National Library of Energy BETA

Sample records for fire suppression equipment

  1. Fire suppressing apparatus. [sodium fires

    DOE Patents [OSTI]

    Buttrey, K.E.

    1980-12-19

    Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubed depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.

  2. Fire suppressing apparatus

    DOE Patents [OSTI]

    Buttrey, Kenneth E.

    1982-11-02

    Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubes depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.

  3. Reduction of fire hazards on large mining equipment

    SciTech Connect (OSTI)

    Maria I. De Rosa

    2008-09-15

    Although standards and regulations are in place to prevent large mining equipment fires, recent analyses of mine accident data show that mining equipment fires still occur with alarming frequency and grave consequences, particularly at all surface mines and in underground metal/nonmetal mines. Recently technological advances in fire protection, combined with the statistical data on equipment fires, led NIOSH to reinvestigate this and to improve operator safety. NIOSH demonstrated that newly developed technologies, such as dual cab fire inerting systems and engine compartment fire barriers, can greatly enhance operator safety and lessen the damage of property during large mobile equipment fires. 10 refs., 5 figs.

  4. Verification study of an emerging fire suppression system (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | DOE PAGES Verification study of an emerging fire suppression system This content will become publicly available on January 1, 2017 « Prev Next » Title: Verification study of an emerging fire suppression system Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Moreover, plutonium gloveboxes present harsh environmental conditions for polymer materials; these include radiation damage and chemical exposure, both of which

  5. DOE Fire Protection Handbook, Volume II. Fire effects and electrical and electronic equipment

    SciTech Connect (OSTI)

    1994-08-18

    Electrical and electronic equipment, including computers, are used at critical facilities throughout the Department of Energy (DOE). Hughes Associates, Inc. was tasked to evaluate the potential thermal and nonthermal effects of a fire on the electrical and electronic equipment and methods to analyze, evaluate, and assist in controlling the potential effects. This report is a result of a literature review and analysis on the effects of fire on electrical equipment. It is directed at three objectives: (1) Provide a state-of-the-art review and analysis of thermal and nonthermal damage to electrical and electronic equipment; (2) Develop a procedure for estimating thermal and nonthermal damage considerations using current knowledge; and (3) Develop an R&D/T&E program to fill gaps in the current knowledge needed to further perfect the procedure. The literature review was performed utilizing existing electronic databases. Sources searched included scientific and engineering databases including Dialog, NTIS, SciSearch and NIST BFRL literature. Incorporated in the analysis is unpublished literature and conversations with members of the ASTM E-5.21, Smoke Corrosivity, and researchers in the electronics field. This report does not consider the effects of fire suppression systems or efforts. Further analysis of the potential impact is required in the future.

  6. Benchmark enclosure fire suppression experiments - phase 1 test report.

    SciTech Connect (OSTI)

    Figueroa, Victor G.; Nichols, Robert Thomas; Blanchat, Thomas K.

    2007-06-01

    A series of fire benchmark water suppression tests were performed that may provide guidance for dispersal systems for the protection of high value assets. The test results provide boundary and temporal data necessary for water spray suppression model development and validation. A review of fire suppression in presented for both gaseous suppression and water mist fire suppression. The experimental setup and procedure for gathering water suppression performance data are shown. Characteristics of the nozzles used in the testing are presented. Results of the experiments are discussed.

  7. Calculation of Fire Severity Factors and Fire Non-Suppression Probabilities For A DOE Facility Fire PRA

    SciTech Connect (OSTI)

    Tom Elicson; Bentley Harwood; Jim Bouchard; Heather Lucek

    2011-03-01

    Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. The fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: • Development of time-dependent fire heat release rate profiles (required as input to CFAST), • Calculation of fire severity factors based on CFAST detailed fire modeling, and • Calculation of fire non-suppression probabilities.

  8. Alternative approach for fire suppression of class A, B and C fires in gloveboxes

    SciTech Connect (OSTI)

    Rosenberger, Mark S; Tsiagkouris, James A

    2011-02-10

    Department of Energy (DOE) Orders and National Fire Protection Association (NFPA) Codes and Standards require fire suppression in gloveboxes. Several potential solutions have been and are currently being considered at Los Alamos National Laboratory (LANL). The objective is to provide reliable, minimally invasive, and seismically robust fire suppression capable of extinguishing Class A, B, and C fires; achieve compliance with DOE and NFPA requirements; and provide value-added improvements to fire safety in gloveboxes. This report provides a brief summary of current approaches and also documents the successful fire tests conducted to prove that one approach, specifically Fire Foe{trademark} tubes, is capable of achieving the requirement to provide reliable fire protection in gloveboxes in a cost-effective manner.

  9. Verification study of an emerging fire suppression system

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Waked, R. Ryan; Granzow, Howard N.; Gubernatis, David C.

    2016-01-01

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Moreover, plutonium gloveboxes present harsh environmental conditions for polymer materials; these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. Several studies have been conducted to determine the robustness of selfcontained fire extinguishers in plutonium gloveboxes in a nuclear facility, verification tests must be performed. These tests include activation and mass loss calorimeter tests. In addition, compatibility issues with chemical components of the self-contained fire extinguishers need to be addressed. Our study presents activation and mass loss calorimeter test results. After extensive studies, no critical areas of concern have been identified for the plutonium glovebox application of Fire Foe™, except for glovebox operations that use large quantities of bulk plutonium or uranium metal such as metal casting and pyro-chemistry operations.

  10. Reliability study of an emerging fire suppression system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, David A.; Rossati, Lyric M.; Fritz, Nathan K.; Cournoyer, Michael E.; Granzow, Howard N.

    2015-02-07

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Plutonium gloveboxes are known to present harsh environmental conditions for polymer materials, these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. The primary component of interest in self-contained fire extinguishers is the nylon 6-6 machined tube that comprises the main body of the system.Thermo-mechanical modeling and characterization of nylon 6-6 for use in plutonium glovebox applications has been carried out. Data has been generated regarding property degradation leading to poor, or reduced, engineering performancemore » of nylon 6-6 components. In this study, nylon 6-6 tensile specimens conforming to the casing of self-contained fire extinguisher systems have been exposed to hydrochloric, nitric, and sulfuric acids. This information was used to predict the performance of a load bearing engineering component comprised of nylon 6-6 and designed to operate in a consistent manner over a specified time period. The study provides a fundamental understanding of the engineering performance of the fire suppression system and the effects of environmental degradation due to acid exposure on engineering performance. Data generated help identify the limitations of self-contained fire extinguishers. No critical areas of concern for plutonium glovebox applications of nylon 6-6 have been identified when considering exposure to mineral acid.« less

  11. Reliability study of an emerging fire suppression system

    SciTech Connect (OSTI)

    Miller, David A.; Rossati, Lyric M.; Fritz, Nathan K.; Cournoyer, Michael E.; Granzow, Howard N.

    2015-02-07

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Plutonium gloveboxes are known to present harsh environmental conditions for polymer materials, these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. The primary component of interest in self-contained fire extinguishers is the nylon 6-6 machined tube that comprises the main body of the system.Thermo-mechanical modeling and characterization of nylon 6-6 for use in plutonium glovebox applications has been carried out. Data has been generated regarding property degradation leading to poor, or reduced, engineering performance of nylon 6-6 components. In this study, nylon 6-6 tensile specimens conforming to the casing of self-contained fire extinguisher systems have been exposed to hydrochloric, nitric, and sulfuric acids. This information was used to predict the performance of a load bearing engineering component comprised of nylon 6-6 and designed to operate in a consistent manner over a specified time period. The study provides a fundamental understanding of the engineering performance of the fire suppression system and the effects of environmental degradation due to acid exposure on engineering performance. Data generated help identify the limitations of self-contained fire extinguishers. No critical areas of concern for plutonium glovebox applications of nylon 6-6 have been identified when considering exposure to mineral acid.

  12. Memorandum, Managed Phase Out of Halon Fixed Fire Suppression Systems- May 5, 1993

    Broader source: Energy.gov [DOE]

    The purpose of this memorandum is to provide additional interim departmental criteria on the management of the reduction and potential elimination of Halon fire extinguishing systems within the Department of Energy (DOE). This memorandum supplements the joint Office of Safety and Quality Assurance/Office of Projects and Facilities Management memorandum of September 27, 1990, in which guidance was provided on the installation of new Halon 1301 fixed fire suppression systems and halon 1211 portable fire extinguishers.

  13. New Emergency Equipment Notifications 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notifications 2016 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated January 8, 2016 Underground Fire Suppression Vehicles

  14. High energy arcing fault fires in switchgear equipment : a literature review.

    SciTech Connect (OSTI)

    Nowlen, Steven Patrick; Brown, Jason W.; Wyant, Francis John

    2008-10-01

    In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

  15. New Emergency Equipment Notifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notifications Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated October 20, 2015 Underground Fire Suppression Vehicles (2) Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dana C. Bryson/CBFO and Philip J. Breidenbach/NWP dated September 30, 2015 Underground Ambulance #3 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number:

  16. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect (OSTI)

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

  17. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    SciTech Connect (OSTI)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination with feedwater heating, would result in heat rate reductions of 7.43 percent for PRB coal and 10.45 percent for lignite.

  18. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    SciTech Connect (OSTI)

    Brooks, William; Basso, Thomas; Coddington, Michael

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  19. Degradation of Nylon 6,6 Fire-Suppression Casing from Plutonium Glove Boxes Under Alpha and Neutron Irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Millsap, Donald W.; Cournoyer, Michael E.; Landsberger, Sheldon; Tesmer, Joseph R.; Wang, Matthew Y.

    2015-04-23

    Nylon 6,6 tensile specimens, conforming to the casing for self-contained fire extinguisher systems, have been irradiated using both an accelerator He++ ion beam and a 5-Ci PuBe neutron source to model the radiation damage these systems would likely incur over a lifetime of operation within glove boxes. Following irradiation, these samples were mechanically tested using standard practices as described in ASTM D638. The results of the He++ study indicate that the tensile strength of the nylon specimens undergoes some slight (<10%) degradation while other properties of the samples, such as elongation and tangent modulus, appear to fluctuate with increasing dosemore » levels. The He++-irradiated specimens also have a noticeable level of discoloration corresponding to increasing levels of dose. The neutron-irradiated samples show a higher degree of mechanical degradation than the He++-irradiated samples.« less

  20. Fire Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Emergency Communication Fire Information Fire Information Focusing on fire prevention and protection. Contact Fire Management Officer Manuel J. L'Esperance...

  1. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    SciTech Connect (OSTI)

    Brooks, William

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  2. Your Home Fire Safety Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YourHome FireSafety Checklist U.S. Consumer Product Safety Commission Washington, D.C. 20207 Table of Contents About the Commission Introduction Sources Of Fire Supplemental Home Heating Equipment . . . . . . . . . . 1 Cooking Equipment . . . . . . . . . . . . 4 Cigarette Lighters and Matches . . . 4 Materials That Burn Upholstered Furniture . . . . . . . . . . 5 Mattresses and Bedding . . . . . . . . . 6 Wearing Apparel . . . . . . . . . . . . . . 6 Flammable Liquids . . . . . . . . . . . . 7

  3. MSHA (Mine Safety and Health Administration) approved mine rescue - training module (coal): fires, fire fighting, and explosions. Mine rescue team series

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Mine rescue teams frequently must fight fires and guard against the propagation of fires or explosions during a rescue and recovery operation. The team's ability to fight fires depends a great deal on hands-on experience with different fire fighting agents and equipment. The team's work includes an assessment of fire conditions, mine fire gases and other potential hazards associated with fire fighting activity. This training module covers the underlying principles of the fire triangle and the different methods for controlling, containing and extinguishing fires in a mine. The manual also covers fire-fighting equipment, considerations involved in a sealing operation and the cause-effect of explosions.

  4. fire rescue | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fire rescue

  5. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces;...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Install Waste Heat Recovery Systems for Fuel-Fired Furnaces For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. ...

  6. Fire protection program fiscal year 1997 site support program plan - Hanford fire department

    SciTech Connect (OSTI)

    Good, D.E., Westinghouse Hanford

    1996-07-01

    The mission of the Hanford Fires Department (HFD) is to support the safe and timely cleanup of the Hanford Site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. this includes response to surrounding fire department districts under mutual aids agreements and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site. the fire department also provides site fire marshal overview authority, fire system testing, and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention and education.

  7. Coal-fired boiler for petroleum refinery

    SciTech Connect (OSTI)

    Ketterman, W.R.; Heinzmann, D.A.

    1982-01-01

    There has been a significant amount of interest in conversion from oil/gas fired boilers to coal-fired equipment since the Arab oil embargo of 1973. The CRA Incorporated Coffeyville Refinery decided in 1977 to proceed with the installation of a 86.183 Kg/h coal fired boiler to generate process steam at 650 psig (4,482 k Pa) 596/sup 0/F (313/sup 0/C). A significant portion of this steam is passed through steam turbines to obtain mechanical power. Building and operating a coal-fired steam plant is a ''Different Kettle of Fish'' from building and operating an oil/gas-fired steam plant. The intention of this paper is to deal with some of the ''Why's and Wherefores'' of the conversion to coal-fired equipment.

  8. Fire Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-05

    This Standard was developed to provide acceptable methods and approaches for meeting DOE fire protection program and design requirements and to address special or unique fire protection issues at DOE facilities that are not comprehensively or adequately addressed in national consensus standards or other design criteria.

  9. Cleanroom Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conventional Machining Engis Lapping and Polishing Machine MET One particle Counter Sand Blaster Cabinet Flycutting Machine Lithography Equipment Mann 600 Pattern Generator Oriel UV Exposure Station with Aligner Quintel UL7000-OBS Aligner and DUV Exposure Station Metrology Equipment AFT 210XP Nanospec Digital Instrument 3100 SPM Hitachi S-4500II Field Emission SEM Hitachi U-2001 NIR-UV-VUS Spectrophotometer Nikon MM-22U Measuroscope Nikon OPTIPHOT-88 Optical Microscope OXFORD Plasmalab System

  10. California State Fire Marshal Information Bulletin

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    California State Fire Marshal Information Bulletin April 27, 2009 INFORMATION REGARDING PLACEMENT OF E85 FUEL DISPENSING EQUIPMENT ON STATE OWNED OR STATE LEASED FACILITIES In an effort to assist interested parties with criteria addressing E85 dispensing equipment, the Office of the State Fire Marshal (OSFM) is providing this informational bulletin. E85 is the acronym for an alcohol-blended gasoline fuel that contains between 15 to 85 percent ethanol (alcohol). Presently, there are over 10,000

  11. Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier

    SciTech Connect (OSTI)

    Ward, Anderson L.; Berlin, Gregory T.; Cammann, Jerry W.; Leary, Kevin D.; Link, Steven O.

    2008-09-29

    Wildfire is a frequent perturbation in shrub steppe ecosystems, altering the flora, fauna, atmosphere, and soil of these systems. Research on the fire effects has focused mostly on natural ecosystems with essentially no attention on engineered systems like surface barriers. The scope of the project is to use a simulated wildfire to induce changes in an engineered surface barrier and document the effects on barrier performance. The main objective is to quantify the effects of burning and the resulting post-fire conditions on alterations in soil physical properties; hydrologic response, particularly the water balance; geochemical properties; and biological properties. A secondary objective is to use the lessons learned to maximize fire protection in the design of long-term monitoring systems based on electronic sensors. A simulated wildfire will be initiated, controlled and monitored at the 200-BP-1 barrier in collaboration with the Hanford Fire Department during the fall of 2008. The north half of the barrier will be divided into nine 12 x 12 m plots, each of which will be randomly assigned a fuel load of 2 kg m-2 or 4 kg m-2. Each plot will be ignited around the perimeter and flames allowed to carry to the centre. Any remaining unburned vegetation will be manually burned off using a drip torch. Progress of the fire and its effects will be monitored using point measurements of thermal, hydrologic, and biotic variables. Three measures of fire intensity will be used to characterize fire behavior: (1) flame height, (2) the maximum temperature at three vertical profile levels, and (3) total duration of elevated temperature at these levels. Pre-burn plant information, including species diversity, plant height, and canopy diameter will be measured on shrubs from the plots to be burned and from control plots at the McGee ranch. General assessments of shrub survival, recovery, and recruitment will be made after the fire. Near-surface soil samples will be collected pre- and post-burn to determine changes in the gravel content of the surface layer so as to quantify inflationary or deflationary responses to fire and to reveal the ability of the surface to resist post-fire erosive stresses. Measures of bulk density, water repellency, water retention, and hydraulic conductivity will be used to characterize changes in infiltration rates and water storage capacity following the fire. Samples will also be analyzed to quantify geochemical changes including changes in soil pH, cation exchange capacity, specific surface area, and the concentration of macro nutrients (e.g. N, P, K) and other elements such as Na, Mg, Ca, that are critical to the post-fire recovery revegetation. Soil CO2 emissions will be measured monthly for one year following the burn to document post-fire stimulation of carbon turnover and soil biogenic emissions. Surface and subsurface temperature measurements at and near monitoring installations will be used to document fire effects on electronic equipment. The results of this study will be used to bridge the gaps in knowledge on the effects of fire on engineered ecosystems (e.g. surface barriers), particularly the hydrologic and biotic characteristics that govern the water and energy balance. These results will also support the development of practical fire management techniques for barriers that are compatible with wildfire suppression strategies. Furthermore, lessons learned will be use to develop installation strategies needed to protect electronic monitoring equipment from the intense heat of fire and the potential damaging effects of smoke and fire extinguishing agents. Such information is needed to better understand long-term barrier performance under extreme conditions, especially if site maintenance and operational funding is lost for activities such as barrier revegetation.

  12. Wildland Fire Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Schwager, K.; Green, T. M.

    2014-10-01

    The DOE policy for managing wildland fires requires that all areas managed by DOE and/or Its various contractors which can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wildland fire, operational, and prescribed fires. FMPs provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. The plan will be reviewed periodically to ensure fire program advances and will evolve with the missions of DOE and BNL.

  13. Emergency sacrificial sealing method in filters, equipment, or systems

    DOE Patents [OSTI]

    Brown, Erik P

    2014-09-30

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  14. Mitigating Wildland Fires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigating Wildland Fires Mitigating Wildland Fires Our interactive wildland fire map displays the locations of wildland fire mitigation activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Open in Google Earth | View in Google Maps What we are doing to mitigate wildland fires Recent large wildfires in the area, including the La Mesa Fire (1977), the Dome Fire (1996), the Oso Fire (1998), the Cerro Grande Fire

  15. Laboratory Equipment Donation Program - Equipment Information

    Office of Scientific and Technical Information (OSTI)

    Before you Apply, please Print This Page for your records Equipment Details No Package found. Item Control Number: Equipment Type: Condition: Date Entered: (you have 30 days from ...

  16. Concrete Dust Suppression System. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    1998-12-01

    The improved technology is a water-based dust suppression system for controlling concrete dust generated by demolition equipment, in this case a demolition ram. This demonstration was performed to assess the effectiveness of this system to (1) minimize the amount of water used to suppress potentially contaminated dust, (2) focus the water spray on the dust-generating source and (3) minimize the dust cloud generated by the demolition activity. The technology successfully reduced the water required by a factor of eight compared to the traditional (baseline) method, controlled the dust generated, and permitted a reduction in the work force. The water spray can be focused at the ram point, but it is affected by wind. Prior to the use of this dust control system, dust generated by the demolition ram was controlled manually by spraying with fire hoses (the baseline technology). The improved technology is 18% less expensive than the baseline technology for the conditions and parameters of this demonstration, however, the automated system can save up to 80% versus the baseline whenever waste water treatment costs are considered. For demolishing one high-walled room and a long slab with a total of 413 m{sup 3} (14,580 ft{sup 3}) of concrete, the savings are $105,000 (waste water treatment included). The improved technology reduced the need for water consumption and treatment by about 88% which results in most of the savings.

  17. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

  18. Hanford Fire Department - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Hanford Fire Department Hanford Fire Department Home About Hanford Fire Department Fire and Life Safety Information Hot Links to Cool Spots Contact Hanford Fire Department Hanford Fire Department Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Hanford Fire Department Hanford Fire Department Logo The Hanford Fire Department is a highly trained and professional career industrial fire department with 145 members. We provide emergency fire, medical,

  19. Fire Hazards Listing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards Listing Fire Hazards Listing Focusing on fire prevention and protection. Contact Fire Management Officer Manuel J. L'Esperance Emergency Management (505) 667-1692 Email Currently reported fire hazards Below are the currently reported fire hazards. The list is updated each day by the close of business. Current fire hazards Hazard Description Date Submitted Status No hazards currently reported. Legend: R=Resolved, P=Pending, NAR=No Action Required

  20. Annual Fire Protection Program Summary for Calendar Year 2014 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 4 Annual Fire Protection Program Summary for Calendar Year 2014 This report, required by Department of Energy (DOE) Order 231.1B, Environment, Safety and Health Reporting, is the primary source for quantifying fire and fire-related monetary losses of properties, facilities, and equipment across the DOE Complex.The report for calendar year (CY) 2014 was summarized from information sent to Headquarters by 27* reporting elements, representing approximately 99 percent of DOE's facility

  1. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    This program demonstrates acceptable methods and examples to assist each DOE site in meeting the fire protection objectives provided in DOE Order 5480.7A, "Fire Protection."

  2. Wildland Fire Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Green,T.

    2009-10-23

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel. The BNL Fire Department is the lead on wildfire suppression. However, the BNL Natural Resource Manager will be assigned to all wildland fires as technical resource advisor.

  3. Fire Safety Training: Fire Modeling- NUREG 1934

    Broader source: Energy.gov [DOE]

    Presenter: Frederick W. Mowrer, Ph.D., P.E. Director Fire Protection Engineering Programs - Cal Poly – SLO

  4. Laboratory Equipment Donation Program - Equipment Applications

    Office of Scientific and Technical Information (OSTI)

    Specific questions concerning equipment should be directed to the point of contact responsible for the item(s) under consideration. This information is listed on the "Equipment Information" page, as well as on the grant award e-mail sent to the applicant. Step 1: Search and Apply for Equipment Note: If you know the Item Control Number of the equipment you need, you may go directly to the on-line application. Please follow these procedures to "Search Equipment" and apply for

  5. POST-FIRE REVEGETATION AT HANFORD

    SciTech Connect (OSTI)

    ROOS RC; JOHNSON AR; CAUDILL JG; RODRIGUEZ JM; WILDE JW

    2010-01-05

    Range fires on the Hanford Site can have a long lasting effect on native plant communities. Wind erosion following removal of protective vegetation from fragile soils compound the damaging effect of fires. Dust storms caused by erosion create health and safety hazards to personnel, and damage facilities and equipment. The Integrated Biological Control Program (IBC) revegetates burned areas to control erosion and consequent dust. Use of native, perennial vegetation in revegetation moves the resulting plant community away from fire-prone annual weeds, and toward the native shrub-steppe that is much less likely to burn in the future. Over the past 10 years, IBC has revegetated major fire areas with good success. IBC staff is monitoring the success of these efforts, and using lessons learned to improve future efforts.

  6. Fire Danger Matrix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Danger Matrix Fire Danger Matrix Focusing on fire prevention and protection. Matrix of fire danger ratings and descriptions Fire Danger Ratings Fire Danger Rating Wind Parameters Shot, Burn Activity Construction Sites Fuels Mitigation Spark Producing Activities Non- Motorized Activities Red Flag PROHIBITED: Approved with Restrictions: Approved Hazard Control Plan PROHIBITED: PROHIBITED: Approved with Restrictions: Two-way Communications Management Accountability Extreme *<10 mph Approved with

  7. Laboratory Equipment Donation Program - Equipment List

    Office of Scientific and Technical Information (OSTI)

    ...2016 Repairable NA 89022961190235 72358 WATER BLOCK 05172016 Repairable NA ... 89514161060003 LABORATORY EQUIPMENT AND SUPPLIES 05052016 Used NA 8991BB61130002 ...

  8. Health-Hazard Evaluation Report HETA 85-150-1767, Warwick Fire Department, Warwick, Rhode Island

    SciTech Connect (OSTI)

    Keenlyside, R.A.; House, L.A.; Kent, G.; Durand, J.M.

    1987-01-01

    In answer to a request from the International Association of Fire Fighters (IAFF), an evaluation was made of health complaints noted by fire fighters exposed to plastic products and pesticides during two separate fires attended to by the Warwick Fire Department, located in Warwick, Rhode Island. Questionnaires were administered to 43 persons who were only present at the plastics fire and 46 who were only present at the pesticide fire and to 13 present at both fires. The men who fought the plastic products fire and the pesticide fire apparently experienced acute symptoms related to smoke and chemical inhalation during the fires, including headache, cough, sore throat, wheezing, shortness of breath, rash, dizziness, nausea, blurred vision, and numbness. The authors conclude that fire fighters at these two fires experienced acute irritant symptoms from smoke and chemical inhalation. The authors recommend use of protective clothing, use of protective equipment, prefire planning, implementation of medical surveillance for all fire fighters, and the proper cleanup of protective clothing and equipment after fires.

  9. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  10. University of Delaware | CCEI Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Equipment Click column headings to sort Type Equipment Details Institution / Professor {Type} {Equipment} {Details} {Institution} {Lab} BACK TO TOP

  11. Fire Protection Program Metrics

    Broader source: Energy.gov [DOE]

    Presenter: Perry E. D ’Antonio, P.E., Acting Sr. Manager, Fire Protection - Sandia National Laboratories

  12. Fire In The Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a quarterly publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in

  13. Fire Protection Program Manual

    SciTech Connect (OSTI)

    Sharry, J A

    2012-05-18

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  14. Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL

    SciTech Connect (OSTI)

    Spickermann, Thomas

    2012-08-01

    In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergency situations; and (3) Plan recovery and keep squirrels out.

  15. UNIRIB: Equipment Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Development Technical Developments and Equipment In close collaboration with Holifield Radioactive Ion Beam Facility (HRIBF) scientists, researchers at University Radioactive Ion Beam (UNIRIB) consortium universities are offered the opportunity to perform low-energy nuclear structure research using radioactive/stable ion beams and experimental equipment available through HRIBF. UNIRIB, a division of the Oak Ridge Institute for Science and Education (ORISE), provides not only funding,

  16. Fire protection design criteria

    SciTech Connect (OSTI)

    1997-03-01

    This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, national Fire Protection Association Codes and Standards, and any other applicable DOE construction criteria. This Standard, along with other delineated criteria, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  17. Mitigating Wildland Fires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area will be assigned a retreatment cycle and will be incorporated into the LANL Wildland fire maintenance program. Environmental Protection What We Monitor & Why Cultural...

  18. Co-firing biomass

    SciTech Connect (OSTI)

    Hunt, T.; Tennant, D.

    2009-11-15

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  19. Direct-fired biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The direct-fired biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  20. Heavy Mobile Equipment Mechanic

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Heavy Mobile Equipment Mechanic (HMEM)...

  1. Hydrogen Equipment Certification Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... committees of ASME, SAE and ISO * Hydrogen has been used ... "approval" by the code official is required before ... or as meeting a standard. Listed - Equipment, ...

  2. LDRD report: Smoke effects on electrical equipment

    SciTech Connect (OSTI)

    TANAKA,TINA J.; BAYNES JR.,EDWARD E.; NOWLEN,STEVEN P.; BROCKMANN,JOHN E.; GRITZO,LOUIS A.; SHADDIX,CHRISTOPHER R.

    2000-03-01

    Smoke is known to cause electrical equipment failure, but the likelihood of immediate failure during a fire is unknown. Traditional failure assessment techniques measure the density of ionic contaminants deposited on surfaces to determine the need for cleaning or replacement of electronic equipment exposed to smoke. Such techniques focus on long-term effects, such as corrosion, but do not address the immediate effects of the fire. This document reports the results of tests on the immediate effects of smoke on electronic equipment. Various circuits and components were exposed to smoke from different fields in a static smoke exposure chamber and were monitored throughout the exposure. Electrically, the loss of insulation resistance was the most important change caused by smoke. For direct current circuits, soot collected on high-voltage surfaces sometimes formed semi-conductive soot bridges that shorted the circuit. For high voltage alternating current circuits, the smoke also tended to increase the likelihood of arcing, but did not accumulate on the surfaces. Static random access memory chips failed for high levels of smoke, but hard disk drives did not. High humidity increased the conductive properties of the smoke. The conductivity does not increase linearly with smoke density as first proposed; however, it does increase with quantity. The data can be used to give a rough estimate of the amount of smoke that will cause failures in CMOS memory chips, dc and ac circuits. Comparisons of this data to other fire tests can be made through the optical and mass density measurements of the smoke.

  3. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    8 Major Residential HVAC Equipment Lifetimes, Ages, and Replacement Picture Equipment Type Central Air Conditioners 8 - 14 11 8 5,354 Heat Pumps 9 - 15 12 8 1,260 Furnaces Electric 10 - 20 15 11 N.A. Gas-Fired 12 - 17 15 11 2,601 Oil-Fired 15 - 19 17 N.A. 149 Gas-Fired Boilers (1) 17 - 24 20 17 204 Note(s): Source(s): Lifetimes based on use by the first owner of the product, and do not necessarily indicate that the product stops working after this period. A replaced unit may be discarded or used

  4. Model Baseline Fire Department/Fire Protection Engineering Assessment

    Broader source: Energy.gov [DOE]

    The purpose of the document is to comprehensively delineate and rationalize the roles and responsibilities of the Fire Department and Fire Protection (Engineering).

  5. Fighting fire with fire | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fighting fire with fire Fighting fire with fire Posted: July 30, 2015 - 3:46pm Y-12 fire fighter Capt. John Fife drags a 165-pound dummy for 100 feet to simulate a fire victim rescue as part of Fit for Duty training. As surprising as this fact may be, heart attack and stroke cause more than half of all line-of-duty firefighter deaths. To counter this trend, fire departments nationally - including Pantex and Y-12 fire departments - have adopted occupational fitness programs. The percentage of

  6. Troubleshooting rotating equipment

    SciTech Connect (OSTI)

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  7. Fire Protection Training

    Broader source: Energy.gov [DOE]

    Fire Protection Training courses developed that provide needed information and a method to train fire departments and other emergency responders who may be called upon to respond to accidents involving radioactive materials along DOE transportation corridors and routes and to assist emergency responders located at or near a Department of Energy (DOE) site radiological transportation route.

  8. Fossil-Fired Boilers

    Energy Science and Technology Software Center (OSTI)

    1993-09-23

    Boiler Performance Model (BPM 3.0S) is a set of computer programs developed to analyze the performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, and can model coal, oil, or natural gas firing. The programs are intended for use by engineers performing analyses of alternative fuels, alternative operating modes, or boiler modifications.

  9. Fire Resources | Open Energy Information

    Open Energy Info (EERE)

    Fire Resources Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleFireResources&oldid612392" Feedback Contact needs updating Image needs...

  10. Contact Hanford Fire Department - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Contact Hanford Fire Department Hanford Fire Department Hanford Fire Department Home About Hanford Fire Department Fire and Life Safety Information Hot Links to Cool Spots Contact Hanford Fire Department Contact Hanford Fire Department Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size HanfordFire@rl.gov

  11. A spray-suppression model for turbulent combustion

    SciTech Connect (OSTI)

    DESJARDIN,PAUL E.; TIESZEN,SHELDON R.; GRITZO,LOUIS A.

    2000-02-14

    A spray-suppression model that captures the effects of liquid suppressant on a turbulent combusting flow is developed and applied to a turbulent diffusion flame with water spray suppression. The spray submodel is based on a stochastic separated flow approach that accounts for the transport and evaporation of liquid droplets. Flame extinguishment is accounted for by using a perfectly stirred reactor (PSR) submodel of turbulent combustion. PSR pre-calculations of flame extinction times are determined using CHEMKIN and are compared to local turbulent time scales of the flow to determine if local flame extinguishment has occurred. The PSR flame extinguishment and spray submodels are incorporated into Sandia's flow fire simulation code, VULCAN, and cases are run for the water spray suppression studies of McCaffrey for turbulent hydrogen-air jet diffusion flames. Predictions of flame temperature decrease and suppression efficiency are compared to experimental data as a function of water mass loading using three assumed values of drop sizes. The results show that the suppression efficiency is highly dependent on the initial droplet size for a given mass loading. A predicted optimal suppression efficiency was observed for the smallest class of droplets while the larger drops show increasing suppression efficiency with increasing mass loading for the range of mass loadings considered. Qualitative agreement to the experiment of suppression efficiency is encouraging, however quantitative agreement is limited due to the uncertainties in the boundary conditions of the experimental data for the water spray.

  12. Solar Equipment Certification

    Broader source: Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  13. About Hanford Fire Department - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Fire Department About Hanford Fire Department Hanford Fire Department Hanford Fire Department Home About Hanford Fire Department Fire and Life Safety Information Hot Links to Cool Spots Contact Hanford Fire Department About Hanford Fire Department Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Map of Hanford The mission of the Hanford Fire Department (HFD) is to support the activities of the Hanford Site by providing emergency incident management, fire

  14. Electronic firing systems and methods for firing a device

    DOE Patents [OSTI]

    Frickey, Steven J.; Svoboda, John M.

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  15. Fire Protection Database

    Broader source: Energy.gov [DOE]

    DOE O 231.1, Environment, Safety, And Health Reporting, requires the submission of an Annual Fire Protection Summary. The previous process used to collect the required data utilizes a Microsoft...

  16. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  17. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  18. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  19. Fire Protection Program Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related ...

  20. Hanford Site Fire June 2000 AM

    ScienceCinema (OSTI)

    None

    2010-09-01

    The Hanford Site Fire on the morning of June 29, 2000. Fire crews working to contain a fire on the Hanford Site in June 2000.

  1. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  2. Maintaining gas cooling equipment

    SciTech Connect (OSTI)

    Rector, J.D.

    1997-05-01

    An often overlooked key to satisfactory operation and longevity of any mechanical device is proper operation and maintenance in accordance with the manufacturer`s written instructions. Absorption chillers, although they use a different technology than the more familiar vapor compression cycle to produce chilled water, operate successfully in a variety of applications if operated and maintained properly. Maintenance procedures may be more frequent than those required for vapor compression chillers, but they are also typically less complex. The goal of this article is to describe the basic operation of an absorption chiller to provide an understanding of the relatively simple tasks required to keep the machine operating at maximum efficiency for its design life and beyond. A good starting point is definitions. Gas cooling equipment is generally defined as alternative energy, non-electric cooling products. This includes absorption chillers, engine-drive chillers and packaged desiccant units, among others. Natural gas combustion drives the equipment.

  3. Fire Protection Account Request Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fire Protection System Account Request Form To obtain a user id and password to access the Fire Protection system, please complete the form, save the file and email it to...

  4. Explosion suppression system

    DOE Patents [OSTI]

    Sapko, Michael J. (Finleyville, PA); Cortese, Robert A. (Pittsburgh, PA)

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  5. Secure authenticated video equipment

    SciTech Connect (OSTI)

    Doren, N.E.

    1993-07-01

    In the verification technology arena, there is a pressing need for surveillance and monitoring equipment that produces authentic, verifiable records of observed activities. Such a record provides the inspecting party with confidence that observed activities occurred as recorded, without undetected tampering or spoofing having taken place. The secure authenticated video equipment (SAVE) system provides an authenticated series of video images of an observed activity. Being self-contained and portable, it can be installed as a stand-alone surveillance system or used in conjunction with existing monitoring equipment in a non-invasive manner. Security is provided by a tamper-proof camera enclosure containing a private, electronic authentication key. Video data is transferred communication link consisting of a coaxial cable, fiber-optic link or other similar media. A video review station, located remotely from the camera, receives, validates, displays and stores the incoming data. Video data is validated within the review station using a public key, a copy of which is held by authorized panics. This scheme allows the holder of the public key to verify the authenticity of the recorded video data but precludes undetectable modification of the data generated by the tamper-protected private authentication key.

  6. Fire extinguishant for fissionable material

    DOE Patents [OSTI]

    Schmitt, Charles R.

    1976-01-01

    Carbon microspheres impregnated with a neutron poison are used as an extinguishant for radioactive and fissionable metal fires.

  7. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  8. Health-hazard evaluation report HETA 84-484-1754, Detroit Fire Fighters, Detroit, Michigan

    SciTech Connect (OSTI)

    Anderson, K.E.; Melius, J.M.

    1986-12-01

    In response to a request from the International Association of Fire Fighters on behalf of the Detroit Fire Fighters Association, Detroit, Michigan, a health hazard evaluation was made of respiratory symptoms and skin irritation in fire fighters involved in a large fire and explosion at a warehouse. Over 200 fire fighters from fire-fighting organizations in three communities were involved in the incident. Site runoff water contained chlordane and malathion in low parts per million; other samples were negative. Nose and throat irritation, cough, and shortness of breath were experienced by a large proportion of fire fighters following the fire, and in 14, 15, and 17 percent, respectively, symptoms persisted over 2 months. Symptoms were significantly associated with time spent at the scene and time spent in heavy smoke. Pulmonary function tests were abnormal in 14 cases, ten due to obstructive lung disease, three to restrictive lung disease, and one to a combination. The authors conclude that better protective equipment is needed for fire fighters at chemical fires. Recommendations include development of a hazardous-materials response team, and implementation of a routine medical surveillance program.

  9. Agricultural Equipment Technology Conference

    Broader source: Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  10. Equipment Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Specialist Equipment Specialist Submitted by admin on Sat, 2016-01-16 00:16 Job Summary Organization Name Department Of Energy Agency SubElement Bonneville Power...

  11. Hanford fire department FY 99 annual work plan WBS 6.5.7

    SciTech Connect (OSTI)

    GOOD, D.E.

    1999-02-24

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing a full range of services at the lowest possible cost to customers. These services include fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, the general public, or interest of the U. S. Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. The fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education.

  12. Pressure suppression containment system

    DOE Patents [OSTI]

    Gluntz, Douglas M.; Townsend, Harold E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto.

  13. Pressure suppression containment system

    DOE Patents [OSTI]

    Gluntz, D.M.; Townsend, H.E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of-coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto. 6 figures.

  14. Fire Protection Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fire Protection Program Fire Protection Program Fire Protection Overview The Department of Energy (DOE) Fire Protection Program is multi-faceted. It includes published fire safety directives (Orders, standards, and guidance documents), a range of oversight activities, an annual fire protection program summary. DOE also sponsors fire safety conferences, various training initiatives, and a spectrum of technical assistance activities. This page is intended to bring together in one location as much

  15. Equipment Pool | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pool What is the Equipment Pool? Property that is no longer required or being used by a research group or administrative office is sent to the Ames Laboratory's warehouse Equipment Pool area for reuitilization within the Laboratory. What property is in the Equipment Pool? 1. Visit the Equipment Pool Listing page, or 2. Visit our Ames Laboratory warehouse between the hours of 7:30-4 p.m. to view the items in the equipment pool. How do I request property from the Pool? Contact Brian Aspengren,

  16. Firefighting and fire prevention: Facilities instructions, standards and techniques. Volume 5-2

    SciTech Connect (OSTI)

    Watson, H.E.

    1992-02-01

    The operation and maintenance personnel around a powerplant, pumping plant, or other Reclamation establishment are not presumed to be firefighters, but occasionally their duties may make it necessary for them to fight fires. The purpose of this volume is to supply them with fundamental facts which may prove valuable in such an emergency and acquaint them with the use, care, and testing of firefighting equipment. It is assumed that operation and maintenance personnel are familiar with the common safety practices in connection with fire prevention and general safety around electrical equipment. This volume is designed to help improve the work along these lines.

  17. Ring magnet firing angle control

    DOE Patents [OSTI]

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  18. Report Wildland Fire Area Hazard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sighting (check box if animal poses serious threat) Trails (accessegress) Hazard Trees (falling, fire hazard) Utilities (Lab employees: use Form 1821 (pdf) to report utility...

  19. Puerto Rico - Renewable Energy Equipment Certification | Department...

    Broader source: Energy.gov (indexed) [DOE]

    State Puerto Rico Program Type Equipment Certification Summary Certification of Photovoltaic Equipment EAA specifies that PV equipment must meet UL 1703 requirements, and...

  20. Equipment Loans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loans Requirements to Loan Property: Ames Laboratory may loan Government Property provided the equipment is not excess to the Laboratory's needs. In order to loan equipment, the following criteria must be met: 1) Equipment shall be used in performing research, studies, and other efforts that result in benefits to both the U.S. Government, the borrower, and provided that the DOE mission is not affected. 2) Used by another DOE organization, contractor, Government agency, or organization that has a

  1. Laboratory Equipment Donation Program - Guidelines

    Office of Scientific and Technical Information (OSTI)

    The United States Department of Energy, in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. Universities, colleges and other non-profit educational institutions of higher learning in the United States are eligible to apply for equipment to use in energy-oriented educational programs in the life, physical, and environmental sciences, and in engineering. The equipment listed in this database is

  2. LANSCE | Lujan Center | Ancillary Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancillary Equipment For general questions, please contact the Lujan Center Sample Environments responsible: Victor Fanelli | vfanelli@lanl.gov | 505.667.8755 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact the Lujan Center Experiment Coordinator: TBA Low Temperature Equipment Specifications Flight Path/Instrument Compatibility Responsible Displex closed-cycle refrigerators Tmin= 4 K to 12 K Tmax= 300 K to 340 K 11 - Asterix 04 - HIPPO 03 - HIPD 10

  3. Commercial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers rebates for ENERGY STAR certified fryers, griddles, convection ovens, and steam cookers. Custom rebates for other types of commercial cooking equipment may be available...

  4. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  5. Information technology equipment cooling system

    DOE Patents [OSTI]

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  6. Equipment Certification | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cells Geothermal Electric Hydroelectric energy Hydroelectric (Small) Natural Gas Nuclear Solar Photovoltaics Tidal Energy Wave Energy Wind energy Yes Madison - Equipment...

  7. Webinar: Hydrogen Equipment Certification Guide

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Hydrogen Equipment Certification Guide" on Thursday, December 10, from 1 to 2 p.m. EST.

  8. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  9. Fire Safety Committee Meeting Minutes- May 2014

    Broader source: Energy.gov [DOE]

    DOE Fire Safety Committee Meeting Minutes, May, 2014 Topics included discussions on Fire modeling, revisions to DOE regulations and other important items relating to DOE and Fire Safety Community.

  10. Forwardly-placed firearm fire control assembly

    DOE Patents [OSTI]

    Frickey, Steven J.

    2001-12-22

    A firearm fire control assembly for disposition in a forwardly placed support-hand operative relationship within a firearm having a combination of a firing pin and a firearm hammer adapted to engage and fire a cartridge, a sear assembly to alternately engage and disengage the combination of the firearm hammer and firing pin, and a trigger assembly including a movable trigger mechanism that is operable to engage the sear assembly to cause the firearm hammer firing pin combination to fire the firearm, a fire control assembly including a fire control depression member and a fire control rod operably connected to the depression member, and being positioned in a forward disposition disposed within a forestock of the firearm, and the depression member adapted to be operably engaged and depressed by the user's conventional forwardly placed support hand to maneuver the fire control rod to provide firing control of the firing of the firearm.

  11. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact ...

  12. BlueFire Ethanol | Open Energy Information

    Open Energy Info (EERE)

    BlueFire Ethanol Jump to: navigation, search Name: BlueFire Ethanol Place: Irvine, California Zip: 92618 Sector: Hydro Product: US biofuel producer that utilises a patented...

  13. Nationwide: National Fire Protection Association Provides Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fire Protection Association Provides Training to First Responders on EVsPEVs Nationwide: National Fire Protection Association Provides Training to First Responders on...

  14. Nationwide: National Fire Protection Association Provides Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nationwide: National Fire Protection Association Provides Training to First Responders on EVsPEVs Nationwide: National Fire Protection Association Provides Training to First...

  15. Pressure suppression system

    DOE Patents [OSTI]

    Gluntz, Douglas M.

    1994-01-01

    A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein.

  16. Pressure suppression system

    DOE Patents [OSTI]

    Gluntz, D.M.

    1994-10-04

    A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein. 3 figs.

  17. ZERO SUPPRESSION FOR RECORDERS

    DOE Patents [OSTI]

    Fort, W.G.S.

    1958-12-30

    A zero-suppression circuit for self-balancing recorder instruments is presented. The essential elements of the circuit include a converter-amplifier having two inputs, one for a reference voltage and the other for the signal voltage under analysis, and a servomotor with two control windings, one coupled to the a-c output of the converter-amplifier and the other receiving a reference input. Each input circuit to the converter-amplifier has a variable potentiometer and the sliders of the potentiometer are ganged together for movement by the servoinotor. The particular noveity of the circuit resides in the selection of resistance values for the potentiometer and a resistor in series with the potentiometer of the signal circuit to ensure the full value of signal voltage variation is impressed on a recorder mechanism driven by servomotor.

  18. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  19. From fire to ice

    SciTech Connect (OSTI)

    Adcock, P.W.

    1995-06-01

    Absorption chillers are heat-operate refrigeration without harmful environmental emissions (CFCs, HCFCS, and HFCS). The machine uses either steam or a gas-fired burner as the energy source and utilizes endothermic evaporation to provide refrigeration to an external process fluid, usually chilled water. In the United States, absorption chillers are used in regions where the cost of electricity is high relative to natural gas. Absorption chillers are also used in applications where steam is readily available or in areas where seasonal load peaks cause utilities to subsidize gas cooling. This paper will describe the history of absorption, the basic absorption refrigeration cycle and some advanced high efficiency cycles. Practical applications of absorption refrigeration to commercial end uses will also be discussed.

  20. Health-hazard evaluation report HETA 85-375-1861, International Association of Fire Fighters (IAFF), Los Angeles, California

    SciTech Connect (OSTI)

    Anderson, K.E.; Melius, J.M.

    1988-01-01

    In response to a request from the International Association of Fire Fighters, a study was made of possible toxic exposures experienced by fire fighters from the Los Angeles Fire Department, paramedics, and police officers during a chemical warehouse fire at Research Organic, Inorganic Chemical Corporation, Sun Valley, California. Numerous flammable, corrosive, and reactive compounds were stored at the warehouse at the time of the fire. Dermatological problems with rashes lasting more than 1 day after the fire were reported by 18 fire fighters and nine police officers. Neurotoxic symptoms of fatigue, forgetfulness, irritability, headaches, and difficulty sleeping were also reported. The neurotoxic symptoms lasted from a month to over a year. The authors conclude that the symptoms experienced by those working at the fire site are associated with exposures during the fire. Recommendations arising from the fire include the establishment of a response team with comprehensive training, state of the art protective equipment, protocols for addressing medical evaluation and decontamination issues, environmental sampling capability, and coordination with other emergency disaster responders.

  1. Fire Aid Last Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aid Last Days NSTec donates $10,000 to help Mt. Charleston evacuees. NvE celebrated diversity at international food fest. The TriMev machine is being retired at the NLVF. See page 8. See page 3. RSL, U.S. Coast Guard Conduct Joint Exercise Off Alaska Coast A crew from the Remote Sensing Laboratory (RSL) at Nellis Air Force Base in Las Vegas joined the U.S. Coast Guard last month in conducting a joint-exercise in Alaska designed to further test their ability to integrate their equipment on other

  2. Firing of pulverized solvent refined coal

    DOE Patents [OSTI]

    Derbidge, T. Craig; Mulholland, James A.; Foster, Edward P.

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  3. Appliance and Equipment Efficiency Standards

    Broader source: Energy.gov [DOE]

    Arizona’s Appliance and Equipment Efficiency Standards (Arizona Revised Statutes, Title 44, Section 1375) set minimum energy efficiency standards for twelve products, all of which have since been...

  4. Water-Using Equipment: Domestic

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  5. Model Fire Protection Assessment Guide

    Broader source: Energy.gov [DOE]

    This Assessment guide covers the implementation of the DOE's responsibility of assuring that DOE and the DOE Contractors have established Fire Protection Programs that are at the level required for the area being assessed.

  6. CRAD, NNSA- Fire Protection (FP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    CRAD for Fire Protection (FR). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  7. Fire in a contaminated area

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-08-28

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Fire in Contaminated Area. The calculations needed to quantify the risk associated with this accident scenario are included within.

  8. Coal/D-RDF (densified refuse-derived fuel) co-firing project, Milwaukee County, Wisconsin

    SciTech Connect (OSTI)

    Hecklinger, R.S.; Rehm, F.R.

    1985-11-01

    A Research and Development Project was carried out to mix a densified refuse-derived fuel with coal at the fuel-receiving point and to co-fire the mixture in a spreader-stoker fired boiler. Two basic series of test runs were conducted. For the first series, coal was fired to establish a base line condition. For the second series, a mixture of coal and densified refuse-derived fuel was fired. The report describes the equipment used to densify refuse derived fuel, procedures used to prepare and handle the coal and densified refuse derived fuel mixture and the test results. The results include the effect of the coal and densified refuse derived fuel mixture on plant operations, boiler efficiency, stack emissions and EP toxicity.

  9. Incipient fire detection system

    DOE Patents [OSTI]

    Brooks, Jr., William K.

    1999-01-01

    A method and apparatus for an incipient fire detection system that receives gaseous samples and measures the light absorption spectrum of the mixture of gases evolving from heated combustibles includes a detector for receiving gaseous samples and subjecting the samples to spectroscopy and determining wavelengths of absorption of the gaseous samples. The wavelengths of absorption of the gaseous samples are compared to predetermined absorption wavelengths. A warning signal is generated whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. The method includes receiving gaseous samples, subjecting the samples to light spectroscopy, determining wavelengths of absorption of the gaseous samples, comparing the wavelengths of absorption of the gaseous samples to predetermined absorption wavelengths and generating a warning signal whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. In an alternate embodiment, the apparatus includes a series of channels fluidically connected to a plurality of remote locations. A pump is connected to the channels for drawing gaseous samples into the channels. A detector is connected to the channels for receiving the drawn gaseous samples and subjecting the samples to spectroscopy. The wavelengths of absorption are determined and compared to predetermined absorption wavelengths is provided. A warning signal is generated whenever the wavelengths correspond.

  10. Fire Protection Related Sites | Department of Energy

    Energy Savers [EERE]

    Related Sites Fire Protection Related Sites DOE-Related Fire Safety Web Sites EFCOG - Fire Protection Working Group Headquarter's Office of Science Brookhaven National Laboratory Hanford Fire Department Non-DOE Government-Related Web Sites Consumer Product Safety Commission (CPSC) Occupational Safety & Health Administration (OSHA) U.S. Nuclear Regulatory Commission (NRC) U.S. Environmental Protection Agency EPA Federal Emergency Management Agency (FEMA) National Fire Academy Other Related

  11. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment MECS 2006 - Transportation Equipment Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications Transportation Equipment

  12. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  13. Webinar December 10: Hydrogen Equipment Certification Guide

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Hydrogen Equipment Certification Guide" on Thursday, December 10, from 1 to 2 p.m. EST. The webinar will introduce the Hydrogen Equipment Certification Guide, a document intended to aid in equipment approval until listed equipment are available for the entirety of equipment and components.

  14. Cyber Friendly Fire

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Carroll, Thomas E.; Roberts, Adam D.

    2011-09-01

    Cyber friendly fire (FF) is a new concept that has been brought to the attention of Department of Defense (DoD) stakeholders through two workshops that were planned and conducted by the Air Force Research Laboratory (AFRL) and research conducted for AFRL by the Pacific Northwest National Laboratory. With this previous work in mind, we offer a definition of cyber FF as intentional offensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission effectiveness of friendly or neutral forces. Just as with combat friendly fire, a fundamental need in avoiding cyber FF is to maintain situation awareness (SA). We suggest that cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system (and that populate the nodes), the nature of the activities or work performed, and the available defensive (and offensive) countermeasures that may be applied to thwart network attacks. A training implication is to raise awareness and understanding of these critical knowledge units; an approach to decision aids and/or visualizations is to focus on supporting these critical knowledge units. To study cyber FF, we developed an unclassified security test range comprising a combination of virtual and physical devices that present a closed network for testing, simulation, and evaluation. This network offers services found on a production network without the associated costs of a real production network. Containing enough detail to appear realistic, this virtual and physical environment can be customized to represent different configurations. For our purposes, the test range was configured to appear as an Internet-connected Managed Service Provider (MSP) offering specialized web applications to the general public. The network is essentially divided into a production component that hosts the web and network services, and a user component that hosts thirty employee workstations and other end devices. The organization's network is separated from the Internet by a Cisco ASA network security device that both firewalls and detects intrusions. Business sensitive information is stored in various servers. This includes data comprising thousands of internal documents, such as finance and technical designs, email messages for the organization's employees including the CEO, CFO, and CIO, the organization's source code, and Personally Identifiable client data. Release of any of this information to unauthorized parties would have a significant, detrimental impact on the organization's reputation, which would harm earnings. The valuable information stored in these servers pose obvious points of interest for an adversary. We constructed several scenarios around this environment to support studies in cyber SA and cyber FF that may be run in the test range. We describe mitigation strategies to combat cyber FF including both training concepts and suggestions for decision aids and visualization approaches. Finally, we discuss possible future research directions.

  15. Residential Gas-Fired Adsorption HPWH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Gas-Fired Adsorption HPWH Gas-fired adsorption heat pump water heater prototype. Image credit: Oak Ridge National Laboratory. Gas-fired adsorption heat pump water ...

  16. CRAD, Fire Protection - October 12, 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fire Protection - October 12, 2012 CRAD, Fire Protection - October 12, 2012 October 12, 2012 Fire Protection Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 45-34,...

  17. Suppressed Charmed B Decay

    SciTech Connect (OSTI)

    Snoek, Hella Leonie; /Vrije U., Amsterdam

    2011-11-28

    This thesis describes the measurement of the branching fractions of the suppressed charmed B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decays and the non-resonant B{sup 0} {yields} D{sup (*)-} {eta}{pi}{sup +} decays in approximately 230 million {Upsilon}(4S) {yields} B{bar B} events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10{sup -6}. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle {gamma}, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle {gamma} can be performed using the decays of neutral B mesons. The B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decay is sensitive to the angle {gamma} and, in comparison to the current decays that are being employed, could significantly enhance the measurement of this angle. However, the low expected branching fraction for the B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decay channels could severely impact the measurement. A prerequisite of the measurement of the CKM angle is the observation of the B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decay on which this thesis reports. The BABAR experiment consists of the BABAR detector and the PEP-II e{sup +}e{sup -} collider. The design of the experiment has been optimized for the study of CP violation in the decays of neutral B mesons but is also highly suitable for the search for rare B decays such as the B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decay. The PEP-II collider operates at the {Upsilon}(4S) resonance and is a clean source of B{bar B} meson pairs.

  18. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic ...

  19. Cruising Equipment Company CECO | Open Energy Information

    Open Energy Info (EERE)

    Equipment Company (CECO) Place: Seattle, Washington Zip: 98107 Product: Maker of pollution control equipment - bought by Xantrex in 2000. Coordinates: 47.60356,...

  20. Moncada Solar Equipment | Open Energy Information

    Open Energy Info (EERE)

    search Name: Moncada Solar Equipment Place: Italy Product: Developer and manufacturer of thin-film modules. References: Moncada Solar Equipment1 This article is a stub. You can...

  1. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  2. Personal Computing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Computing Equipment Jump to: navigation, search TODO: Add description List of Personal Computing Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titlePersona...

  3. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  4. Commercial Refrigeration Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards. File Commercial Refrigeration Equipment -- v2.0 More Documents & Publications Beverage Vending Machines Commercial Refrigeration Equipment Fluorescent Lamp Ballasts

  5. Laboratory Equipment Donation Program - LEDP Widget

    Office of Scientific and Technical Information (OSTI)

    LEDP Widget You can access key features of the Laboratory Equipment Donation Program (LEDP) website by downloading the LEDP widget. Use the widget to search, view the equipment ...

  6. Laboratory Equipment Donation Program - About Us

    Office of Scientific and Technical Information (OSTI)

    About LEDP The Laboratory Equipment Donation Program (LEDP), formerly the Energy-Related Laboratory Equipment (ERLE) Grant Program, was established by the United States Department ...

  7. CVD Equipment Corp | Open Energy Information

    Open Energy Info (EERE)

    Place: Ronkonkoma, New York Zip: 11779 Sector: Solar Product: New York-based maker of chemical vapour deposition process equipment. This equipment is used in the manufacture of...

  8. Process Equipment Cost Estimation, Final Report

    Office of Scientific and Technical Information (OSTI)

    ... Evaluations in the Process and Utility Industries," adopted November 1990. 3 equipment. ... Table 6 shows approximate factors for setting various types of equipment. 1 The total cost ...

  9. DMSE Equipment Scheduling | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scheduling Equipment ownercustodian reserves the right to override the schedule for maintenance andor other justified reasons. Abuse of the scheduling system or equipment may...

  10. Enforcement Policy Statement: Commercial HVAC Equipment Issued...

    Energy Savers [EERE]

    ... that conditions the equipment's supply air using energy transferred from an external source ... SteamHydronic Heat Options. A heat exchanger located inside the equipment that ...

  11. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  12. Trends in powder processing equipment

    SciTech Connect (OSTI)

    Sheppard, L.M.

    1993-05-01

    Spray drying is the most widely used process for producing particles. It is used in industries other than ceramics including food, chemicals, and pharmaceutical. The process involves the atomization of a liquid feed stock into a spray of droplets and contacting the droplets with hot air in a drying chamber. The sprays are produced by either rotary or nozzle atomizers. Evaporation of moisture from the droplets and formation of dry particles proceed under controlled temperature and airflow conditions. Powder is then discharged continuously from the drying chamber. Spray drying equipment is being improved to handle an ever-increasing number of applications. Several developments in particle-size reduction equipment are also described.

  13. Fire resistant PV shingle assembly

    DOE Patents [OSTI]

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  14. Preventing the self-destruction of the indirect coal firing system

    SciTech Connect (OSTI)

    Bush, C.W.; Rayner, C.C.

    1983-07-01

    The most widely used fuel in the cement industry is pulverized coal. The current trend is to burn coal through the use of an indirect firing system, as opposed to direct firing which was formerly standard for cement kilns. Indirect firing is favored for precalciners and to improve thermal efficiency, but the benefits are sometimes overshadowed by increased hazard potential. Thoughtful design and careful operating practices are essential for safe operation. The hazards are primarily a result of the explosive mixture of coal and air which can be formed in various parts of the system and the tendency for coal to self-heat and undergo spontaneous combustion. The systems for indirect coal firing are reviewed, with emphasis on the potential fire and explosion hazards. The effectiveness of various methods to extinguish a fire or suppress an explosion is discussed, together with their applicability and related operating problems. The available alarm systems are evaluated according to their ability to signal impending danger in time for corrective action. Some parameters of safe design and operating practices are outlined as a guide to avoiding the types of problems that have been experienced at some existing installations.

  15. Covered Product Category: Imaging Equipment

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for imaging equipment, a product category covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies buy ENERGY STAR qualified products in all product categories covered by this program and any acquisition actions that are not specifically exempted by law.

  16. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    9 Major Commercial HVAC Equipment Lifetimes and Ages Median Equipment Type Lifetime Air Conditioners Through-the-Wall 15 Water-CooledPackage 24 (1) Roof-Top 15 Chillers Reciprocating 20 Centrifugal 25 (1) Absorption 23 Heat Pumps Air-to-Air 15 Water-to-Air 24 (1) Furnaces (gas or oil) 18 Boilers (gas or oil) Hot-Water 24 - 35 Steam 25 - 30 Unit Heaters Gas-Fired or Electric 13 Hot-Water or Steam 20 Cooling Towers (metal or wood) Metal 22 (1) Wood 20 Note(s): Source(s): 1) Data from 2005. All

  17. Don`t overlook natural gas cooling equipment

    SciTech Connect (OSTI)

    Katzel, J.

    1997-03-01

    If one thought the confusion surrounding chiller specification and operation ended with the availability of CFC-free refrigerant alternatives, think again. Plant engineers involved in the selection and installation of cooling equipment are facing yet another complicated task, this time thanks to deregulation of the electric utility industry. Still in its early stages, deregulation is a process that could take up to a decade. However, deregulation is also bringing about changing pricing structures. Electric power costs may not always be low for everyone. For plants paying $0.02/kwh for electricity, an electric-powered chiller is a must. But those paying $0.35 or $0.40/kwh, even for a few hours, cannot afford NOT to consider something besides an electric-motor-driven chiller. Among the most viable, yet often overlooked, options available is natural gas cooling. Gas cooling equipment gives industrial users the flexibility to choose either gas or electricity to drive their cooling systems. Natural gas cooling is defined here as the use of absorption cooling systems and engine-driven chillers, as alternatives to electric-driven equipment, to deliver chilled water in a conventional manner. Desiccant systems can also be gas fired and are used primarily for providing dry air for process control. Because of their specialized applications, desiccant cooling is not covered in this article.

  18. Development of a Fiber Laser Welding Capability for the W76, MC4702 Firing Set

    SciTech Connect (OSTI)

    Samayoa, Jose

    2010-05-12

    Development work to implement a new welding system for a Firing Set is presented. The new system is significant because it represents the first use of fiber laser welding technology at the KCP. The work used Six-Sigma tools for weld characterization and to define process performance. Determinations of workable weld parameters and comparison to existing equipment were completed. Replication of existing waveforms was done utilizing an Arbitrary Pulse Generator (APG), which was used to modulate the fiber lasers exclusive continuous wave (CW) output. Fiber laser weld process capability for a Firing Set is demonstrated.

  19. Solid waste drum array fire performance

    SciTech Connect (OSTI)

    Louie, R.L.; Haecker, C.F.; Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L.

    1995-09-01

    Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided.

  20. Fire and Life Safety Information - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - U.S Fire Administration Website PDF, 182 Kb Fire Extinguishers - Flash Presentation Smoke Detectors Smoke Detector Icon PDF, 182 Kb Smoke Alarms - What You Need to Know (PDF)...

  1. Tracking New Coal-Fired Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking New Coal-Fired Power Plants (data update 12132010) January 14, 2011 b National ... Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired ...

  2. Nuclear Criticality Safety Guide for Fire Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide is intended to provide information for use by fire protection professionals in the application of reasonable methods of fire protection in those facilities where there is a potential for nuclear criticality.

  3. A Factsheet on Home Fire Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For cHildrEn Children under five are naturally curious about fire. Many play with matches and lighters. Tragically, children set over 20,000 house fires every year. Take the...

  4. Fire Protection for Underground Research Facilities

    Broader source: Energy.gov [DOE]

    Presenter: James Priest, Ph.D., Senior Fire Protection Engineer ES&H, Universities Research Associates ‐ FNAL

  5. Fire Modeling Examples in a Nuclear World

    Broader source: Energy.gov [DOE]

    Presenter: Mark Schairer, P.E.,Technical Manager, Fire Protection Engineering Division - Engineering Planning and Management (EPM), Inc.

  6. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Bob Hurt; Eric Eddings

    2001-07-27

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. A Rich Reagent Injection (RRI) design has been developed for a cyclone fired utility boiler in which a field test of RRI will be performed later this year. Initial evaluations of RRI for PC fired boilers have been performed. Calibration tests have been developed for a corrosion probe to monitor waterwall wastage. Preliminary tests have been performed for a soot model within a boiler simulation program. Shakedown tests have been completed for test equipment and procedures that will be used to measure soot generation in a pilot scale test furnace. In addition, an initial set of controlled experiments for ammonia adsorption onto fly ash in the presence of sulfur have been performed that indicates the sulfur does enhance ammonia uptake.

  7. BlueFire Ethanol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol BlueFire Ethanol Construct and operate a facility that converts green waste and lignocellulosic fractions diverted from landfills or Southern California Materials Recovery Facilities to ethanol and other products. PDF icon bluefire_fact_sheet_12_9_08.pdf More Documents & Publications BlueFire Ethanol, Inc. Applicant Organization: EA-1704: Mitigation Action Plan

  8. Fire Safety Tests for Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Peterson, Reid A.; Schweiger, Michael J.

    2012-07-30

    A draft safety evaluation of the scenario for spherical resorcinol-formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping, which may be overly bounding based on the fire performance data from the manufacturer of the ion exchange resin selected for use at the WTP. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI), following the American Society for Testing and Materials (ASTM) standard procedures, through a subcontract managed by Pacific Northwest National Laboratory (PNNL). For some tests, the ASTM standard procedures were not entirely appropriate or practical for the SRF resin material, so the procedures were modified and deviations from the ASTM standard procedures were noted. This report summarizes the results of fire safety tests performed and reported by SwRI. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. All as-received SwRI reports are attached to this report in the Appendix. Where applicable, the precision and bias of each test method, as given by each ASTM standard procedure, are included and compared with the SwRI test results of the SRF resin.

  9. Coal-fired MHD test progress at the Component Development and Integration Facility

    SciTech Connect (OSTI)

    Hart, A.T.; Filius, K.D.; Micheletti, D.A.; Cashell, P.V.

    1993-12-31

    The Component Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. MSE personnel are responsible for integrated testing of topping cycle components for the national coal-fired magnetohydrodynamics (MHD) development program. Initial facility checkout and baseline data generation testing at the CDIF used a 50-MW{sub t}, oil-fired combustor (with ash injection to simulate coal slag carryover) coupled to the 1A{sub 1} supersonic workhorse channel. In the fall of 1984, a 50-MW{sub t}, pressurized, slag rejecting coal-fired workhorse combustor replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the test hardware, and current controls were installed in the spring of 1990. In the fall of 1990, the slag rejector was installed. In the spring of 1992, a 50-MW{sub t} pressurized, slag rejecting coal-fired prototypical combustor replaced the workhorse combustor in the test train. A 1A{sub 4} supersonic prototypical channel replaced the 1A{sub 1} workhorse channel in the fall of 1993. This prototypical hardware is slated to be used for the proof-of-concept (POC) testing. Improved facility systems targeting longer duration testing and more reliable operation will be discussed, including the air emissions control and monitoring hardware, oxygen and nitrogen expansion, coal and seed system upgrades, A-Bay modifications, and new solid suspension injection equipment.

  10. Noise suppressing capillary separation system

    DOE Patents [OSTI]

    Yeung, Edward S. (Ames, IA); Xue, Yongjun (Norwich, NY)

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans.

  11. Equipment Listing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Listing Crystal Preparation and Characterization Resistance Heated Bridgman Crystal Growth Systems Back-Reflection Laue X-ray System Electro-Discharge Machining High and Low speed Diamond Saws Arc Zone Melting Crystal Growth System Lapping Fixtures for Precise Orientation of Crystals (0.1°) Physical Properties Measurement Facilities - Hardness Testing Vickers and Rockwell Hardness Testing Brinell Hardness Instrument Wilson Tukon Micro Hardness Tester Forming and Characterization

  12. Strategy Guideline: HVAC Equipment Sizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy Guideline: HVAC Equipment Sizing Arlan Burdick IBACOS, Inc. February 2012 This report received minimal editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  13. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  14. Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2007-03-31

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology advancements offer significant reductions in power requirements, which would improve plant efficiency and economics for the oxygen-fired technology. The second phase consisted of pilot-scale testing followed by a refined performance and economic evaluation of the O{sub 2} fired CFB concept. As a part of this workscope, ALSTOM modified its 3 MW{sub th} (9.9 MMBtu/hr) Multiuse Test Facility (MTF) pilot plant to operate with O{sub 2}/CO{sub 2} mixtures of up to 70 percent O{sub 2} by volume. Tests were conducted with coal and petroleum coke. The test objectives were to determine the impacts of oxygen firing on heat transfer, bed dynamics, potential agglomeration, and gaseous and particulate emissions. The test data results were used to refine the design, performance, costs, and economic models developed in Phase-I for the O{sub 2}-fired CFB with CO{sub 2} capture. Nsakala, Liljedahl, and Turek reported results from this study in 2004. ALSTOM identified several items needing further investigation in preparation for large scale demonstration of the oxygen-fired CFB concept, namely: (1) Operation and performance of the moving bed heat exchanger (MBHE) to avoid recarbonation and also for cost savings compared to the standard bubbling fluid bed heat exchanger (FBHE); (2) Performance of the back-end flash dryer absorber (FDA) for sulfur capture under high CO{sub 2}/high moisture flue gas environment using calcined limestone in the fly ash and using fresh commercial lime directly in the FDA; (3) Determination of the effect of recarbonation on fouling in the convective pass; (4) Assessment of the impact of oxygen firing on the mercury, other trace elements, and volatile organic compound (VOC) emissions; and (5) Develop a proposal-level oxygen-fired retrofit design for a relatively small existing CFB steam power plant in preparation for a large-scale demonstration of the O{sub 2} fired CFB concept. Hence, ALSTOM responded to a DOE Solicitation to address all these issues with further O{sub 2} fired MTF pilot testing and a subsequent retrofit design study of oxygen firing and CO{sub 2} capture on an existing air-fired CFB plant. ALSTOM received a contract award from the DOE to conduct a project entitled 'Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control', under Cooperative Agreement DE-FC26-04NT42205 that is the subject of this topical report.

  15. A Factsheet on Holiday Fire Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ach year fires occurring during the holiday season claim the lives of over 400 Americans, injure 1,650 more, and cause over $990 million in damage. According to the U. S. Fire Administration (USFA), there are simple life-saving steps you can take to ensure a safe and happy holiday. By following some of the outlined precautionary tips, individuals can greatly reduce their chances of becoming a holiday fire casualty. Preventing Christmas tree Fires Special fire safety precautions need to be taken

  16. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2002-03-28

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

  17. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    J. L. Kubicek

    2001-09-07

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

  18. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  19. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  20. A methodology for analyzing precursors to earthquake-initiated and fire-initiated accident sequences

    SciTech Connect (OSTI)

    Budnitz, R.J.; Lambert, H.E.; Apostolakis, G. and others

    1998-04-01

    This report covers work to develop a methodology for analyzing precursors to both earthquake-initiated and fire-initiated accidents at commercial nuclear power plants. Currently, the U.S. Nuclear Regulatory Commission sponsors a large ongoing project, the Accident Sequence Precursor project, to analyze the safety significance of other types of accident precursors, such as those arising from internally-initiated transients and pipe breaks, but earthquakes and fires are not within the current scope. The results of this project are that: (1) an overall step-by-step methodology has been developed for precursors to both fire-initiated and seismic-initiated potential accidents; (2) some stylized case-study examples are provided to demonstrate how the fully-developed methodology works in practice, and (3) a generic seismic-fragility date base for equipment is provided for use in seismic-precursors analyses. 44 refs., 23 figs., 16 tabs.

  1. HAND TRUCK FOR HANDLING EQUIPMENT

    DOE Patents [OSTI]

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  2. FireHose Streaming Benchmarks

    Energy Science and Technology Software Center (OSTI)

    2015-01-27

    The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the streammore » of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created in the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.« less

  3. Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle

    SciTech Connect (OSTI)

    Lopez, A.R.; Gritzo, L.A.; Hassan, B.

    1997-06-01

    For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

  4. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    SciTech Connect (OSTI)

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditional stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality-controlled stove and emissions equipment at levels scalable to meet global demand; and 3) global distribution through a variety of channels and partners. ARC has been instrumental in designing and improving more than 100 stove designs over the past thirty years. In the last four years, ASAT and ARC have played a key role in the production and sales of over 200,000 improved stoves in the developed and developing world. The ARC-designed emissions equipment is currently used by researchers in laboratories and field studies on five continents. During Phase I of the DOE STTR grant, ASAT and ARC worked together to apply their wealth of product development experience towards creating the next generation of improved cookstoves and emissions monitoring equipment. Highlights of Phase I for the biomass cookstove project include 1) the development of several new stove technologies that reached the DOE 50/90 benchmark; 2) fabrication of new stove prototypes by ASATs manufacturing partner, Shengzhou Stove Manufacturing (SSM); 3) field testing of prototype stoves with consumers in Puerto Rico and the US; and 4) the selection of three stove prototypes for further development and commercialization during Phase II. Highlights of Phase I for the emissions monitoring equipment project include: 1) creation of a new emissions monitoring equipment product, the Laboratory Emissions Monitoring System (LEMS 2) the addition of gravimetric PM measurements to the stove testing systems to meet International Standards Organization criteria; 3) the addition of a CO{sub 2} sensor and wireless 3G capability to the IAP Meter; and 4) and the improvement of sensors and signal quality on all systems. Twelve Regional Testing and Knowledge Centers purchased this equipment during the Phase I project period.

  5. Best Management Practice #11: Commercial Kitchen Equipment

    Broader source: Energy.gov [DOE]

    Commercial kitchen equipment can be a significant water use in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high-volume applications...

  6. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect (OSTI)

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  7. Liquid-Liquid Extraction Equipment

    SciTech Connect (OSTI)

    Jack D. Law; Terry A. Todd

    2008-12-01

    Solvent extraction processing has demonstrated the ability to achieve high decontamination factors for uranium and plutonium while operating at high throughputs. Historical application of solvent extraction contacting equipment implies that for the HA cycle (primary separation of uranium and plutonium from fission products) the equipment of choice is pulse columns. This is likely due to relatively short residence times (as compared to mixer-settlers) and the ability of the columns to tolerate solids in the feed. Savannah River successfully operated the F-Canyon with centrifugal contactors in the HA cycle (which have shorter residence times than columns). All three contactors have been successfully deployed in uranium and plutonium purification cycles. Over the past 20 years, there has been significant development of centrifugal contactor designs and they have become very common for research and development applications. New reprocessing plants are being planned in Russia and China and the United States has done preliminary design studies on future reprocessing plants. The choice of contactors for all of these facilities is yet to be determined.

  8. High capacity fossil fuel fired plant operator training program. Student handbook. Final report

    SciTech Connect (OSTI)

    Pearson, S.; Gardner, M.; Nguyen, Q.

    1994-09-30

    The operator of fossil fuel-fired boilers has a significant responsibility in assuring that the unit is continuously operated in a manner which complies with the various state and federal regulations. The course will emphasize the operating principles for all types of boilers and for all types of control equipment used for controlling air emissions from boilers. The course will emphasize the significant operating parameters that directly influence air emissions.

  9. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect (OSTI)

    REMAIZE, J.A.

    2000-09-27

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  10. Noise suppressing capillary separation system

    DOE Patents [OSTI]

    Yeung, E.S.; Xue, Y.

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans. 13 figs.

  11. DOE Standard: Fire protection design criteria

    SciTech Connect (OSTI)

    Not Available

    1999-07-01

    The development of this Standard reflects the fact that national consensus standards and other design criteria do not comprehensively or, in some cases, adequately address fire protection issues at DOE facilities. This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, National Fire Protection Association (NFPA) Codes and Standards, and any other applicable DOE construction criteria. This Standard replaces certain mandatory fire protection requirements that were formerly in DOE 5480.7A, ``Fire Protection``, and DOE 6430.1A, ``General Design Criteria``. It also contains the fire protection guidelines from two (now canceled) draft standards: ``Glove Box Fire Protection`` and ``Filter Plenum Fire Protection``. (Note: This Standard does not supersede the requirements of DOE 5480.7A and DOE 6430.1A where these DOE Orders are currently applicable under existing contracts.) This Standard, along with the criteria delineated in Section 3, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  12. Enhancements in Glovebox Design Resulting from Laboratory-Conducted FIre Tests

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Wunderlich, Gregory M.; Mcentire, James R.; Richmond, William G.

    2013-06-14

    The primary mission of the Pit Disassembly and Conversion Facility (PDCF) Project was to disassemble nuclear weapons pits and convert the resulting special nuclear materials to a form suitable for further disposition. Because of the nature of materials involved, the fundamental system which allowed PDCF to perform its mission was a series of integrated and interconnected gloveboxes which provided confinement and containment of the radioactive materials being processed. The high throughput planned for PDCF and the relatively high neutron and gamma radiation levels of the pits required that gloveboxes be shielded to meet worker dose limits. The glovebox shielding material was required to contain high hydrogen concentrations which typically result in these materials being combustible. High combustible loadings created design challenges for the facility fire suppression and ventilation system design. Combustible loading estimates for the PDCF Plutonium (Pu) Processing Building increased significantly due to these shielding requirements. As a result, the estimates of combustible loading substantially exceeded values used to support fire and facility safety analyses. To ensure a valid basis for combustible loading contributed by the glovebox system, the PDCF Project funded a series of fire tests conducted by the Southwest Research Institute on door panels and a representative glovebox containing Water Extended Polyester (WEP) radiological shielding to observe their behavior during a fire event. Improvements to PDCF glovebox designs were implemented based on lessons learned during the fire test. In particular, methods were developed to provide high levels of neutron shielding while maintaining combustible loading in the glovebox shells at low levels. Additionally, the fire test results led to design modifications to mitigate pressure increases observed during the fire test in order to maintain the integrity of the WEP cladding. These changes resulted in significantly reducing the credited combustible loading of the facility. These advances in glovebox design should be considered for application in nuclear facilities within the Department of Energy complex in the future.

  13. Laboratory Equipment Donation Program - Application Process

    Office of Scientific and Technical Information (OSTI)

    Equipment listings on the LEDP web site are obtained from the U.S. General Services Administration (GSA) Energy Asset Disposal System (EADS). Once equipment is listed, EADS allows 30 days for grantees from eligible institutions to apply for it on the LEDP site. Equipment Condition Codes are found near the top of the "LEDP Equipment Information" page for each item. The condition of equipment is graded as follows: 1: Unused Good Condition 4: Used Good Condition 7: Repairable Requires

  14. On the fluid mechanics of fires

    SciTech Connect (OSTI)

    TIESZEN,SHELDON R.

    2000-02-29

    Fluid mechanics research related to fire is reviewed with focus on canonical flows, multiphysics coupling aspects, experimental and numerical techniques. Fire is a low-speed, chemically-reacting, flow in which buoyancy plans an important role. Fire research has focused on two canonical flows, the reacting boundary-layer and the reacting free plume. There is rich, multi-lateral, bi-directional, coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid-mechanics database for fire due to measurement difficulties in the harsh environment, and the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.

  15. Fire water systems in composite materials

    SciTech Connect (OSTI)

    Sundt, J.L.

    1993-12-31

    Due to corrosion problems in fire water systems offshore there is a need for a corrosion resistant material to improve the reliability of onboard fire fighting systems. Glass Reinforced Epoxy (GRE) pipe is seen as a cost effective and light weight alternative to metals. Through a test program run by AMAT, Advanced Materials a/s in collaboration with the Norwegian Fire and Research Laboratory (NBL, SINTEF), GRE pipes have proved to be viable materials for offshore fire water systems. The test program included furnace testing, jetfire testing and simulated explosion testing. GRE pipes (2--12 inches) from two suppliers were fire tested and evaluated. Both adhesively bonded joints and flange connections were tested. During the course of the project, application methods of passive fire protection and nozzle attachments were improved.

  16. Fire Safety Tests for Cesium-Loaded Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, Michael J.; Peterson, Reid A.

    2012-09-01

    A draft safety evaluation of the scenario for spherical resorcinol formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI) through a subcontract managed by Pacific Northwest National Laboratory (PNNL). The results of initial fire safety tests on the SRF resin were documented in a previous report (WTP-RPT-218). The present report summarizes the results of additional tests performed by SwRI on the cesium-loaded SRF resin. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. The as-received SwRI report is attached to this report in the Appendix A. Where applicable, the precision and bias of each test method, as given by each American Society for Testing and Materials (ASTM) standard procedure, are included and compared with the SwRI test results of the cesium-loaded SRF resin.

  17. QUANTITATIVE EVALUATION OF FIRE SEPARATION AND BARRIERS

    SciTech Connect (OSTI)

    Coutts, D

    2007-04-17

    Fire barriers, and physical separation are key components in managing the fire risk in Nuclear Facilities. The expected performance of these features have often been predicted using rules-of-thumb or expert judgment. These approaches often lack the convincing technical bases that exist when addressing other Nuclear Facility accident events. This paper presents science-based approaches to demonstrate the effectiveness of fire separation methods.

  18. Forest fire near Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory Forest fire near Los Alamos National Laboratory The Las Conchas fire burning in the Jemez Mountains approximately 12 miles southwest of the boundary of LANL has not entered Lab property at this time. June 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  19. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    5 Commercial Equipment Efficiencies Equipment Type Chiller Screw COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.02 / 4.45 Scroll COP 2.80 / 3.06 2.96 / 4.40 N.A. Reciprocating COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.52 / 4.40 Centrifugal COP(full-load / IPLV) 5.0 / 5.2 6.1 / 6.4 7.3 / 9.0 Gas-Fired Absorption COP 1.0 1.1 N.A. Gas-Fired Engine Driven COP 1.5 1.8 N.A. Rooftop A/C EER 10.1 11.2 13.9 Rooftop Heat Pump EER (cooling) 9.8 11.0 12.0 COP (heating) 3.2 3.3 3.4 Boilers Gas-Fired

  20. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  1. BlueFire Ethanol, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol, Inc. BlueFire Ethanol, Inc. A proposal issued by BlueFire Ethanol Inc,describing a project that will give DOE understanding of a new biological fermentation process not using enzymes. PDF icon BlueFire Ethanol, Inc. More Documents & Publications Applicant Organization: BlueFire Ethanol Pacific Ethanol, Inc

  2. Fire Protection - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are not comprehensively or adequately addressed in national consensus standards or other design criteria. DOE-STD-1062-2012: Fire Protection Type: Invoked Technical Standards OPI:...

  3. FAQS Reference Guide – Fire Protection Engineering

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the December 2007 edition of DOE-STD-1137-2007, Fire Protection Engineering Functional Area Qualification Standard.

  4. Cryogenic slurry for extinguishing underground fires

    DOE Patents [OSTI]

    Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

    1994-01-01

    A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

  5. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  6. Tracking New Coal-Fired Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 8, 2010 National Energy Technology Laboratory Office of Systems Analyses and Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to...

  7. Fire Safety Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The purpose of the Department of Energy National Nuclear Security Administration (DOE) Fire Safety Committee is to provide a forum to facilitate the interaction between the DOE, ...

  8. Better metallurgy for process equipment

    SciTech Connect (OSTI)

    Rayner, R.E.

    1994-01-01

    Metallurgy choices have expanded significantly for process equipment and pumps used for handling difficult corrosive fluids. If they have been specifying the austenitic AISI types 316, 316L, 317, 317L or the newer first generation alloy 329 in their pumps, there is a strong message in recent literature. Based on tests and experience there are better, often less costly alternatives. In the case of CD[sub 4]MCu, N08020 and 904L, there are lower-cost material alternatives for many applications. For SA S31254 and SA N08367, there are some less aggressive can be substituted. These alternatives are the new second generation duplex steels. The lower cost of the duplex alloys is a result of the reduced nickel content, which is about half that of the standard austenitics. Also, their carbon content is low; the same as 316L and 317L for most alloys, including S31803. The second generation duplex alloys offer significant value improvement in a vast majority of applications over the common austenitics and ferritics. Further, their improved resistance to corrosion and improved physical properties relative to the expensive. and in many cases proprietary, highly corrosion-resistant, super-ferritics and super-austenitics, means that they can and should be considered as an alternative for applications where those materials are now overqualified. Strength, toughness and wide corrosion resistance are all-important properties and considerations for process pump materials. Combine these with competitive cost and there is an opportunity that must be investigated.

  9. Novel Energy Conversion Equipment for Low Temperatures Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources Novel Energy Conversion Equipment ...

  10. Category:Smart Grid Projects - Equipment Manufacturing | Open...

    Open Energy Info (EERE)

    Smart Grid Projects - Equipment Manufacturing Jump to: navigation, search Smart Grid Projects - Equipment Manufacturing category. Pages in category "Smart Grid Projects - Equipment...

  11. Live Fire Range Environmental Assessment

    SciTech Connect (OSTI)

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  12. BLM Fire and Aviation Office | Open Energy Information

    Open Energy Info (EERE)

    Fire and Aviation Office Jump to: navigation, search Logo: BLM Fire and Aviation Office Name: BLM Fire and Aviation Office Address: 1849 C Street NW, Rm. 5665 Place: Washington, DC...

  13. Risk assessment compatible fire models (RACFMs)

    SciTech Connect (OSTI)

    Lopez, A.R.; Gritzo, L.A.; Sherman, M.P.

    1998-07-01

    A suite of Probabilistic Risk Assessment Compatible Fire Models (RACFMs) has been developed to represent the hazard posed by a pool fire to weapon systems transported on the B52-H aircraft. These models represent both stand-off (i.e., the weapon system is outside of the flame zone but exposed to the radiant heat load from fire) and fully-engulfing scenarios (i.e., the object is fully covered by flames). The approach taken in developing the RACFMs for both scenarios was to consolidate, reconcile, and apply data and knowledge from all available resources including: data and correlations from the literature, data from an extensive full-scale fire test program at the Naval Air Warfare Center (NAWC) at China Lake, and results from a fire field model (VULCAN). In the past, a single, effective temperature, T{sub f}, was used to represent the fire. The heat flux to an object exposed to a fire was estimated using the relationship for black body radiation, {sigma}T{sub f}{sup 4}. Significant improvements have been made by employing the present approach which accounts for the presence of temperature distributions in fully-engulfing fires, and uses best available correlations to estimate heat fluxes in stand-off scenarios.

  14. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  15. Fire Department Gets New Trucks, Saves Money

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Last year, the Hanford Fire Department (HFD) set out to replace its aging chemical truck used for metal fires. Originally purchased to respond to potential incidents at the Fast Flux Test Facility, the 31-year-old vehicle was at the end of its lifecycle.

  16. Equipment-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Equipment photo Last update 30 April 2015. People wishing to use equipment listed below must first receive training and permission from the Facility Director, or present instrument contact person, who can provide basic training and information from an experienced user. Training and access must be arranged in advance of first use. Reservation of usage time for a number of instruments requires you to set up an account on the Facilities Online Manager (FOM) service! Connect to the

  17. NREL: Energy Storage - Facilities and Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities and Equipment Arial photo of several buildings. NREL's ESIF is the first U.S. facility with capabilities to conduct megawatt-scale R&D examining integration of power grids, buildings, vehicles, charging systems, and energy storage systems. Photo of scientific equipment in a laboratory setting. Differential scanning calorimeter. Photo of a row of ten tall rectangular panels (battery cyclers). Battery cyclers. Photo of scientific equipment and computer monitors in a laboratory

  18. Smart Buildings Equipment Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Equipment Initiative Smart Buildings Equipment Initiative Lead Performers: -- Pacific Northwest National Laboratory - Richland, WA -- National Renewable Energy Laboratory - Golden, CO DOE Funding: $2,100,000 Cost Share: N/A Project Term: Oct. 2014 - Sept. 2015 PROJECT OBJECTIVE The purpose of this project is to develop data taxonomies and standard communication protocols that enable building equipment to engage the larger electric system and to develop analytic methods and testing

  19. Decontamination and Decommisioning Equipment Tracking System

    Energy Science and Technology Software Center (OSTI)

    1994-08-26

    DDETS is Relational Data Base Management System (RDBMS) which incorporates 1-D (code 39) and 2-D (PDF417) bar codes into its equipment tracking capabilities. DDETS is compatible with the Reportable Excess Automated Property System (REAPS), and has add, edit, delete and query capabilities for tracking equipment being decontaminated and decommissioned. In addition, bar code technology is utilized in the inventory tracking and shipping of equipment.

  20. Condensing heat-exchanger systems for oil-fired residential/commercial furnaces and boilers Phase I and II

    SciTech Connect (OSTI)

    Ball, D.A.; White, E.L.; Lux, J.J. Jr.; Locklin, D.W.

    1982-10-01

    The objective of the program reported was to provide supporting research to aid in the development and demonstration of oil-fired residential and commercial heating equipment that will operate in a condensing mode. Materials for heat exchangers are screened through coupon testing in a furnace simulator test rig and in an alternate immersion test rig. Condensate from oil-fired systems is characterized. Some general issues related to field application are treated, including heat exchanger fouling, venting of combustion gases, disposal of flue gas condensate, other means of condensate disposal, and evaluation of codes and standards. A heat transfer analysis is presented for general heat exchangers. (LEW)

  1. INL Equipment to Aid Regional Response Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transferred are a Crossley Custom Bomb Trailer for transporting suspect devices to a safe location, and a 3500 GVWR trailer for transporting equipment. Editorial Date November 28...

  2. Laboratory Equipment Donation Program - Guidelines/FAQ

    Office of Scientific and Technical Information (OSTI)

    Frequently Asked Questions Who is eligible to apply for equipment? Due to budget constraints, the free shipping program for "high need schools" has been discontinued; and middle ...

  3. Heavy Mobile Equipment Mechanic (1 Mechanic Shop)

    Broader source: Energy.gov [DOE]

    A successful candidate will perform preventative, predictive, and corrective maintenance on Bonneville Power Administration (BPA's) light and heavy mobile equipment in maintenance and filed...

  4. CRAD, Equipment and Piping Labeling Assessment Plan

    Broader source: Energy.gov [DOE]

    This assessment provides a basis for evaluating the effectiveness of the contractor’s program for labeling equipment and piping and for establishing compliance with DOE requirements.

  5. China Power Equipment Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: China Power Equipment Inc Place: Xian, China Zip: 70075 Product: China-based manufacturer of energy saving transformers and transformer cores....

  6. Equips Nucleares SA | Open Energy Information

    Open Energy Info (EERE)

    SA Place: Madrid, Spain Zip: 28006 Sector: Services Product: ENSA is a Spanish nuclear components and nuclear services supply company. References: Equips Nucleares, SA1...

  7. Laboratory Equipment Donation Program - Contact Us

    Office of Scientific and Technical Information (OSTI)

    Contact Us If you have a question about the Laboratory Equipment Donation Program (LEDP), we recommend you check frequently asked questions. If your question still has not been ...

  8. CRAD, Nuclear Facility Construction - Mechanical Equipment -...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Facility Construction - Mechanical Equipment Installation, (HSS CRAD 45-53, Rev. 0) This Criteria Review and Approach Document (HSS CRAD 45-53) establishes review criteria...

  9. Equipment Certification Requirements | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cells Geothermal Electric Hydroelectric energy Hydroelectric (Small) Natural Gas Nuclear Solar Photovoltaics Tidal Energy Wave Energy Wind energy Yes Madison - Equipment...

  10. Commercial and Industrial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  11. PPP Equipment Corporation | Open Energy Information

    Open Energy Info (EERE)

    PPP Equipment Corporation Sector: Solar Product: PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

  12. Heavy Mobile Equipment Mechanic (One Mechanic Shop)

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Heavy Mobile Equipment Mechanic (One Mechanic...

  13. Appliance and Equipment Standards Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Appliance & Equipment Standards Program Logic Model OBJECTIVE ACTIVITIES KEY OUTPUT ... Non-compliance warnings Standards* developed with stakeholder input Procedures available ...

  14. Agricultural Lighting and Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    In Vermont, agricultural operations are eligible for prescriptive and customized incentives for equipment proven to help make farms more efficient. Prescriptive rebates are available for lighting...

  15. Permit for Charging Equipment Installation: Electric Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Where electric vehicle nonvented storage batteries are used or where the electric vehicle supply equipment is listed or labeled as suitable for charging electric vehicles indoors ...

  16. Semiconductor Equipment and Materials International SEMI | Open...

    Open Energy Info (EERE)

    search Name: Semiconductor Equipment and Materials International (SEMI) Place: San Jose, California Zip: 95134 2127 Product: Global trade association, publisher and conference...

  17. Stangl Semiconductor Equipment AG | Open Energy Information

    Open Energy Info (EERE)

    German manufacturer of wet chemistry systems for processing silicon and thin-film solar cells. References: Stangl Semiconductor Equipment AG1 This article is a stub. You...

  18. Truck fire Corrective Action Plan submitted to Carlsbad Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fire Accident Investigation Board report. On February 5, an underground mine fire involving a salt haul truck occurred in WIPP's underground mine. The DOE-appointed Accident ...

  19. Independent Oversight Review of the Fire Protection Program and...

    Broader source: Energy.gov (indexed) [DOE]

    MA Management Assessment MPFL Maximum Possible Fire Loss MVST Melton Valley Storage Tanks NFPA National Fire Protection Association OFI Opportunity for Improvement OREM Oak...

  20. Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility Facility Fire Water Lodge...

  1. Tag: fire protection | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participate in the CNSUniversity of Tennessee's Fire Protection Engineering program burn class. More... Category: Partnerships CNS, University of Tennessee partner on new fire...

  2. CNS, University of Tennessee partner on new fire protection program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tennessee partner on new fire protection program Posted: September 2, 2015 - 3:55pm Students in the University of Tennessee's Fire Protection Engineering program attend a test...

  3. Blast Effects Suppression System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blast Effects Suppression System HydroSuppressor (TM) Battelle Memorial Institute Contact BMI About This Technology Publications: PDF Document Publication Blast Effects Suppression System Patent (162 KB) PDF Document Publication Blast Effects Suppression System Picture (33 KB) Technology Marketing Summary The HydroSuppressor system was developed to protect critical facilities from the devastating effects of blast from a vehicle bomb. HydroSuppressor uses high volume water sprays to absorb the

  4. Appliance/Equipment Efficiency Standards | Open Energy Information

    Open Energy Info (EERE)

    ApplianceEquipment Efficiency Standards Massachusetts Boilers Furnaces No Appliance Energy Efficiency Standards (Maryland) ApplianceEquipment Efficiency Standards Maryland...

  5. MEK5 suppresses osteoblastic differentiation (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: MEK5 suppresses osteoblastic ... OSTI Identifier: 22462118 Resource Type: Journal Article Resource Relation: Journal Name: ...

  6. Laboratory Equipment Donation Program - Home Page

    Office of Scientific and Technical Information (OSTI)

    Get the tools you need to inspire innovation and creativity The United States Department of Energy (DOE), in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. equipment

  7. General Restaurant Equipment: Order (2013-CE-5344)

    Broader source: Energy.gov [DOE]

    DOE ordered General Restaurant Equipment Co. to pay a $8,000 civil penalty after finding General Restaurant Equipment had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  8. Universal null DTE (data terminal equipment)

    DOE Patents [OSTI]

    George, M.; Pierson, L.G.; Wilkins, M.E.

    1987-11-09

    A communication device in the form of data terminal equipment permits two data communication equipments, each having its own master clock and operating at substantially the same nominal clock rate, to communicate with each other in a multi-segment circuit configuration of a general communication network even when phase or frequency errors exist between the two clocks. Data transmitted between communication equipments of two segments of the communication network is buffered. A variable buffer fill circuit is provided to fill the buffer to a selectable extent prior to initiation of data output clocking. Selection switches are provided to select the degree of buffer preload. A dynamic buffer fill circuit may be incorporated for automatically selecting the buffer fill level as a function of the difference in clock frequencies of the two equipments. Controllable alarm circuitry is provided for selectively generating an underflow or an overflow alarm to one or both of the communicating equipments. 5 figs.

  9. Automatic monitoring of vibration welding equipment

    DOE Patents [OSTI]

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  10. Hydrocarbon characterization experiments in fully turbulent fires.

    SciTech Connect (OSTI)

    Ricks, Allen; Blanchat, Thomas K.

    2007-05-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.

  11. Material Analysis for a Fire Assessment.

    SciTech Connect (OSTI)

    Brown, Alexander; Nemer, Martin

    2014-08-01

    This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

  12. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas; Pomroy, William

    1992-01-01

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  13. Using the National Environmental Policy Act to Fight Wildland Fires on the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Irving, John S

    2003-06-01

    The decade of the 90s saw an average of 106,000 wildland fires each year, resulting in an average yearly loss of 3.7 million acres across the United States. The total number of acres burned during the past decade exceeded 36 million acres (about 57 thousand square miles). This is an area about the size of the state of Iowa. The impact from wildland fires on federal lands came to the nations attention in May of 2000, when the "Cerro Grande" fire near Los Alamos, New Mexico burned 47,650 acres while destroying 235 structures. Firefighting activities for federal agencies alone exceeded 1.3 billion dollars in 2000. The dollar amount spent on firefighting does not approach the dollars lost in terms of timber resources, homes, and wildlife habitat. Following several fires on U. S. Department of Energy lands, the Deputy Secretary of Energy placed a moratorium on "prescribed burns" in June 2000. From 1994 to 2000, about 130,000 acres of the INEEL (or the Site) and several hundred thousand acres of surrounding Bureau of Land Management lands burned on the Snake River Plain of southeast Idaho. The fires on the INEEL threatened facilities and exposed soils to wind erosion, resulting in severe dust storms, affecting operations and creating traffic hazards for weeks. Most of the acreage burned on the Site between 1994 and 2000 is recovering well. With the exception of sagebrush, most native plant species are recovering. However, cheatgrass, a non-native species is a component. In isolated areas, cheatgrass and other annual non-native weeds are dominant. If this situation persists and the Site does not change the way it manages wildland fires, and there is no intervention to reduce cheatgrass and manage for sagebrush, the Site may transition from sagebrush steppe to cheatgrass. This would have cascading effects not only on wildland fires management, but also on wildlife and on their habitat. This paper describes how to use the NEPA process to identify different ways decision-makers can manage wildland fires and evaluate the trade-offs between management activities such as pre-fire, suppression, and post-fire activities. In addition, the paper compares the potential impact of each fire management activity on air, water, wildlife/habitat, and cultural resources. Finally, we describe the choices facing the decision-makers, how to implement the decisions, and the role the environmental assessment played in those decisions.

  14. Ferromagnetic resonance probe liftoff suppression apparatus

    DOE Patents [OSTI]

    Davis, Thomas J.; Tomeraasen, Paul L.

    1985-01-01

    A liftoff suppression apparatus utilizing a liftoff sensing coil to sense the amount a ferromagnetic resonance probe lifts off the test surface during flaw detection and utilizing the liftoff signal to modulate the probe's field modulating coil to suppress the liftoff effects.

  15. Fire Safety Committee Membership List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fire Safety Committee Membership List Fire Safety Committee Membership List List of members representing DOE, NNSA and Contractors on the Fire Safety Committee. PDF icon Fire Safety Committee Membership List More Documents & Publications DOE Hoisting and Rigging Technical Advisory Committee - Membership Roster FAQS Sponsors and Recognized Experts FTCP Members

  16. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  17. Coal Fired Power Generation Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Forecast Home There are currently no posts in this category. Syndicate...

  18. Coal Fired Power Generation Market Trends | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Trends Home There are currently no posts in this category. Syndicate...

  19. Coal Fired Power Generation Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Analysis Home There are currently no posts in this category. Syndicate...

  20. Coal Fired Power Generation Market Size | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Size Home There are currently no posts in this category. Syndicate...

  1. Biomass Fired Electricity Generation Market | OpenEI Community

    Open Energy Info (EERE)

    Fired Electricity Generation Market Home There are currently no posts in this category. Syndicate...

  2. Global Coal Fired Power Generation Market | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Home There are currently no posts in this category. Syndicate content...

  3. In the wake of high-profile battery fires, a safer approach emerges >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information In the OSTI Collections: Carbon Sequestration, Figure 1 Archived News Stories > The Energy Materials Center at Cornell

    In the wake of high-profile battery fires, a safer approach emerges May 14th, 2014 › ACS News Service Weekly PressPac "Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Polyethylene Oxide Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries" Journal of the

  4. Computerized fire modeling as an effective tool for glovebox fire safety

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In 1986, DOE instituted a program of intense audits by outside safety experts as a result of increased awareness of safety related issues. These audits were referred to as (TSA's). In 1988, a third TSA was conducted of one of the major production buildings. One of the findings of a Technical Safety Appraisal (TSA) was that at Rocky Flats fire dampers are not installed within HVAC ductwork where the duct passes through fire barrier walls. Fire dampers are not utilized in ductwork because the exhaust air flow from process areas is critical from a radiological containment standpoint. Without adequate exhaust during a postulated fire, there would be the potential for radiological contamination exterior to the building. Due to this is an intolerable situation, fire dampers are not utilized. The final solution investigated was to attack the problem through the use of a computerized fire model of critical fire areas. The fact that fuel loading in most production areas was very low (3 to 7 pounds per square foot) led to the hypothesis that insufficient fire intensity exists to cause collapse of the duct. In order to validate this approach, two critical elements were needed. The first was a method to postulate a fire in the fire areas'' and the second was to determine at what exact point ducts will actually collapse. The best approach for the first element was through the use of a computerized fire model. The second element approach would be through either sound full scale fire testing or through a complete research search of past tests.

  5. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  6. Subsea equipment marriage is top ROV priority

    SciTech Connect (OSTI)

    Redden, J.

    1985-04-01

    Interfacing subsea equipment with remotely operated vehicles (ROV's) and the further development of arctic-class units are the primary challenges facing manufacturers. Worldwide use of the ROV for drilling support has exploded during this decade as oil companies continue their search in deeper waters. If the unmanned vehicles are to become an even more integral tool of the oilman, experts say they must be able to perform more complex tasks. The evolution of more multi-purpose ROVs, however, hinges on the redesigning of subsea equipment. The severe limitations on subsea support (by ROVs) is the obsolete design associated with the subsea equipment itself. These limitations are discussed.

  7. Water-Using Equipment: Commercial and Industrial

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

  8. Incidents of chemical reactions in cell equipment

    SciTech Connect (OSTI)

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  9. BCM 2 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Equipment Inventory « Biology Chemistry & Material Science Laboratory 2 Title Equipment Type Description Accumet Basic AB15 pH meter pH Meter pH meters with combination Ag/AgCl electrode and ATC probe. Corning 430 pH Meter pH Meter (Cold Room) Corning 430 pH meter. Corning 6795-420D Digital Stirrer/Hot Plate w/ temp probe Temperature Control Digital Hot Plate/Stirrer, 5 inch x 7 inch ceramic top, temperature range: 5° to 550°C; stir range: 60 to 1100rpm. The hot plate is equipment with

  10. Annual Fire Protection Summary Information Reporting Guide

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Annual Fire Protection Program Summary continues the series started in 1972. The report annually summarizes monetary loss information sent to Headquarters by reporting elements.

  11. DOE Finalizes WIPP Fire Investigation Report

    Broader source: Energy.gov [DOE]

    Washington, DC – Today, the Office of Environmental Management (EM) released the accident investigation report for the underground mine fire involving a salt haul truck at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

  12. Fire Energy S L | Open Energy Information

    Open Energy Info (EERE)

    Energy S L Jump to: navigation, search Name: Fire Energy, S.L. Place: Madrid, Spain Zip: 28806 Sector: Solar Product: Solar power developer and distributor based in Spain....

  13. Extinguishing agent for combustible metal fires

    DOE Patents [OSTI]

    Riley, John F.; Stauffer, Edgar Eugene

    1976-10-12

    A low chloride extinguishing agent for combustible metal fires comprising from substantially 75 to substantially 94 weight percent of sodium carbonate as the basic fire extinguishing material, from substantially 1 to substantially 5 weight percent of a water-repellent agent such as a metal stearate, from substantially 2 to substantially 10 weight percent of a flow promoting agent such as attapulgus clay, and from substantially 3 to substantially 15 weight percent of a polyamide resin as a crusting agent.

  14. Fire victim helped by area programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire victim helped by area programs Fire victim helped by local nonprofit organizations A perennial helper, didn't realize that she might someday need help herself. April 3, 2012 Beatrice Dubois is grateful for the help she received from Lab-supported Beatrice Dubois is grateful for the help she received from Lab-supported, local nonprofits during her time of need. Contact Kathy Keith Community Relations & Partnerships (505) 665-4400 Email Beatrice Dubois, dedicated fundraiser, assisted

  15. Fire Protection Program Guidelines | Department of Energy

    Energy Savers [EERE]

    Guidelines Fire Protection Program Guidelines Current fire protection requirements of the Department reside in: DOE O 420.1C, "Facility Safety", 10 CFR Part 851, Worker Safety and Health Program; DOE 440.1B Chg 1, "Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees". Specific requirements which are applicable to DOE facilities and programs are contained in the Code of Federal Regulations, NFPA Codes and Standards, and

  16. Wild Fire Computer Model Helps Firefighters

    ScienceCinema (OSTI)

    Canfield, Jesse

    2014-06-02

    A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.

  17. Contained Firing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Development / Facilities Contained Firing Facility The CFF firing chamber is the largest explosive chamber in the world, used for large-scale experiments using high-explosives with full containment of hazardous materials. The facility provides a combination of capabilities, including wide-angle flash radiography, laser velocimetry, pin-dome measurements, and high-speed optical cameras that are used to measure dynamics during the experiments. CFF is a key component of NNSA's national hydrotest

  18. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    SciTech Connect (OSTI)

    Hamid Sarv

    2009-02-28

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level OFA was not cost effective for wall-firing. For cyclone units, NO{sub x} removal by two-level OFA plus O{sub 2} enrichment but without coal reburning was economically attractive.

  19. REAL ESTATE & EQUIPMENT LEASING / RENTAL CALIFORNIA LAWRENCE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Other Commercial and Industrial Machinery and Equipment Rental and Leasing 532490 NEVADA NEVADA SITE OFFICE POC Anita Ross Telephone (702) 295-5690 Email rossal@nv.doe.gov Lessors ...

  20. Liberty Utilities Iowa High Efficiency Equipment Rebate

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers a rebate to its Iowa residential and small business customers for the purchase of high efficiency ENERGY STAR natural gas home heating and water heating equipment....

  1. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  2. Renewable Energy Equipment Exemption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    100% of sales tax Summary Iowa allow a sales tax exemption for solar, wind, and hydroelectricity equipment. As of August 2014, the Iowa sales tax rate is 6%. Wind For wind energy...

  3. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  4. Biomass Equipment & Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005, New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels, or biobased products in...

  5. Capital Equipment Validation Form | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capital Equipment Validation Form Version Number: 2.0 Document Number: Form 48100.001 Effective Date: 02/2015 File (public): Office spreadsheet icon form_48100.001_rev2.xls

  6. Field surveys of office equipment operating patterns

    SciTech Connect (OSTI)

    Webber, Carrie A.; Roberson, Judy A.; Brown, Richard E.; Payne, Christopher T.; Nordman, Bruce; Koomey, Jonathan G.

    2001-09-05

    This paper presents the results of 11 after-hours walk-throughs of offices in the San Francisco CA and Washington D.C. areas. The primary purpose of these walk-throughs was to collect data on turn-off rates for various types of office equipment (computers, monitors, printers, fax machines, copiers, and multifunction products). Each piece of equipment observed was recorded and its power status noted (e.g. on, off, low power). Whenever possible, we also recorded whether power management was enabled on the equipment. The floor area audited was recorded as well, which allowed us to calculate equipment densities. We found that only 44 percent of computers, 32 percent of monitors, and 25 percent of printers were turned off at night. Based on our observations we estimate success rates of 56 percent for monitor power management and 96 percent for enabling of power management on printers.

  7. Property Tax Assessment for Renewable Energy Equipment

    Broader source: Energy.gov [DOE]

    H.B. 2403 of 2014 clarified that depreciation should be determined using straight-line depreciation over the useful life of the equipment. The taxable original cost equals the original cost of th...

  8. Advanced Battery Manufacturing Facilities and Equipment Program |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt002_es_flicker_2012_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  9. Advanced Battery Manufacturing Facilities and Equipment Program |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt002_es_flicker_2011_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)

  10. Geoscience Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Equipment Inventory « Geoscience Laboratory Title Equipment Type Description Coy Anaerobic Chamber Inert Atmosphere Chamber Coy anaerobic chamber (Type C, model 7100-000) with auto airlock for wet and dry sample preparations, 5% H2/95% N2 mix atmosphere, and auto injection system. Fisher Scientific General Purpose Refrigerator Temperature Control Fisher Scientific General Purpose refrigerator. Fisher Scientific Isotemp Freezer Temperature Control Fisher Scientific Isotemp Freezer.

  11. Available for Checkout Equipment Inventory | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Available for Checkout Equipment Inventory « Equipment Resources Title Description Agate Mortar & Pestle Sets Agate mortar & pestle sets (100mm, 65 mm, & 50mm sizes). Buchi V-700 Vacuum Pump & condenser Chemically resistant vacuum pump, flow rate 1.8m^3/h, ultimate vacuum less than 10mbar. The secondary condenser (Buchi 047180) is a complete module with insulation and 500mL receiving flask. Campden Instruments Vibrating Manual Tissue Cutter HA 752 Campden

  12. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOE Patents [OSTI]

    Sheldon, Ray W.

    2001-01-01

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  13. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  14. Development and demonstration of a wood-fired gas turbine system

    SciTech Connect (OSTI)

    Smith, V.; Selzer, B.; Sethi, V.

    1993-08-01

    The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

  15. Fire testing: A review of past, current and future methods

    SciTech Connect (OSTI)

    White, G.C.; Shirvill, L.C.

    1995-12-31

    The philosophy and current methods of fire testing elements of construction and the associated fire protection systems are reviewed. Particular attention is paid to offshore structures and the fire hazards associated with offshore operations. Fire testing is only one aspect in the attempt to ensure that the effects of fires are understood and that effective fire protection systems are developed. The historical development of fire tests is discussed, ending with the furnace test which follows the hydrocarbon temperature versus time curve. The limitations of these tests are discussed, in particular when they are applied to offshore fire scenarios where they are not representative of the potential fire loading and conditions identified for typical platforms. The identification of the jet fire as a common fire scenario on offshore platforms, together with the criticisms made by Lord Cullen in his report on the Piper Alpha disaster, has driven the development of more realistic fire tests. Two such tests are now available and are described in the paper. Also discussed is the development of a smaller scale test that has formed the basis of the recently issued Interim Jet Fire Test Procedure, produced by a working group comprising the UK Health and Safety Executive (HSE); the Norwegian Petroleum Directorate (NPD); Lloyd`s Register; the UK Offshore Operator`s Association (UKOOA); the Norwegian Fire Research Laboratory (SINTEF NBL); the Southwest Research Institute (SwRI); Shell Research Ltd.; and British Gas Research and Technology.

  16. METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY

    DOE Patents [OSTI]

    Visek, W.J.

    1963-04-23

    This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)

  17. Suppression of Grain Boundaries in Graphene Growth on Superstructured...

    Office of Scientific and Technical Information (OSTI)

    Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) Surface Title: Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) ...

  18. Alternative Fuels Data Center: Installing New E85 Equipment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data

  19. Zhejiang DunAn Artificial Environmental Equipment Co Ltd | Open...

    Open Energy Info (EERE)

    DunAn Artificial Environmental Equipment Co Ltd Jump to: navigation, search Name: Zhejiang DunAn Artificial Environmental Equipment Co Ltd Place: Zhuji, Zhejiang Province, China...

  20. Product Standards for Vending Equipment (Japan) | Open Energy...

    Open Energy Info (EERE)

    Vending Equipment (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Vending Equipment (Japan) Focus Area: Energy Efficiency Topics: Policy...

  1. Zhangjiakou Kunyuan Wind Power Equipment Co | Open Energy Information

    Open Energy Info (EERE)

    Kunyuan Wind Power Equipment Co Jump to: navigation, search Name: Zhangjiakou Kunyuan Wind Power Equipment Co Place: Zhangjiakou, Hebei Province, China Sector: Wind energy Product:...

  2. Harbin Hafei Winwind Wind Power Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hafei Winwind Wind Power Equipment Co Ltd Jump to: navigation, search Name: Harbin Hafei-Winwind Wind Power Equipment Co Ltd Place: Harbin, Heilongjiang Province, China Zip: 150060...

  3. Jilin Tianhe Wind Power Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Equipment Co Ltd Jump to: navigation, search Name: Jilin Tianhe Wind Power Equipment Co Ltd Place: Baicheng, Jilin Province, China Sector: Wind energy Product:...

  4. Foshan Dongxing Fengying Wind Power Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dongxing Fengying Wind Power Equipment Co Ltd Jump to: navigation, search Name: Foshan Dongxing Fengying Wind Power Equipment Co Ltd Place: Foshan, China Zip: 528000 Sector: Wind...

  5. Baoding Hengyi Wind Power Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baoding Hengyi Wind Power Equipment Co Ltd Jump to: navigation, search Name: Baoding Hengyi Wind Power Equipment Co Ltd Place: Baoding, Hebei Province, China Product: Baoding-based...

  6. Harbin Wind Power Equipment Company | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Equipment Company Jump to: navigation, search Name: Harbin Wind Power Equipment Company Place: Harbin, Heilongjiang Province, China Sector: Wind energy Product: A wind...

  7. Jiangsu Guoshen Wind Power Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guoshen Wind Power Equipment Co Ltd Jump to: navigation, search Name: Jiangsu Guoshen Wind Power Equipment Co Ltd Place: Yancheng, Jiangsu Province, China Sector: Wind energy...

  8. Nantong Hongbo Windpower Equipment Co Ltd HWE | Open Energy Informatio...

    Open Energy Info (EERE)

    Nantong Hongbo Windpower Equipment Co Ltd HWE Jump to: navigation, search Name: Nantong Hongbo Windpower Equipment Co Ltd (HWE) Place: Nantong, Jiangsu Province, China Zip: 226371...

  9. Biogas, Solar, and Wind Energy Equipment Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biogas, Solar, and Wind Energy Equipment Exemption Biogas, Solar, and Wind Energy Equipment Exemption < Back Eligibility Commercial Industrial Residential Agricultural Multifamily...

  10. PNC Bank Equipment Finance and Energy Group | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: PNC Bank - Equipment Finance and Energy Group Place: Valencia, California Zip: 91355 Product: Energy and Equipment Finance arm of PNC Bank...

  11. AVTA: Airport Ground Support Equipment Specifications and Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Airport Ground Support Equipment Specifications and Test Procedures AVTA: Airport Ground Support Equipment Specifications and Test Procedures PDF icon eGSE America Electric Baggage ...

  12. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy ...

  13. Beijing Jingyi Century Automatic Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    beijing Jingyi Century Automatic Equipment Co Ltd Place: Beijing Municipality, China Zip: 100079 Product: A Chinese equipment manufacturer provides monosilicon ingot puller and...

  14. CXD 4605, Disposition Excess Equipment from Alpha 1 (4605)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposition Excess Equipment from Alpha 1 (4605) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to characterize and disposition equipment that was...

  15. GT Solar Technologies formerly GT Equipment Technologies | Open...

    Open Energy Info (EERE)

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  16. NREL: Energy Systems Integration Facility - Fixed Equipment and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fixed Equipment and Experimental Resources The Energy Systems Integration Facility hosts an array of fixed equipment and experimental resources to support component and system...

  17. Tuori Solar Energy Equipment Mfg Company | Open Energy Information

    Open Energy Info (EERE)

    Tuori Solar Energy Equipment Mfg Company Jump to: navigation, search Name: Tuori Solar Energy Equipment Mfg Company Place: Baoding, Hebei Province, China Zip: 71000 Sector: Solar...

  18. How Do I Determine what Personal Protective Equipment (PPE) to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determine what Personal Protective Equipment (PPE) to Wear? Print General The ALS has a standard Personal Protective Equipment (PPE) policy that covers all activities on the...

  19. China SC Exact Equipment Co LTD | Open Energy Information

    Open Energy Info (EERE)

    SC Exact Equipment Co LTD Jump to: navigation, search Name: China SC Exact Equipment Co., LTD Place: Shenzhen, Guangdong Province, China Zip: 518125 Sector: Solar Product:...

  20. China Ordnance Equipment Group Corporation COEGC | Open Energy...

    Open Energy Info (EERE)

    China Ordnance Equipment Group Corporation COEGC Jump to: navigation, search Name: China Ordnance Equipment Group Corporation (COEGC) Place: Beijing Municipality, China Sector:...

  1. Data Center Efficiency and IT Equipment Reliability at Wider...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Efficiency and IT Equipment Reliability at Wider Operating Temperature and Humidity Ranges Data Center Efficiency and IT Equipment Reliability at Wider Operating Temperature ...

  2. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop ...

  3. Varian Semiconductor Equipment Associates Inc VSEA | Open Energy...

    Open Energy Info (EERE)

    Varian Semiconductor Equipment Associates Inc VSEA Jump to: navigation, search Name: Varian Semiconductor Equipment Associates Inc (VSEA) Place: Gloucester, Massachusetts Zip: 1930...

  4. Community Wind Handbook/Purchase Equipment | Open Energy Information

    Open Energy Info (EERE)

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Purchase Equipment The purchase of a turbine for a small community wind project is...

  5. Beijing Zhongkexin Electronics Equipment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongkexin Electronics Equipment Co Ltd Jump to: navigation, search Name: Beijing Zhongkexin Electronics Equipment Co Ltd Place: Beijing Municipality, China Zip: 101111 Product: A...

  6. MSA Apparatus Construction for Chemical Equipment Ltd | Open...

    Open Energy Info (EERE)

    MSA Apparatus Construction for Chemical Equipment Ltd Jump to: navigation, search Name: MSA Apparatus Construction for Chemical Equipment Ltd Place: United Kingdom Sector: Hydro,...

  7. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-...

  8. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place: Hebei Province, China Sector:...

  9. Shenyang Tianxiang Wind Equipments Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Tianxiang Wind Equipments Manufacturing Co Ltd Jump to: navigation, search Name: Shenyang Tianxiang Wind Equipments Manufacturing Co., Ltd Place: Shenyang, Liaoning Province, China...

  10. Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd...

    Open Energy Info (EERE)

    Yinxing Energy PV Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd Place: Yinchuan, Ningxia...

  11. Nordex Yinchuan Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yinchuan Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Yinchuan) Wind Power Equipment Manufacturing Co. Ltd Place: Yinchuan, Ningxia...

  12. Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Yatu (Yangjiang) Fengdian Equipment Manufacturing Co Ltd Place: Yangjiang, Guangdong...

  13. Nordex Dongying Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Dongying Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Dongying) Wind Power Equipment Manufacturing Co. Ltd. Place: Dongying, Shandong...

  14. Best Management Practice #9: Single-Pass Cooling Equipment |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cooling include CAT scanners, degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines, x-ray equipment, and air conditioners. ...

  15. Changzhou Jiangnan Electrical Power Equipment Group Co Ltd |...

    Open Energy Info (EERE)

    Jiangnan Electrical Power Equipment Group Co Ltd Jump to: navigation, search Name: Changzhou Jiangnan Electrical Power Equipment Group Co., Ltd Place: Changzhou, Jiangsu Province,...

  16. Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Series CINCINNATI-EQUIPMENT LEASE PROGRAM Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors The Greater Cincinnati Energy Alliance (GCEA), a Better ...

  17. Chinese Wind Energy Equipment Association CWEEA | Open Energy...

    Open Energy Info (EERE)

    Wind Energy Equipment Association CWEEA Jump to: navigation, search Name: Chinese Wind Energy Equipment Association (CWEEA) Place: Beijing, Beijing Municipality, China Zip: 100825...

  18. List of Food Service Equipment Incentives | Open Energy Information

    Open Energy Info (EERE)

    Refrigeration Equipment Food Service Equipment Yes Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Alabama Residential Furnaces...

  19. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    Gasoline and Diesel Fuel Update (EIA)

    characterizes most major residential equipment and commercial heating, cooling, and water heating equipment. Appendix A was used in developing Reference case projections, while...

  20. Heating and Cooling System Support Equipment Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment ... Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes ...

  1. Recovery Act Incentives for Wind Energy Equipment Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Incentives for Wind Energy Equipment Manufacturing Recovery Act Incentives for Wind Energy Equipment Manufacturing Document that lists some of the major federal ...

  2. Alternative technologies for cooling and refrigeration equipment

    SciTech Connect (OSTI)

    Matchett, J.

    1995-12-01

    Significant national and international attention has focused on the role that chlorofluorocarbons (CFCs) play in stratospheric ozone depletion. The Clean Air Act of 1990 calls for the production of the most harmful CFCs to completely cease by December 31, 1995. This production phaseout affects many CFC-refrigerants which are commonly used in commercial, residential, and industrial cooling processes. The production phaseout of CFCs will require owners of CFC-based refrigeration equipment to make plans to replace their equipment. Many equipment owners find themselves in a {open_quotes}rut{close_quotes}replacing CFCs with another chemical coolant, rather than a new cooling process. Since many of the chemical alternatives are structurally similar to CFCs (i.e., HCFCs, HFCs, and blends) they require minimal changes to current equipment. However, these substances are also believed to affect the global climate. Hence, they may not be the most environmentally sound alternative and probable are subject to other Federal regulations. There are other HVAC/R alternatives which are less environmentally damaging than these chemicals and may actually be more cost-effective and energy efficient and than the {open_quotes}traditional{close_quotes} CFC chemical substitutes. Alternative cooling technologies include absorption systems, desiccant cooling, evaporative cooling, and ammonia vapor compression. These alternative technologies are proven alternatives and are commercially available. Further, significant technological developments in recent years have made these technologies feasible alternatives for applications previously believed to be unacceptable. This paper describes these alternative technologies and the conditions in which they are viable alternatives to CFC-based equipment. Additionally, energy efficiency and life-cycle cost analysis considerations are addressed to provide a more completes analysis of cooling equipment alternatives.

  3. Contaminant signature at Los Alamos firing sites

    SciTech Connect (OSTI)

    Becker, N.; Irvine, J.

    1996-01-01

    During a dynamic weapons test, a weapons component is either explosively detonated or impacted against a target in the open air environment. This results in both the production of a wide size range of depleted uranium particles as well as particle scattering over a considerable distance away from the firing pad. The explosive detonation process which creates aerial distribution over a watershed distinguishes this contaminant transport problem from others where the source term is spatially discrete. Investigations of this contamination began in 1983 with collection of onsite soils, sediments, and rock samples to establish uranium concentrations. The samples were analyzed for total uranium to evaluate the magnitude of transport of uranium away from firing sites by airborne and surface water runoff mechanisms. This data was then used to define a firing site.

  4. Conceptual design report, CEBAF basic experimental equipment

    SciTech Connect (OSTI)

    1990-04-13

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

  5. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect (OSTI)

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

  6. Firing of pulverized solvent refined coal

    DOE Patents [OSTI]

    Lennon, Dennis R. (Allentown, PA); Snedden, Richard B. (McKeesport, PA); Foster, Edward P. (Macungie, PA); Bellas, George T. (Library, PA)

    1990-05-15

    A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

  7. Inflatable partition for fighting mine fires

    DOE Patents [OSTI]

    Conti, Ronald S.; Lazzara, Charles P.

    1995-01-01

    The seal is a lightweight, inflatable, bag which may be inflated by a portable air generator and is used to seal a burning mine passage. A collapsible tube-like aperture extends through the seal and allows passage of high expansion foam through the seal in a feed tube. The foam fills the passageway and extinguishes the fire. In other embodiments, the feed tubes incorporate means to prevent collapse of the aperture. In these embodiments a shroud connects the feed tube to a foam generator. This seal allows creation of a high expansion foam fire fighting barrier even in upward sloping passages.

  8. Oil-Fired Boilers and Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container...

  9. Fire Protection System Account Request Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Account Request Form Fire Protection System Account Request Form December 2, 2010 ... To obtain a user id and password to access the Fire Protection system, please complete the ...

  10. Memorandum, Wildland Fire Safety Enchancements- Jan 19, 2001

    Broader source: Energy.gov [DOE]

    Memorandum to Program Secretarial Officers, DOE Operations Office Managers and DOE Field Office Managers from Secretary of Energy, Bill Richardson on wildland fire safety improvements recommended by the Commission on Fire Safety and Preparedness.

  11. Annual Fire Protection Program Summary for Calendar Year 2012

    Broader source: Energy.gov [DOE]

    The information contained in this publication was extracted from the Fire Protection Reporting System for calendar year 2012. This report was generated based on data reported into the Fire Protection Reporting System as of July, 2013.

  12. Annual Fire Protection Program Summary for Calendar Year 2011

    Broader source: Energy.gov [DOE]

    The information contained in this publication was extracted from the Fire Protection Reporting System for calendar year 2011. This report was generated based on data reported into the Fire Protection Reporting System as of August, 2012.

  13. Annual Fire Protection Program Summary for Calendar Year 2010

    Broader source: Energy.gov [DOE]

    The information contained in this publication was extracted from the Fire Protection Reporting System for calendar year 2010. This report was generated based on data reported into the Fire Protection Reporting System as of June, 2011.

  14. Advanced fire-resistant forms of activated carbon and methods...

    Office of Scientific and Technical Information (OSTI)

    Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same Citation Details In-Document Search Title: Advanced fire-resistant forms ...

  15. PrairieFire BioFuels Cooperative | Open Energy Information

    Open Energy Info (EERE)

    PrairieFire BioFuels Cooperative Jump to: navigation, search Name: PrairieFire BioFuels Cooperative Place: Madison, Wisconsin Zip: 53704 Product: A member-owned cooperative which...

  16. Saving Energy and Money at 24/7 Fire Stations

    Broader source: Energy.gov [DOE]

    Given constant use and the importance of fire stations to surrounding communities, the Indiana Office of Energy Development awarded funds from the Energy Efficiency and Conservation Block Grant to improve energy efficiency at some local fire stations.

  17. CRAD, Measuring and Testing Equipment Assessment Plan

    Broader source: Energy.gov [DOE]

    The objective of this assessment is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly controlled, calibrated, and adjusted at specified times to maintain accuracy within necessary limits.

  18. Appliance and Equipment Standards Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturers produce products with a high level of compliance that meet minimum energy conservation standards, resulting in energy savings in the buildings sector The Appliance & Equipment Standards Program promulgates energy conservation standards and test procedures in a rulemaking process to reduce energy consumption across residential, commercial, and industrial buildings. External Influences: DOE budget, Energy prices, Real estate market, Market incentives, Legislation / Regulation

  19. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Phase I | Department of Energy - Truck Fire and Radiological Release Phase I Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Submittal of the Underground Salt Haul Truck Fire Corrective Action Plan and the Radiological Release Event Corrective Action Plan under Nuclear Waste Partnership LLC Contract DE-EM0001971. PDF icon Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase

  20. Enterprise Assessments Review of the Nevada National Security Site Fire

    Energy Savers [EERE]

    Protection Program - October 2015 | Department of Energy the Nevada National Security Site Fire Protection Program - October 2015 Enterprise Assessments Review of the Nevada National Security Site Fire Protection Program - October 2015 October 2015 Review of the Fire Protection Program at the Nevada National Security Site The U.S. Department of Energy (DOE) independent Office of Enterprise Assessments (EA) conducted an oversight review of the Nevada National Security Site (NNSS) fire

  1. Enterprise Assessments Review of the Argonne National Laboratory Fire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protection Program - August 2015 | Department of Energy the Argonne National Laboratory Fire Protection Program - August 2015 Enterprise Assessments Review of the Argonne National Laboratory Fire Protection Program - August 2015 August 2015 Review of the Argonne National Laboratory Fire Protection Program The U.S. Department of Energy (DOE) independent Office of Enterprise Assessments (EA) conducted a review of the fire protection program (FPP) at Argonne National Laboratory (ANL). The

  2. Memorandum, Fire Safety Program Performance Measures- October 10, 1998

    Broader source: Energy.gov [DOE]

    The purpose of this memorandum is to provide you with a list of recommended fire safety program performance measures.

  3. Fire hazards evaluation for light duty utility arm system

    SciTech Connect (OSTI)

    HUCKFELDT, R.A.

    1999-02-24

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

  4. Fire Protection Program Assessment, Building 9116- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment is intended to evaluate the fire hazards, life safety and fire protection features inherent in Building 9116.

  5. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-12-31

    This is the eighteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Safety equipment for ammonia for the SCR slipstream reactor at Plant Gadsden was installed. The slipstream reactor was started and operated for about 1400 hours during the last performance period. Laboratory analysis of exposed catalyst and investigations of the sulfation of fresh catalyst continued at BYU. Thicker end-caps for the ECN probes were designed and fabricated to prevent the warpage and failure that occurred at Gavin with the previous design. A refurbished ECN probe was successfully tested at the University of Utah combustion laboratory. Improvements were implemented to the software that controls the flow of cooling air to the ECN probes.

  6. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  7. Use Lower Flammable Limit Monitoring Equipment to Improve Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fire Protection Association (NFPA) guidelines require the removal of significant ... For a continuous strip coating process requiring 46 gallons of xylol with a maximum oven ...

  8. Annual Fire Protection Program Summary for Calendar Year 2011

    Energy Savers [EERE]

    Annual Fire Protection Program Summary for Calendar Year 2011 UNITED STATES DEPARTMENT OF ENERGY Summary Provided by: Environmental Protection, Sustainability Support and Corporate Safety Analysis Office of Health, Safety and Security August 2012 Annual Fire Protection Program Summary Environmental Protection, Sustainability Support Security Annual Fire Protection Program Summary for Calendar Year CY2011 ii Table of Contents Table of Contents

  9. Guidance for the Quality Assurance of Fire Protection Systems

    Broader source: Energy.gov [DOE]

    This quality assurance document is intended to provide guidance for the DOE fire protection community in the continuing effort to ensure the reliability of fire protection systems. This guidance document applies the concepts of DOE Order 5700.6C, Quality Assurance, to the management of fire protection systems.

  10. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, C.L.; Foote, J.P.

    1995-07-04

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  11. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, Charles L.; Foote, John P.

    1995-01-01

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

  12. Direct fired absorption machine flue gas recuperator

    DOE Patents [OSTI]

    Reimann, Robert C.; Root, Richard A.

    1985-01-01

    A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

  13. Fire safety of LPG in marine transportation

    SciTech Connect (OSTI)

    Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

    1980-08-01

    This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

  14. UF{sub 6} cylinder fire test

    SciTech Connect (OSTI)

    Park, S.H.

    1991-12-31

    With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.

  15. Blank fire configuration for automatic pistol

    DOE Patents [OSTI]

    Teague, Tommy L. (Albuquerque, NM)

    1990-01-01

    A pistol configured to fire blank cartridges includes a modified barrel with a breech portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breech portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retention rod projects from the barrel anchor and receives a shortened recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from a slide so that when the pistol is fired, the slide moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breech portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired.

  16. DOE Fire Protection Handbook, Volume I

    SciTech Connect (OSTI)

    1996-08-01

    The Department of Energy (DOE) Fire Protection Program is delineated in a number of source documents including; the Code of Federal Regulations (CFR), DOE Policy Statements and Orders, DOE and national consensus standards (such as those promulgated by the National Fire Protection Association), and supplementary guidance, This Handbook is intended to bring together in one location as much of this material as possible to facilitate understanding and ease of use. The applicability of any of these directives to individual Maintenance and Operating Contractors or to given facilities and operations is governed by existing contracts. Questions regarding applicability should be directed to the DOE Authority Having Jurisdiction for fire safety. The information provided within includes copies of those DOE directives that are directly applicable to the implementation of a comprehensive fire protection program. They are delineated in the Table of Contents. The items marked with an asterisk (*) are included on the disks in WordPerfect 5.1 format, with the filename noted below. The items marked with double asterisks are provided as hard copies as well as on the disk. For those using MAC disks, the files are in Wordperfect 2.1 for MAC.

  17. Fired heater for coal liquefaction process

    DOE Patents [OSTI]

    Ying, David H. S. (Macungie, PA)

    1984-01-01

    A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

  18. Integrated fire analysis: Application to offshore cases

    SciTech Connect (OSTI)

    Saubestre, V.; Khalfi, J.P.; Paygnard, J.C.

    1995-12-31

    Evaluating thermal loads from different fire scenarios and then response of the structure to these loads covers several fields. It is also difficult and time consuming to implement. Interfaces are necessary between the heat calculation, transient propagation and structural analysis software packages. Nevertheless, it is necessary to design structures to accommodate heat loads in order to meet safety requirements or functional specification. Elf, along with several operators and organizations, have sponsored a research project on this topic. The project, managed by SINTEF NBL (Norwegian Fire Research Laboratory), has delivered an integrated fire analysis software package which can be used to address design-to-fire-related issues in various contexts. The core modules of the integrated package are robust, well validated analysis tools. This paper describes some benefits (technical or cost related) of using an integrated approach to assess the response of a structure to thermal loads. Three examples are described: consequence of an accidental scenario on the living quarters in an offshore complex, necessity for the reinforcement of a flareboom following a change in process, evaluation of the amount of insulation needed for a topside process primary structure. The paper focuses on the importance for the operator to have a practical tool which can lead to substantial cost saving while reducing the uncertainty linked to safety issues.

  19. DOE Hydrogen Storage Technical Performance Targets for Material Handling Equipment

    Broader source: Energy.gov [DOE]

    This table summarizes hydrogen storage technical performance targets for material handling equipment.

  20. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    SciTech Connect (OSTI)

    Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

    2013-09-30

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

  1. Alternative Fuels Data Center: Installing B20 Equipment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Vehicles » Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Installing B20 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing B20 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing B20 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing B20 Equipment on Google Bookmark Alternative Fuels Data Center: Installing B20 Equipment on Delicious Rank Alternative Fuels Data

  2. Workplace Charging Equipment and Installation Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment and Installation Costs Workplace Charging Equipment and Installation Costs The costs for a workplace charging program include the costs for charging equipment, installation, maintenance, and supplying electricity. Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 ($300-$1,500) and Level 2 ($400-$6,500) charging stations are commonly installed at workplaces. Explore how charging station equipment features affect the total

  3. About the Appliance and Equipment Standards Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance & Equipment Standards » About the Appliance and Equipment Standards Program About the Appliance and Equipment Standards Program The Department of Energy (DOE), through the Buildings Technologies Office, sets minimum energy efficiency standards for approximately 60 categories of appliances and equipment used in homes, businesses, and other applications, as required by existing law. The appliances and equipment covered provide services that are used by consumers and businesses each

  4. Alternative Fuels Data Center: Onboard Idle Reduction Equipment for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Trucks Onboard Idle Reduction Equipment for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Onboard Idle Reduction Equipment for

  5. Early Markets: Fuel Cells for Material Handling Equipment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to power material handling equipment (MHE) and includes cost and performance comparisons for fuel cell-powered and battery-powered MHE. PDF icon Early Markets: Fuel Cells for Material Handling Equipment More Documents & Publications An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment Market

  6. Best Management Practice #12: Laboratory and Medical Equipment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 12: Laboratory and Medical Equipment Best Management Practice #12: Laboratory and Medical Equipment Equipment used in hospitals and laboratories can use significant amounts of water, offering the opportunity for substantial water savings by making a few small changes to how and when the water is used by the equipment. Water-consuming equipment in laboratories and medical facilities include water purification systems, sterilization and disinfection systems photographic and x-ray

  7. Chapter 10 - Property, Plant and Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7-18-2011 Chapter 10-1 CHAPTER 10 PROPERTY, PLANT, AND EQUIPMENT 1. INTRODUCTION. a. Background/Authorities. This chapter describes financial controls over the acquisition, use, and retirement of property and provides guidelines for distinguishing between charges to capital accounts and charges to expense accounts consistent with the Statement of Federal Financial Accounting Standards (SFFAS). b. Applicability. The applicability of this chapter is specified in Chapter 1, "Accounting

  8. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  9. FIREPLUME model for plume dispersion from fires: Application to uranium hexafluoride cylinder fires

    SciTech Connect (OSTI)

    Brown, D.F.; Dunn, W.E.; Policastro, A.J.; Maloney, D.

    1997-06-01

    This report provides basic documentation of the FIREPLUME model and discusses its application to the prediction of health impacts resulting from releases of uranium hexafluoride (UF{sub 6}) in fires. The model application outlined in this report was conducted for the Draft Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted UF{sub 6}. The FIREPLUME model is an advanced stochastic model for atmospheric plume dispersion that predicts the downwind consequences of a release of toxic materials from an explosion or a fire. The model is based on the nonbuoyant atmospheric dispersion model MCLDM (Monte Carlo Lagrangian Dispersion Model), which has been shown to be consistent with available laboratory and field data. The inclusion of buoyancy and the addition of a postprocessor to evaluate time-varying concentrations lead to the current model. The FIREPLUME model, as applied to fire-related UF{sub 6} cylinder releases, accounts for three phases of release and dispersion. The first phase of release involves the hydraulic rupture of the cylinder due to heating of the UF{sub 6} in the fire. The second phase involves the emission of material into the burning fire, and the third phase involves the emission of material after the fire has died during the cool-down period. The model predicts the downwind concentration of the material as a function of time at any point downwind at or above the ground. All together, five fire-related release scenarios are examined in this report. For each scenario, downwind concentrations of the UF{sub 6} reaction products, uranyl fluoride and hydrogen fluoride, are provided for two meteorological conditions: (1) D stability with a 4-m/s wind speed, and (2) F stability with a 1-m/s wind speed.

  10. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1988-12-01

    A real-time laser light-reflectivity technique is being used to study simultaneous thermophoretic and inertial influences on the deposition behavior of MgO particles produced via ultrasonic nebulization (submicrometer range). The deposition surface (a concave platinum ribbon) is exposed to a high velocity/temperature jet of alkali sulfate-free combustion products exiting from a seeded (C3[sub 3]H[sub 8]/air) microcombustor (110 cm[sup 3]). The reflectivity data were calibrated against deposition rates obtained from SEM pictures of the target, and were normalized with the nominal particle feed rate, in order to obtain the mass transfer Stanton number, St[sub m], trends depicted in Figure 1. For the submicron (ca. 0.7[mu]m) particles inertial effects appear to set in at Stokes (Stk) numbers of O(10[sup [minus]2]) (an order of magnitude lower than the ones needed for pure'' inertial impaction), affecting significantly the dominant thermophoretic deposition mechanism. A first order (in Stk) theoretical analysis of the problem in which particle inertia is treated as equivalent to pressure diffusion,'' cannot explain the observed dependence of the deposition rate on Stk. We are presently formulating a Lagrangian approach, valid for all values of Stk, in order to interpret these data. In addition, a Single Particle Counter (SPC) and Transit Time Velocimeter (TTV), are being developed, to allow more precise measurements of particle feed rates and velocities.

  11. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 2, Overfire air tests

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.P.

    1992-07-13

    This Phase 2 Test Report summarizes the testing activities and results for the second testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The second phase demonstrates the Advanced Overfire Air (AOFA) retrofit with existing Foster Wheeler (FWEC) burners. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data supported by short-term characterization data. Ultimately a fifty percent NO{sub x} reduction target using combinations of combustion modifications has been established for this project.

  12. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.P. )

    1992-07-13

    This Phase 2 Test Report summarizes the testing activities and results for the second testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers. The second phase demonstrates the Advanced Overfire Air (AOFA) retrofit with existing Foster Wheeler (FWEC) burners. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO[sub x] combustion equipment through the collection and analysis of long-term emissions data supported by short-term characterization data. Ultimately a fifty percent NO[sub x] reduction target using combinations of combustion modifications has been established for this project.

  13. Temporary fire sealing of penetrations on TFTR

    SciTech Connect (OSTI)

    Hondorp, H.L.

    1981-02-01

    The radiation shielding provided for TFTR for D-D and D-T operation will be penetrated by numerous electrical and mechanical services. Eventually, these penetrations will have to be sealed to provide the required fire resistance, tritium sealability, pressure integrity and radiation attenuation. For the initial hydrogen operation, however, fire sealing of the penetrations in the walls and floor is the primary concern. This report provides a discussion of the required and desirable properties of a temporary seal which can be used to seal these penetrations for the hydrogen operation and then subsequently be removed and replaced as required for the D-D and D-T operations. Several candidate designs are discussed and evaluated and recommendations are made for specific applications.

  14. Executive roundtable on coal-fired generation

    SciTech Connect (OSTI)

    2009-09-15

    Power Engineering magazine invited six industry executives from the coal-fired sector to discuss issues affecting current and future prospects of coal-fired generation. The executives are Tim Curran, head of Alstom Power for the USA and Senior Vice President and General Manager of Boilers North America; Ray Kowalik, President and General Manager of Burns and McDonnell Energy Group; Jeff Holmstead, head of Environmental Strategies for the Bracewell Giuliani law firm; Jim Mackey, Vice President, Fluor Power Group's Solid Fuel business line; Tom Shelby, President Kiewit Power Inc., and David Wilks, President of Energy Supply for Excel Energy Group. Steve Blankinship, the magazine's Associate Editor, was the moderator. 6 photos.

  15. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  16. Fire Protection Engineering Functional Area Qualification Standard

    Energy Savers [EERE]

    37-2014 April 2014 _______________________________ Supersedes DOE-STD-1137-2007 September 2007 DOE STANDARD FIRE PROTECTION ENGINEERING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1137-2014 ii This document is available on the Department of Energy Technical Standards Program Website at

  17. Fired heater for coal liquefaction process

    DOE Patents [OSTI]

    Ying, David H. S.; McDermott, Wayne T.; Givens, Edwin N.

    1985-01-01

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  18. Resistance after firing protected electric match

    DOE Patents [OSTI]

    Montoya, Arsenio P.

    1981-11-10

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  19. Fire exposure of empty 30B cylinders

    SciTech Connect (OSTI)

    Ziehlke, K.T.

    1991-12-31

    Cylinders for UF{sub 6} handling, transport, and storage are designed and built as unfired pressure vessels under ASME Boiler and Pressure Vessel Code criteria and standards. They are normally filled and emptied while UF{sub 6} is in its liquid phase. Transport cylinders such as the Model 30B are designed for service at 200 psi and 250{degrees}F, to sustain the process conditions which prevail during filling or emptying operations. While in transport, however, at ambient temperature the UF{sub 6} is solid, and the cylinder interior is well below atmospheric pressure. When the cylinders contain isotopically enriched product (above 1.0 percent U-235), they are transported in protective overpacks which function to guard the cylinders and their contents against thermal or mechanical damage in the event of possible transport accidents. Two bare Model 30B cylinders were accidentally exposed to a storage warehouse fire in which a considerable amount of damage was sustained by stored materials and the building structure, as well as by the cylinder valves and valve protectors. The cylinders were about six years old, and had been cleaned, inspected, hydrotested, and re-certified for service, but were still empty at the time of the fire. The privately-owned cylinders were transferred to DOE for testing and evaluation of the fire damage.

  20. Laboratory Equipment Donation Program - LEDP Widget Code

    Office of Scientific and Technical Information (OSTI)

    Widget Inclusion Code Copy the code below and paste it to your website or blog: <script type="text/javascript" src="http://cdn.widgetserver.com/syndication/subscriber/InsertWidget.js"></script><script type="text/javascript">if (WIDGETBOX) WIDGETBOX.renderWidget('6f283a3d-1392-4025-a8bf-566030ca0281');</script><noscript>Get the <a href="http://www.widgetbox.com/widget/erle">Laboratory Equipment Donation Program</a>

  1. LANSCE | Lujan Center | Instruments | ASTERIX | Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Surfaces and Interfaces Sample Environment: Magnet and cryostat system offering 0-1 T fields and 4-300 K temperatures. This system consists of an electromagnet or Helmholtz coil that produce fields up to 1T and 3 mT, respectively. A Displex cryostat (4-300 K) can be accommodated by either magnet. For samples with a dimension greater than 1 cm the maximum field is 0.6 T. Cryomagnet: The maximum field is 11 T for polarized or unpolarized beam experiments. We offer two 1.7 - 300 K sample

  2. Memorandum Request for Concurrence on firee Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    Memorandum Request for Concurrence on firee Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

  3. Best Management Practice #12: Laboratory and Medical Equipment

    Broader source: Energy.gov [DOE]

    Equipment used in hospitals and laboratories can use significant amounts of water, offering the opportunity for substantial water savings by making a few small changes to how and when the water is used by the equipment.

  4. Equipment acquisition plans for the SSCL magnet excitation power system

    SciTech Connect (OSTI)

    Winje, R.

    1993-05-01

    This report gives a brief description of the major electrical technical equipment used in the Superconducting Super Collider accelerators systems and the present laboratory plans for the acquisition of the equipment.

  5. Anne Arundel County- Solar and Geothermal Equipment Property Tax Credits

    Broader source: Energy.gov [DOE]

    Anne Arundel County offers a one-time credit from county property taxes on residential dwellings that use solar and geothermal energy equipment for heating and cooling, and solar energy equipment...

  6. Appendix D: Facility Process Data and Appendix E: Equipment Calibratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Docket No. EO-05-01: ...

  7. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference ...

  8. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  9. Balance-of-System Equipment Required for Renewable Energy Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems July 2, 2012 - 8:21pm Addthis Both...

  10. Field power measurements of imaging equipment

    SciTech Connect (OSTI)

    McWhinney, Marla; Homan, Gregory; Brown, Richard; Roberson, Judy; Nordman, Bruce; Busch, John

    2004-05-14

    According to the U.S. Department of Energy, electricity use by non-PC commercial office equipment is growing at an annual rate of nearly 5 percent (AEO 2003). To help address this growth in consumption, U.S. EPA periodically updates its ENERGY STAR specifications as products and markets change. This report presents background research conducted to help EPA update the ENERGY STAR specification for imaging equipment, which covers printers, fax machines, copiers, scanners, and multifunction devices (MFDs). We first estimated the market impact of the current ENERGY STAR imaging specification, finding over 90 percent of the current market complies with the specification. We then analyzed a sample of typical new imaging products, including 11 faxes, 57 printers and 19 copiers/MFD. For these devices we metered power levels in the most common modes: active/ready/sleep/off, and recorded features that would most likely affect energy consumption. Our metering indicates that for many products and speed bins, current models consume substantially less power than the current specification. We also found that for all product categories, power consumption varied most considerably across technology (i.e. inkjet vs. laser). Although inkjet printers consumed less energy than laser printers in active, ready and sleep-mode, they consumed more power on average while off, mostly due to the use of external power supplies. Based on these findings, we developed strategies for the ENERGY STAR program to achieve additional energy reductions. Finally, we present an assessment of manufacturer's ENERGY STAR labeling practices.

  11. Traveling-wave device with mass flux suppression (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Traveling-wave device with mass flux suppression Title: Traveling-wave device with mass flux suppression A traveling-wave device is provided with the conventional moving pistons ...

  12. Computers, Electronics and Electrical Equipment (2010 MECS) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Computers, Electronics and Electrical Equipment (2010 MECS) Computers, Electronics and Electrical Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Computers, Electronics and Electrical Equipment Sector (NAICS 334, 335) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Computers, Electronics and Electrical Equipment More Documents

  13. Consider Steam Turbine Drives for Rotating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems. STEAM TIP SHEET #21 PDF icon Consider Steam Turbine Drives for Rotating Equipment (January 2012) More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition Adjustable Speed Drive Part-Load Efficiency Benchmark the Fuel Cost of

  14. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency This process heating tip sheet recommends using lower flammable limit monitoring equipment to improve oven efficiency. PROCESS HEATING TIP SHEET #11 PDF icon Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency (October 2007) More Documents & Publications Check Burner

  15. USSR report: Engineering and equipment, [May 15, 1985

    SciTech Connect (OSTI)

    1985-05-15

    This USSR Report contains articles on engineering and equipment. The main topics are marine and shipbuilding and nuclear energy.

  16. Appliance and Equipment Standards Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance and Equipment Standards Fact Sheet Appliance and Equipment Standards Fact Sheet Appliance and equipment efficiency standards have served as one of the nation's most effective policies for improving energy efficiency and saving consumers energy and money. Today, the U.S. Department of Energy's (DOE) Appliance and Equipment Standards Program covers more than 60 products, representing about 90% of home energy use, 60% of commercial building energy use, and 30% of industrial energy use.

  17. Heating Equipment Checklist for Winter Comfort and Efficiency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Heating Equipment Checklist for Winter Comfort and Efficiency Heating Equipment Checklist for Winter Comfort and Efficiency December 19, 2014 - 10:59am Addthis Using our heating equipment checklist can help you properly maintain your heating system this winter! | Photo courtesy of iStockphoto.com/lionvision Using our heating equipment checklist can help you properly maintain your heating system this winter! | Photo courtesy of iStockphoto.com/lionvision Paige Terlip Paige Terlip

  18. Appendix D: Facility Process Data and Appendix E: Equipment Calibration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Sheets | Department of Energy D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Docket No. EO-05-01: Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia PDF icon Appendix D: Facility Process Data and Appendix E: Equipment Calibration

  19. WPN 13-7: Vehicle and Equipment Purchases

    Broader source: Energy.gov [DOE]

    To provide Grantee with guidance on purchasing vehicles and equipment for use in the Weatherization Assistance Program (WAP).

  20. Paducah Site Modernizes Equipment to Treat Off-Site Groundwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contamination | Department of Energy Site Modernizes Equipment to Treat Off-Site Groundwater Contamination Paducah Site Modernizes Equipment to Treat Off-Site Groundwater Contamination February 25, 2016 - 12:15pm Addthis New groundwater contamination treatment equipment sits outside the C-612 Northwest Pump-and-Treat facility. New groundwater contamination treatment equipment sits outside the C-612 Northwest Pump-and-Treat facility. A computer-modeled illustration shows the off-site movement

  1. Hydrogen Equipment Certification Guide Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Certification Guide Webinar Hydrogen Equipment Certification Guide Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Equipment Certification Guide" held on December 10, 2015. PDF icon Hydrogen Equipment Certification Guide Webinar Slides More Documents & Publications H2 Refuel H-Prize Safety Guidance Webinar H2 Refuel H-Prize Safety Guidance Webinar National Hydrogen Safety Training Resource for

  2. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    U.S. Energy Information Administration (EIA) Indexed Site

    Full report (3.6 mb) Major residential equipment and commercial heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies

  3. Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release | Department of Energy Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) actions for addressing issues identified in the March 2014, accident investigation report for the Underground Salt Haul Truck Fire at the Waste

  4. Environmental Management Headquarters Corrective Action Plan - Truck Fire |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Truck Fire Environmental Management Headquarters Corrective Action Plan - Truck Fire The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) actions for addressing Office of Environmental Management (EM) Headquarters (HQ) issues identified in the Accident Investigation Report for the Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant (WIPP) February 5, 2014. The report identified 22 Conclusions and 35 Judgments of

  5. Annual Fire Protection Program Summary for Calendar Year 2010

    Energy Savers [EERE]

    Security Annual Fire Protection Program Summary for Calendar Year 2010 UNITED STATES DEPARTMENT OF ENERGY Summary Provided by: Environmental Protection, Sustainability Support and Corporate Safety Analysis Office of Health, Safety and Security September 2011 Annual Fire Protection Program Summary Environmental Protection, Sustainability Support Office of Health, Safety and Security Annual Fire Protection Program Summary for Calendar Year CY2010 ii Table of Contents Table of Contents

  6. Enterprise Assessments Assessment of Construction Quality and the Fire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protection program at the Hanford Site Waste Treatment and Immobilization Plant - April 2016 | Department of Energy Construction Quality and the Fire Protection program at the Hanford Site Waste Treatment and Immobilization Plant - April 2016 Enterprise Assessments Assessment of Construction Quality and the Fire Protection program at the Hanford Site Waste Treatment and Immobilization Plant - April 2016 April 2016 Assessment of Construction Quality and the Fire Protection program at the

  7. Accident Investigation Report - Fire Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fire Report Accident Investigation Report - Fire Report On February 7, 2014, Deputy Assistant Secretary, Safety, Security, and Quality Programs Environmental Management, DOE, formally appointed an Accident Investigation Board to investigate an underground mine fire involving a salt haul truck occurred at DOE's WIPP near Carlsbad, New Mexico. The Board began the investigation on February 10, 2014, and the report is now final and available for the public. PDF icon Accident Investigation Report

  8. Enterprise Assessments Targeted Review of the Fire Protection Program at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Y-12 National Security Complex and Pantex Plant - October 2015 | Department of Energy Review of the Fire Protection Program at Y-12 National Security Complex and Pantex Plant - October 2015 Enterprise Assessments Targeted Review of the Fire Protection Program at Y-12 National Security Complex and Pantex Plant - October 2015 October 2015 Targeted Review of the Fire Protection Program at Y-12 National Security Complex and Pantex Plant The U.S. Department of Energy (DOE) independent Office of

  9. WIPP Hosts Fire Protection and Emergency Response Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 6, 2015 WIPP Hosts Fire Protection and Emergency Response Workshop Fire protection experts from the Department of Energy's Office of Environmental Management (DOE-EM), the Mine Safety and Health Administration (MSHA), the Defense Nuclear Facilities Safety Board (DNFSB), the Carlsbad Field Office (CBFO), and Nuclear Waste Partnership (NWP) met this week in Carlsbad to identify and discuss applicable fire safety and emergency response requirements that must be addressed in order to resolve

  10. Microsoft Word - Appendix G - Wildland Fire Mgmt Plan.docx

    Office of Legacy Management (LM)

    G Wildland Fire Management Plan for the Rocky Flats, Colorado, Site This page intentionally left blank LMS/RFS/S04638-5.0 Wildland Fire Management Plan for the Rocky Flats, Colorado, Site July 2013 This page intentionally left blank U.S. Department of Energy Wildland Fire Management Plan for the Rocky Flats, Colorado, Site July 2013 Doc. No. S04638-5.0 Page i Contents Abbreviations

  11. Angel Fire, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Angel Fire, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3930879, -105.2850091 Show Map Loading map... "minzoom":false,"mappi...

  12. Laboratory Evaluation of Gas-Fired Tankless and Storage Water...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Citation Details In-Document Search Title: ...

  13. Duct System Flammability and Air Sealing Fire Separation Assemblies...

    Office of Scientific and Technical Information (OSTI)

    Fire Separation Assemblies in the International Residential Code Rudd, A.; Prahl, D. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; RESIDENTIAL BUILDINGS; AIRTIGHTNESS;...

  14. Enterprise Assessments Targeted Review of the Fire Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Security Complex and Pantex Plant - October 2015 Enterprise Assessments Targeted Review of the Fire Protection Program at Y-12 National Security Complex and Pantex Plant - ...

  15. Pantex High Pressure Fire Loop Project Completed On Time, Under...

    National Nuclear Security Administration (NNSA)

    Using underruns generated from these savings, the Integrated Project Team added scope through the Baseline Change Proposal process. Two 400,000-gallon fire protection water supply ...

  16. Overview of the ARM/FIRE Water Vapor Experiment (AFWEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aeronautics and Space Administration (NASA) First ISCCP Regional Experiment (FIRE), ... The primary upper-level reference measurements included two in situ sensors (the NASA ...

  17. Multiple organizations build interagency fire center at LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effort is now underway to build a new Interagency Fire Center in the heart of Northern New Mexico. The National Nuclear Security Administration (NNSA), Bandelier...

  18. Annual Fire Protection Program Summary for Calendar Year 2013 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3 Annual Fire Protection Program Summary for Calendar Year 2013 In 2013, DOE experienced no fire-related fatalities and only one injury at Sandia National Laboratory when a technician sustained tissue damage to his left hand when a detonator he was disassembling exploded. There were 73 fire loss events in CY2013 (a 6% drop from the 78 events reported in CY2012), which resulted in an estimated $1.6 million in total DOE fire losses. These total losses were approximately 15% less than

  19. Advanced fire-resistant forms of activated carbon and methods...

    Office of Scientific and Technical Information (OSTI)

    activated carbon and methods of adsorbing and separating gases using same Citation Details In-Document Search Title: Advanced fire-resistant forms of activated carbon and methods ...

  20. Multi-Function Fuel-Fired Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Function Fuel-Fired Heat Pump CRADA Ed Vineyard Oak Ridge National Laboratory, ... 10% for a residential multifunction heat pump that provides space conditioning, water ...

  1. Accident Investigation Report - Fire Report | Department of Energy

    Office of Environmental Management (EM)

    an Accident Investigation Board to investigate an underground mine fire involving a salt haul truck occurred at DOE's WIPP near Carlsbad, New Mexico. The Board began the...

  2. Enterprise Assessments Targeted Review of the Fire Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building 3525 - September 2015 Enterprise Assessments Targeted Review of the Fire Protection Program at the Oak Ridge National Laboratory Irradiated Fuels Examination...

  3. Enterprise Assessments Targeted Review of the Fire Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to a Fire Protection Risk Ranking IV - Less ... in the Life Safety Code including maximum travel distance, common ... This method of managing and recording flammable ...

  4. Enterprise Assessments Targeted Review of the Fire Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Risk" or "Improved Risk") as described in DOE ... the requirements of DOE Order 420.1C, Facility Safety. ... to approve actions for managing low risk fire protection ...

  5. Fire Protection Support Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire Protection Support Engineer Department: Engineering Supervisor(s): Scott Decker Staff: AM 03 Requisition Number: 1600200 Position Summary: Assists project engineer with any ...

  6. Control and extinguishment of LPG fires. Final report

    SciTech Connect (OSTI)

    Johnson, D.W.; Martinsen, W.E.; Cavin, W.D.; Chilton, P.D.; Lawson, H.P.; Welker, J.R.

    1980-08-01

    Approximately 100 fire control and fire extinguishment tests were run on free-burning liquefied petroleum gases (LPG) pool fires from 25 ft/sup 2/ to 1600 ft/sup 2/ in area. The LPG was contained in concrete pits, and the pit floors were allowed to cool before the fires were ignited so that the burning rates were not influenced by boiloff from the warm floor. High expansion foam was used for fire control. The foam was applied from fixed generators located on the upwind side of the pit. Fires were controlled after foam application of less than a minute to about 10 minutes, depending on the application rate. Fires were extinguished with dry chemical agents applied through fixed piping systems with tankside nozzles and by manual application using hoselines and portable extinguishers. Fires could readily be extinguished in times ranging from a few seconds to about half a minute, depending on the application rate, system design, and ambient conditions. Additional tests were conducted in 1-ft/sup 2/ and 5-ft/sup 2/ pits to determine the boiloff rates for LPG spilled on concrete, a sand/soil mix, and polyurethane foam substrates. Burning rates for free-burning LPG pool fires from 1 ft/sup 2/ to 1600 ft/sup 2/ in area are also reported.

  7. Control and extinguishment of LPG fires. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Approximately 100 fire control and fire extinguishment tests were run on free-burning LPG pool fires from 25 ft/sup 2/ to 1600 ft/sup 2/ in area. The LPG was contained in concrete pits, and the pit floors were allowed to cool before the fires were ignited so that the burning rates were not influenced by boiloff from the warm floor. High expansion foam was used for fire control. The foam was applied from fixed generators located on the upwind side of the pit. Fires were controlled after foam application of less than a minute to about 10 minutes, depending on the application rate. Fires were extinguished with dry chemical agents applied through fixed piping systems with tankside nozzles and by manual application using hoselines and portable extinguishers. Fires could readily be extinguished in times ranging from a few seconds to about half a minute, depending on the application rate, system design, and ambient conditions. Additional tests were conducted in 1-ft/sup 2/ and 5-ft/sup 2/ pits to determine the boiloff rates for LPG spilled on concrete, a sand/soil mix, and polyurethane foam substrates. Burning rates for free-burning LPG pool fires from 1 ft/sup 2/ to 1600 ft/sup 2/ in area are also reported.

  8. Rotary Firing in Ring-Shaped Protein Explains Unidirectionality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on...

  9. Laboratory Evaluation of Gas-Fired Tankless and Storage Water...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Citation Details In-Document Search Title: Laboratory ...

  10. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect (OSTI)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considered subject to demand concerns, supply concerns, or both demand and supply concerns.

  11. Slurry fired heater cold-flow modelling

    SciTech Connect (OSTI)

    Moujaes, S.F.

    1983-07-01

    This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

  12. 1997 Housing Characteristics Tables Home Office Equipment Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of U.S. Households; 13 pages, 48 kb) Contents Pages HC7-1b. Home Office Equipment by Climate Zone, Percent of U.S. Households, 1997 1 HC7-2b. Home Office Equipment by Year of Construction, Percent of U.S. Households, 1997 1 HC7-3b. Home Office Equipment by Household Income, Percent of U.S. Households, 1997 1 HC7-4b. Home Office Equipment by Type of Housing Unit, Percent of U.S. Households, 1997 1 HC7-5b. Home Office Equipment by Type of Owner-Occupied Housing Unit, Percent of U.S.

  13. Safety assessment of outdoor live fire range

    SciTech Connect (OSTI)

    1989-05-01

    The following Safety Assessment (SA) pertains to the outdoor live fire range facility (LFR). The purpose of this facility is to supplement the indoor LFR. In particular it provides capacity for exercises that would be inappropriate on the indoor range. This SA examines the risks that are attendant to the training on the outdoor LFR. The outdoor LFR used by EG&G Mound is privately owned. It is identified as the Miami Valley Shooting Grounds. Mondays are leased for the exclusive use of EG&G Mound.

  14. A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.

    SciTech Connect (OSTI)

    Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

    2011-12-20

    This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

  15. Managing EHS of PV-Related Equipment at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    McCuskey, T.; Nelson, B. P.

    2012-06-01

    Managing environment, health, and safety (EHS) risks at a national laboratory, or university, can be intimidating to a researcher who is focused on research results. Laboratory research and development (R&D) operations are often driven by scientists with limited engineering support and lack well-refined equipment development resources. To add to the burden for a researcher, there is a plethora of codes, standards, and regulations that govern the safe installation and operation of photovoltaic-related R&D equipment -- especially those involving hazardous production materials. To help guide the researcher through the vast list of requirements, the EHS office at NREL has taken a variety of steps. Organizationally, the office has developed hazard-specific laboratory-level procedures to govern particular activities. These procedures are a distillation of appropriate international codes, fire agencies, SEMI standards, U.S. Department of Energy orders, and other industry standards to those necessary and sufficient to govern the safe operation of a given activity. The EHS office works proactively with researchers after a concept for a new R&D capability is conceived to help guide the safe design, acquisition, installation, and operation of the equipment. It starts with a safety assessment at the early stages such that requirements are implemented to determine the level of risk and degree of complexity presented by the activity so appropriate controls can be put in place to manage the risk. As the equipment requirements and design are refined, appropriate equipment standards are applied. Before the 'to-build' specifications are finalized, a process hazard analysis is performed to ensure that no single-point failure presents an unacceptable risk. Finally, as the tool goes through construction and installation stages, reviews are performed at logical times to ensure that the requisite engineering controls and design are in place and operational. Authorization to operate is not given until adherence to these requirements is fully verified and documented. Operations continue under the conditions defined through this process and are reviewed with changing processes.

  16. EPRI/NRC-RES fire human reliability analysis guidelines.

    SciTech Connect (OSTI)

    Lewis, Stuart R.; Cooper, Susan E.; Najafi, Bijan; Collins, Erin; Hannaman, Bill; Kohlhepp, Kaydee; Grobbelaar, Jan; Hill, Kendra; Hendrickson, Stacey M. Langfitt; Forester, John Alan; Julius, Jeff

    2010-03-01

    During the 1990s, the Electric Power Research Institute (EPRI) developed methods for fire risk analysis to support its utility members in the preparation of responses to Generic Letter 88-20, Supplement 4, 'Individual Plant Examination - External Events' (IPEEE). This effort produced a Fire Risk Assessment methodology for operations at power that was used by the majority of U.S. nuclear power plants (NPPs) in support of the IPEEE program and several NPPs overseas. Although these methods were acceptable for accomplishing the objectives of the IPEEE, EPRI and the U.S. Nuclear Regulatory Commission (NRC) recognized that they required upgrades to support current requirements for risk-informed, performance-based (RI/PB) applications. In 2001, EPRI and the USNRC's Office of Nuclear Regulatory Research (RES) embarked on a cooperative project to improve the state-of-the-art in fire risk assessment to support a new risk-informed environment in fire protection. This project produced a consensus document, NUREG/CR-6850 (EPRI 1011989), entitled 'Fire PRA Methodology for Nuclear Power Facilities' which addressed fire risk for at power operations. NUREG/CR-6850 developed high level guidance on the process for identification and inclusion of human failure events (HFEs) into the fire PRA (FPRA), and a methodology for assigning quantitative screening values to these HFEs. It outlined the initial considerations of performance shaping factors (PSFs) and related fire effects that may need to be addressed in developing best-estimate human error probabilities (HEPs). However, NUREG/CR-6850 did not describe a methodology to develop best-estimate HEPs given the PSFs and the fire-related effects. In 2007, EPRI and RES embarked on another cooperative project to develop explicit guidance for estimating HEPs for human failure events under fire generated conditions, building upon existing human reliability analysis (HRA) methods. This document provides a methodology and guidance for conducting a fire HRA. This process includes identification and definition of post-fire human failure events, qualitative analysis, quantification, recovery, dependency, and uncertainty. This document provides three approaches to quantification: screening, scoping, and detailed HRA. Screening is based on the guidance in NUREG/CR-6850, with some additional guidance for scenarios with long time windows. Scoping is a new approach to quantification developed specifically to support the iterative nature of fire PRA quantification. Scoping is intended to provide less conservative HEPs than screening, but requires fewer resources than a detailed HRA analysis. For detailed HRA quantification, guidance has been developed on how to apply existing methods to assess post-fire fire HEPs.

  17. Oil-fired cycling station converted to base-loaded, coal-burning operation

    SciTech Connect (OSTI)

    Hunt, J.; Steinbach, P.

    1982-04-01

    The Baltimore Gas and Electric Company has been able to modify its oil-fired Brandon Shores plant while under construction to a base-loaded plant able to burn either oil or coal. Utility planners had the foresight prior to the 1973 embargo to see advantages in a dual-fuel capability. Brandon Shores has experienced the same financing and fluctuating load problems as other projects, but it has evolved into a facility suited for the 1980s and 90s. The original plan included space to handle coal and wastes as well as specifying dual-fuel equipment throughout to minimize future modifications. During one construction delay, the utility initiated a preventative-maintenance program comparable to that of a nuclear plant that has been continued. Extensive environmental planning and interaction with the public have avoided other costly delays. (DCK)

  18. Property:Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler...

    Open Energy Info (EERE)

    eriodMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyForPeriodMwhYrOil-FiredB...

  19. Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler...

    Open Energy Info (EERE)

    Oil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler"...

  20. Property:Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler ...

    Open Energy Info (EERE)

    rmlYrMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyNrmlYrMwhYrOil-FiredBoil...

  1. Automated remote control of fuel supply section for the coal fired power plant

    SciTech Connect (OSTI)

    Chudin, O.V.; Maidan, B.V.; Tsymbal, A.A.

    1996-05-01

    Approximately 6,000 miles east of Moscow, lays the city of Khabarovsk. This city`s coal-fired Power Plant 3 supplies electricity, heat and hot water to approximately 250,000 customers. Plant 3 has three units with a combined turbine capacity of 540 MW, (3 {times} 180) electrical and 780 (3 {times} 260) Gkal an hour thermal capacity with steam productivity of 2010 (3 {times} 670) tons per hour at 540 C. Coal fired thermal electric power plants rely on the equipment of the fuel supply section. The mechanism of the fuel supply section includes: conveyor belts, hammer crushers, guiding devices, dumping devices, systems for dust neutralizing, iron separators, metal detectors and other devices. As a rule, the fuel path in the power plant has three main directions: from the railroad car unloading terminal to the coal warehouse; from the coal warehouse to the acceptance bunkers of the power units, and the railroad car unloading terminal to the acceptance bunkers of power units. The fuel supply section always has a reserve and is capable of uninterruptible fuel supply during routine maintenance and/or repair work. This flexibility requires a large number of fuel traffic routes, some of which operate simultaneously with the feeding of coal from the warehouse to the acceptance bunkers of the power units, or in cases when rapid filling of the bunkers is needed, two fuel supply routes operate at the same time. The remote control of the fuel handling system at Power Plant 3 is described.

  2. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  3. Cycling firing method for bypass operation of bridge converters

    DOE Patents [OSTI]

    Zabar, Zivan

    1982-01-01

    The bridge converter comprises a number of switching elements and an electronic logic system which regulated the electric power levels by controlling the firing, i.e., the initiation of the conduction period of the switching elements. Cyclic firing of said elements allows the direct current to bypass the alternating current system with high power factor and negligible losses.

  4. The Walter W. Maybee Award for Fire Protection

    Broader source: Energy.gov [DOE]

    Awarded to those whom the Department of Energy (DOE) Fire Safety Committee concludes to be a personification of the ideals of this community and who has achieved a significant degree of accomplishment within the realms of fire protection engineering and emergency services.

  5. Rocky Flats Plant Live-Fire Range Risk Analysis Report

    SciTech Connect (OSTI)

    Nicolosi, S.L.; Rodriguez, M.A.

    1994-04-01

    The objective of the Live-Fire Range Risk Analysis Report (RAR) is to provide an authorization basis for operation as required by DOE 5480.16. The existing Live-Fire Range does not have a safety analysis-related authorization basis. EG&G Rocky Flats, Inc. has worked with DOE and its representatives to develop a format and content description for development of an RAR for the Live-Fire Range. Development of the RAR is closely aligned with development of the design for a baffle system to control risks from errant projectiles. DOE 5480.16 requires either an RAR or a safety analysis report (SAR) for live-fire ranges. An RAR rather than a SAR was selected in order to gain flexibility to more closely address the safety analysis and conduct of operation needs for a live-fire range in a cost-effective manner.

  6. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    SciTech Connect (OSTI)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  7. HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-05-01

    Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

  8. Quantitative fire risk assessment for a proposed tritium technology facility

    SciTech Connect (OSTI)

    Zeng, Y. )

    1991-01-01

    A new Tritium Technology Facility has been proposed for the Chalk River Laboratories to support fusion research and the commercial use of tritium. One of the major safety and licensing issues for the new facility raised by the internal Safety Review Committee is the potential hazard fire poses to it. Fire could cause a large release from tritium from the facility's metal tritide storage beds, resulting in conversion of elemental tritium (HT) into oxide tritium (HTO). The radiological hazard of HTO is {approximately}10,000 times higher than that of HT. Because of the potential significance of fire in the tritium facility, a quantitative fire risk assessment has been conducted for the proposed new facility. The frequency of a large tritium release due to a fire in the Tritium Technology Facility was assessed as being on the order of 10{sup {minus}5} per year, which satisfies the safety goal requirement of the facility.

  9. A comparative examination of the fire performance of pipe insulation

    SciTech Connect (OSTI)

    Babrauskas, V.

    1996-12-31

    A standard method for evaluating the fire performance of pipe insulation is not available in North America. In Europe, however, the regional standards organization NORDTEST has had available for several years now a method specifically designed for this purpose. The NORDTEST NT FIRE 036 test is a full-scale room fire test where the pipe insulation is installed along the ceiling and subjected to a gas burner fire. Four classes of performance (Class I through III, plus unrated) are used to evaluate the products. In the present work, 4 different pipe insulation products, representing the most common materials used for this purpose, have been examined according to this test. The results showed that rock wool insulation gave the best fire performance, with phenolic foam being in the least safe rated category. Synthetic foam rubber and polyethylene insulation products gave intermediate performance. 12 refs., 3 figs., 11 tabs.

  10. Fire Protection Program Assessment, Building 9203 & 9203A Complex- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment is intended to evaluate the fire hazards, life safety and fire protection features inherent in the Building 9203 and 9203A complex.

  11. SURVEY OF NOISE SUPPRESSION SYSTEMS FOR ENGINE GENERATOR SETS...

    Office of Scientific and Technical Information (OSTI)

    POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS; ENGINES; NOISE POLLUTION ABATEMENT; POLLUTION CONTROL EQUIPMENT; ELECTRIC GENERATORS No abstract prepared....

  12. Workshop on environmental qualification of electric equipment

    SciTech Connect (OSTI)

    Lofaro, R.; Gunther, W.; Villaran, M.; Lee, B.S.; Taylor, J.

    1994-05-01

    Questions concerning the Environmental Qualification (EQ) of electrical equipment used in commercial nuclear power plants have recently become the subject of significant interest to the US Nuclear Regulatory Commission (NRC). Initial questions centered on whether compliance with the EQ requirements for older plants were adequate to support plant operation beyond 40 years. After subsequent investigation, the NRC Staff concluded that questions related to the differences in EQ requirements between older and newer plants constitute a potential generic issue which should be evaluated for backfit, independent of license renewal activities. EQ testing of electric cables was performed by Sandia National Laboratories (SNL) under contract to the NRC in support of license renewal activities. Results showed that some of the environmentally qualified cables either failed or exhibited marginal insulation resistance after a simulated plant life of 20 years during accident simulation. This indicated that the EQ process for some electric cables may be non-conservative. These results raised questions regarding the EQ process including the bases for conclusions about the qualified life of components based upon artificial aging prior to testing.

  13. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  14. Fire characterization and object thermal response for a large flat plate adjacent to a large JP-4 fuel fire

    SciTech Connect (OSTI)

    Gritzo, L.A.; Moya, J.L.; Murray, D.

    1997-01-01

    A series of three 18.9 m diameter JP-4 pool fire experiments with a large (2.1 m X 4.6 m), flat plate calorimeter adjacent to the fuel pool were recently performed. The objectives of these experiments were to: (1) gain a better understanding of fire phenomenology, (2) provide empirical input parameter estimates for simplified, deterministic Risk Assessment Compatible Fire Models (RACFMs), (3) assist in continuing fire field model code validation and development, and (4) enhance the data base of fire temperature and heat flux to object distributions. Due to different wind conditions during each experiment, data were obtained for conditions where the plate was not engulfed, fully-engulfed and partially engulfed by the continuous flame zone. Results include the heat flux distribution to the plate and flame thermocouple temperatures in the vicinity of the plate and at two cross sections within the lower region of the continuous flame zone. The results emphasize the importance of radiative coupling (i.e. the cooling of the flames by a thermally massive object) and convective coupling (including object-induced turbulence and object/wind/flame interactions) in determining the heat flux from a fire to an object. The formation of a secondary flame zone on an object adjacent to a fire via convective coupling (which increases the heat flux by a factor of two) is shown to be possible when the object is located within a distance equal to the object width from the fire.

  15. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  16. Hanford Site Evaluation of Electrical Equipment for Beryllium Procedure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-005 Revision 0 Hanford Site Evaluation of Electrical Equipment for Beryllium Procedure Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management Approved for Public Release; Further Dissemination Unlimited DOE-0342-005, Rev. 0 Hanford Site Evaluation of Electrical Equipment for Beryllium Procedure Published Date: 09-19-2013 Effective Date: 05-14-2014 Signature Page 1 of 1 DOE-0342-005, Rev. 0 Hanford Site Evaluation of Electrical Equipment for Beryllium

  17. Healthcare Energy: Spotlight on Medical Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medical Equipment Healthcare Energy: Spotlight on Medical Equipment The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. Additional plug load data from medical office buildings were provided by Mazzetti, Inc. See below for a few highlights from monitoring large medical imaging equipment and medical office building plug loads. Graphic showing the average weekday energy use of a CT machine. Graph showing average weekday energy

  18. Webinar: Analysis Using Fuel Cell Material Handling Equipment for Shaving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peak Building Energy | Department of Energy Analysis Using Fuel Cell Material Handling Equipment for Shaving Peak Building Energy Webinar: Analysis Using Fuel Cell Material Handling Equipment for Shaving Peak Building Energy Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Analysis Using Fuel Cell Material Handling Equipment (MHE) for Shaving Peak Building Energy" held on August 11, 2015. PDF icon Analysis Using Fuel Cell MHE

  19. Microgrid Equipment Selection and Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microgrid Equipment Selection and Control Microgrid Equipment Selection and Control Project Objective The U.S.-China Clean Energy Research Center (CERC) is a pioneering research and development (R&D) consortium bringing together governments, key policymakers, researchers, and industry to develop a long-term platform for sustainable U.S.-China joint R&D. Ultra-efficient buildings and microgrids require complex optimization both for operations and when choosing equipment. This CERC project

  20. DOE Reaches Settlements with Three Commercial Refrigeration Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturers | Department of Energy Reaches Settlements with Three Commercial Refrigeration Equipment Manufacturers DOE Reaches Settlements with Three Commercial Refrigeration Equipment Manufacturers March 1, 2016 - 6:20pm Addthis DOE settled enforcement actions against Utility Refrigerator, True Manufacturing, and Victory Refrigeration for distributing commercial refrigeration equipment in the United States that do not meet applicable energy conservation standards. As a part of the

  1. Appliance and Equipment Standards Program Overview - 2016 BTO Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy and Equipment Standards Program Overview - 2016 BTO Peer Review Appliance and Equipment Standards Program Overview - 2016 BTO Peer Review Presenter: John Cymbalsky, U.S. Department of Energy This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office's Appliance and Equipment Standards Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. PDF icon 2016 BTO Peer Review

  2. Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Energy Conversion Equipment for Low Temperatures Geothermal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon novel_energy_conversion_equipment_low_peer2013.pdf More Documents & Publications Novel Energy Conversion Equipment for Low Temperature Geothermal Resources City of Eagan …Civic Ice Arena Renovation Canby Cascaded Geothermal Project Phase 1 Feasibility

  3. Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Breaks Down Barriers for Cincinnati Contractors | Department of Energy The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors, a publication of the U.S.

  4. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect (OSTI)

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  5. Remote Control of Laboratory Equipment for Educational Purposes | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Remote Control of Laboratory Equipment for Educational Purposes This invention consists of a method to remote control many types of laboratory equipment that is typically found in an undergraduate science (physics, chemistry, biology, engineering, etc.) course. The invention uses a web browser to create a virtual interface to the equipment and a web cam to stream real-time video. . It is designed for educational purposes, either for universities or high schools that do not

  6. Advanced tangentially fired low-NO{sub x} combustion demonstration. Phase 2, LNCFS Level 2 tests

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.

    1993-08-01

    This report summarizes the activities and results for the second testing phase (Phase 2) of an Innovative Clean Coal Technology (ICCT) demonstration of advanced tangentially fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. All three levels of Asea Brown Boveri Combustion Engineering Service`s (ABB CE`s) Low-NO{sub x} Concentric Firing System (LNCFS) are being demonstrated during this project. The primary goal of this project is to demonstrate the NO{sub x} emissions characteristics of these technologies when operated under normal load dispatched conditions. The equipment is being tested at Gulf Power Company`s Plant Lansing Smith Unit 2 in Lynn Haven, Florida. The long-term NO{sub x} emission trends were documented while the unit was operating under normal load dispatch conditions with the LNCFS Level II equipment. Fifty-five days of long-term data were collected. The data included the effects of mill patterns, unit load, mill outages, weather, fuel variability, and load swings. Test results indicated full-load (180 MW) NO{sub x} emissions of 0.39 lb/MBtu, which is about equal to the short-term test results. At 110 MW, long-term NO{sub x} emissions increased to 0.42 lb/MBtu, which are slightly higher than the short-term data. At 75 MW, NO{sub x} emissions were 0.51 lb/MBtu, which is significantly higher than the short-term data. The annual and 30-day average achievable NOx emissions were determined to be 0.41 and 0.45 lb/MBtu, respectively, for long-term testing load scenarios. NO{sub x} emissions were reduced by a maximum of 40 percent when compared to the baseline data collected in the previous phase. The long-term NO{sub x} reduction at full load (180 MW) was 37 percent while NO{sub x} reduction at low load was minimal.

  7. Error-eliminating rapid ultrasonic firing

    DOE Patents [OSTI]

    Borenstein, Johann (Ann Arbor, MI); Koren, Yoram (Ann Arbor, MI)

    1993-08-24

    A system for producing reliable navigation data for a mobile vehicle, such as a robot, combines multiple range samples to increase the "confidence" of the algorithm in the existence of an obstacle. At higher vehicle speed, it is crucial to sample each sensor quickly and repeatedly to gather multiple samples in time to avoid a collision. Erroneous data is rejected by delaying the issuance of an ultrasonic energy pulse by a predetermined wait-period, which may be different during alternate ultrasonic firing cycles. Consecutive readings are compared, and the corresponding data is rejected if the readings differ by more than a predetermined amount. The rejection rate for the data is monitored and the operating speed of the navigation system is reduced if the data rejection rate is increased. This is useful to distinguish and eliminate noise from the data which truly represents the existence of an article in the field of operation of the vehicle.

  8. Error-eliminating rapid ultrasonic firing

    DOE Patents [OSTI]

    Borenstein, J.; Koren, Y.

    1993-08-24

    A system for producing reliable navigation data for a mobile vehicle, such as a robot, combines multiple range samples to increase the confidence'' of the algorithm in the existence of an obstacle. At higher vehicle speed, it is crucial to sample each sensor quickly and repeatedly to gather multiple samples in time to avoid a collision. Erroneous data is rejected by delaying the issuance of an ultrasonic energy pulse by a predetermined wait-period, which may be different during alternate ultrasonic firing cycles. Consecutive readings are compared, and the corresponding data is rejected if the readings differ by more than a predetermined amount. The rejection rate for the data is monitored and the operating speed of the navigation system is reduced if the data rejection rate is increased. This is useful to distinguish and eliminate noise from the data which truly represents the existence of an article in the field of operation of the vehicle.

  9. Pulse compression and prepulse suppression apparatus

    DOE Patents [OSTI]

    Dane, Clifford B.; Hackel, Lloyd A.; George, Edward V.; Miller, John L.; Krupke, William F.

    1993-01-01

    A pulse compression and prepulse suppression apparatus (10) for time compressing the output of a laser (14). A pump pulse (46) is separated from a seed pulse (48) by a first polarized beam splitter (20) according to the orientation of a half wave plate (18). The seed pulse (48) is directed into an SBS oscillator (44) by two plane mirrors (22, 26) and a corner mirror (24), the corner mirror (24) being movable to adjust timing. The pump pulse (46) is directed into an SBS amplifier 34 wherein SBS occurs. The seed pulse (48), having been propagated from the SBS oscillator (44), is then directed through the SBS amplifier (34) wherein it sweeps the energy of the pump pulse (46) out of the SBS amplifier (34) and is simultaneously compressed, and the time compressed pump pulse (46) is emitted as a pulse output (52). A second polarized beam splitter (38) directs any undepleted pump pulse 58 away from the SBS oscillator (44).

  10. Pulse compression and prepulse suppression apparatus

    DOE Patents [OSTI]

    Dane, C.B.; Hackel, L.A.; George, E.V.; Miller, J.L.; Krupke, W.F.

    1993-11-09

    A pulse compression and prepulse suppression apparatus (10) for time compressing the output of a laser (14). A pump pulse (46) is separated from a seed pulse (48) by a first polarized beam splitter (20) according to the orientation of a half wave plate (18). The seed pulse (48) is directed into an SBS oscillator (44) by two plane mirrors (22, 26) and a corner mirror (24), the corner mirror (24) being movable to adjust timing. The pump pulse (46) is directed into an SBS amplifier 34 wherein SBS occurs. The seed pulse (48), having been propagated from the SBS oscillator (44), is then directed through the SBS amplifier (34) wherein it sweeps the energy of the pump pulse (46) out of the SBS amplifier (34) and is simultaneously compressed, and the time compressed pump pulse (46) is emitted as a pulse output (52). A second polarized beam splitter (38) directs any undepleted pump pulse 58 away from the SBS oscillator (44).

  11. Passive runaway electron suppression in tokamak disruptions

    SciTech Connect (OSTI)

    Smith, H. M.; Helander, P.

    2013-07-15

    Runaway electrons created in disruptions pose a serious problem for tokamaks with large current. It would be desirable to have a runaway electron suppression method which is passive, i.e., a method that does not rely on an uncertain disruption prediction system. One option is to let the large electric field inherent in the disruption drive helical currents in the wall. This would create ergodic regions in the plasma and increase the runaway losses. Whether these regions appear at a suitable time and place to affect the formation of the runaway beam depends on disruption parameters, such as electron temperature and density. We find that it is difficult to ergodize the central plasma before a beam of runaway current has formed. However, the ergodic outer region will make the Ohmic current profile contract, which can lead to instabilities that yield large runaway electron losses.

  12. Cold test data for equipment acceptance into 105-KE Basin

    SciTech Connect (OSTI)

    Packer, M.J.

    1994-11-09

    This document provides acceptance testing of equipment to be installed in the 105-KE Basin for pumping sludge to support the discharge chute barrier doors installation.

  13. Shenzhen Hekeda Ultrasonic Equipment Co | Open Energy Information

    Open Energy Info (EERE)

    Hekeda Ultrasonic Equipment Co Place: Shenzhen, Guangdong Province, China Product: A Chinese company specializes in ultrasonic cleaning. Coordinates: 22.546789, 114.112556...

  14. Direct Heating Equipment- v1.0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File Direct Heating Equipment - v1.0 More Documents & Publications Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011) Residential Refrigerators-Freezers ...

  15. Technical Meeting: Physical Characterization of Connected Buildings Equipment

    Broader source: Energy.gov [DOE]

    On January 28-29, 2015, BTO hosted a technical meeting on the Physical Characterization of Connected Buildings Equipment in Chicago, IL.

  16. Validation of International Atomic Energy Agency Equipment Performance Requirements

    SciTech Connect (OSTI)

    Chiaro, PJ

    2004-02-17

    Performance requirements and testing protocols are needed to ensure that equipment used by the International Atomic Energy Agency (IAEA) is reliable. Oak Ridge National Laboratory (ORNL), through the US Support Program, tested equipment to validate performance requirements protocols used by the IAEA for the subject equipment categories. Performance protocol validation tests were performed in the Environmental Effects Laboratory in the categories for battery, DC power supply, and uninterruptible power supply (UPS). Specific test results for each piece of equipment used in the validation process are included in this report.

  17. Baoding Solar Thermal Equipment Company | Open Energy Information

    Open Energy Info (EERE)

    Equipment Company Place: Baoding, Hebei Province, China Sector: Solar Product: Solar water heating system manufacturer. Coordinates: 38.855011, 115.480217 Show Map Loading...

  18. Laboratory Equipment Donation Program - On-Line Application

    Office of Scientific and Technical Information (OSTI)

    Item Control Number: Equipment Name: School Information (Note: LEDP Eligibility Guidelines must be met and verified below) *School Name: *Department Name: *Department Head Name: ...

  19. Balance-of-System Equipment Required for Renewable Energy Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems Both grid-connected and off-grid home renewable energy systems require additional “balance-of-system” equipment. Both grid-connected and off-grid home renewable energy systems require additional "balance-of-system" equipment. Whether you decide to connect your home renewable energy system to the electric grid or not, you

  20. Operating Experience Level 3, Industrial Equipment Impacts Infrastruct...

    Energy Savers [EERE]

    mission and schedule, divert resources, and change momentum. PDF icon OE-3 2014-06: Industrial Equipment Impacts infrastructure More Documents & Publications Operating...