., <40 years). Extended storage (ES) time and irradiation of nuclear fuel to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k{sub eff}. Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

Marshall, William BJ J [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

372

Report Wildland Fire Area Hazard  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories » Removing nuclear waste,ReportReport Wildland

373

Your Home Fire Safety Checklist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoung Inventor Shares HisFA-250F

374

Hanford Fire Department - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulf of MexicoDidYouKnow

375

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal  

E-Print Network [OSTI]

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal Gordon R. Holcomb · Joseph Tylczak the nature of coal ash deposits. Wigley and Goh [1] reported that particles in oxy-fired deposits, compared

Laughlin, David E.

376

Live Fire Range Environmental Assessment  

SciTech Connect (OSTI)

The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

None

1993-08-01T23:59:59.000Z

377

E-Print Network 3.0 - afc-1 fuel rodlet Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Na rodlets. The reflector is made of Na and stainless steel (SS... in critical or subcritical configuration by changing the number of fuel assemblies. The core central zone......

378

Inverse Modelling to Forecast Enclosure Fire Dynamics   

E-Print Network [OSTI]

. This thesis proposes and studies a method to use measurements of the real event in order to steer and accelerate fire simulations. This technology aims at providing forecasts of the fire development with a positive lead time, i.e. the forecast of future events...

Jahn, Wolfram

379

Managing Imported Fire Ants in Urban Areas  

E-Print Network [OSTI]

The imported fire ant is found in much of Texas and across the southeastern U.S. This publication describes options for managing the pest in specific locations such as home lawns, gardens and buildings. Other topics include fire ant treatment...

Drees, Bastiaan M.

2006-08-17T23:59:59.000Z

380

Diagnostics for FIRE Kenneth M. Young  

E-Print Network [OSTI]

Diagnostics for FIRE Kenneth M. Young Princeton Plasma Physics Laboratory Burning Plasma Workshop May 1 - 3, 2001 General Atomics San Diego, CA #12;Aspects of Plasma Diagnostics to achieve Burning Plasma Physics Goals in FIRE · The diagnostic set should provide the same quality of data as in best

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Diagnostics for FIRE Kenneth M. Young  

E-Print Network [OSTI]

Diagnostics for FIRE Kenneth M. Young Princeton Plasma Physics Laboratory NSO PAC 2 Meeting January 17, 2001 MIT Plasma Fusion Center Cambridge, MA #12;Aspects of Plasma Diagnostics to achieve Burning Plasma Physics Goals in FIRE · The diagnostic set should provide the same quality of data as in best

382

Risk assessment compatible fire models (RACFMs)  

SciTech Connect (OSTI)

A suite of Probabilistic Risk Assessment Compatible Fire Models (RACFMs) has been developed to represent the hazard posed by a pool fire to weapon systems transported on the B52-H aircraft. These models represent both stand-off (i.e., the weapon system is outside of the flame zone but exposed to the radiant heat load from fire) and fully-engulfing scenarios (i.e., the object is fully covered by flames). The approach taken in developing the RACFMs for both scenarios was to consolidate, reconcile, and apply data and knowledge from all available resources including: data and correlations from the literature, data from an extensive full-scale fire test program at the Naval Air Warfare Center (NAWC) at China Lake, and results from a fire field model (VULCAN). In the past, a single, effective temperature, T{sub f}, was used to represent the fire. The heat flux to an object exposed to a fire was estimated using the relationship for black body radiation, {sigma}T{sub f}{sup 4}. Significant improvements have been made by employing the present approach which accounts for the presence of temperature distributions in fully-engulfing fires, and uses best available correlations to estimate heat fluxes in stand-off scenarios.

Lopez, A.R.; Gritzo, L.A.; Sherman, M.P.

1998-07-01T23:59:59.000Z

383

Research Overview Department of Fire Protection Engineering  

E-Print Network [OSTI]

J.A. Milke structures, detection, egress S.I. Stoliarov pyrolysis, flammability, fire growth P spray interactions with fire plumes (kinematic), flame sheets (cooling and dilution), and flame: Detailed Experiments and Model Development for Thrust Chamber Film Cooling Sponsor: NASA Marshall

Shapiro, Benjamin

384

Carbon Dioxide Capture from Coal-Fired  

E-Print Network [OSTI]

. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologiesCarbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005 environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

385

GREAT PLAINS INTERSTATE FOREST FIRE COOPERATIVE  

E-Print Network [OSTI]

GREAT PLAINS INTERSTATE FOREST FIRE COMPACT COOPERATIVE ANNUAL OPERATING PLAN 2011 #12;Great Plains are located in Appendices F through K. II. Purpose This cooperative operating plan facilitates assistance ordered through the Compact and used on joint US Federal/State fires will be considered agents

386

Fire Department Gets New Trucks, Saves Money  

Broader source: Energy.gov [DOE]

RICHLAND, Wash. – Last year, the Hanford Fire Department (HFD) set out to replace its aging chemical truck used for metal fires. Originally purchased to respond to potential incidents at the Fast Flux Test Facility, the 31-year-old vehicle was at the end of its lifecycle.

387

Fire and explosion hazards of oil shale  

SciTech Connect (OSTI)

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

Not Available

1989-01-01T23:59:59.000Z

388

Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work...  

Broader source: Energy.gov (indexed) [DOE]

Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control is Not Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control...

389

Microsoft Word - 2010 LASO Fire Protection Oversight at LANL  

Broader source: Energy.gov (indexed) [DOE]

of the fire flow test method and associated equipment to validate the accuracy of Hydro Flow Products pitotless nozzle for use by the Los Alamos Fire Department. This...

390

analysis fire simulation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

16 Brookhaven National Laboratory LIGHT SOURCES DIRECTORATE Subject: Building 725 Fire Hazard AnalysisFire Hazard Assessment Physics Websites Summary: Brookhaven National...

391

CRAD, Fire Protection - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor February 2006 A section of...

392

assess fire hazard: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandra 7 Fire Climbing in the Forest: A Semiqualitative, Semiquantitative Approach to Assessing Ladder Environmental Sciences and Ecology Websites Summary: Fire Climbing in the...

393

Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility  

E-Print Network [OSTI]

The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cite...

Singh, G

2000-01-01T23:59:59.000Z

394

Critical configurations of planar robot arms  

E-Print Network [OSTI]

It is known that a closed polygon P is a critical point of the oriented area function if and only if P is a cyclic polygon, that is, $P$ can be inscribed in a circle. Moreover, there is a short formula for the Morse index. Going further in this direction, we extend these results to the case of open polygonal chains, or robot arms. We introduce the notion of the oriented area for an open polygonal chain, prove that critical points are exactly the cyclic configurations with antipodal endpoints and derive a formula for the Morse index of a critical configuration.

Khimshiashvili, G; Siersma, D; Zhukova, A

2012-01-01T23:59:59.000Z

395

Configuration Interactions Constrained by Energy Density Functionals  

E-Print Network [OSTI]

A new method for constructing a Hamiltonian for configuration interaction calculations with constraints to energies of spherical configurations obtained with energy-density-functional (EDF) methods is presented. This results in a unified model that reproduced the EDF binding-energy in the limit of single-Slater determinants, but can also be used for obtaining energy spectra and correlation energies with renormalized nucleon-nucleon interactions. The three-body and/or density-dependent terms that are necessary for good nuclear saturation properties are contained in the EDF. Applications to binding energies and spectra of nuclei in the region above 208Pb are given.

B. Alex Brown; Angelo Signoracci; Morten Hjorth-Jensen

2010-09-24T23:59:59.000Z

396

Repository Subsurface Preliminary Fire Hazard Analysis  

SciTech Connect (OSTI)

This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

Richard C. Logan

2001-07-30T23:59:59.000Z

397

Inductrack magnet configuration - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningto FuelIndependentProcedures29,503 Site33,217

398

Inductrack magnet configuration - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningto FuelIndependentProcedures29,503

399

Vertical Electrical Sounding Configurations | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, UtahResources/Full Version <Vertex

400

CONFIGURATION CHANGE PROPOSAL FORM | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins in Illinois CO2 InjectionU SCONFIGURATION

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Property:Mooring Configuration | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY JumpThisModification date Jump to:

402

Electrical Profiling Configurations | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soils and Rocks Jump to: navigation,

403

V-120: EMC Smarts Network Configuration Manager Java RMI Access...  

Broader source: Energy.gov (indexed) [DOE]

0: EMC Smarts Network Configuration Manager Java RMI Access Control Flaw Lets Remote Users Gain Full Control V-120: EMC Smarts Network Configuration Manager Java RMI Access Control...

404

V-235: Cisco Mobility Services Engine Configuration Error Lets...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: Cisco Mobility Services Engine Configuration Error Lets Remote Users Login Anonymously V-235: Cisco Mobility Services Engine Configuration Error Lets Remote Users Login...

405

chApter 1. Introduction to Synthesis of Current Science 1 Regarding Cumulative Watershed Effects of Fuel  

E-Print Network [OSTI]

Watershed Effects of Fuel Reduction Treatments Douglas F. Ryan chApter 2. Fire Regimes and Ecoregions 7 Robert G. Bailey chApter 3. Fuel Management in Forests of the Inland West 19 Russell T. Graham, Theresa B. Jain, Susan Matthews chApter 4. Tools for Fuel Management 69 Bob Rummer chApter 5. Fuel Management

406

Southern thailand coal fired project: Feasibility study. Export trade information  

SciTech Connect (OSTI)

This study, conducted by Black & Veatch International, was funded by the U.S. Trade and Development Agency. The report addresses various technical, environmental, and economic aspects of developing four 1,000 MW units of coal fired electric generating facilities at a site near Prachuap Khiri Khan. The study includes a cost estimate for the units and the fuel delivery port as well as the major conceptual design decisions made for the project. This volume of the report is the Feasibility Study and is divided into the following sections: (1) Introduction/Summary; (2) Generation Planning Study; (3) Site Selection Study; (4) Project Description; (5) Fuel Resource Assessment; (6) Water Resource Assessment; (7) Technical Information to Support the Environmental Impact Assessment; (8) Plant Conceptual Design; (9) Transmission Interconnection; (10) Project Capital Cost Estimate; (11) Project Schedule; (12) Project Implementation Plan; (13) Project Risk Analysis.

NONE

1995-09-01T23:59:59.000Z

407

Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)  

E-Print Network [OSTI]

of carbon released from peat and forest fires in Indonesiaforest, agricultural, and peat fires (1997–2009) G. R. vanin 2004: Importance of peat burn- ing and pyroconvective

2010-01-01T23:59:59.000Z

408

Mechanized fuel treatment effects on soil compaction in Sierra Nevada mixed-conifer stands  

E-Print Network [OSTI]

Mechanized fuel treatment effects on soil compaction in Sierra Nevada mixed-conifer stands Emily E need to treat forest fuels is often justified as a need to reduce potential fire behavior as well in the United States, and fuel treatments are being prescribed at unprecedented scales. In many cases

Stephens, Scott L.

409

Analyzing the effectiveness of alternative fuel reductions of a forested landscape in Northeastern China  

E-Print Network [OSTI]

Analyzing the effectiveness of alternative fuel reductions of a forested landscape in Northeastern reduction, and fiscal input. We used the LANDIS model to study the effects of alternative fuel reduction to the effective fire suppression started in the early 1950s. Consequently, high fuel accumulation coupled

He, Hong S.

410

Co-firing coal and municipal solid waste  

SciTech Connect (OSTI)

The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

411

MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS  

SciTech Connect (OSTI)

An initial testing campaign was carried out during the summer of 2000 to evaluate the impact of multiburner firing on NOx emissions. Extensive data had been collected during the Fall of 1999 and Spring of 2000 using a single pulverized-coal (PC) burner, and this data collection was funded by a separate Department of Energy program, the Combustion 2000 Low Emission Boiler System (LEBS) project under the direction of DB Riley. This single-burner data was thus available for comparison with NOx emissions obtained while firing three burners at the same overall load and operating conditions. A range of operating conditions were explored that were compatible with single-burner data, and thus the emission trends as a function of air staging, burner swirl and other parameters will be described below. In addition, a number of burner-to-burner operational variations were explored that provided interesing insight on their potential impact on NOx emissions. Some of these variations include: running one burner very fuel rich while running the others fuel lean; varying the swirl of a single burner while holding others constant; increasing the firing rate of a single burner while decreasing the others. In general, the results to date indicated that multiburner firing yielded higher NOx emissions than single burner firing at the same fuel rate and excess air. At very fuel rich burner stoichiometries (SR < 0.75), the difference between multiple and single burners became indistinguishable. This result is consistent with previous single-burner data that showed that at very rich stoichiometries the NOx emissions became independent of burner settings such as air distributions, velocities and burner swirl.

E.G.Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

2001-06-01T23:59:59.000Z

412

Computational Analysis of Shrouded Wind Turbine Configurations  

E-Print Network [OSTI]

Computational Analysis of Shrouded Wind Turbine Configurations Aniket C. Aranake Vinod K. Lakshminarayan Karthik Duraisamy Computational analysis of diuser-augmented turbines is performed using high-dimensional simulations of shrouded wind turbines are performed for selected shroud geometries. The results are compared

Alonso, Juan J.

413

Progress in fuel cells for transportation applications  

SciTech Connect (OSTI)

The current and projected states of development of fuel cells are described in terms of availability, performance, and cost. The applicability of various fuel cell types to the transportation application is discussed, and projections of power densities, weights, and volumes of fuel cell systems are made into the early 1990s. Research currently being done to advance fuel cells for vehicular application is described. A summary of near-term design parameters for a fuel cell transit line is given, including bus performance requirements, fuel cell power plant configuration, and battery peaking requirements. The objective of this paper is to determine a fuel cell technology suitable for near-term use as a vehicular power plant. The emphasis of the study is on indirect methanol fuel cell systems.

Murray, H.S.

1986-01-01T23:59:59.000Z

414

Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma  

DOE Patents [OSTI]

A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

Rostoker, Norman; Binderbauer, Michl

2003-12-16T23:59:59.000Z

415

Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma  

DOE Patents [OSTI]

A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

2006-02-07T23:59:59.000Z

416

Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma  

DOE Patents [OSTI]

A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

2007-02-20T23:59:59.000Z

417

Emission factors for particles, elemental carbon, and trace gases from the Kuwait oil fires  

SciTech Connect (OSTI)

Emission factors are presented for particles, elemental carbon (i.e., soot), total organic carbon in particles and vapor, and for various trace gases from the 1991 Kuwait oil fires. Particle emissions accounted for {approximately} 2% of the fuel burned. In general, soot emission factors were substantially lower than those used in recent {open_quotes}nuclear winter{close_quotes} calculations. Differences in the emissions and appearances of some of the individual fires are discussed. Carbon budget data for the composite plumes from the Kuwait fires are summarized; most of the burned carbon in the plumes was in the form of CO{sub 2}. Fluxes are presented for several combustion products. 26 refs., 1 fig., 5 tabs.

Laursen, K.K.; Ferek, R.J.; Hobbs, P.V. [Univ. of Washington, Seattle, WA (United States); Rasmussen, R.A. [Oregon Graduate Institute of Science and Technology, Beaverton, OR (United States)

1992-09-20T23:59:59.000Z

418

Suppression of pool fires with HRC-125 in a simulated engine nacelle.  

SciTech Connect (OSTI)

CFD simulations are conducted to predict the distribution of fire suppressant in an engine nacelle and to predict the suppression of pool fires by the application of this suppressant. In the baseline configuration, which is based on an installed system, suppressant is injected through four nozzles at a rate fast enough to suppress all simulated pool fires. Variations that reduce the mass of the suppression system (reducing the impact of the suppression system on meeting mission needs) are considered, including a reduction in the rate of suppressant injection, a reduction in the mass of suppressant and a reduction in the number of nozzles. In general, these variations should work to reduce the effectiveness of the suppression system, but the CFD results point out certain changes that have negligible impact, at least for the range of phenomena considered here. The results are compared with measurements where available. Comparisons with suppressant measurements are reasonable. A series of twenty-three fire suppression tests were conducted to check the predictions. The pre-test predictions were generally successful in identifying the range of successful suppression tests. In two separate cases, each where one nozzle of the suppression system was capped, the simulation results did indicate a failure to suppress for a condition where the tests indicated successful suppression. When the test-suppressant discharge rate was reduced by roughly 25%, the tests were in agreement with the predictions. That is, the simulations predict a failure to suppress slightly before observed in these cases.

Keyser, David R. (INS, Inc., Lexington Park, MD); Hewson, John C.

2007-06-01T23:59:59.000Z

419

Inductrack magnet configuration - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Name LastNewsControlled04948

420

Inductrack magnet configuration - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Name LastNewsControlled049486871

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Batch Queue Configuration and Policies on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P. Study ofJ UBasics BasicsQueues and

422

Configuration Management Program - DOE Directives, Delegations, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To report an event that is

423

SHORT AND LONG-TERM FIRE IMPACTS ON HANFORD BARRIER PERFORMANCE  

SciTech Connect (OSTI)

A critical unknown in long-term engineered barrier use is the post-fire hydrologic function where institutional controls are in-tact but there are no resources to implement maintenance activities such as re-planting. This objective of this study was to simulate wild fire on an engineered barrier at the Hanford Site and document the post-fire changes in barrier performance. Soil physical, chemical, and hydrologic conditions; plant floristics and density; and animal use were characterized pre- and post-burn. Fuel load on the surface ranged from 4.7 to 5.71 tons/acre. Fire was initiated by drip torch and measurements of flame height and temperature were made at nine locations on the barrier surface. Flame heights exceeded 30 ft and temperatures ranged from 250 C at 1.5 cm below the surface to over 700 C at 1 m above the surface. Soil organic matter, soil wettability, and hydraulic conductivity all decreased significantly relative to pre-fire conditions. Post-fire samples showed an increase in major soil nutrients, pH, and electrical conductivity measured in 1:1 extracts whereas organic matter decreased. Decreases in wettabilty and organic matter are indicative of conditions more conducive to runoff and soil loss. The results of this study will contribute to a better understanding of post-fire recovery in a post-institutional control environment. This should lead to enhanced stakeholder acceptance regarding the long-term efficacy of ET barriers. This study will also support improvements in the design of ET barriers and performance monitoring systems. Such improvements are needed to best meet the long-term commitment to the safe in-place isolation of waste for hundreds if not thousands of years.

Ward, Anderson L.; Leary, Kevin D.; Link, Steven O.; Berlin, Gregory T.; Cammann, Jerry W.; Mandis, M. L.; Buelow, Laura C.

2009-03-05T23:59:59.000Z

424

Superheater Corrosion Produced By Biomass Fuels  

SciTech Connect (OSTI)

About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

Sharp, William (Sandy) [SharpConsultant] [SharpConsultant; Singbeil, Douglas [FPInnovations] [FPInnovations; Keiser, James R [ORNL] [ORNL

2012-01-01T23:59:59.000Z

425

Material Analysis for a Fire Assessment.  

SciTech Connect (OSTI)

This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

Brown, Alexander; Nemer, Martin

2014-08-01T23:59:59.000Z

426

Method of locating underground mines fires  

DOE Patents [OSTI]

An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

1992-01-01T23:59:59.000Z

427

Planning Rural Fire Protection for Texas.  

E-Print Network [OSTI]

, and shall have full authority to carry out the objects of their creation and to that end are authorized to acquire, purchase, hold, lease, manage, occupy and sell real and personal property or any interest therein; to enter into and to perform any and all... to make fire protection feasible, the citizens of the rural area must organize their own fire department to protect their property and their lives. ORGANIZING A FIRE PROTECTION PROGRAM Before planning can begin, a community must determine whether rural...

Jones, Jack L.

1981-01-01T23:59:59.000Z

428

Fuel cell based battery-less ups system  

E-Print Network [OSTI]

emerged as one of the most promising sources for both portable and stationary applications. In this thesis, a new battery less UPS system configuration powered by fuel cell is discussed. The proposed topology utilizes a standard offline UPS module...

Venkatagiri Chellappan, Mirunalini

2008-10-10T23:59:59.000Z

429

Design of gasifiers to optimize fuel cell systems  

SciTech Connect (OSTI)

The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

Not Available

1992-02-01T23:59:59.000Z

430

Fire Hazards Analysis for the Inactive Equipment Storage Sprung Structure  

SciTech Connect (OSTI)

The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objective of DOE Order 5480.1A are met. The order acknowledges a graded approach commensurate with the hazards involved.

MYOTT, C.F.

2000-02-03T23:59:59.000Z

431

Justification to remove 333 Building fire suppression system  

SciTech Connect (OSTI)

Justification to remove the 333 Building fire suppression system is provided. The Maximum Possible Fire Loss (MPFL) is provided (approximately $800K), potential radiological and toxicological impacts from a postulated fire are discussed, Life Safety Code issues are addressed, and coordination with the Hanford Fire Department is assured.

Benecke, M.W.

1995-12-04T23:59:59.000Z

432

ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 12: Fire and Life Safety  

E-Print Network [OSTI]

-fired heaters 2. Heaters that lack a nationally recognized testing laboratory (NRTL) listing sticker 3. Radiant

Wechsler, Risa H.

433

Climate change-induced shifts in fire for Mediterranean ecosystems  

E-Print Network [OSTI]

RESEARCH PAPER Climate change-induced shifts in fire for Mediterranean ecosystems Enric Batllori1 Climate change, climate uncertainty, fire-climate relationship, fire shifts, Mediterranean biome Mediterranean biome and identify potential shifts in fire activity under an ensemble of global climate

Moritz, Max A.

434

Fire hazards analysis for solid waste burial grounds  

SciTech Connect (OSTI)

This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

McDonald, K.M.

1995-09-28T23:59:59.000Z

435

Thermodynamic analysis and comparison on oxy-fuel power generation process - article no. 053001  

SciTech Connect (OSTI)

In this paper, pressurized oxy-fuel combustion power generation processes are modeled and analyzed based on a 350 MW subcritical reheat boiler associated with a condensing steam turbine. The performance results are obtained. Furthermore, the influences of slurry concentration and coal properties on power plant performance are investigated. An oxy-fuel configuration operating at ambient pressure is studied to compare the performance with pressurized oxy-fuel configuration. Thermodynamic analysis reveals the true potentials of the pressurized oxy-fuel process. Based on the system integration, an improved configuration is proposed in which plant efficiency of pressurized oxy-fuel process is increased by 1.36%.

Deng, S.M.; Hynes, R. [Hatch Energy, Oakville, ON (Canada)

2009-09-15T23:59:59.000Z

436

A GUIDE TO FUEL PERFORMANCE  

SciTech Connect (OSTI)

Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantages of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.

LITZKE,W.

2004-08-01T23:59:59.000Z

437

Corrosion protected, multi-layer fuel cell interface  

DOE Patents [OSTI]

An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.

Feigenbaum, Haim (Ramat Ilan, IL); Pudick, Sheldon (Sayreville, NJ); Wang, Chiu L. (Edison, NJ)

1986-01-01T23:59:59.000Z

438

Fuel injection system and method of operating the same for an engine  

DOE Patents [OSTI]

A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

Topinka, Jennifer Ann (Niskayuna, NY); DeLancey, James Peter (Corinth, NY); Primus, Roy James (Niskayuna, NY); Pintgen, Florian Peter (Niskayuna, NY)

2011-02-15T23:59:59.000Z

439

The Database Driven ATLAS Trigger Configuration System  

E-Print Network [OSTI]

This contribution describes the trigger selection configuration system of the ATLAS low- and high-level trigger (HLT) and the upgrades it received in preparation for LHC Run 2. The ATLAS trigger configuration system is responsible for applying the physics selection parameters for the online data taking at both trigger levels and the proper connection of the trigger lines across those levels. Here the low-level trigger consists of the already existing central trigger (CT) and the new Level-1 Topological trigger (L1Topo), which has been added for Run 2. In detail the tasks of the configuration system during the online data taking are Application of the selection criteria, e.g. energy cuts, minimum multiplicities, trigger object correlation, at the three trigger components L1Topo, CT, and HLT On-the-fly, e.g. rate-dependent, generation and application of prescale factors to the CT and HLT to adjust the trigger rates to the data taking conditions, such as falling luminosity or rate spikes in the detector readout ...

Martyniuk, Alex; The ATLAS collaboration

2015-01-01T23:59:59.000Z

440

Unconventional fuel: Tire derived fuel  

SciTech Connect (OSTI)

Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

Hope, M.W. [Waste Recovery, Inc., Portland, OR (United States)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The behaviour of concrete structures in fire   

E-Print Network [OSTI]

The nature of concrete-based structures means that they generally perform very well in fire. However, concrete is a complex material and its properties can change dramatically when exposed to high temperatures. This paper provides a ‘state...

Fletcher, Ian A; Welch, Stephen; Torero, Jose L; Carvel, Ricky O; Usmani, Asif

2007-03-29T23:59:59.000Z

442

POST-FIRE REVEGETATION AT HANFORD  

SciTech Connect (OSTI)

Range fires on the Hanford Site can have a long lasting effect on native plant communities. Wind erosion following removal of protective vegetation from fragile soils compound the damaging effect of fires. Dust storms caused by erosion create health and safety hazards to personnel, and damage facilities and equipment. The Integrated Biological Control Program (IBC) revegetates burned areas to control erosion and consequent dust. Use of native, perennial vegetation in revegetation moves the resulting plant community away from fire-prone annual weeds, and toward the native shrub-steppe that is much less likely to burn in the future. Over the past 10 years, IBC has revegetated major fire areas with good success. IBC staff is monitoring the success of these efforts, and using lessons learned to improve future efforts.

ROOS RC; JOHNSON AR; CAUDILL JG; RODRIGUEZ JM; WILDE JW

2010-01-05T23:59:59.000Z

443

MODELING VENTILATION SYSTEM RESPONSE TO FIRE  

SciTech Connect (OSTI)

Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

Coutts, D

2007-04-17T23:59:59.000Z

444

ANNUAL FIRE CODE COMPLIANCE INSPECTION PROCESS  

E-Print Network [OSTI]

://SHAREPOINT.RMPS.CORNELL.EDU:8445/EHS/HSE DOCUMENTS/FIRE_CODE_INSPECTION_2014_REVISION.DOCX Table of Contents 1. Introduction................................................................................. 3 3.15 M.M. = Maintenance Management

Pawlowski, Wojtek

445

Fire Protection for Laboratories Using Chemicals  

Broader source: Energy.gov (indexed) [DOE]

Protection Engineer Fire Protection Engineering Pacific Northwest National Laboratory Phone 509-371-7902; Cell 509-308-7658 Fax 509-371-7890 andrew.minister@pnnl.gov Questions?...

446

Experiments and Observation of Peat Smouldering Fires   

E-Print Network [OSTI]

If a subsurface layer of peat is ignited, it smoulders (flameless combustion) slowly but steadily. These fires propagate for long periods of time (days, weeks, even years), are particularly difficult to extinguish and can spread over very extensive...

Ashton, Clare; Rein, Guillermo; Dios, JD; Torero, Jose L; Legg, C; Davies, M; Gray, A

2007-01-30T23:59:59.000Z

447

Tall building collapse mechanisms initiated by fire   

E-Print Network [OSTI]

This paper introduces the hypothesis of two possible failure mechanisms for tall buildings in multiple floor fires. This paper extends the previous work done on the WTC towers by investigating more "generic" tall building frames made of standard...

Usmani, Asif; Roben, Charlotte; Johnston, Louise; Flint, Graeme

448

Modular, High-Volume Fuel Cell Leak-Test Suite and Process  

SciTech Connect (OSTI)

Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

Ru Chen; Ian Kaye

2012-03-12T23:59:59.000Z

449

Testing of a coal-fired diesel power plant  

SciTech Connect (OSTI)

The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with 'engine grade' coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO[sub x] control, sodium sorbent injection for SO[sub x] control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Rao, K.; Schaub, F. (Cooper-Bessemer, Mount Vernon, OH (United States)); Kimberley, J. (AMBAC, West Springfield, MA (United States)); Itse, D. (PSI Technology Co., Andover, MA (United States))

1993-01-01T23:59:59.000Z

450

Testing of a coal-fired diesel power plant  

SciTech Connect (OSTI)

The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with `engine grade` coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO{sub x} control, sodium sorbent injection for SO{sub x} control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, K.; Schaub, F. [Cooper-Bessemer, Mount Vernon, OH (United States); Kimberley, J. [AMBAC, West Springfield, MA (United States); Itse, D. [PSI Technology Co., Andover, MA (United States)

1993-01-01T23:59:59.000Z

451

BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly  

National Nuclear Security Administration (NNSA)

BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly PWR Fuel Assembly The PWR 17x17 assembly is approximately 160 inches long (13.3 feet), 8 inches across, and weighs 1,500 lbs....

452

Reducing NOx in Fired Heaters and Boilers  

E-Print Network [OSTI]

-6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

Garg, A.

453

Wild Fire Computer Model Helps Firefighters  

ScienceCinema (OSTI)

A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.

Canfield, Jesse

2014-06-02T23:59:59.000Z

454

A Wood-Fired Gas Turbine Plant  

E-Print Network [OSTI]

A WOOD-FIRED GAS TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood...-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 50l-k). A...

Powell, S. H.; Hamrick, J. T.

455

Georgia Institute of Technology Fire Watch Procedures  

E-Print Network [OSTI]

-385-1000) Area II (404-385-2000) Area III (404-385-3000) Area IV (404-385-4000) Area V (404-385-5000) II. Fire Marshal 404-894-2990 2. Georgia Tech Police Department 404-894-2500 3. Facilities-Area 1 (404 the fire watch is in effect. 2. Patrol the entire area affected by the service outage every 30 minutes

456

Solid oxide fuel cell with monolithic core  

DOE Patents [OSTI]

A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

McPheeters, C.C.; Mrazek, F.C.

1988-08-02T23:59:59.000Z

457

Solid oxide fuel cell with monolithic core  

DOE Patents [OSTI]

A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

McPheeters, Charles C. (Plainfield, IL); Mrazek, Franklin C. (Hickory Hills, IL)

1988-01-01T23:59:59.000Z

458

Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report  

SciTech Connect (OSTI)

Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

Not Available

1986-12-01T23:59:59.000Z

459

An evaluation of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 1, Base case studies: Final report  

SciTech Connect (OSTI)

An evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD) is provided. A general set of groundrules was used within which each plant design was optimized. The study incorporated numerous sensitivity cases along with up-to-date operating and cost data obtained through participation of equipment vendors and process developers. Consequently, the IGCC designs presented in this study use the most recent data available from Texaco's ongoing international coal gasification development program and General Electric's continuing gas turbine development efforts. The Texaco-based IGCC has advantages over the conventional PCFS technology with regard to environmental emissions and natural resource requirements. SO/sub 2/, NOx, and particulate emissions are lower. Land area and water requirements are less for IGCC concepts. Coal consumption is less due to the higher plant thermal efficiency attainable in the IGCC plant. The IGCC plant also has the capability to be designed in several different configurations, with and without the use of natural gas or oil as a backup fuel. This capability may prove to be particularly advantageous in certain utility planning and operation scenarios. 107 figs., 114 tabs.

Pietruszkiewicz, J.; Milkavich, R.J.; Booras, G.S.; Thomas, G.O.; Doss, H.

1988-09-01T23:59:59.000Z

460

Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View  

E-Print Network [OSTI]

of current protection resources, supported by cartography which aids decision making, fuel maps, fire risk of counting on this planning indubitably constitutes an important technical support tool, which will assist it provides a cartographic and alphanumerical base for consultation and analysis within the framework of GIS

Standiford, Richard B.

Note: This page contains sample records for the topic "firing configuration fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers  

DOE Patents [OSTI]

A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

Tuttle, Kenneth L. (Federal Way, WA)

1980-01-01T23:59:59.000Z

462

SAS Output  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

System Type Firing Configuration Tangential Boiler All Other Boiler Types Combustion Turbine Internal Combustion Engine Fuel EIA Fuel Code Source and Tables (As Appropriate)...

463

Fossil Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuels A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals...

464

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

SciTech Connect (OSTI)

This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 12), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Galatia coal and injected through the single-register burner. Liquid ammonia was intermittently added to the primary air stream to increase fuel-bound nitrogen and simulate cofiring with chicken litter. Galatia coal is a medium-sulfur ({approx} 1.2% S), high chlorine ({approx}0.5%) Illinois Basin coal. In the second test (Test 13), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx} 0.7% S) Eastern bituminous coal. The results of these tests are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The Configurable Fireside Simulator has been delivered from REI, Inc. and is being tested with exiting CFD solutions. Preparations are under way for a final pilot-scale combustion experiment using the single-register burner fired with comilled mixtures of Jim Walters No.7 low-volatility bituminous coal and switchgrass. Because of the delayed delivery of the Configurable Fireside Simulator, it is planned to ask for a no-cost time extension for the project until the end of this calendar year. Finally, a paper describing this project that included preliminary results from the first four cofiring tests was presented at the 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection in Amsterdam, The Netherlands, in June, 2002.

Larry G. Felix; P. Vann Bush

2002-07-01T23:59:59.000Z

465

Stochastic Optimization for Power System Configuration with ...  

E-Print Network [OSTI]

Feb 17, 2011 ... [6], battery [19], and hydrogen and a fuel cell [7], can be integrated into ... and to capture its fixed cost; a continuous variable is used to capture ...

2011-02-17T23:59:59.000Z

466

Fire suppression efficiency screening using a counterflow cylindrical burner  

SciTech Connect (OSTI)

The design and validation of a counterflow cylindrical burner for fire suppression efficiency screening are described. The stability limits of the burner were mapped using various fuel (propane) and oxidizer (air) flows. The stability envelopes compared favorably with those reported in the literature. The apparatus was characterized using inert gases (argon, helium, and nitrogen), and the relative fire suppression efficiency ranking of these three gases was found to be commensurate with that from cup-burner tests. For liquid suppression experiments, a piezoelectric droplet generator was used to form droplets (<100 {micro}m). Water was used as a representative liquid suppressant to study the feasibility of using such a burner for screening liquid agents. Extinction was facilitated with the addition of water droplets, and the effect of water became more pronounced when its application rate was increased. Suppression experiments using water with and without nitrogen dilution in the oxidizer stream were also performed. Flame extinction due to the combined effect of water and nitrogen dilution was demonstrated.

Yang, J.C.; Donnelly, M.K.; Prive, N.; Grosshandler, W.L.

1999-07-01T23:59:59.000Z

467

Residential oil burners with low input and two stages firing  

SciTech Connect (OSTI)

The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

Butcher, T.; Krajewski, R.; Leigh, R. [and others

1997-12-31T23:59:59.000Z

468

Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation  

E-Print Network [OSTI]

smoke clouds associated with peat and deforestation fires inforest, agricultural, and peat fires (1997– 2009), Atmos.of carbon released from peat and forest fires in Indonesia

Tosca, M. G; Randerson, J. T; Zender, C. S

2013-01-01T23:59:59.000Z

469

E-Print Network 3.0 - anthropogenic fire mosaics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

landscape mosaic on fire size distribution in mixedwood boreal forest using... , plus 13 forest mosaic scenarios whose compositions reflected lengths of fire cycle. Three fire...

470

After a Fire, Is the Food Safe? esidential fires are, unfortunately, a common  

E-Print Network [OSTI]

to salvage their lives and belongings. Whether it is the whole house involved or just a fire in the kitchen The American Red Cross recommends that you: s Make your home fire-safe by installing battery-powered smoke- guisher in the kitchen. s Plan two emergency escape routes from each room in the house. Have rope or chain

471

Fire Department, City of New York Fire SaFety education  

E-Print Network [OSTI]

! Is your family fire safe? Protect yourself, your family and your neighbors. T here are special areas building. Your primary or first exit is your apartment door that leads into either an unenclosed (not sep- jured in a fire in your building. o Maintain your apartment door or doors lead- ing into the public hall

Salzman, Daniel

472

NIST Technical Note 1629 Fire Fighting Tactics Under Wind Driven Fire Conditions  

E-Print Network [OSTI]

(FEMA) Assistance to Firefighters Research and Development Grant Program and the United States Fire Administrator United States Fire Administration Glenn A. Gaines, Acting Assistant Administrator U.S. Department to differences in staffing, equipment, building stock, typical weather conditions, etc. There is uniformity

Bentz, Dale P.

473

Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report  

SciTech Connect (OSTI)

This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

NONE

1996-01-01T23:59:59.000Z

474

Fire hazard analysis of the radioactive mixed waste trenchs  

SciTech Connect (OSTI)

This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

1995-04-27T23:59:59.000Z

475

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect (OSTI)

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines cos