National Library of Energy BETA

Sample records for finishing fiber yarn

  1. Effect of twist on transverse impact response of ballistic fiber yarns

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Bo; Lu, Wei -Yang

    2015-06-15

    A Hopkinson bar was employed to conduct transverse impact testing of twisted Kevlar KM2 fiber yarns at the same impact speed. The speed of Euler transverse wave generated by the impact was measured utilizing a high speed digital camera. The study included fiber yarns twisted by different amounts. The Euler transverse wave speed was observed to increase with increasing amount of twist of the fiber yarn, within the range of this investigation. As a result, the higher transverse wave speeds in the more twisted fiber yarns indicate better ballistic performance in soft body armors for personal protection.

  2. Thermal conductivity of high performance carbon nanotube yarn-like fibers

    SciTech Connect (OSTI)

    Mayhew, Eric; Prakash, Vikas

    2014-05-07

    In the present paper, we present results of thermal conductivity measurements in free standing carbon nanotube (CNT) yarn-like fibers. The measurements are made using a T-type experimental configuration utilizing a Wollaston-wire hot probe inside a scanning electron microscope. In this technique, a suspended platinum wire is used both as a heater and a thermal sensor. A low frequency alternating current source is used to heat the probe wire while the third harmonic voltage across the wire is measured by a lock-in amplifier. The conductivity is deduced from an analytical model that relates the drop in the spatially averaged temperature of the wire to that of the sample. The average thermal conductivity of the neat CNT fibers and the CNT –polymer composite fibers is found to be 448?W/m-K and 225?W/m-K, respectively. These values for conductivity are amongst the highest measured for CNT yarn-like fibers fabricated using a dry spinning process from vertically aligned CNT arrays. The enhancement in thermal conductivity is understood to be due to an increase in the CNT fiber elastic stiffness during the draw and twist operations, lower CNT thermal contact resistance due to increase in CNT contact area, and better alignment of the CNT fibrils along the length of the fiber.

  3. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  4. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  5. Graphite fiber reinforced structure for supporting machine tools

    DOE Patents [OSTI]

    Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.

    1978-01-01

    Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.

  6. LANL Finishing

    SciTech Connect (OSTI)

    Davenport, Karen

    2010-06-03

    Karen Davenport of Los Alamos National Laboratory discusses a high-throughput next generation genome finishing pipeline on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  7. Acoustic methods to monitor sliver linear density and yarn strength

    DOE Patents [OSTI]

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    Methods and apparatus are provided for monitoring sliver and yarn characteristics. Transverse waves are generated relative to the sliver or yarn. At least one acoustic sensor is in contact with the sliver or yarn for detecting waves coupled to the sliver or yarn and for generating a signal. The generated signal is processed to identify the predefined characteristics including sliver or yarn linear density. The transverse waves can be generated with a high-powered acoustic transmitter spaced relative to the sliver or yarn with large amplitude pulses having a central frequency in a range between 20 KHz and 40 KHz applied to the transmitter. The transverse waves can be generated by mechanically agitating the sliver or yarn with a tapping member.

  8. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, J.L.; Yonker, C.R.; Hallen, R.R.; Baker, E.G.; Bowman, L.E.; Silva, L.J.

    1999-01-26

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent. 3 figs.

  9. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, John L.; Yonker, Clement R.; Hallen, Richard R.; Baker, Eddie G.; Bowman, Lawrence E.; Silva, Laura J.

    1999-01-01

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent.

  10. Finishing in the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manual, etc.) Solving genome gaps, hard stops & other difficult areas Alternative PCR strategies, enzymes, and SOPs Directed assemblies and finishing closely related genomes...

  11. Finishing in the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedule (pdf) sponsor logos The Sequencing, Finishing and Analysis in the Future meeting is sponsored by Los Alamos National Laboratory and the Department of Energy...

  12. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOE Patents [OSTI]

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.

    1998-05-19

    A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.

  13. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOE Patents [OSTI]

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.

    1998-01-01

    A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  14. Finishing Using Next Generation Technologies

    SciTech Connect (OSTI)

    Van Tonder, Andries

    2010-06-03

    Andries van Tonder of Wellcome Trust Sanger Institute discusses a pipeline for finishing genomes to the gold standard on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  15. Finished Motor Gasoline Net Production

    Gasoline and Diesel Fuel Update (EIA)

    Data Series: Finished Motor Gasoline Finished Motor Gasoline (Excl. Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & < Conventional Gasoline Blended w/ Fuel Ethanol, > Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet,

  16. Sunrayce 97 Finish Sets Records

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finish Sets Records For more information contact: Patrick Booher, Sunrayce Program Manager (202) 586-0713 Colorado Springs, Colo. -- Under sunny skies that have followed the race since its beginning in Indianapolis,, Sunrayce 97 roared to a record finish in Colorado Springs. Winning the event overall was California State University - Los Angeles with a record setting pace averaging 43:29 mph over the entire distance. Cal State - L.A. had a total elapsed time of 28:41:24 hours. Massachusetts

  17. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Dave Warren, PI Cliff Eberle, Presenter Technology Development Manager Polymer Matrix Composites Oak Ridge National Laboratory May 16, 2012 Project ID # LM003 Status as of March 30, 2012 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Managed by UT-Battelle for the U.S. Department of Energy Carbon Fiber Technology Facility (CFTF) ARRA CAPITAL Project Overview * Funds received FY10Q2 * Scheduled finish FY13Q4

  18. The Best Finish First: Sequence Finishing with Whole Genome Mapping ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Sweeney, Deacon [OpGen, Inc.

    2013-03-22

    Deacon Sweeney on "the Best Finish First: Sequence Finishing with Whole Genome Mapping" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  19. Progress Continues at Plutonium Finishing Plant | Department of Energy

    Office of Environmental Management (EM)

    at Plutonium Finishing Plant Progress Continues at Plutonium Finishing Plant August 15, 2016 - 12:20pm Addthis Progress Continues at Plutonium Finishing Plant Progress Continues at Plutonium Finishing Plant Progress Continues at Plutonium Finishing Plant Progress Continues at Plutonium Finishing Plant Progress Continues at Plutonium Finishing Plant Progress Continues at Plutonium Finishing Plant RICHLAND, Wash. - With demolition of the Plutonium Finishing Plant (PFP) on the Hanford Site rapidly

  20. Ancillary Building Demolition at Plutonium Finishing Plant Complex |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ancillary Building Demolition at Plutonium Finishing Plant Complex Ancillary Building Demolition at Plutonium Finishing Plant Complex June 15, 2016 - 12:30pm Addthis Ancillary Building Demolition at Plutonium Finishing Plant Complex Ancillary Building Demolition at Plutonium Finishing Plant Complex Ancillary Building Demolition at Plutonium Finishing Plant Complex Ancillary Building Demolition at Plutonium Finishing Plant Complex RICHLAND, Wash. - Progress toward

  1. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and ... "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk ...

  2. Workers Create Demolition Zone at Hanford Site's Plutonium Finishing...

    Office of Environmental Management (EM)

    Create Demolition Zone at Hanford Site's Plutonium Finishing Plant Workers Create Demolition Zone at Hanford Site's Plutonium Finishing Plant August 28, 2014 - 12:00pm Addthis The ...

  3. Evaluation Helps Pesticide Program Finish Project Four Years...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pesticide Program Finish Project Four Years Sooner Than Estimated Evaluation Helps Pesticide Program Finish Project Four Years Sooner Than Estimated This document from the U.S. ...

  4. Y-12 Finishes Initial HEUMF Loading Ahead of Schedule | National...

    National Nuclear Security Administration (NNSA)

    Blog Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Finishes Initial HEUMF Loading Ahead of Schedule Y-12 Finishes Initial HEUMF Loading...

  5. Blender Net Production of Finished Motor Gasoline

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O.,

  6. Independent Activity Report, Hanford Plutonium Finishing Plant- May 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Criticality Safety Information Meeting for the Hanford Plutonium Finishing Plant [HIAR-RL-2012-05-14

  7. Independent Oversight Review, Plutonium Finishing Plant- July 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Targeted Review of the Safety Significant Confinement Ventilation System and Review of Federal Assurance Capability at the Plutonium Finishing Plant

  8. Nearly Finished Genomes Produced Using Gel Microdroplet Culturing (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Fitzsimmons, Michael [LANL

    2013-01-25

    Michael Fitzsimmons from Los Alamos National Laboratory gives a talk titled "Nearly Finished Genomes Produced Using Gel Microdroplet Culturing" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  9. Fiber Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fiber lasers Fiber Lasers NIF & Photon Science physicists are exploring the fundamental limits of traditional round fiber structure and developing alternate solutions to allow scaling to higher powers and pulse energies. Comprehensive models of ribbon fiber structures, or waveguides, are also being developed. The goal is to develop ribbon fiber lasers that can amplify light beams to powers well beyond fundamental limits. Joint research efforts with the Lasers and Optics Research Center at

  10. Evaluation Helps Pesticide Program Finish Project Four Years Sooner Than

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimated | Department of Energy Pesticide Program Finish Project Four Years Sooner Than Estimated Evaluation Helps Pesticide Program Finish Project Four Years Sooner Than Estimated This document from the U.S. EPA's Office of Pesticide Programs is part of the Case Study Series, and explains how "Evaluation Helps Pesticide Program Finish Project Four Years Sooner than Estimated." Pesticide Program Case Study (332.21 KB) More Documents & Publications Introduction to the Value of

  11. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Natural Gas Plants (Thousand Barrels)","East Coast (PADD 1) Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand ...

  12. Hanford Employee Returns to Finish Glovebox Cleanup as Team Lead

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, Wash. – For Gary Hix, a recent accomplishment at the Plutonium Finishing Plant (PFP) ended a long career chapter at the Hanford Site facility.

  13. Plutonium Finishing Plant safety evaluation report

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  14. Worker Involvement Improves Safety at Hanford Site's Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    Employees at the Hanford site are working together to find new and innovative ways to stay safe at the Plutonium Finishing Plant, one of the site’s most complex decommissioning projects.

  15. Glovebox Removal at Hanford Site's Plutonium Finishing Plant Winding Down

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – At the Plutonium Finishing Plant on the Hanford Site, crews with EM contractor CH2M HILL Plateau Remediation Company are in the process of removing the last of the gloveboxes from the facility before demolition begins.

  16. Hanford Site Prepares for Completion of Plutonium Finishing Plant Demolition

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, Wash. – Work crews are nearly done preparing for the Plutonium Finishing Plant (PFP) demolition, a major remediation project that reduces risk to human health and the environment and lowers lifecycle costs for the Hanford Site.

  17. Engine Friction Reduction Through Surface Finish and Coatings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Friction Reduction Through Surface Finish and Coatings Engine Friction Reduction Through Surface Finish and Coatings Opportunities exist for friction reduction in piston rings and valve trains using durable, advanced material technologies, such as diamond-like carbon (DLC) coatings, and new lubricants. deer12_gangopadhyay.pdf (1.14 MB) More Documents & Publications Low-Friction Hard Coatings Vehicle Technologies Office Merit Review 2014: Development of Modified PAG

  18. Refinery & Blender Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than

  19. Refinery Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55

  20. Finished Prokaryotic Genome Assemblies from a Low-cost Combination of Short and Long Reads (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Yin, Shuangye (Broad Institute)

    2013-02-11

    Shuangye Yin on "Finished prokaryotic genome assemblies from a low-cost combination of short and long reads" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  1. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  2. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  3. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  4. Sequencing, Finishing and Analysis in the Future Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequencing, Finishing, and Analysis in the Future Meeting The 11th annual SFAF Meeting will be held June 1-3, 2016 La Fonda Hotel in Santa Fe, NM The meeting will begin at 8:30 am on Wednesday, June 1st. Download the 2016 Meeting Guide (pdf). Overview "Sequencing, Finishing and Analysis in the Future" (SFAF) is an annual meeting dedicated to bringing together experts in the genomics field-including representatives from the industries that serve this specialized scientific community.

  5. One-directional uniformly coated fibers, method of preparation, and uses therefor

    DOE Patents [OSTI]

    Newkirk, Lawrence R.; Valencia, Flavio; Riley, Robert E.; Wallace, Sr., Terry C.

    1982-01-01

    A problem addressed by this invention was how to obtain very long lengths of refractory metal-coated multifilamentary yarns having a uniform coating on the filaments which make up each yarn, the coating being uniform throughout the length of the yarn such that the coated yarns are suitable for being woven and are suitable for a variety of other uses. The solution is a continuous process which employs a chemical vapor deposition reaction at relatively low temperature and pressure and a separation of the gaseous reaction products from the coated yarn prior to allowing the coated yarn to cool.

  6. One-directional uniformly coated fibers, method of preparation, and uses therefor

    DOE Patents [OSTI]

    Newkirk, L.R.; Valencia, F.A.; Riley, R.E.; Wallace, T.C. Sr.

    A problem addressed by this invention was how to obtain very long lengths of refractory metal-coated multifilamentary yarns having a uniform coating on the filaments which make up each yarn, the coating being uniform throughout the length of the yarn such that the coated yarns are suitable for being woven and are suitable for a variety of other uses. The solution is a continuous process which employs a chemical vapor deposition reaction at relatively low temperature and pressure and a separation of the gaseous reaction products from the coated yarn prior to allowing the coated yarn to cool.

  7. 32173,"AECTRA REFG & MKTG",1,133,"MOTOR GAS, FINISHED UNLEADED...

    U.S. Energy Information Administration (EIA) Indexed Site

    CORP",3,133,"MOTOR GAS, FINISHED UNLEADED",0401,"BOSTON, MA","MASSACHUSETTS",1,830,"SPAIN",130,0,0,,,,, 32173,"CITGO PETRO CORP",4,133,"MOTOR GAS, FINISHED...

  8. Method and system for processing optical elements using magnetorheological finishing

    DOE Patents [OSTI]

    Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A

    2012-09-18

    A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.

  9. Automated edge finishing using an active XY table

    DOE Patents [OSTI]

    Loucks, Clifford S.; Starr, Gregory P.

    1993-01-01

    The disclosure is directed to an apparatus and method for automated edge finishing using hybrid position/force control of an XY table. The disclosure is particularly directed to learning the trajectory of the edge of a workpiece by "guarded moves". Machining is done by controllably moving the XY table, with the workpiece mounted thereon, along the learned trajectory with feedback from a force sensor. Other similar workpieces can be mounted, without a fixture on the XY table, located and the learned trajectory adjusted

  10. Thermal oxidation technology ready for tougher paint finishing regs

    SciTech Connect (OSTI)

    Brooks, J.

    1995-04-01

    There is good news and bad news in the air for commercial paint finishers. The bad news is that future local and federal clean-air regulations are almost certain to require control of volatile organic compound emissions from spray booths and drying ovens. The good news is that one of the most effective systems for meeting such requirements also can help cut operations and maintenance costs. There are as many solutions to VOC emissions problems in paint finishing as there are types of paint-spraying facilities. However, despite the range of choices, regenerative thermal oxidation systems are gaining favor among plant managers, for whom performance and maximum application flexibility are key considerations. Compared to other VOC-destruction approaches, RTO systems are more forgiving and reliable. Although RTO systems involve somewhat higher capital investments than alternative approaches, such costs typically are offset by lower long-term fuel and maintenance requirements. In addition, RTO systems can convert pollutants into usable energy sources, helping minimize operating costs of abatement equipment.

  11. Deburring and surface finishing: The past ten years and projections for the next ten years

    SciTech Connect (OSTI)

    Gillespie, L.K.

    1990-09-01

    The 1970s were a decade of significant growth in deburring and surface finishing. In the 1980s progress was made in robotic finishing, burr formation models, surface finish measurement, new processes, equipment and tooling. The centers of burr and surface related research changed. The decade of the 1990s will bring greater competition, environmental restrictions, more processes, more automation, and better characterization and simulation of processes.

  12. Fiber optic connector

    DOE Patents [OSTI]

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  13. DTRA Algorithm Prize (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Whitechurch, Christian [Defense Threat Reduction Agency

    2013-02-12

    Christian Whitchurch on the "DTRA Algorithm Prize" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  14. Voluntary Protection Program Onsite Review, Plutonium Finishing Plant Closure Project- May 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Plutonium Finishing Plant Closure Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  15. Y-12 Finishes Initial HEUMF Loading Ahead of Schedule | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Finishes Initial HEUMF Loading Ahead of Schedule April 09, 2010 Microsoft Office document icon NR-01-10

  16. EM's Final Cleanup Underway at Plutonium Finishing Plant at Hanford Site

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Final decontamination efforts are underway in a former processing canyon that once supported Hanford’s Plutonium Finishing Plant.

  17. Workers Create Demolition Zone at Hanford Site’s Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – In recent weeks, the look of Hanford site’s Plutonium Finishing Plant has changed as crews removed or demolished eight buildings surrounding it.

  18. 01-02-2003 - Hazards from Modifying Finished Products | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards from Modifying Finished Products Document Number: NA Effective Date: 01/2003 File (public): PDF icon 01-02-2003(2)

  19. Fiber optic monitoring device

    DOE Patents [OSTI]

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  20. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect (OSTI)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  1. Removal Rate Model for Magnetorheological Finishing of Glass

    SciTech Connect (OSTI)

    DeGroote, J.E.; Marino, A.E.; WIlson, J.P.; Bishop, A.L.; Lambropoulos, J.C.; Jacobs, S.D.

    2007-11-14

    Magnetorheological finishing (MRF) is a deterministic subaperture polishing process. The process uses a magntorheological (MR) fluid that consists of micrometer-sized, spherical, magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water, and stabilizers. Material removal occurs when the CI and nonmagnetic polishing abrasives shear material off the surface being polished. We introduce a new MRF material removal rate model for glass. This model contains terms for the near surface mechanical properties of glass, drag force, polishing abrasive size and concentration, chemical durability of the glass, MR fluid pH, and the glass composition. We introduce quantitative chemical predictors for the first time, to the best of our knowledge, into an MRF removal rate model. We validate individual terms in our model separately and then combine all of the terms to show the whole MRF material removal model compared with experimental data. All of our experimental data were obtained using nanodiamond MR fluids and a set of six optical glasses.

  2. Improved laboratory assays of Pu and U for SRP purification and finishing processes

    SciTech Connect (OSTI)

    Holland, M K; Dorsett, R S

    1986-01-01

    Significant improvements have been made in routine assay techniques for uranium and plutonium as part of an effort to improve accountability at the Savannah River Plant (SRP). Emphasis was placed on input/output accountability points and key physical inventory tanks associated with purification and finishing processes. Improvements were made in existing assay methods; new methods were implemented; and the application of these methods was greatly expanded. Prior to assays, samples were validated via density measurements. Digital density meters precise to four, five, and six decimal places were used to meet specific requirements. Improved plutonium assay techniques are now in routine use: controlled-potential coulometry, ion-exchange coulometry, and Pu(III) diode-array spectrophotometry. A new state-of-the-art coulometer was fabricated and used to ensure maximum accuracy in verifying standards and in measuring plutonium in product streams. The diode-array spectrophotometer for Pu(III) measurements was modified with fiber optics to facilitate remote measurements; rapid, precise measurements made the technique ideally suited for high-throughput assays. For uranium assays, the isotope-dilution mass spectrometric (IDMS) method was converted to a gravimetric basis. The IDMS method and the existing Davies-Gray titration (gravimetric basis) have met accountability requirements for uranium. More recently, a Pu(VI) diode-array spectrophotometric method was used on a test basis to measure plutonium in shielded-cell input accountability samples. In addition, tests to measure uranium via diode-array spectrophotometry were initiated. This rapid, precise method will replace IDMS for certain key sample points.

  3. Hanford Workers Achieve Success in Difficult Glove Box Project at Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office and contractor CH2M HILL Plateau Remediation Company (CH2M HILL) recently finished safely separating three glove boxes for removal from Hanford’s Plutonium Finishing Plant (PFP) after months of planning and preparation.

  4. Ceramic fiber reinforced filter

    DOE Patents [OSTI]

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  5. Omnidirectional fiber optic tiltmeter

    DOE Patents [OSTI]

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  6. Conducting fiber compression tester

    DOE Patents [OSTI]

    DeTeresa, Steven J.

    1990-01-01

    The invention measures the resistance across a conductive fiber attached to a substrate place under a compressive load to determine the amount of compression needed to cause the fiber to fail.

  7. Fiber Reinforced Composite Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rawls Savannah River National Laboratory This presentation does not contain proprietary, confidential, or otherwise restricted information Fiber Reinforced Composite Pipelines ...

  8. Helical Fiber Amplifier

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (Washington, DC); Kliner, Dahy (San Ramon, CA); Goldberg, Lew (Fairfax, VA)

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  9. Fiber optic coupled optical sensor

    DOE Patents [OSTI]

    Fleming, Kevin J. (Albuquerque, NM)

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  10. Linearly polarized fiber amplifier

    DOE Patents [OSTI]

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  11. Classification and storage of wastewater from floor finish removal operations

    SciTech Connect (OSTI)

    Hunt, C.E.

    1996-05-01

    This study evaluates the wastewater generated from hard surface floor finish removal operations at Lawrence Livermore Laboratory in order to determine if this wastewater is a hazardous waste, either by statistical evaluation, or other measurable regulatory guidelines established in California Regulations. This research also comparatively evaluates the 55 gallon drum and other portable tanks, all less than 1,000 gallons in size in order to determine which is most effective for the management of this waste stream at Lawrence Livermore Laboratory. The statistical methods in SW-846 were found to be scientifically questionable in their application to hazardous waste determination. In this statistical evaluation, the different data transformations discussed in the regulatory guidance document were applied along with the log transformation to the population of 18 samples from 55 gallon drums. Although this statistical evaluation proved awkward in its application, once the data is collected and organized on a spreadsheet this statistical analysis can be an effective tool which can aid the environmental manager in the hazardous waste classification process.

  12. DEMOLITIONS OF THE SAVANNAH RIVER SITE'S CONCENTRATOR AND FINISHING FACILITIES

    SciTech Connect (OSTI)

    Mcdonagh, P; Cathy Sizemore, C

    2007-01-17

    The Savannah River Site (SRS) has produced Special Nuclear Materials (SNMs) starting in the early 1950's to the mid 1970's for the Atomic Energy Commission (AEC) and from the mid 1970's to the present for the Department of Energy (DOE). In that time, over 1,000 facilities have been built in the sixteen (16) operational areas of the eight hundred (800) square kilometer site. Over the years, many of the facilities have been dispositioned by the DOE as inactive. In FY-03, DOE identified two hundred and forty-seven (247) (inactive or soon to be inactive) facilities that required demolition. Demolition work was scheduled to start in FY-04 and be completed in the first quarter of FY-07. Two-hundred and thirty-nine (239) of these facilities have been demolished employing Routine demolition techniques. This presentation reviews and discusses two (2) of the eight (8) Non-Routine demolitions Facilities, 420-D ''The Concentrator Facility'', and 421-D ''The Finishing Facility''.

  13. Normal Force and Drag Force in Magnetorheological Finishing

    SciTech Connect (OSTI)

    Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.

    2010-01-13

    The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.

  14. Fire hazard analysis for Plutonium Finishing Plant complex

    SciTech Connect (OSTI)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  15. Finishing The Euchromatic Sequence Of The Human Genome

    SciTech Connect (OSTI)

    Rubin, Edward M.; Lucas, Susan; Richardson, Paul; Rokhsar, Daniel; Pennacchio, Len

    2004-09-07

    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process.The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers {approx}99% of the euchromatic genome and is accurate to an error rate of {approx}1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number,birth and death. Notably, the human genome seems to encode only20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.

  16. Fiber optic laser rod

    DOE Patents [OSTI]

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  17. Fiber coating method

    DOE Patents [OSTI]

    Corman, Gregory Scot

    2003-04-15

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  18. Fiber coating method

    DOE Patents [OSTI]

    Corman, Gregory Scot

    2001-01-01

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  19. Hybrid matrix fiber composites

    DOE Patents [OSTI]

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  20. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  1. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  2. Fiber optic moisture sensor

    DOE Patents [OSTI]

    Kirkham, R.R.

    1984-08-03

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  3. Metagenomics for Etiologic Agent Discovery (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Ross, Matthew [Baylor College of Medicine

    2013-02-11

    Matthew Ross on "Metagenomics for etiological agent discovery" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  4. 32904,"AECTRA REFG & MKTG",1,133,"MOTOR GAS, FINISHED UNLEADED...

    U.S. Energy Information Administration (EIA) Indexed Site

    CORP",74,509,"RESIDUAL FUEL, 0.31-1.00% SULFUR",2101,"PORT ARTHUR, TX","TEXAS",3,830,"SPAIN",219,0.45,0,,,,, 32904,"CHEVRON CORP",75,133,"MOTOR GAS, FINISHED...

  5. 32539,"AECTRA REFG & MKTG",1,133,"MOTOR GAS, FINISHED UNLEADED...

    U.S. Energy Information Administration (EIA) Indexed Site

    REFG & MKTG",4,133,"MOTOR GAS, FINISHED UNLEADED",1001,"NEW YORK, NY","NEW YORK",1,830,"SPAIN",248,0,0,,,,, 32539,"AECTRA REFG & MKTG",5,134,"MOTOR GAS BLENDING...

  6. Deactivation and decommissioning environmental strategy for the Plutonium Finishing Plant (PFP) Complex Hanford Nuclear Reservation

    SciTech Connect (OSTI)

    HOPKINS, A.M.

    2003-02-01

    The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during Plutonium Finishing Plant (PFP) stabilization, deactivation, and eventual dismantlement.

  7. Hanford Site Workers Meet Challenging Performance Goal at Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Safely and methodically, piece by piece, workers at the Hanford site’s Plutonium Finishing Plant are surpassing goals for removing hazardous tanks once used in the plutonium production process.

  8. Signature Peptide-Enabled Metagenomics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    McMahon, Ben [LANL

    2013-01-25

    Ben McMahon of Los Alamos National Laboratory (LANL) presents "Signature Peptide-Enabled Metagenomics" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  9. Pilon: Automated Assembly Improvement Software (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Walker, Bruce (Broad Institute)

    2013-02-11

    Bruce Walker on "Pilon: Automated Assembly Improvement Software" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  10. Workers Remove Glove Boxes from Ventilation at Hanford’s Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    An employee at Hanford’s Plutonium Finishing Plant uses a portable band saw to cut the last ventilation duct attached to glove boxes inside the facility’s former processing area.

  11. Technical Basis for Work Place Air Monitoring for the Plutonium Finishing Plan (PFP)

    SciTech Connect (OSTI)

    JONES, R.A.

    1999-10-06

    This document establishes the basis for the Plutonium Finishing Plant's (PFP) work place air monitoring program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), Part 835 ''Occupational Radiation Protection''; Hanford Site Radiological Control Manual (HSRCM-1); HNF-PRO-33 1, Work Place Air Monitoring; WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysis Report; and Applicable recognized national standards invoked by DOE Orders and Policies.

  12. Plasma technology for textile finishing applications gets a boost from LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma technology for textile finishing applications gets a boost from LANL Plasma technology for textile finishing applications gets a boost from LANL APJeT received a $100,000 Venture Acceleration Fund award from LANS helping to complete design and engineering of a commercial-scale production unit. April 3, 2012 image description Gary Selwyn conducts product quality assurance on dual-functional, plasma-treated fabric at APJeT's Santa Fe lab: LANL technology may transform performance apparel.

  13. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, D.E.; Ingham, K.T.

    1987-04-28

    A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

  14. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, Donald E.; Ingham, Kenneth T.

    1987-01-01

    A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

  15. Fiber optic micro accelerometer

    DOE Patents [OSTI]

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  16. Diamond fiber field emitters

    DOE Patents [OSTI]

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  17. Multimode optical fiber

    DOE Patents [OSTI]

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  18. Super capacitor with fibers

    DOE Patents [OSTI]

    Farmer, Joseph Collin; Kaschmitter, James

    2015-02-17

    An electrical cell apparatus includes a first current collector made of a multiplicity of fibers, a second current collector spaced from the first current collector; and a separator disposed between the first current collector and the second current collector. The fibers are contained in a foam.

  19. Fiber optic hydrophone

    DOE Patents [OSTI]

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  20. Fluorescent fiber diagnostics

    DOE Patents [OSTI]

    Toeppen, John S.

    1994-10-04

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  1. Fluorescent fiber diagnostics

    DOE Patents [OSTI]

    Toeppen, John S.

    1994-01-01

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  2. Fiber optic hydrophone

    DOE Patents [OSTI]

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  3. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    SciTech Connect (OSTI)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  4. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  5. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, B.R.; Prather, W.S.

    1992-10-06

    An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

  6. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, Bruce R.; Prather, William S.

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  7. QUARTZ FIBER ELECTROSCOPES

    DOE Patents [OSTI]

    Henderson, R.P.

    1957-09-17

    An instrument carried unobtrusively about the person such as in a finger ring to indicate when that person has been exposed to an unusual radiation hazard is described. A metallized quartz fiber is electrically charged to indicate a full scale reading on an etched glass background. The quartz fiber and the scale may be viewed through a magnifying lens for ease of reading. Incident radiation will ionize gaseous particles in the sealed structure thereby allowing the charge to leak off the quartz fiber with its resulting movement across the scale proportionally indicating the radiation exposure.

  8. As Auto X Reaches the Finish Line, a New Race Begins | Department of Energy

    Energy Savers [EERE]

    As Auto X Reaches the Finish Line, a New Race Begins As Auto X Reaches the Finish Line, a New Race Begins September 17, 2010 - 4:20pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs When the Automotive X Prize competition began back in March of 2008, the organizers laid out an ambitious goal: inspire a new generation of viable, safe and super fuel-efficient vehicles capable of achieving 100 miles per gallon or the energy equivalent (MPGe). The response

  9. Fiber bundle phase conjugate mirror

    DOE Patents [OSTI]

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  10. Fiber alignment apparatus and method

    DOE Patents [OSTI]

    Kravitz, Stanley H.; Warren, Mial Evans; Snipes, Jr., Morris Burton; Armendariz, Marcelino Guadalupe; Word, V., James Cole

    1997-01-01

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring.

  11. Fiber alignment apparatus and method

    DOE Patents [OSTI]

    Kravitz, S.H.; Warren, M.E.; Snipes, M.B. Jr.; Armendariz, M.G.; Word, J.C. V

    1997-08-19

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring. 8 figs.

  12. Fiber optics welder

    DOE Patents [OSTI]

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  13. Guidelines for waste reduction and recycling: Metal finishing, electroplating, printed circuit board manufacturing

    SciTech Connect (OSTI)

    Not Available

    1989-07-01

    The guidance manual describes waste reduction techniques for metal finishing, metal fabricating, electroplating, and printed circuitboard manufacturing operations. Techniques which can be applied to a wide range of industrial processes and those which are process-specific are discussed. Evaporation, reverse osmosis, ion exchange, electrodialysis, ultrafiltration, and electrolytic recovery are described. The manual also describes waste reduction assessment procedures.

  14. Finished genome assembly of warm spring isolate Francisella novicida DPG 3A-IS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Shannon L.; Minogue, Timothy D.; Daligault, Hajnalka E.; Wolcott, Mark J.; Teshima, Hazuki; Coyne, Susan R.; Davenport, Karen W.; Jaissle, James G.; Chain, Patrick S.

    2015-09-17

    We sequenced the complete genome of Francisella novicida DPG 3A-IS to closed and finished status. This is a warm spring isolate recovered from Hobo Warm Spring (Utah, USA). The last assembly is available in NCBI under accession number CP012037.

  15. Safety Improvements, Project Progress at Hanford Site’s Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Recent changes in how work crews are deployed at the Hanford Site’s Plutonium Finishing Plant (PFP) have yielded significant improvements in safety performance as EM’s Richland Operations Office and contractor CH2M HILL Plateau Remediation Company continue to make steady progress toward demolition of the plant.

  16. Optical fiber stripper positioning apparatus

    DOE Patents [OSTI]

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  17. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  18. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  19. Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences ( 7th Annual SFAF Meeting, 2012)

    SciTech Connect (OSTI)

    Campbell, Catherine

    2012-06-01

    Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  20. Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Campbell, Catherine [Noblis

    2013-03-22

    Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  1. Optical fiber switch

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  2. Automated fiber pigtailing machine

    DOE Patents [OSTI]

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  3. Automated fiber pigtailing machine

    DOE Patents [OSTI]

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  4. QUARTZ FIBER ELECTROSCOPES

    DOE Patents [OSTI]

    Henderson, R.P.

    1956-04-17

    This patent pertains to quartz fiber electroscopes of small size for use by personnel to monitor nuclear radiation. The invention resides tn a novel way of charging the electroscope whereby the charging of the electroscope whereby the charging of the electroscope is carried out without obtaining contact with the fiber system or its support and the electroscope can therefore be constructed without a protective cap to prevent wrongful discharge. The electroscope is charged by placing a voltage between an electrode located in close proximity to the element to be charged and the electroscope me metallic case. ABSTRACTS

  5. Silicon fiber optic sensors

    DOE Patents [OSTI]

    Pocha, Michael D.; Swierkowski, Steve P.; Wood, Billy E.

    2007-10-02

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  6. Boron nitride converted carbon fiber

    DOE Patents [OSTI]

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  7. Aerogel-clad optical fiber

    DOE Patents [OSTI]

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  8. Aerogel-clad optical fiber

    DOE Patents [OSTI]

    Sprehn, Gregory A. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Poco, John F. (Livermore, CA); Sandler, Pamela H. (San Marino, CA)

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  9. Large core fiber optic cleaver

    DOE Patents [OSTI]

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  10. Large core fiber optic cleaver

    DOE Patents [OSTI]

    Halpin, John M.

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  11. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  12. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  13. Evaluation Helps Pesticide Program Finish Project Four Years Sooner Than Estimated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study Series-Demonstrating Value of Program Evaluation 
 Office of Pesticide Programs U.S. Environmental Protection Agency 
 Evaluation Helps Pesticide Program Finish Project Four Years Sooner Than Estimated A jump in efficiency will likely result in the U.S. Environmental Protection Agency (EPA) completing its pesticide product re-registration process in 2014, four years sooner than previously estimated. This was due in part to the Office of Pesticide Programs' (OPP) implementation of

  14. Plutonium Finishing Plant (PFP) Standards/Requirements Identification Document (S/RID)

    SciTech Connect (OSTI)

    Maddox, B.S.

    1996-01-01

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ESH) standards/requirements for the Plutonium Finishing Plant (PFP). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  15. The PerkinElmer Omics Laboratory (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Smith, Todd [PerkinElmer Omics Laboratory

    2013-01-25

    Todd Smith of the PerkinElmer Omics Laboratory gives a talk about his lab and its work at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  16. Mercury: Next-gen Data Analysis and Annotation Pipeline (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    SciTech Connect (OSTI)

    Sexton, David

    2012-06-01

    David Sexton (Baylor) gives a talk titled "Mercury: Next-gen Data Analysis and Annotation Pipeline" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  17. Mercury: Next-gen Data Analysis and Annotation Pipeline (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Sexton, David [Baylor

    2013-01-25

    David Sexton (Baylor) gives a talk titled "Mercury: Next-gen Data Analysis and Annotation Pipeline" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  18. High Throughput Plasmid Sequencing with Illumina and CLC Bio (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Athavale, Ajay [Monsanto

    2013-01-25

    Ajay Athavale (Monsanto) presents "High Throughput Plasmid Sequencing with Illumina and CLC Bio" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  19. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Crow, John [National Center for Genome Resources

    2013-01-25

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  20. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  1. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  2. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect (OSTI)

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  3. Fiber optic geophysical sensors

    DOE Patents [OSTI]

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  4. Selenium semiconductor core optical fibers

    SciTech Connect (OSTI)

    Tang, G. W.; Qian, Q. Peng, K. L.; Wen, X.; Zhou, G. X.; Sun, M.; Chen, X. D.; Yang, Z. M.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  5. Fiber optic sensor and method for making

    DOE Patents [OSTI]

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  6. Carbon Fiber Technology Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm003_warren_2012_o.pdf (3.98 MB) More Documents & Publications Carbon Fiber Technology Facility Carbon Fiber Pilot Plant and Research Facilities Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility

  7. System for testing optical fibers

    DOE Patents [OSTI]

    Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.

  8. System for testing optical fibers

    DOE Patents [OSTI]

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  9. Preparation of silicon carbide fibers

    DOE Patents [OSTI]

    Wei, G.C.

    1983-10-12

    Silicon carbide fibers suitable for use in the fabrication of dense, high-strength, high-toughness SiC composites or as thermal insulating materials in oxidizing environments are fabricated by a new, simplified method wherein a mixture of short-length rayon fibers and colloidal silica is homogenized in a water slurry. Water is removed from the mixture by drying in air at 120/sup 0/C and the fibers are carbonized by (pyrolysis) heating the mixture to 800 to 1000/sup 0/C in argon. The mixture is subsequently reacted at 1550 to 1900/sup 0/C in argon to yield pure ..beta..-SiC fibers.

  10. The Role of Nanodiamonds in the Polishing Zone During Magnetorheological Finishing (MRF)

    SciTech Connect (OSTI)

    DeGroote, J.E.; Marino, A.E.; WIlson, J.P.; Bishop, A.L.; Jacobs, S.D.

    2008-01-07

    In this work we discuss the role that nanodiamond abrasives play in magnetorheological finishing. We hypothesize that, as the nanodiamond MR fluid is introduced to the magnetic field, the micron sized spherical carbonyl iron (CI) particles are pulled down towards the rotating wheel, leaving a thin layer of nanodiamonds at the surface of the stiffened MR fluid ribbon. Our experimental results shown here support this hypothesis. We also show that surface roughness values inside MRF spots show a strong correlation with the near surface mechanical properties of the glass substrates and with drag force.

  11. BN Bonded BN fiber article from boric oxide fiber

    DOE Patents [OSTI]

    Hamilton, Robert S.

    1978-12-19

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising boron oxide fibers and boric acid, heating the composition in an anhydrous gas to a temperature above the melting point of the boric acid and nitriding the resulting article in ammonia gas.

  12. Fiber optic geophysical sensors

    DOE Patents [OSTI]

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  13. Migration of additive molecules in a polymer filament obtained by melt spinning: Influence of the fiber processing steps

    SciTech Connect (OSTI)

    Gesta, E.; Skovmand, O.; Espuche, E. Fulchiron, R.

    2015-12-17

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-setting did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives’ ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.

  14. Quantitive DNA Fiber Mapping

    SciTech Connect (OSTI)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  15. System for testing optical fibers

    DOE Patents [OSTI]

    Davies, Terence J.; Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A system for nondestructively determining the attenuation coefficient, .alpha.(.lambda.), of low-loss optical fiber wave guides. Cerenkov light pulses are generated at a plurality of locations in the fiber by a beam of charged particles. The transit times of selected spectral components and their intensities are utilized to unfold the .alpha.(.lambda.) values over the measured spectrum.

  16. Fiber optic refractive index monitor

    DOE Patents [OSTI]

    Weiss, Jonathan David

    2002-01-01

    A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

  17. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect (OSTI)

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  18. Fiber Grating Environmental Sensing System

    DOE Patents [OSTI]

    Schulz, Whitten L.; Udd, Eric

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  19. Ceramic fiber filter technology

    SciTech Connect (OSTI)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  20. New all-fiber velocimeter

    SciTech Connect (OSTI)

    Weng Jidong; Tan Hua; Hu Shaolou; Ma Yun; Wan Xiang

    2005-09-15

    A new all-fiber velocity interferometer system for any reflector (AFVISAR) was developed. It was conceived and realized with the purpose of using it as the basic measuring element of a complete system for multiple point velocity measurements. Its main features are that it works at 532 nm and partly adopts the multimode optical fiber. The velocimeter consists of only fibers or fiber coupled components and has no optic elements such as optic lenses or reflectors. It is therefore very compact and easy to operate. Unlike the conventional AFVISAR, which uses single-mode optic fiber components, the laser beam in this new interferometer system arrives at and reflects from the target surface through a multimode optical fiber component, and then enters and interferes in a [3x3] single-mode fiber coupler. Its working principle is elaborated on in this article. Preliminary experiments using a split Hopkins pressure bar (SHPB) device show that the new interferometer can successfully measure the velocity profiles of the metal specimen along the axial or radial direction. Further experiments on a one-stage gas gun are under consideration.

  1. Apparatus and method for combining light from two or more fibers into a single fiber

    DOE Patents [OSTI]

    Klingsporn, Paul Edward

    2007-02-20

    An apparatus and method for combining light signals carried on a plurality of input fibers onto a single receiving fiber with a high degree of efficiency. The apparatus broadly comprises the receiving fiber and a plurality of input fiber-lens assemblies, with each fiber lens assembly including an input fiber; a collimating lens interposed between the input fiber and the receiving fiber and adapted to collimate the light signal; and a focusing lens interposed between the collimating lens and the receiving fiber and adapted to focus the collimated light signal onto the face of the receiving fiber. The components of each fiber-lens assembly are oriented along an optic axis that is inclined relative to the receiving fiber, with the inclination angle depending at least in part on the input fiber's numerical aperture and the focal lengths and diameters of the collimating and focusing lenses.

  2. Apparatus and method for combining light from two or more fibers into a single fiber

    DOE Patents [OSTI]

    Klingsporn, Paul Edward

    2006-03-14

    An apparatus and method for combining light signals carried on a plurality of input fibers onto a single receiving fiber with a high degree of efficiency. The apparatus broadly comprises the receiving fiber and a plurality of input fiber-lens assemblies, with each fiber lens assembly including an input fiber; a collimating lens interposed between the input fiber and the receiving fiber and adapted to collimate the light signal; and a focusing lens interposed between the collimating lens and the receiving fiber and adapted to focus the collimated light signal onto the face of the receiving fiber. The components of each fiber-lens assembly are oriented along an optic axis that is inclined relative to the receiving fiber, with the inclination angle depending at least in part on the input fiber's numerical aperture and the focal lengths and diameters of the collimating and focusing lenses.

  3. Nozzle for superconducting fiber production

    DOE Patents [OSTI]

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  4. Carbon Fiber Technology Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Facility Carbon Fiber Technology Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation lm003_warren_2011_o .pdf (2.04 MB) More Documents & Publications Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Lower Cost Carbon Fiber Precursors

  5. Methods of producing continuous boron carbide fibers

    SciTech Connect (OSTI)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  6. Evaluating an Exterior Insulation and Finish System for Deep Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, Jordan; Podorson, David

    2014-01-01

    Exterior insulation and finish systems (EIFS) are proprietary synthetic formulations that are applied to the exterior walls of buildings to serve as insulation and exterior cladding. The insulation thickness can vary from less than one inch to a foot or more. In this project the applicability of EIFS for residential deep energy retrofits was investigated through modeling and a case study home. The home was retrofitted using a site-applied four-inch-thick EIFS. Site-specific details were developed as required for the residential retrofit application. Site work and the costs of the EIFS system were documented. The demonstration home was modeled using Building Energy Optimization energy and cost analysis software to explore cost effectiveness of various EIFS insulation thicknesses in two climate locations.

  7. Characterization of past and present solid waste streams from the plutonium finishing plant

    SciTech Connect (OSTI)

    Duncan, D.R.; Mayancsik, B.A.; Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I.

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  8. PLUTONIUM FINISHING PLANT (PFP) SUB-GRADE EE/CA EVALUATION OF ALTERNATIVES A NEW MODEL

    SciTech Connect (OSTI)

    HOPKINS, A.M.

    2007-06-08

    An engineering evaluation/cost analysis (EE/CA) was performed at the Hanford Site's Plutonium Finishing Plant (PFP). The purpose of the EVCA was to identify the sub-grade items to be evaluated; determine the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) hazardous substances through process history and available data; evaluate these hazards; and as necessary, identify the available alternatives to reduce the risk associated with the contaminants. The sub-grade EWCA considered four alternatives for an interim removal action: (1) No Action; (2) Surveillance and Maintenance (S&M); (3) Stabilize and Leave in Place (Stabilization); and (4) Remove, Treat and Dispose (RTD). Each alternative was evaluated against the CERCLA criteria for effectiveness, implementability, and cost.

  9. ASSESSING CHEMICAL HAZARDS AT THE PLUTONIUM FINISHING PLANT (PFP) FOR PLANNING FUTURE D&D

    SciTech Connect (OSTI)

    HOPKINS, A.M.; KLOS, D.B.; MINETT, M.J.

    2007-01-25

    This paper documents the fiscal year (FY) 2006 assessment to evaluate potential chemical and radiological hazards associated with vessels and piping in the former plutonium process areas at Hanford's Plutonium Finishing Plant (PFP). Evaluations by PFP engineers as design authorities for specific systems and other subject-matter experts were conducted to identify the chemical hazards associated with transitioning the process areas for the long-term layup of PFP before its eventual final decontamination and decommissioning (D and D). D and D activities in the main process facilities were suspended in September 2005 for a period of between 5 and 10 years. A previous assessment conducted in FY 2003 found that certain activities to mitigate chemical hazards could be deferred safely until the D and D of PFP, which had been scheduled to result in a slab-on-grade condition by 2009. As a result of necessary planning changes, however, D and D activities at PFP will be delayed until after the 2009 time frame. Given the extended project and plant life, it was determined that a review of the plant chemical hazards should be conducted. This review to determine the extended life impact of chemicals is called the ''Plutonium Finishing Plant Chemical Hazards Assessment, FY 2006''. This FY 2006 assessment addresses potential chemical and radiological hazard areas identified by facility personnel and subject-matter experts who reevaluated all the chemical systems (items) from the FY 2003 assessment. This paper provides the results of the FY 2006 chemical hazards assessment and describes the methodology used to assign a hazard ranking to the items reviewed.

  10. Ethanol extraction of phytosterols from corn fiber

    DOE Patents [OSTI]

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  11. Scintillator fiber optic long counter

    DOE Patents [OSTI]

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  12. Scintillator fiber optic long counter

    DOE Patents [OSTI]

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  13. Light diffusing fiber optic chamber

    DOE Patents [OSTI]

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  14. Thermal Stability Studies of Candidate Decontamination Agents for Hanford’s Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes

    SciTech Connect (OSTI)

    Scheele, Randall D.; Cooper, Thurman D.; Jones, Susan A.; Ewalt, John R.; Compton, James A.; Trent, Donald S.; Edwards, Matthew K.; Kozelisky, Anne E.; Scott, Paul A.; Minette, Michael J.

    2005-09-29

    This report provides the results of PNNL's and Fluor's studies of the thermal stabilities of potential wastes arising from decontamination of Hanford's Plutonium Finishing Plant's plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.

  15. Finished genome assembly of warm spring isolate Francisella novicida DPG 3A-IS

    SciTech Connect (OSTI)

    Johnson, Shannon L.; Minogue, Timothy D.; Daligault, Hajnalka E.; Wolcott, Mark J.; Teshima, Hazuki; Coyne, Susan R.; Davenport, Karen W.; Jaissle, James G.; Chain, Patrick S.

    2015-09-17

    We sequenced the complete genome of Francisella novicida DPG 3A-IS to closed and finished status. This is a warm spring isolate recovered from Hobo Warm Spring (Utah, USA). The last assembly is available in NCBI under accession number CP012037.

  16. Finished Genome Sequence of Bacillus cereus Strain 03BB87, a Clinical Isolate with B. anthracis Virulence Genes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Shannon L.; Minogue, Timothy D.; Teshima, Hazuki; Davenport, Karen W.; Shea, April A.; Miner, Haven L.; Wolcott, Mark J.; Chain, Patrick S.G.

    2015-01-15

    Bacillus cereus strain 03BB87, a blood culture isolate, originated in a 56-year-old male muller operator with a fatal case of pneumonia in 2003. Here we present the finished genome sequence of that pathogen, including a 5.46-Mb chromosome and two plasmids (209 and 52 Kb, respectively).

  17. Coiled Fiber Pulsed Laser Simulator

    Energy Science and Technology Software Center (OSTI)

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  18. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOE Patents [OSTI]

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  19. Optical fiber inspection system

    DOE Patents [OSTI]

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  20. Optical fiber inspection system

    DOE Patents [OSTI]

    Moore, F.W.

    1985-04-05

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

  1. Fiber optic and laser sensors IV: SPIE volume 718

    SciTech Connect (OSTI)

    De Paula, R.P.

    1987-01-01

    This book contains the following: Sensors overview I; Sensors overview II; Specialized fiber optic sensors I; Specialized fiber optic sensors II; and Specialized fiber optic sensors III.

  2. fiberConnector-Quantities-18Oct2006.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attached highlights the quantities and lengths needed for the Minerva detector for the following: Fiber connectors Clear fibers WLS fibers Reviewed by: Robert Flight, PE Sr....

  3. Carbon Fiber Technology Facility Set To Scale Up Industry | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational institutions partner with the Carbon Fiber Technology Facility to develop the skilled workforce needed for widespread production of low-cost carbon fiber. Carbon fiber ...

  4. All fiber passively Q-switched laser

    DOE Patents [OSTI]

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  5. Carbon nanotube fiber spun from wetted ribbon

    DOE Patents [OSTI]

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  6. Continuous Fiber Ceramic Composites (CFCC)

    SciTech Connect (OSTI)

    R. A. Wagner

    2002-12-18

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  7. Optical fibers in medicine II: SPIE volume 713

    SciTech Connect (OSTI)

    Katzir, A.

    1987-01-01

    The papers are organized under the following titles: Therapeutic applications of optical fibers; Optical fibers in cardiology, Imaging and diagnostics; Selected readings in optical fibers in medicine; and Manufacturers of laser and fiber optic equipment for medical applications.

  8. Graphitized-carbon fiber/carbon char fuel

    DOE Patents [OSTI]

    Cooper, John F.

    2007-08-28

    A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

  9. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    SciTech Connect (OSTI)

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  10. A Plutonium Finishing Plant Model for the Cercla Removal Action and Decommissioning Construction Final Report

    SciTech Connect (OSTI)

    Hopkins, A. [Fluor Hanford, Inc, Richland, WA (United States)

    2008-07-01

    The joint policy between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE) for decommissioning buildings at DOE facilities documents an agreement between the agencies to perform decommissioning activities including demolition under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The use of removal actions for decommissioning integrates EPA oversight authority, DOE lead agency responsibility, and state authority for decommissioning activities. Once removal actions have been performed under CERCLA, a construction completion report is required to document the completion of the required action. Additionally, a decommissioning report is required under DOE guidance. No direct guidance was found for documenting completion of decommissioning activities and preparing a final report that satisfies the CERCLA requirements and the DOE requirements for decommissioning. Additional guidance was needed for the documentation of construction completion under CERCLA for D and D projects undertaken under the joint policy that addresses the requirements of both agencies. A model for the construction completion report was developed to document construction completion for CERCLA D and D activities performed under the joint EPA/DOE policy at the Plutonium Finishing Plant (PFP). The model documentation report developed at PFP integrates the DOE requirements for establishing decommissioning end-points, documenting end-point completion and preparing a final decommissioning report with the CERCLA requirements to document completion of the action identified in the Action Memorandum (AM). The model includes the required information on health and safety, data management, cost and schedule and end-points completion. (authors)

  11. A comparison of several surface finish measurement methods as applied to ground ceramic and metal surfaces

    SciTech Connect (OSTI)

    Blau, P.J.; Martin, R.L.; Riester, L.

    1996-01-01

    Surface finish is one of the most common measures of surface quality of ground ceramics and metal parts and a wide variety of methods and parameters have been developed to measure it. The purpose of this investigation was to compare the surface roughness parameters obtained on the same two specimens from three different types of measuring instruments: a traditional mechanical stylus system, a non-contact laser scanning system, and the atomic force microscope (two different AFM systems were compared). The same surface-ground silicon nitride and Inconel 625 alloy specimens were used for all measurements in this investigation. Significant differences in arithmetic average roughness, root-mean-square roughness, and peak-to-valley roughness were obtained when comparing data from the various topography measuring instruments. Non-contact methods agreed better with the others on the metal specimen than on the ceramic specimen. Reasons for these differences include the effective dimensions and geometry of the probe with respect to the surface topography; the reflectivity of the surface, and the type of filtering scheme Results of this investigation emphasize the importance of rigorously specifying the manner of surface roughness measurement when either reporting roughness data or when requesting that roughness data be provided.

  12. INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) SAFEGUARDS DURING STABILIZATION AT HANFORD PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect (OSTI)

    MCRAE, L.P.

    2004-06-30

    The Vault at the Plutonium Finishing Plan (PFP) became subject to the International Atomic Energy Agency (IAEA) safeguards beginning in 1994 as part of the US excess fissile material program. The inventory needed to be stabilized and repackaged for long-term storage to comply with Defense Nuclear Facility Safety Board Recommendation 94-1. In 1998, the United States began negotiations with IAEA to develop methods to maintain safeguards during stabilization and repackaging of this material. The Design Information Questionnaire was revised and submitted to the IAEA in 2002 describing modification to the facility to accommodate the stabilization process line. The operation plan for 2003 was submitted describing the proposed schedules for removing materials for stabilization. Stabilization and repackaging activities for the safeguarded plutonium began in January 2003 and were completed in December 2003. The stabilization was completed in five phases. IAEA containment and surveillance measures were maintained until the material was removed by phase for stabilization and repackaging. Following placement of the repackaged material into the storage vault, the IAEA conducted inventory change verification measurements, and re-established containment and surveillance. Plant activities and the impacts on operations are described.

  13. Quality assurance project plan for the radionuclide airborne emissions for the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Kristofzski, J.G.; Alison, D.

    1992-04-01

    The information provided in this document meets the quality assurance (QA) requirements for the National Emission Standards for Hazardous Air Pollutants'' (NESHAP) (EPA 1989a) radionuclide airborne emissions control program in accordance with the regulation's referenced stack monitoring method (i.e. Method 114) for the Plutonium Finishing Plant (PFP). At the Hanford Site, the operations personnel have primary responsibility for implementing the continuous radionuclide emission measurements in conformance with NESHAP. Continuous measurement is used to describe continuous sampling of the effluent stream withdrawn and subjected to radiochemical analysis, and monitoring of radionuclide particulate emissions for administrative control. This Quality Assurance Project Plan (QAPjP) fully describes these PFP- implemented activities and the associated QA program as required by the NESHAP. The information is provided in the format specified in QAMS/005, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (EPA 1983a). This QAPjP describes the QA program for only those activities that are the responsibility of the PFP: operation, calibration, and maintenance of the sampling systems. The QA requirements for laboratory services, data compilation, and data reporting are beyond the scope of this QAPjP.

  14. Quality assurance project plan for the radionuclide airborne emissions for the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Kristofzski, J.G.; Alison, D.

    1992-04-01

    The information provided in this document meets the quality assurance (QA) requirements for the ``National Emission Standards for Hazardous Air Pollutants`` (NESHAP) (EPA 1989a) radionuclide airborne emissions control program in accordance with the regulation`s referenced stack monitoring method (i.e. Method 114) for the Plutonium Finishing Plant (PFP). At the Hanford Site, the operations personnel have primary responsibility for implementing the continuous radionuclide emission measurements in conformance with NESHAP. Continuous measurement is used to describe continuous sampling of the effluent stream withdrawn and subjected to radiochemical analysis, and monitoring of radionuclide particulate emissions for administrative control. This Quality Assurance Project Plan (QAPjP) fully describes these PFP- implemented activities and the associated QA program as required by the NESHAP. The information is provided in the format specified in QAMS/005, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (EPA 1983a). This QAPjP describes the QA program for only those activities that are the responsibility of the PFP: operation, calibration, and maintenance of the sampling systems. The QA requirements for laboratory services, data compilation, and data reporting are beyond the scope of this QAPjP.

  15. TOTAL MEASUREMENT UNCERTAINTY IN HOLDUP MEASUREMENTS AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect (OSTI)

    KEELE, B.D.

    2007-07-05

    An approach to determine the total measurement uncertainty (TMU) associated with Generalized Geometry Holdup (GGH) [1,2,3] measurements was developed and implemented in 2004 and 2005 [4]. This paper describes a condensed version of the TMU calculational model, including recent developments. Recent modifications to the TMU calculation model include a change in the attenuation uncertainty, clarifying the definition of the forward background uncertainty, reducing conservatism in the random uncertainty by selecting either a propagation of counting statistics or the standard deviation of the mean, and considering uncertainty in the width and height as a part of the self attenuation uncertainty. In addition, a detection limit is calculated for point sources using equations derived from summary equations contained in Chapter 20 of MARLAP [5]. The Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2007-1 to the Secretary of Energy identified a lack of requirements and a lack of standardization for performing measurements across the U.S. Department of Energy (DOE) complex. The DNFSB also recommended that guidance be developed for a consistent application of uncertainty values. As such, the recent modifications to the TMU calculational model described in this paper have not yet been implemented. The Plutonium Finishing Plant (PFP) is continuing to perform uncertainty calculations as per Reference 4. Publication at this time is so that these concepts can be considered in developing a consensus methodology across the complex.

  16. Magnetorheological finishing of chemical-vapor deposited zinc sulfide via chemically and mechanically modified fluids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; Jacobs, Stephen D.; Lambropoulos, John C.

    2016-02-19

    In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found inmore » the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.« less

  17. Fiber optic diffraction grating maker

    DOE Patents [OSTI]

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  18. Fiber optic diffraction grating maker

    DOE Patents [OSTI]

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  19. Breakthrough: Better Fiber for Better Products

    ScienceCinema (OSTI)

    Griffith, George; Garnier, John;

    2013-05-28

    Researchers at Idaho National Laboratory have developed a cost-effective method for the continuous production of alpha silicon carbide fiber. The exceptionally strong, lightweight fiber could enable significant performance improvements in many everyday products.

  20. Breakthrough: Better Fiber for Better Products

    SciTech Connect (OSTI)

    Griffith, George; Garnier, John;

    2012-01-01

    Researchers at Idaho National Laboratory have developed a cost-effective method for the continuous production of alpha silicon carbide fiber. The exceptionally strong, lightweight fiber could enable significant performance improvements in many everyday products.

  1. Applications of fiber optics in physical protection

    SciTech Connect (OSTI)

    Buckle, T.H.

    1994-03-01

    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors.

  2. Sealed fiber-optic bundle feedthrough

    DOE Patents [OSTI]

    Tanner, Carol E. (Niles, MI)

    2002-01-01

    A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.

  3. Light diffusing fiber optic chamber (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: light; diffusing; fiber; optic; chamber; light; diffusion; transmitting; light; target; light; transmitted; ...

  4. High pressure fiber optic sensor system

    DOE Patents [OSTI]

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  5. Monolithic fiber optic sensor assembly

    DOE Patents [OSTI]

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  6. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    SciTech Connect (OSTI)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  7. Total Measurement Uncertainty for the Plutonium Finishing Plant (PFP) Segmented Gamma Scan Assay System

    SciTech Connect (OSTI)

    WESTSIK, G.A.

    2001-06-06

    This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a container, particularly for low to medium density (0-2.5 g/cc) container matrices. The SGSAS system provides a full gamma characterization of the container content. This document is an edited version of the Rocky Flats TMU Report for the Can Scan Segment Gamma Scanners, which are in use for the plutonium residues projects at the Rocky Flats plant. The can scan segmented gamma scanners at Rocky Flats are the same design as the PFP SGSAS system and use the same software (with the exception of the plutonium isotopics software). Therefore, all performance characteristics are expected to be similar. Modifications in this document reflect minor differences in the system configuration, container packaging, calibration technique, etc. These results are supported by the Quality Assurance Objective (QAO) counts, safeguards test data, calibration data, etc. for the PFP SGSAS system. Other parts of the TMU analysis utilize various modeling techniques such as Monte Carlo N

  8. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    SciTech Connect (OSTI)

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-02-27

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site.

  9. Anisotropic fiber alignment in composite structures

    DOE Patents [OSTI]

    Graham, A.L.; Mondy, L.A.; Guell, D.C.

    1993-11-16

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic. 5 figures.

  10. Methods for producing silicon carbide fibers

    DOE Patents [OSTI]

    Garnier, John E.; Griffith, George W.

    2016-03-01

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  11. Anisotropic fiber alignment in composite structures

    DOE Patents [OSTI]

    Graham, Alan L.; Mondy, Lisa A.; Guell, David C.

    1993-01-01

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic.

  12. Silicon carbide fibers and articles including same

    SciTech Connect (OSTI)

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  13. Fiber-type dosimeter with improved illuminator

    DOE Patents [OSTI]

    Fox, R.J.

    1985-12-23

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  14. Fiber-type dosimeter with improved illuminator

    DOE Patents [OSTI]

    Fox, Richard J.

    1987-01-01

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  15. Silicon fiber with p-n junction

    SciTech Connect (OSTI)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-09-22

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900??m and core diameters of 20–800??m. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  16. Fabrication of miniature fiber-optic temperature sensors

    DOE Patents [OSTI]

    Zhu, Yizheng; Wang, Anbo

    2010-07-27

    A method of coupling a silica fiber and a sapphire fiber includes providing a silica fiber having a doped core and a cladding layer, with the doped core having a prescribed diameter, providing a sapphire fiber having a diameter less than the doped core, placing an end of the sapphire fiber in close proximity to an end of the silica fiber, applying a heat source to the end of silica fiber and introducing the end of sapphire fiber into the heated doped core of the silica fiber to produce a coupling between the silica and sapphire fibers.

  17. Compensated vibrating optical fiber pressure measuring device

    DOE Patents [OSTI]

    Fasching, George E.; Goff, David R.

    1987-01-01

    A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

  18. Side-emitting fiber optic position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  19. Optical fiber sensors for harsh environments

    DOE Patents [OSTI]

    Xu, Juncheng; Wang, Anbo

    2007-02-06

    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  20. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    SciTech Connect (OSTI)

    Nguyen Thi, T. B., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Yokoyama, A., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp [Department of Advanced Fibro-Science, Kyoto Institute of Technology (Japan); Ota, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Kodama, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Yamashita, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Isogai, Y., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Furuichi, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Nonomura, C., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp [Toyobo Co., LTD. Research Center (Japan)

    2014-05-15

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment ?-CT. The simulation results showed a good agreement with experiment results.

  1. The Integrated Safety Management System Verification Enhancement Review of the Plutonium Finishing Plant (PFP)

    SciTech Connect (OSTI)

    BRIGGS, C.R.

    2000-02-09

    The primary purpose of the verification enhancement review was for the DOE Richland Operations Office (RL) to verify contractor readiness for the independent DOE Integrated Safety Management System Verification (ISMSV) on the Plutonium Finishing Plant (PFP). Secondary objectives included: (1) to reinforce the engagement of management and to gauge management commitment and accountability; (2) to evaluate the ''value added'' benefit of direct public involvement; (3) to evaluate the ''value added'' benefit of direct worker involvement; (4) to evaluate the ''value added'' benefit of the panel-to-panel review approach; and, (5) to evaluate the utility of the review's methodology/adaptability to periodic assessments of ISM status. The review was conducted on December 6-8, 1999, and involved the conduct of two-hour interviews with five separate panels of individuals with various management and operations responsibilities related to PFP. A semi-structured interview process was employed by a team of five ''reviewers'' who directed open-ended questions to the panels which focused on: (1) evidence of management commitment, accountability, and involvement; and, (2) consideration and demonstration of stakeholder (including worker) information and involvement opportunities. The purpose of a panel-to-panel dialogue approach was to better spotlight: (1) areas of mutual reinforcement and alignment that could serve as good examples of the management commitment and accountability aspects of ISMS implementation, and, (2) areas of potential discrepancy that could provide opportunities for improvement. In summary, the Review Team found major strengths to include: (1) the use of multi-disciplinary project work teams to plan and do work; (2) the availability and broad usage of multiple tools to help with planning and integrating work; (3) senior management presence and accessibility; (4) the institutionalization of worker involvement; (5) encouragement of self-reporting and self

  2. Carbon fibers from SRC pitch

    DOE Patents [OSTI]

    Greskovich, Eugene J.; Givens, Edwin N.

    1981-01-01

    This invention relates to an improved method of manufacturing carbon fibers from a coal derived pitch. The improvement resides in the use of a solvent refined coal which has been hydrotreated and subjected to solvent extraction whereby the hetero atom content in the resulting product is less than 4.0% by weight and the softening point is between about 100.degree.-250.degree. F.

  3. Patterned functional carbon fibers from polyethylene

    SciTech Connect (OSTI)

    Hunt, Marcus A; Saito, Tomonori; Brown, Rebecca H; Kumbhar, Amar S; Naskar, Amit K

    2012-01-01

    Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

  4. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, John

    1999-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  5. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, J.

    1995-05-30

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.

  6. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, J.

    1999-04-06

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.

  7. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, John

    1995-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  8. A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites

    SciTech Connect (OSTI)

    TuckerIII, Charles L. [University of Illinois, Urbana-Champaign; Phelps, Jay H [University of Illinois, Urbana-Champaign; El-Rahman, Ahmed Abd [University of Illinois, Urbana-Champaign; Kunc, Vlastimil [ORNL

    2013-01-01

    Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, and a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1

  9. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    SciTech Connect (OSTI)

    Menapace, J A; Schaffers, K I; Bayramian, A J; Davis, P J; Ebbers, C A; Wolfe, J E; Caird, J A; Barty, C J

    2008-02-26

    Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.

  10. Rugged fiber optic probe for raman measurement

    DOE Patents [OSTI]

    O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.

    1998-01-01

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  11. Optical fiber head for providing lateral viewing

    DOE Patents [OSTI]

    Everett, Matthew J.; Colston, Billy W.; James, Dale L.; Brown, Steve; Da Silva, Luiz

    2002-01-01

    The head of an optical fiber comprising the sensing probe of an optical heterodyne sensing device includes a planar surface that intersects the perpendicular to axial centerline of the fiber at a polishing angle .theta.. The planar surface is coated with a reflective material so that light traveling axially through the fiber is reflected transverse to the fiber's axial centerline, and is emitted laterally through the side of the fiber. Alternatively, the planar surface can be left uncoated. The polishing angle .theta. must be no greater than 39.degree. or must be at least 51.degree.. The emitted light is reflected from adjacent biological tissue, collected by the head, and then processed to provide real-time images of the tissue. The method for forming the planar surface includes shearing the end of the optical fiber and applying the reflective material before removing the buffer that circumscribes the cladding and the core.

  12. Estimation of ovular fiber production in cotton

    DOE Patents [OSTI]

    Van't Hof, Jack (Brookhaven, NY)

    1998-09-01

    The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means.

  13. Estimation of ovular fiber production in cotton

    DOE Patents [OSTI]

    Van`t Hof, J.

    1998-09-01

    The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means. 4 figs.

  14. Development and Commercialization of Alternative Carbon Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & Stabilization of PAN-Based Carbon ...

  15. Loose-tube optical-fiber cable

    SciTech Connect (OSTI)

    Lowell, Mark Edmund; Angers, Tyler Louis; Jonker, Jan Wigger

    2015-01-06

    The present invention relates to loose-tube optical-fiber cables that are capable of operating in high-temperature environments.

  16. Fiber Reinforced Polymer Composite Manufacturing Workshop | Department...

    Broader source: Energy.gov (indexed) [DOE]

    A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss...

  17. Automated fiber pigtailing machine (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices ... optical; fibers; optoelectonic; devices; laser; diodes; photodiodes; waveguide; devices; ...

  18. Single-fiber multi-color pyrometry (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Single-fiber multi-color pyrometry Title: Single-fiber multi-color pyrometry This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and ...

  19. fiberConnector-Quantities-18Oct2006.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID and OD fiber lengths Parameters Extra Fiber Length (in) 3 OD Frames 108 ID Scint Planes 196 Fibers per Preform 10 Bare Lengths (Ordered, mm) Scratch Col This Length Spare...

  20. Method for preparing polyaniline fibers

    DOE Patents [OSTI]

    Mattes, Benjamin R.; Wang, Hsing-Lin

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  1. Remotely readable fiber optic compass

    DOE Patents [OSTI]

    Migliori, A.; Swift, G.W.; Garrett, S.L.

    1985-04-30

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  2. Remotely readable fiber optic compass

    DOE Patents [OSTI]

    Migliori, Albert; Swift, Gregory W.; Garrett, Steven L.

    1986-01-01

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  3. Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same

    DOE Patents [OSTI]

    O'Rourke, Patrick E.; Livingston, Ronald R.

    1995-01-01

    A fiber optic probe for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers.

  4. Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same

    DOE Patents [OSTI]

    O`Rourke, P.E.; Livingston, R.R.

    1995-03-28

    A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.

  5. Microbend fiber-optic temperature sensor

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  6. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments [OSTI]

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  7. Fiber-optic liquid level sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    1991-01-01

    A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

  8. Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI DE-FOA-0000980: Summary of Responses Fiber Reinforced Polymer Composite Manufacturing ... More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop ...

  9. Fiber Reinforced Polymer Composite Manufacturing - RFI Part 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI Part 2 DE-FOA-0001056: Summary of Responses Fiber Reinforced Polymer Composite ... More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop ...

  10. Compressive strength of carbon fibers (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Compressive strength of carbon fibers Citation Details In-Document Search Title: Compressive strength of carbon fibers Direct transverse compressive test of pitch-based ...