National Library of Energy BETA

Sample records for fired power plants

  1. Tracking New Coal-Fired Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 8, 2010 National Energy Technology Laboratory Office of Systems Analyses and Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to...

  2. Effect of the shutdown of a large coal fired power plant on ambient mercury species

    E-Print Network [OSTI]

    Wang, Yungang

    2014-01-01

    Effect of the shutdown of a coal-fired power plant on urbanof the shutdown of a large coal-fired power plant on ambientof the shutdown of a large coal-fired power plant on ambient

  3. Effect of the shutdown of a large coal fired power plant on ambient mercury species

    E-Print Network [OSTI]

    Wang, Yungang

    2014-01-01

    the shutdown of a coal-fired power plant on urban ultrafineof a large coal-fired power plant on ambient mercury speciesof a large coal-fired power plant on ambient mercury species

  4. A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics

    E-Print Network [OSTI]

    1 A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Guillaume contended the gas-fired plants would slow Norway's dependence on imported electricity from Denmark, which 81-71 in favor of building Norway's first natural gas-fired power plant.1 As a result Bondevik

  5. Tracking New Coal-Fired Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr.Theories81TowardsTracking Living Cells as

  6. Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power Plants

    E-Print Network [OSTI]

    Frey, H. Christopher

    1 Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power to quantify variability and uncertainty for NOx emissions from coal-fired power plants. Data for hourly NOx Uncertainty, Variability, Emission Factors, Coal-Fired Power Plants, NOx emissions, Regression Models

  7. Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis Ram Chandra Sekar

    E-Print Network [OSTI]

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis by Ram Chandra Sekar;2 #12;3 Carbon Dioxide Capture in Coal-Fired Power Plants: A Real Options Analysis by Ram Chandra Sekar and Master of Science in Mechanical Engineering ABSTRACT Investments in three coal-fired power generation

  8. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect (OSTI)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considere

  9. Impacts of TMDLs on coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges from coal-fired power plants. If a state establishes a new or revised TMDL for one of these pollutants in a water body where a power plant is located, the next renewal of the power plant's National Pollution Discharge Elimination System (NPDES) permit is likely to include more restrictive limits. Power generators may need to modify existing operational and wastewater treatment technologies or employ new ones as TMDLs are revised or new ones are established. The extent to which coal-fired power plants may be impacted by revised and new TMDL development has not been well established. NETL asked Argonne to evaluate how current and potential future TMDLs might influence coal-fired power plant operations and discharges. This information can be used to inform future technology research funded by NETL. The scope of investigation was limited to several eastern U.S. river basins rather than providing a detailed national perspective.

  10. Controlling mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Chang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

    2009-07-15

    Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

  11. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  12. Coal-fired open cycle magnetohydrodynamic power plant emissions and energy efficiences

    E-Print Network [OSTI]

    Gruhl, Jim

    This study is a review of projected emissions and energy efficiencies of coal-fired open cycle MHD power plants. Ideally one

  13. The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants

    E-Print Network [OSTI]

    1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power, Pennsylvania Presentation to the Natural Gas CCS Forum Washington, DC November 4, 2011 E.S. Rubin, Carnegie Mellon MotivationMotivation · Electric utilities again looking to natural gas combined cycle (NGCC

  14. Tracking new coal-fired power plants: coal's resurgence in electric power generation

    SciTech Connect (OSTI)

    NONE

    2007-05-01

    This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

  15. Energy 42 (2012) 486-496 Thermoeconomic operation optimization of a coal-fired power plant

    E-Print Network [OSTI]

    Luh, Peter

    2012-01-01

    optimization of a coal-fired power plant Jie Xiong a, Haibo Zhao a.*, Chao Zhang a, Chuguang Zheng a, Peter B. Luh b aState Key Laboratory of Coal Combustion. Huazhong University ofSdence and Technology. Wuhan optimization on a 300 MW coal-fired power plant located in Yiyang (Hunan Province, China) is accomplished based

  16. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo

    E-Print Network [OSTI]

    Roma "La Sapienza", Università di

    Available online 16 September 2014 Keywords: Lignite Coal fired power plant Fly ash Bottom ash Naturally depends primarily on lignite-fired power plants. During coal com- bustion, huge amounts of fly ash exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated

  17. Does proximity to coal-fired power plants influence fish tissue mercury?

    E-Print Network [OSTI]

    Does proximity to coal-fired power plants influence fish tissue mercury? Dana K. Sackett · D. Derek+Business Media, LLC 2010 Abstract Much of the mercury contamination in aquatic biota originates from coal of contaminated fish. In this study, we quantified the relative importance of proximity to coal-fired power plants

  18. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    on an Existing US Coal-Fired Power Plant . First NationalEmissions from Coal-Fired Power Plants: Phase I Results from2 Capture from Coal-Fired Power Plants and their Potential

  19. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    2 Capture on an Existing US Coal-Fired Power Plant . FirstToxic Emissions from a Coal-Fired Gasification Plant. Finalof Toxic Emissions from Coal-Fired Power Plants: Phase I

  20. SO2 impacts on forage and soil sulfur concentrations near coal-fired power plants 

    E-Print Network [OSTI]

    Beene, Jack Stephen

    1995-01-01

    The goal of this research was to determine if S02 emissions from coal-fired power plants could be contributing to the copper deficiency in cattle. Copper deficiency in cattle can result from excessive sulfur intake which is attributed...

  1. Exergy efficiency of small coal-fired power plants as a criterion of their wide applicability

    SciTech Connect (OSTI)

    O.V. Afanas'eva; G.R. Mingaleeva [Russian Academy of Sciences, Tatarstan (Russian Federation). Research Center of Power Engineering Problems

    2009-02-15

    The applicability of small coal-fired power plants as an independent and reliable power supply source was considered. The advantages of using small thermal power plants were given, and the classification characteristics of small coal-fired power plants were put forward. The exergy method was chosen as a versatility indicator for the operating efficiency of a flowsheet in question. The exergy efficiency factor of the flowsheet was 32%. With the manufacture of by-products, such as activated carbons, the exergy efficiency of the flowsheet increased to 35%. The studies undertaken substantiated the wide applicability of small coal-fired power plants for the development of decentralized power supply. 7 refs., 2 tabs.

  2. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  3. Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options

    E-Print Network [OSTI]

    Aickelin, Uwe

    Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options Xi Liang, Jia Li, Jon Gibbons and David Reiner December 2007 EPRG 0728 & CWPE 0761 #12;FINANCING CAPTURE READY COAL supercritical pulverized coal power plant in China, using a cash flow model with Monte-Carlo simulations

  4. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    from oil or gas-fired power plants, petroleum refining,2 removal from power plant flue gas – cost efficient designin coal-fired power plant stack gases. The classes of

  5. Dispersion modeling of mercury emissions from coal-fired power plants at Coshocton and Manchester, Ohio

    SciTech Connect (OSTI)

    Lee, S.; Keener, T.C. [University of Cincinnati, Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering

    2009-09-15

    Mercury emissions from coal-fired power plants are estimated to contribute to approximately 46% of the total US anthropogenic mercury emissions and required to be regulated by maximum achievable control technology (MACT) standards. Dispersion modeling of mercury emissions using the AERMOD model and the industrial source complex short term (ISCST3) model was conducted for two representative coal-fired power plants at Coshocton and Manchester, Ohio. Atmospheric mercury concentrations, dry mercury deposition rates, and wet mercury deposition rates were predicted in a 5 x 5 km area surrounding the Coonesville and JM Stuart coal-fired power plants. In addition, the analysis results of meteorological parameters showed that wet mercury deposition is dependent on precipitation, but dry mercury deposition is influenced by various meteorological factors. 8 refs., 5 figs., 3 tabs.

  6. Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II

    SciTech Connect (OSTI)

    Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

    2008-10-31

    Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

  7. Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant

    E-Print Network [OSTI]

    Hopkins, William A.

    Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal 2009 Keywords: Corbicula fluminea Coal-fired power plant Selenium Mercury Glutathione Condition index Bioaccumulation a b s t r a c t Lentic organisms exposed to coal-fired power plant (CFPP) discharges can have

  8. A supply chain network design model for biomass co-firing in coal-fired power plants

    SciTech Connect (OSTI)

    Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

    2014-01-01

    We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

  9. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

  10. McHuchuma/Katewaka coal fired power plant feasibility study. Final report. Export trade information

    SciTech Connect (OSTI)

    1996-11-22

    This study, conducted by Black and Veatch International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility for the development of a new coal fueled power plant in Tanzania at the Mchuchuma/Katewaka coal concession area. Volume 3, the Main Report, is divided into the following sections: (1.0) Introduction; (2.0) Power System Development Studies; (3.0) Conceptual Design Summary of the Mchuchuma Coal Fired Power Plant; (4.0) Fuel Supply Evaluation; (5.0) Transmission System Evaluation; (6.0) Power Plant Site and Infrastructure Evaluation; (7.0) Environmental Impact Assessment; (8.0) Institutional Aspects; (9.0) Financial Evaluation and Benefit Analysis; (10.0) Sources of Finance; Appendix (A) Preliminary Design of Mchuchuma Coal Plant.

  11. Solar-Augment Potential of U.S. Fossil-Fired Power Plants

    SciTech Connect (OSTI)

    Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

    2011-02-01

    Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

  12. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    evaluation of an oxyfuel power plant using mixed conductingA Vision for Thermal Power-Plant Technology Development inon an Existing US Coal-Fired Power Plant . First National

  13. LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; ADAMS, J.; MILIAN, L.; SUBRAMANIAN, S.; FEAGIN, L.; WILLIAMS, J.; BOYD, A.

    2006-10-31

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as currently proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury ''hot spots'', using two types of evidence. First, the world-wide literature was searched for reports of deposition around mercury sources, including coal-fired power plants. Second, soil samples from around two mid-sized U.S. coal-fired power plants were collected and analyzed for evidence of ''hot spots'' and for correlation with model predictions of deposition. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (A) local soil concentration Hg increments of 30%-60%, (B) sediment increments of 18-30%, (C) wet deposition increments of 11-12%, and (D) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around the Monticello coal fired power plant. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. The study found the following: (1) There was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Monticello plant, excess soil Hg was associated with soil characteristics with higher values near the lake. Vegetation concentration showed some correlation with soil concentrations having higher mercury in vegetation when the soil mercury. (2) Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. The total deposition within 50 Km of the plant was predicted to be 4.2% of the total emitted. In the deposition, RGM is responsible for 98.7% of the total deposition, elemental mercury accounts for 1.1% and particulate mercury accounts for 0.2%. Less than 1% of the elemental mercury emitted was predicted to deposit within 50 km.

  14. Power Plant Power Plant

    E-Print Network [OSTI]

    Stillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area Lakeview Geothermal Area Raft River Geothermal Area Cove Fort Power Plant Roosevelt Power Plant Borax Lake

  15. Optimisation and integration of membrane processes in coal-fired power plants with carbon capture and storage 

    E-Print Network [OSTI]

    Bocciardo, Davide

    2015-06-29

    This thesis investigates membrane gas separation and its application to post-combustion carbon capture from coal-fired power plants as alternative to the conventional amine absorption technology. The attention is initially ...

  16. Development of a Low NOx Burner System for Coal Fired Power Plants Using Coal and Biomass Blends 

    E-Print Network [OSTI]

    Gomez, Patsky O.

    2010-01-16

    The low NOx burner (LNB) is the most cost effective technology used in coal-fired power plants to reduce NOx. Conventional (unstaged) burners use primary air for transporting particles and swirling secondary air to create recirculation of hot gases...

  17. Incorporating Both Undesirable Outputs and Uncontrollable Variables into DEA: the Performance of Chinese Coal-Fired Power Plants

    E-Print Network [OSTI]

    Yang, Hongliang; Pollitt, Michael G.

    by proposing six DEA-based performance evaluation models based on a research sample of the Chinese coal-fired power plants. The finding of this paper not only contributes for the performance measurement methodology, but also has policy implications...

  18. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    SciTech Connect (OSTI)

    Elcock, D.

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved, would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.

  19. Building new power plants in a CO2 constrained world: A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and

    E-Print Network [OSTI]

    Building new power plants in a CO2 constrained world: A Case Study from Norway on Gas-Fired Power director. Most of the material used in this work are either courtesy of the persons I talked to in Norway, or the results of interviews the author conducted in Norway, between August 26 and August 30.The author

  20. Best practices in environmental monitoring for coal-fired power plants: lessons for developing Asian APEC economies

    SciTech Connect (OSTI)

    Holt, N.; Findsen, J.

    2008-11-15

    The report assesses environmental monitoring and reporting by individual coal-fired power plants, makes recommendations regarding how monitoring should be applied, and evaluates the interrelationship of monitoring and regulation in promoting CCTs. Effective monitoring is needed to ensure that power plants are performing as expected, and to confirm that they are complying with applicable environmental regulations. Older coal-fired power plants in APEC economies often have limited monitoring capabilities, making their environmental performance difficult to measure. 585 refs., 5 figs., 85 tabs.

  1. Gas turbines for coal-fired turbocharged PFBC boiler power plants

    SciTech Connect (OSTI)

    Wenglarz, R.; Drenker, S.

    1984-11-01

    A coal-fired turbocharged boiler using fluidized bed combustion at high pressure would be more compact than a pulverized coal fired boiler. The smaller boiler size could permit the utility industry to adopt efficient modular construction methods now widely used in other industries. A commercial turbocharger of the capacity needed to run a 250 MW /SUB e/ power plant does not exist; commercial gas turbines of the correct capacity exist, but they are not matched to this cycle's gas temperature of less than 538/sup 0/C (1000/sup 0/F). In order to avoid impeding the development of the technology, it will probably be desirable to use existing machines to the maximum extent possible. This paper explores the advantages and disadvantages of applying either standard gas turbines or modified standard gas turbines to the turbocharged boiler.

  2. Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Thomas Gale

    2010-09-26

    The Southern Research/Southern Company 1 MWth Pilot-Scale Coal-Fired Test Facility was successfully retrofit to fire in either the traditional air-fired mode or with 100% oxygen and recycled flue gas, with a fully integrated feedback and control system, including oxygen and recycled flue gas modulation during startup, transfer, and shutdown, safety and operational interlocks, and data acquisition. A MAXON Staged Oxygen Burner for Oxy-Coal Applications produced a stable flame over a significant range of firing turn-down, staging, and while firing five different U.S. coal types. The MAXON burner design produces lower flame temperatures than for air firing, which will enable (A) Safe operation, (B) Reduction of recycle flow without concern about furnace flame temperatures, and (C) May likely be affective at reducing slagging and fouling in the boiler and super heater at full-scale Power Plants. A CFD model of the Oxy-fired Combustion Research Facility (OCRF) was used to predict the flame geometry and temperatures in the OCRF and make a comparison with the air-fired case. The model predictions were consistent with the experimental data in showing that the MAXON burner fired with oxygen produced lower flame temperatures than the air-fired burner while firing with air.

  3. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around two mid-size coal fired power plants. The objectives were to determine if local mercury hot-spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. These programs found the following: (1) At both sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Kincaid plant, there was excess soil Hg along heavily traveled roads. The spatial pattern of soil mercury concentrations did not match the pattern of vegetation Hg concentrations at either plant. (2) At both sites, the subsurface (5-10 cm) samples the Hg concentration correlated strongly with the surface samples (0-5 cm). Average subsurface sample concentrations were slightly less than the surface samples; however, the difference was not statistically significant. (3) An unequivocal definition of background Hg was not possible at either site. Using various assumed background soil mercury concentrations, the percentage of mercury deposited within 10 km of the plant ranged between 1.4 and 8.5% of the RGM emissions. Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. Estimates of the percentage of total Hg deposition ranged between 0.3 and 1.7%. These small percentages of deposition are consistent with the empirical findings of only minor perturbations in environmental levels, as opposed to ''hot spots'', near the plants. The major objective of this study was to determine if there was evidence for ''hot-spots'' of mercury deposition around coal-fired power plants. Although the term has been used extensively, it has never been defined. From a public health perspective, such a ''hot spot'' must be large enough to insure that it did not occur by chance, and it must affect water bodies large enough to support a population of subsistence fishers. The results of this study support the hypothesis that n

  4. Coal-fired power materials

    SciTech Connect (OSTI)

    Viswanathan, V.; Purgert, R.; Rawls, P. [Electric Power Research Institute, Palo Alto, CA (United States)

    2008-08-15

    Advances in materials technologies over the last decade that is allowing coal-fired power plants to be built with higher efficiencies than the current generation are described. 2 figs., 2 tabs.

  5. Should a coal-fired power plant be replaced or retrofitted?

    SciTech Connect (OSTI)

    Dalia Patino-Echeverri; Benoit Morel; Jay Apt; Chao Chen

    2007-12-15

    In a cap-and-trade system, a power plant operator can choose to operate while paying for the necessary emissions allowances, retrofit emissions controls to the plant, or replace the unit with a new plant. Allowance prices are uncertain, as are the timing and stringency of requirements for control of mercury and carbon emissions. We model the evolution of allowance prices for SO{sub 2}, NOx, Hg, and CO{sub 2} using geometric Brownian motion with drift, volatility, and jumps, and use an options-based analysis to find the value of the alternatives. In the absence of a carbon price, only if the owners have a planning horizon longer than 30 years would they replace a conventional coal-fired plant with a high-performance unit such as a supercritical plant; otherwise, they would install SO{sub 2} and NOx controls on the existing unit. An expectation that the CO{sub 2} price will reach $50/t in 2020 makes the installation of an IGCC with carbon capture and sequestration attractive today, even for planning horizons as short as 20 years. A carbon price below $40/t is unlikely to produce investments in carbon capture for electric power. 1 ref., 5 figs., 2 tabs.

  6. Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Alan Bland; Kumar Sellakumar; Craig Cormylo

    2007-08-01

    The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

  7. A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

    E-Print Network [OSTI]

    Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

    2001-01-01

    A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

  8. An assessment of mercury emissions and health risks from a coal-fired power plant

    SciTech Connect (OSTI)

    Fthenakis, V.M.; Lipfert, F.; Moskowitz, P.

    1994-12-01

    Title 3 of the 1990 Clean Air Act Amendments (CAAA) mandated that the US Environmental Protection Agency (EPA) evaluate the need to regulate mercury emissions from electric utilities. In support of this forthcoming regulatory analysis the U.S. DOE, sponsored a risk assessment project at Brookhaven (BNL) to evaluate methylmercury (MeHg) hazards independently. In the US MeHg is the predominant way of exposure to mercury originated in the atmosphere. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1,000 MW coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms was estimated to be quite small, especially when compared with the estimated background incidence in the population. The current paper summarizes the basic conclusions of this assessment and highlights issues dealing with emissions control and environmental transport.

  9. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect (OSTI)

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  10. Using ISC & GIS to predict sulfur deposition from coal-fired power plants 

    E-Print Network [OSTI]

    Lopez, Jose Ignacio

    1993-01-01

    The goal of this research project was to determine if atmospheric sources have the potential of contributing significantly to the sulfur content of grazed forage. Sulfur deposition resulting from sulfur dioxide emissions from coal- fired power...

  11. Carbon dioxide capture from coal-fired power plants : a real potions analysis

    E-Print Network [OSTI]

    Sekar, Ram Chandra

    2005-01-01

    Investments in three coal-fired power generation technologies are valued using the "real options" valuation methodology in an uncertain carbon dioxide (CO2) price environment. The technologies evaluated are pulverized coal ...

  12. Nitrogen oxides emission control through reburning with biomass in coal-fired power plants 

    E-Print Network [OSTI]

    Arumugam, Senthilvasan

    2005-02-17

    Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning ...

  13. Incorporating Undesirable Outputs into Malmquist TFP Index: Environmental Performance Growth of Chinese Coal-Fired Power Plants

    E-Print Network [OSTI]

    Yang, Hongliang; Pollitt, Michael G.

    In this article we examine the effects of undesirable outputs on the Malmquist TFP indices. Our empirical work uses an unbalanced panel which covers 796 utility and non-utility coal-fired power plants in China during 1996-2002. In order to meet...

  14. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and l

  15. Multifuel fossil fired Power Plant combined with off-shore wind

    E-Print Network [OSTI]

    diagram of the Multifuel Concept Biomass Gas/Coal/ Oil/ Boiler Steam Turbine plant Gas turbine with waste heat boiler Biomass Coal or oil ElectricityNatural gas District heat Wood Natural gas Electricity #12 Ultra Super Critical water/steam process Biomass fired boiler Filter Gas Oil Straw Wood Gas Wood #12;E2

  16. United States Department of Energy`s reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    SciTech Connect (OSTI)

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage.

  17. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    SciTech Connect (OSTI)

    Robin Stewart

    2008-03-12

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be significant shortages in supply if response to new demand is not well-timed.

  18. Health and environmental effects of coal-fired electric power plants

    SciTech Connect (OSTI)

    Morris, S.C.; Hamilton, L.D.

    1984-05-01

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effects considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.

  19. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect (OSTI)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  20. Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options

    E-Print Network [OSTI]

    Liang, Xi; Reiner, David; Gibbons, Jon; Li, Jia

    investors diversify risk, and offer global warming investors an alternative investment opportunity. As a detailed case study, we assess the value of a Capture Option and Capture Ready plant for a 600 MW supercritical pulverized coal power plant in China...

  1. POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect (OSTI)

    Sullivan, T. M.; Lipfert, F. W.; Morris, S. C.; Moskowitz, P. D.

    2001-09-01

    The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no specific Hg controls) ranged from 5.7 x 10{sup -6} in the Midwest to 2 x 10{sup -5} in the Southeast. Reducing emissions from coal plants by 90% reduced the estimated range in risk to 5 x 10{sup -6} in the Midwest and 1.5 x 10{sup -5} in Southeast, respectively. The population risk for the subsistence fisher using the Southeast regional fish Hg levels was 3.8 x 10{sup -3}, a factor of 200 greater than the general population risk. For the subsistence fishers and the Savannah River Hg levels, the population risk was 4.3 x 10{sup -5}, a factor of 2 greater than for the general population. The estimated risk reductions from a 90% reduction in coal plant Hg emissions ranged from 25%-68%, which is greater than the assumed reduction in Hg levels in fish, (15.5%). To place this risk in perspective, there are approximately 4 x 10{sup 6} births/year in the U.S (National Vital Statistics Report, 2000). Assuming that the Southeast risk level (the highest of the regions) is appropriate for the entire U.S., an estimate of 80 newborn children per year have a 5% chance of realizing any of the 16 adverse effects used to generate the DRF. If Hg emissions from power plants are reduced 90%, the number of children at risk is reduced to 60.

  2. Future Carbon Regulations and Current Investments in Alternative Coal-Fired Power Plant Designs

    E-Print Network [OSTI]

    Sekar, Ram C.

    This paper assesses the role of uncertainty over future U.S. carbon regulations in shaping the current choice of which type of power plant to build. The pulverized coal technology (PC) still offer the lowest cost power— ...

  3. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  4. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

    2004-02-01

    North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP combined with sorbent enhancement, (2) Hg oxidation and control using wet and dry scrubbers, (3) enhanced oxidation at a full-scale power plant using tire-derived fuel (TDF) and oxidizing catalysts, and (4) testing of Hg control technologies in the Advanced Hybrid{trademark} filter insert.

  5. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    such alternative recovery technologies: Coal combustion inCOAL FIRED POWER PLANTS .. 5 2.2.1 MEA CO 2 Recovery..Recovery .7 2.2.4 Discussion ..8 2.3 STATE-OF-ART IGCC COAL-

  6. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    SciTech Connect (OSTI)

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.; Freeman, Charles J.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energy generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity from MEA production and the impact of increased coal use including the increased generation of NOx from combustion and transportation, impacts of increased mining of coal and limestone, and the disposal of toxic fly ash and boiler ash waste streams. Overall, the implementing CCS technology could contribute to a dramatic decrease in global GHG emissions, while most other environmental and human health impact categories increase only slightly on a global scale. However, the impacts on human toxicity and ecotoxicity have not been studied as extensively and could have more severe impacts on a regional or local scale. More research is needed to draw strong conclusions with respect to the specific relative impact of different CCS technologies. Specifically, a more robust data set that disaggregates data in terms of component processes and treats a more comprehensive set of environmental impacts categories from a life-cycle perspective is needed. In addition, the current LCA framework lacks the required temporal and spatial scales to determine the risk of environmental impact from carbon sequestration. Appropriate factors to use when assessing the risk of water acidification (groundwater/oceans/aquifers depending on sequestration site), risk of increased human toxicity impact from large accidental releases from pipeline or wells, and the legal and public policy risk associated with licensing CO2 sequestration sites are also not currently addressed. In addition to identifying potential environmental, social, or risk-related issues that could impede the large-scale deployment of CCS, performing LCA-based studies on energy generation technologies can suggest places to focus our efforts to achieve technically feasible, economically viable, and environmentally conscious energy generation technologies for maximum impact.

  7. Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant

    E-Print Network [OSTI]

    Keinan, Alon

    Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

  8. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

    2007-01-01

    a standardised coal-fired power plant (500 MWe, 3.5% sulphura standardised coal-fired power plant (500 MWe, 3.5% sulphurfor a standard coal-fired power plant (500 MWe, Another

  9. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  10. After the Clean Air Mercury Eule: prospects for reducing mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Jana B. Milford; Alison Pienciak

    2009-04-15

    Recent court decisions have affected the EPA's regulation of mercury emissions from coal burning, but some state laws are helping to clear the air. In 2005, the US EPA issued the Clean Air Mercury Rule (CAMR), setting performance standards for new coal-fired power plants and nominally capping mercury emissions form new and existing plants at 38 tons per year from 2010 to 2017 and 15 tpy in 2018 and thereafter; these down from 48.5 tpy in 1999. To implement the CAMR, 21 states with non-zero emissions adopted EPA's new source performance standards and cap and trade program with little or no modification. By December 2007, 23 other states had proposed or adopted more stringent requirements; 16 states prohibited or restricted interstate trading of mercury emissions. On February 2008, the US Court of Appeal for the District of Columbia Circuit unanimously vacated the CAMR. This article assesses the status of mercury emission control requirements for coal-fired power plants in the US in light of this decision, focusing on state actions and prospects for a new federal rule. 34 refs., 1 fig.

  11. Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436

    SciTech Connect (OSTI)

    Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)] [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Meira Castro, Ana Cristina [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)] [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)

    2013-07-01

    Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

  12. Near-term implications of a ban on new coal-fired power plants in the United States

    SciTech Connect (OSTI)

    Adam Newcomer; Jay Apt [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2009-06-15

    Large numbers of proposed new coal power generators in the United States have been cancelled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO{sub 2} emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changes in dispatch order, CO{sub 2} emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO{sub 2} reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies. 50 refs., 5 figs., 4 tabs.

  13. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    SciTech Connect (OSTI)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination with feedwater heating, would result in heat rate reductions of 7.43 percent for PRB coal and 10.45 percent for lignite.

  14. Alstom's Chemical Looping Combustion Prototype for CO{sub 2} Capture from Existing Pulverized Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Andrus, Herbert; Chiu, John; Edberg, Carl; Thibeault, Paul; Turek, David

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO{sub 2} from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO{sub 2} for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration plant.

  15. Physical Plant Power Plant - 43 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    with higher efficiency / R&D Climate friendly Power Plants Build coal fired Power Plants with CCS-technology 4 B a c k u p va W GGEHEN ESL-IC-08-10-27 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany..., October 20-22, 2008 RWE Energy / Energieeffizienz bei Immobilien / U. K?nig / ICEBO '08 SEITE 9 Electricity Production: All Energy Sources have to be included! Lignite Power Plant (BoA) produces 8,8 TWh = appr. 12% of the annual demand for electricity...

  16. A Wood-Fired Gas Turbine Plant 

    E-Print Network [OSTI]

    Powell, S. H.; Hamrick, J. T.

    1986-01-01

    TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood-fired gas turbine unit... of the walls. This wood?fired gas turbine unit could provide a low cost source of power for areas where conventional methods are now prohibitive and provide a means for recovering energy from a source that now poses disposal problems. When the Tennessee...

  17. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01

    oxides (NO x ) from coal-fired electric power plants. InFGD Installations on Coal-Fired Plants, IEA Coal Research,control modeling of coal-fired power systems’, Journal of

  18. Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants

    SciTech Connect (OSTI)

    Elliott, Jeannine

    2013-08-31

    TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

  19. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01

    emissions from coal-fired power plants have been the subjectrequired on all new coal-fired power plants in the US andof FGD at coal-burning power plants can be traced back to

  20. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

  1. Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    SciTech Connect (OSTI)

    Buric, M.; Ohodnicky, P.; Duy, J.

    2012-01-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  2. Comprehensive assessment of toxic emissions from coal-fired power plants

    SciTech Connect (OSTI)

    1996-09-01

    The 1990 Clean Air Act Amendments (CAAA) have two primary goals: pollution prevention and a market-based least-cost approach to emission control. To address air quality issues as well as permitting and enforcement, the 1990 CAAA contain 11 sections or titles. The individual amendment titles are as follows: Title I - National Ambient Air Quality Standards Title II - Mobile Sources Title III - Hazardous Air Pollutants Title IV - Acid Deposition Control Title V - Permits Title VI - Stratospheric Ozone Protection Chemicals Title VII - Enforcement Title VIII - Miscellaneous Provisions Title IX - Clean Air Research Title X - Disadvantaged Business Concerns Title XI - Clean Air Employment Transition Assistance Titles I, III, IV, and V will change or have the potential to change how operators of coal-fired utility boilers control, monitor, and report emissions. For the purpose of this discussion, Title III is the primary focus.

  3. Simulation of the Visual Effects of Power Plant Plumes1

    E-Print Network [OSTI]

    coal-fired power plants are greater than those from oil or natural gas. If we must use more coal, howSimulation of the Visual Effects of Power Plant Plumes1 2 Evelyn F. Treiman, / 3 David B. Champion-fired power plant with six 500 MW coal-fired power plants located at hypothetical sites in southeastern Utah

  4. Efficiency and Environmental Impacts of Electricity Restructuring on Coal-fired Power Plants

    E-Print Network [OSTI]

    WITHOUT PERMISSION Abstract We investigate the impacts of electricity market restructuring on fuel-plants reallocation of electricity generation, restructuring appears to have on average lower capacity factors, to competitive wholesale electricity markets. Here independent generators would sell their electricity to buyers

  5. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  6. Results and insights of internal fire and internal flood analyses of the Surry Unit 1 Nuclear Power Plant during mid-loop operations

    SciTech Connect (OSTI)

    Chu, Tsong-Lun; Musicki, Z.; Kohut, P.

    1995-12-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). The objectives of the program are to assess the risks of severe accidents initiated during plant operational states (POSs) other than full power operation and to compare the estimated core damage frequencies (CDFs), important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a Level 3 PRA for internal events and a Level 1 PRA for seismically induced and internal fire and flood induced core damage sequences. This paper summarizes the results and highlights of the internal fire and flood analysis documented in Volumes 3 and 4 of NUREG/CR-6144 performed for the Surry plant during mid-loop operation.

  7. Coal-Fired Power Plants, Greenhouse Gases, and State Statutory Substantial Endangerment Provisions: Climate Change Comes to Kansas

    E-Print Network [OSTI]

    Glicksman, Robert L.

    2008-04-01

    control statutes, in restricting greenhouse gas emissions from stationary sources such as electric power plants. The article concludes that substantial endangerment provisions provide a useful mechanism for blocking the construction and operation...

  8. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    from combustion and gasification of coal – an equilibriumHolysh, M. 2005. Coke Gasification: Advanced technology forfrom a Coal-Fired Gasification Plant. Final Report, December

  9. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2011-09-30

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  10. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

    2007-01-01

    1/2, 2004 Experience curves for power plant emission controlcoal-fired electric power plants. In particular, we focus on2004) ‘Experience curves for power plant emission control

  11. Export of reactive nitrogen from coal-fired power plants in the U.S.: Estimates from a plume-in-grid modeling study - article no. D04308

    SciTech Connect (OSTI)

    Vijayaraghavan, K.; Zhang, Y.; Seigneur, C.; Karamchandani, P.; Snell, H.E.

    2009-02-15

    The export of reactive nitrogen (nitrogen oxides and their oxidation products, collectively referred to as NOy) from coal-fired power plants in the U.S. to the rest of the world could have a significant global contribution to ozone. Traditional Eulerian gridded air quality models cannot characterize accurately the chemistry and transport of plumes from elevated point sources such as power plant stacks. A state-of-the-science plume-in-grid (PinG) air quality model, a reactive plume model embedded in an Eulerian gridded model, is used to estimate the export of NOy from 25 large coal-fired power plants in the U. S. (in terms of NOx and SO{sub 2} emissions) in July 2001 to the global atmosphere. The PinG model used is the Community Multiscale Air Quality Model with Advanced Plume Treatment (CMAQ-APT). A benchmark simulation with only the gridded model, CMAQ, is also conducted for comparison purposes. The simulations with and without advanced plume treatment show differences in the calculated export of NOy from the 25 plants considered reflecting the effect of using a detailed and explicit treatment of plume transport and chemistry. The advanced plume treatment results in 31% greater simulated export of NOy compared to the purely grid-based modeling approach. The export efficiency of NOy (the fraction of NOy emitted that is exported) is predicted to be 21% without APT and 27% with APT. When considering only export through the eastern boundary across the Atlantic, CMAQ-APT predicts that the export efficiency is 24% and that 2% of NOy is exported as NOx, 49% as inorganic nitrate, and 25% as PAN. These results are in reasonably good agreement with an analysis reported in the literature of aircraft measurements over the North Atlantic.

  12. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  13. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  14. Case studies on recent fossil-fired plants

    SciTech Connect (OSTI)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-12-31

    The article summarises the findings of case studies on fossil-fired power plants carried out by the IEA Clean Coal Centre for the IEA at the request of world leaders at the Gleneagles G8 Summit in July 2005. The studies compared the cost, efficiency and emissions of eight recently constructed coal-fired plants using pulverized coal combustion with subcritical, supercritical or ultra-supercritical steam turbine cycles. Also included was a review of IGCC developments. A case study of a natural gas combined-cycle plant was included for comparison. The full report has been published by the IEA. 1 tab.

  15. Hybrid Solvent-Membrane CO2 Capture: A Solvent/Membrane Hybrid Post-combustion CO2 Capture Process for Existing Coal-Fired Power Plants

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: The University of Kentucky is developing a hybrid approach to capturing CO2 from the exhaust gas of coal-fired power plants. In the first, CO2 is removed as flue gas is passed through an aqueous ammonium-based solvent. In the second, carbon-rich solution from the CO2 absorber is passed through a membrane that is designed to selectively transport the bound carbon, enhancing its concentration on the permeate side. The team’s approach would combine the best of both membrane- and solventbased carbon capture technologies. Under the ARPA-E award, the team is enabling the membrane operation to be a drop-in solution.

  16. Modeling of integrated environmental control systems for coal-fired power plants. Technical progress report, [June 1, 1989--September 30, 1989

    SciTech Connect (OSTI)

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  17. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    Integrated Gasification Combined Cycle Technology: IGCC.integrated gasification combined cycle (IGCC) power plants (output. Integrated gas combined cycle (IGCC) plants are

  18. Willow firing in retrofitted Irish peat plant

    SciTech Connect (OSTI)

    Broek, R. van den; Faaij, A.; Kent, T.

    1995-11-01

    Interest in biomass electricity in Ireland is being re-awakened by environmental concerns about CO{sub 2} emissions from power generation and the potential of biomass production to provide an alternative agricultural enterprise. The technical and economical feasibility of wood-fuelled power production using willow from energy farming in existing peat-fired plants in Ireland is being studied within the framework of the EU JOULE II+ programme. These options are compared with new combustion plants and a biomass integrated gasifier with combined cycle (BIG/CC). Background studies supplied data for yields of willow farming, establishment of willow plantations, harvesting methods, logistics and costs and efficiencies for different retrofit options at Irish peat plants. All technologies considered are currently available or are expected to be available in the near future. Neither agricultural subsidies nor possible CO{sub 2} taxes have been included. In the least cost supply scenario storage and chipping of wood is done at the power station. In this case wood is only stored in the form of sticks and wood harvested by a chips harvester is supplied to the plant directly during the harvesting season. Fuel costs at the plant gate were estimated between 3.3 and 11 EGU/GJ{sub LHV}. This wide range resulted in a wide range of kWh costs. For the lowest cost option they ranged between 5.4 and 15 ECUcents/kWh. The cheapest proven retrofit option is the conversion of the existing milled peat Lanesborough unit 3 into a bubbling fluidized bed with kWh costs ranging from 5.6 up to 16 ECUcents/kWh. For this plant, costs per tonne of avoided CO{sub 2} emissions varied between 1 and 70 ECU. It is noteworthy that the kWh costs for all options considered were very close. Especially in the high costs scenario a BIG/CC appeared to have lower kWh cost than all biomass combustion plants. Mainly for the retrofitted plants the fuel costs were by far the largest kWh cost component.

  19. ENGINEERING FEASIBILITY AND ECONOMICS OF CO2 SEQUESTRATION/USE ON AN EXISTING COAL-FIRED POWER PLANT: A LITERATURE REVIEW

    SciTech Connect (OSTI)

    Carl R. Bozzuto; Nsakala ya Nsakala

    2000-01-31

    The overall objective of this study is to evaluate the technical feasibility and the economics of alternate CO{sub 2} capture and sequestration/use technologies for retrofitting an existing pulverized coal-fired power plant. To accomplish this objective three alternative CO{sub 2} capture and sequestration systems will be evaluated to identify their impact on an existing boiler, associated boiler auxiliary components, overall plant operation and performance and power plant cost, including the cost of electricity. The three retrofit technologies that will be evaluated are as follows: (1) Coal combustion in air, followed by CO{sub 2} separation from flue gas with Kerr-McGee/ABB Lummus Global's commercial MEA-based absorption/stripping process. (2) Coal combustion in an O{sub 2}/CO{sub 2} environment with CO{sub 2} recycle. (3) Coal combustion in air with oxygen removal and CO{sub 2} captured by tertiary amines In support of this objective and execution of the evaluation of the three retrofit technologies a literature survey was conducted. It is presented in an ''annotated'' form, consistent with the following five sections: (1) Coal Combustion in O{sub 2}/CO{sub 2} Media; (2) Oxygen Separation Technologies; (3) Post Combustion CO{sub 2} Separation Technologies; (4) Potential Utilization of CO{sub 2}; and (5) CO{sub 2} Sequestration. The objective of the literature search was to determine if the three retrofit technologies proposed for this project continue to be sound choices. Additionally, a review of the literature would afford the opportunity to determine if other researchers have made significant progress in developing similar process technologies and, in that context, to revisit the current state-of-the-art. Results from this literature survey are summarized in the report.

  20. Physical Plant Power Plant - 32 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    Historically, a fixed cooling concept is used in the design of evaporative heat rejection systems for process and power plants. In the fixed cooling mode, a plant is designed for maximum output at the design summer wet bulb temperature...

  1. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Holly Krutka; Sharon Sjostrom

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, so

  2. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Krutka, Holly; Sjostrom, Sharon

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant’s Martin Lake Steam Electric Station and Xcel Energy’s Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials,

  3. Optimized Solvent for Energy-Efficient, Environmentally-Friendly Capture of CO{sub 2} at Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Farthing, G. A.; Rimpf, L. M.

    2014-04-30

    The overall goal of this project, as originally proposed, was to optimize the formulation of a novel solvent as a critical enabler for the cost-effective, energy-efficient, environmentally-friendly capture of CO{sub 2} at coal-fired utility plants. Aqueous blends of concentrated piperazine (PZ) with other compounds had been shown to exhibit high rates of CO{sub 2} absorption, low regeneration energy, and other desirable performance characteristics during an earlier 5-year development program conducted by B&W. The specific objective of this project was to identify PZ-based solvent formulations that globally optimize the performance of coal-fired power plants equipped with CO{sub 2} scrubbing systems. While previous solvent development studies have tended to focus on energy consumption and absorber size, important issues to be sure, the current work seeks to explore, understand, and optimize solvent formulation across the full gamut of issues related to commercial application of the technology: capital and operating costs, operability, reliability, environmental, health and safety (EH&S), etc. Work on the project was intended to be performed under four budget periods. The objective of the work in the first budget period has been to identify several candidate formulations of a concentrated PZ-based solvent for detailed characterization and evaluation. Work in the second budget period would generate reliable and comprehensive property and performance data for the identified formulations. Work in the third budget period would quantify the expected performance of the selected formulations in a commercial CO{sub 2} scrubbing process. Finally, work in the fourth budget period would provide a final technology feasibility study and a preliminary technology EH&S assessment. Due to other business priorities, however, B&W has requested that this project be terminated at the end of the first budget period. This document therefore serves as the final report for this project. It is the first volume of the two-volume final report and summarizes Budget Period 1 accomplishments under Tasks 1-5 of the project, including the selection of four solvent formulations for further study.

  4. Exxon Chemical's Coal-Fired Combined Cycle Power Technology 

    E-Print Network [OSTI]

    Guide, J. J.

    1985-01-01

    to 2000 0 F permissible gas turbine tempera ture), CAT-PAC savings would double to 20%. Today, in an industrial coal-fired cogeneration plant, CAT-PAC can produce up to 75% more power for a given steam load, while maintaining the highest cogeneration... turbines, waste heat boilers and steam turbines to maximize the efficiency of steam and power generation. The major disadvantage of these systems is that they require a premium fuel, normally natural gas, to be fired in the gas turbine. Efforts...

  5. Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    E-Print Network [OSTI]

    Bashadi, Sarah (Sarah Omer)

    2010-01-01

    Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

  6. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  7. Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Barradale, Merrill Jones

    2010-01-01

    Chen. (2007). “Should a coal-fired power plant be replacedof Regulatory Uncertainty for Coal-Fired Power Plants. ”in alternative coal-fired power plant technologies. ” Energy

  8. Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Barradale, Merrill Jones

    2010-01-01

    2007). “Should a coal-fired power plant be replaced orUncertainty for Coal-Fired Power Plants. ” Environmentalin alternative coal-fired power plant technologies. ” Energy

  9. Automating An Industrial Power Plant 

    E-Print Network [OSTI]

    Williams, D. R.; McCowen, R. R.

    1987-01-01

    ,OOO/year. The upgrading process began with a search for a design/ build contractor that could provide complete turn key capability, beginning with a site survey and ending with operator acceptanoe. The contractor was selected through. a group...ATING AN INDUSTRIAL POWER PLANT DAVID R. WILLIAMS, P.E. Energy Coordi?nator John Deere Component Works Waterloo, Iowa ABSTRACT The need for an upgrade of boiler and turbine controls in the 15 MW coal-fired cogeneration plant at the John Deere Component Works...

  10. Use of experience curves to estimate the future cost of power plants with CO2 capture

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

    2007-01-01

    systems at a new coal-fired power plant in the U.S. (500 MW,capture systems at coal-?red power plants (Fig. 2). Fig. 4 –systems installed at coal-?red power plants. Lower component

  11. Design and Feasibility Assessment of a Retrospective Epidemiological Study of Coal-Fired Power Plant Emissions in the Pittsburgh Pennsylvania Region

    SciTech Connect (OSTI)

    Richard A. Bilonick; Daniel Connell; Evelyn Talbott; Jeanne Zborowski; Myoung Kim

    2006-12-20

    Eighty-nine (89) percent of the electricity supplied in the 35-county Pittsburgh region (comprising parts of the states of Pennsylvania, Ohio, West Virginia, and Maryland) is generated by coal-fired power plants making this an ideal region in which to study the effects of the fine airborne particulates designated as PM{sub 2.5} emitted by the combustion of coal. This report demonstrates that during the period from 1999-2006 (1) sufficient and extensive exposure data, in particular samples of speciated PM{sub 2.5} components from 1999 to 2003, and including gaseous co-pollutants and weather have been collected, (2) sufficient and extensive mortality, morbidity, and related health outcomes data are readily available, and (3) the relationship between health effects and fine particulates can most likely be satisfactorily characterized using a combination of sophisticated statistical methodologies including latent variable modeling (LVM) and generalized linear autoregressive moving average (GLARMA) time series analysis. This report provides detailed information on the available exposure data and the available health outcomes data for the construction of a comprehensive database suitable for analysis, illustrates the application of various statistical methods to characterize the relationship between health effects and exposure, and provides a road map for conducting the proposed study. In addition, a detailed work plan for conducting the study is provided and includes a list of tasks and an estimated budget. A substantial portion of the total study cost is attributed to the cost of analyzing a large number of archived PM{sub 2.5} filters. Analysis of a representative sample of the filters supports the reliability of this invaluable but as-yet untapped resource. These filters hold the key to having sufficient data on the components of PM{sub 2.5} but have a limited shelf life. If the archived filters are not analyzed promptly the important and costly information they contain will be lost.

  12. Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    E-Print Network [OSTI]

    Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

    2008-01-01

    Coal-fired power generating plants contribute approximatelynumber of coal-fired generating plants (1-3). The mercury is

  13. Sensor Fault Detection in Power Plants Andrew Kusiak1

    E-Print Network [OSTI]

    Kusiak, Andrew

    Sensor Fault Detection in Power Plants Andrew Kusiak1 and Zhe Song2 Abstract: This paper presents models; Diagnosis; Combustion; Power plants; Probe instruments. Introduction Measurements in industrial and Soroush 2003 . Any false reading could lead to di- sastrous outcomes. In a coal-fired power plant, faulty

  14. Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power

    E-Print Network [OSTI]

    Brasington, Robert David, S.M. Massachusetts Institute of Technology

    2012-01-01

    Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

  15. Coal-fired high performance power generating system. Final report

    SciTech Connect (OSTI)

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  16. Visual Sensitivity of River Recreation to Power Plants1

    E-Print Network [OSTI]

    the sensitivity of river-related recreational activities to visual intrusion by large coal-fired power plants is determined for each landscape type. These visual absorption values are then mapped along the case study river The State of Minnesota anticipates the construction of a considerable number of large new coal-fired power

  17. Altered Fire Regimes Affect Landscape Patterns of Plant

    E-Print Network [OSTI]

    Mladenoff, David

    , average parameters can be hard to define as the frequency of the disturbance is of the same order of magni of disturbance and plant succession, to examine the resilience of dominant plant species, representing different disturbance response strate- gies, to the effect of varying fire rotation intervals (FRI). The simulated fire

  18. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  19. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  20. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    the world increase in coal-fired [electricity] generation. ?construction of new coal- fired power plants, an examinationdomestic pollution from coal-fired power plants has prompted

  1. Power plant emissions verified remotely at Four Corners sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements can support Clean Air Act regulations LOS ALAMOS, N.M., May 19, 2014-Air pollution and greenhouse gas emissions from two coal-fired power plants in the Four...

  2. Distinguishing Weak and Strong Disposability among Undesireable Outputs in DEA: The Example of the Environmental Efficiency of Chinese Coal-Fired Power Plants

    E-Print Network [OSTI]

    Yu, Hongliang; Pollitt, Michael G.

    Frontiers and Perceived Technical Inefficiency. In Smith, K. (eds) Advances in Applied Micro-Economics. 2. JAI Press. Korhonen, P. and Luptacik, M. 2004. Eco-efficiency Analysis of Power Plants: An Extension of Data Envelopment Analysis. European... the efficiency scores may differ. 2.2 Discussion It can be seen from the above that when building efficiency measurement models, there has been no disagreement among authors on the selection of the strong disposability assumption for inputs and desirable...

  3. Technical and economic assessment on coal-fired power generation...

    Office of Scientific and Technical Information (OSTI)

    AND PEAT; 20 FOSSIL-FUELED POWER PLANTS; CHINA; FOSSIL-FUEL POWER PLANTS; SULFUR DIOXIDE; AIR POLLUTION CONTROL; FLUE GAS; DESULFURIZATION; WASTE PROCESSING PLANTS; COMPARATIVE...

  4. An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.

    SciTech Connect (OSTI)

    Not Available

    1993-06-30

    This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  5. MWM-Array Sensors for In Situ Monitoring of High-Temperature Components in Power Plants

    E-Print Network [OSTI]

    Sheiretov, Yanko

    Utilization of America's substantial coal reserves for energy production has become a national priority. Advanced coal-fired power plants offer an environmentally friendly means to achieve that goal. These power plants, ...

  6. EIS-0308: Southpoint Power Plant Project

    Broader source: Energy.gov [DOE]

    This EIS analyzes the U.S. Department of the Interior Bureau of Indian Affairs’ proposed lease of acreage on the Fort Mojave Indian Reservation in Mohave County, Arizona for development of a natural gas-fired 500 megawatt combined cycle power plant. DOE's Western Area Power Administration (WAPA) is a cooperating agency, and the plant would supply power to the WAPA grid. The proposed Southpoint power plant would require construction of an off-site substation and two 230 kV transmission lines in order to wheel power to WAPA’s distribution grid. An Environmental Assessment (EA) for the proposed substation and transmission line was prepared with the Department of the Interior Bureau of Land Management as lead agency and WAPA as a cooperating agency, and a Finding of No Significant Impact was approved on December 2, 1997.

  7. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  8. Global Installed Capacity of Coal Fired Power Generation to Reach...

    Open Energy Info (EERE)

    offers comprehensive data with regard to the size, growth, and forecast of this market. Coal fired power generation has been a very common energy producing technique for...

  9. ORIGINAL PAPER Fire frequency and tree canopy structure influence plant

    E-Print Network [OSTI]

    Minnesota, University of

    composition (Huston 1994). Ecological theory predicts important linkages between disturbance frequency frequencies and severities that minimize species losses due to competitive exclusion and direct disturbanceORIGINAL PAPER Fire frequency and tree canopy structure influence plant species diversity

  10. Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    E-Print Network [OSTI]

    Bashadi, Sarah O.

    Adding post-combustion capture technology to existing coal-fired power plants is being considered as a near-term option for mitigating CO[subscript 2] emissions. To supply the thermal energy needed for CO[subscript 2] ...

  11. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  12. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  13. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  14. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  15. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  16. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  17. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  18. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  19. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  20. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  1. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  2. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  3. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  4. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  5. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  6. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  7. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  8. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  9. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  10. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  11. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  12. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  13. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  14. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  15. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  16. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    Coal Gasification.IGCC technology. The coal gasification stage in IGCC plantsThe basic method for coal gasification in IGCC plants has

  17. Next generation geothermal power plants. Draft final report

    SciTech Connect (OSTI)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  18. Planning for coal power plant transition : lessons learned from communities in Massachusetts

    E-Print Network [OSTI]

    Nochur, Aditya Kumar

    2013-01-01

    As coal-fired power plants across the U.S. are retiring in increasing numbers - a trend likely to continue in the years ahead - the communities that host these plants will play a critical role in balancing local concerns ...

  19. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    to a doubling of coal-fired electricity production. 271 Suchexport. Transitioning to coal-fired power production wascommitments to install more coal-fired power plants (both

  20. CONSTRUCTION OF NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing OF ST. LUCIE-2 at FLORIDA POWER & LIGHT COMPANY · Robert E. Uhrig 1974-1986 ­ Vice President, Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

  1. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  2. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  3. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    2 capture and geologic sequestration to co-inject sulfur and2 capture and geologic sequestration to co-inject sulfur andcapture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and

  4. Power Plant Modeling and Simulation

    ScienceCinema (OSTI)

    None

    2010-01-08

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  5. Nuclear Power Plant Design Project

    E-Print Network [OSTI]

    Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global) .................................................................... 14 4.4 High Temperature Gas Reactor

  6. Power Plant Modeling and Simulation

    SciTech Connect (OSTI)

    2008-07-21

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  7. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    with conventional steam turbine powered electric generation.used to boil water for steam turbine generation as a secondturbine) and Rankine (steam turbine) cycles, as illustrated

  8. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    European Russia’s gas-fired power plant would significantlypredominately gas-fired power plants in European Russia;interested in acquiring gas-fired power plants and in price

  9. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M. [University of Mah, Trabzon (Turkey)

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  10. Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    E-Print Network [OSTI]

    Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

    2008-01-01

    removal from flue gas of coal-fired power plants. Environ.Speciation in a 100-MW Coal-Fired Boiler with Low-NOxControl Technologies for Coal-Fired Power Plants, DOE/NETL

  11. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  12. Fire Management Impacts on Invasive Plants in the Western United States

    E-Print Network [OSTI]

    Bruns, Tom

    Review Fire Management Impacts on Invasive Plants in the Western United States JON E. KEELEY U, University of California, Los Angeles, CA 90095, U.S.A. Abstract: Fire management practices affect alien plant invasions in diverse ways. I considered the impact of six fire management practices on alien

  13. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  14. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    of the Proposed Solar Power Plant Design The Impact ofof the Thesis SOLAR POWER PLANT DESIGN , Study Guidelines a.Reference Solar Power Plant Design e. Power Plant

  15. Financing Solar Thermal Power Plants

    SciTech Connect (OSTI)

    Price, H. W.; Kistner, R.

    1999-11-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised i n debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  16. Financing solar thermal power plants

    SciTech Connect (OSTI)

    Kistner, R.; Price, H.

    1999-07-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  17. Researching power plant water recovery

    SciTech Connect (OSTI)

    NONE

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  18. No evidence for acid-catalyzed secondary organic aerosol formation in power plant plumes over metropolitan Atlanta, Georgia

    E-Print Network [OSTI]

    Weber, Rodney

    conducted in the summer of 2004. Five notable plumes of SO2, apparently from coal-fired power plants, wereNo evidence for acid-catalyzed secondary organic aerosol formation in power plant plumes over that secondary organic aerosol formation via heterogeneous acid-catalyzed reactions within power plant plumes

  19. NUCLEAR POWER PLANT Nuclear power plants have safety and security procedures in place and

    E-Print Network [OSTI]

    NUCLEAR POWER PLANT ACCIDENTS Nuclear power plants have safety and security procedures in place and are closely monitored by the Nuclear Regulatory Commission (NRC). An accident at a nuclear power plant could of nuclear power plant accidents? Radioactive materials in the plume from the nuclear power plant can settle

  20. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    storage can provide solar power plant energy storage for aconfiguration for a solar power plant without energy storagefor a solar power plant greatly influences the plant energy

  1. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01

    power plants are mostly coal-fired facilities located in thein regions with significant coal-fired power plant capacity,and a few, small coal and oil-fired plants. Generation from

  2. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  3. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  4. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  5. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  6. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

  7. Is Privatization Enough? Finding Performance Breaks for UK Power Plants

    E-Print Network [OSTI]

    Triebs, Thomas P.; Pollitt, Michael G.

    .4) Various technological changes can be made at the combustion and post- combustion stages. At the combustion stage low NOx or sulphur burners can be retrofitted. Though for NOx (and particular gas-fired stations) these decrease thermal efficiency... as they dial down the combustion temperature to reduce the nitrogen intake from the air (Martin et al., 2007). In the early 1990s National Power and Powergen retrofitted low NOx burners as originally planned by the CEGB. Most new CCGT plants also featured...

  8. Wood Burning Combined Cycle Power Plant 

    E-Print Network [OSTI]

    Culley, J. W.; Bourgeois, H. S.

    1984-01-01

    of the major components of the power plant. The cycle configuration is based on maximum fuel efficiency with minimum capital equipment risk. The cycle discussion includes design point performance of the power plant. The design represents a significant step...

  9. Modeling water use at thermoelectric power plants

    E-Print Network [OSTI]

    Rutberg, Michael J. (Michael Jacob)

    2012-01-01

    The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

  10. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01

    average peaking natural gas power plant (NGCT) supplies the13 categories. Natural gas- fired power plants comprise overgreenhouse gas (GHG) emissions rate from power plants

  11. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    SciTech Connect (OSTI)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  12. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect (OSTI)

    NONE

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  13. Conservation Screening Curves to Compare Efficiency Investments to Power Plants

    E-Print Network [OSTI]

    Koomey, J.G.

    2008-01-01

    Efficiency Investments to Power Plants J. Koorney, A.H.Efficiency Investments to Power Plants Jonathan Koorney,Pollution, and Avoid Power Plant Construction. Testimony

  14. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01

    technologies applicable to power plant gas streams) and thecapacity of power plants whose flue gases are treated withat some power plants burning oil or natural gas, including

  15. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01

    2004) ‘Experience curves for power plant emission controlLtd. Experience curves for power plant emission controlInc. Experience curves for power plant emission control

  16. Sabotage at Nuclear Power Plants

    SciTech Connect (OSTI)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  17. Fire Hazards Analysis, Building 9203 & 9203A Complex- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This analysis is intended to provide a comprehensive assessment of the risks from fire and fire related perils in the Building 9203 and 9203A Complex at the Oak Ridge Y-12 Plant. The analysis has been prepared in accordance with the criteria listed in DOE Order 5480.7A.

  18. Combined Fire Hazards Analysis/Assessment, Building 9116- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment/analysis is intended to provide a comprehensive evaluation of the risks from fire and fire related perils in Building 9116 at the Oak Ridge Y-12 Plant. The assessment/analysis has been prepared in accordance with the criteria listed in DOE Order 5480.7A.

  19. Fire Hazard Analysis, Building 9116- Y-12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This analysis is intended to provide a comprehensive evaluation of the risks from fire and fire related perils in Building 9116 at the Oak Ridge Y-12 Plant. The analysis has been prepared in accordance with the criteria listed in DOE Order 5480.7A.

  20. System Definition and Analysis: Power Plant Design and Layout

    SciTech Connect (OSTI)

    1996-05-01

    This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems (ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals.

  1. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    Solar Power Plant . . Important Sources of Cost Estimation Datasolar power plant. These data were used to estimate costs

  2. JB RISOE 20-05-2003 Advanced 700C PF Power Plant

    E-Print Network [OSTI]

    prices of imported coal · Security of supply is threatened without coal · Clean Coal Technology in efficiency of Elsam's coal-fired power plants 1950 19701960 19901980 20202000 2010 30 32 34 36 38 40 42 44 46 of Coal Based Power Generation · Abundant reserves · Many independent producers of coal · Low and stable

  3. Efficiency combined cycle power plant

    SciTech Connect (OSTI)

    Pavel, J.; Meyers, G.A.; Baldwin, T.S.

    1990-06-12

    This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

  4. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01

    with significant coal-fired power plant capacity, whereEven if an average coal plant powers a BEV, it will emitThose power plants are mostly coal-fired facilities located

  5. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect (OSTI)

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  6. Economics and policies for carbon capture and sequestration in the western United States : a marginal cost analysis of potential power plant deployment

    E-Print Network [OSTI]

    Shu, Gary

    2010-01-01

    Carbon capture and sequestration (CCS) is a technology that can significantly reduce power sector greenhouse gas (GHG) emissions from coal-fired power plants. CCS technology is currently in development and requires higher ...

  7. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reliable, efficient, ultra-clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC...

  8. Rocky Flats Plant Live-Fire Range Risk Analysis Report

    SciTech Connect (OSTI)

    Nicolosi, S.L.; Rodriguez, M.A.

    1994-04-01

    The objective of the Live-Fire Range Risk Analysis Report (RAR) is to provide an authorization basis for operation as required by DOE 5480.16. The existing Live-Fire Range does not have a safety analysis-related authorization basis. EG&G Rocky Flats, Inc. has worked with DOE and its representatives to develop a format and content description for development of an RAR for the Live-Fire Range. Development of the RAR is closely aligned with development of the design for a baffle system to control risks from errant projectiles. DOE 5480.16 requires either an RAR or a safety analysis report (SAR) for live-fire ranges. An RAR rather than a SAR was selected in order to gain flexibility to more closely address the safety analysis and conduct of operation needs for a live-fire range in a cost-effective manner.

  9. Economics and Policies for Carbon Capture and Sequestration in the Western United States: A Marginal Cost Analysis of Potential Power Plant Deployment

    E-Print Network [OSTI]

    : A Marginal Cost Analysis of Potential Power Plant Deployment by Gary Shu B.S., Electrical Engineering Analysis of Potential Power Plant Deployment by Gary Shu Submitted to the Engineering Systems Division from coal-fired power plants. CCS technology is currently in development and requires higher

  10. Simulation of the Impact of the SO2 Emissions from the Proposed Sithe Power Plant on the Grand Canyon and other Class I Areas

    E-Print Network [OSTI]

    Fischer, Emily V.

    . Rodriguez Abstract A 1500 MW coal-fired power plant is proposed to be built by Sithe Energies IncSimulation of the Impact of the SO2 Emissions from the Proposed Sithe Power Plant on the Grand. in the Four Corners basin near the existing Four Corners and San Juan power plants. Four Corners is located

  11. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect (OSTI)

    Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

    2010-03-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  12. Organizational learning at nuclear power plants

    E-Print Network [OSTI]

    Carroll, John S.

    1991-01-01

    The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

  13. Electric Power Reliability in Chemical Plants 

    E-Print Network [OSTI]

    Cross, M. B.

    1989-01-01

    at plants across the country? Has the quality and reliability of utility-generated power deteriorated over the past five or ten years? Or, has the perception of what constitutes reliable power changed with the advent, installation, and increasing usage...

  14. CO? Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Toy, Lora; Kataria, Atish; Gupta, Raghubir

    2011-09-30

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO?, the development of retrofit, post-combustion CO? capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO? from plant flue gas with 95% captured CO? purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO?-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO?, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO? over N? and CO? permeance greater than 300 gas permeation units (GPU) targeted; - Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO? permeance than current commercial polycarbonate membranes; - Development and fabrication of membrane hollow fibers and modules from candidate polymers; - Development of a CO? capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and - Techno-economic evaluation of the "best" integrated CO? capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO? capture with 95% captured CO? purity.

  15. Quantitative Analysis of Variability and Uncertainty in Environmental Data and Models. Volume 2. Performance, Emissions, and Cost of Combustion-Based NOx Controls for Wall and Tangential Furnace Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Frey, H. Christopher; Tran, Loan K.

    1999-04-30

    This is Volume 2 of a two-volume set of reports describing work conducted at North Carolina State University sponsored by Grant Number DE-FG05-95ER30250 by the U.S. Department of Energy. The title of the project is “Quantitative Analysis of Variability and Uncertainty in Acid Rain Assessments.” The work conducted under sponsorship of this grant pertains primarily to two main topics: (1) development of new methods for quantitative analysis of variability and uncertainty applicable to any type of model; and (2) analysis of variability and uncertainty in the performance, emissions, and cost of electric power plant combustion-based NOx control technologies. These two main topics are reported separately in Volumes 1 and 2.

  16. A Survey of Power Plant Designs

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    to produce steam. The steam spins the turbine, which drives the generator. Source: Tennessee Valley Authority) www.ent.ohiou.edu/~thermo/ index.html The General James M Gavin Steam Power Plant near Cheshire, Ohio University #12;Combustion Turbine Power Plant Open System The turbine burns either natural gas or oil. Fuel

  17. Lessons learned from existing biomass power plants

    SciTech Connect (OSTI)

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  18. Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance

    SciTech Connect (OSTI)

    Andrew Seltzer; Zhen Fan

    2011-03-01

    A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

  19. A Partial Load Model for a Local Combined Heat and Power Plant

    E-Print Network [OSTI]

    A Partial Load Model for a Local Combined Heat and Power Plant Camilla Schaumburg not limited to) waste, bio gas, and straw but a large majority are fuelled by natural gas [10]. They often and the gas-fired units are particularly characterised by their rapid commitment ability. In this paper

  20. Use of plasma fuel systems at thermal power plants in Russia, Kazakhstan, China, and Turkey

    SciTech Connect (OSTI)

    Karpenko, E.I.; Karpenko, Y.E.; Messerle, V.E.; Ustimenko, A.B. [Russian Academy of Sciences, Ulan Ude (Russian Federation). Institute of Thermal Physics

    2009-05-15

    The technology of plasma ignition of solid fuels is described, as well as its creation and development steps, the technoeconomic characteristics of plasma igniter systems, schemes of their installation in pulverized-coal boilers, and results of their application at pulverized coal-fired power plants.

  1. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

  3. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    18% of the installed solar power plant costs. The costs forthe operations and costs for this solar power plant and forenergy generation and cost, The proposed solar power plant

  4. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    efficiency of a solar power plant with gas-turbine toppingon the Solar Power Plant Heat~Transfer Gas Properties Modelfor a solar power plant with Brayton-cycle gas turbine

  5. On Line Power Plant Performance Monitoring 

    E-Print Network [OSTI]

    Ahner, D. J.; Priestley, R. R.

    1990-01-01

    PERFORMANCE MONITORING DAVID J. AHNER Manager, Power PrOduction Engineering Power Technologies, Inc. Schenectady, NY ABSTRACT Maintaining efficient and reliable plant operation is a prime objective in the generation of power. These are important... stream_source_info ESL-IE-90-06-24.pdf.txt stream_content_type text/plain stream_size 30080 Content-Encoding ISO-8859-1 stream_name ESL-IE-90-06-24.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ON LINE POWER PLANT...

  6. Clean Power Plan: Reducing Carbon Pollution From Existing Power Plants 

    E-Print Network [OSTI]

    Bremer,K.

    2014-01-01

    stream_source_info ESL-KT-14-11-20.pdf.txt stream_content_type text/plain stream_size 7502 Content-Encoding UTF-8 stream_name ESL-KT-14-11-20.pdf.txt Content-Type text/plain; charset=UTF-8 CLEAN POWER PLAN Reducing... improvements Co-firing or switching to natural gas Coal retirements Retrofit CCS (e.g.,WA Parish in Texas) 2. Use lower-emitting power sources more Dispatch changes to existing natural gas combined cycle (CC) Dispatch changes to existing natural gas CC 3...

  7. Enhanced Fire Events Database to Support Fire PRA

    SciTech Connect (OSTI)

    Patrick Baranowsky; Ken Canavan; Shawn St. Germain

    2010-06-01

    Abstract: This paper provides a description of the updated and enhanced Fire Events Data Base (FEDB) developed by the Electric Power Research Institute (EPRI) in cooperation with the U.S. Nuclear Regulatory Commission (NRC). The FEDB is the principal source of fire incident operational data for use in fire PRAs. It provides a comprehensive and consolidated source of fire incident information for nuclear power plants operating in the U.S. The database classification scheme identifies important attributes of fire incidents to characterize their nature, causal factors, and severity consistent with available data. The database provides sufficient detail to delineate important plant specific attributes of the incidents to the extent practical. A significant enhancement to the updated FEDB is the reorganization and refinement of the database structure and data fields and fire characterization details added to more rigorously capture the nature and magnitude of the fire and damage to the ignition source and nearby equipment and structures

  8. Geothermal Power Plants — Meeting Clean Air Standards

    Broader source: Energy.gov [DOE]

    Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

  9. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT COMMISSIONDECISION ENERGY COMMISSION Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT GAS TURBINE PLANT SMALL POWER PLANT EXEMPTION DOCKET NO. 06-SPPE-1 The California Energy Commission

  10. Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs

    E-Print Network [OSTI]

    Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

    2008-01-01

    EFFICIENCY INVESTMENTS TO POWER PLANTS: APPLICATIONS TOEFFICIENCY INVESTMENTS TO POWER PLANTS: APPLICATIONS TOEfficiency Investments to Power Plants: Applications to

  11. Approach to nitinol power plant cost analysis

    SciTech Connect (OSTI)

    McNichols, J.L. Jr.; Cory, J.S.; Curtis, E.H.

    1982-11-01

    The objective of this paper is tof provide a method for cost evaluation of low grade thermal energy conversion by Nitinol power plants. To accomplish this objective Nitinol power plant costs are subdivided int those which can be obtained through conventional cost analysis, and those which are associated with the Nitino heat engine and are not subject to conventional analysis. Analytic expressions are provided for the Nitinol heat engine capital costs and Nitinol replacement costs in terms of Nitinol performance, heat engine configuration, plant operating factors, material costs, and the cost of capital. Nitinol working material factors are identified that require further definition before firm and reliable costs can be determined. Where data are lacking, plausible assumptions and estimates are utilized tof perform a first-cut analysis. It is found that the Nitinol heat engine capital costs per unit power generating capacity are approximately $0.15/W, and that the cost of produced energy for the Nitinol heat engine portion of the power plant is approximately 0.74 /kWh, includin operation, maintenance, Nitinol replacements and the cost of capital for the heat engine. It is concluded tha Nitinol power plants for the conversion of low grade thermal energy may have a significant economical advantage over conventionally fueled power plants.

  12. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  13. World's Largest Concentrating Solar Power Plant Opens in California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah,...

  14. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources Purchase and Installation of a Geothermal Power Plant to Generate...

  15. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    with Sensible- Heat Storage Solar Power Plant with Sulfurof the Solar Power Plant Storage-Vessel Design, . . . . .System for Chemical Storage of Solar Energy. UC Berkeley,

  16. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  17. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect (OSTI)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  18. Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia

    E-Print Network [OSTI]

    Slovak Centre of Biomass Use for Energy Slovakia 1 Wood Fired Heating Plant in Slovakia Energy energy User behaviour ESCOs Biomass Education Architects and engineers Wind Other Financial institutions;Slovak Centre of Biomass Use for Energy Slovakia 2 Biomass is considered as the most perspective

  19. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

  20. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01

    Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cbiomass. Figure 1: Biomass Gasification to Power Process

  1. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective 

    E-Print Network [OSTI]

    Divakaruni, S. M.

    1989-01-01

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

  3. Factors influencing plant succession following fire in Ashe juniper woodland types in Real County, Texas 

    E-Print Network [OSTI]

    Huss, Donald Lee

    1954-01-01

    'and unburned areas after nine years. In Texas, 14olff (1948) reported th"t weedy plants were the first to follow a burned area of Ashe juniper and other writers seem to be in agreement that annuals a e the first to establish themselves (Jsn- kins 1939...) state that fire increased the germination of Fhus ovata and chaoine, Ad nostema fasciculata. Apparently fire kills the seed of Ashe Juniper ss writers have reported fewer seedlings of Ashe juni- per on burned sroas than on unburned (Bray 190K, W...

  4. Fire protection review revisit No. 2, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Dobson, P.H.; Keller, D.R.; Treece, S.D.

    1990-02-01

    A fire protection survey was conducted for the Department of Energy at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, from October 30--November 4, November 6--10, and December 4--8, 1989. The purpose of the survey was to review the facility fire protection program and to make recommendations. Surveys of other facilities resulted in a classification system for buildings which provide an indication of the importance of the building to the fulfillment of the mission of the facility. Recommendations in this report reflect to some degree the relative importance of the facility and the time to restore it to useful condition in the event a loss were to occur.

  5. Strategies in tower solar power plant optimization

    E-Print Network [OSTI]

    Ramos, A

    2012-01-01

    A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

  6. Evaluation of MerCAP for Power Plant Mercury Control

    SciTech Connect (OSTI)

    Carl Richardson

    2008-09-30

    This report is submitted to the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) as part of Cooperative Agreement DE-FC26-03NT41993, 'Evaluation of EPRI's MerCAP{trademark} Technology for Power Plant Mercury Control'. This project has investigated the mercury removal performance of EPRI's Mercury Capture by Amalgamation Process (MerCAP{trademark}) technology. Test programs were conducted to evaluate gold-based MerCAP{trademark} at Great River Energy's Stanton Station Unit 10 (Site 1), which fired both North Dakota lignite (NDL) and Power River Basin (PRB) coal during the testing period, and at Georgia Power's Plant Yates Unit 1 (Site 2) [Georgia Power is a subsidiary of The Southern Company] which fires a low sulfur Eastern bituminous coal. Additional tests were carried out at Alabama Power's Plant Miller, which fires Powder River Basin Coal, to evaluate a carbon-based MerCAP{trademark} process for removing mercury from flue gas downstream of an electrostatic precipitator [Alabama Power is a subsidiary of The Southern Company]. A full-scale gold-based sorbent array was installed in the clean-air plenum of a single baghouse compartment at GRE's Stanton Station Unit 10, thereby treating 1/10th of the unit's exhaust gas flow. The substrates that were installed were electroplated gold screens oriented parallel to the flue gas flow. The sorbent array was initially installed in late August of 2004, operating continuously until its removal in July 2006, after nearly 23 months. The initial 4 months of operation were conducted while the host unit was burning North Dakota lignite (NDL). In November 2004, the host unit switched fuel to burn Powder River Basin (PRB) subbituminous coal and continued to burn the PRB fuel for the final 19 months of this program. Tests were conducted at Site 1 to evaluate the impacts of flue gas flow rate, sorbent plate spacing, sorbent pre-cleaning and regeneration, and spray dryer operation on MerCAP{trademark} performance. At Site 2, a pilot-scale array was installed in a horizontal reactor chamber designed to treat approximately 2800 acfm of flue gas obtained from downstream of the plant's flue gas desulfurization (FGD) system. The initial MerCAP{trademark} array was installed at Plant Yates in January 2004, operating continuously for several weeks before a catastrophic system failure resulting from a failed flue gas fan. A second MerCAP{trademark} array was installed in July 2006 and operated for one month before being shut down for a reasons pertaining to system performance and host site scheduling. A longer-term continuous-operation test was then conducted during the summer and fall of 2007. Tests were conducted to evaluate the impacts of flue gas flow rate, sorbent space velocity, and sorbent rinsing frequency on mercury removal performance. Detailed characterization of treated sorbent plates was carried out in an attempt to understand the nature of reactions leading to excessive corrosion of the substrate surfaces.

  7. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT PRESIDINGMEMBER (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT PRESIDINGMEMBER Exemption (SPPE). The Energy Commission Committee assigned to the Niland Gas Turbine Plant Project

  8. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY

    SciTech Connect (OSTI)

    Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

    2001-06-30

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

  9. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01

    Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

  10. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers

    E-Print Network [OSTI]

    Li, Ying

    Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility's studies have determined that mercury emissions from coal-fired power plants pose significant hazards to public health and must be reduced. Coal-fired power plants represent a significant fraction

  11. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  12. Combined cycle power plant incorporating coal gasification

    DOE Patents [OSTI]

    Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  13. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  14. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  15. Configuration management in nuclear power plants

    E-Print Network [OSTI]

    2003-01-01

    Configuration management (CM) is the process of identifying and documenting the characteristics of a facility's structures, systems and components of a facility, and of ensuring that changes to these characteristics are properly developed, assessed, approved, issued, implemented, verified, recorded and incorporated into the facility documentation. The need for a CM system is a result of the long term operation of any nuclear power plant. The main challenges are caused particularly by ageing plant technology, plant modifications, the application of new safety and operational requirements, and in general by human factors arising from migration of plant personnel and possible human failures. The IAEA Incident Reporting System (IRS) shows that on average 25% of recorded events could be caused by configuration errors or deficiencies. CM processes correctly applied ensure that the construction, operation, maintenance and testing of a physical facility are in accordance with design requirements as expressed in the d...

  16. Combined Fire Hazards Analysis/Assessment, Building 9203 & 9203A Complex- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment/analysis is intended to provide a comprehensive assessment of the risks from fire and fire related perils in the Building 9203 and 9203A Complex at the Oak Ridge Y-12 Plant. The analysis has been prepared in accordance with the criteria listed in DOE Order 5480.7A.

  17. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  18. Modeling Generator Power Plant Portfolios and Pollution Taxes

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain;Modeling Energy Taxes and Credits: The Genco's Choice · Each Genco has a portfolio of power plants · Each power plant can have different supply costs and transaction costs · Supply costs can reflect capital

  19. New 90,000 PPH Coal Fired Boiler Plant at Liggett & Myers Tobacco Company, Durham North Carolina 

    E-Print Network [OSTI]

    Kaskey, G. T.

    1984-01-01

    Liggett & Myers Tobacco Company in Durham, North Carolina is installing a future cogeneration, coal fired boiler system designed and built by Energy Systems (ESI) of Chattanooga, Tennessee. The complete boiler plant is comprised of a 90,000 pph Dorr...

  20. Geothermal/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant < Geothermal(Redirected from Power Plant)

  1. Carbon Dioxide Capture from Coal-Fired

    E-Print Network [OSTI]

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

  2. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  3. Modeling Generator Power Plant Portfolios and Pollution Taxes in

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

  4. Coal Power Plant Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover Hill HighPower Plant Database

  5. Nuclear Power Plant Construction Activity, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-08-13

    Nuclear Power Plant Construction Activity 1985 presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1985. This Report, which is updated annually, was prepared to respond to the numerous requests received by the Energy Information Administration for the data collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction.''

  6. Nuclear power plant construction activity, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-24

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

  7. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect (OSTI)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  8. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect (OSTI)

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  9. Sinem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de Provence SASSinem Geothermal Power Plant Jump to:

  10. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01

    Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cinvolved in the gasification of biomass to produce gas are

  11. COMMISSIONDECISION Small Power Plant Exemption (06-SPPE-2)

    E-Print Network [OSTI]

    ............................................................................. 14 Transmission Line Safety & Nuisance...................................................... 15 to review and license proposals to construct and operate large electric power plants, includingCOMMISSIONDECISION Small Power Plant Exemption (06-SPPE-2) Imperial County Order No: 07

  12. Secretary Chu Visits Vogtle Nuclear Power Plant | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu Visits Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to...

  13. Geothermal Power Plants — Minimizing Land Use and Impact

    Broader source: Energy.gov [DOE]

    For energy production and development, geothermal power plants don't use much land compared to coal and nuclear power plants. And the environmental impact upon the land they use is minimal.

  14. Construction Underway on First Geothermal Power Plant in New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction Underway on First Geothermal Power Plant in New Mexico Construction Underway on First Geothermal Power Plant in New Mexico September 10, 2008 - 4:38pm Addthis Photo of...

  15. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Energy Savers [EERE]

    California Geothermal Power Plant to Help Meet High Lithium Demand California Geothermal Power Plant to Help Meet High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever...

  16. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

  17. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Environmental Management (EM)

    Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended...

  18. Power plant productivity improvement in New York

    SciTech Connect (OSTI)

    None

    1981-03-01

    The New York Public Service Commission (PSC), under contract with the US Department of Energy (DOE), began a joint program in September 1978 to improve the productivity of coal and nuclear electric generating units in New York State. The project had dual objectives: to ensure that the utilities in New York State have or develop a systematic permanent, cost-effective productivity improvement program based on sound engineering and economic considerations, and to develop a model program for Power Plant Productivity Improvement, which, through DOE, can also be utilized by other regulatory commissions in the country. To accomplish these objectives, the program was organized into the following sequence of activities: compilation and analysis of power plant performance data; evaluation and comparison of utility responses to outage/derating events; power plant productivity improvement project cost-benefit analysis; and evaluation of regulatory procedures and policies for improving productivity. The program that developed for improving the productivity of coal units is substantially different than for nuclear units. Each program is presented, and recommendations are made for activities of both the utilities and regulatory agencies which will promote improved productivity.

  19. Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain in their power plants. This paper proposes significant extensions to the electric power supply chain network generators faced with a portfolio of power plant options and subject to pollution taxes. We then demonstrate

  20. Rehabilitation of an anthracite-burning power plant in Ukraine with introduction of coal preparation

    SciTech Connect (OSTI)

    Ruether, J.; Killmeyer, R. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Schimmoller, B.; Gollakota, S.

    1996-12-31

    A study is being carried out jointly by the United States Department of Energy and the Ukrainian Ministry of Power and Electrification for rehabilitation of an anthracite-burning power station in the Donbass region of eastern Ukraine. The power station, named Luganskaya GRES, is laboring under deteriorating coal quality (the ash level is ranging towards 40% compared to the design value of 18%) and the physical plant is in need of repair. Approaches under consideration for the rehabilitation include upgrading the existing 200-MW{sub e} (gross) wall-fired boilers, repowering with circulating fluidized bed combustors, and the use of coal preparation. Coal washability tests conducted as part of the study indicate the coal is amenable to washing. The paper describes approaches to coal preparation being considered that provide design value coal for wall-fired boilers while minimizing rejection of Btus and generation of solid waste.

  1. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Broader source: Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  2. Geothermal Power Plants — Meeting Water Quality and Conservation Standards

    Broader source: Energy.gov [DOE]

    U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

  3. Compound hybrid geothermal-fossil power plants: thermodynamic...

    Office of Scientific and Technical Information (OSTI)

    SUPERHEATING; THERMODYNAMICS; WELL TEMPERATURE; WELLHEADS; WESTERN REGION; HEATING; HYDROGEN COMPOUNDS; NORTH AMERICA; OXYGEN COMPOUNDS; POWER PLANTS; RESERVOIR TEMPERATURE;...

  4. Direct Measurement of Mercury Reactions In Coal Power Plant Plumes

    SciTech Connect (OSTI)

    Leonard Levin

    2005-12-31

    Recent field and pilot-scale results indicate that divalent mercury emitted from power plants may rapidly transform to elemental mercury within the power plant plumes. Simulations of mercury chemistry in plumes based on measured rates to date have improved regional model fits to Mercury Deposition Network wet deposition data for particular years, while not degrading model verification fits for remaining years of the ensemble. The years with improved fit are those with simulated deposition in grid cells in the State of Pennsylvania that have matching MDN station data significantly less than the model values. This project seeks to establish a full-scale data basis for whether or not significant reduction or oxidation reactions occur to mercury emitted from coal-fired power plants, and what numerical redox rate should apply for extension to other sources and for modeling of power plant mercury plumes locally, regionally, and nationally. Although in-stack mercury (Hg) speciation measurements are essential to the development of control technologies and to provide data for input into atmospheric fate and transport models, the determination of speciation in a cooling coal combustion plume is more relevant for use in estimating Hg fate and effects through the atmosphere. It is mercury transformations that may occur in the plume that determine the eventual rate and patterns of mercury deposited to the earth's surface. A necessary first step in developing a supportable approach to modeling any such transformations is to directly measure the forms and concentrations of mercury from the stack exit downwind to full dispersion in the atmosphere. As a result, a study was sponsored by EPRI and jointly funded by EPRI, the U.S Department of Energy (DOE), and the Wisconsin Department of Administration. The study was designed to further our understanding of plume chemistry. The study was carried out at the We Energies Pleasant Prairie Power Plant, Pleasant Prairie, Wisconsin, just west of Kenosha. Aircraft and ground measurements support the occurrence of a reduction in the fraction of reactive gaseous mercury (RGM) (with a corresponding increase in elemental mercury) as part of the Total Gaseous Mercury (TGM) emitted from the Pleasant Prairie stack. This occurrence is based on comparison of the RGM concentrations in the plume (at standard conditions) compared to the RGM in the stack. There was found to be a 44% drop in the fraction of RGM between the stack exit and the first sampling arc and a 66% reduction from the stack to the 5-mile sampling arc, with no additional drop between the 5- and 10-mile arcs. Smaller-scale experiments in both test chambers and pilot-scale coal combustor exhaust streams have indicated the presence of rapid and relatively complete reduction reactions converting divalent into elemental mercury within power plant plumes prior to full dispersion in the atmosphere. These measurements, however, have been unable to identify whether the reactions occur during plume rise from physical to virtual stack height (during positive thermal buoyancy). The presence, rate, completeness, ubiquity, and dependence on source characteristics of these reactions, however, must be demonstrated in plume environments associated with fully operational power plants. That requirement, to capture either the reactions or the reaction products of chemistry that may be occurring very close to stack exits in highly turbulent environments, constrains the precision and reproducibility with which such full-scale experiments can be carried out. The work described here is one of several initial steps required to test whether, and in what direction, such rapid mercury redox reactions might be occurring in such plumes.

  5. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  6. Hybrid Modeling and Control of a Hydroelectric Power Plant

    E-Print Network [OSTI]

    Ferrari-Trecate, Giancarlo

    Hybrid Modeling and Control of a Hydroelectric Power Plant Giancarlo Ferrari-Trecate, Domenico,mignone,castagnoli,morari}@aut.ee.ethz.ch Abstract In this work we present the model of a hydroelectric power plant in the framework of Mixed Logic with a model predictive control scheme. 1 Introduction The outflow control for hydroelectric power plants

  7. POWER PLANT IMPACT ASSESSMENT: A SIMPLE FISHERY PRODUCTION MODEL APPROACH

    E-Print Network [OSTI]

    POWER PLANT IMPACT ASSESSMENT: A SIMPLE FISHERY PRODUCTION MODEL APPROACH ALECD. MACCALL,' KEITHR power plant entrainment mortality as a fraction (Rc) of the abundance ofthat cohort in the absence of power plant impact can be calculated by Rc = exp (-Ejtj) wheretj is the duration oflife stagei, and

  8. THE ARIES-CS COMPACT STELLARATOR FUSION POWER PLANT

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    THE ARIES-CS COMPACT STELLARATOR FUSION POWER PLANT F. NAJMABADI* and A. R. RAFFRAY Center stellarator power plants, ARIES-CS, has been conducted to explore attrac- tive compact stellarator by earlier stellarator power plant studies had led to cost projections much higher than those of the advanced

  9. ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS

    E-Print Network [OSTI]

    ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS: THE STARLITE STUDY Farrokh of operation for a tokamak power plant and the critical plasma physics and technology issues. During for fusion power plants was made. Five different regimes of operation were considered: (1) steady

  10. Corrosion Investigations at Masned Combined Heat and Power Plant

    E-Print Network [OSTI]

    . Introduction In Denmark, straw and other types of biomass are used for generating energy in power plants. StrawCorrosion Investigations at Masnedø Combined Heat and Power Plant Part VII Melanie Montgomery AT MASNEDØ COMBINED HEAT AND POWER PLANT PART VII CONTENTS 1. Introduction

  11. Aalborg Universitet Remote and Centralized Monitoring of PV Power Plants

    E-Print Network [OSTI]

    Sera, Dezso

    Aalborg Universitet Remote and Centralized Monitoring of PV Power Plants Kopacz, Csaba; Spataru., & Kerekes, T. (2014). Remote and Centralized Monitoring of PV Power Plants. In Proceedings of the 14th from vbn.aau.dk on: juli 04, 2015 #12;Remote and Centralized Monitoring of PV Power Plants Csaba Kopacz

  12. Optimal Maintenance Scheduling of a Power Plant with Seasonal

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    hours for periods with high electricity tariff Sasolburg Gas Engine Power Plant 18 Wärtsila 34 SG statement · Gas engine power plant ­ 18 identical engines with generation capacity = 10 MW ­ Only 1Optimal Maintenance Scheduling of a Power Plant with Seasonal Electricity Tariffs Pedro M. Castro

  13. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    gas-cooled central receiver and a steam-cycle power plant.gas turbines or Rankine-cycle steam turbines in the solar power plant.gas temperature required for steam Figure 6-3 shows the flowsheet for an alternative solar power plant

  14. Multi-objective optimization of solar tower power plants

    E-Print Network [OSTI]

    Ábrahám, Erika

    Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 MW) in Andalusia, Spain · Solar tower with receiver · Heliostat field with self-aligning mirrors

  15. The effects of moisture and particle size of feedlot biomass on co-firing burner performance 

    E-Print Network [OSTI]

    Chen, Chen-Jung

    2001-01-01

    based fuels. For coal fired power plants located around feedlots where cattle are raised, the renewable biomass is the cattle manure, called feedlot biomass (FB). Thus coal could be mixed with feedlot biomass and then fired in existing boiler burners...

  16. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    SciTech Connect (OSTI)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  17. Analysis of nuclear power plant construction costs

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  18. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01

    Model (WVM) for Solar PV Power Plants Matthew Lave, Jansolar photovoltaic (PV) power plant output given a singleproduce a simulated power plant output. The WVM is validated

  19. Use of experience curves to estimate the future cost of power plants with CO2 capture

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

    2007-01-01

    2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

  20. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

  1. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

  2. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Energy Storage in Concentrated Solar Thermal Power Plants AEnergy Storage in Concentrated Solar Thermal Power Plants by

  3. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications Afor Concentrating Solar Power Plant Applications by Melina

  4. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010, Graz,STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.heat transfer in solar thermal power plants utilizing phase

  5. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01

    Model (WVM) for Solar PV Power Plants Matthew Lave, Jansimulating solar photovoltaic (PV) power plant output giventhe power output of a solar photovoltaic (PV) plant was

  6. Heat Transfer and Thermophotovoltaic Power Generation in Oil-fired Heating Systems

    SciTech Connect (OSTI)

    Butcher, T.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R.

    2010-10-21

    The focus of this study is the production of electric power in an oil-fired, residential heatingsystem using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100 W - the power requirement for a boiler that uses low-power auxiliary components. The important heattransfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system.

  7. Global Coal Fired Power Generation Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <SilverChange Associates Jump to:EnergyCoal

  8. Germencik Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpen EnergyGermencik Geothermal Power Plant Jump to:

  9. Irem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIrem Geothermal Power Plant Jump to:

  10. Ndunga Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to:InformationNdunga Geothermal Power Plant Jump to:

  11. Niigata Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: Energy ResourcesNiigata Geothermal Power Plant Jump

  12. Relative Movements for Design of Commodities in Nuclear Power Plants

    Broader source: Energy.gov [DOE]

    Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

  13. Nuclear power plant performance assessment pertaining to plant aging in France and the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2013-01-01

    The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

  14. DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES

    SciTech Connect (OSTI)

    Leonard Levin

    2006-06-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Program Area of Interest: No.5--Environmental and Water Resources. The project team includes the Electric Power Research Institute (EPRI) as the contractor and the University of North Dakota Energy & Environmental Research Center (EERC) and Frontier Geosciences as subcontractors. Wisconsin Energies and its Pleasant Prairie Power Plant acted as host for the field-testing portion of the research. The project is aimed at clarifying the role, rates, and end results of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. Mercury emitted from power plants emerges in either its elemental, divalent, or particulate-bound form. Deposition of the divalent form is more likely to occur closer to the source than that of the other two forms, due to its solubility in water. Thus, if chemical transformations occur in the stack emissions plume, measurements in the stack may mischaracterize the fate of the material. Initial field and pilot plant measurements have shown significant and rapid chemical reduction of divalent to elemental mercury may occur in these plumes. Mercury models currently assume that the chemical form of mercury occurring in stacks is the same as that which enters the free atmosphere, with no alteration occurring in the emissions plume. Recent data indicate otherwise, but need to be evaluated at full operating scale under field conditions. Prestbo and others have demonstrated the likelihood of significant mercury chemical reactions occurring in power plant plumes (Prestbo et al., 1999; MDNR-PPRP, 2000; EERC, 2001). This experiment will thus increase our understanding of mercury atmospheric chemistry, allowing informed decisions regarding source attribution. The experiment was carried out during the period August 22-September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods. This progress report summarizes activities during a period of results review from the stack/aircraft subcontractor, data analysis and synthesis, and preparation and presentation of preliminary results to technical and oversight meetings.

  15. Modular stellarator reactor: a fusion power plant

    SciTech Connect (OSTI)

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  16. Coal Fired Power Generation Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover Hill High SchoolToolsAnalysis

  17. Coal Fired Power Generation Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover Hill High

  18. Coal Fired Power Generation Market Size | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover Hill High

  19. Coal Fired Power Generation Market Trends | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover Hill High

  20. Coal Fired Power Generation Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover Hill High

  1. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22

    In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive, immersive environment. The Virtual Engineering Framework (VEF), in effect a prototype framework, was developed through close collaboration with NETL supported research teams from Iowa State University Virtual Reality Applications Center (ISU-VRAC) and Carnegie Mellon University (CMU). The VEF is open source, compatible across systems ranging from inexpensive desktop PCs to large-scale, immersive facilities and provides support for heterogeneous distributed computing of plant simulations. The ability to compute plant economics through an interface that coupled the CMU IECM tool to the VEF was demonstrated, and the ability to couple the VEF to Aspen Plus, a commercial flowsheet modeling tool, was demonstrated. Models were interfaced to the framework using VES-Open. Tests were performed for interfacing CAPE-Open-compliant models to the framework. Where available, the developed models and plant simulations have been benchmarked against data from the open literature. The VEF has been installed at NETL. The VEF provides simulation capabilities not available in commercial simulation tools. It provides DOE engineers, scientists, and decision makers with a flexible and extensible simulation system that can be used to reduce the time, technical risk, and cost to develop the next generation of advanced, coal-fired power systems that will have low emissions and high efficiency. Furthermore, the VEF provides a common simulation system that NETL can use to help manage Advanced Power Systems Research projects, including both combustion- and gasification-based technologies.

  2. Biomass power plant feedstock procurement: Modeling transportation cost zones and the potential for competition

    E-Print Network [OSTI]

    Kizha., Anil R; Han, Han-Sup; Montgomery, Timothy; Hohl, Aaron

    2015-01-01

    transportation network Green Leaf Power plants Total* $Blue Lake Power and Green Leaf power plants have shut downElectric Company Green Leaf Power Pacific Gas & Electric

  3. Ryazan power plant feasibility study. Volume 2. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This study was funded by the U.S. Trade and Development Agency on behalf of the Ryazan Power Plant Joint Stock Company to assess the feasibility of rehabilitating the Ryazan Power Plant in Novomichurinsk, Russia. The scope of this study includes reviewing plant equipment and operations as well as making recommendations for upgrade to present day plant standards. The main emphasis of the report is on boiler analysis, but also includes all equipment from coal entering the plant to electrical power leaving the plant. This is the second of two volumes and is divided into the following sections: (C) Technical - Sections 6-18; (D) Commercial; (E) Socioeconomic Considerations; (F) Conclusions.

  4. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect (OSTI)

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  5. Optimal Endogenous Carbon Taxes Electric Power Supply Chains with Power Plants

    E-Print Network [OSTI]

    Nagurney, Anna

    Optimal Endogenous Carbon Taxes for Electric Power Supply Chains with Power Plants Anna Nagurney for the determination of optimal carbon taxes applied to electric power plants in the con- text of electric power supply portion of such policy inter- ventions directed at the electric power industry. The general framework

  6. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect (OSTI)

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  7. Aging assessment for active fire protection systems

    SciTech Connect (OSTI)

    Ross, S.B. [Science and Engineering Associates, Inc. (United States); Nowlen, S.P.; Tanaka, T. [Sandia National Labs., Albuquerque, NM (United States)

    1995-06-01

    This study assessed the impact of aging on the performance and reliability of active fire protection systems including both fixed fire suppression and fixed fire detection systems. The experience base shows that most nuclear power plants have an aggressive maintenance and testing program and are finding degraded fire protection system components before a failure occurs. Also, from the data reviewed it is clear that the risk impact of fire protection system aging is low. However, it is assumed that a more aggressive maintenance and testing program involving preventive diagnostics may reduce the risk impact even further.

  8. Bibliography of the Maryland Power Plant Research Program, fifteenth edition

    SciTech Connect (OSTI)

    McLean, R.I.

    1994-02-01

    The Power Plant Siting Act of 1971 established the Power Plant Research Program to insure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed tranmission line routes, assessing the impact of existing generation facilities, and investigating generic issues related to power plant site evaluation and associated environmental and land use considerations. The bibliography is a compilation of all the studies performed for and or by the Power Plant and Environmental Review Division since its inception.

  9. Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

    2014-07-01

    This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

  10. Power plant rehabilitation in Eastern Europe

    SciTech Connect (OSTI)

    Gaglia, B.N. [Pyropower Corp., San Diego, CA (United States); Lecesne, E. [ABB Power Generation Ltd., Baden (Switzerland)

    1995-12-31

    Beginning in 1989, political revolution in the former Eastern block countries precipitated a period of economic transformation from a centrally planned to a market-oriented economy. Because energy is a vital factor of any economic development, rehabilitation of the region`s aging and polluting energy sector is essential to achieving economic stability and growth. Today Eastern Europe is among the most polluted regions in the world. This is due to the absence of effective environmental responsibility over the last 40 years. The European Community and other Western countries have focused on Eastern Europe as a significant world environmental problem, particularly the Black Triangle area. To meet this challenge the governments of Poland, the Czech Republic, Germany and others have embarked on various programs to rehabilitate the key power stations in the region. This paper will present the various aspects of power plant rehabilitation including the installation of new efficient turbine generators, new digital control systems, renovated power cycle equipment and modern efficient clean coal circulating fluidized bed technology. The paper focuses on this issue by using the Turow 2 x 235 MW rehabilitation project in Bogatynia, Poland as a case study. Included in the paper will be a discussion of a broad range of issues affecting rehabilitation including technical considerations, financial and commercial limitations and political aspects.

  11. Aalborg Universitet FACTS Devices for Large Wind Power Plants

    E-Print Network [OSTI]

    Berning, Torsten

    of wind power has become significant, grid performance and stability is affected [3]-[5]. ThereforeAalborg Universitet FACTS Devices for Large Wind Power Plants Adamczyk, Andrzej Grzegorz., Teodorescu, R., Rodriguez, P., & Mukerjee, R. N. (2010). FACTS Devices for Large Wind Power Plants

  12. Fire Protection Program Assessment, Building 9203 & 9203A Complex- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment is intended to evaluate the fire hazards, life safety and fire protection features inherent in the Building 9203 and 9203A complex.

  13. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison

    2002-04-30

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on the development of our IGCC workbench. Preliminary CFD simulations for single stage and two stage ''generic'' gasifiers using firing conditions based on the Vision 21 reference configuration have been performed. Work is continuing on implementing an advanced slagging model into the CFD based gasifier model. An investigation into published gasification kinetics has highlighted a wide variance in predicted performance due to the choice of kinetic parameters. A plan has been outlined for developing the reactor models required to simulate the heat transfer and gas clean up equipment downstream of the gasifier. Three models that utilize the CCA software protocol have been integrated into a version of the IGCC workbench. Tests of a CCA implementation of our CFD code into the workbench demonstrated that the CCA CFD module can execute on a geographically remote PC (linked via the Internet) in a manner that is transparent to the user. Software tools to create ''walk-through'' visualizations of the flow field within a gasifier have been demonstrated.

  14. Risk-informed incident management for nuclear power plants

    E-Print Network [OSTI]

    Smith, Curtis Lee, 1966-

    2002-01-01

    Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

  15. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect (OSTI)

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  16. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  17. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  18. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  19. Site Characterization for CO{sub 2} Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    SciTech Connect (OSTI)

    Clark, Peter; Pashin, Jack; Carlson, Eric; Goodliffe, Andrew; McIntyre-Redden, Marcella; Mann, Steven; Thompson, Mason

    2012-08-31

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. iv While this part of the basin was found to be unsuitable for carbon dioxide injection, there is still a large storage capacity in the basin to the west of the power plants. It will, however, require pipeline construction to transport the carbon dioxide to the injection sites.

  20. The ARIES Advanced and Conservative Tokamak Power Plant Study...

    Office of Scientific and Technical Information (OSTI)

    ARIES Advanced and Conservative Tokamak Power Plant Study Kessel, C. E Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Tillak, M. S Univ. of California, San...

  1. Conservation Screening Curves to Compare Efficiency Investments to Power Plants

    E-Print Network [OSTI]

    Koomey, J.G.

    2008-01-01

    such as annualized capital costs, variable costs, and costsuch as annualized capital costs, variable costs, and costintercept is the annualized capital cost of the power plant,

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    to produce electricity by concentrating solar energy andcol- lected solar energy must be converted into electricitysolar power plant without energy storage for nighttime generation produces electricity

  3. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  4. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

  5. Geothermal Power Plants — Minimizing Solid Waste and Recovering Minerals

    Broader source: Energy.gov [DOE]

    Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

  6. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  7. Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power

    E-Print Network [OSTI]

    Teodorescu, Remus

    Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power approach to find two optimum energy storages (ESs) to build a hybrid system which is part of a virtual power plant. In this paper it means the combination of the hybrid energy storage system and wind power

  8. Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions

    E-Print Network [OSTI]

    from the heat recovery steam generator powers an additional steam turbine, providing extra electricBiennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk

  9. EEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description

    E-Print Network [OSTI]

    Zhang, Junshan

    using fossil, nuclear and renewable, including solar, geothermal, wind, hydroelectric, biomass and ocean. Components and operation of a nuclear power plant (2 lectures) 7. Hydroelectric power (1 lecture) 8

  10. Benchmarking Variable Cost Performance in an Industrial Power Plant 

    E-Print Network [OSTI]

    Kane, J. F.; Bailey, W. F.

    1998-01-01

    One of the most perplexing problems for industrial power plants committed to improving competitiveness is measuring variable cost performance over time. Because variable costs like fuel and electricity represent the overwhelming majority of power...

  11. Salton Sea Power Plant Recognized as Most Innovative Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year....

  12. The use of field methods to evaluate the toxicity of lead to plants at a small arms firing range

    SciTech Connect (OSTI)

    DeShields, B.R.; Meredith, R.W.; Griffin, D.; Laughlin, T. [Harding Lawson Associates, Novato, CA (United States); Collins, W. [Army, Presidio of Monterey, CA (United States). Directorate of Environmental and Natural Resources Management

    1998-12-31

    The beach dunes at Fort Ord, California, were historically used as small arms firing ranges, resulting in the accumulation of spent bullets and varying concentrations of lead in soil. The form of the lead, and thus its bioavailability, is important in assessing associated ecological risks at firing ranges. Of particular interest at the beach firing ranges at Fort Ord are two species of buckwheat plants that provide habitat for an endangered butterfly. Initially, lead concentrations in soil and plant chaff were measured and root elongation bioassays were conducted. A linear correlation between lead in soil and lead in plant chaff was observed. However, the results of the bioassays were highly variable with no clear dose response pattern. Additional field studies were conducted to (1) further characterize lead concentrations in soil and plant tissue and (2) evaluate associations between soil lead concentrations and plant morphometric-variables. A relationship between soil and tissue lead concentrations was demonstrated. No significant associations between soil lead levels and plant health/condition were detected. Significant associations were observed between plant health/condition and factors other than lead.

  13. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect (OSTI)

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  14. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  15. Assessment of the Effect of Different Isolation Systems on Seismic Response of a Nuclear Power Plant

    E-Print Network [OSTI]

    Wong, Jenna

    2014-01-01

    Diesel Generators." Nuclear Power International MagazineIsolation Structure for Nuclear Power Plant, Japan ElectricIsolation System for Nuclear Power Plants, JEAG 4614-2000,

  16. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Coreysystems for concentrated solar thermal power (CSP) systems.

  17. Alloy Design for a Fusion Power Plant Richard Kemp

    E-Print Network [OSTI]

    Cambridge, University of

    Alloy Design for a Fusion Power Plant Richard Kemp Gonville and Caius College University, The Hunting Of The Snark #12;Abstract Fusion power is generated when hot deuterium and tritium nuclei react by the surrounding material struc- ture of the plant, transferring the heat of the reaction to an external cooling

  18. Optimal Maintenance Scheduling of a Gas Engine Power Plant

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimal Maintenance Scheduling of a Gas Engine Power Plant Pedro M. Castro Ignacio E. Grossmann MILP starting from GDP model September 4-5 2EWO Fall Meeting 2013 Problem statement · Gas Engine Power Plant Project in Sasolburg (SGEPP) ­ 18 identical gas engines consuming natural gas & producing

  19. Baca geothermal demonstration project. Power plant detail design document

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

  20. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in todayâ??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

  1. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering] [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering; Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering] [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

    1991-12-31

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  2. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. (Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering); Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering)

    1991-01-01

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  3. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect (OSTI)

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

  4. Sandia Energy - Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire Science Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Fire Science Fire ScienceTara Camacho-Lopez2015-05-11T17:01:52+0...

  5. Analysis of pure electrical and cogeneration steam power plants

    SciTech Connect (OSTI)

    Albar, A.F.

    1982-01-01

    General Electric's method of steam turbine performance was used with pure electrical and with cogeneration power plants at various flow rates. Comparisons were made for two cases: (1) the same amount of heat is added to each boiler and the amount of electrical power generated is compared; and (2) when each plant should produce the same amount of electric power and the amount of heat added to each boiler is compared. Cogeneration is energetically more efficient than pure electrical plant. Correlations for the dependence of heat rate, power generated, heat added to throttle flow ratio were obtained from this work.

  6. Simulating solar power plant variability : a review of current methods.

    SciTech Connect (OSTI)

    Lave, Matthew; Ellis, Abraham; Stein, Joshua S.

    2013-06-01

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  7. Removal action work plan for the YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-03-01

    The US Department of Energy is conducting environmental restoration activities at the Y-12 Plant in Oak Ridge, Tennessee. As part of these efforts, a removal action is planned for the former YS-860 Firing Ranges as described in the Action Memorandum for the project. This removal action work plan (RmAWP) is focused on the former YS-860 Firing Ranges, located outside the primary fenceline at the eastern end of the plant. This RmAWP defines the technical approach, procedures, and requirements for the removal of lead-contaminated soil and site restoration of the former YS-860 Firing Ranges at the Y-12 Plant. This RmAWP describes excavation, verification/confirmatory sampling, and reporting requirements for the project. Lower tier plans associated with the RmAWP, which are submitted as separate stand-alone documents, include a field sampling and analysis plan, a health and safety plan, a quality assurance project plan, a waste management plan, a data management implementation plan, and a best management practices plan. A site evaluation of the YS-86O Firing Ranges conducted in 1996 by Lockheed Martin Energy Systems, Inc., determined that elevated lead levels were present in the Firing Ranges target berm soils. The results of this sampling event form the basis for the removal action recommendation as described in the Action Memorandum for this project. This RmAWP contains a brief history and description of the Former YS-860 Firing Ranges Project, along with the current project schedule and milestones. This RmAWP also provides an overview of the technical requirements of the project, including a summary of the approach for the removal activities. Finally, the RmAWP identifies the regulatory requirements and the appropriate removal action responses to address applicable or relevant and appropriate requirements to achieve the project goals of substantially reducing the risk to human health and the environment.

  8. Development of a Dry Sorbent-based Post-Combustion CO2 Capture Technology for Retrofit in Existing Power Plants

    SciTech Connect (OSTI)

    Nelson, Thomas; Coleman, Luke; Anderson, Matthew; Gupta, Raghubir; Herr, Joshua; Kalluri, Ranjeeth; Pavani, Maruthi

    2009-12-31

    The objective of this research and development (R&D) project was to further the development of a solid sorbent-based CO2 capture process based on sodium carbonate (i.e. the Dry Carbonate Process) that is capable of capturing>90% of the CO2 as a nearly pure stream from coal-fired power plant flue gas with <35% increase in the cost of electrictiy (ICOE).

  9. Effects of fire severity on plant nutrient uptake reinforce alternate pathways of succession in boreal forests

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    composition. In black spruce forests of interior Alaska, fire severity impacts residual organic layer depth in response to variations in organic layer depth. Keywords Fire severity Á Boreal forest Á Soil nitrogen Á- sion in many boreal forests, and fire characteristics subsequently shape ecosystem structure

  10. Ryazan power plant feasibility study. Volume 1. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This study was funded by the U.S. Trade and Development Agency on behalf of the Ryazan Power Plant Joint Stock Company to assess the feasibility of rehabilitating the Ryazan Power Plant in Novomichurinsk, Russia. The scope of this study includes reviewing plant equipment and operations as well as making recommendations for upgrade to present day plant standards. The main emphasis of the report is on boiler analysis, but also includes all equipment from coal entering the plant to electrical power leaving the plant. This is the first of two volumes and is divided into the following sections: (A) Abstract; (B) Evaluation of Alternative Technologies; (C) Technical: Section 1- Coal Handling, Section 2- Feeders and Pulverizers, Section 3- Boiler, Section 4- Ash Handling, Section 5- Electrostatic Precipitator.

  11. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    SciTech Connect (OSTI)

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein.

  12. Preconstruction of the Honey Lake Hybrid Power Plant: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

  13. Rehabilitation and life extension -- Vojany fossil power plant

    SciTech Connect (OSTI)

    Kudlovsk, J.

    1998-07-01

    The article briefly describes an example of two plants' unit's rehabilitation and reconstruction, which operate in the Slovak Republic power system. The goals to be achieved for these power plants: enable further operation of the power plants (EVO 1, EVO 2) as the significant electricity supply elements in the Eastern part of the Slovak Republic and at the same time as important power plants which are able to meet primary and secondary power output demands and frequency regulation demands; assure the EVO units compliance with the new environmental legislation valid in the Slovak Republic for air quality protection; trends of the expected emission and nominal emission amount is shown; upgrade the unit's obsolete control system for the boilers.

  14. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    SciTech Connect (OSTI)

    Ellingwood, B.; Song, J. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two.

  15. Magnetic Detection of Microstructure Change in Power Plant Steels

    E-Print Network [OSTI]

    Yardley, Victoria Anne

    2003-07-12

    energy by a system of turbines and a generator. Figure 2.1 shows the route followed by the steam and water. Water is pumped into the boiler and converted to steam, then superheated. It is injected through nozzles onto the blades of the high pressure (HP... . – 2 – Chapter 2 Microstructural Evolution in Power Plant Steels 2.1 Power plant operation In power plant, heat energy from fuel combustion or nuclear fission is used to produce jets of steam. The kinetic energy of the steam is converted to electrical...

  16. Los Alamos Nuclear Plant Analyzer: an interactive power-plant simulation program

    SciTech Connect (OSTI)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.R.; Mahaffy, J.H.; Turner, M.R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware-adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis.

  17. On the form of the power equation for modeling solar chimney power plant systems

    E-Print Network [OSTI]

    Fathi, Nima; Vorobieff, Peter

    2015-01-01

    Recently several mathematical models of a solar chimney power plant were derived, studied for a variety of boundary conditions, and compared against CFD calculations. The importance of these analyses is about the accuracy of the derived pressure drop and output power equation for solar chimney power plant systems (SCPPS). We examine the assumptions underlying the derivation and present reasons to believe that some of the derived equations, specifically the power equation in this model, may require a correction to be applicable in more realistic conditions. The analytical resutls are compared against the available experimental data from the Manzanares power plant.

  18. Use of neurals networks in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (USA))

    1989-01-01

    A technique using neural networks as a means of diagnosing transients or abnormal conditions in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of sensor outputs or instrument readings that can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault, problem, or transient condition of the plant. A demonstration of the ability of this technique to identify causes of perturbations in the steam generator of a nuclear plant is presented. 3 refs., 4 figs.

  19. The Guy at the Controls: Labor Quality and Power Plant Efficiency

    E-Print Network [OSTI]

    Bushnell, Jim B; Wolfram, Catherine D

    2007-01-01

    Controls: Labor Quality and Power Plant Efficiency July 2007Controls: Labor Quality and Power Plant E ciency James B.on the fuel e ciency of power plants. Although electricity

  20. Biomass power plant feedstock procurement: Modeling transportation cost zones and the potential for competition

    E-Print Network [OSTI]

    Kizha., Anil R; Han, Han-Sup; Montgomery, Timothy; Hohl, Aaron

    2015-01-01

    network Green Leaf Power plants Total* $10/BDT Total Milesor exclusive for each power plant and TCZ. † Total areaof timberlands for each power plant within the $20/BDT TCZ (

  1. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Different types of solar power plants have been designed andAmong the concentrating solar power plants (CSPP) are Solar

  2. Use of experience curves to estimate the future cost of power plants with CO2 capture

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

    2007-01-01

    of power plant emissions of greenhouse gases, and thee) power plant FGD and SCR systems; also, (f) gas turbineno IGCC power plant has yet combined CO 2 capture with a gas

  3. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

  4. Microbial activities in forest soils exposed to chronic depositions from a lignite power plant

    E-Print Network [OSTI]

    Klose, Susanne; Wernecke, K D; Makeschin, F

    2004-01-01

    around a coal-burning power plant: a case study in the Czechdepositions from a lignite power plant Susanne Klose 1* ,DEPOSITIONS FROM A LIGNITE POWER PLANT Susanne Klose 1* ,

  5. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  6. Power plant cumulative environmental impact report. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    This report presents the results of studies conducted by the Power Plant Siting Program (PPSP) to determine the cumulative impact of power plants on Maryland's environment. Included in this report are: (1) current and projected power demands and consumption in Maryland; (2) current and planned power generation; (3) air impacts; (4) aquatic effects; (5) radiological effects; (6) social and economic considerations; (7) noise impacts; (8) groundwater effects; (9) solid waste management concerns; (10) transmission line impacts; and (11) descriptions of cooling towers in Maryland. Also contained is the 1982 Ten Year Plan of Maryland Electric Utilities.

  7. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01

    for concentrating solar-thermal energy use a large number ofsolar energy and collecting the resulting thermal energy inBoth solar power plants absorb thermal energy in high-

  8. THE ARIES ADVANCED AND CONSERVATIVE TOKAMAK POWER PLANT STUDY

    Office of Scientific and Technical Information (OSTI)

    THE ARIES ADVANCED AND CONSERVATIVE TOKAMAK POWER PLANT STUDY C. E. KESSEL, a * M. S. TILLACK, b F. NAJMABADI, b F. M. POLI, a K. GHANTOUS, a N. GORELENKOV, a X. R. WANG, b D....

  9. ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING

    E-Print Network [OSTI]

    Mitchell, John E.

    ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING WATER REACTOR AND THE HEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Advanced Boiling Water Reactor - General Description . . . . . . . . . . . 3 2.1 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ii #12;4. Advanced Boiling Water Reactor . . . . . . . . . . . . . . . . . . . . . . . 46 4

  10. Risk Framework for the Next Generation Nuclear Power Plant Construction 

    E-Print Network [OSTI]

    Yeon, Jaeheum 1981-

    2012-12-11

    sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

  11. Intelligent User Interfaces for Expert System Applications in Power Plants 

    E-Print Network [OSTI]

    Frogner, B.

    1989-01-01

    the end-user with all the capabilities still available. An expert system for diagnosis of heat rate degradation in power plants is discussed to illustrate the utility of the approach....

  12. EIS-0377: Big Stone II Power Plant and Transmission Project

    Broader source: Energy.gov [DOE]

    A systems study was carried out to identify the most appropriate locations to interconnect the proposed Big Stone II power plant to the regional utility grid. The study also identified transmission...

  13. North Brawley Power Plant Placed in Service; Currently Generating...

    Open Energy Info (EERE)

    North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  14. The Industrial Power Plant Management System - An Engineering Approach 

    E-Print Network [OSTI]

    Aarnio, S. E.; Tarvainen, H. J.; Tinnis, V.

    1979-01-01

    Based on energy studies in over 70 plants in the forest products industry, experience has shown that, in addition to process improvements, the most important energy conservation measures in mill power departments are: - Load shedding and fuel...

  15. Wind Power Variability, Its Cost, and Effect on Power Plant Emissions

    E-Print Network [OSTI]

    Wind Power Variability, Its Cost, and Effect on Power Plant Emissions A Dissertation Submitted The recent growth in wind power is transforming the operation of electricity systems by introducing. As a result, system operators are learning in real-time how to incorporate wind power and its variability

  16. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  17. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  18. STARFIRE: a commercial tokamak fusion power plant study

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction.

  19. Novel Dry Cooling Technology for Power Plants

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  20. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect (OSTI)

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  1. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect (OSTI)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  2. Overall Power Core Configuration and System Integration for ARIES-ACT1 Fusion Power Plant , M.S. Tillack1

    E-Print Network [OSTI]

    Overall Power Core Configuration and System Integration for ARIES-ACT1 Fusion Power Plant X.R. Wang Consulting, Fliederweg 3, D 76351 Linkenheim-Hochstetten, GERMANY, smalang@web.de ARIES-ACT1 power plant has of the fusion power plant, the power core components of a sector, including the inboard and outboard FW

  3. Use of expert systems in nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  4. Japanese RDF-fired power generation system and fundamental research on RDF combustion

    SciTech Connect (OSTI)

    Narukawa, Kimihito; Goto, Hidenori; Chen, Y.; Yamazaki, Ryouhei; Moi, Shiegkatsu; Fujima, Yukihisa; Hirama, Toshimasa; Hosoda, Hideo

    1997-12-31

    Power generation from refuse derived fuel (RDF) is one of the new technologies for municipal solid waste (MSW) management. This technology is strongly attracting the attention of the Japanese government. The results of a feasibility study of this system in Japan is presented. To develop this highly efficient RDF-fired CFB generating process, combustibility and dechlorination characteristics of RDF were investigated by both the thermo-balance technique and combustion tests with an electric furnace. RDF combustion tests by a bench scale CFBC were carried out and then the following experimental results were obtained: (1) RDF can be combusted almost completely even in small scale CFBC; (2) HCl and N{sub 2}O emissions are quite low at any conditions; and (3) NO{sub x} emissions are a little higher in single stage combustion, however they are reduced at 50% air bias ratio. Some of the results can be explained by a RDF combustion model.

  5. Winter study of power plant effects

    SciTech Connect (OSTI)

    Patrinos, A.A.N.

    1980-10-01

    As a part of DOE's Meteorological Effects of Thermal Energy Releases (METER) program a field study was undertaken at the Bowen Electric Generating Plant (Plant Bowen) in December 1979. The study was a joint endeavor of Battelle Pacific Northwest Laboratories (PNL), Pennsylvania State University (PSU), and Oak Ridge National Laboratory (ORNL) with the main objective of determining the effects of the plant's smokestack effluents on aerosol characteristics and precipitation chemistry. Other objectives included studies of cooling tower temperature and humidity (T/h) plumes and drift drop concentrations. Conducted over a period of three weeks, the study involved an instrumented aircraft, pilot balloons, a tethered balloon system, a dense network of wetfall chemistry collectors and numerous ground- and tower-based meteorological instruments. Rainfall samples collected during the precipitation event of December 13, 1979, revealed some evidence of plume washout. The tethered balloon flights rarely detected the faint presence of the T/h plumes while the airborne measurements program concentrated on the study of SO/sub 2/ to sulfate conversion. A series of plume observations confirmed the suitability of the plant's windset for plume direction determinations.

  6. EEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description

    E-Print Network [OSTI]

    Zhang, Junshan

    . Environmental impact of electric generation (3 lectures) 9. Advanced energy conversion systems (geothermalEEE 463 Electrical Power Plants (3) [F] Course (Catalog) Description: Generation of electric power using fossil, nuclear and renewable, including solar, geothermal, wind, hydroelectric, biomass and ocean

  7. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect (OSTI)

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  8. Financial and ratepayer impacts of nuclear power plant regulatory reform

    SciTech Connect (OSTI)

    Turpin, A.G.

    1985-01-01

    Three reports - ''The Future Market for Electric Generating Capacity,'' ''Quantitative Analysis of Nuclear Power Plant Licensing Reform,'' and ''Nuclear Rate Increase Study'' are recent studies performed by the Los Alamos National Laboratory that deal with nuclear power. This presents a short summary of these three studies. More detail is given in the reports.

  9. Some aspects of nuclear power plant safety under war conditions

    SciTech Connect (OSTI)

    Stritar, A.; Mavko, B.; Susnik, J.; Sarler, B. (Jozef Stefan Inst., Ljubljana (Slovenia))

    1993-02-01

    In the summer of 1991, the Krsko nuclear power plant in Slovenia found itself in an area of military operations. This was probably the first commercial nuclear power plant to have been threatened by an attack by fighter jets. A number of never-before-asked questions had to be answered by the operating staff and supporting organizations. Some aspects of nuclear power plant safety under war conditions are described, such as the selection of the best plant operating state before the attack and the determination of plant system vulnerability and dose releases from the potentially damaged spent fuel in the spent-fuel pit. The best operating mode to which the plant should be brought before the attack is cold shutdown, and radiological consequences to the environment after the spent fuel is damaged and the water in the pit is lost are not very high. The problem of nuclear power plant safety under war conditions should be addressed in more detail in the future.

  10. Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia

    E-Print Network [OSTI]

    system of a small size enterprise. The project realisation started in 1999 with boiler installation Program for Co-operation in Central and Eastern Europe (PSO-programme). The boiler has a capacity of 605 kWth and is fired by clean wood residues from sawmills owned by the SFE. The biofuel-fired boiler replaced three old

  11. Alloy Design for a Fusion Power Plant

    E-Print Network [OSTI]

    Kemp, Richard

    has been published in the Journal of Nuclear Materials, or has been submitted for publication in the proceed- ings of the 12th International Conference on Fusion Reactor Materials and Energy Materials. Richard Kemp August 8, 2006 Acknowledgements I... control systems and plant engineering (the to-be-built International Thermonuclear 3 2.2 The first-wall environment Experimental Reactor, ITER) to run concurrently with a fusion-spectrum material ir- radiation facility (the International Fusion Materials...

  12. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:Delta Electric Power AssnDelugeDemarest,

  13. The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world

    E-Print Network [OSTI]

    Laughlin, Robert B.

    only be achieved through the extensive use of renewable energy sources. Each year, the sun sends over for power generation and solar-thermal collectors for producing hot water. The solar- thermal principle i from the sun into electricity. This is done in large-scale power plants with a capacity of up to 250

  14. Submerged passively-safe power plant

    SciTech Connect (OSTI)

    Herring, J.S.

    1991-12-31

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

  15. Submerged passively-safe power plant

    DOE Patents [OSTI]

    Herring, J.S.

    1993-09-21

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process. 8 figures.

  16. Submerged passively-safe power plant

    DOE Patents [OSTI]

    Herring, J. Stephen (Idaho Falls, ID)

    1993-01-01

    The invention as presented consists of a submerged passively-safe power station including a pressurized water reactor capable of generating at least 600 MW of electricity, encased in a double hull vessel, and provides fresh water by using the spent thermal energy in a multistage flash desalination process.

  17. EEE 598 27074 Power Plant Control & Monitoring This class deals with the Dynamics, Control, and Operations of Electric Power Systems.

    E-Print Network [OSTI]

    Zhang, Junshan

    drives - constant / adjustable speed Power plant characteristics Steam plants - turbine dynamics - boiler configurations, dynamics, controls Gas turbines - control fundamentals - operational limits, constraints

  18. Capture-Ready Power Plants -Options, Technologies and Economics Mark C. Bohm

    E-Print Network [OSTI]

    1 Capture-Ready Power Plants - Options, Technologies and Economics by Mark C. Bohm Bachelor and Policy Program #12;2 #12;3 Capture-ready Power Plants ­ Options, Technologies and Costs by Mark C. Bohm of a plant. Power plant owners and policymakers are interested in capture-ready plants because they may offer

  19. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  20. Yamagawa Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch, New1991)Yalesville,YamagawaYamagawa

  1. Yangbajain Geothrmal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch,Yamhill,

  2. Electric power plant emissions and public health

    SciTech Connect (OSTI)

    O'Connor, A.B.; Roy, C.

    2008-02-15

    The generation of electric power is one important source of pollutants such as mercury, sulfur dioxide, nitrogen oxides, and fine particulate matter that can affect the respiratory, cardiovascular, and central nervous systems and cause pregnancy complications. But protecting people from environmental health hazards has become increasingly complex. Air pollutants are often invisible and travel many miles virtually undetected. Nurses can play a critical role in preventive strategies, as well as in the national debate on energy production and dependence on fossil fuels.

  3. Rotokawa Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklinRohmRoshniRotokawa Geothermal Power

  4. Simulation and Optimization on Power Plant Operation Using SEGA's EOP Program 

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Turner, W. D.; Liu, M.

    2000-01-01

    The operation of a cogeneration power plant is complicated. The Energy Optimization Program (EOP, software made by SEGA, Inc.) was designed to simulate and optimize the operation of TAMU power plant. All major plant components were represented...

  5. Simulation and Optimization on Power Plant Operation Using Sega's EOP Program 

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Turner, W. D.; Liu, M.

    2000-01-01

    The operation of a cogeneration power plant is complicated. The Energy Optimization Program (EOP, software made by SEGA, Inc.) was designed to simulate and optimize the operation of TAMU power plant. All major plant components were represented...

  6. Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel

    SciTech Connect (OSTI)

    Oar, D.L.

    1994-09-29

    This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

  7. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  8. Can New Nuclear Power Plants be Project Financed?

    E-Print Network [OSTI]

    Taylor, Simon

    plant & desalination plant 2007 2.8 Calyon, Citigroup, SMBC Abu Dhabi Water & Electricity Authority, International Power, Marubeni Sakhalin II, Russia Liquefied natural gas & oil development 2008 5.3 Japan Bank for International Cooperation... lenders. This third party would therefore need to be highly creditworthy, or receive guarantees from export credit agencies or similar state- backed entities. 3 http://www.horizonnuclearpower.com/ EPRG...

  9. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  11. Pailas Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View New Pages Recent Changes AllPailas Geothermal Power

  12. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermal Multi-layer4Study of the Use of

  13. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermal Multi-layer4Study of the Use

  14. Addressing employee concerns about welding in a nuclear power plant

    SciTech Connect (OSTI)

    Danko, J.C.; Hansen, D.D.; O'Leary, P.D.

    1988-03-01

    A leading utility contracted with EG and G Idaho to perform a comprehensive, independent evaluation of the utility's welding program with respect to the safety-related welds made at one of its nuclear power plants. The purpose of this paper is to review a number of the employee concerns and the technical basis for the disposition of these concerns. In addition, recommendations are presented that may help to prevent the recurrence of employee concerns in future nuclear power plant construction, and thereby costly delays may be avoided and welding productivity and quality improved.

  15. Neural networks and their application to nuclear power plant diagnosis

    SciTech Connect (OSTI)

    Reifman, J. [Argonne National Lab., IL (United States). Reactor Analysis Div.

    1997-10-01

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.

  16. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect (OSTI)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  17. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  18. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  19. Intelligent Component Monitoring for Nuclear Power Plants

    SciTech Connect (OSTI)

    Lefteri Tsoukalas

    2010-07-30

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  20. Microsoft PowerPoint - Fire Safety workshop NQA-1 CGD 4 29 15...

    Office of Environmental Management (EM)

    Programs Workshop Fire Safety Track May 5th, 2015 Overview NQA 1 Commercial Grade Dedication Critical Characteristics Department of Energy Nuclear and Facility Safety Programs...

  1. Aalborg Universitet HVDC Connected Offshore Wind Power Plants: Review and Outlook of Current

    E-Print Network [OSTI]

    Bak, Claus Leth

    Aalborg Universitet HVDC Connected Offshore Wind Power Plants: Review and Outlook of Current., ... Kjær, P. C. (2013). HVDC Connected Offshore Wind Power Plants: Review and Outlook of Current Research Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants

  2. Quiz: Know Your Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow Your Power Plants Quiz: Know Your Power

  3. Peach Bottom and Vermont Yankee Nuclear Power Plants

    SciTech Connect (OSTI)

    NONE

    1992-12-31

    A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governments provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.

  4. Decentralised optimisation of cogeneration in virtual power plants

    SciTech Connect (OSTI)

    Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof

    2010-04-15

    Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key functionality of a virtual power plant is to increase the value of the produced power by clustering different plants. The first step of the optimisation concerns the local operation of the individual power generator, the second step is to calculate the contribution to the virtual power plant. With small extensions the suggested MILP algorithm can be used for an overall EEX (European Energy Exchange) optimised management of clustered CHP systems in form of the virtual power plant. This algorithm has been used to control cogeneration plants within a distribution grid. (author)

  5. Safeguard Requirements for Fusion Power Plants

    SciTech Connect (OSTI)

    Robert J. Goldston and Alexander Glaser

    2012-08-10

    Nuclear proliferation risks from magnetic fusion energy associated with access to fissile materials can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production and diversion of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state openly produces fissile material in violation of international agreements. The degree of risk in each of these categories is assessed, taking into account both state and non-state actors, and it is found that safeguards are required for fusion energy to be highly attractive from a non-proliferation standpoint. Specific safeguard requirements and R&D needs are outlined for each category of risk, and the technical capability of the ITER experiment, under construction, to contribute to this R&D is noted. A preliminary analysis indicates a potential legal pathway for fusion power systems to be brought under the Treaty for the Non-Proliferation of Nuclear Weapons. "Vertical" proliferation risks associated with tritium and with the knowledge that can be gained from inertial fusion energy R&D are outlined.

  6. Analysis of nuclear power plant component failures

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  7. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  8. Sabah barge-mounted power plant in service

    SciTech Connect (OSTI)

    Barker, T.

    1995-03-01

    The world`s largest barge-mounted simple-cycle power plant, constructed by the Sabah Shipyards in Malaysia, is now in service in the Philippines. Construction of similar barges from Westinghouse should begin shortly. This paper discusses in brief the projects in progress at present and prospects in the Asian market from the perspective of the manufacturers.

  9. reliable, efficient, ultra-clean Fuel Cell Power Plant Experience

    E-Print Network [OSTI]

    reliable, efficient, ultra-clean Fuel Cell Power Plant Experience Naval Applications US Department Shore Capacity - Low Profile, Easy Siting Connects to existing electricity and fuel infrastructure Cell Stack and operated with high sulfur naval logistic fuel (JP-5 jet fuel) · Over 1000 Hours of Fuel

  10. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  11. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  12. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  13. Ris9-R-609(EN) Simulation ofa PWR Power Plant

    E-Print Network [OSTI]

    with steam line, turbine and condenser, interconnected with pumps, valves and controllers. The model canRis9-R-609(EN) Simulation ofa PWR Power Plant for Process Control and Diagnosis Finn Ravnsbjerg ^N> for Process Control and Diagnosis Finn Ravnsbjerg Nielsen Risø National Laboratory, Roskilde

  14. Method of optimizing performance of Rankine cycle power plants

    DOE Patents [OSTI]

    Pope, William L. (Walnut Creek, CA); Pines, Howard S. (El Cerrito, CA); Doyle, Padraic A. (Oakland, CA); Silvester, Lenard F. (Richmond, CA)

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  15. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect (OSTI)

    Brown, R.C.; Smeenk, J.; Steinfeld, G.

    1998-09-30

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  16. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect (OSTI)

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  17. A Plantwide Control Procedure with Application to Control Structure Design for a Gas Power Plant

    E-Print Network [OSTI]

    Skogestad, Sigurd

    A Plantwide Control Procedure with Application to Control Structure Design for a Gas Power Plant #3 and Skogestad (2001) and apply it to a gas power plant. 1 Introduction A chemical plant may have thousands extend the plantwide control procedure of Larsson and Skogestad (2001) and apply it to a gas power plant

  18. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect (OSTI)

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  19. Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels

    E-Print Network [OSTI]

    generation of combined heat andcombined heat and power ­Clean Power with natural gas f lfuel ­Renewable Gas 30 ­ 42% Turbines * Combined Heat & Power 25 ­35% Micro- (CHP)) fuel cell applications( pp z ETHANOL z WASTE METHANE z BIOGASz BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency ­ High

  20. Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant

    SciTech Connect (OSTI)

    Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

    2011-01-01

    In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

  1. U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

  2. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)

  3. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect (OSTI)

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  4. Model-Free Based Water Level Control for Hydroelectric Power Plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model-Free Based Water Level Control for Hydroelectric Power Plants Cédric JOIN Gérard ROBERT for hydroelectric run-of-the river power plants. To modulate power generation, a level trajectory is planned, the set-point is followed even in severe operating conditions. Keywords: Hydroelectric power plants

  5. COMPARING MAINTENANCE APPROACHES FOR TOKAMAK FUSION POWER PLANTS* Lester M. Waganer

    E-Print Network [OSTI]

    California at San Diego, University of

    Waganer 1 COMPARING MAINTENANCE APPROACHES FOR TOKAMAK FUSION POWER PLANTS* Lester M. Waganer generic approaches for maintaining commercial fusion power plants are compared to determine the most tokamak power plant, the ARIES-AT1 . The scheduled and unscheduled maintenance times for the power core

  6. Web-based Tool for Preliminary Assessment of Wind Power Plant Design

    E-Print Network [OSTI]

    Borissova, Daniela

    Web-based Tool for Preliminary Assessment of Wind Power Plant Design Daniela Borissova1 and Ivan. Designing of reliable and cost-effective industrial wind power plant is a prerequisite for the effective use of wind power as an alternative resource. The design of a wind power plant includes the determination

  7. Aalborg Universitet An assessment of converter modelling needs for offshore wind power plants

    E-Print Network [OSTI]

    Bak, Claus Leth

    Aalborg Universitet An assessment of converter modelling needs for offshore wind power plants). An assessment of converter modelling needs for offshore wind power plants connected via VSC-HVDC networks Power into Power Systems as well as on Transmission Networks for Offshore Wind Plants. Energynautics

  8. Fusion Engineering and Design 38 (1997) 2757 Physics basis for a reversed shear tokamak power plant

    E-Print Network [OSTI]

    California at San Diego, University of

    1997-01-01

    fusion power plant. Analysis of plasma equilibrium and ideal MHD stability, bootstrap current and current the recirculating power fraction. The final plasma configuration for the ARIES-RS power plant obtains i of 4 reserved. Keywords: Reversed shear; Tokamak power plant; Plasma configuration 1. Introduction The reversed

  9. Improvement of load-following capacity based on the flame radiation intensity signal in a power plant

    SciTech Connect (OSTI)

    Fei Wang; Qunxing Huang; Dong Liu; Jianhua Yan; Kefa Cen [Zhejiang University, Hangzhou (China). State Key Laboratory of Clean Energy Utilization

    2008-05-15

    The capability to perform fast load changes has been an important issue due to the increasing commercialization of the power market. In the traditional boiler control system, the feedback signals come from the variations of the steam pressure and the steam flow, which leads to a large time delay. Therefore, a new method for the boiler control system based on radiation intensity for improving the load-following capacity of a coal-fired power plant has been developed in this paper. The system is implemented by adding the radiation intensity of the flame to the existing boiler control system as a complement. The radiation intensity obtained by the sensor can directly reflect the input heat in the boiler, with a faster response and higher sensitivity. Field tests on a 300 MW coal-fired power plant reveal that the improved boiler control system increases the load-following capacity. At the same time, the steam pressure variations are smaller as compared with those of the existing control system. 14 refs., 19 figs., 1 tab.

  10. Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired

    E-Print Network [OSTI]

    Nair, Sankar

    higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

  11. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

  12. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect (OSTI)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  13. Understanding the nature of nuclear power plant risk

    SciTech Connect (OSTI)

    Denning, R. S.

    2012-07-01

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  14. Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Problem

    SciTech Connect (OSTI)

    Petersen, Mette K.; Hansen, Lars H.; Bendtsen, Jan; Edlund, Kristian; Stoustrup, Jakob

    2014-10-17

    We consider a virtual power plant, which is given the task of dispatching a fluctuating power supply to a portfolio of flexible consumers. The flexible consumers are modeled as discrete batch processes, and the associated optimization problem is denoted the discrete virtual power plant dispatch problem (DVPPDP). First, the nondeterministic polynomial time (NP)-completeness of the discrete virtual power plant dispatch problem is proved formally. We then proceed to develop tailored versions of the meta-heuristic algorithms hill climber and greedy randomized adaptive search procedure (GRASP). The algorithms are tuned and tested on portfolios of varying sizes. We find that all the tailored algorithms perform satisfactorily in the sense that they are able to find sub-optimal, but usable, solutions to very large problems (on the order of 105 units) at computation times on the scale of just 10 s, which is far beyond the capabilities of the optimal algorithms we have tested. In particular, GRASP sorted shows with the most promising performance, as it is able to find solutions that are both agile (sorted) and well balanced, and consistently yields the best numerical performance among the developed algorithms.

  15. Analysis and optimization of the Graz cycle : a coal fired power generation scheme with near-zero carbon dioxide emissions

    E-Print Network [OSTI]

    Alexander, Brentan R

    2007-01-01

    Humans are releasing record amounts of carbon dioxide into the atmosphere through the combustion of fossil fuels in power generation plants. With mounting evidence that this carbon dioxide is a leading cause of global ...

  16. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    SciTech Connect (OSTI)

    Benson, Steven; Srinivasachar, Srivats; Laudal, Daniel; Browers, Bruce

    2014-12-31

    A novel hybrid solid sorbent technology for CO? capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO? by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO? heat of reaction and promote fast CO? capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO? capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO? and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO?/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO?/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO? and particulate. During parametric testing of the adsorber, CO? capture achieved using the 2-bed configuration with recirculation in both beds was 65-70% with a high flue gas CO? loading (~7%) and up to 85% with a low flue gas CO? loading (~4%). A sorbent regenerator system consisting of a pre-heater, desorber, and cooler is used to heat the CO?-rich sorbent with direct and indirect steam producing a nearly 100% pure stream of CO?. Parametric testing of the regenerator system demonstrated the impact of process conditions on both desorption rate and the heat of regeneration. Clear evidence of the use of specific process conditions that lower the overall energy of desorption was identified. This observation validates measurements made at the laboratory-scale. Several longer-term continuous tests were conducted to evaluate the performance of the sorbent/process as a function of time. Using a 2-bed configuration, sustained capture efficiency of 40-60% with a high flue gas CO? loading (~8%) and 70-80% with a low flue gas CO? loading (~4%) were achieved. However, sorbent working capacity was found to be considerably lower than laboratory-scale measurements. The low working capacity is attributed to insufficient sorbent/gas contact time in the adsorber. Sorbent properties that had a significant impact on CO? capture performance were identified. The results show that controlling these sorbent properties substantially improves CO? capture performance, with preliminary estimates indicating that relative improvement of ~30% is possible. Testing culminated with an operationally trouble-free test of 15 hours with sustainable performance. Overall, several practical strategies to increase performance of the sorbent and process were identified. The initial technical and economic assessment of the CACHYS™ process estimated the cost of CO2 capture was $36.19/ton with a 48.6% increase in levelized cost of electricity (LCOE) for the 550 MWe net plant. Using additional data gathered over the course of the project, and with revised technical and economic assumptions, the estimated cost of CO? capture with the CACHYS™ process is $39/ton (only inclu

  17. Power plant emissions verified remotely at Four Corners sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformancePi Day PiSafetyContact Power ServicesPower plant

  18. Utilization of Estonian oil shale at power plants

    SciTech Connect (OSTI)

    Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

    1996-12-31

    Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

  19. Improving the safety of LWR power plants. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs (improving or maintaining level of safety with simpler systems or in a more cost-effective manner).

  20. Aging management guideline for commercial nuclear power plants-pumps

    SciTech Connect (OSTI)

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D. [MDC-Ogden Environmental and Energy Services, Southfield, MI (United States)

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  1. Nuclear power plant fault-diagnosis using artificial neural networks

    SciTech Connect (OSTI)

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-01-01

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant's training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses.

  2. Medium Power Lead Alloy Fast Reactor Balance of Plant Options

    SciTech Connect (OSTI)

    Vaclav Dosta; Pavel Hejzlar; Neil E. Todreas; Jacopo Buongiorno

    2004-09-01

    Proper selection of the power conversion cycle is a very important step in the design of a nuclear reactor. Due to the higher core outlet temperature (~550°C) compared to that of light water reactors (~300°C), a wide portfolio of power cycles is available for the lead alloy fast reactor (LFR). Comparison of the following cycles for the LFR was performed: superheated steam (direct and indirect), supercritical steam, helium Brayton, and supercritical CO2 (S-CO2) recompression. Heat transfer from primary to secondary coolant was first analyzed and then the steam generators or heat exchangers were designed. The direct generation of steam in the lead alloy coolant was also evaluated. The resulting temperatures of the secondary fluids are in the range of 530-545°C, dictated by the fixed space available for the heat exchangers in the reactor vessel. For the direct steam generation situation, the temperature is 312°C. Optimization of each power cycle was carried out, yielding net plant efficiency of around 40% for the superheated steam cycle while the supercritical steam and S-CO2 cycles achieved net plant efficiency of 41%. The cycles were then compared based on their net plant efficiency and potential for low capital cost. The superheated steam cycle is a very good candidate cycle given its reasonably high net plant efficiency and ease of implementation based on the extensive knowledge and operating experience with this cycle. Although the supercritical steam cycle net plant efficiency is slightly better than that of the superheated steam cycle, its high complexity and high pressure result in higher capital cost, negatively affecting plant economics. The helium Brayton cycle achieves low net plant efficiency due to the low lead alloy core outlet temperature, and therefore, even though it is a simpler cycle than the steam cycles, its performance is mediocre in this application. The prime candidate, however, appears to be the S-CO2 recompression cycle, because it achieves about the same net plant efficiency as the supercritical steam cycle and is significantly simpler than the steam cycles. Moreover, the S-CO2 cycle offers a significantly higher potential for an increase in efficiency than steam cycles, after better materials allow the LFR operating temperatures to be increased. Therefore, the S-CO2 is chosen as the reference cycle for the LFR, with the superheated or supercritical steam cycles as backups if the S-CO2 cycle development efforts do not succeed.

  3. Incidents at nuclear power plants caused by the human factor

    SciTech Connect (OSTI)

    Mashin, V. A.

    2012-09-15

    Psychological analysis of the causes of incorrect actions by personnel is discussed as presented in the report 'Methodological guidelines for analyzing the causes of incidents in the operation of nuclear power plants.' The types of incorrect actions and classification of the root causes of errors by personnel are analyzed. Recommendations are made for improvements in the psychological analysis of causes of incorrect actions by personnel.

  4. Turbocharged PFBC Power Plant Technical and Economic Assessments 

    E-Print Network [OSTI]

    Leppke, D.

    1988-01-01

    . The SOX remova 1 process is integral with the combustion process rather than a separate system subject to upsets during combustion transients. 3. NOX production is low because of the lower combustion temperatures. 4. Waste is in a dry form... POWER PLANT TECHNICAL AND ECONOMIC ASSESSMENTS DELBERT M. LEPPKE Senior Technical Manager Fluor Daniel Chicago, Illinois Fluidized bed combustion (FBC) boilers are receiving considerable attention by the utility and industrial business...

  5. Controlling Emissions of SOx and NOx from power plants

    E-Print Network [OSTI]

    Toohey, Darin W.

    Controlling Emissions of SOx and NOx from power plants By: Ben Bernardo #12;Main Control2 2 H2S + SO2 2 H2O + 3 S The elemental sulfur is then sold and the emissions of SO2 and H2S 2 CaSO3 + CO2 + H2O CaCO3 + SO2 CaSO3 + CO2 #12;Main Control Technologies for NOx Combustion

  6. Supercritical plants to come online in 2009

    SciTech Connect (OSTI)

    Spring, N.

    2009-07-15

    A trio of coal-fired power plants using supercritical technology set to enter service this year. These are: We Energies is Elm Road Generating Station in Wisconsin, a two-unit, 1,230 MW supercritical plant that will burn bituminous coal; a 750 MW supercritical coal-fired power plant at the Comanche Generating Station in Pueblo, Colo., the third unit at the site; and Luminant's Oak Grove plant in Texas which will consist of two supercritical, lignite-fueled power generation units. When complete, the plant will deliver about 1,6000 MW. Some details are given on each of these projects. 2 photos.

  7. Carter, L.D. 20 FOSSIL-FUELED POWER PLANTS; COAL GASIFICATION...

    Office of Scientific and Technical Information (OSTI)

    carbon capture, utilisation, and storage Carter, L.D. 20 FOSSIL-FUELED POWER PLANTS; COAL GASIFICATION; POWER GENERATION; CARBON DIOXIDE; CAPTURE; STORAGE; USA; ENHANCED...

  8. Method of Equivalencing for a Large Wind Power Plant with Multiple Turbine Representation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Pasupulati, S.; Ellis, A.; Kosterov, D.

    2008-07-01

    This paper focuses on our effort to develop an equivalent representation of a Wind Power Plant collector system for power system planning studies.

  9. Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

  10. 30 DIRECT ENERGY CONVERSION; 20 FOSSIL-FUELED POWER PLANTS; 32...

    Office of Scientific and Technical Information (OSTI)

    Lee, G.T.; Sudhoff, F.A. 30 DIRECT ENERGY CONVERSION; 20 FOSSIL-FUELED POWER PLANTS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; FUEL CELL POWER PLANTS; GAS TURBINE...

  11. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    Patent: PH adjustment of power plant cooling water with flue gasfly ash Citation Details In-Document Search Title: PH adjustment of power plant cooling water with flue gasfly ash...

  12. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    PH adjustment of power plant cooling water with flue gasfly ash Citation Details In-Document Search Title: PH adjustment of power plant cooling water with flue gasfly ash A...

  13. The Effect of Power Plants on Local Housing Values and Rents: Evidence from Restricted Census Microdata

    E-Print Network [OSTI]

    Davis, Lucas W.

    2008-01-01

    Current trends in electricity consumption imply that hundreds of new fossil-fuel power plants will be built in the United States over the next several decades. Power plant siting has become increasingly contentious, in ...

  14. Risks and decision making in development of new power plant projects

    E-Print Network [OSTI]

    Kristinsdottir, Asbjorg

    2012-01-01

    Power plant development projects are typically capital intensive and subject to a complex network of interconnected risks that impact development's performance. Failure to develop a power plant to meet performance constraints ...

  15. Assessing the costs of solar power plants for the Island of Roatàn

    E-Print Network [OSTI]

    Huwe, Ethan (Ethan L.)

    2011-01-01

    This is an analysis assessing the installation costs of different solar power plant technologies and the current commercial availability for installation on the Island or Roatàn. Commercial large-scale power plants have ...

  16. Modelling of power plant dynamics and uncertainties for robust control synthesis *

    E-Print Network [OSTI]

    Ray, Asok

    , TRAC type models3 have been applied to perform safety analysis of nuclear power plants. However, complex dynamic processes such as fossil and nuclear power plants can be modelled and simulated

  17. Title: Net Energy Ratio and Greenhouse Gas Analysis of a Biogas Power Plant

    E-Print Network [OSTI]

    Bauer, Wolfgang

    of a Biogas Power Plant Author: W. Bauer Author Affiliation: Department and greenhouse gas analysis for a 1.45 MW (0.71 MW electrical) biogas power plant

  18. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    SciTech Connect (OSTI)

    James T. Cobb Jr.

    2005-02-10

    Phase I of this project began by obtaining R&D variances for permits at the NIOSH boilerplant (NBP), Emery Tree Service (ETS) and the J. A. Rutter Company (JARC) for their portions of the project. Wood for the test burn was obtained from the JARC inventory (pallets), Thompson Properties and Seven D Corporation (construction wood), and the Arlington Heights Housing Project (demolition wood). The wood was ground at ETS and JARC, delivered to the Three Rivers Terminal and blended with coal. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NBP. Blends using hammermilled wood were operationally successful. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and evaluated. During the first year of Phase II the principal work focused upon searching for a replacement boilerplant and developing a commercial supply of demolition wood. The NBP withdrew from the project and a search began for another stoker boilerplant in Pennsylvania to replace it on the project. Three potential commercial demolition wood providers were contacted. Two were not be able to supply wood. At the end of the first year of Phase II, discussions were continuing with the third one, a commercial demolition wood provider from northern New Jersey. During the two-and-a-third years of the contract extension it was determined that the demolition wood from northern New Jersey was impractical for use in Pittsburgh, in another power plant in central New Jersey, and in a new wood gasifier being planned in Philadelphia. However, the project team did identify sufficient wood from other sources for the gasifier project. The Principal Investigator of this project assisted a feasibility study of wood gasification in Clarion County, Pennsylvania. As a result of the study, an independent power producer in the county has initiated a small wood gasification project at its site. Throughout much of this total project the Principal Investigator has counseled two small businesses in developing a waxed cardboard pellet business. A recent test burn of this biofuel appears successful and a purchase contract is anticipated soon. During the past two months a major tree-trimming firm has shown an active interest in entering the wood-chip fuel market in the Pittsburgh area and has contacted the NBP, among others, as potential customers. The NBP superintendent is currently in discussion with the facilities management of the Bruceton Research Center about resuming their interest in cofiring this renewable fuel to the stoker there.

  19. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  20. The Guy at the Controls: Labor Quality and Power Plant Efficiency

    E-Print Network [OSTI]

    Bushnell, Jim B; Wolfram, Catherine D

    2007-01-01

    the performance of generating plants. We focus on the roleThe generating sector encompasses the power plants wherePlant and Unit Characteristics Unit characteristics are taken from the \\Base Generating