National Library of Energy BETA

Sample records for fine sandy loam

  1. Sandy Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    facebook link to twitter Email Signup Sign up for updates Go Search form Search Press Release You are here Home Sandy Updates Sandy Updates No articles link to facebook link to ...

  2. Sandy Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Release Search link to facebook link to twitter Email Signup Sign up for updates Go Search form Search Press Release You are here Home Sandy Updates Sandy Updates No...

  3. Alec R. Sandy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alec Sandy Alec R. Sandy Physicist, Time Resolved Research Group Leader Telephone 630-252-0281 E-mail asandy

  4. Women @ Energy: Giselle Sandi | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Giselle Sandi Women @ Energy: Giselle Sandi March 28, 2013 - 9:30am Addthis Giselle Sandi received a Ph.D. in electrochemistry and joined Argonne National Laboratory as a postdoctoral appointee in 1994. Giselle Sandi received a Ph.D. in electrochemistry and joined Argonne National Laboratory as a postdoctoral appointee in 1994. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Giselle Sandi received a Ph.D. in electrochemistry and joined Argonne

  5. Hurricane Sandy | OpenEI Community

    Open Energy Info (EERE)

    Hurricane Sandy Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy East Coast...

  6. Hurricane Sandy Situation Reports (October & November 2012)

    Broader source: Energy.gov [DOE]

    Hurricane Sandy situation reports detail the storm's impacts and the restoration activities being taken by the energy sector.

  7. Hurricane Sandy Contingency Operation -- Increase in Micro-Purchase...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hurricane Sandy Contingency Operation -- Increase in Micro-Purchase and Simplified Acquisition Thresholds for Specific States and Counties Hurricane Sandy Contingency Operation -- ...

  8. Sandy, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Sandy is a city in Salt Lake County, Utah. It falls under Utah's 2nd congressional district.12 Registered...

  9. Hurricane Sandy Situation Report #3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hurricane Sandy Situation Report #3 Hurricane Sandy Situation Report #3 OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY (OE) SITUATION REPORT #3 FOR HURRICANE SANDY (165.1 KB) More Documents & Publications Hurricane Sandy Situation Reports (October & November 2012) September 3, 2010 Situation Report Situation Reports: Ohio Valley and Mid-Atlantic Storm 2012

  10. Hurricane Sandy-Nor'easter Situation Reports | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hurricane Sandy-Nor'easter Situation Reports Hurricane Sandy-Nor'easter Situation Reports December 3, 2012 - 4:07pm Addthis On November 7, a Noreaster began to impact the...

  11. EIS-0315-S1: SEIS on Caithness Big Sandy Project

    Broader source: Energy.gov [DOE]

    In June 2001, the Bureau of Land Management (BLM) and Western Area Power Administration (Western) issued the Big Sandy Energy Project Draft Environmental Impact Statement (EIS) (BLM and Western 2001). After June 2001, Caithness Big Sandy, L.L.C. (Caithness), revised aspects of the Big Sandy Energy Project (Project) described as the Proposed Action in the Draft EIS.

  12. Working Together to Recover and Rebuild After Hurricane Sandy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Recover and Rebuild After Hurricane Sandy Working Together to Recover and Rebuild After Hurricane Sandy November 5, 2012 - 6:30pm Addthis Supervising Engineer for Public Service Electric and Gas Company, Michael Vincent, right, Department of Energy Secretary Steven Chu, center, and FEMA Deputy Administrator Rich Serino review power restoration at the Hoboken electrical substation. Restoration of power to communities impacted by Hurricane Sandy remains a high priority. | Photo by

  13. Big Sandy Rural Elec Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    www.bigsandyrecc.com Twitter: @bigsandycoop Facebook: https:www.facebook.compagesBig-Sandy-RECC142216049157162 Outage Hotline: 888-789-7322 Outage Map:...

  14. Big Sandy, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sandy, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.1788692, -110.1135412 Show Map Loading map... "minzoom":false,"mappingservic...

  15. Sandy Hook, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hook is a city in Connecticut.1 Registered Energy Companies in Sandy Hook, Connecticut Environmental Energy Services Inc References US Census Bureau Incorporated place and...

  16. Power Outages Update: Post-Tropical Cyclone Sandy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hurricane Sandy has landed and the Energy Department is working closely to support state and local officials who are responsible for working with utilities.

  17. Hurricane Sandy One Year Later: Rebuilding Stronger, More Resilient...

    Office of Environmental Management (EM)

    More Resilient Communities October 29, 2013 - ... Hurricane Sandy. | Photo courtesy of the Energy Department. ... an integrated resilience program that leverages our ...

  18. NREL: Technology Deployment - FEMA Engages NREL in Hurricane Sandy Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effort FEMA Engages NREL in Hurricane Sandy Recovery Effort May 8, 2013 Natural Disasters, By the Numbers There have been 144 weather/climate disasters since 1980 in which overall damages reached or exceeded $1 billion. In 2005, the estimated economic loss due to Hurricane Katrina was about $187 billion. In 2012, the estimated total loss due to Hurricane Sandy was $71 billion in New York and New Jersey alone. By the time Hurricane Sandy pounded the East Coast on October 29, 2012, it had

  19. MHK Projects/Sandy Cove | Open Energy Information

    Open Energy Info (EERE)

    undertaking a project at its Sandy Cove research site. The project entails detailed engineering of a 40 kW EnGen throughout 2007. The device is to be installed as a...

  20. Sandy River Delta Section 536 Ecosystem Restoration Project Environmen...

    Office of Environmental Management (EM)

    County, Oregon East Channel Dam under Construction, Sandy River Delta, 1930s June 2013 ... unit(s) (in acres) IDC interest during construction IWR Institute for Water Resources KVA ...

  1. Ashton-Sandy Spring, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Ashton-Sandy Spring is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  2. OVERVIEW OF RESPONSE TO HURRICANE SANDY-NOR'EASTER AND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OVERVIEW OF RESPONSE TO HURRICANE SANDY-NOR'EASTER AND RECOMMENDATIONS FOR IMPROVEMENT U.S. Department of Energy Office of Electricity Delivery and Energy Reliability February 26, 2013 I. Introduction Following the severe and widespread impact of Hurricane Sandy, the U.S. Department of Energy (DOE) reviewed the preparation, response, recovery, and restoration activities performed within its organization and by the Energy Sector. Understanding the wide range of challenges encountered by owners

  3. Students Innovate to Address Gas Shortages Following Hurricane Sandy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovate to Address Gas Shortages Following Hurricane Sandy Students Innovate to Address Gas Shortages Following Hurricane Sandy November 9, 2012 - 3:43pm Addthis Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Ian Kalin Director of the Energy Data Initiative What are the key

  4. Overview of Response to Hurricane Sandy-Nor'Easter and Recommendations for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement (February 2013) | Department of Energy Response to Hurricane Sandy-Nor'Easter and Recommendations for Improvement (February 2013) Overview of Response to Hurricane Sandy-Nor'Easter and Recommendations for Improvement (February 2013) Following the severe and widespread impact of Hurricane Sandy, the U.S. Department of Energy (DOE) reviewed the preparation, response, recovery, and restoration activities performed within its organization and by the Energy Sector. Understanding the

  5. EIS-0315: Caithness Big Sandy Project, Wikieup, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve Big Sandy Energy to interconnect a proposed 720-MW generating facility near Wikieup, Ariz., with the Mead-Phoenix Project 500-kV transmission line. The powerplant plan includes a proposed high-pressure natural gas pipeline, permanent access road and water pipelines that would cross BLM-administered land. Because the project could 'significantly affect the quality of the human environment,' studies must be done to identify environmental effects. WAPA is partnering with the Bureau of Land Management in Kingman on this project. BLM and Western have delayed issuing the Supplemental Draft EIS at the request of the applicant, Caithness Energy."

  6. Photo of the Week: Satellite View of Sandy at Night | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Satellite View of Sandy at Night Photo of the Week: Satellite View of Sandy at Night November 2, 2012 - 10:21am Addthis On Monday, October 29, 2012, Hurricane Sandy made landfall 5 miles south of Atlantic City, New Jersey, with maximum sustained winds near 80 mph. This satellite image was taken 16 to 18 hours before Sandy's landfall on the New Jersey coast, using the Visible Infrared Imaging Radiometer Suite on NASA's Suomi National Polar-orbiting Partnership satellite. The Department of Energy,

  7. In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety November 6, 2012 - 5:00pm Addthis Natural gas jitneys like this are Atlantic City's main form of public transportation. These vehicles were used to evacuate vulnerable residents during Hurricane Sandy. This vehicle is fueling up at a natural gas station built, owned, and operated by Clean Energy Fuels, who kept the station running

  8. Pelletization of fine coals

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1991-09-01

    The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

  9. Continuous fine ash depressurization system

    DOE Patents [OSTI]

    Liu, Guohai; Peng, Wan Wang; Vimalchand, Pannalal

    2011-11-29

    A system for depressurizing and cooling a high pressure, high temperature fine solid particles stream having entrained gas therein. In one aspect, the system has an apparatus for cooling the high pressure, high temperature fine solid particles stream having entrained gas therein and a pressure letdown device for depressurization by separating the cooled fine solid particles from a portion of the fine solid particles stream having entrained gas therein, resulting in a lower temperature, lower pressure outlet of solid particles for disposal or handling by downstream equipment.

  10. Hurricane Sandy Contingency Operation-- Increase in Micro-Purchase and Simplified Acquisition Thresholds for Specific States and Counties

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) Senior Procurement Executive (SPE) has increased the micro-purchase and simplified acquisition thresholds for Hurricane Sandy Contingency Operation.

  11. Stay Up To Date on Hurricane Sandy Recovery Efforts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stay Up To Date on Hurricane Sandy Recovery Efforts Stay Up To Date on Hurricane Sandy Recovery Efforts November 2, 2012 - 2:57pm Addthis The Google Crisis Map has power outage information, shelter and recovery centers, local emergency Twitter feeds, FEMA disaster declared areas and more. | This map is created and maintained by Google.org. To find your location, either enter your location in the box in the upper left corner or click and drag the map. Use the "Layers" button to select

  12. Wetter for fine dry powder

    DOE Patents [OSTI]

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  13. Compressive behavior of fine sand.

    SciTech Connect (OSTI)

    Martin, Bradley E.; Kabir, Md. E.; Song, Bo; Chen, Wayne

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  14. Dense, finely, grained composite materials

    DOE Patents [OSTI]

    Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  15. EA-2003: Sandy River Delta Section 536 Ecosystem Restoration Project, Multnomah County, Oregon

    Broader source: Energy.gov [DOE]

    The U.S. Army Corps of Engineers, with DOE’s Bonneville Power Administration as a cooperating agency, prepared an EA that assessed the potential environmental impacts of the proposed removal of a dam from the east channel of the Sandy River. The proposal would help fulfill a portion of the 2010-2013 Federal Columbia River Power System Biological Opinion Implementation Plan to improve estuary habitat for salmon and steelhead species listed under the Endangered Species Act.

  16. New Energy Department Team Established to Help Local Authorities Get Gas Stations Impacted by Hurricane Sandy Back Online

    Broader source: Energy.gov [DOE]

    As part of the government-wide effort to assist the response and recovery efforts following Hurricane Sandy, the Energy Department has established a team to assist local authorities in their efforts to get help get gas stations back online.

  17. Economics of coal fines utilization

    SciTech Connect (OSTI)

    Hathi, V.; McHale, E.; Ramezan, M.; Winslow, J.

    1995-12-31

    In the twentieth century, coal has become the major fuel for electric power generation in the U.S. and most of the nonpetroleum-producing countries of the world. In 1998, the world coal-fired capacity for electric power generation was about 815 GW, consuming large quantities of coals of all ranks. Today, coal provides a third of the world`s energy requirements. In fact, coal use for power generation has grown steadily since the oil embargo in 1973 and has seen an even faster rate of growth in recent years. It has been reported that the global demand for new coal will increase by more than 1500 million tons by the year 2000. However, this increased production of coal has its drawbacks, including the concomitant production of coal waste. Reported estimates indicate that billions of tons of coal waste have already been disposed of in waste impoundments throughout the U.S. Further, in the U.S. today, about 20-25 % of each ton of mined coal is discarded by preparation plants as gob and plant tailings. It appears that the most economical near-term approach to coal waste recovery is to utilize the waste coal fines currently discarded with the refuse stream, rather than attempt to recover coal from waste impoundments that require careful prior evaluation and site preparation. A hypothetical circuit was designed to examine the economics of recovery and utilization of waste coal fines. The circuit recovers products from 100 tons per hour (tph) of coal waste feed recovering 70 tph of fine coal that can be used in coal-fired boilers. The present analysis indicates that the coal waste recovery is feasible and economical. In addition, significant environmental benefits can be expected.

  18. New York/New Jersey Intra Harbor Petroleum Supplies Following Hurricane Sandy: Summary of Impacts Through November 13, 2012

    Gasoline and Diesel Fuel Update (EIA)

    New York/New Jersey Intra Harbor Petroleum Supplies Following Hurricane Sandy: Summary of Impacts Through November 13, 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | New York/New Jersey Intra Harbor Petroleum Supplies Following Hurricane Sandy: Summary of Impacts Through November 13, 2012 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical

  19. Fine Structure Studies in Proton Emission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (2006). " Fine Structure in Proton Emission from 145 Tm discovered with the Novel technique of Digital Signal Processing" M. Karny, et al., Phys. Rev. Lett. 90, 012502 (2003)....

  20. Advanced Fine Particulate Characterization Methods

    SciTech Connect (OSTI)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  1. Hot Gas Filtration of Fine and Ultra fine Particles with Liquid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC Ceramic DPF Basics of particle collection and desogn of filters for diesel soot particles are ...

  2. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    SciTech Connect (OSTI)

    Yu Yanxin; Cheng Yipik; Xu Xiaomin; Soga, Kenichi

    2013-06-18

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.

  3. Sandy River Delta Habitat Restoration : Annual Report, January 2008 - March 2009.

    SciTech Connect (OSTI)

    Dobson, Robin

    2009-09-11

    During the period 2008-2009, there were 2 contracts with BPA. One (38539) was dealing with the restoration work for 2007 and the other (26198) was an extension on the 2006 contract including the NEPA for Dam removal on the old channel of the Sandy River. For contract 38539, the Sandy River Delta Habitat Restoration project continued its focus on riparian hardwood reforestation with less emphasis on wetlands restoration. Emphasis was placed on Sundial Island again due to the potential removal of the dike and the loss of access in the near future. AshCreek Forest Management was able to leverage additional funding from grants to help finance the restoration effort; this required a mid year revision of work funded by BPA. The revised work not only continued the maintenance of restored hardwood forests, but was aimed to commence the restoration of the Columbia River Banks, an area all along the Columbia River. This would be the final restoration for Sundial Island. The grant funding would help achieve this. Thus by 2011, all major work will have been completed on Sundial Island and the need for access with vehicles would no longer be required. The restored forests continued to show excellent growth and development towards true riparian gallery forests. Final inter-planting was commenced, and will continue through 2010 before the area is considered fully restored. No new wetland work was completed. The wetlands were filled by pumping in early summer to augment the water levels but due to better rainfall, no new fuel was required to augment existing. Monitoring results continued to show very good growth of the trees and the restoration at large was performing beyond expectations. Weed problems continue to be the most difficult issue. The $100,000 from BPA planned for forest restoration in 2008, was augmented by $25,000 from USFS, $120,000 from OR150 grant, $18,000 from LCREP, and the COE continued to add $250,000 for their portion. Summary of the use of these funds are

  4. Immobilization of Rocky Flats Graphite Fines Residue

    SciTech Connect (OSTI)

    Rudisill, T.S.

    1999-04-06

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report.

  5. MOBILIZATION AND CHARACTERIZATION OF COLLOIDS GENERATED FROM CEMENT LEACHATES MOVING THROUGH A SRS SANDY SEDIMENT

    SciTech Connect (OSTI)

    Li, D.; Roberts, K.; Kaplan, D.; Seaman, J.

    2011-09-20

    Naturally occurring mobile colloids are ubiquitous and are involved in many important processes in the subsurface zone. For example, colloid generation and subsequent mobilization represent a possible mechanism for the transport of contaminants including radionuclides in the subsurface environments. For colloid-facilitated transport to be significant, three criteria must be met: (1) colloids must be generated; (2) contaminants must associate with the colloids preferentially to the immobile solid phase (aquifer); and (3) colloids must be transported through the groundwater or in subsurface environments - once these colloids start moving they become 'mobile colloids'. Although some experimental investigations of particle release in natural porous media have been conducted, the detailed mechanisms of release and re-deposition of colloidal particles within natural porous media are poorly understood. Even though this vector of transport is known, the extent of its importance is not known yet. Colloid-facilitated transport of trace radionuclides has been observed in the field, thus demonstrating a possible radiological risk associated with the colloids. The objective of this study was to determine if cementitious leachate would promote the in situ mobilization of natural colloidal particles from a SRS sandy sediment. The intent was to determine whether cementitious surface or subsurface structure would create plumes that could produce conditions conducive to sediment dispersion and mobile colloid generation. Column studies were conducted and the cation chemistries of influents and effluents were analyzed by ICP-OES, while the mobilized colloids were characterized using XRD, SEM, EDX, PSD and Zeta potential. The mobilization mechanisms of colloids in a SRS sandy sediment by cement leachates were studied.

  6. Pelletization of fine coals. Final report

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  7. Leatec Fine Ceramics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Place: Tao-Yuan Hsien, Taiwan Product: Taiwan-based manufacturer of chip alumina fine ceramic substrates. The firm also produces PV junction boxes. References: Leatec Fine...

  8. Analysis of thomsen parameters for finely layered VTI media ...

    Office of Scientific and Technical Information (OSTI)

    Conference: Analysis of thomsen parameters for finely layered VTI media Citation Details In-Document Search Title: Analysis of thomsen parameters for finely layered VTI media ...

  9. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters ...

  10. Biodegradation of jet fuel in vented columns of water-unsaturated sandy soil. Master's thesis

    SciTech Connect (OSTI)

    Coho, J.W.

    1990-01-01

    The effect of soil water content on the rate of jet fuel (JP-4) biodegradation in air-vented, water-unsaturated columns of sandy soil was investigated. The contaminated soil was obtained from a spill site located on Tyndall AFB, Fla. The initial soil loading was 4590 mg of JP-4/kg of dry soil. Three laboratory columns were packed with the contaminated soil, saturated and drained for periods of 81-89 days. Two columns were continuously vented with air, and the third, intended to provide an anaerobic control, was vented with nitrogen. The venting gas flows were maintained between 1 and 2.5 soil pore volume changeouts per day. The total JP-4 removal in the air-vented columns averaged 44% of the mass originally present. Biodegradation and volatilization accounted for 93% and 7% of the total removal, respectively. A maximum biodegradation rate of 14.3 mg of JP-4/kg of moist soil per day was observed at a soil water content of approximately 72% saturation. Soil drainage characteristics indicated that this water content may have corresponded to 100% of the in situ field capacity water content. Theses.

  11. System for utilizing oil shale fines

    DOE Patents [OSTI]

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  12. Synthesis of fine-grained TATB

    DOE Patents [OSTI]

    Lee, Kien-Yin; Kennedy, James E.

    2003-04-15

    A method for producing fine-grained triamino-trinitrobenzene (TATB) powders having improved detonation-spreading performance and hence increased shock sensitivity when compared with that for ultrafine TATB is described. A single-step, sonochemical amination of trichloro-trinitrobenzene using ammonium hydroxide solution in a sealed vessel yields TATB having approximately 6 .mu.m median particle diameter and increased shock sensitivity.

  13. Process for treating moisture laden coal fines

    DOE Patents [OSTI]

    Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.

    1993-01-01

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  14. Immobilization of Rocky Flats graphite fines residues

    SciTech Connect (OSTI)

    Rudisill, T.S.; Marra, J.C.; Peeler, D.K.

    1999-07-01

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt% graphite, 15 wt% calcium fluoride (CaF{sub 2}), and 12 wt% plutonium oxide (PuO{sub 2}). Approximately 950 kg of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO{sub 2} concentration in the residue averages 12 wt%, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF{sub 2} dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO{sub 2}) as a surrogate for PuO{sub 2} and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF{sub 2} and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.

  15. New Measurement Explores Fine Details of Proton Structure | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Measurement Explores Fine Details of Proton Structure New Measurement Explores Fine Details of Proton Structure BigCal, contained 1,744 lead glass bars The new calorimeter, ...

  16. Method for producing dustless graphite spheres from waste graphite fines

    DOE Patents [OSTI]

    Pappano, Peter J; Rogers, Michael R

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  17. Immobilization of Rocky Flats Graphite Fines Residues

    SciTech Connect (OSTI)

    Rudisill, T. S.

    1998-11-06

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the

  18. Habitat Evaluation Procedures (HEP) Report; Sandy River Delta, Technical Report 2000-2002.

    SciTech Connect (OSTI)

    Rocklage, Ann; Ratti, John

    2002-02-01

    requisites (e.g., food and nesting cover) for that species. These variables are evaluated with vegetation sampling, and/or through the interpretation of aerial photographs and the like. Variable values are assigned a numerical score. The score may be based on a categorical rating (e.g . , different vegetation types receive different scores based on their importance for that species) or may be the result of a linear relationship (e.g., the score increases with the variable value; Figure 1). Variable scores are then input into a mathematical formula, which results in an HSI score. The HSI score ranges from 0-1, with 0 representing poor-quality habitat and 1 optimal habitat. HSI models assume a positive, linear relationship between wildlife-species density and the HSI score. For example, with an HSI score of 1, we assume that a species will be present at its highest density. Models can be projected into the future by changing variable values and observing the corresponding changes in HSI scores. Most models are relatively simple, but some are complex. These models have come under considerable scrutiny in the last several years, particularly concerning the validity of model assumptions (Van Horne 1983, Laymon and Barrett 1986, Hobbs and Hanley 1990, Kellner et al. 1992). Regardless of criticisms, these models may be used with success when there is an understanding and acceptance of model limitations. Each model should be evaluated as to its applicability in a given situation. Model validation, where results have on-the-ground verification, is highly recommended. Specific objectives of this project were to (1) conduct avian surveys and measure the present vegetation at the Sandy River Delta, (2) input the vegetation data into HSI models for 5 avian species, (3) evaluate the current habitat suitability for these species, and (4) predict species responses to potential changes in vegetation, resulting from the removal of reed canarygrass and/or Himalayan blackberry.

  19. Low rate entrainment feeder for fine solids

    SciTech Connect (OSTI)

    Scott, D.S.; Piskorz, J.

    1982-08-01

    A mechanically stirred entrainment-type feeder for fine solids has been developed which will give rates constant to +/- 5% for 1 h or more. The feeder was constructed in connection with a mini-fluidized bed flash pyrolysis project for both biomass and Canadian coals. It has been used to feed coal, sawdust and ground bark in sizes below 600 micro m at rates as low as 6 g/h. Gas to solids weight ratios obtained were from about 3:1 to 1:3. The effect on feed rates of most of the operating and geometric parameters was investigated at low feed rates. A mechanism for control of the feed rate was tested and found to be satisfactory.

  20. Oil shale fines process developments in Brazil

    SciTech Connect (OSTI)

    Lisboa, A.C.; Nowicki, R.E. ); Piper, E.M. )

    1989-01-01

    The Petrobras oil shale retorting process, utilizes the particle range of +1/4 inch - 3 1/2 inches. The UPI plant in Sao Mateus do Sul has over 106,000 hours of operation, has processed over 6,200,000 metric tons of shale and has produced almost 3,000,000 barrels of shale oil. However, the nature of the raw oil shale is such that the amount of shale less than 1/4 inch that is mined and crushed and returned to the mine site is about 20 percent, thereby, increasing the cost of oil produced by a substantial number. Petrobras has investigated several systems to process the fines that are not handled by the 65 MTPH UPI plant and the 260 MTPH commercial plant. This paper provides an updated status of each of these processes in regard to the tests performed, potential contributions to an integrated use of the oil shale mine, and future considerations.

  1. Method of making fine-grained triaminotrinitrobenzene

    DOE Patents [OSTI]

    Benziger, Theodore M.

    1984-01-01

    A method of forming a fine-grained species of the insensitive high explosive sym-triaminotrinitrobenzene (TATB) without grinding. In accordance with the method, 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) is aminated by reaction with gaseous ammonia in an emulsion of toluene in water. The ratio of water to toluene in the emulsion is selected so that toluene is the dispersed phase in the emulsion. The size of the dispersed TCTNB-containing toluene droplets determines the particle size of the resulting TATB. The emulsion is preferably formed with an emulsifier such as ammonium oleate, which may be generated in situ from oleic acid, and stabilized with a protective colloid such as polyvinyl alcohol.

  2. Method of making fine-grained triaminotrinitrobenzene

    DOE Patents [OSTI]

    Benziger, T.M.

    1983-07-26

    A method is given for forming a fine-grained species of the insensitive high explosive sym-triaminotrinitrobenzene (TATB) without grinding. In accordance with the method, 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) is aminated by reaction with gaseous ammonia in an emulsion of toluene in water. The ratio of water to toluene in the emulsion is selected so that toluene is the dispersed phase in the emulsion. The size of the dispersed TCTNB-containing toluene droplets determines the particle size of the resulting TATB. The emulsion is preferably formed with an emulsifier such as ammonium oleate, which may be generated in situ from oleic acid, and stabilized with a protective colloid such as polyvinyl alcohol.

  3. Observation of Fine Structures in Laser-Driven Electron Beams...

    Office of Scientific and Technical Information (OSTI)

    United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 43 PARTICLE ACCELERATORS; ELECTRON BEAMS; ELECTRONS; FINE STRUCTURE; INTERACTIONS; ...

  4. Controlling formation fines at their sources to maintain well productivity

    SciTech Connect (OSTI)

    Nguyen, P.D.; Weaver, J.D.; Rickman, R.D.; Dusterhoft, R.G.; Parker, M.A.

    2007-05-15

    Migration of formation fines has been shown to cause production decline in many wells. Despite the availability of new downhole tools for use in well stimulation and completion, the ability to sustain desired production levels is often plagued with fines migration problems. The solution to this problem is appropriate treatment to mitigate fines migration at its source. This paper describes the use of an ultra-thin tackifying agent (UTTA) for stabilizing fines in high-rate producing or injection wells. This UTTA is applied as part of an initial prepad in fracturing or gravel-packing operations, as a remedial treatment, or as a post-treatment following acid fracturing or matrix acidizing treatments. The primary purpose of UTTA application is to immobilize formation fines so that they will not detach, migrate with flowing fluids, plug the pore channels, and reduce the flow path permeability. Results of laboratory testing indicate that the UTTA system is applicable to most types of formation fines, including coals, sandstones, and carbonates. Once injected into the formation matrix or proppant pack, the UTTA forms a thin film on formation surfaces, encapsulating the fines. Capillary action helps pull the tackifier into the contact points, fixing the particulate in place without plugging the pore throat. The UTTA does not require a shut-in time after its application. The thin film tackifier does not harden, but remains flexible, enhancing the ability of a formation to withstand stress cycling and allowing the formation to handle high shear stress during high flow rates.

  5. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect (OSTI)

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  6. Modified approaches for high pressure filtration of fine clean coal

    SciTech Connect (OSTI)

    Yang, J.; Groppo, J.G.; Parekh, B.K. [Center for Applied Energy Research, Lexington, KY (United States)

    1995-12-31

    Removal of moisture from fine (minus 28 mesh) clean coal to 20% or lower level is difficult using the conventional vacuum dewatering technique. High pressure filtration technique provides an avenue for obtaining low moisture in fine clean coal. This paper describes a couple of novel approaches for dewatering of fine clean coal using pressure filtration which provides much lower moisture in fine clean coal than that obtained using conventional pressure filter. The approaches involve (a) split stream dewatering and (b) addition of paper pulp to the coal slurry. For Pittsburgh No. 8 coal slurry, split stream dewatering at 400 mesh provided filter cake containing 12.9% moisture compared to 24.9% obtained on the feed material. The addition of paper pulp to the slurry provided filter cake containing about 17% moisture.

  7. Process for preparing fine grain silicon carbide powder

    DOE Patents [OSTI]

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  8. Use of fine gridding in full field simulation

    SciTech Connect (OSTI)

    Greaser, G.R.; Doerr, T.C.; Chea, C.; Parvez, N.

    1995-10-01

    A full field 3D simulation study was completed for a large Saudi Arabian oilfield located in the Arabian Gulf. The subject field produced from a highly layered Arab D carbonate reservoir which exhibited a strong water drive. The objective of the study was to determine future platform locations and timing with respect to water encroachment. The large areal extent (13{times}23 km) and highly layered nature of this reservoir necessitated use of coarse grids in order to obtain a reasonable model size. The coarse grid model was constructed with 86,000 grid cells. Using the coarse model, prediction studies showed an advantage to future platform development with horizontal wells. However, these results were suspect since it was thought that the coarse cell model may not properly model water coning and encroachment around the horizontal wellbores. To improve the modeling of water movement, fine grid numerical simulation techniques were investigated. This paper discusses the use of sector and local grid refinement modeling techniques with commercially available software. Fine grid simulation studies were conducted for a proposed new platform. The fine grid simulation studies showed significantly different results compared with the coarse model predictions. The fine grid simulation results will be discussed, the two fine grid simulation techniques will be compared, and reasons presented why performance differences exist. Performance of the fine grid models on an Unix RISC based workstation is included.

  9. Permeability of wood pellets in the presence of fines

    SciTech Connect (OSTI)

    Yazdanpanah, F.; Lau, A.K.; Sokhansanj, Shahabaddine; Lim, C. Jim; Melin, Staffan; Bi, X.T.; Afzal, M

    2010-03-01

    Broken pellets and fines are produced during mechanical handlings of wood pellets. The resistance to air flow was measured for clean pellets and for pellets mixed with 1 to 20% broken pellets (fines). A pellet diameter was 6 mm. The lengths ranged from from 6 to 12 mm. Clean pellets were defined as particles that remained on a 4 mm screen. A typical sieve analysis showed 30% of the mass of particles passed through the 4 mm screen were smaller than 1 mm. The airflow rates used in the experiment ranged from 0.004 to 0.357 ms-1. The corresponding pressure drop ranged from 1.9 Pa m-1 to 271 Pa m-1 for clean pellets and from 4.8 to 1100 Pa m 1 for pellets mixed with 10% fines. The pressure drop increased for pellets mixed with increasing fines content. Coefficients of Hukill and Ives equation were estimated for clean pellets and a multiplier was defined to calculate pressure drop for pellets mixed with fines.

  10. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    SciTech Connect (OSTI)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole

    2008-03-17

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish

  11. Fine and coarse components in surface sediments from Bikini Lagoon

    SciTech Connect (OSTI)

    Noshkin, V. E., LLNL

    1997-01-01

    In 1979, 21 years after the moratorium on nuclear testing in the Marshall Islands, surface sediment samples (to depths of 2 and 4 cm) were collected from 87 locations in the lagoon of Bikini Atoll, one of the two sites in the Marshall Islands used by the United States to test nuclear devices from 1946 through 1958. The main purpose for the collections was to map the distribution of long-lived man-made radionuclides associated with the bottom material. In addition the samples were processed to estimate the fraction of fine and coarse components to show, by comparison, what modifications occurred in the composition since the sediments were first described in samples collected before testing in 1946. Nuclear testing produced more finely divided material that is now found in the surface sediment layer over large areas of the lagoon and especially in regions of the lagoon and reef adjacent to test sites. The 5 cratering events alone at Bikini Atoll redistributed sufficient material to account for the higher inventory of fine material found over the surface 4 cm of the sediment of the lagoon. Although the fraction of fine material in the bottom sediments was altered by the nuclear events, the combined processes of formation, transport and deposition were not sufficiently dynamic to greatly change the general geographical features of the major sedimentary components over most of the lagoon floor.

  12. ROTARY FILTER FINES TESTING FOR SMALL COLUMN ION EXCHANGE

    SciTech Connect (OSTI)

    Herman, D.

    2011-08-03

    SRNL was requested to quantify the amount of 'fines passage' through the 0.5 micron membranes currently used for the rotary microfilter (RMF). Testing was also completed to determine if there is any additional benefit to utilizing a 0.1 micron filter to reduce the amount of fines that could pass through the filter. Quantifying of the amount of fines that passed through the two sets of membranes that were tested was accomplished by analyzing the filtrate by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) for titanium. Even with preparations to isolate the titanium, all samples returned results of less than the instrument's detection limit of 0.184 mg/L. Test results show that the 0.5 micron filters produced a significantly higher flux while showing a negligible difference in filtrate clarity measured by turbidity. The first targeted deployment of the RMF is with the Small Column Ion Exchange (SCIX) at the Savannah River Site (SRS). SCIX uses crystalline silicotitanate (CST) to sorb cesium to decontaminate a clarified salt solution. The passage of fine particles through the filter membranes in sufficient quantities has the potential to impact the downstream facilities. To determine the amount of fines passage, a contract was established with SpinTek Filtration to operate a 3-disk pilot scale unit with prototypic filter disk and various feeds and two different filter disk membranes. SpinTek evaluated a set of the baseline 0.5 micron filter disks as well as a set of 0.1 micron filter disks to determine the amount of fine particles that would pass the membrane and to determine the flux each set produced. The membrane on both disk sets is manufactured by the Pall Corporation (PMM 050). Each set of disks was run with three feed combinations: prototypically ground CST, CST plus monosodium titanate (MST), and CST, MST, plus Sludge Batch 6 (SB6) simulant. Throughout the testing, samples of the filtrate were collected, measured for turbidity, and sent back

  13. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. ...

  14. Analysis of fine structure in the nuclear continuum

    SciTech Connect (OSTI)

    Shevchenko, A.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Usman, I.; Cooper, G. R. J.; Fearick, R. W.

    2008-02-15

    Fine structure has been shown to be a general phenomenon of nuclear giant resonances of different multipolarities over a wide mass range. In this article we assess various techniques that have been proposed to extract quantitative information from the fine structure in terms of characteristic scales. These include the so-called local scaling dimension, the entropy index method, Fourier analysis, and continuous and discrete wavelet transforms. As an example, results on the isoscalar giant quadrupole resonance in {sup 208}Pb from high-energy-resolution inelastic proton scattering and calculations with the quasiparticle-phonon model are analyzed. Wavelet analysis, both continuous and discrete, of the spectra is shown to be a powerful tool to extract the magnitude and localization of characteristic scales.

  15. Maintenance is the cheapest way to improve fine coal dewatering

    SciTech Connect (OSTI)

    Burger, J.

    1986-01-01

    There are a great many things that a preparation plant operator can do right now to increase fine coal dewatering effectiveness and maintenance is one of them, says Donald A. Dahlstrom, at the University of Utah. Dewatering of fine coal is increasingly important, because electricity generation, the largest coal consumer, is so strongly affected by the moisture content. Every pound of water put into a boiler raises costs about 2 1/2 cents. The heat it takes to turn water to steam and get it out the stack is heat that could have been used to generate power. In addition, there is the cost of shipping the water. You can add the freight costs to that. In contrast it costs about 1/2-cent/lb to remove the water at the preparation plant.

  16. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect (OSTI)

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake

  17. Fine Structure of Dark Energy and New Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje

    2007-01-01

    Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less

  18. Cyber Power Group Ltd aka Fine Silicon Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Cyber Power Group Ltd aka Fine Silicon Co Ltd Jump to: navigation, search Name: Cyber Power Group Ltd (aka Fine Silicon Co Ltd) Place: Baoding, Hebei Province, China Product:...

  19. X-ray absorption fine-structure spectroscopy (Book) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    X-ray absorption fine-structure spectroscopy Citation Details In-Document Search Title: X-ray absorption fine-structure spectroscopy Authors: Newville, M. 1 + Show Author ...

  20. Where are the walls? Spatial variation in the fine-structure...

    Office of Scientific and Technical Information (OSTI)

    Where are the walls? Spatial variation in the fine-structure constant Citation Details In-Document Search Title: Where are the walls? Spatial variation in the fine-structure ...

  1. Where are the walls? Spatial variation in the fine-structure...

    Office of Scientific and Technical Information (OSTI)

    Where are the walls? Spatial variation in the fine-structure constant Prev Next Title: Where are the walls? Spatial variation in the fine-structure constant Authors: Olive, ...

  2. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 1999 Annual Report.

    SciTech Connect (OSTI)

    Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D.

    2000-01-01

    This project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Folk John Day and Grande Ronde Rivers, for five years.

  3. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    SciTech Connect (OSTI)

    Sather, NK; Johnson, GE; Storch, AJ

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River

  4. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007

    SciTech Connect (OSTI)

    Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

    2008-03-18

    This document is the first annual report for the study titled Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Councils Columbia Basin Fish and Wildlife Program.

  5. Process for making ultra-fine ceramic particles

    DOE Patents [OSTI]

    Stangle, Gregory C. (Alfred, NY); Venkatachari, Koththavasal R. (Hornell, NY); Ostrander, Steven P. (Scotia, NY); Schulze, Walter A. (Alfred Station, NY)

    1995-01-01

    A process for producing ultra-fine ceramic particles in which droplets are formed from a ceramic precursor mixture containing a metal cation, a nitrogen-containing fuel, a solvent, and an anion capable of participating in an anionic oxidation-reduction reaction with the nitrogen containing fuel. The nitrogen-containing fuel contains at least three nitrogen atoms, at least one oxygen atom, and at least one carbon atom. The ceramic precursor mixture is dried to remove at least 85 weight percent of the solvent, and the dried mixture is then ignited to form a combusted powder.

  6. Process for preparing fine grain titanium carbide powder

    DOE Patents [OSTI]

    Janney, M.A.

    1985-03-12

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  7. Process for preparing fine grain titanium carbide powder

    DOE Patents [OSTI]

    Janey, Mark A.

    1986-01-01

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  8. Process for preparing fine grain silicon carbide powder

    DOE Patents [OSTI]

    Wei, G.C.

    Finely divided silicon carbide powder is obtained by mixing colloidal silica and unreacted phenolic resin in either acetone or methanol, evaporating solvent from the obtained solution to form a gel, drying and calcining the gel to polymerize the phenolic resin therein, pyrolyzing the dried and calcined gel at a temperature in the range of 500 to 1000/sup 0/C, and reacting silicon and carbon in the pyrolyzed gel at a temperature in the range of 1550 to 1700/sup 0/C to form the powder.

  9. Fine structure on the green band in ZnO

    SciTech Connect (OSTI)

    Reynolds, D. C.; Look, D. C.; Jogai, B.

    2001-06-01

    An emission band at 2.4 eV, called the green band, is observed in most ZnO samples, no matter what growth technique is used. Sometimes this band includes fine structure, which consists mainly of doublets, repeated with a longitudinal-optical-phonon-energy spacing (72 meV). We have developed a vibronic model for the green band, based on transitions from two separate shallow donors to a deep acceptor. The donors, at energies 30 and 60 meV from the conduction-band edge, respectively, are also found from Hall-effect measurements. {copyright} 2001 American Institute of Physics.

  10. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes

    SciTech Connect (OSTI)

    McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; Fahey, Timothy J.; Fernandez, Christopher W.; Guo, Dali; Helmisaari, Helja -Sisko; Hobbie, Erik A.; Iversen, Colleen M.; Jackson, Robert B.; Leppälammi-Kujansuu, Jaana; Norby, Richard J.; Phillips, Richard P.; Pregitzer, Kurt S.; Pritchard, Seth G.; Rewald, Boris; Zadworny, Marcin

    2015-03-10

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.

  11. Aqueour biphase extraction for processing of fine coal

    SciTech Connect (OSTI)

    Osseo-Asare, K.

    1997-07-23

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. For super-clean coal production, the degree of liberation needed to separate coal from mineral matter, including pyrite, requires grinding to 10 mm or below. In addition, large amounts of fine coal are discharged to refuse ponds because current coal cleaning technology cannot adequately treat such finely divided materials. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. This technique relies on the ability of an aqueous system consisting of a water-soluble organic polymer and an inorganic metal salt to separate into two immiscible aqueous phases. Differences in the hydrophobic/hydrophilic properties of particulates can then be exploited to effect selective transfers to either the upper polymer-rich phase, or the lower salt-rich phase. An experimental program is proposed involving phase diagram determination, phase separation rate measurements, partition measurements, and washing experiments.

  12. Supercritical fluid molecular spray thin films and fine powders

    DOE Patents [OSTI]

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  13. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; Fahey, Timothy J.; Fernandez, Christopher W.; Guo, Dali; Helmisaari, Helja -Sisko; Hobbie, Erik A.; Iversen, Colleen M.; Jackson, Robert B.; et al

    2015-03-10

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, finemore » roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.« less

  14. The Beta Environmental Fine Structure (BEFS): The XAFS Nuclear Analogue

    SciTech Connect (OSTI)

    Monfardini, A.; Benedek, G.; Cremonesi, O.; Nucciotti, A.; Sisti, M.; Filipponi, A.

    2007-02-02

    The Beta Environmental Fine Structure (BEFS) effect is an oscillatory modulation on the otherwise smooth spectrum of electrons emitted by beta-decaying nuclei. The existence of this effect was theoretically proposed in 1991, for condensed emitters, in analogy with XAFS. In BEFS the electron, playing the role of the XAFS photoelectron, originates directly from the nucleus and an anti-neutrino is emitted at the same time. We present evidence for BEFS oscillations observed in Silver Perrhenate (AgReO4) low-temperature (0.1K) microbolometers, together with a XAFS-like analysis that allowed for the first time a direct measurement of the anti-neutrino angular momentum. We discuss the physical analogies and differences between BEFS and XAFS and the implications for the next generation experiments aimed at measuring the neutrino mass on purely kinematic grounds. Moreover, we briefly discuss the potential and the limits of BEFS-based techniques with respect to the classical XAFS.

  15. Effective flocculation of fine mineral suspensions using Moringa oleifera seeds

    SciTech Connect (OSTI)

    Pickett, T.M.

    1995-12-31

    The purpose of this research was to investigate the feasibility of using Moringa oleifera seeds, or the active components of the seeds, in the clarification of waters containing suspended mineral fines. In comparative testing using a hematite suspension, the flocculating activity of Moringa oleifera seeds was better than alum. Twenty milligrams of seed powder was sufficient to clarify the hematite to near zero turbidity, while the same amount of alum had a minimal effect on turbidity. Extracts were prepared from the seeds in an attempt to separate the proteins. A crude protein extract was enriched by lowering the pH to 6.0. Only 0.08 mg/L of the enriched extract was required to flocculate a minusil suspension. Environmentally friendly protein flocculants could theoretically be produced and enhanced with recombinant DNA techniques as an alternative to chemical flocculants currently used in water treatment.

  16. Programmable Differential Delay Circuit With Fine Delay Adjustment

    DOE Patents [OSTI]

    DeRyckere, John F.; Jenkins, Philip Nord; Cornett, Frank Nolan

    2002-07-09

    Circuitry that provides additional delay to early arriving signals such that all data signals arrive at a receiving latch with same path delay. The delay of a forwarded clock reference is also controlled such that the capturing clock edge will be optimally positioned near quadrature (depending on latch setup/hold requirements). The circuitry continuously adapts to data and clock path delay changes and digital filtering of phase measurements reduce errors brought on by jittering data edges. The circuitry utilizes only the minimum amount of delay necessary to achieve objective thereby limiting any unintended jitter. Particularly, this programmable differential delay circuit with fine delay adjustment is designed to allow the skew between ASICS to be minimized. This includes skew between data bits, between data bits and clocks as well as minimizing the overall skew in a channel between ASICS.

  17. Stabilizing soft fine-grained soils with fly ash

    SciTech Connect (OSTI)

    Edil, T.B.; Acosta, H.A.; Benson, C.H.

    2006-03-15

    The objective of this study was to evaluate the effectiveness of self-cementing fly ashes derived from combustion of subbituminous coal at electric power plants for stabilization of soft fine-grained soils. California bearing ratio (CBR) and resilient modulus (M{sub r}) tests were conducted on mixtures prepared with seven soft fine-grained soils (six inorganic soils and one organic soil) and four fly ashes. The soils were selected to represent a relatively broad range of plasticity, with plasticity indices ranging between 15 and 38. Two of the fly ashes are high quality Class C ashes (per ASTM C 618) that are normally used in Portland cement concrete. The other ashes are off-specification ashes, meaning they do not meet the Class C or Class F criteria in ASTM C 618. Tests were conducted on soils and soil-fly ash mixtures prepared at optimum water content (a standardized condition), 7% wet of optimum water content (representative of the typical in situ condition in Wisconsin), and 9-18% wet of optimum water content (representative of a very wet in situ condition). Addition of fly ash resulted in appreciable increases in the CBR and M{sub r} of the inorganic soils. For water contents 7% wet of optimum, CBRs of the soils alone ranged between 1 and 5. Addition of 10% fly ash resulted in CBRs ranging between 8 and 17, and 18% fly ash resulted in CBRs between 15 and 31. Similarly, M{sub r} of the soil alone ranged between 3 and 15 MPa at 7% wet of optimum, whereas addition of 10% fly ash resulted in M{sub r} between 12 and 60 MPa and 18% fly ash resulted in M{sub r} between 51 and 106 MPa. In contrast, except for one fly ash, addition of fly ash generally had little effect on CBR or M{sub r} of the organic soil.

  18. DEVELOPMENT OF A NOVEL FINE COAL CLEANING SYSTEM

    SciTech Connect (OSTI)

    Manoj K. Mohanty

    2005-06-01

    The goal of the proposed project was to develop a novel fine coal separator having the ability to clean 1 mm x 0 size coal in a single processing unit. The novel fine coal separator, named as EG(Enhanced Gravity) Float Cell, utilizes a centrifugal field to clean 1 mm x 250 micron size coal, whereas a flotation environment to clean minus 250 micron coal size fraction. Unlike a conventional enhanced gravity concentrator, which rotates to produce a centrifugal field requiring more energy, the EG Float Cell is fed with a tangential feed slurry to generate an enhanced gravity field without any rotating part. A prototype EG Float Cell unit having a maximum diameter of 60 cm (24 inch) was fabricated during the first-half of the project period followed by a series of exploratory tests to make suitable design modification. Test data indicated that there was a significant concentration of coarse heavy materials in the coarse tailings discharge of the EG Float Cell. The increase in weight (%) of 1 mm x 250 micron (16 x 60 mesh) size fraction from 48.9% in the feed to 72.2% in the coarse tailings discharge and the corresponding increase in the ash content from 56.9% to 87.0% is indicative of the effectiveness of the enhanced gravity section of the EG Float Cell. However, the performance of the flotation section needs to be improved. Some of the possible design modifications may include more effective air sparging system for the flotation section to produce finer bubbles and a better wash water distributor.

  19. Evaluation of soil manipulation to prepare engineered earthen waste covers for revegetation

    SciTech Connect (OSTI)

    Waugh, W. Joseph; Benson, Craig H.; Albright, William H.; Smith, Gregory M.; Bush, Richard P.

    2015-10-21

    Seven ripping treatments designed to improve soil physical conditions for revegetation were compared on a test pad simulating an earthen cover for a waste disposal cell. The field test was part of study of methods to convert compacted-soil waste covers into evapotranspiration covers. The test pad consisted of a compacted layer of fine-textured soil simulating a barrier protection layer overlain by a gravelly sand bedding layer and a cobble armor layer. Treatments included combinations of soil-ripping implements (conventional shank [CS], wing-tipped shank [WTS], and parabolic oscillating shank with wings [POS]), ripping depths, and number of passes. Dimensions, dry density, moisture content, and particle size distribution of disturbance zones were determined in two trenches excavated across rip rows. The goal was to create a root-zone dry density between 1.2 and 1.6 Mg m-3 and a seedbed soil texture ranging from clay loam to sandy loam with low rock content. All treatments created V-shaped disturbance zones as measured on trench faces. Disturbance zone size was most influenced by ripping depth. Winged implements created larger disturbance zones. All treatments lifted fines into the bedding layer, moved gravel and cobble down into the fine-textured protection layer, and thereby disrupted the capillary barrier at the interface. Changes in dry density within disturbance zones were comparable for the CS and WTS treatments but were highly variable among POS treatments. Water content increased in the bedding layer and decreased in the protection layer after ripping. The POS at 1.2-m depth and two passes created the largest zone with a low dry density (1.24 Mg m-3) and the most favorable seedbed soil texture (gravely silt loam). Furthermore, ripping also created large soil aggregates and voids in the protection layer that may produce preferential flow paths and reduce water storage capacity.

  20. Evaluation of soil manipulation to prepare engineered earthen waste covers for revegetation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waugh, W. Joseph; Benson, Craig H.; Albright, William H.; Smith, Gregory M.; Bush, Richard P.

    2015-10-21

    Seven ripping treatments designed to improve soil physical conditions for revegetation were compared on a test pad simulating an earthen cover for a waste disposal cell. The field test was part of study of methods to convert compacted-soil waste covers into evapotranspiration covers. The test pad consisted of a compacted layer of fine-textured soil simulating a barrier protection layer overlain by a gravelly sand bedding layer and a cobble armor layer. Treatments included combinations of soil-ripping implements (conventional shank [CS], wing-tipped shank [WTS], and parabolic oscillating shank with wings [POS]), ripping depths, and number of passes. Dimensions, dry density, moisturemore » content, and particle size distribution of disturbance zones were determined in two trenches excavated across rip rows. The goal was to create a root-zone dry density between 1.2 and 1.6 Mg m-3 and a seedbed soil texture ranging from clay loam to sandy loam with low rock content. All treatments created V-shaped disturbance zones as measured on trench faces. Disturbance zone size was most influenced by ripping depth. Winged implements created larger disturbance zones. All treatments lifted fines into the bedding layer, moved gravel and cobble down into the fine-textured protection layer, and thereby disrupted the capillary barrier at the interface. Changes in dry density within disturbance zones were comparable for the CS and WTS treatments but were highly variable among POS treatments. Water content increased in the bedding layer and decreased in the protection layer after ripping. The POS at 1.2-m depth and two passes created the largest zone with a low dry density (1.24 Mg m-3) and the most favorable seedbed soil texture (gravely silt loam). Furthermore, ripping also created large soil aggregates and voids in the protection layer that may produce preferential flow paths and reduce water storage capacity.« less

  1. Giant Collective Spin-Orbit Field in a Quantum Well: Fine Structure...

    Office of Scientific and Technical Information (OSTI)

    Giant Collective Spin-Orbit Field in a Quantum Well: Fine Structure of Spin Plasmons ... Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud ...

  2. Development of fine-resolution analyses and expanded large-scale...

    Office of Scientific and Technical Information (OSTI)

    II: Scale-awareness and application to single-column model experiments Title: Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: ...

  3. Development of fine-resolution analyses and expanded large-scale...

    Office of Scientific and Technical Information (OSTI)

    I: Methodology and evaluation Citation Details In-Document Search Title: Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology ...

  4. Varying fine structure 'constant' and charged black holes

    SciTech Connect (OSTI)

    Bekenstein, Jacob D.; Schiffer, Marcelo

    2009-12-15

    Speculation that the fine-structure constant {alpha} varies in spacetime has a long history. We derive, in 4-D general relativity and in isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical {alpha} J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).. This solution coincides with a previously known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying-{alpha} charged black holes are adherence to a 'no hair' principle, the absence of the inner (Cauchy) horizon of the Reissner-Nordstroem black holes, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in an analytic extension of the relevant metric. The exteriors of almost extremal electrically (magnetically) charged black holes have simple structures which makes their influence on applied magnetic (electric) fields transparent. We rederive the thermodynamic functions of the modified black holes; the otherwise difficult calculation of the electric potential is done by a shortcut. We confirm that variability of {alpha} in the wake of expansion of the universe does not threaten the generalized second law.

  5. Health effects of fine particulate air pollution: lines that connect

    SciTech Connect (OSTI)

    Judith C. Chow; John G. Watson; Joe L. Mauderly; Daniel L. Costa; Ronald E. Wyzga; Sverre Vedal; George M. Hidy; Sam L. Altshuler; David Marrack; Jon M. Heuss; George T. Wolff; C. Aden Pope III; Douglas W. Dockery

    2006-10-15

    In the 2006 A&WMA Critical Review on 'Health Effects of fine particulate air pollution: lines that connect' Drs. C. Arden Pope III and Douglas Dockery addressed the epidemiological evidence for the effects of particulate matter (PM) on human health indicators. The review documents substantial progress since the 1997 Critical Review in the areas of: (1) short-term exposure and mortality; (2) long-term exposure and mortality; (3) time scales of exposure; (4) the shape of the concentration-response function; (5) cardiovascular disease; and (6) biological plausibility. This critical review discussion was compiled from written submissions and presentation transcripts, which were revised for conciseness and to minimize redundancy. The invited discussants were as follows were: Dr. Joe L. Mauderly, Dr. Daniel L. Costa, Dr. Ronald E. Wyzga, and Dr. Sverre Vedal. The contributing discussants were: Dr. George M. Hidy, Sam L. Altshuler, Dr. David Marrack, Jon M. Heuss, and Dr. George T. Wolff. See Coal Abstracts entry Sep 2006 00390 for the Critical Review. 80 refs.

  6. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 2000 Annual Report.

    SciTech Connect (OSTI)

    Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D.

    2001-01-01

    Fine sediment in spawning substrate has a major effect on salmon survival from egg to smolt. Basin-wide restoration plans have established targets for fine sediment levels in spawning habitat. The project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Fork John Day (NFJDR) and Grande Ronde Rivers, for five years. The project is also investigating the potential relationship between surface fine levels and overwinter sedimentation. It will provide data to assess trends in substrate conditions in monitored reaches and whether trends are consistent with efforts to improve salmon habitat conditions. The data on the magnitude of overwinter sedimentation will also be used to estimate salmon survival from egg to emergence. In Sept. 1998, 1999, and Aug. 2000, sites for monitoring overwinter sedimentation were established in salmon spawning habitat in the upper Grande Ronde River, Catherine Creek (a Grande Ronde tributary), the North Fork John Day River (NFJDR), and Granite Creek (a NFJDR tributary). Surface fine sediment levels were measured in these reaches via the grid method and visually estimated to test the relative accuracy of these two methods. In 1999 and 2000, surface fine sediment was also estimated via pebble counts at selected reaches to allow comparison of results among the methods. Overwintering substrate samples were collected in April 1999 and April-May 2000 to estimate the amount of overwinter sedimentation in clean gravels in spawning habitat. Monitoring methods and locations are described.

  7. Development of fine-resolution analyses and expanded large-scale...

    Office of Scientific and Technical Information (OSTI)

    II: Scale-awareness and application to single-column model experiments Citation Details In-Document Search Title: Development of fine-resolution analyses and expanded large-scale ...

  8. MODELING OF LONG-TERM FATE OF MOBILIZED FINES DUE TO DAM-EMBANKMENT...

    Office of Scientific and Technical Information (OSTI)

    Conference: MODELING OF LONG-TERM FATE OF MOBILIZED FINES DUE TO DAM-EMBANKMENT INTERFACIAL DISLOCATIONS Citation Details In-Document Search Title: MODELING OF LONG-TERM FATE OF ...

  9. MODELING OF LONG-TERM FATE OF MOBILIZED FINES DUE TO DAM-EMBANKMENT...

    Office of Scientific and Technical Information (OSTI)

    MODELING OF LONG-TERM FATE OF MOBILIZED FINES DUE TO DAM-EMBANKMENT INTERFACIAL DISLOCATIONS Citation Details In-Document Search Title: MODELING OF LONG-TERM FATE OF MOBILIZED ...

  10. Combined method for simultaneously dewatering and reconstituting finely divided carbonaceous material

    DOE Patents [OSTI]

    Wen, Wu-Wey (Murrysville, PA); Deurbrouck, Albert W. (Pittsburgh, PA)

    1990-01-01

    A finely-divided carbonaceous material is dewatered and reconstituted in a combined process by adding a binding agent directly into slurry of finely divided material and dewatering the material to form a cake or consolidated piece which can be hardened by drying at ambient or elevated temperatures. Alternatively, the binder often in the form of a crusting agent is sprayed onto the surface of a moist cake prior to curing.

  11. Ultra-Fine Grain Foils and Sheets by Large-Strain Extrusion Machining |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fine Grain Foils and Sheets by Large-Strain Extrusion Machining Ultra-Fine Grain Foils and Sheets by Large-Strain Extrusion Machining 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation lm034_rohatgi_2011_o.pdf (1.05 MB) More Documents & Publications Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress Report Nanostructured Materials by Machining 2011 Annual Progress Report for

  12. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  13. Sandy Ridge | Open Energy Information

    Open Energy Info (EERE)

    W 50,000,000,000 mW 0.05 GW Number of Units 25 Commercial Online Date 2012 Wind Turbine Manufacturer Gamesa References AWEA 2012 Market Report1 Loading map......

  14. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    SciTech Connect (OSTI)

    W. Pawlak; K. Szymocha

    1998-04-01

    This report covers the technical progress achieved from January 1, 1998 to April 31, 1998 on the POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing. Experimental work was carried out with two coal fines. One sample originated from pond (Drummond Pond Fines) while the second was pulverized Luscar Mine coal. Both samples were tested at the laboratory batch-scale while only Luscar Mine Coal was processed on the 250 kg/h continuous system. Significant progress was made on optimization of process conditions for Pond Fines. The test results showed that ash could be reduced by about 42% at combustible recovery exiting 94%. It was also found that pond fines required significantly longer conditioning time than freshly pulverized run of mine coal. Continuous bench-scale testing carried out with Luscar Mine coal included rod mill calibration, plant equipment and instrumentation check-up, and parametric studies. Compared with batch-scale tests, the continuous bench-scale process required more bridging oil to achieve similar process performance. During the current reporting period work has been commenced on the final engineering and preparation of design package of 3t/h POC-scale unit.

  15. POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING

    SciTech Connect (OSTI)

    1998-01-01

    This report covers the technical progress achieved from October 1, 1997 to December 31, 1997 on the POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental test procedures and the results related to the processing of coal fines originating from process streams generated at the Shoal Creek Mine preparation plant, owned and operated by the Drummond Company Inc. of Alabama, are described. Two samples of coal fines, namely Cyclone Overflow and Pond Fines were investigated. The batch test results showed that by applying the Aglofloat technology a significant ash removal might be achieved at a very high combustible matter recovery: · for the Cyclone Overflow sample the ash reduction was in the range 50 to 55% at combustible matter recovery about 98% · for the Pond Fines sample the ash reduction was up to 48% at combustible matter recovery up to 85%. Additional tests were carried out with the Alberta origin Luscar Mine coal, which will be used for the parametric studies of agglomeration equipment at the 250 kg/h pilot plant. The Luscar coal is very similar to the Mary Lee Coal Group (processed at Shoal Creek Mine preparation plant) in terms of rank and chemical composition.

  16. Localized electrical fine tuning of passive microwave and radio frequency devices

    DOE Patents [OSTI]

    Findikoglu, Alp T.

    2001-04-10

    A method and apparatus for the localized electrical fine tuning of passive multiple element microwave or RF devices in which a nonlinear dielectric material is deposited onto predetermined areas of a substrate containing the device. An appropriate electrically conductive material is deposited over predetermined areas of the nonlinear dielectric and the signal line of the device for providing electrical contact with the nonlinear dielectric. Individual, adjustable bias voltages are applied to the electrically conductive material allowing localized electrical fine tuning of the devices. The method of the present invention can be applied to manufactured devices, or can be incorporated into the design of the devices so that it is applied at the time the devices are manufactured. The invention can be configured to provide localized fine tuning for devices including but not limited to coplanar waveguides, slotline devices, stripline devices, and microstrip devices.

  17. Recovery and utilization of fine clean coal in a thermal dryer system

    SciTech Connect (OSTI)

    Breault, R.W.

    1994-12-31

    Two specific problems exist at a large number of coal preparation plants in the United States using thermal dryers for producing product coal, cyclones for first-stage recovery of coal fines, and second-stage wet scrubbers to remove coal carry-over from the dryer exhaust gas. The first problem involves a need for eliminating the common practice of sacrificing clean ultra-fine coal captured in the scrubbers. The second problem involves a need for mitigating over-dry fine coal dusting from in the dryer product. The second problem, controlling fine coal dusting, has been met by applying a solution of surfactants and process water to the over-dry coal fraction, de-dusting the product coal. To date, the problems associated with the recovery and use of fine clean coal from dryer scrubber effluent have not been solved. The program, reported in this paper, demonstrates a simple process improvement, involving use of a belt press, will simultaneously solve both the de-dusting and the dryer scrubber effluent recovery issues. This program proposed to use a combination of a clean coal thickener with a squeeze belt press to recovery the ultra-fine coal in dryer scrubber effluent before it is mixed in with the balance-of-plant tailings. As an additional essential part of this program, we propose to demonstrate that the coal-water mixture (CWM) produced from the scrubber sludge of a thermal dryer can be used as a dust suppressant. The net effect of these two coal circuit changes will be to integrate the thickener underflow into the thermal dryer circuit. This will essentially close the loop and permit maximum efficiency from the system, by recycling a former waste stream (sludge) as an effective dust suppressant.

  18. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect (OSTI)

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  19. Higgs sector and fine-tuning in the phenomenological MSSM (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Higgs sector and fine-tuning in the phenomenological MSSM Citation Details In-Document Search Title: Higgs sector and fine-tuning in the phenomenological MSSM Authors: Cahill-Rowley, Matthew W. ; Hewett, JoAnne L. ; Ismail, Ahmed ; Rizzo, Thomas G. Publication Date: 2012-10-01 OSTI Identifier: 1057420 Report Number(s): SLAC-PUB-15076 Journal ID: ISSN 1550-7998; PRVDAQ; arXiv:1206.5800 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation:

  20. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect (OSTI)

    B. K. Karekh; D. Tao; J. G. Groppo

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 ? March 31, 1998.

  1. Production of a pellet fuel from Illinois coal fines. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.; Berger, R.

    1994-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, the authors will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. This quarter pellet production work commenced and planning for collection and processing of a preparation plant fines fraction is underway.

  2. Proof of concept and performance optimization of high gravity batch type centrifuge for dewatering fine coal

    SciTech Connect (OSTI)

    Smith, L.B.; Durney, T.E. Jr.

    1991-04-23

    Coal Technology Corporation (CTC) believes that the new CTC high gravity, high production, batch type centrifugal dryer technology can play a significant role in improving the product quality as well as costs of operation in coal processing plants. It is further believed that the new centrifugal dryer technology can form an important part in systems used to clean up millions of tons of coal fines in refuse piles and ponds. It is anticipated that the new centrifuge can become an important ancillary to the advanced deep cleaning processes for coal. Because of these convictions, CTC has been engaged in a pioneering research effort into the new art of drying fine clean coal in high gravity, high production, batch type of centrifuge, since 1981. This work has progressed to the point where the new centrifugal dryer technology is nearly ready for commercialization. It promises to provide needed fine coal drying capability at somewhat lower capital costs and at substantially lower operating costs than competitive systems. It also promises to do so with no detrimental effects on either the coal quality or the environment. The primary objective of this project is to prove the concept of a high gravity batch centrifuge for drying coal fines in a commercial coal processing plant environment. The proof of concept tests also include testing with a variety of coals from different regions. A further objective is to optimize the efficiency and the cost effectiveness of the new centrifugal dryer technology. 2 figs., 3 tabs.

  3. Multi-gravity separator: an alternate gravity concentrator to process coal fines

    SciTech Connect (OSTI)

    Majumder, A.K.; Bhoi, K.S.; Barnwal, J.P.

    2007-08-15

    The multi-gravity separator (MGS) is a novel piece of equipment for the separation of fine and ultra-fine minerals. However, the published literature does not demonstrate its use in the separation of coal fines. Therefore, an attempt was made to study the effects of different process variables on the performance of an MGS for the beneficiation of coal fines. The results obtained from this study revealed that among the parameters studied, drum rotation and feed solids concentration play dominating roles in controlling the yield and ash content of the clean coal. Mathematical modeling equations that correlate the variables studied and the yield and ash contents of the clean coal were developed to predict the performance of an MGS under different operating and design conditions. The entire exercise revealed that the MGS could produce a clean coal with an ash content of 14.67% and a yield of 71.23% from a feed coal having an ash content of 24.61 %.

  4. An efficient process for recovery of fine coal from tailings of coal washing plants

    SciTech Connect (OSTI)

    Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H.

    2008-07-01

    Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

  5. Protective barrier materials analysis: Fine soil site characterization: A research report for Westinghouse Hanford Company

    SciTech Connect (OSTI)

    Last, G.V.; Glennon, M.A.; Young, M.A.; Gee, G.W.

    1987-11-01

    We collected soil samples for the physical characterization of a potential fine-soil quarry site at the McGee Ranch, which is located approximately 1 km northwest of the Hanford Site's Yakima Barricade. Forty test borings were made using a hollow-stem auger. Field moisture content and grain-size distribution were determined. The samples were classified into one of 19 sediment classes based on their grain-size distributions. Maps and cross sections were constructed from both the field and laboratory data to delineate the distributions of the various sediment classes. Statistical evaluations were made to determine the variations within the fine-soil fraction of the various sediment classes. Volume estimates were then made of the amounts of soil meeting the preliminary grain-size criteria. The physical characterization of the fine soils sampled near the McGee Ranch site indicated that approximately 3.4 million cubic meters of soil met or exceeded the minimum grain-size criteria for the fine soils needed for the protective barriers program. 11 refs., 14 figs., 6 tabs.

  6. Hydrophobic Dewatering of Fine Coal. Topical report, March 1, 1995-March 31, 1997

    SciTech Connect (OSTI)

    Yoon, R.; Sohn, S.; Luttrell, J.; Phillips, D.

    1997-12-31

    Many advanced fine coal cleaning technologies have been developed in recent years under the auspices of the U.S. Department of Energy. However, they are not as widely deployed in industry as originally anticipated. An important reason for this problem is that the cleaned coal product is difficult to dewater because of the large surface area associated with fine particles. Typically, mechanical dewatering, such as vacuum filtration and centrifugation, can reduce the moisture to 20-35% level, while thermal drying is costly. To address this important industrial problem, Virginia Tech has developed a novel dewatering process, in which water is displaced from the surface of fine particulate materials by liquid butane. Since the process is driven by the hydrophobic interaction between coal and liquid butane, it was referred to as hydrophobic dewatering (HD). A fine coal sample with 21.4 pm median size was subjected to a series of bench-scale HD tests. It was a mid-vol bituminous coal obtained from the Microcel flotation columns operating at the Middle Fork coal preparation plant, Virginia. All of the test results showed that the HD process can reduce the moisture to substantially less than 10%. The process is sensitive to the amount of liquid butane used in the process relative to the solids concentration in the feed stream. Neither the intensity nor the time of agitation is critical for the process. Also, the process does not require long time for phase separation. Under optimal operating conditions, the moisture of the fine coal can be reduced to 1% by weight of coal.

  7. Electron density modification in ionospheric E layer by inserting fine dust particles

    SciTech Connect (OSTI)

    Misra, Shikha; Mishra, S. K.

    2015-02-15

    In this paper, we have developed the kinetics of E-region ionospheric plasma comprising of fine dust grains and shown that the electron density in E-layer can purposely be reduced/enhanced up to desired level by inserting fine dust particles of appropriate physical/material properties; this may certainly be promising for preferred rf-signal processing through these layers. The analytical formulation is based on average charge theory and includes the number and energy balance of the plasma constituents along with charge balance over dust particles. The effect of varying number density, work function, and photo-efficiency of dust particles on ionospheric plasma density at different altitude in E-layer has been critically examined and presented graphically.

  8. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction

    SciTech Connect (OSTI)

    Klein, M.T.

    1992-05-22

    An investigation aimed at devising a procedure for preparing alkyl-or aryl-capped iron sulfide particles continues. An initial attempt to prepare fine-particle, aryl-capped iron sulfides (S-31) involved the competitive reaction of thiophenol (PhSH) and sodium sulfide (Na{sub 2}S) with Fe(II). However, SEM examination of the particles formed by this procedure indicated that no size control had been attained. It was thought that the phenyl group of thiophenol was not bulky enough to prevent thiolate bridging and consequent particle size growth of the metal sulfide. So the bulkier thiol 1-adamantanethiol was synthesized and used in synthesis S-33 in the next attempt to prepare fine-particle, capped iron sulfides.

  9. Activity testing of fine-particle size, iron catalysts for coal liquefaction

    SciTech Connect (OSTI)

    Stohl, F.V.; Diegert, K.V.; Gugliotta, T.P.

    1993-10-01

    The use of fine-particle size (< 40 nm) unsupported catalysts in direct coal liquefaction may result in improved economics due to possible enhanced yields of desired products, the potential for decreasing reaction severity, and the possibility of using less catalyst. Sandia has developed a standard testing procedure for evaluating and comparing the fine-particle catalysts. The test procedure uses phenanthrene as the reaction solvent, the DECS-17 Blind Canyon Coal, and a statistical experimental design to enable evaluation of the catalysts over ranges of temperature (350 to 400{degrees}C), time (20 to 60 minutes), and catalyst loading (0 to 1 wt % on a dmmf coal basis). Product analyses include tetrahydrofuran (THF) conversion, heptane conversion, solvent recovery, and gas analyses. Phenanthrene as the solvent in the testing procedure yielded significant differences between thermal and catalytic reactions, whereas using a good hydrogen donor such as 9,10-dihydrophenanthrene (DHP) showed no catalytic effects.

  10. Black Bear Prep plant replaces high-frequency screens with fine wire sieves

    SciTech Connect (OSTI)

    Barbee, C.J.; Nottingham, J.

    2007-12-15

    At the Black Bear prep plant (near Wharncliffe, WV, USA) the clean coal from the spirals traditionally reported to high-frequency screens, which removed high-ash clay fines. Screens have inherent inefficiencies that allow clean coal to report to the screen underflow. The goal of this project was to capture the maximum amount of spiral clean coal while still removing the high-ash clay material found in the spiral product. The reduction of the circulating load and plant downtime for unscheduled maintenance were projected as additional benefits. After the plant upgrade, the maintenance related to the high frequency screens was eliminated and an additional 2.27 tons per hour (tph) of fine coal was recovered, which resulted in a payback period of less than one year. The article was adapted from a paper presented at Coal Prep 2007 in April 2007, Lexington, KY, USA. 1 ref., 1 fig., 1 tab.

  11. Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process

    DOE Patents [OSTI]

    DeGeorge, Charles W.

    1981-01-01

    In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

  12. Improvement of storage, handling, and transportability of fine coal. Final report

    SciTech Connect (OSTI)

    Maxwell, R.C. Jr.; Jamison, P.R.

    1996-03-01

    The Mulled Coal process is a technology which has evolved from a line of investigations which began in the 1970`s. There was a major breakthrough in 1990, and since then, with significant support from DOE-PETC, the technology has progressed from the conceptual stage to a proven laboratory process. It is a simple process which involves the addition of a low cost specifically formulated reagent to wet fine coal by mixing the two in a pug mill. Although the converted material (Mulled Coal) retains some of its original surface moisture, it handles, transports, and stores like dry coal. But, unlike thermally dried fine coal Mulled Coal is not dusty, it will not rewet, and it causes no fugitive dust problems. This project was designed to advance the technology from the status of a process which works well in the laboratory to the status of a technology which is fully ready for commercialization. Project objectives were to: 1. Prove the concept that the technology can be used to produce Mulled Coal of a consistent quality, on a continuous basis, at a convincing rate of production, and at a major preparation plant which produces fine clean coal on a commercial basis. 2. Prove the concept that Mulled Coal, either as a blend with coarser clean coal or as a stand-alone fuel will successfully pass through a representative cross section of conventional coal storage, handling and transportation environments without causing any of the problems normally associated with wet fine coal. 3 Test the design and reliability of Mulled Coal circuit equipment and controls. 4. Test the circuit over a wide range of operating conditions. 5. Project scale-up designs for major equipment components and control circuits. 6. Forecast capital and operating costs for commercial circuits ranging from 25 TPH to 75 TPH. This report describes the work, the test results, and conclusions at each step along the way.

  13. A novel permanently magnetised high gradient magnetic filter using assisted capture for fine particles

    SciTech Connect (OSTI)

    Watson, J.H.P.

    1995-02-01

    This paper describes the structure and properties of a novel permanently magnetised magnetic filter for fine friable radioactive material. Previously a filter was described and tested. This filter was designed so that the holes in the filter are left open as capture proceeds which means the pressure drop builds up only slowly. This filter is not suitable for friable composite particles which can be broken by mechanical forces. The structure of magnetic part of the second filter has been changed so as to strongly capture particles composed of fine particles weakly bound together which tend to break when captured. This uses a principle of assisted-capture in which coarse particles aid the capture of the fine fragments. The technique has the unfortunate consequence that the pressure drop across the filter rises faster as capture capture proceeds than the filter described previously. These filters have the following characteristics: (1) No external magnet is required. (2) No external power is required. (3) Small is size and portable. (4) Easily interchangeable. (5) Can be cleaned without demagnetising.

  14. Residence times of fine tropospheric aerosols as determined by {sup 210}Pb progeny.

    SciTech Connect (OSTI)

    Marley, N. A.; Gaffney, J. S.; Drayton, P. J.; Cunningham, M. M.; Mielcarek, C.; Ravelo, R.; Wagner, C.

    1999-10-05

    Fine tropospheric aerosols can play important roles in the radiative balance of the atmosphere. The fine aerosols can act directly to cool the atmosphere by scattering incoming solar radiation, as well as indirectly by serving as cloud condensation nuclei. Fine aerosols, particularly carbonaceous soots, can also warm the atmosphere by absorbing incoming solar radiation. In addition, aerosols smaller than 2.5 {micro}m have recently been implicated in the health effects of air pollution. Aerosol-active radioisotopes are ideal tracers for the study of atmospheric transport processes. The source terms of these radioisotopes are relatively well known, and they are removed from the atmosphere only by radioactive decay or by wet or dry deposition of the host aerosol. The progeny of the primordial radionuclide {sup 238}U are of particular importance to atmospheric studies. Uranium-238 is common throughout Earth's crust and decays to the inert gas {sup 222}Rn, which escapes into the atmosphere. Radon-222 decays by the series of alpha and beta emissions shown in Figure 1 to the long-lived {sup 210}Pb. Once formed, {sup 210}Pb becomes attached to aerosol particles with average attachment times of 40 s to 3 min.

  15. Proof of concept and performance optimization of high gravity batch type centrifuge for dewatering fine coal

    SciTech Connect (OSTI)

    Smith, L.B.; Durney, T.E. Jr.

    1990-07-24

    Coal Technology Corporation (CTC) believes that the new CTC high gravity, high production, batch type centrifugal dryer technology can play a significant role in improving the product quality as well as costs of operation in coal processing plants. It is further believed that the new centrifugal dryer technology can form an important part in systems used to clean up the millions of tons of coal fines in refuse piles and ponds. It is anticipated that the new centrifuge can become an important ancillary to the advanced deep cleaning processes for coal. Because of these convictions, CTC has been engaged in a pioneering research effort into the new art of drying fine clean coal in high gravity, high production, batch type centrifuges, since 1981. This work has progressed to the point where the new centrifugal dryer technology is nearly ready for commercialization. It promises to provide needed fine coal drying capability at somewhat lower capital costs and at substantially lower operating costs than competitive systems. It also promises to do so with no detrimental effects on either the coal quality or the evironment. The primary objective of this project is to prove the concept in a commercial coal processing plant environment. The proof of concept tests will also include testing with a variety of coals from different regions. A further objective will be to optimize the efficiency and the cost effectiveness of the new centrifugal dryer technology.

  16. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This is being accomplished by utilization the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. 31 figs., 22 tabs.

  17. FINE-SCALE STRUCTURES OF FLUX ROPES TRACKED BY ERUPTING MATERIAL

    SciTech Connect (OSTI)

    Li Ting; Zhang Jun E-mail: zjun@nao.cas.cn

    2013-06-20

    We present Solar Dynamics Observatory observations of two flux ropes tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 4, respectively. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to 'peel off' the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are, respectively, composed of 85 {+-} 12 and 102 {+-} 15 fine-scale structures, with an average width of about 1.''6. Our observations show that two extreme ends of the flux rope are rooted in opposite polarity fields and each end is composed of multiple footpoints (FPs) of fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6 Multiplication-Sign 10{sup 18} Mx to 8.6 Multiplication-Sign 10{sup 19} Mx. Moreover, almost half of the FPs show converging motion of smaller magnetic structures over 10 hr before the appearance of the flux rope. By calculating the magnetic fields of the FPs, we deduce that the two flux ropes occupy at least 4.3 Multiplication-Sign 10{sup 20} Mx and 7.6 Multiplication-Sign 10{sup 20} Mx magnetic fluxes, respectively.

  18. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    SciTech Connect (OSTI)

    Dr. Charles E. Kolb Dr. Douglas R. Worsnop Dr. Manjula R. Canagaratna Dr. Scott C. Herndon Dr. John T. Jayne Dr. W. Berk Knighton Dr. Timothy B. Onasch Dr. Ezra C. Wood Dr. Miguel Zavala

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  19. Vibronic fine structure in high-resolution x-ray absorption spectra from ion-bombarded boron nitride nanotubes

    SciTech Connect (OSTI)

    Petravic, Mladen; Peter, Robert; Varasanec, Marijana; Li Luhua; Chen Ying; Cowie, Bruce C. C.

    2013-05-15

    The authors have applied high-resolution near-edge x-ray absorption fine structure measurements around the nitrogen K-edge to study the effects of ion-bombardment on near-surface properties of boron nitride nanotubes. A notable difference has been observed between surface sensitive partial electron yield (PEY) and bulk sensitive total electron yield (TEY) fine-structure measurements. The authors assign the PEY fine structure to the coupling of excited molecular vibrational modes to electronic transitions in NO molecules trapped just below the surface. Oxidation resistance of the boron nitride nanotubes is significantly reduced by low energy ion bombardment, as broken B-N bonds are replaced by N-O bonds involving oxygen present in the surface region. In contrast to the PEY spectra, the bulk sensitive TEY measurements on as-grown samples do not exhibit any fine structure while the ion-bombarded samples show a clear vibronic signature of molecular nitrogen.

  20. Evaluation of an enhanced gravity-based fine-coal circuit for high-sulfur coal

    SciTech Connect (OSTI)

    Mohanty, M.K.; Samal, A.R.; Palit, A.

    2008-02-15

    One of the main objectives of this study was to evaluate a fine-coal cleaning circuit using an enhanced gravity separator specifically for a high sulfur coal application. The evaluation not only included testing of individual unit operations used for fine-coal classification, cleaning and dewatering, but also included testing of the complete circuit simultaneously. At a scale of nearly 2 t/h, two alternative circuits were evaluated to clean a minus 0.6-mm coal stream utilizing a 150-mm-diameter classifying cyclone, a linear screen having a projected surface area of 0.5 m{sup 2}, an enhanced gravity separator having a bowl diameter of 250 mm and a screen-bowl centrifuge having a bowl diameter of 500 mm. The cleaning and dewatering components of both circuits were the same; however, one circuit used a classifying cyclone whereas the other used a linear screen as the classification device. An industrial size coal spiral was used to clean the 2- x 0.6-mm coal size fraction for each circuit to estimate the performance of a complete fine-coal circuit cleaning a minus 2-mm particle size coal stream. The 'linear screen + enhanced gravity separator + screen-bowl circuit' provided superior sulfur and ash-cleaning performance to the alternative circuit that used a classifying cyclone in place of the linear screen. Based on these test data, it was estimated that the use of the recommended circuit to treat 50 t/h of minus 2-mm size coal having feed ash and sulfur contents of 33.9% and 3.28%, respectively, may produce nearly 28.3 t/h of clean coal with product ash and sulfur contents of 9.15% and 1.61 %, respectively.

  1. Fine-grid calculations for stellar electron and positron capture rates on Fe isotopes

    SciTech Connect (OSTI)

    Nabi, Jameel-Un; Tawfik, Abdel Nasser

    2013-03-15

    The acquisition of precise and reliable nuclear data is a prerequisite to success for stellar evolution and nucleosynthesis studies. Core-collapse simulators find it challenging to generate an explosion from the collapse of the core of massive stars. It is believed that a better understanding of the microphysics of core-collapse can lead to successful results. The weak interaction processes are able to trigger the collapse and control the lepton-to-baryon ratio (Y{sub e}) of the corematerial. It is suggested that the temporal variation of Y{sub e} within the core of a massive star has a pivotal role to play in the stellar evolution and a fine-tuning of this parameter at various stages of presupernova evolution is the key to generate an explosion. During the presupernova evolution of massive stars, isotopes of iron, mainly {sup 54-56}Fe, are considered to be key players in controlling Y{sub e} ratio via electron capture on these nuclides. Recently an improved microscopic calculation of weak-interaction-mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random-phase-approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic state-by-state calculation of stellar capture rates which greatly increases the reliability of calculated rates. The results were suggestive of some fine-tuning of the Y{sub e} ratio during various phases of stellar evolution. Here we present for the first time the fine-grid calculation of the electron and positron capture rates on {sup 54-56}Fe. The sensitivity of the pn-QRPA calculated capture rates to the deformation parameter is also studied in this work. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes.

  2. Production of a pellet fuel from Illinois coal fines. Technical report, March 1--May 31, 1995

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.

    1995-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. For this effort, we will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. Previously it has been decided that corn starch would be used as binder and a roller-and-die mill would be used for pellet manufacture. A quality starch binder has been identified and tested. To potentially lower binder costs, a starch that costs about 50% of the high quality starch was tested. Results indicate that the lower cost starch will not lower binder cost because more is required to produce a comparable quality pellet. Also, a petroleum in water emulsion was evaluated as a potential binder. The compound seemed to have adhesive properties but was found to be a poor binder. Arrangements have been made to collect a waste slurry from the mine previously described.

  3. Innovative process for concentration of fine particle coal slurries. Technical report, March 1- May 31, 1996

    SciTech Connect (OSTI)

    Rajchel, M.; Ehrlinger, H.P.; Fonseca, A.; Mauer, R.

    1996-12-31

    Williams Technologies, Inc. And Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be, concentrated to greater than 60 weight percent and re-mixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project was to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology can enable Illinois coal producers and users to realize significant cost and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. Testing was also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back-filled, eliminating the need for tailings ponds. During the grant period, a laboratory-scale test apparatus (up to 3 GPM feed rate) was assembled and operated to demonstrate process performance over a range of feed temperatures and pressures. A dilute coal/water slurry from Consol, Inc.`s Rend Lake Preparation Plant was concentrated using the process to a maximum recorded solids loading of 61.9% solids by weight. Analytical results from the concentrate were evaluated by Destec Energy for suitability as an IGCC fuel.

  4. Innovative process for concentration of fine particle coal slurries. Technical report, September 1--November 30, 1995

    SciTech Connect (OSTI)

    Rajchel, M. |; Harnett, D.; Fonseca, A.; Maurer, R.; Ehrlinger, H.P.

    1995-12-31

    Williams Technologies, Inc. and Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be concentrated to greater than 60 weight percent and re-mixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project is to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology will enable Illinois coal producers and users to realize significant coast and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. In addition, testing is also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back-, filled and thus eliminate the need for tailings ponds. This reporting period, September 1, 1995 through November 30, 1995, marked the inception of this project. During this period Task No. 1, Procurement and Set-Up, was completed. The pilot plant apparatus was constructed at the SIU Coal Research Center in Carterville, Illinois. All equipment and feedstock were received at the site.

  5. Sensitivity of ultracold-atom scattering experiments to variation of the fine-structure constant

    SciTech Connect (OSTI)

    Borschevsky, A.; Beloy, K.; Flambaum, V. V.; Schwerdtfeger, P.

    2011-05-15

    We present numerical calculations for cesium and mercury to estimate the sensitivity of the scattering length to the variation of the fine-structure constant {alpha}. The method used follows the ideas of Chin and Flambaum [Phys. Rev. Lett. 96, 230801 (2006)], where the sensitivity to the variation of the electron-to-proton mass ratio {beta} was considered. We demonstrate that for heavy systems, the sensitivity to the variation of {alpha} is of the same order of magnitude as to the variation of {beta}. Near narrow Feshbach resonances, the enhancement of the sensitivity may exceed nine orders of magnitude.

  6. Fine golden rings: Tunable surface plasmon resonance from assembled nanorods in topological defects of liquid crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Elaine; Xia, Yu; Ferrier, Jr., Robert C.; Kim, Hye -Na; Gharbi, Mohamed A.; Stebe, Kathleen J.; Kamien, Randall D.; Composto, Russell J.; Yang, Shu

    2016-02-08

    Unprecedented, reversible, and dynamic control over an assembly of gold nanorods dispersed in liquid crystals (LC) is demonstrated. The LC director field is dynamically tuned at the nanoscale using microscale ring confinement through the interplay of elastic energy at different temperatures, thus fine-tuning its core replacement energy to reversibly sequester nanoscale inclusions at the microscale. As a result, this leads to shifts of 100 nm or more in the surface plasmon resonance peak, an order of magnitude greater than any previous work with AuNR composites.

  7. Integration of stripping of fines slurry in a coking and gasification process

    DOE Patents [OSTI]

    DeGeorge, Charles W.

    1980-01-01

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  8. Pseudophasic extraction method for the separation of ultra-fine minerals

    DOE Patents [OSTI]

    Chaiko, David J.

    2002-01-01

    An improved aqueous-based extraction method for the separation and recovery of ultra-fine mineral particles. The process operates within the pseudophase region of the conventional aqueous biphasic extraction system where a low-molecular-weight, water soluble polymer alone is used in combination with a salt and operates within the pseudo-biphase regime of the conventional aqueous biphasic extraction system. A combination of low molecular weight, mutually immiscible polymers are used with or without a salt. This method is especially suited for the purification of clays that are useful as rheological control agents and for the preparation of nanocomposites.

  9. Surface extended x-ray absorption fine structure of low-Z absorbates using fluorescence detection

    SciTech Connect (OSTI)

    Stoehr, J.; Kollin, E.B.; Fischer, D.A.; Hastings, J.B.; Zaera, F.; Sette, F.

    1985-05-01

    Comparison of x-ray fluorescence yield (FY) and electron yield surface extended x-ray absorption fine structure spectra above the S K-edge for c(2 x 2) S on Ni(100) reveals an order of magnitude higher sensitivity of the FY technique. Using FY detection, thiophene (C/sub 4/H/sub 4/S) chemisorption on Ni(100) is studied with S coverages down to 0.08 monolayer. The molecule dissociates at temperatures as low as 100K by interaction with fourfold hollow Ni sites. Blocking of these sites by oxygen leaves the molecule intact.

  10. Improved self-absorption correction for extended x-ray absorption fine-structure measurements

    SciTech Connect (OSTI)

    Booth, C.H.; Bridges, F.

    2003-06-04

    Extended x-ray absorption fine-structure (EXAFS) data collected in the fluorescence mode are susceptible to an apparent amplitude reduction due to the self-absorption of the fluorescing photon by the sample before it reaches a detector. Previous treatments have made the simplifying assumption that the effect of the EXAFS on the correction term is negligible, and that the samples are in the thick limit. We present a nearly exact treatment that can be applied for any sample thickness or concentration, and retains the EXAFS oscillations in the correction term.

  11. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    SciTech Connect (OSTI)

    Zheng, Y. |; Shirley, D.A.

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  12. Microgas dispersion for fine-coal cleaning. Technical progress report, March 1, 1981-August 31, 1981

    SciTech Connect (OSTI)

    Yoon, R.H.; Halsey, G.S.; Sebba, F.

    1981-01-01

    The results of the flotation tests conducted demonstrate that the use of fine colloidal gas aphrons (CGA) bubbles is beneficial for fine coal flotation. As demonstrated with the ultrafine coal sample, the froth products of CGA flotation are almost twice as clean as those of the conventional flotation tests at 70% yield. The kerosene consumption was considerably higher, however, both in conventional and in CGA flotation. Attempts were made to coat the CGA bubbles with a film of kerosene and use them for flotation, hoping that this would reduce the oil consumption. However, no positive results have yet been obtained with this process. Another problem associated with CGA flotation is that the ash content of the froth products is relatively high when using a stable CGA, such as that prepared with Dowfroth M150. On the other hand, when using an unstable CGA, as is the case with MIBC, low ash clean coal products can be obtained, but at the expense of the yield. Two approaches are being investigated to correct this problem. A considerable amount of effort has been made to determine the surface charge of the CGA.

  13. Molecular marker analysis as a guide to the sources of fine organic aerosols

    SciTech Connect (OSTI)

    Rogge, W.F.; Cass, G.R.; Hildemann, L.M.; Mazurek, M.A.; Simoneit, B.R.T.

    1992-07-01

    The molecular composition of fine particulate (D{sub p} {ge} 2 {mu}m) organic aerosol emissions from the most important sources in the Los Angeles area has been determined. Likewise, ambient concentration patterns for more than 80 single organic compounds have been measured at four urban sites (West Los Angeles, Downtown Los Angeles, Pasadena, and Rubidoux) and at one remote offshore site (San Nicolas Island). It has been found that cholesterol serves as a marker compound for emissions from charbroilers and other meat cooking operations. Vehicular exhaust being emitted from diesel and gasoline powered engines can be traced in the Los Angeles atmosphere using fossil petroleum marker compounds such as steranes and pentacyclic triterpanes (e.g., hopanes). Biogenic fine particle emission sources such as plant fragments abraded from leaf surfaces by wind and weather can be traced in the urban atmosphere. Using distinct and specific source organic tracers or assemblages of organic compounds characteristic for the sources considered it is possible to estimate the influence of different source types at any urban site where atmospheric data are available.

  14. Molecular marker analysis as a guide to the sources of fine organic aerosols

    SciTech Connect (OSTI)

    Rogge, W.F.; Cass, G.R. ); Hildemann, L.M. . Dept. of Civil Engineering); Mazurek, M.A. ); Simoneit, B.R.T. Environmental Geochemistry Group)

    1992-07-01

    The molecular composition of fine particulate (D[sub p] [ge] 2 [mu]m) organic aerosol emissions from the most important sources in the Los Angeles area has been determined. Likewise, ambient concentration patterns for more than 80 single organic compounds have been measured at four urban sites (West Los Angeles, Downtown Los Angeles, Pasadena, and Rubidoux) and at one remote offshore site (San Nicolas Island). It has been found that cholesterol serves as a marker compound for emissions from charbroilers and other meat cooking operations. Vehicular exhaust being emitted from diesel and gasoline powered engines can be traced in the Los Angeles atmosphere using fossil petroleum marker compounds such as steranes and pentacyclic triterpanes (e.g., hopanes). Biogenic fine particle emission sources such as plant fragments abraded from leaf surfaces by wind and weather can be traced in the urban atmosphere. Using distinct and specific source organic tracers or assemblages of organic compounds characteristic for the sources considered it is possible to estimate the influence of different source types at any urban site where atmospheric data are available.

  15. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect (OSTI)

    Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

    1990-02-01

    The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

  16. Proof of concept and performance optimization of high gravity batch type centrifuge for dewatering fine coal

    SciTech Connect (OSTI)

    Smith, L.B.; Durney, T.E. Jr.

    1990-10-24

    Coal Technology Corporation (CTC) believes that the new CTC high gravity, high production, batch type centrifugal dryer technology can play a significant role in improving the product quality as well as costs of operation in coal processing plants. It is further believed that the new centrifugal dryer technology can form an important part in systems used to clean up the millions of tons of coal fines in refuse piles and ponds. Work has progressed to the point where the new centrifugal dryer technology is nearly ready for commercialization. The primary objective of this project is to prove the concept in a commercial coal processing plant environment. The proof of concept tests will include testing with a variety of coals from different regions. A further objective will be to optimize the efficiency and the cost effectiveness of the new centrifugal dryer technology. To supply some perspective on the ability of the new centrifuges to successfully dry a variety of coals from various coal fields, it was decided that coals ranging from very fine to course size consists and with both low and high inherent moistures would be tested. Coals tested include: Pittsburgh no. 8 seam (Pennsylvania), Pittsburgh no. 8 seam (West Virginia), and Blue Creek Seam (Alabama). 6 figs.

  17. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  18. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    SciTech Connect (OSTI)

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  19. Fabrication of fine-grain tantalum diffusion barrier tube for Nb{sub 3}Sn conductors

    SciTech Connect (OSTI)

    Hartwig, K. T.; Balachandran, S.; Mezyenski, R.; Seymour, N.; Robinson, J.; Barber, R. E.

    2014-01-27

    Diffusion barriers used in Nb{sub 3}Sn wire are often fabricated by wrapping Ta sheet into a tube with an overlap seam. A common result of such practice is non-uniform deformation in the Ta sheet as it thins by wire drawing because of non-uniform grain size and texture in the original Ta sheet. Seamless Ta tube with a fine-grain and uniform microstructure would be much better for the diffusion barrier application, but such material is expensive and difficult to manufacture. This report presents results on a new fabrication strategy for Ta tube that shows promise for manufacture of less costly tube with an improved microstructure. The fabrication method begins with seam-welded tube but gives a fine-grain uniform microstructure with little difference between the longitudinal seam weld region and the parent metal after post-weld processing. Severe plastic deformation processing (SPD) applied by area reduction extrusion and tube equal channel angular extrusion (tECAE) are used to refine and homogenize the microstructure. Microstructure and mechanical property results are presented for Ta tubes fabricated by this new processing strategy.

  20. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOE Patents [OSTI]

    Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.

    1997-01-14

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.

  1. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOE Patents [OSTI]

    Kansa, Edward J.; Wijesinghe, Ananda M.; Viani, Brian E.

    1997-01-01

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculents and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude.

  2. Microgas dispersion for fine-coal cleaning. Technical progress report, September 1, 1980-February 28, 1981

    SciTech Connect (OSTI)

    Yoon, R.H.; Sebba, F.

    1980-01-01

    The purpose of this project is to develop a method of cleaning fine coal by flotation using very small microbubbles now known as Colloidal Gas Aphrons (CGA) and previously known as Microgas Dispersions (MGD). It was thought that MGD was not sufficiently descriptive of the nature of the small bubbles, and hence, the change was made. The objectives of the past six months of investigation were as follows: (1) a fundamental study of the properties of CGA, which involved (i) a study of the stability of the bubbles generated with several frothers that are currently used in the mineral industry, (ii) a study of the charge on the bubbles, and (iii) a microscopic inspection of the bubbles during flotation; (2) a preliminary investigation of the flotation characteristics of coal; and (3) construction of an automatic batch flotation machine, similar to the one described by Miller (1980).

  3. Enhanced sensitivity to the fine-structure-constant variation in the Th IV atomic clock transition

    SciTech Connect (OSTI)

    Flambaum, V. V.; Porsev, S. G.

    2009-12-15

    Our calculations have shown that the 5f{sub 5/2}-7s{sub 1/2} 23 131 cm{sup -1} transition from the ground state in the ion Th{sup 3+} is very sensitive to the temporal variation of the fine-structure constant alpha=e{sup 2}/(Planck constant/2pi)c (q=-75 300 cm{sup -1}). The line is very narrow, the ion has been trapped and laser cooled, and the positive shifter line 5f{sub 5/2}-5f{sub 7/2} 4325 cm{sup -1} (q=+2900 cm{sup -1}) may be used as a reference. A comparison may also be made with a positive shifter in another atom or ion. This makes Th{sup 3+} a good candidate to search for the alpha variation.

  4. Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting

    SciTech Connect (OSTI)

    Yerino, Christopher D.; Jung, Daehwan; Lee, Minjoo Larry; Simmonds, Paul J.; Liang, Baolai; Huffaker, Diana L.; Schneider, Christian; Unsleber, Sebastian; Vo, Minh; Kamp, Martin; Hfling, Sven

    2014-12-22

    Symmetric quantum dots (QDs) on (111)-oriented surfaces are promising candidates for generating polarization-entangled photons due to their low excitonic fine structure splitting (FSS). However, (111) QDs are difficult to grow. The conventional use of compressive strain to drive QD self-assembly fails to form 3D nanostructures on (111) surfaces. Instead, we demonstrate that (111) QDs self-assemble under tensile strain by growing GaAs QDs on an InP(111)A substrate. Tensile GaAs self-assembly produces a low density of QDs with a symmetric triangular morphology. Coherent, tensile QDs are observed without dislocations, and the QDs luminescence at room temperature. Single QD measurements reveal low FSS with a median value of 7.6??eV, due to the high symmetry of the (111) QDs. Tensile self-assembly thus offers a simple route to symmetric (111) QDs for entangled photon emitters.

  5. Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield

    SciTech Connect (OSTI)

    Zhoa Han-Qing

    1997-08-01

    These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

  6. ULTRASONICALLY-ENHANCED DENSE-MEDIUM CYCLONING FOR FINE COAL AND COAL REFUSE IMPOUNDMENT MATERIALS

    SciTech Connect (OSTI)

    Dr. Mark S. Klima; Dr. Barbara J. Arnold

    2001-08-01

    The Pennsylvania State University, its project team (Typlex, Inc., DAGER, Inc., and PrepTech, Inc.), and advisory committee members have demonstrated the application of ultrasonic energy during dense-medium cyclining and subsequent recovery of fine coal and coal refuse impoundment materials. The results will help to extend the range of conventional dense-medium cyclining to sizes now typically cleaned in relatively inefficient water-only cyclone and spiral concentrators circuits. This technology also provides a potential approach to produce ultra-clean material as would be used for feedstocks for premium carbon products. This report describes Phase I of the project, which involved laboratory testing of dense-medium cyclining and subsequent medium recovery, with and without ultrasonic treatment, along with fundamental dispersion testing. Dense-medium cycloning was conducted with a 76.2-mm (3-in.) diameter cyclone under various conditions including magnetite grade, medium relative density, inlet pressure, cyclone geometry, and feed coal. Dense-medium recovery testing was carried out with a 305-mm (12-in.) diameter x 152-mm (6-in.) wide wet-drum magnetic separator using the cyclone clean coal and refuse products as the feed material. Fundamental testing of dispersion/reagglomeration phenomena was conducted with coal/clay mixtures. In almost all cases, the dense-medium cyclone was capable of achieving separations down to approximately 0.037 mm. Ultrasonic treatment had a slight effect on reducing the ash content of the clean coal. It was also found that ultrasonic treatment improved the purity of the magnetic fraction during wet-drum magnetic separation. The treatment was particularly beneficial for the cyclone overflow material. The fundamental testing indicated that agitation after ultrasonic treatment is necessary to disperse fine particles and to prevent agglomeration.

  7. Unresolved fine-scale structure in solar coronal loop-tops

    SciTech Connect (OSTI)

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.; Antolin, P.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric H? 656.28 nm spectral line core and wings can, under certain circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in H?) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.

  8. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    SciTech Connect (OSTI)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

  9. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    SciTech Connect (OSTI)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  10. ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS

    SciTech Connect (OSTI)

    none,

    1997-06-01

    Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R

  11. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect (OSTI)

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  12. Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology and evaluation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Zhijin; Vogelmann, Andrew M.; Feng, Sha; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    We produce fine-resolution, three-dimensional fields of meteorological and other variables for the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The Community Gridpoint Statistical Interpolation system is implemented in a multiscale data assimilation (MS-DA) framework that is used within the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. The MS-DA algorithm uses existing reanalysis products and constrains fine-scale atmospheric properties by assimilating high-resolution observations. A set of experiments show that the data assimilation analysis realistically reproduces the intensity, structure, and time evolution of clouds and precipitation associated with a mesoscale convective system.more » Evaluations also show that the large-scale forcing derived from the fine-resolution analysis has an overall accuracy comparable to the existing ARM operational product. For enhanced applications, the fine-resolution fields are used to characterize the contribution of subgrid variability to the large-scale forcing and to derive hydrometeor forcing, which are presented in companion papers.« less

  13. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments [OSTI]

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  14. Google Crisis Map for Hurricane Sandy

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    The Google Crisis Map has power outage information, shelter and recovery centers, local emergency Twitter feeds, FEMA disaster declared areas and more. | This map is created and maintained by...

  15. Hurricane Sandy-Nor'easter Situation Reports

    Broader source: Energy.gov [DOE]

    On November 7, a Nor’easter began to impact the Mid-Atlantic and Northeast with strong winds, rain, snow and coastal flooding.

  16. FlexiWay: A Cache Energy Saving Technique Using Fine-grained Cache Reconfiguration

    SciTech Connect (OSTI)

    Mittal, Sparsh ORNL; Zhang, Zhao Iowa State University; Vetter, Jeffrey S ORNL

    2013-01-01

    Recent trends of CMOS scaling and use of large last level caches (LLCs) have led to significant increase in the leakage energy consumption of LLCs and hence, managing their energy consumption has become extremely important in modern processor design. The conventional cache energy saving techniques require offline profiling or provide only coarse granularity of cache allocation. We present FlexiWay, a cache energy saving technique which uses dynamic cache reconfiguration. FlexiWay logically divides the cache sets into multiple (e.g. 16) modules and dynamically turns off suitable and possibly different number of cache ways in each module. FlexiWay has very small implementation overhead and it provides fine-grain cache allocation even with caches of typical associativity, e.g. an 8-way cache. Microarchitectural simulations have been performed using an x86-64 simulator and workloads from SPEC2006 suite. Also, FlexiWay has been compared with two conventional energy saving techniques. The results show that FlexiWay provides largest energy saving and incurs only small loss in performance. For single, dual and quad core systems, the average energy saving using FlexiWay are 26.2%, 25.7% and 22.4%, respectively.

  17. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    SciTech Connect (OSTI)

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P. E-mail: gies@chara.gsu.edu E-mail: jao@chara.gsu.edu; and others

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  18. Near-Edge X-Ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect (OSTI)

    Willey, T.M.; Fabbri, J.D.; Lee, J.R.I.; Schreiner, P.R.; Fokin, A.A.; Tkachenko, B.A.; Fokina, N.A.; Dahl, J.E.P.; Carlson, R.M.K.; Vance, A.L.; Yang, W.; Terminello, L.J.; Buuren, T.van; Melosh, N.A.

    2009-05-26

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 and 0.16 {+-} 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.

  19. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect (OSTI)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  20. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect (OSTI)

    Boysen, J.E.; Kang, T.W.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.; AMAX Research and Development Center, Golden, CO )

    1989-10-01

    The main objective of this research is to develop a thermal process for drying fine coal that (1) reduces explosion potential, (2) uses a fluidized bed with minimum elutriation, (3) produces a stable dry coal by preventing moisture reabsorption and autogeneous heating, (4) reduces fugitive dust emissions, and (5) is technically and economically feasible. The project scope of work requires completion of five tasks: (1) project planning, (2) characterization of the two feed coals, (3) bench-scale IFB drying studies, (4) product characterization and testing, and (5) technical and economic process evaluation. The project technical achievements are primarily related to understanding of the behavior of the two coals in the IFB reactor. Solids residence time and solids entrainment can be correlated using the Reynolds number. Gas produced from the coal during drying and the product composition can be correlated to the average dryer temperature. A dry product with minimal proximate moisture and substantially increased heating value can be produced from either of these coals under a wide variety of fluidizing gas-to-solids ratios and IFB operating temperatures. Product characterization indicates that moisture reabsorption can be significantly reduced and that fugitive dust contents can be almost completely reduced. 4 refs., 19 figs., 24 tabs.

  1. Enhanced control of fine particles following Title IV coal switching and NOx control

    SciTech Connect (OSTI)

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.; Martin, C.

    1997-12-31

    Electrostatic precipitators (ESPs) serve as the primary particle control devices for a majority of coal-fired power generating units in the United States. ESPs are used to collect particulate matter that range in size from less than one micrometer in diameter to several hundred micrometers. Many of the options that utilities will use to respond to Title IV of the 1990 Clean Air Act Amendments will result in changes to the ash that will be detrimental to the performance of the ESP causing increased emissions of fine particles and higher opacity. For example, a switch to low-sulfur coal significantly increases particle resistivity while low-NO{sub x} burners increase the carbon content of ashes. Both of these changes could result in derating of the boiler to comply with emissions standards. ADA has developed a chemical additive that is designed to improve the operation of ESI`s to bring these systems into compliance operation without the need for expensive capital modifications. The additives provide advantages over competing technologies in terms of low capital cost, easy to handle chemicals, and relatively non-toxic chemicals. In addition, the new additive is insensitive to ash chemistry which will allow the utility complete flexibility to select the most economical coal. Results from full-scale and pilot plant demonstrations are reported.

  2. The use of a receptor model for fine particulate in Mexico City

    SciTech Connect (OSTI)

    Vega, E.; Garcia, I.; Ruiz, M.E.

    1997-12-31

    Mexico City Metropolitan Area (MCMA) faces severe pollution problems typical of large urban areas all over the world. The city is in an elevated basin (2,240 m) at a subtropical latitude (19.5N), with a high mountain chain at the West and South. This basin setting inhibits dispersion of pollution and contributes to the frequent wintertime thermal inversions which further trap pollutants near the surface. The study of atmospheric pollution and its control have been carried out using physico-chemical dispersion models, and the type known as receptor models often finds favor. The main objective of this paper is to present the results of a chemical mass balance receptor model applied to two different data sets of particulate matter. The twelve-hour samples were collected during day and night periods in the winter of 1989, previous to the introduction of catalytic converters in automobiles, and the other after 1991, since the catalytic converters are compulsory in all the new model vehicles. Samples of particulate matter were collected using a denuder and a Hi-Vol systems for the fine fraction (aerosols with diameter less than 2.5 {micro}m) and total suspended particles respectively. The results show that the major source contributions to the inhalable particulate matter for the first period are: automobiles (44%); secondary aerosols (19%); dust (10%).

  3. X-ray absorption fine structure spectroscopic study of uranium nitrides

    SciTech Connect (OSTI)

    Poineau, Frederic; Yeamans, Charles B.; Cerefice, Gary S.; Sattelberger, Alfred P; Czerwinski, Ken R.

    2012-01-01

    Uranium mononitride (UN), sesquinitride (U2N3) and dinitride (UN2) were characterized by extended X-Ray absorption fine structure spectroscopy. Analysis on UN indicate the presence of three uranium shells at distances of 3.46(3), 4.89(5) and 6.01(6) A and a nitrogen shell at a distance of 2.46(2) A . For U2N3, two absorbing uranium atoms at different crystallographic positions are present in the structure. One of the uranium atoms is surrounded by nitrogen atoms at 2.28(2) A and by uranium atoms at 3.66(4) and 3.95(4) A . The second type of uranium atom is surrounded by nitrogen atoms at 2.33(2) and 2.64(3) A and by uranium atoms at 3.66(4), 3.95(4) and 5.31(5) A . Results on UN2 indicate two uranium shells at 3.71(4) and 5.32(5) A and two nitrogen shells at 2.28(2).

  4. Influence of dense quantum plasmas on fine-structure splitting of Lyman doublets of hydrogenic systems

    SciTech Connect (OSTI)

    De, Madhab Ray, Debasis

    2015-05-15

    Relativistic calculations are performed to study the effects of oscillatory quantum plasma screening on the fine-structure splitting between the components of Lyman-? and ? line doublets of atomic hydrogen and hydrgen-like argon ion within dense quantum plasmas, where the effective two-body (electronnucleus) interaction is modeled by the ShuklaEliasson oscillatory exponential cosine screened-Coulomb potential. The numerical solutions of the radial Dirac equation for the quantum plasma-embedded atomic systems reveal that the oscillatory quantum screening effect suppresses the doublet (energy) splitting substantially and the suppression becomes more prominent at large quantum wave number k{sub q}. In the absence of the oscillatory cosine screening term, much larger amount of suppression is noticed at larger values of k{sub q}, and the corresponding results represent the screening effect of an exponential screened-Coulomb two-body interaction. The Z{sup 4} scaling of the Lyman doublet splitting in low-Z hydrogen isoelectronic series of ions in free space is violated in dense quantum plasma environments. The relativistic data for the doublet splitting in the zero screening (k{sub q}?=?0) case are in very good agreement with the NIST reference data, with slight discrepancies (?0.2%) arising from the neglect of the quantum electrodynamic effects.

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect (OSTI)

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  6. Fine and ultrafine particles generated during fluidized bed combustion of different solid fuels

    SciTech Connect (OSTI)

    Urciuolo, M.; Barone, A.; D'Alessio, A.; Chirone, R.

    2008-12-15

    The paper reports an experimental study carried out with a 110-mm ID fluidized bed combustor focused on the characterization of particulates formation/emission during combustion of coal and non-fossil solid fuels. Fuels included: a bituminous coal, a commercial predried and granulated sludge (GS), a refuse-derived fuel (RDF), and a biomass waste (pine seed shells). Stationary combustion experiments were carried out analyzing the fate of fuel ashes. Fly ashes collected at the combustor exhaust were characterized both in terms of particle size distribution and chemical composition, with respect to both trace and major elements. Tapping-Mode Atomic Force Microscopy (TM-AFM) technique and high-efficiency cyclone-type collector devices were used to characterize the size and morphology of the nanometric-and micronic-size fractions of fly ash emitted at the exhaust respectively. Results showed that during the combustion process: I) the size of the nanometric fraction ranges between 2 and 65 nm; ii) depending on the fuel tested, combustion-assisted attrition or the production of the primary ash particles originally present in the fuel particles, are responsible of fine particle generation. The amount in the fly ash of inorganic compounds is larger for the waste-derived fuels, reflecting the large inherent content of these compounds in the parent fuels.

  7. Cost-Effective Consolidation of Fine Aluminum Scrap for Increased Remelting Effieciency

    SciTech Connect (OSTI)

    William Van Geertruyden

    2005-09-22

    The main objective of this research was to develop a new re-melting process for fine or light gauge aluminum scrap products that exhibits dramatic improvements in energy efficiency. Light gauge aluminum scrap in the form of chips, turnings, and borings has historically been underutilized in the aluminum recycling process due to its high surface area to volume ratio resulting in low melt recovery. Laboratory scale consolidation experiments were performed using loose aluminum powder as a modeling material as well as shredded aluminum wire scrap. The processing parameters necessary to create consolidated aluminum material were determined. Additionally, re-melting experiments using consolidated and unconsolidated aluminum powder confirmed the hypothesis that metal recovery using consolidated material will significantly improve by as much as 20%. Based on this research, it is estimated that approximately 495 billion Btu/year can be saved by implementation of this technology in one domestic aluminum rolling plant alone. The energy savings are realized by substituting aluminum scrap for primary aluminum, which requires large amounts of energy to produce. While there will be an initial capital investment, companies will benefit from the reduction of dependence on primary aluminum thus saving considerable costs. Additionally, the technology will allow companies to maintain in-house alloy scrap, rather than purchasing from other vendors and eliminate the need to discard the light gauge scrap to landfills.

  8. Differential flow rates of petroleum and water in fine-grained sediments

    SciTech Connect (OSTI)

    Clayton, C. )

    1993-09-01

    During and after generation, petroleum migrates through fine-grained water-wet rocks into more permeable carrier beds. While the mechanics of this process are well established, little is know of the absolute rates of the process. In addition, it is know that in some area (such as the deep-water Gulf of Mexico) oil is able to pass freely from the source rock through highly overpressured sediments in which the water is retained. This indicates that the apparent permeability to oil is one to two orders of magnitude greater than for water, too much to account for by the additional buoyancy of the oil or conventional relative permeability arguments. Part of the problem may be caused by the state of water in mudrocks, most of which is bound to clays and thus immobile. By assuming Poiseuille flow of oil through the pore network of shales, it is shown that this indeed is the case. Modeled flow rates for oil are about two orders of magnitude faster than for water. This implies that only a small percentage of the water can be considered mobile, consistent with free/bound water ratios measured in the laboratory. Such calculations have important implications for estimating the time it takes for petroleum to charge distant reservoirs and also for the longevity of oil and gas fields following seal failure.

  9. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    SciTech Connect (OSTI)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline; Golub, Leon; DeLuca, Edward; Schuler, Timothy

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  10. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    SciTech Connect (OSTI)

    Rambukkange,M.; Verlinde, J.; Elorante, E.; Luke, E.; Kollias, P.; Shupe, M.

    2006-07-10

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

  11. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; et al

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrationsmore » were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.« less

  12. Ultra High Efficiency ESP for Fine Particulate and Air Toxics Control

    SciTech Connect (OSTI)

    Srinivasachar, Srivats; Pease, Benjamin R.; Porle, Kjell; Mauritzson, Christer; Haythornthwaite, Sheila

    1997-07-01

    Nearly ninety percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESP). Cost effective retrofittable ESP technologies are the only means to accomplish Department of Energy's (DOE) goal of a major reduction in fine particulate and air toxic emissions from coal-fired power plants. Particles in the size range of 0.1 to 5 {micro}m typically escape ESPs. Metals, such as arsenic, cadmium, lead, molybdenum and antimony, concentrate on these particles. This is the main driver for improved fine particulate control. Vapor phase emissions of mercury, selenium and arsenic are also of major concern. Current dry ESPs, which operate at temperatures greater than 280 F, provide little control for vapor phase toxics. The need for inherent improvement to ESPs has to be considered keeping in perspective the current trend towards the use of low sulfur coals. Switching to low sulfur coals is the dominant approach for SO{sub 2} emission reduction in the utility industry. Low sulfur coals generate high resistivity ash, which can cause an undesirable phenomenon called ''back corona.'' Higher particulate emissions occur if there is back corona in the ESP. Results of the pilot-scale testing identified the ''low temperature ESP'' concept to have the biggest impact for the two low sulfur coals investigated. Lowering the flue gas temperature to 220 F provided the maximum impact in terms of decreased emissions. Intermediate operating temperatures (reduction from 340 to 270 F) also gave significant ESP performance improvement. A significant reduction in particulate emissions was also noted when the flue gas humidity was increased (temperature held constant) from the baseline condition for these moderately high resistivity ash coals. Independent control of flue gas humidity and temperature was an important and a notable element in this project. Mercury emissions were also measured as a function of flue gas temperature. Mercury emissions decreased as the flue

  13. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    SciTech Connect (OSTI)

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G.; Bittman, Shabtai; Macdonald, Douglas J.

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  14. Fossil and Contemporary Fine Carbon Fractions at 12 Rural and Urban Sites in the United States

    SciTech Connect (OSTI)

    Schichtel, B; Malm, W; Bench, G; Fallon, S; McDade, C; Chow, J

    2007-03-01

    Fine particulate matter collected at two urban, four near-urban, and six remote sites throughout the United States were analyzed for total carbon (TC) and radiocarbon ({sup 14}C). Samples were collected at most sites for both a summer and winter season. The radiocarbon was used to partition the TC into fossil and contemporary fractions. On average, contemporary carbon composed about half of the carbon at the urban, {approx}70-97% at near-urban, and 82-100% at remote sites. At Phoenix, Arizona, and Seattle, Washington, one monitor was located within the urban center and one outside to assess the urban excess over background concentrations. During the summer the urban and rural sites had similar contemporary carbon concentrations. However, during the winter the urban sites had more than twice the contemporary carbon measured at the neighboring sites, indicating anthropogenic contributions to the contemporary carbon. The urban fossil carbon was 4-20 times larger than the neighboring rural sites for both seasons. Organic (OC) and elemental carbon (EC) from TOR analysis were available. These and the radiocarbon data were used to estimate characteristic fossil and contemporary EC/TC ratios for the winter and summer seasons. These ratios were applied to carbon data from the Interagency Monitoring of Protected Visual Environments network to estimate the fraction of contemporary carbon at mostly rural sites throughout the United States. In addition, the ratios were used to develop a semiquantitative, lower bound estimate of secondary organic carbon (SOC) contribution to fossil and contemporary carbon. SOC accounted for more than one-third of the fossil and contemporary carbon.

  15. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    DeRolph, Christopher R.; Nelson, Stacy A. C.; Kwak, Thomas J.; Hain, Ernie F.

    2014-12-09

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. In this paper, we predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistancemore » and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Finally and additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.« less

  16. Use of micro-XANES to speciate chromium in airborne fine particles in the Sacramento Valley

    SciTech Connect (OSTI)

    Michelle L. Werner; Peter S. Nico; Matthew A. Marcus; Cort Anastasio

    2007-07-15

    While particulate matter (PM) in the atmosphere can lead to a wide array of negative health effects, the cause of toxicity is largely unknown. One aspect of PM that likely affects health is the chemical composition, in particular the transition metals within the particles. Chromium is one transition metal of interest due to its two major oxidation states, with Cr(III) being much less toxic compared to Cr(VI). Using microfocused X-ray absorption near edge structure (micro-XANES), we analyzed the Cr speciation in fine particles (diameters {le} 2.5 {mu}m) collected at three sites in the Sacramento Valley of northern California: Sacramento, a large urban area, Davis, a small city, and Placerville, a rural area. These are several major stationary sources of Cr within 24 km of the site including chrome-plating plants, power plants and incinerators. The microfocused X-ray beam enables us to look at very small areas on the filter with a resolution of typically 5-7 micrometers. With XANES we are able to not only distinguish between Cr(VI) and Cr(III), but also to identify different types of Cr(III) and more reduced Cr species. At all of our sampling sites the main Cr species were Cr(III), with Cr(OH){sub 3} or a Cr-Fe, chromite-like, phase being the dominant species. Cr(VI)-containing particles were found only in the most urban site. All three sites contained some reduced Cr species, either Cr(0) or Cr{sub 3}C{sub 2}, although these were minor components. This work demonstrates that micro-XANES can be used as a minimally invasive analytical tool to investigate the composition of ambient PM. 32 refs., 6 figs.

  17. Study of deactivation and regeneration of catalysts used in the LC-fining of solvent refined coal

    SciTech Connect (OSTI)

    Curtis, C.W. (Auburn Univ., AL); Guin, J.A.; Nalitham, R.; mohsin, A.; Tarrer, A.R.; Potts, J.D.; Hastings, K.E.

    1981-03-29

    Batch experiments as well as results from LC-Fining catalytic upgrading of coal extracts indicate deactivation of the Shell 324 Ni/Mo catalyst in the presence of solvent refined coal (SRC). At increased levels of SRC loading, deactivation increases. The chief cause of catalyst deactivation appears to be coking. The Shell 324 catalyst can be substantially regenerated after the upgrading reaction by medium temperature ashing followed by presulfiding.

  18. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt

    2002-02-05

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end work is progress using an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Progress in the Sixth Quarter (January 1, 2002 through March 31, 2002) was slow because of slagging problems in the combustor. These required the combustor to be rebuilt, a job that is not yet complete. A paper describing our results heretofore has been accepted by the Journal Environmental Science and Technology.

  19. Production and gasification tests of coal fines/coal tar extrudate. Final report June 1982-December 1983

    SciTech Connect (OSTI)

    Furman, A.; Rib, D.; Smith, D.; Waslo, D.

    1984-01-01

    Gasification is a fuels conversion technology that permits the production of clean synthetic gas from coal and other carbonaceous fuels. Of the various gasifier types, however, the fixed bed is the only system currently being offered on a commercial basis. While this reactor type offers proven performance in terms of reliability and thermal efficiency, it requires a sized feedstock. This means that up to 30% of the incoming run-of-mine coal could be rejected as fines. Direct extrusion of this - 1/8-inch coal fines fraction with a tar binder offers a potentially attractive solution to this problem by consolidating the fines and, at the same time, providing a feed mechanism to the pressurized reactor. Work is described on a recently completed extrudate evaluation program conducted at the General Electric Research and Development Center in Schenectady under GRI and NYSERDA sponsorship. A 6-inch, single screw extruder was used to produce 88 tons of Illinois No. 6 coal extrudate with tar binder, which was then successfully gasified in General Electric's 1-ton/hr, Process Evaluation Facility (PEF) scale, fixed-bed reactor. Performance data on the extrusion process and on gasification testing are presented. The test results indicate that the extrudate makes a satisfactory gasifier feedstock in terms of both thermal and mechanical performance.

  20. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt

    2003-01-31

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

  1. SOURCE SIGNATURES OF FINE PARTICULATE MATTER FROM PETROLEUM REFINING AND FUEL USE

    SciTech Connect (OSTI)

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Artur Braun; Yuanzhi Chen; J. David Robertson; Joseph Kyger; Adel F. Sarofim; Ronald J. Pugmire; Henk L.C. Meuzelaar; JoAnn Lighty

    2003-07-31

    The molecular structure and microstructure of a suite of fine particulate matter (PM) samples produced by the combustion of residual fuel oil and diesel fuel were investigated by an array of analytical techniques. Some of the more important results are summarized below. Diesel PM (DPM): A small diesel engine test facility was used to generate a suite of diesel PM samples from different fuels under engine load and idle conditions. C XANES, {sup 13}C NMR, XRD, and TGA were in accord that the samples produced under engine load conditions contained more graphitic material than those produced under idle conditions, which contained a larger amount of unburned diesel fuel and lubricating oil. The difference was enhanced by the addition of 5% of oxygenated compounds to the reference fuel. Scanning transmission x-ray micro-spectroscopy (STXM) was able to distinguish particulate regions rich in C=C bonds from regions rich in C-H bonds with a resolution of {approx}50 nm. The former are representative of more graphitic regions and the latter of regions rich in unburned fuel and oil. The dominant microstructure observed by SEM and TEM consisted of complex chain-like structures of PM globules {approx}20-100 nm in mean diameter, with a high fractal dimension. High resolution TEM revealed that the graphitic part of the diesel soot consisted of onion-like structures made up of graphene layers. Typically 3-10 graphene layers make up the ''onion rings'', with the layer spacing decreasing as the number of layers increases. ROFA PM: Residual oil fly ash (ROFA) PM has been analyzed by a new approach that combines XAFS spectroscopy with selective leaching procedures. ROFA PM{sub 2.5} and PM{sub 2.5+} produced in combustion facilities at the U.S. EPA National Risk Management Research Laboratory (NRML) were analyzed by XAFS before and after leaching with water, acid (1N HCl), and pentane. Both water and acid leaching removed most of the metal sulfates, which were the dominant phase present

  2. High-flux plasma exposure of ultra-fine grain tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kolasinski, R. D.; Buchenauer, D. A.; Doerner, R. P.; Fang, Z. Z.; Ren, C.; Oya, Y.; Michibayashi, K.; Friddle, R. W.; Mills, B. E.

    2016-05-12

    Here we examine the response of an ultra-fine grained (UFG) tungsten material to high-flux deuterium plasma exposure. UFG tungsten has received considerable interest as a possible plasma-facing material in magnetic confinement fusion devices, in large part because of its improved resistance to neutron damage. However, optimization of the material in this manner may lead to trade-offs in other properties. Moreover, we address two aspects of the problem in this work: (a) how high-flux plasmas modify the structure of the exposed surface, and (b) how hydrogen isotopes become trapped within the material. The specific UFG tungsten considered here contains 100 nm-widthmore » Ti dispersoids (1 wt%) that limit the growth of the W grains to a median size of 960 nm. Metal impurities (Fe, Cr) as well as O were identified within the dispersoids; these species were absent from the W matrix. To simulate relevant particle bombardment conditions, we exposed specimens of the W-Ti material to low energy (100 eV), high-flux (> 1022 m-2 s-1) deuterium plasmas in the PISCES-A facility at the University of California, San Diego. To explore different temperature-dependent trapping mechanisms, we considered a range of exposure temperatures between 200 °C and 500 °C. For comparison, we also exposed reference specimens of conventional powder metallurgy warm-rolled and ITER-grade tungsten at 300 °C. Post-mortem focused ion beam profiling and atomic force microscopy of the UFG tungsten revealed no evidence of near-surface bubbles containing high pressure D2 gas, a common surface degradation mechanism associated with plasma exposure. Thermal desorption spectrometry indicated moderately higher trapping of D in the material compared with the reference specimens, though still within the spread of values for different tungsten grades found in the literature database. Finally, for the criteria considered here, these results do not indicate any significant obstacles to the potential use of UFG

  3. FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Farrah, D.; Petty, S. M.; Harris, K.; Lebouteiller, V.; Spoon, H. W. W.; Bernard-Salas, J.; Pearson, C.; Rigopoulou, D.; Smith, H. A.; Gonzlez-Alfonso, E.; Clements, D. L.; Efstathiou, A.; Cormier, D.; Afonso, J.; Hurley, P.; Borys, C.; Verma, A.; Cooray, A.; Salvatelli, V.

    2013-10-10

    We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 ?m, [N III]57 ?m, [O I]63 ?m, [N II]122 ?m, [O I]145 ?m, and [C II]158 ?m, are mostly single Gaussians with widths <600 km s{sup 1} and luminosities of 10{sup 7}-10{sup 9} L{sub ?}. There are deficits in the [O I]63/L{sub IR}, [N II]/L{sub IR}, [O I]145/L{sub IR}, and [C II]/L{sub IR} ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10{sup 1} < n < 10{sup 2.5} and 10{sup 2.2} < G{sub 0} < 10{sup 3.6}, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.

  4. Temperature dependence of the Pd [ital K]-edge extended x-ray-absorption fine structure of PdC[sub [ital x

    SciTech Connect (OSTI)

    McCaulley, J.A. (Hoechst Celanese Research Division, Robert L. Mitchell Technical Center, 86 Morris Avenue, Summit, New Jersey 07901 (United States))

    1993-03-01

    Pd [ital K]-edge extended x-ray-absorption fine-structure (EXAFS) and x-ray-absorption near-edge-structure (XANES) measurements were performed on a Pd carbide phase, PdC[sub [ital x

  5. Experimental and Computational Studies of High Energy Density Plasma Streams Ablated from Fine Wires

    SciTech Connect (OSTI)

    Greenly, John B.; Seyler, Charles

    2014-03-30

    Experimental and computational studies of high energy density plasma streams ablated from fine wires. Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University. Principal Investigators: Dr. John B. Greenly and Dr. Charles E. Seyler. This report summarizes progress during the final year of this project to study the physics of high energy density (HED) plasma streams of 10^17-10^20/cm3 density and high velocity (~100-500 km/s). Such streams are produced from 5-250 micrometer diameter wires heated and ionized by a 1 MA, 250 ns current pulse on the COBRA pulsed power facility at Cornell University. Plasma is ablated from the wires and is driven away to high velocity by unbalanced JxB force. A wire, or an array of wires, can persist as an essentially stationary, continuous source of this streaming plasma for >200 ns, even with driving magnetic fields of many Tesla and peak current densities in the plasma of many MA/cm2. At the heart of the ablation stream generation is the continuous transport of mass from the relatively cold, near-solid-density wire "core" into current-carrying plasma within 1 mm of the wire, followed by the magnetic acceleration of that plasma and its trapped flux to form a directed stream. In the first two years of this program, an advancing understanding of ablation physics led to the discovery of several novel wire ablation experimental regimes. In the final year, one of these new HED plasma regimes has been studied in quantitative detail. This regime studies highly reproducible magnetic reconnection in strongly radiating plasma with supersonic and superalfvenic flow, and shock structures in the outflow. The key discovery is that very heavy wires, e.g. 250 micrometer diameter Al or 150 micrometer Cu, behave in a qualitatively different way than the lighter wires typically used in wire-array Z-pinches. Such wires can be configured to produce a static magnetic X-point null geometry that stores magnetic and

  6. Improvement of storage, handling and transportability of fine coal. Quarterly technical progress report No. 3, July 1, 1994--September 30, 1994

    SciTech Connect (OSTI)

    1996-08-16

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this third quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the feedstock coal options at the Chetopa Plant was conducted and mulling characteristics determined to enable a decision to be made regarding the feedstock selection. It was decided that the froth concentrate will be the feedstock wet fine coal used for the project. On that basis, activities in the areas of design and procurement were initiated.

  7. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California

    SciTech Connect (OSTI)

    Basu, Rupa; Harris, Maria; Sie, Lillian; Malig, Brian; Broadwin, Rachel; Green, Rochelle

    2014-01-15

    Relationships between prenatal exposure to fine particles (PM{sub 2.5}) and birth weight have been observed previously. Few studies have investigated specific constituents of PM{sub 2.5}, which may identify sources and major contributors of risk. We examined the effects of trimester and full gestational prenatal exposures to PM{sub 2.5} mass and 23 PM{sub 2.5} constituents on birth weight among 646,296 term births in California between 2000 and 2006. We used linear and logistic regression models to assess associations between exposures and birth weight and risk of low birth weight (LBW; <2500 g), respectively. Models were adjusted for individual demographic characteristics, apparent temperature, month and year of birth, region, and socioeconomic indicators. Higher full gestational exposures to PM{sub 2.5} mass and several PM{sub 2.5} constituents were significantly associated with reductions in term birth weight. The largest reductions in birth weight were associated with exposure to vanadium, sulfur, sulfate, iron, elemental carbon, titanium, manganese, bromine, ammonium, zinc, and copper. Several of these PM{sub 2.5} constituents were associated with increased risk of term LBW. Reductions in birth weight were generally larger among younger mothers and varied by race/ethnicity. Exposure to specific constituents of PM{sub 2.5}, especially traffic-related particles, sulfur constituents, and metals, were associated with decreased birth weight in California. -- Highlights: Examine full gestational and trimester fine particle and its constituents on term birth weight. Fine particles and several of its constituents associated with birth weight reductions. Largest reductions for traffic-related particles, sulfur constituents, and metals. Greater birth weight reductions for younger mothers, and varied by race/ethnicity.

  8. The effect of oxygen-to-fuel stoichiometry on coal ash fine-fragmentation mode formation mechanisms.

    SciTech Connect (OSTI)

    Fix, G.; Seames, W. S.; Mann, M. D.; Benson, S. A.; Miller, D. J.

    2011-04-01

    Ash particles smaller than 2.5 {micro}m in diameter generated during pulverized coal combustion are difficult to capture and may pose greater harm to the environment and human health than the discharge of larger particles. Recent research efforts on coal ash formation have revealed a middle fine-fragment mode centered around 2 {micro}m. Formation of this middle or fine-fragment mode (FFM) is less well understood compared to larger coarse and smaller ultrafine ash. This study is part of an overall effort aimed at determining the key factors that impact the formation of FFM. This work examined the effects of oxygen-to-fuel stoichiometry (OFS). Pulverized Illinois No.6 bituminous coal was combusted and the ash generated was size segregated in a Dekati low pressure inertial impactor. The mass of each fraction was measured and the ash was analyzed using scanning electron microscopy (SEM) and X-ray microanalysis. The FFM ash types were classified based on the SEM images to evaluate the significant fine-fragment ash formation mechanisms and determine any possible link between stoichiometry and formation mechanism. From the particle size distributions (PSDs), the coarse mode appears unaffected by the change in OFS, however, the OFS 1.05 lowered the fraction of ultrafine ash in relation to the higher OFS settings, and appears to increase the portion of the FFM. An intermediate minimum was found in the FFM at 1.3 {micro}m for the 1.20 and 1.35 OFS tests but was not observed in the 1.05 OFS. SEM analysis also suggests that OFS may contribute to changing formation mechanisms.

  9. Innovative process for concentration of fine particle coal slurries. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Rajchel, M.; Ehrlinger, H.P.; Harnett, D.; Fonseca, A.; Maurer, R.

    1997-05-01

    Williams Technologies, Inc. And Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be concentrated to greater than 60 weight percent and remixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project was to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology can enable Illinois coal producers and users to realize significant cost and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. Testing was also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back- filled, eliminating the need for tailings ponds. During the grant period, a laboratory-scale test apparatus (up to 3 GPM feed rate) was assembled and operated to demonstrate process performance over a range of feed temperatures and pressures. A dilute coal/water slurry from Consol, Inc.`s Rend Lake Preparation Plant was concentrated with the process to a maximum recorded solids loading of 61.9% solids by weight. Analytical results from the concentrate were evaluated by Destec Energy for suitability as an IGCC fuel.

  10. A facile method for nickel catalyst immobilization on ultra fine Al{sub 2}O{sub 3} powders

    SciTech Connect (OSTI)

    Zhang, T.; Wen, G.; Huang, X.X.; Zhong, B.; Zhang, X.D.; Bai, H.W.; Yu, H.M.

    2010-07-15

    A pure nickel coating has been successfully plated on the surface of ultra fine Al{sub 2}O{sub 3} particles via a facile electroless plating method. Coating morphology and crystallite size can be tailored by pH values. Dense coating with the maximum crystallite size of 24 nm was obtained at pH 11.0 and porous coating with the minimum crystallite size of 15 nm was obtained at pH value 12.5. The plated powders have been demonstrated to be an effective catalyst for growing boron nitride nanotubes.

  11. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    SciTech Connect (OSTI)

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  12. Process and apparatus for separating fine particles by microbubble flotation together with a process and apparatus for generation of microbubbles

    DOE Patents [OSTI]

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1991-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine particles, especially coal, so as to produce a high purity and large recovery efficiently. This is accomplished through the use of a high aspect ratio flotation column, microbubbles, and a countercurrent use of wash water to gently wash the froth. Also, disclosed are unique processes and apparatus for generating microbubbles for flotation in a high efficient and inexpensive manner using either a porous tube or an in-line static generator. 23 figures.

  13. Process and apparatus for separating fine particles by microbubble flotation together with a process and apparatus for generation of microbubbles

    DOE Patents [OSTI]

    Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.

    1991-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine particles, especially coal, so as to produce a high purity and large recovery efficiently. This is accomplished through the use of a high aspect ratio flotation column, microbubbles, and a countercurrent use of wash water to gently wash the froth. Also, disclosed are unique processes and apparatus for generating microbubbles for flotation in a high efficient and inexpensive manner using either a porous tube or an in-line static generator.

  14. Engineering development of advanced physical fine coal cleaning for premium fuel applications: Subtask 3.3 - dewatering studies

    SciTech Connect (OSTI)

    Yoon, R. H.; Phillips, D. I.; Sohn, S. M.; Luttrell, G. H.

    1996-10-01

    If successful, the novel Hydrophobic Dewatering (HD) process being developed in this project will be capable of efficiently removing moisture from fine coal without the expense and other related drawbacks associated with mechanical dewatering or thermal drying. In the HD process, a hydrophobic substance is added to a coal-water slurry to displace water from the surface of coal, while the spent hydrophobic substance is recovered for recycling. For this process to have commercialization potential, the amount of butane lost during the process must be small. Earlier testing revealed the ability of the hydrophobic dewatering process to reduce the moisture content of fine coal to a very low amount as well as the determination of potential butane losses by the adsorption of butane onto the coal surface. Work performed in this quarter showed that the state of oxidation affects the amount of butane adsorbed onto the surface of the coal and also affects the final moisture content. the remaining work will involve a preliminary flowsheet of a continuous bench-scale unit and a review of the economics of the system. 1 tab.

  15. Investigation of the possibility to use a fine-mesh solver for resolving coupled neutronics and thermal-hydraulics

    SciTech Connect (OSTI)

    Jareteg, K.; Vinai, P.; Demaziere, C.

    2013-07-01

    The development of a fine-mesh coupled neutronic/thermal-hydraulic solver is touched upon in this paper. The reported work investigates the feasibility of using finite volume techniques to discretize a set of conservation equations modeling neutron transport, fluid dynamics, and heat transfer within a single numerical tool. With the long-term objective of developing fine-mesh computing capabilities for a few selected fuel assemblies in a nuclear core, this preliminary study considers an infinite array of a single fuel assembly having a finite height. Thermal-hydraulic conditions close to the ones existing in PWRs are taken as a first test case. The neutronic modeling relies on the diffusion approximation in a multi-energy group formalism, with cross-sections pre-calculated and tabulated at the sub-pin level using a Monte Carlo technique. The thermal-hydraulics is based on the Navier-Stokes equations, complemented by an energy conservation equation. The non-linear coupling terms between the different conservation equations are fully resolved using classical iteration techniques. Early tests demonstrate that the numerical tool provides an unprecedented level of details of the coupled solution estimated within the same numerical tool and thus avoiding any external data transfer, using fully consistent models between the neutronics and the thermal-hydraulics. (authors)

  16. A Lagrangian-Eulerian method with zoomable hidden fine-mesh approach to solving advection-dispersion equations

    SciTech Connect (OSTI)

    Yeh, G.T. )

    1990-06-01

    A Lagrangian-Eulerian method with zoomable hidden fine-mesh approach (LEZOOM), that can be adapted with either finite element or finite difference methods, is used to solve the advection-dispersion equation. The approach is based on automatic adaptation of zooming a hidden fine mesh in regions where the sharp front is located. Application of LEZOOM to four bench mark problems indicates that it can handle the advection-dispersion/diffusion problems with mesh Peclet numbers ranged from 0 to {infinity} and with mesh Courant numbers well in excess of 1. Difficulties that can be resolved with LEZOOM include numerical dispersion, oscillations, the clipping of peaks, and the effect of grid orientation. Nonuniform grid as well as spatial temporally variable flow pose no problems with LEZOOM. Both initial and boundary value problems can be solved accurately with LEZOOM. It is shown that although the mixed Lagrangian-Eulerian (LE) approach (LEZOOM without zooming) also produces excessive numerical dispersion as the upstream finite element (UFE) method, the LE approach is superior to the UFE method.

  17. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect (OSTI)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  18. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 5, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    1996-08-21

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this reporting period, virtually all of the technical activities and progress was made in the areas of circuit installation and startup operations. Work in these activity areas are described.

  19. X-ray absorption fine structure (XAFS) analyses of Ni species trapped in graphene sheet of carbon nanofibers

    SciTech Connect (OSTI)

    Ushiro, Mayuko; Uno, Kanae; Fujikawa, Takashi; Sato, Yoshinori; Tohji, Kazuyuki; Watari, Fumio; Chun, W.-J.; Koike, Yuichiro; Asakura, Kiyotaka

    2006-04-01

    Metal impurities in the carbon nanotubes and carbon nanofibers play an important role in understanding their physical and chemical properties. We apply the Ni K-edge x-ray absorption fine structure analyses to the local electronic and geometric structures around embedded Ni impurities used as catalysts in a carbon nanofiber in combination with multiple scattering analyses. We find almost Ni catalysts as metal particles are removed by the purification treatment. Even after the purification, residual 100 ppm Ni species are still absorbed; most of them are in monomer structure with Ni-C bond length 1.83 A, and each of them is substituted for a carbon atom in a graphene sheet.

  20. The Manufacturing of High Porosity Iron with an Ultra-Fine Microstructure via Free Pressureless Spark Plasma Sintering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cui, Guodong; Wei, Xialu; Olevsky, Eugene; German, Randall; Chen, Junying

    2016-06-01

    High porosity (>40 vol %) iron specimens with micro- and nanoscale isotropic pores were fabricated by carrying out free pressureless spark plasma sintering (FPSPS) of submicron hollow Fe–N powders at 750 °C. Ultra-fine porous microstructures are obtained by imposing high heating rates during the preparation process. This specially designed approach not only avoids the extra procedures of adding and removing space holders during the formation of porous structures, but also triggers the continued phase transitions of the Fe–N system at relatively lower processing temperatures. In conclusion, the compressive strength and energy absorption characteristics of the FPSPS processed specimens are examinedmore » here to be correspondingly improved as a result of the refined microstructure.« less

  1. Measurement of the p to s Wave Branching Ratio of {sup 187}Re {beta} Decay from Beta Environmental Fine Structure

    SciTech Connect (OSTI)

    Arnaboldi, C.; Brofferio, C.; Capelli, S.; Capozzi, F.; Cremonesi, O.; Fiorini, E.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Sisti, M.; Benedek, G.; Filipponi, A.; Giuliani, A.; Pedretti, M.; Monfardini, A.

    2006-02-03

    The mixed occurrence of s-wave and p-wave contributions in a first forbidden unique Gamow-Teller {beta} decay has been investigated for the first time by measuring the beta environmental fine structure (BEFS) in a {sup 187}Re crystalline compound. The experiment has been carried out with an array of eight AgReO{sub 4} thermal detectors operating at a temperature of {approx}100 mK. A fit of the observed BEFS spectrum indicates the p-wave electron emission as the dominant channel. The complete understanding of the BEFS distortion of the {sup 187}Re {beta} decay spectrum is crucial for future experiments aiming at the precise calorimetric measurement of the antineutrino mass.

  2. Levitation and collection of diamond fine particles in the rf plasma chamber equipped with a hot filament

    SciTech Connect (OSTI)

    Shimizu, S.; Shimizu, T.; Thomas, H. M.; Morfill, G. E.; Jacob, W.

    2011-11-15

    We demonstrate the levitation of diamond fine particles in a H{sub 2} rf plasma chamber equipped with a hot filament and heated electrodes. The levitation conditions should be carefully chosen to compensate the strong thermophoretic forces caused by the filament and the electrodes. This levitation technique with the existence of a hot filament can be applied, e.g., for the efficient growth of diamond layers on seed particles injected and levitated in an rf plasma with reactive gases, e.g., CH{sub 4}/H{sub 2}. Additionally, the method for direct capture of levitated particles on a planar substrate was established, which is useful if it is necessary to analyze the particles after the levitation.

  3. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  4. Integrating flotation to improve the performance of an HMC circuit treating a low-rank fine coal

    SciTech Connect (OSTI)

    Celik, H.; Polat, M.

    2005-11-01

    One reason that heavy media cyclone (HMC) circuits suffer from the inadvertent loss of magnetite and fine coal is the presence of nonmagnetic material in the magnetic separator feed. In this study, flotation was applied to the undersize fractions of the HMC drain-and-rinse screens to minimize these problems. These fractions, which contain 17.9% nonmagnetic material, are currently sent to magnetic separators and the nonmagnetic portion from the separators contains 39.1% ash. Applying flotation resulted in a clean coal product with an ash content of 8.7% and a calorific value of 6,300 kcal/kg. The refuse from flotation, which will be sent to the magnetic separators, contains 7.7% nonmagnetics.

  5. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect (OSTI)

    Rigby, H.; Smith, S.R.

    2013-12-15

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  6. Bioprocessing-Based Approach for Bitumen/Water/Fines Separation and Hydrocarbon Recovery from Oil Sands Tailings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brigmon, Robin L.; Berry, Christopher J.; Wade, Arielle; Simpson, Waltena

    2016-05-04

    Oil sands are a major source of oil, but their industrial processing generates tailings ponds that are an environmental hazard. The main concerns are mature fine tailings (MFT) composed of residual hydrocarbons, water, and fine clay. Tailings ponds include toxic contaminants such as heavy metals, and toxic organics including naphthenics. Naphthenic acids and polyaromatic hydrocarbons (PAHs) degrade very slowly and pose a long-term threat to surface and groundwater, as they can be transported in the MFT. Research into improved technologies that would enable densification and settling of the suspended particles is ongoing. In batch tests, BioTiger™, a microbial consortium thatmore » can metabolize PAHs, demonstrated improved oil sands tailings settling from a Canadian tailings pond. Results also showed, depending on the timing of the measurements, lower suspended solids and turbidity. Elevated total organic carbon was observed in the first 48 hours in the BioTiger™-treated columns and then decreased in overlying water. Oil sands tailings mixed with BioTiger™ showed a two-fold reduction in suspended solids within 24 hours as compared to abiotic controls. The tailings treated with BioTiger™ increased in microbial densities three orders of magnitude from 8.5 × 105 CFU/mL to 1.2 × 108 CFU/mL without any other carbon or energy source added, indicating metabolism of hydrocarbons and other available nutrients. Results demonstrated that bioaugmentation of BioTiger™ increased separation of organic carbon from particles in oil sands and enhanced settling with tailings with improved water quality.« less

  7. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats environmental technology

    SciTech Connect (OSTI)

    Lezama-pacheco, Juan S; Conradson, Steven D; Clark, David L

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO{sub 2+x}-type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO{sub 2+x}, and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO{sub 2+x} would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  8. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    SciTech Connect (OSTI)

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S.H.

    2014-05-15

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the BreitPauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spinorbit, spinother-orbit, and spinspin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: Accurate atomic data of iron ions are needed for identification of solar corona. Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. The relativistic effects by means of the BreitPauli Hamiltonian terms are incorporated. This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.

  9. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    SciTech Connect (OSTI)

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  10. UNDERSTANDING PHYSICAL CONDITIONS IN HIGH-REDSHIFT GALAXIES THROUGH C I FINE STRUCTURE LINES: DATA AND METHODOLOGY

    SciTech Connect (OSTI)

    Jorgenson, Regina A.; Wolfe, Arthur M.; Prochaska, J. Xavier

    2010-10-10

    We probe the physical conditions in high-redshift galaxies, specifically, the damped Ly{alpha} systems (DLAs) using neutral carbon (C I) fine structure lines and molecular hydrogen (H{sub 2}). We report five new detections of C I and analyze the C I in an additional two DLAs with previously published data. We also present one new detection of H{sub 2} in a DLA. We present a new method of analysis that simultaneously constrains both the volume density and the temperature of the gas, as opposed to previous studies that a priori assumed a gas temperature. We use only the column density of C I measured in the fine structure states and the assumption of ionization equilibrium in order to constrain the physical conditions in the gas. We present a sample of 11 C I velocity components in six DLAs and compare their properties to those derived by the global C II* technique. The resulting median values for this sample are (n(H I)) = 69 cm{sup -3}, (T) = 50 K, and (log(P/k)) = 3.86 cm{sup -3} K, with standard deviations, {sigma}{sub n(H{sub i})} = 134 cm{sup -3}, {sigma}{sub T} = 52 K, and {sigma}{sub log(P/k)} = 3.68 cm{sup -3} K. This can be compared with the integrated median values for the same DLAs: (n(H I)) = 2.8 cm{sup -3}, (T) = 139 K, and (log(P/k)) = 2.57 cm{sup -3} K, with standard deviations {sigma}{sub n(H{sub i})} = 3.0 cm{sup -3}, {sigma}{sub T} = 43 K, and {sigma}{sub log(P/k)} = 0.22 cm{sup -3} K. Interestingly, the pressures measured in these high-redshift C I clouds are similar to those found in the Milky Way. We conclude that the C I gas is tracing a higher-density, higher-pressure region, possibly indicative of post-shock gas or a photodissociation region on the edge of a molecular cloud. We speculate that these clouds may be direct probes of the precursor sites of star formation in normal galaxies at high redshift.

  11. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect (OSTI)

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  12. An advanced control system for fine coal flotation. Fourth quarterly technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect (OSTI)

    Adel, G.T.; Luttrell, G.H.

    1997-03-04

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as reagent dosage, pulp density and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the fourth quarter of this project, a final attempt was made to calibrate a video-based ash analyzer for use in this application. It was concluded that the low ash content and the coarse particle size of the flotation tailings slurry at the Maple Meadow plant site made the video-based system unsuitable for this application. Plans are now underway to lease a nuclear-based analyzer as the primary sensor for this project.

  13. Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems

    DOE Patents [OSTI]

    Hu, Michael Z.

    2006-05-23

    Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.

  14. Project test plan for runoff and erosion on fine-soil barrier surfaces and rock-covered side slopes

    SciTech Connect (OSTI)

    Walters, W.H.; Hoover, K.A.; Cadwell, L.L.

    1990-06-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company are working together to develop protective barriers to isolate near-surface radioactive waste. The purpose of the barriers is to protect defense wastes at the US Department of Energy's (DOE) Hanford Site from infiltration of precipitation, biointrusion, and surficial erosion for up to 10,000 years without the need for long-term monitoring, maintenance, or institutional control. The barriers will be constructed of layered earth and rock material designed to direct surface and groundwater pathways away from the buried waste. To address soil erosion as it applies to barrier design and long-term stability, a task designed to study this problem has been included in the Protective Barriers Program at PNL. The barrier soil-erosion task will investigate the ability of the soil cover and side slopes to resist the erosional and destabilizing processes from externally applied water. The study will include identification and field testing of the dominant processes contributing to erosion and barrier failure. The effects of rock mulches, vegetation cover on the top fine-grained soil surface, as well as the stability of rock armoring on the side slopes, will be evaluated. Some of the testing will include the effects of animal intrusion on barrier erosion, and these will be coordinated with other animal intrusion studies. 6 refs., 4 figs., 1 tab.

  15. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    SciTech Connect (OSTI)

    Chang, Y.C.; Mani, V.; Mohanty, K.K.

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  16. Densification of alkoxide-derived fine silica powder compact by ultra-high-pressure cold isostatic pressing

    SciTech Connect (OSTI)

    Kamiya, Hidehiro . Dept. of Chemical Engineering); Suzuki, Hisao ); Kato, Daisuke; Jimbo, Genji . Dept. of Chemical Engineering)

    1993-01-01

    Powder compacts of alkoxide-derived fine silica powders were consolidated into a highly dense and uniform structure by ultra-high-pressure cold isostatic pressing of granules with controlled structure. The diameters of spherical and nearly monosized amorphous silica particles, prepared from metal alkoxide, were successfully controlled in the range of 9 to 760 nm by varying the concentration of ammonia. Close-packed granules of these powders were produced by spray drying. These powders were isostatically pressed up to 1 GPa at room temperature. Although the average particle diameter was less than 100 nm, the maximum relative density of the compacts was more than 78% of theoretical density. The optimum particle size to obtain highly dense compacts was in the range of 30 to 300 nm at 1 GPa. Furthermore, the ratio of mode pore diameter in these compacts to particle diameter was less than 0.155, which corresponded to the minimum ratio of calculated three-particle pore channel radii for hexagonal close packing. Viscous deformation of particles under ultra-high isostatic pressure played an important role in the densification of the compacts.

  17. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  18. Fine-scale ecological and genetic population structure of two whitefish (Coregoninae) species in the vicinity of industrial thermal emissions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.; et al

    2016-01-25

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopicmore » niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less

  19. Fine uniform filament superconductors

    DOE Patents [OSTI]

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  20. FINE GRAIN NUCLEAR EMULSION

    DOE Patents [OSTI]

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  1. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered

  2. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    SciTech Connect (OSTI)

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George; Holcomb, Matthew

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulation improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.

  3. Magnetic field control of the neutral and charged exciton fine structure in single quantum dashes emitting at 1.55 μm

    SciTech Connect (OSTI)

    Mrowiński, P.; Musiał, A.; Maryński, A.; Syperek, M.; Misiewicz, J.; Sęk, G.; Somers, A.; Reithmaier, J. P.; Höfling, S.

    2015-02-02

    We investigated the neutral and charged exciton fine structure in single InAs/InGaAlAs/InP quantum dashes emitting at 1.55 μm using polarization-resolved microphotoluminescence in a magnetic field. Inverted spin configuration of horizontally [1–10] and vertically [110] polarized transitions has been observed. An in-plane magnetic field of up to 5 Tesla has been applied to tailor the fine structure, and eventually to reduce the splitting of the bright exciton states down to zero. This inverted structure has been observed for all the investigated excitons, making it a characteristic feature for this class of nanostructures with the largest splitting reduction of 170 μeV.

  4. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction. Technical progress report, January 26, 1992--April 25, 1992

    SciTech Connect (OSTI)

    Klein, M.T.

    1992-05-22

    An investigation aimed at devising a procedure for preparing alkyl-or aryl-capped iron sulfide particles continues. An initial attempt to prepare fine-particle, aryl-capped iron sulfides (S-31) involved the competitive reaction of thiophenol (PhSH) and sodium sulfide (Na{sub 2}S) with Fe(II). However, SEM examination of the particles formed by this procedure indicated that no size control had been attained. It was thought that the phenyl group of thiophenol was not bulky enough to prevent thiolate bridging and consequent particle size growth of the metal sulfide. So the bulkier thiol 1-adamantanethiol was synthesized and used in synthesis S-33 in the next attempt to prepare fine-particle, capped iron sulfides.

  5. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: Statistical distribution and height-dependence

    SciTech Connect (OSTI)

    Goldmann, Elias Barthel, Stefan; Florian, Matthias; Jahnke, Frank; Schuh, Kolja

    2013-12-09

    The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.31.5 ?m. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.

  6. Surface structure of CdSe Nanorods revealed by combined X-rayabsorption fine structure measurements and ab-initio calculations

    SciTech Connect (OSTI)

    Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul

    2006-01-27

    We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.

  7. SYSTEMATIC MOTION OF FINE-SCALE JETS AND SUCCESSIVE RECONNECTION IN SOLAR CHROMOSPHERIC ANEMONE JET OBSERVED WITH THE SOLAR OPTICAL TELESCOPE/HINODE

    SciTech Connect (OSTI)

    Singh, K. A. P.; Nishida, K.; Shibata, K.; Isobe, H.

    2012-11-20

    The Solar Optical Telescope (SOT) on board Hinode allows observations with high spatiotemporal resolution and stable image quality. A {lambda}-shaped chromospheric anemone jet was observed in high resolution with SOT/Hinode. We found that several fine-scale jets were launched from one end of the footpoint to the other. These fine-scale jets ({approx}1.5-2.5 Mm) gradually move from one end of the footpoint to the other and finally merge into a single jet. This process occurs recurrently, and as time progresses the jet activity becomes more and more violent. The time evolution of the region below the jet in Ca II H filtergram images taken with SOT shows that various parts (or knots) appear at different positions. These bright knots gradually merge into each other during the maximum phase. The systematic motion of the fine-scale jets is observed when different knots merge into each other. Such morphology would arise due to the emergence of a three-dimensional twisted flux rope in which the axial component (or the guide field) appears in the later stages of the flux rope emergence. The partial appearance of the knots could be due to the azimuthal magnetic field that appears during the early stage of the flux rope emergence. If the guide field is strong and reconnection occurs between the emerging flux rope and an ambient magnetic field, this could explain the typical feature of systematic motion in chromospheric anemone jets.

  8. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  9. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 13, October--December, 1995

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-01-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit. During Quarter 13 (October--December 1995), testing of the GranuFlow dewatering process indicated a 3--4% reduction in cake moisture for screen-bowl and solid-bowl centrifuge products. The Orimulsion additions were also found to reduce the potential dustiness of the fine coal, as well as improve solids recovery in the screen-bowl centrifuge. Based on these results, Lady Dunn management now plans to use a screen bowl centrifuge to dewater their Microcel{trademark} column froth product. Subtask 3.3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter. Continuing Subtask 6.4 work, investigating coal-water-slurry formulation, indicated that selective agglomeration products can be formulated into slurries with lower viscosities than advanced flotation products. Subtask 6.5 agglomeration bench-scale testing results indicate that a very fine grind is required to meet the 2 lb ash/MBtu product specification for the Winifrede coal, while the Hiawatha coal requires a grind in the 100- to 150-mesh topsize range. Detailed design work remaining involves the preparation and issuing of the final task report. Utilizing this detailed design, a construction bid package was prepared and submitted to three Colorado based contractors for quotes as part of Task 9.

  10. Mike West Potomac Hudson Engineering Sandy Enyeart SAIC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Models used to estimate Impacts * TRAGIS (Transportation Routing Analysis Geographic Information System) - TRAGIS is a GIS-based transportation analysis computer ...

  11. Sandy Springs, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9242688, -84.3785379 Show Map Loading map... "minzoom":false,"mappingservi...

  12. Hurricane Sandy and Our Energy Infrastructure | Department of...

    Energy Savers [EERE]

    ... They moved emergency workers and equipment into position. ... to charge their phones -- problems that plagued many in the ... in a disaster and dramatically improve response planning. ...

  13. Hurricane Sandy One Year Later: Rebuilding Stronger, More Resilient Communities

    Broader source: Energy.gov [DOE]

    The Energy Department continues to take actions to protect our energy infrastructure, adapt to climate change and build partnerships to make communities across the country stronger and more resilient.

  14. The Energy Department Prepares for Hurricane Sandy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE is sending personnel to the FEMA Regional Response Coordination Centers in Boston, New York and Philadelphia over the weekend as well as putting additional personnel on standby ...

  15. Responding To Hurricane Sandy: DOE Situation Reports | Department...

    Office of Environmental Management (EM)

    ... A State of Emergency has been declared for Connecticut, Delaware, Washington D.C., Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, ...

  16. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 11, April 1, 1991--June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  17. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

  18. Near-edge X-ray Absorption Fine Structure Study of Disordering in Gd₂(Ti1-yZry)₂O₇ Pyrochlores

    SciTech Connect (OSTI)

    Nachimuthu, Ponnusamy; Thevuthasan, Suntharampillai; Adams, Evan M.; Weber, William J.; Begg, Bruce D.; Mun, B S.; Shuh, David K.; Lindle, Dennis W.; Gullikson, Eric M.; Perera, Rupert C.

    2005-02-03

    Disorder in Gd₂(Ti1-yZry)₂O₇ pyrochlores, for y=0.0-1.0, is investigated by Ti 2p and O 1s near-edge x-ray absorption fine structure spectroscopy. Ti⁴⁺ ions are found to occupy octahedral sites in Gd₂Ti₂O₇ with a tetragonal distortion induced by vacant oxygen sites. As Zr substitutes for Ti, the tetragonal distortion decreases, and Zr coordination increases from 6 to 8. The migration of oxygen ions from 48f or 8b sites to vacant 8a sites compensate for the increased Zr coordination, thereby reducing the number of vacant 8a sites, which further reduces the tetragonal distortion and introduces more disorder around Ti. This is evidence for simultaneous cation disorder with anion migration.

  19. Development of an advanced process for drying fine coal in an inclined fluidized bed: Technical progress report for the second quarter, January 19--March 31, 1989

    SciTech Connect (OSTI)

    Boysen, J.E.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.

    1989-05-01

    This research project is for the development of a technically and economically feasible process for drying and stabilizing of fine particles of high-moisture subbituminous coal. Research activities were initiated with efforts concentrating on characterization of the two feed coals: Eagle Butte coal from AMAX Coal Company's mine located in the Powder River Basin of Wyoming; and coal from Usibelli Coal Mine, Inc.'s mine located in central Alaska. Both of the feed coals are high-moisture subbituminous coals with ''as received'' moisture contents of 29% and 22% for the Eagle Butte and Usibelli coals, respectively. However, physical analyses of the crushed coal samples (--28-mesh particle size range) indicate many differences. The minimum fluidization velocity (MFV) of the feed coals were experimentally determined. The MFV for --28-mesh Eagle Butte coal is approximately 1 ft/min, and the MFV for --28-mesh Usibelli coal is approximately 3 ft/min. 2 refs., 16 figs., 3 tabs.

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Task 6 -- Selective agglomeration laboratory research and engineering development for premium fuels

    SciTech Connect (OSTI)

    Moro, N.; Jha, M.C.

    1997-06-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and benchscale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report represents the findings of Subtask 6.5 Selective Agglomeration Bench-Scale Testing and Process Scale-up. During this work, six project coals, namely Winifrede, Elkhorn No. 3, Sunnyside, Taggart, Indiana VII, and Hiawatha were processed in a 25 lb/hr continuous selective agglomeration bench-scale test unit.

  1. Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM2.5) Fraction of Coal Combustion Ash

    SciTech Connect (OSTI)

    T. L. Robl; J. G. Groppo; R. Rathbone; B. Marrs; R. Jewell

    2008-07-18

    The overall objective of this research was to determine the feasibility of recovering a very fine fraction of fly ash, that is 5 microns in diameter or less and examining the characteristics of these materials in new or at least less traditional applications. These applications included as a polymer filler or as a 'super' pozzolanic concrete additive. As part of the effort the ash from 6 power plants was investigated and characterized. This work included collection from ESP Hoppers and ponds. The ash was thoroughly characterized chemically and physically. Froth flotation was used to reduce the carbon and testing showed that flotation could effectively reduce carbon to acceptable levels (i.e. 0.5% LOI) for most of the substrates tested. in order to enable eventual use as fillers. Hydraulic classification was used in the separation of the fine ash from the coarse ash. Hydraulic classification requires the ash to be dispersed to be effective and a range of dispersants were tested for adsorption as well as sedimentation rate. A wide range of dosages were required (0.3 to 10 g/kg). In general the ponded ash required less dispersant. A model was developed for hydraulic classification. A pilot-scale hydraulic classifier was also designed and operated for the project. Product yields of up to 21% of feed solids were achieved with recoveries of <5 {micro}m particles as high as 64%. Mean particle sizes (D{sub 50}) of the ultra fine ash (UFA) products varied from 3.7 to 10 {micro}m. A patent was filed on the classifier design. A conceptual design of a Process Demonstration Unit (PDU) with a feed rate of 2 tons of raw ash feed per hour was also completed. Pozzolanic activity was determined for the UFA ashes in mortars. In general the overall strength index was excellent with values of 90% achieved in 3 days and {approx}100% in 7 days. Three types of thermoplastic polymers were evaluated with the UFA as a filler: high density polyethylene, thermoplastic elastomer and

  2. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    SciTech Connect (OSTI)

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.; Bunker, Bruce A.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  3. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  4. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  5. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant: A First Application of a One-Electron Quantum Cyclotron

    ScienceCinema (OSTI)

    Gabrielse, Gerald [Harvard University, Cambridge, Massachusetts, United States

    2009-09-01

    Remarkably, the famous UW measurement of the electron magnetic moment has stood since 1987. With QED theory, this measurement has determined the accepted value of the fine structure constant. This colloquium is about a new Harvard measurement of these fundamental constants. The new measurement has an uncertainty that is about six times smaller, and it shifts the values by 1.7 standard deviations. One electron suspended in a Penning trap is used for the new measurement, like in the old measurement. What is different is that the lowest quantum levels of the spin and cyclotron motion are resolved, and the cyclotron as well as spin frequencies are determined using quantum jump spectroscopy. In addition, a 0.1 mK Penning trap that is also a cylindrical microwave cavity is used to control the radiation field, to suppress spontaneous emission by more than a factor of 100, to control cavity shifts, and to eliminate the blackbody photons that otherwise stimulate excitations from the cyclotron ground state. Finally, great signal-to-noise for one-quantum transitions is obtained using electronic feedback to realize the first one-particle self-excited oscillator. The new methods may also allow a million times improved measurement of the 500 times small antiproton magnetic moment.

  6. Development of an advanced process for drying fine coal in an inclined fluidized bed: Technical progress report for the third quarter, April 1, 1989-June 30, 1989

    SciTech Connect (OSTI)

    Boysen, J.E.; Barbour, F.A.; Turner, T.F.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.

    1989-07-01

    This research project is for the development of a technical and economical feasible process for drying and stability fine particles of high-moisture subbituminous coal. Research conducted in this quarter focused upon thermogravimetric analysis (TGA) of both feed coals; continuation of the bench-scale IFB drying experiments; and initiation of the characterization of the products from the bench-scale drying experiments to determine their moisture reabsorption, dustiness, and spontaneous ignition properties. Thirty 4-hr and six 12-hr bench-scale IFB drying tests were conducted this quarter making a total of forty-one 4-hr (19 using Eagle Butte feed coal and 22 using Usibelli feed coal) and six 12-hr (3 using each feed coal) tests conducted thus far. IFB reactor slopes of 3, 6, 9, 12, and 15 degrees were investigated for each feed coal. During the tests using Eagle Butte coal, gas-to-solids ratios ranging from approximately 0.7 to 9.7 lb/lb (kg/kg) and average IFB reactor temperatures ranging from approximately 370 to 700/degree/F (188 to 371/degree/C) were tested. 5 refs., 41 figs., 7 tabs.

  7. A facile gel-combustion route for fine particle synthesis of spinel ferrichromite: X-ray and Mssbauer study on effect of Mg and Ni content

    SciTech Connect (OSTI)

    Vader, V.T.; Achary, S.N.; Meena, S.S.

    2014-02-01

    Highlights: A novel and facile synthesis route. Transformation of system from random to inverse spinel. Appearance of superparamagnetism phase. - Abstract: A novel nitratecitrate gel combustion route was used to prepare fine particle of a series Mg{sub 1?x}Ni{sub x}FeCrO{sub 4} (0.0 ? x ? 1.0) and its structural properties were investigated. The in situ oxidizing environment provided by the nitrate ions in the gel increases the rate of oxidation and lowers the decomposition temperature of component. All the samples after sintering were characterized at room temperature by X-ray diffraction (XRD) method and Mssbauer spectroscopy techniques. The X-ray and Mssbauer studies confirmed the single phase cubic spinel structure with all Fe ions in 3+ charge state. XRD and Mssbauer studies revealed that the samples of x = 0.0, and 0.2 are random spinel and show rather broad lines, while x = 0.41.0 are inverse spinel.

  8. Copper fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser-solid experiments

    SciTech Connect (OSTI)

    Palmeri, P.; Quinet, P.; Batani, D.

    2015-03-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)

  9. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    SciTech Connect (OSTI)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)] [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ?}-N,N{sup ?}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ?})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ?}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  10. Spiral concentrators recover fine coal

    SciTech Connect (OSTI)

    Fiscor, S.

    2005-12-15

    Compound spirals offer better performance in a more efficient configuration. Prep plant operators in the US are increasingly opting to use spiral concentrators. They are easy to install, operate and maintain but their downfall is low capacity. The article describes spirals available from PrepTech/Multotec, Krebs Engineers and Roche MT. It reports on research on spiral concentrator technology. 1 ref., 4 figs.

  11. Fine-tuning Philippine transactions

    SciTech Connect (OSTI)

    Vitale, R.

    1994-11-01

    Expanding the power generation and distribution capability of the Philippines remains a top priority of the Philippine government. It is therefore not surprising that a number of the most significant legislative initiatives approved by the Philippine legislature in the past few years have been designed to encourage these activities in particular. There are several recent, significant statutes that will affect both power and non-power projects undertaken in the Philippines.

  12. Combustor for fine particulate coal

    DOE Patents [OSTI]

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  13. Combustor for fine particulate coal

    DOE Patents [OSTI]

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  14. Combustor for fine particulate coal

    DOE Patents [OSTI]

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  15. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes

    SciTech Connect (OSTI)

    Andersen, Ditte C.; Schneider, Mikael; Eskildsen, Tilde; Teisner, Borge; and others

    2010-06-10

    Delta like 1 homolog (Dlk1) exists in both transmembrane and soluble molecular forms, and is implicated in cellular growth and plays multiple roles in development, tissue regeneration, and cancer. Thus, DLK1 levels are critical for cell function, and abnormal DLK1 expression can be lethal; however, little is known about the underlying mechanisms. We here report that miR-15a modulates DLK1 levels in preadipocytes thus providing a mechanism for DLK1 regulation that further links it to cell cycle arrest and cancer since miR-15a is deregulated in these processes. In preadipocytes, miR-15a increases with cell density, and peaks at the same stage where membrane DLK1{sup M} and soluble DLK1{sup S} are found at maximum levels. Remarkably, miR-15a represses the amount of all Dlk1 variants at the mRNA level but also the level of DLK1{sup M} protein while it increases the amount of DLK1{sup S} supporting a direct repression of DLK1 and a parallel effect on the protease that cleaves off the DLK1 from the membrane. In agreement with previous studies, we found that miR-15a represses cell numbers, but additionally, we report that miR-15a also increases cell size. Conversely, anti-miR-15a treatment decreases cell size while increasing cell numbers, scenarios that were completely rescued by addition of purified DLK1{sup S}. Our data thus imply that miR-15a regulates cell size and proliferation by fine-tuning Dlk1 among others, and further emphasize miR-15a and DLK1 levels to play important roles in growth signaling networks.

  16. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect (OSTI)

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  17. Apportionment of ambient primary and secondary fine particulate matter during a 2001 summer intensive study at the CMU Supersite and NETL Pittsburgh Site

    SciTech Connect (OSTI)

    Delbert J. Eatough; Nolan F. Mangelson; Richard R. Anderson

    2007-10-15

    Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NOx, NO{sub 2}, and O{sub 3} concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were secondary transported material (dominated by ammonium sulfate) from the west and southwest from sources including coal-fired power plants, coke processing plants and steel mills, (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. 27 refs., 16 figs., 1 tab.

  18. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 11, April--June, 1995

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-07-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 tons of each of three project coals, by each process. During Quarter 11 (April--June, 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant with the installation and calibration of a refurbished 30-inch diameter column. The evaluation of toxic trace element data for column flotation samples continued, with preliminary analysis indicating that reasonably good mass balances were achieved for most elements, and that significant reductions in the concentration of many elements were observed from raw coal, to flotation feed, to flotation product samples. Significant progress was made on Subtask 6.5 selective agglomeration bench-scale testing. Data from this work indicates that project ash specifications can be met for all coals evaluated, and that the bulk of the bridging liquid (heptane) can be removed from the product for recycle to the process. The detailed design of the 2 t/hr selective agglomeration module progressed this quarter with the completion of several revisions of both the process flow, and the process piping and instrument diagrams. Procurement of coal for PDU operation began with the purchase of 800 tons of Taggart coal. Construction of the 2 t/hr PDU continued through this reporting quarter and is currently approximately 60% complete.

  19. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 12, July--September 1995

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-10-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction and operation of a 2-t/hr process development unit. The project began in October, 1992, and is scheduled for completion by June, 1997. During Quarter 12 (July--September 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at Lady Dunn. Under Subtask 4.4, additional toxic trace element analysis of column flotation samples finalized the data set. Data analysis indicates that reasonably good mass balances were achieved for most elements. The final Subtask 6.3 Selective Agglomeration Process Optimization topical report was issued this quarter. Preliminary Subtask 6.4 work investigating coal-water-fuel slurry formulation indicated that selective agglomeration products formulate slurries with lower viscosities than advanced flotation products. Work continued on Subtask 6.5 agglomeration bench-scale testing. Results indicate that a 2 lb ash/MBtu product could be produced at a 100-mesh topsize with the Elkhorn No. 3 coal. The detailed design of the 2 t/hr selective agglomeration module neared completion this quarter with the completion of additional revisions of both the process flow, and the process piping and instrument diagrams. Construction of the 2 t/hr PDU and advanced flotation module was completed this quarter and startup and shakedown testing began.

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 9, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-01-25

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by March, 1997. During Quarter 9 (October--December, 1995), parametric and optimization testing was completed for the Taggart, Sunnyside, and Indiana VII coal using a 12-inch Microcel{trademark} flotation column. The detailed design of the 2-t/hr PDU grinding, flotation, and dewatering circuits neared completion with the specification of the major pieces of capital equipment to be purchased for these areas. Selective agglomeration test work investigated the properties of various industrial grades of heptane for use during bench- and PDU-scale testing. It was decided to use a hydrotreated grade of commercial heptane due to its low cost and low concentration of aromatic compounds. The final Subtask 6.4 CWF Formulation Studies Test Plan was issued. A draft version of the Subtask 6.5 Preliminary Design and Test Plan Report was also issued, discussing the progress made in the design of the bench-scale selective agglomeration unit. PDU construction work moved forward through the issuing of 26 request for quotations and 21 award packages for capital equipment.

  1. Code System to Create Broad-Group Cross Sections with Resonance Interference and Self-Shielding from Fine-Group and Pointwise Cross Sections.

    Energy Science and Technology Software Center (OSTI)

    2007-10-31

    Version: 02 RSICC received MICROX‑2 through the NEADB (identifier is NEA‑1562/02.) This is an improved version of the original MICROX-2 two-region spectrum code, which was developed at General Atomic, to prepare broad group neutron cross sections for use in diffusion-and/or transport theory codes from an input library of fine group and pointwise cross sections. The MICROX-2 code can explicitly account for the overlap and interference effects between resonances in both the resonance and thermal neutronmore » energy ranges and allows the simulta?neous treatment of leakage and resonance self-shielding in doubly heterogeneous lattice cells. MICROR runs as a module of NJOY 89.62; the NJOY calling module is included in the package. This release has been changed in that the MODER module from NJOY 94.0, too, has been included as subprogramm of NJOY 89.62, so as to make the code system completely selfconsistent, i.e. without requiring the use of some NJOY version to convert pendf and gendf from coded to binary. Using data from pointwise and groupwise NJOY tapes, the stand-alone MICROR reformatting program produces files containing basic nuclear data to be used by MICROX-2. MICROR edits PENDF and GENDF data files from NJOY to create FDTAP?E, GGTA?PE and GARTA?PE input files for MICROX-2. NJOY is not included in this package. Some data libraries are included for example cases; these data were generated from data in 193 groups as well as from point-wise cross sections from NJOY (Edition 89.62).« less

  2. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    SciTech Connect (OSTI)

    Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; Wang, J. D.; Hao, J. M.

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widely used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.

  3. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, B.; Wang, S. X.; Xing, J.; Fu, K.; Fu, J. S.; Jang, C.; Zhu, Y.; Dong, X. Y.; Gao, Y.; Wu, W. J.; et al

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widelymore » used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.« less

  4. Proof of concept and performance optimization of high gravity batch type centrifuge for dewatering fine coal. Quarterly technical progress report No. 3, March 20, 1990--June 20, 1990, Revision

    SciTech Connect (OSTI)

    Smith, L.B.; Durney, T.E. Jr.

    1990-07-24

    Coal Technology Corporation (CTC) believes that the new CTC high gravity, high production, batch type centrifugal dryer technology can play a significant role in improving the product quality as well as costs of operation in coal processing plants. It is further believed that the new centrifugal dryer technology can form an important part in systems used to clean up the millions of tons of coal fines in refuse piles and ponds. It is anticipated that the new centrifuge can become an important ancillary to the advanced deep cleaning processes for coal. Because of these convictions, CTC has been engaged in a pioneering research effort into the new art of drying fine clean coal in high gravity, high production, batch type centrifuges, since 1981. This work has progressed to the point where the new centrifugal dryer technology is nearly ready for commercialization. It promises to provide needed fine coal drying capability at somewhat lower capital costs and at substantially lower operating costs than competitive systems. It also promises to do so with no detrimental effects on either the coal quality or the evironment. The primary objective of this project is to prove the concept in a commercial coal processing plant environment. The proof of concept tests will also include testing with a variety of coals from different regions. A further objective will be to optimize the efficiency and the cost effectiveness of the new centrifugal dryer technology.

  5. Effect of organic waste amendments on zinc adsorption by two soils

    SciTech Connect (OSTI)

    Shuman, L.M. . Georgia Experiment station)

    1999-03-01

    Two soils (fine and coarse textured) were amended with five organic wastes or humic acid. One adsorption experiment was carried out at 1 mmol L[sup [minus]1] Zn and at pH levels from 4 to 8. A second experiment was at pH 6 and 0 to 4 mmol/L[sup [minus]1] Zn. The greatest variation in Zn adsorption among organic treatments came at pH 6, with a lesser range for the fine textured soil (pH 5--6) and a wider range for the sandy soil (pH 5--7). Adsorption followed a two-site Langmuir model, and maxima were higher for the finer textured soil compared with the sandy soil. Adsorption maxima were not changed by the organic wastes for the fine textured soil, but all were increased over the controls for the sandy soil. Zinc adsorption for poultry litter was lower than the control for the sandy soil. Industrial sewage sludge and humic acid increased Zn adsorption more than did commercial compost, spent mushroom compost, and cotton litter. It was concluded that organic materials have more influence on Zn adsorption for sandy soils than for fine textured soils and that most materials will increase Zn adsorption, whereas those with high soluble C can decrease Zn adsorption.

  6. Enhanced sensitivity to the time variation of the fine-structure constant and m{sub p}/m{sub e} in diatomic molecules: A closer examination of silicon monobromide

    SciTech Connect (OSTI)

    Beloy, K.; Borschevsky, A.; Schwerdtfeger, P.; Flambaum, V. V.

    2010-08-15

    Recently it was pointed out that transition frequencies in certain diatomic molecules have an enhanced sensitivity to variations in the fine-structure constant {alpha} and the proton-to-electron mass ratio m{sub p}/m{sub e} due to a near cancellation between the fine structure and vibrational interval in a ground electronic multiplet [V. V. Flambaum and M. G. Kozlov, Phys. Rev. Lett. 99, 150801 (2007)]. One such molecule possessing this favorable quality is silicon monobromide. Here we take a closer examination of SiBr as a candidate for detecting variations in {alpha} and m{sub p}/m{sub e}. We analyze the rovibronic spectrum by employing the most accurate experimental data available in the literature and perform ab initio calculations to determine the precise dependence of the spectrum on variations in {alpha}. Furthermore, we calculate the natural linewidths of the rovibronic levels, which place a fundamental limit on the accuracy to which variations may be determined.

  7. Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er{sup 3+}:NaYF{sub 4} nanocrystals under excitation of two near infrared femtosecond lasers

    SciTech Connect (OSTI)

    Shang, Xiaoying; Cheng, Wenjing; Zhou, Kan; Ma, Jing; Feng, Donghai; Zhang, Shian; Sun, Zhenrong; Jia, Tianqing; Chen, Ping; Qiu, Jianrong

    2014-08-14

    In this paper, we report fine tunable red-green upconversion luminescence of glass ceramic containing 5%Er{sup 3+}: NaYF{sub 4} nanocrystals excited simultaneously by two near infrared femtosecond lasers. When the glass ceramic was irradiated by 800 nm femtosecond laser, weak red emission centered at 670 nm was detected. Bright red light was observed when the fs laser wavelength was tuned to 1490 nm. However, when excited by the two fs lasers simultaneously, the sample emitted bright green light centered at 550 nm, while the red light kept the same intensity. The dependences of the red and the green light intensities on the two pump lasers are much different, which enables us to manipulate the color emission by adjusting the two pump laser intensities, respectively. We present a theoretical model of Er{sup 3+} ions interacting with two fs laser fields, and explain well the experimental results.

  8. Interrogation of Surface, Skin, and Core Orientation in Thermotropic Liquid-Crystalline Copolyester Moldings by Near-Edge X-ray Absorption Fine Structure and Wide-Angle X-ray Scattering

    SciTech Connect (OSTI)

    Rendon,S.; Bubeck, R.; Thomas, L.; Burghardt, W.; Hexemer, A.; Fischer, D.

    2007-01-01

    Injection molding thermotropic liquid-crystalline polymers (TLCPs) usually results in the fabrication of molded articles that possess complex states of orientation that vary greatly as a function of thickness. 'Skin-core' morphologies are often observed in TLCP moldings. Given that both 'core' and 'skin' orientation states may often differ both in magnitude and direction, deconvolution of these complex orientation states requires a method to separately characterize molecular orientation in the surface region. A combination of two-dimensional wide-angle X-ray scattering (WAXS) in transmission and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to probe the molecular orientation in injection molded plaques fabricated from a 4,4'-dihydroxy-{alpha}-methylstilbene (DH{alpha}MS)-based thermotropic liquid crystalline copolyester. Partial electron yield (PEY) mode NEXAFS is a noninvasive ex situ characterization tool with exquisite surface sensitivity that samples to a depth of 2 nm. The effects of plaque geometry and injection molding processing conditions on surface orientation in the regions on- and off- axis to the centerline of injection molded plaques are presented and discussed. Quantitative comparisons are made between orientation parameters obtained by NEXAFS and those from 2D WAXS in transmission, which are dominated by the microstructure in the skin and core regions. Some qualitative comparisons are also made with 2D WAXS results from the literature.

  9. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    SciTech Connect (OSTI)

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  10. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    SciTech Connect (OSTI)

    Younker, J.M.; Krest, C.M.; Jiang, W.; Krebs, C.; Bollinger, J.M.Jr.; Green, M.T.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.

  11. Uranium redistribution due to water table fluctuations in sandy wetland mesocosms

    SciTech Connect (OSTI)

    Gilson, Emily R.; Huang, Shan; Koster van Groos, Paul G.; Scheckel, Kirk G.; Qafoku, Odeta; Peacock, Aaron D.; Kaplan, Daniel I.; Jaffe, Peter R.

    2015-10-20

    In order to better understand the fate and stability of immobilized uranium (U) in wetland sediments, and how intermittent dry periods affect U stability, we dosed saturated wetland mesocosms planted with Scirpus acutus with low levels of uranyl acetate for 4 months before imposing a short drying and rewetting period. Concentrations of U in mesocosm effluent increased after drying and rewetting, but the cumulative amount of U released following the dry period constituted less than 1% of the total U immobilized in the soil during the 4 months prior. This low level of remobilization suggests, and XAS analyses confirm, that microbial reduction was not the primary means of U immobilization, as the U immobilized in mesocosms was primarily U(VI) rather than U(IV). Drying followed by re-wetting caused a redistribution of U downward in the soil profile and on to root surfaces. While the U on roots before drying was primarily associated with minerals, the U that relocated to the roots during drying and rewetting was bound diffusely to root surfaces. Results show that short periods of drought conditions in a wetland, which expose reduced sediments to air, may impact U distribution, but these conditions may not cause large releases of soil-bound U from planted wetlands to surface waters.

  12. BIG SANDY IDA ONEID A WILL IAM SBU RG BU RNIN G SPRIN GS WIN

    U.S. Energy Information Administration (EIA) Indexed Site

    Miles 2001 Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Appalachian ...

  13. East Coast Utilities prepare for Hurricane Sandy | OpenEI Community

    Open Energy Info (EERE)

    Please report your outage to 1-800-833-7476, http:bit.lywbqiUb or through our mobile app at http:bit.lyL3Bvs4 . Please check our outage map for updates: http:bit.ly...

  14. Major Disaster and Emergency Declarations for Specific States from Hurricane Sandy

    Broader source: Energy.gov [DOE]

    The President signed Major Disaster Declarations for New Jersey (DR 4086), New York (DR-4085), Connecticut (DR-4087), and Rhode Island (DR-4089). Additionally, the President signed Emergency Declarations for New Hampshire (EM-3360), Virginia (EM-3359), West Virginia (EM-3358), Delaware (EM-3357), Rhode Island (EM-3355), Pennsylvania (EM-3356), District of Columbia (EM-3352), Massachusetts (EM-3350), and Maryland (EM-3349). For updates please go to: http://www.fema.gov/disasters.

  15. Overview of Response to Hurricane Sandy-Nor'Easter and Recommendations...

    Office of Environmental Management (EM)

    and recommends specific activities to help DOE move forward with its government colleagues and industry partners to increase the resilience of the nation's energy infrastructure. ...

  16. BIG SANDY IDA ONEID A WILL IAM SBU RG BU RNIN G SPRIN GS WIN

    U.S. Energy Information Administration (EIA) Indexed Site

    315 Miles ¯ 2001 BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Appalachian Basin Boundary Appalachian Basin, TN-KY (Panel 7 of 7) Oil and Gas Fields By 2001 BOE

  17. BIG SANDY IDA ONEID A WILL IAM SBU RG BU RNIN G SPRIN GS WIN

    U.S. Energy Information Administration (EIA) Indexed Site

    100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Appalachian Basin Boundary Appalachian Basin, TN-KY (Panel 7 of 7) Oil and Gas Fields By 2001 BOE

  18. BIG SANDY IDA ONEID A WILL IAM SBU RG BU RNIN G SPRIN GS WIN

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ASH BU RN C REEK HUNT ING CREEK RED BIRD C OALBED GREEN GROVE RPD-WAYNE-3 LOC UST HILL BU ... Division, Office of Oil and Gas, Energy Information Administration pursuant to ...

  19. Printability Optimization For Fine Pitch Solder Bonding

    SciTech Connect (OSTI)

    Kwon, Sang-Hyun; Lee, Chang-Woo; Yoo, Sehoon

    2011-01-17

    Effect of metal mask and pad design on solder printability was evaluated by DOE in this study. The process parameters were stencil thickness, squeegee angle, squeegee speed, mask separating speed, and pad angle of PCB. The main process parameters for printability were stencil thickness and squeegee angle. The response surface showed that maximum printability of 1005 chip was achieved at the stencil thickness of 0.12 mm while the maximum printability of 0603 and 0402 chip was obtained at the stencil thickness of 0.05 mm. The bonding strength of the MLCC chips was also directly related with the printability.

  20. Plasticity in Ultra Fine Grained Materials

    SciTech Connect (OSTI)

    Koslowski, Marisol

    2015-04-15

    Understanding the mechanisms of deformation of nanocrystalline (nc) materials is critical to the design of micro and nano devices and to develop materials with superior fracture strength and wear resistance for applications in new energy technologies. In this project we focused on understanding the following plastic deformation processes described in detail in the following sections: 1. Plastic strain recovery (Section 1). 2. Effect of microstructural variability on the yield stress of nc metals (Section 2). 3. The role of partial and extended full dislocations in plastic deformation of nc metals (Section 3).

  1. Clean Production of Coke from Carbonaceous Fines

    SciTech Connect (OSTI)

    Craig N. Eatough

    2004-11-16

    In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

  2. Fine Anthracite Coal Washing Using Spirals

    SciTech Connect (OSTI)

    R.P. Killmeyer; P.H. Zandhuis; M.V. Ciocco; W. Weldon; T. West; D. Petrunak

    2001-05-31

    The spiral performed well in cleaning the coarse 8 x 16 mesh size fraction, as demonstrated by the Ep ranging from 0.091 to 0.177. This is in line with typical spiral performance. In addition, the presence of the coarser size fraction did not significantly affect spiral performance on the typical 16 x 100 mesh fraction, in which the Ep ranged from 0.144 to 0.250. Changes in solids concentration and flow rate did not show a clear correlation with spiral performance. However, for difficult-to-clean coals with high near-gravity material, such as this anthracite, a single-stage spiral cleaning such a wide size fraction may not be able to achieve the clean coal ash and yield specifications required. In the first place, while the performance of the spiral on the coarse 8 x 16 mesh fraction is good with regard to Ep, the cutpoints (SG50s) are high (1.87 to 1.92), which may result in a clean coal with a higher-than-desired ash content. And second, the combination of the spiral's higher overall cutpoint (1.80) with the high near-gravity anthracite results in significant misplaced material that increases the clean coal ash error. In a case such as this, one solution may be to reclean the clean coal and middlings from the first-stage spiral in a second stage spiral.

  3. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  4. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  5. Structural characterization of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    SciTech Connect (OSTI)

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-28

    The structure of Bi{sub 2}Te{sub 3} (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb{sub 2}Te{sub 3} have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20 K to 300 K for Bi{sub 2}Te{sub 3} and from 10 K to 298 K for Sb{sub 2}Te{sub 3}. The EXAFS technique for studying the local structure of the two compounds was conducted from 19 K to 298 K. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} are isostructural, with a space group of R3{sup ¯}m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M = Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi{sub 2}Te{sub 3} are similar to those of Sb{sub 2}Te{sub 3} within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi{sub 2}Te{sub 3} relative to Sb{sub 2}Te{sub 3}.

  6. Secretary Chu Thanks Utility Staff and Line Workers For Their Efforts to Restore Power in the Wake of Hurricane Sandy

    Broader source: Energy.gov [DOE]

    As utility companies continue to work to restore power outages, Secretary Chu stopped by Pepco yesterday to personally thank the workers for their hard work.

  7. Process for producing fine and ultrafine filament superconductor wire

    DOE Patents [OSTI]

    Kanithi, H.C.

    1992-02-18

    A process for producing a superconductor wire made up of a large number of round monofilament rods is provided for, comprising assembling a multiplicity of round monofilaments inside each of a multiplicity of thin wall hexagonal tubes and then assembling a number of said thin wall hexagonal tubes within an extrusion can and subsequently consolidating, extruding and drawing the entire assembly down to the desired wire size. 8 figs.

  8. New process schemes, retrofits, fine tune alkylation capabilities

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1994-08-22

    Given alkylate's position as a key bleeding component for reformulated and oxygenated gasolines, process licensors have been working toward improved operation and design of alkylation technologies. An overview of the progress some of these companies have made will give refiners an update on the status of these new schemes. Phillips Petroleum Co. is a major licensor of HF alkylation units. Phillips' latest major process improvement is its so-called split-olefin feed technology (SOFT). By reducing the overall isobutane-to-olefin ratio (I/O) while maintaining a high I/O in the reaction zone, alkylate quality can be maintained and energy usage reduced. Other modifications have improved unit safety and environmental performance. The paper also discusses H[sub 2]SO[sub 4] alkylation processes and the Kellogg/Exxon alkylation process improvements.

  9. Friction stir weld tools having fine grain structure

    DOE Patents [OSTI]

    Grant, Glenn J.; Frye, John G.; Kim, Jin Yong; Lavender, Curt A.; Weil, Kenneth Scott

    2016-03-15

    Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.

  10. Topological Quantization in Units of the Fine Structure Constant...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  11. Casting fine grained, fully dense, strong inorganic materials

    SciTech Connect (OSTI)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  12. Process for producing fine and ultrafine filament superconductor wire

    DOE Patents [OSTI]

    Kanithi, Hem C.

    1992-01-01

    A process for producing a superconductor wire made up of a large number of round monofilament rods is provided for, comprising assembling a multiplicity of round monofilaments inside each of a multiplicity of thin wall hexagonal tubes and then assembling a number of said thin wall hexagonal tubes within an extrusion can and subsequently consolidating, extruding and drawing the entire assembly down to the desired wire size.

  13. FineTex EnE Inc | Open Energy Information

    Open Energy Info (EERE)

    EnE Inc Place: Seoul, Korea (Republic) Zip: 137-875 Product: Korean manufacturer of energy saving air conditioners and heating systems. Coordinates: 37.557121, 126.977379 Show...

  14. Ab Initio X-ray Absorption Fine Structure Code

    Energy Science and Technology Software Center (OSTI)

    1992-07-01

    FEFF5.03 calculates single and multiple-scattering curved wave XAFS spectra, phase shifts and effective scattering amplitudes for cluster of atoms.

  15. Fine, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2478396, -75.1377015 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  16. A cyclic universe approach to fine tuning (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 757; Journal Issue: C; Journal ID: ISSN 0370-2693 Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: Netherlands ...

  17. Laser Fine-Adjustment Thruster For Space Vehicles

    SciTech Connect (OSTI)

    Rezunkov, Yu. A.; Egorov, M. S.; Repina, E. V.; Safronov, A. L.; Rebrov, S. G.

    2010-05-06

    To the present time, a few laser propulsion engine devices have been developed by using dominant mechanisms of laser propulsion. Generally these mechanisms are laser ablation, laser breakdown of gases, and laser detonation waves that are induced due to extraction of the internal energy of polymer propellants. In the paper, we consider the Aero-Space Laser Propulsion Engine (ASLPE) developed earlier, in which all of these mechanisms are realized via interaction of laser radiation with polymers both in continuous wave (CW) and in repetitively pulsed modes of laser operation. The ASLPE is considered to be exploited as a unit of a laser propulsion device being arranged onboard space vehicles moving around the Earth or in interplanetary missions and intended to correct the vehicles orbits. To produce a thrust, a power of the solar pumped lasers designed to the present time is considered in the paper. The problem of increasing the efficiency of the laser propulsion device is analyzed as applied to space missions of vehicles by optimizing the laser propulsion propellant composition.

  18. Fine coal cleaning via the micro-mag process

    DOE Patents [OSTI]

    Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.

    1991-01-01

    A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

  19. Optimizing Fine-grained Communication in a Biomolecular Simulation...

    Office of Scientific and Technical Information (OSTI)

    For 100-million-atom STMV, we improve upon the prior Jaguar XT5 result of 26 msstep to 13 msstep using 298,992 cores on Jaguar XK6. Authors: Sun, Yanhua 1 ; Zheng, Gengbin 1 ...

  20. Vertical electric field induced suppression of fine structure...

    Office of Scientific and Technical Information (OSTI)

    Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan) (Egypt) ...

  1. FERC responds to requests, fine tunes Order 636

    SciTech Connect (OSTI)

    Not Available

    1992-08-10

    This paper reports that the Federal Regulatory Commission has changed Order 636, its U.S. pipeline rate unbundling rule, to meet major objections raised to it. Order 636 now requires pipelines to continue existing one part volumetric rates, computed at the existing load factor, for unbundled transportation service for small customers. FERC retained the existing eligibility criteria but increased the size of the eligible class to include customers that transport up to 10 MMcfd.

  2. DEVELOPMENT OF DEWATERING AIDS FOR MINERALS AND COAL FINES (Technical...

    Office of Scientific and Technical Information (OSTI)

    cause a decrease in the capillary pressures of the water trapped in a filter cake by (1) decreasing the surface tension of water, (2) increasing the contact angles of the particles ...

  3. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harsh winds from extreme storms battered Cape Cod this past winter and resulted in power outages across the region, and as summers get warmer, beachgoers rely more and more on ...

  4. FINE STRUCTURE OF FLARE RIBBONS AND EVOLUTION OF ELECTRIC CURRENTS

    SciTech Connect (OSTI)

    Sharykin, I. N.; Kosovichev, A. G.

    2014-06-10

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains flare ribbons as footpoints of magnetic arcades, emitting due to interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of the C2.1 flare of 2013 August 15, observed with the New Solar Telescope of the Big Bear Solar Observatory, and the Solar Dynamics Observatory, GOES, and Fermi spacecraft. The observations reveal previously unresolved sub-arcsecond structure of flare ribbons in regions of strong magnetic field consisting from numerous small-scale bright knots. We observe a red-blue asymmetry of H{sub α} flare ribbons with a width as small as ∼100 km. We discuss the relationship between the ribbons and vertical electric currents estimated from vector magnetograms, and show that Joule heating can be responsible for energization of H{sub α} knots in the ribbons.

  5. Topological Quantization in Units of the Fine Structure Constant...

    Office of Scientific and Technical Information (OSTI)

    experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall ...

  6. Inclined fluidized bed system for drying fine coal

    DOE Patents [OSTI]

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  7. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect (OSTI)

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  8. Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC Ceramic DPF

    Broader source: Energy.gov [DOE]

    Basics of particle collection and desogn of filters for diesel soot particles are discussed. Parameters which influence back pressure and filter loading are described.

  9. Interflow dynamics on a low relief forested hillslope: Lots of fill, little spill

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Enhao; Rhett Jackson, C.; Klaus, Julian; McDonnell, Jeffrey J.; Griffiths, Natalie A.; Williamson, Margaret F.; Greco, James L.; Bitew, Menberu

    2016-01-27

    In this paper, we evaluated the occurrence of perching and interflow over and within a sandy clay loam argillic horizon within first-order, low-relief, forested catchments at the Savannah River Site (SRS) in the Upper Coastal Plain of South Carolina. We measured soil hydraulic properties, depths to the argillic layer, soil moisture, shallow groundwater behavior, interflow interception trench flows, and streamflow over a 4-year period to explore the nature and variability of soil hydraulic characteristics, the argillic “topography”, and their influence on interflow generation. Perching occurred frequently within and above the restricting argillic horizons during our monitoring period, but interflow wasmore » infrequent due to microtopographic relief and associated depression storage on the argillic layer surface. High percolation rates through the argillic horizon, particularly through soil anomalies, also reduced the importance of interflow. Interflow generation was highly variable across eleven segments of a 121 m interception trench. Hillslopes were largely disconnected from stream behavior during storms. Hillslope processes were consistent with the fill-and-spill hypothesis and featured a sequence of distinct thresholds: vertical wetting front propagation to the argillic layer; saturation of the argillic followed by local perching; filling of argillic layer depressions; and finally connectivity of depressions leading to interflow generation. Lastly, analysis of trench flow data indicated a cumulative rainfall threshold of 60 mm to generate interflow, a value at the high end of the range of thresholds reported elsewhere.« less

  10. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008

    SciTech Connect (OSTI)

    Sather, Nichole K.; Johnson, Gary E.; Storch, Adam; Teel, David; Skalski, John R.; Jones, Tucker A.; Dawley, Earl M.; Zimmerman, Shon A.; Borde, Amy B.; Mallette, Christine; Farr, R.

    2009-05-29

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Councils Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.

  11. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 7, 2012 Southwestern Helps Restore Power After Hurricane Sandy Southwestern Aids Sandy Recovery Line crews from Southwestern repair distribution lines in Tom's River, New ...

  12. OpenEI Community - United States

    Open Energy Info (EERE)

    prepare for Hurricane Sandy http:en.openei.orgcommunityblogeast-coast-utilities-prepare-hurricane-sandy

  13. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    SciTech Connect (OSTI)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    production between each soil were significant for Western Wheatgrass and Alfafla. The Sheridan sandy loam soil resulted in the highest production for western wheatgrass and alfalfa while the X-ranch sandy loam had the lowest production rate for both plants. Plant production levels resulting from untreated CBNG produced water were significantly higher compared to untreated conventional oil and gas produced water. However, few differences were found between water treatments. The biomass produced from the greenhouse study was analyzed for elemental composition and for forage value. Elemental composition indentified several interesting findings. Some of the biomass was characterized with seemly high boron and sodium levels. High levels of boron found in some of the biomass was unexpected and may indicate that alfalfa and western wheatgrass plants may have been impacted by either soil or irrigation water containing high boron levels. Plants irrigated with water treated using EDR technology appeared to contain higher levels of boron with increased levels of treatment. Forage evaluations were conducted using near infrared reflectance spectroscopy. The data collected show small differences, generally less than 10%, between produced water treatments including the no treatment and 100% treatment conditions for each plant species studied. The forage value of alfalfa and western wheatgrass did not show significant tendencies dependent on soil, the amount of produced water treatment, or treatment technology.

  14. Estimated recharge rates at the Hanford Site

    SciTech Connect (OSTI)

    Fayer, M.J.; Walters, T.B.

    1995-02-01

    The Ground-Water Surveillance Project monitors the distribution of contaminants in ground water at the Hanford Site for the U.S. Department of Energy. A subtask called {open_quotes}Water Budget at Hanford{close_quotes} was initiated in FY 1994. The objective of this subtask was to produce a defensible map of estimated recharge rates across the Hanford Site. Methods that have been used to estimate recharge rates at the Hanford Site include measurements (of drainage, water contents, and tracers) and computer modeling. For the simulations of 12 soil-vegetation combinations, the annual rates varied from 0.05 mm/yr for the Ephrata sandy loam with bunchgrass to 85.2 mm/yr for the same soil without vegetation. Water content data from the Grass Site in the 300 Area indicated that annual rates varied from 3.0 to 143.5 mm/yr during an 8-year period. The annual volume of estimated recharge was calculated to be 8.47 {times} 10{sup 9} L for the potential future Hanford Site (i.e., the portion of the current Site bounded by Highway 240 and the Columbia River). This total volume is similar to earlier estimates of natural recharge and is 2 to 10x higher than estimates of runoff and ground-water flow from higher elevations. Not only is the volume of natural recharge significant in comparison to other ground-water inputs, the distribution of estimated recharge is highly skewed to the disturbed sandy soils (i.e., the 200 Areas, where most contaminants originate). The lack of good estimates of the means and variances of the supporting data (i.e., the soil map, the vegetation/land use map, the model parameters) translates into large uncertainties in the recharge estimates. When combined, the significant quantity of estimated recharge, its high sensitivity to disturbance, and the unquantified uncertainty of the data and model parameters suggest that the defensibility of the recharge estimates should be improved.

  15. Water relations of differentially irrigated cotton exposed to ozone

    SciTech Connect (OSTI)

    Temple, P.J.

    1990-01-01

    The field study was conducted to test the hypothesis that plants chronically exposed to O{sub 3} may be more susceptible to drought because O{sub 3} typically inhibits root growth and increases shoot-root ratios in plants. Cotton was grown in open-top chambers on Hanford coarse sandy loam in Riverside, CA. Plants were grown under three irrigation regimes: Optimum water for lint production (OW), suboptimum or moderate drought stress (SO), and severely drought stressed (SS) and were exposed to seasonal 12 h (0800-2000) O{sub 3} centrations of 0.015, 0.074, 0.094, or 0.111/microLL. Leaf xylem pressure potentials Psi(sub 1) and soil water content Theta(sub v) were measured weekly from June to October. Mean seasonal Psi(sub 1) increased from -1.89 MPa to -1.72 MPa in low to high O{sub 3} treatments, averaged across soil water regimes. Ozone had no effect on seasonal water use of cotton, but water use efficiency was significantly reduced by O{sub 3} in OW and SO, but not in SS treatments. Drought-stressed plants extracted proportionally greater amounts of water from deeper in the soil profile than OW cotton, and O{sub 3} had no apparent effect on this redistribution of roots in the soil. Since O{sub 3} had no apparent effect on the ability of drought-stressed cotton to maintain Psi(sub 1) and to increase root growth relative to shoot growth, this suggests that O{sub 3} may have little or no effect on the potential of cotton to adapt to or tolerate drought.

  16. An examination of scale-dependent resource use by Eastern Hognose snakes in southcentral New Hampshire.

    SciTech Connect (OSTI)

    LaGory, K. E.; Walston, L. J.; Goulet, C; Van Lonkhuyzen, R. A.; Najjar, S.; Andrews, C.; Environmental Science Division; Univ. of New Hampshire; U.S. Air Force

    2009-11-01

    The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 {+-} 14.7 ha) was similar to that reported in other parts of the species range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the

  17. Fine structure of the magnetic-dipole-strength distribution in {sup 208}Pb

    SciTech Connect (OSTI)

    Shizuma, T.; Kikuzawa, N.; Hayakawa, T.; Ohgaki, H.; Toyokawa, H.; Komatsubara, T.; Tamii, A.; Nakada, H.

    2008-12-15

    Spin-flip M1 strengths in {sup 208}Pb have been measured in photon scattering experiments with a quasi-monochromatic, linearly polarized photon beam. The data resolve an M1 giant resonance into at least seven, possibly eight, discrete transitions at excitation energies between 7.1 and 7.4 MeV below the neutron separation energy. The M1 strengths are measured with uncertainties considerably smaller than those in a previous study, which leads to a reexamination of the total strength. Experimental results are compared with an estimation of self-consistent random phase approximation using a semirealistic interaction.

  18. Fine-structure characteristics in the emittance images of a strongly focusing He{sup +} beam

    SciTech Connect (OSTI)

    Sasao, M.; Kobuchi, T.; Kisaki, M.; Takahashi, H.; Okamoto, A.; Kitajima, S.; Kaneko, O.; Tsumori, K.; Shinto, K.; Wada, M.

    2010-02-15

    The phase space distribution of a strongly focused He{sup +} ion beam source equipped with concave multiaperture electrodes was measured using a pepper-pot plate and a Kapton foil. The substructure of 301 merging He beamlets was clearly observed on a footprint of pepper-pot hole at the beam waist, where the beam density was 500 mA/cm{sup 2}. The position and the width of each beamlet substructure show the effect of interference of beamlets with surrounding one.

  19. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect (OSTI)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  20. Microsoft Word - Oil and Gas Pipelines_Statement_Dr Daniel Fine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Oil and an natural gas price recovery are required indefinitely to stabilize population and job markets. Its oil production, following the infusion of technology innovation, is at ...

  1. A STUDY OF MULTISTAGE/MULTIFUNCTION COLUMN FOR FINE PARTICLE SEPARATION

    SciTech Connect (OSTI)

    Dr. Shiao-Hung Chiang

    1999-10-01

    A non-agitated multi-stage column was constructed and applied to wastewater treatment. Preliminary oil/water separation tests were performed. Excellent separation results verifies the multi-function feature of the multi-stage column. Hydrodynamic behavior is considered as the underlying cause for the separation performance. Therefore, a series of experiments were carried out to investigate the hydrodynamic parameters, including gas holdups and liquid circulating velocities. The experimental data will be used to create a mathematical model to simulate the multi-stage column process. The model will further shed light on the future scale-up of the MSTLFLO process.

  2. A Study of Multistage/Multifunction Column for Fine Particle Separation.

    SciTech Connect (OSTI)

    Chiang, S.

    1997-09-15

    A non-agitated multi-stage column was constructed and applied to wastewater treatment. Preliminary oil/water separation tests were performed. Excellent separation results verifies the multi-function feature of the multi-stage column. Hydrodynamic behavior is considered as the underlying cause for the separation performance. Therefore, a series of experiments were carried out to investigate the hydrodynamic parameters, including gas holdups and liquid circulating velocities. The experimental data will be used to create a mathematical model to simulate the multi-stage column process. The model will further shed light on the future scale-up of the MSTLFLO process.

  3. Fine particle (2.5 microns) emissions: regulations, measurement, and control

    SciTech Connect (OSTI)

    John D. McKenna; James H. Turner; James P. McKenna, Jr.

    2008-09-15

    Contents: Introduction; Health effects; Air monitoring; Emission control methods - fabric filter/baghouses, electrostatic precipitators, wet scrubbers; Environmental technology verification and baghouse filtration products; Cost considerations; and Nanoparticulates.

  4. Product fine-structure resolved photodissociation dynamics: The A band of H{sub 2}O

    SciTech Connect (OSTI)

    Zhou, Linsen; Xie, Daiqian E-mail: hguo@unm.edu; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 ; Sun, Zhigang; Guo, Hua E-mail: hguo@unm.edu

    2014-01-14

    The photodissociation dynamics of H{sub 2}O in its first absorption band is investigated on an accurate potential energy surface based on a large number of high-level ab initio points. Several ro-vibrational states of the parent molecule are considered. Different from most previous theoretical studies, the spin-orbit and Λ-doublet populations of the open-shell OH fragment are reported from full-dimensional wave packet calculations. The populations of the two spin-orbit manifolds are in most cases close to the statistical limit, but the Λ-doublet is dominated by the A{sup ″} component, thanks largely to the fast in-plane dissociation of H{sub 2}O(A{sup ~1}A{sup ′′}). Comparisons with experimental data and a Franck-Condon model are generally very good, although some discrepancies exist.

  5. Synthesis of fine-grained .alpha.-silicon nitride by a combustion process

    DOE Patents [OSTI]

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1990-01-01

    A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.

  6. Fine tuning the spectral response of metal insulator composites for specific solar applications

    SciTech Connect (OSTI)

    Smith, G.B.; Ng, M.W.; Reuben, A.J.; Radchik, A.V.; Dligatch, S.

    1993-12-31

    Solar selective absorbers based on thin films of metal insulator composites or cermets such as black chrome and pigmented aluminum oxide on metals such as nickel and copper have proved to be the most attractive for applications. They give high solar absorptance {alpha} (>0.93), low thermal emittance {var_epsilon} ({approximately}0.1) and are readily deposited on large areas. Attempts to control the optical properties of these systems have usually involved variations in composition including metal-insulator ratio and grading in refractive index to minimize the light reflected at the front surface. Cermets have also recently been found suitable for window applications because they can be deposited to give excellent angular selectivity. These systems thus require special attention to the spectral response of the cermet as a function of angle of incidence. Furthermore the need to retain the vision and lighting functions of the window for forward and downward angles puts restraints on the amount of metal that can be included in the insulator matrix. Again the best approach appears to be tied up with utilizing a low density of metal which is distributed in such a way as to give strongly enhanced absorption only for particular directions. This paper deals with physical insights into these phenomena from both a theoretical and experimental viewpoint. Theories developed to understand angular selective films, recent new deposition procedures and the structural information on the resulting films, and new advances in effective medium theories have together provided the insights into controlling the spectral optical response of cermets to a degree not previously realized. The key is understanding the resonance characteristics of cermets. Several factors play a role, but three have a prime influence. They are the spatial distribution of the metal particles (even more important than total content), the dielectric constant of the host material and the metal itself.

  7. Towards a Fine-Resolution Global Coupled Climate System for Prediction...

    Office of Scientific and Technical Information (OSTI)

    58 GEOSCIENCES climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale eddies climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale...

  8. Towards a Fine-Resolution Global Coupled Climate System for Prediction...

    Office of Scientific and Technical Information (OSTI)

    Fourteen refereed publications and a Ph.D. dissertation resulted from this grant. Authors: McClean, Julie L. 1 + Show Author Affiliations Scripps Institution of Oceanography ...

  9. Systematics of the α-decay fine structure in even–even nuclei

    SciTech Connect (OSTI)

    Delion, D.S.; Dumitrescu, A.

    2015-01-15

    We describe α-transitions to low-lying states in even–even nuclei with Z>50,N>82 using the Coherent State Model (CSM). We reproduce the energy levels and electromagnetic transition rates between the states of the ground band employing two parameters, namely the deformation parameter and the strength of the harmonic CSM Hamiltonian. The B(E2) values are described in terms of an effective charge which depends linearly on the deformation parameter. The treatment of the α-emission process is based on an α–daughter interaction containing a monopole component, calculated through a double folding procedure with a M3Y interaction plus a repulsive core simulating the Pauli principle, and a quadrupole–quadrupole (QQ) interaction. The decaying states are identified with the lowest narrow outgoing resonances obtained through the coupled channels method. The α-branching ratios to 2{sup +} states are reproduced by means of the QQ strength. This interaction strength can be fitted with a linear dependence on the deformation parameter, as predicted by the CSM. The theoretical intensities to 4{sup +} and 6{sup +} states are in reasonable agreement with available experimental data. Predictions are made for spherical, transitional and well deformed even–even α-emitters.

  10. Engineering design and analysis of advanced physical fine coal cleaning technologies. Final report

    SciTech Connect (OSTI)

    1994-08-01

    This report describes the gravity separation equipment models available in the Coal Cleaning Simulator developed by Aspen Technology, Inc. This flowsheet simulator was developed in collaboration with ICF Kaiser Engineers, a subcontractor to Aspen Technology, Inc., and CQ Inc., a subcontractor to ICF Kaiser Engineers. The algorithms and FORTRAN programs for modeling gravity separation, which include calculations for predicting process performance, and calculations for equipment sizing and costing, were developed by ICF Kaiser Engineers. Aspen Technology integrated these and other models into the ASPEN PLUS system to provide a simulator specifically tailored for modeling coal cleaning plants. ICF Kaiser Engineers also provided basic documentation for these models; Aspen Technology, Inc. has incorporated the information into this topical report. The report documents both the use and the design bases for the models, and provides to the user a good understanding of their range of applicability and limitations.

  11. BOXER: Fine-flux Cross Section Condensation, 2D Few Group Diffusion and Transport Burnup Calculations

    Energy Science and Technology Software Center (OSTI)

    2010-02-01

    Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).

  12. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection

    Broader source: Energy.gov [DOE]

    This fact sheet describes a new technology with the potential to reduce operating costs and increase productivity in bar and flat-rolled products for the steel industry.

  13. Jagged Tiling for Intra-tile Parallelism and Fine-Grain Multithreading

    SciTech Connect (OSTI)

    Shrestha, Sunil; Manzano Franco, Joseph B.; Marquez, Andres; Feo, John T.; Gao, Guang R.

    2015-05-01

    In this paper, we have developed a novel methodology that takes into consideration multithreaded many-core designs to better utilize memory/processing resources and improve memory residence on tileable applications. It takes advantage of polyhedral analysis and transformation in the form of PLUTO, combined with a highly optimized finegrain tile runtime to exploit parallelism at all levels. The main contributions of this paper include the introduction of multi-hierarchical tiling techniques that increases intra tile parallelism; and a data-flow inspired runtime library that allows the expression of parallel tiles with an efficient synchronization registry. Our current implementation shows performance improvements on an Intel Xeon Phi board up to 32.25% against instances produced by state-of-the-art compiler frameworks for selected stencil applications.

  14. Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism...

    Office of Scientific and Technical Information (OSTI)

    occurred, suggesting that multiple regulators control nitrate reduction in this strain. ... Country of Publication: United States Language: English Subject: 59 BASIC BIOLOGICAL ...

  15. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    SciTech Connect (OSTI)

    R.-H. Yoon; G.H. Luttrell; A.D. Walters

    1999-10-01

    During the past quarter, the installation, testing and shakedown phases of commissioning the TES unit were completed (Tasks 4, 5.1 and 5.2). A representative from Carpco Inc. was on site to provide training in the operation of the test unit and assist with the initial test runs. Problems have been encountered with the recycle conveyor generating dust that neutralizes the particle charge. Testing has continued by batch feeding the unit while the recycle conveying problem is being solved. Good separations have been achieved while operating in this mode. Comparison tests have also been carried out using a bench-scale triboelectrostatic separator in parallel with the POC Carpco unit.

  16. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect (OSTI)

    R.-H. Yoon; G.H. Luttrell; A.D. Walters

    2000-01-01

    During the past quarter, several modifications were made to the TES unit and the materials handling system. The cylindrical electrodes were replaced by a set of screen electrodes to provide a more uniform electrostatic field. The problem with the recycle conveyor neutralizing the particle charge was also corrected by replacing it with a bucket elevator. In addition, problems with the turbocharger were corrected by increasing the number of charging stages from one to two. These modifications have significantly improved the separation performance and have permitted the POC-scale unit to achieve results in line with those obtained by the bench-scale separator. The testing phase of the project was continued at a rapid pace during this quarter. The test work showed that the modifications to the TES unit and the reduction in feed size from 28 mesh to 35 mesh resulted in significant overall improvement in yield and combustible recovery compared to the data reported in the last quarter. At that time, there was a significant discrepancy between the bench-scale and the pilot-scale results. The pilot-scale test work is now approaching the bench scale test results. However, further pilot-scale test work is required to further improve the results and duplicate the bench-scale test work.

  17. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    SciTech Connect (OSTI)

    R.-H. Yoon; G.H. Luttrell; G.T. Adel; A.D. Walters

    1999-07-01

    The Proof-of-Concept (POC) triboelectrostatic separator (TES) has now been successfully installed at the Virginia Tech pilot-plant. As a result, most of the personnel assigned to this project during the past quarter have been performing work elements associated with the installation and shakedown testing of the electrostatic separator, tribocharger system, product conveying systems and nitrogen purge system (Tasks 4, 5.1 and 5.2). A representative from Carpco also carried out training in the operating features of the unit during the past month. Most of the shakedown test work has now been successfully completed. However, several minor operational problems associated with the pilot-scale equipment are currently in the process of being resolved.

  18. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect (OSTI)

    A.D. Walters; G.H. Luttrell; G.T. Adel; R.-H. Yoon

    1999-01-01

    It is the objective of the current project to further refine the TES process developed at FETC through bench-scale and proof-of-concept (POC) test programs. The bench-scale test program is aimed at studying the charging mechanisms associated with coal and mineral matter and improving the triboelectrification process, while the POC test program is aimed at obtaining scale-up information. The POC tests will be conducted at a throughput of 200-250 kg/hr. It is also the objective of the project to conduct a cost analysis based on the scale-up information obtained in the present work. Specific objectives of the work conducted during the current reporting period can be summarized as follows: to complete the engineering design of the TES tribocharging system and electrostatic separator, and to continue work related to the procurement and fabrication of the key components required to construct and install the proposed POC test circuit.

  19. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect (OSTI)

    R.-H. Yoon; G.H. Luttrell; G.T. Adel; A.D. Walters

    1999-04-01

    The project has reached the point where the Proof of Concept (POC) electrostatic separator is in the design stage. During the quarter, the design concepts of the TES unit have been finalized with Carpco. During the past quarter, most of the personnel assigned to this project have been performing work elements associated with process/engineering design (Task 3) of the process including the TES unit, the Turbo charger and the product conveying system.

  20. Fine localization of the locus for autosomal dominant retinitis pigmentosa on chromosome 17p

    SciTech Connect (OSTI)

    Goliath, R.; Janssens, P.; Beighton, P.

    1995-10-01

    The term {open_quotes}retintis pigmentosa{close_quotes} (RP) refers to a group of inherited retinal degenerative disorders. Clinical manifestations include night-blindness, with variable age of onset, followed by constriction of the visual field that may progress to total loss of sight in later life. Previous studies have shown that RP is caused by mutations within different genes and may be inherited as an X-linked recessive (XLRRP), autosomal recessive (ARRP), or autosomal dominant (ADRP) trait. The AD form of this group of conditions has been found to be caused by mutations within the rhodopsin gene in some families and the peripherin/RDS gene in others. In addition, some ADRP families have been found to be linked to anonymous markers on 8cen, 7p, 7q,19q, and, more recently, 17p. The ADRP gene locus on the short arm of chromosome 17 was identified in a large South African family (ADRP-SA) of British origin. The phenotypic expression of the disorder, which has been described elsewhere is consistent in the pedigree with an early onset of disease symptoms. In all affected subjects in the family, onset of symptoms commenced before the age of 10 years. 16 refs., 3 figs., 1 tab.

  1. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect (OSTI)

    R.-H. Yoon; G.H. Luttrell; B. Luvsansambuu; A.D. Walters

    2000-10-01

    Work continued during the past quarter to improve the performance of the POC-scale unit. For the charging system, a more robust ''turbocharger'' has been fabricated and installed. All of the internal components of the charger have been constructed from the same material (i.e., Plexiglas) to prevent particles from contacting surfaces with different work functions. For the electrode system, a new set of vinyl-coated electrodes have been constructed and tested. The coated electrodes (i) allow higher field strengths to be tested without of risk of arcing and (ii) minimize the likelihood of charge reversal caused by particles colliding with the conducting surfaces of the uncoated electrodes. Tests are underway to evaluate these modifications. Several different coal samples were collected for testing during this reporting period. These samples included (i) a ''reject'' material that was collected from the pyrite trap of a pulverizer at a coal-fired power plant, (ii) an ''intermediate'' product that was selectively withdrawn from the grinding chamber of a pulverizer at a power plant, and (iii) a run-of-mine feed coal from an operating coal preparation plant. Tests were conducted with these samples to investigate the effects of several key parameters (e.g., particle size, charger type, sample history, electrode coatings, etc.) on the performance of the bench-scale separator.

  2. In Situ Grazing-Incidence Extended X-ray Absorption Fine Structure...

    Office of Scientific and Technical Information (OSTI)

    oxides. Authors: Bargar, John ; Trainor, T P. ; Fitts, J P. ; Chambers, Scott A. ; Brown, Gordon E. Publication Date: 2004-03-02 OSTI Identifier: 15007114 Report Number(s):...

  3. A mass balance model for the hydrologic response of fine-grained hillside soils to rainfall

    SciTech Connect (OSTI)

    Haneberg, W.C. . New Mexico Bureau of Mines and Mineral Resources)

    1992-01-01

    For a sloping soil layer of uniform thickness D, length L, and angle of inclination B, slope-normal influx per unit breadth is given by Q[sub in] = R L cos B, where R is net recharge. Slope-parallel discharge is given by Q[sub out] = K D sin B, where K is saturated hydraulic conductivity. If the long-term ratio of discharge to influx is > 1, then the slope is self-draining. If the ratio is < 1, then the slope is self-filling. Self-filling slopes will be more susceptible to failure because they cannot easily dissipate infiltration-induced pore pressure increases. For time-variant recharge, the rate of change in volumetric soil moisture content is given by d[Theta]/dt = (R/D) cos B--(K/L) sin B. Calculations using data from a thin colluvium landslide along the Ohio River give an average annual steady-state value of Q[sub out]/Q[sub in] = 1.06. A finite difference solution of the transient mass balance equation agrees fairly well with observed daily mean pressure heads from spring 1988. Stochastic simulations using temporally uncorrelated rainfall distributions fitted to the observed data tend to produce smoother hydrographs than simulations using observed rainfall values. This is due to a mismatch between the observed and fitted distributions, which caused the frequency of large storms to be underestimated and the frequency of small storms to be overestimated. Long-term trends in the stochastic simulations, however, were self-draining in three out of five trials. The mildly self-draining nature of thin colluvium hillsides along the Ohio River may explain why these slopes are marginally stable to unstable, and the general agreement between observed and simulated values suggests that mass balance models may be useful for assessing the susceptibility of hillside soils to precipitation-induced landsliding.

  4. PRELIMINARY IN-SITU X-RAY ABSORPTION FINE STRUCTURE EXAMINATION...

    Office of Scientific and Technical Information (OSTI)

    In turn, this may lead to minimizing, or even eliminating, the conditioning period. less Authors: Phelan, B.T. ; Myers, D.J. ; Smith, M.C. Publication Date: 2009-01-01 OSTI ...

  5. PRELIMINARY IN-SITU X-RAY ABSORPTION FINE STRUCTURE EXAMINATION...

    Office of Scientific and Technical Information (OSTI)

    BRIAN T. PHELAN, DEBORAH J. MYERS AND MATT C. SMITH B rian T. Phelan, originally from ... M att C. Smith is a postdoctoral student at Argonne National Laboratory. He received his ...

  6. A Prototype Two-Decade Fully-Coupled Fine-Resolution CCSM Simulation...

    Office of Scientific and Technical Information (OSTI)

    Detelina P. 5 ; Kim, Yoo Yin 1 ; Boyle, James S. 5 ; Jacob, Robert L. 6 ; Norton, Nancy 7 ; Craig, Anthony 3 ; Worley, Patrick H 2 + Show Author Affiliations ...

  7. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  8. A fine-fiber filled polymer as an effective sorbent of acid vapors

    SciTech Connect (OSTI)

    Samsonov, D.P.; Golovkin, A.V.; Gordeev, Y.M.

    1985-11-01

    This paper studies a polymeric ultrafine-fiber material with fibers filled with an inorganic hydroxide capable of binding acid vapors. This material can be an efficient sorbent if the polymer matrix does not exhibit significant diffusion resistance when the reagents enter the volume of the fiber. The sorbent efficiently works in conditions of low moisture. The capacity of the sorbent with respect to HC1 is greater than 30 wt. %. Efficient purification of gases can be conducted on thin beds of the sorbent, and the length of the working bed does not exceed 0.1-0.3 cm.

  9. Towards a Fine-Resolution Global Coupled Climate System for Prediction...

    Office of Scientific and Technical Information (OSTI)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  10. Development of fine-resolution analyses and expanded large-scale...

    Office of Scientific and Technical Information (OSTI)

    The Community Gridpoint Statistical Interpolation system is implemented in a multiscale data assimilation (MS-DA) framework that is used within the Weather Research and Forecasting ...

  11. Fine-Group Cross Section Library Based on JEFF3.1 for Nuclear Fission Applications.

    Energy Science and Technology Software Center (OSTI)

    2009-10-16

    Version 00 The NJOY-99.160 data processing system was used for the MATJEFF31.BOLIB library generation to assure the consistency with the previous generation of the VITJEFF31.BOLIB /6/ twin library, based on the same GENDF cross section data file. In particular it used a revised version of the GROUPR /7/ module, originally developed in ENEA-Bologna before the free release of an analogous GROUPR revised version with NJOY-99.161, in order to correctly deal with the non-Cartesian interpolation schemes,more » contained in 69 JEFF-3.1 evaluated nuclear data files. The TRANSX-2.15 /8/ code was then used to obtain the total (prompt + delayed) fission spectra for U-235, U-238 and Pu-239. These data, contained in the MATJEFF31.BOLIB package, are available in tabulated form as in the VITJEFF31.BOLIB library package. On the contrary the VITAMIN-B6, VITJEF22.BOLIB /9/ and MATJEF22.BOLIB /10/ similar library packages contain in tabulated form only the prompt components. MATJEFF31.BOLIB is a pseudo-problem-independent library based on the Bondarenko /11/ (f-factor) method for the treatment of neutron resonance self-shielding and temperature effects. The library contains 176 nuclides at 4 temperatures, obtained for the most part with 6 to 8 values for the background cross section. Thermal scattering cross sections were processed at all temperatures available in the JEFF-3.1 thermal scattering law data file for 6 additional bound nuclides (H-1 in light water (H-H2O), H-1 in polyethylene (H-CH2), H-1 in zirconium hydride (H-ZrH) (not contained in VITAMIN-B6, VITJEF22.BOLIB and MATJEF22.BOLIB), H-2 in heavy water (H2-D2O), C in graphite (C-GPH) and Be in beryllium metal (Be-TH)). From MATJEFF31.BOLIB it is easily possible to generate, with the use of the TRANSX code, working libraries of collapsed and self-shielded cross sections in GOXS or FIDO-ANISN format for calculations with the DOORS /12/, DANTSYS /13/ and PARTISN /14/ deterministic transport systems and the MORSE /15/ Monte Carlo code.« less

  12. Higgs sector and fine-tuning in the phenomenological MSSM (Journal...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  13. Theory of Fine-scale Zonal Flow Generation From Trapped Electron Mode Turbulence

    SciTech Connect (OSTI)

    Lu Wang and T.S. Hahm

    2009-06-11

    Most existing zonal flow generation theory has been developed with a usual assumption of qr?? << 1 (qr is the radial wave number of zonal flow, and ?? is the ion poloidal gyrora- dius). However, recent nonlinear gyrokinetic simulations of trapped electron mode (TEM) turbulence exhibit a relatively short radial scale of the zonal flows with qr?? ~ 1 [Z. Lin et al., IAEA-CN/TH/P2-8 (2006); D. Ernst et al., Phys. Plasmas 16, 055906 (2009)]. This work reports an extension of zonal flow growth calculation to this short wavelength regime via the wave kinetics approach. A generalized expression for the polarization shielding for arbitrary radial wavelength [Lu Wang and T.S. Hahm, to appear in Phys. Plasmas (2009)] which extends the Rosenbluth-Hinton formula in the long wavelength limit is applied.

  14. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  15. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  16. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  17. Surface preparation of substances for continuous convective assembly of fine particles

    DOE Patents [OSTI]

    Rossi, Robert

    2003-01-01

    A method for producing periodic nanometer-scale arrays of metal or semiconductor junctions on a clean semiconductor substrate surface is provided comprising the steps of: etching the substrate surface to make it hydrophilic, forming, under an inert atmosphere, a crystalline colloid layer on the substrate surface, depositing a metal or semiconductor material through the colloid layer onto the surface of the substrate, and removing the colloid from the substrate surface. The colloid layer is grown on the clean semiconductor surface by withdrawing the semiconductor substrate from a sol of colloid particles.

  18. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect (OSTI)

    Wayne Hill; Roger Demler; Robert G. Mudry

    2004-10-01

    Instrumentation difficulties encountered in the previous reporting period were addressed early in this reporting period, resulting in a new instrumentation configuration that appears to be free of the noise issues found previously. This permitted the collection of flow calibration data to begin. The first issues in question are the effects of the type and location of the transducer mount. Data were collected for 15 different transducer positions (upstream and downstream of an elbow in the pipe), with both a stud mount and a magnetic transducer mount, for each of seven combinations of air and coal flow. Analysis of these data shows that the effects of the transducer mount type and location on the resulting dynamics are complicated, and not easily captured in a single analysis. To maximize the practical value of the calibration data, further detailed calibration data will be collected with both the magnetic and stud mounts, but at a single mounting location just downstream of a pipe elbow. This testing will be performed in the Coal Flow Test Facility in the next reporting period. The program progress in this reporting period was sufficient to put us essentially back on schedule.

  19. Method and apparatus for fine tuning an orifice pulse tube refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W.; Wollan, John J.

    2003-12-23

    An orifice pulse tube refrigerator uses flow resistance, compliance, and inertance components connected to a pulse tube for establishing a phase relationship between oscillating pressure and oscillating velocity in the pulse tube. A temperature regulating system heats or cools a working gas in at least one of the flow resistance and inertance components. A temperature control system is connected to the temperature regulating system for controlling the temperature of the working gas in the at least one of the flow resistance and inertance components and maintains a control temperature that is indicative of a desired temporal phase relationship.

  20. High pressure feeder and method of operating to feed granular or fine materials

    SciTech Connect (OSTI)

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2014-10-07

    A coal feed system to feed pulverized low rank coals containing up to 25 wt % moisture to gasifiers operating up to 1000 psig pressure is described. The system includes gas distributor and collector gas permeable pipes imbedded in the lock vessel. Different methods of operation of the feed system are disclosed to minimize feed problems associated with bridging and packing of the pulverized coal. The method of maintaining the feed system and feeder device exit pressures using gas addition or extraction with the pressure control device is also described.

  1. Capture Efficiency of Cooking-Related Fine and Ultrafine Particles by Residential Exhaust Hoods

    SciTech Connect (OSTI)

    Lunden, Melissa M.; Delp, William W.

    2014-06-05

    Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80percent. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38percent for low (51?68 L s-1) and 54?72percent for high (109?138 L s-1) settings. CEs for 0.3?2.0 ?m particles during front burner stir-frying were 3?11percent on low and 16?70percent on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80percent both for burner combustion products and for cooking-related particles.

  2. Tumorigenicity of fine man-made fibers after intratracheal administrations to hamsters

    SciTech Connect (OSTI)

    Adachi, Shuichi; Takemoto, Kazuo ); Kimura, Kikuzi )

    1991-02-01

    Six types of man-made fibers were administered intratracheally (2.0 mg/animal each a week, for 5 weeks; total 10 mg/animal) to female Syrian hamsters that were observed histologically for 2 years after administration. The fibers were rock wool, fiberglass, potassium titanate fiber, calcium sulfate fiber, basic magnesium sulfate fiber, and metaphosphate fiber. Tumors were observed in hamsters that had received basic magnesium sulfate fiber (9/20), metaphosphate fiber (6/20), calcium sulfate fiber (3/20), and fiberglass (2/20) but not in the control, rock wool, or potassium titanate fiber groups. The primary sites of the tumors were not only in the pleural cavity but also in the intracelial organs, kidney, adrenal gland, bladder, and uterus. Only a few of the tumors were identified as mesotheliomas, by histological examination. In addition to neoplastic lesions, fibrosis, pleural thickening, and chronic inflammatory changes in the lungs were observed in the hamsters, but these changes appeared too mild to foster a pneumoconiosis such as asbestosis.

  3. A practical microgripper by fine alignment, eutectic bonding and SMA actuation

    SciTech Connect (OSTI)

    Lee, A.P.; Ciarlo, D.R.; Krulevitch, P.A.

    1995-04-21

    A silicon microgripper with a large gripping force, a relatively rigid structural body, and flexibility in functional design is presented. The actuation is generated by Ni-Ti-Cu shape memory alloy (SMA) films and the stress induced can deflect each side of the microgripper up to 55 {mu}m for a total gripping motion of 110 {mu}m. When fully open, the force exerted by the film corresponds to a 40 mN gripping force on the tip of the gripper.

  4. DOE Receives First Repayment from Successful DryFining™ Clean...

    Office of Environmental Management (EM)

    ... Fossil Energy on Facebook Fossil Energy on Twitter Sign up for NewsAlerts Fossil Energy RSS Feeds Related Articles Prestigious Coal-Fired Project of the Year Award Goes to Plant ...

  5. Energy Department to Loan Emergency Fuel to Department of Defense as Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Hurricane Sandy Response | Department of Energy to Loan Emergency Fuel to Department of Defense as Part of Hurricane Sandy Response Energy Department to Loan Emergency Fuel to Department of Defense as Part of Hurricane Sandy Response November 2, 2012 - 5:13pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the government-wide response and recovery effort for Hurricane Sandy, President Obama declared that Hurricane Sandy has created a severe energy supply interruption and

  6. Analysis of sediments and soils for chemical contamination for the design of US Navy homeport facility at East Waterway of Everett Harbor, Washington. Final report. [Macoma inquinata; Mytilus edulis

    SciTech Connect (OSTI)

    Anderson, J.W.; Crecelius, E.A.

    1985-03-01

    Contaminated sediments in the East Waterway of Everett Harbor, Washington, are extremely localized; they consist of a layer of organically-rich, fine sediments overlying a relatively cleaner, more sandy native material. The contaminated layer varies in thickness throughout the waterway from as much as 2 meters to only a few centimeters. Generally, the layer is thicker and more contaminated at the head of the waterway (northern end) and becomes thinner and less contaminated as one proceeds southerly out of the waterway and into Port Gardner. These sediments contain elevated levels of heavy metals and polynuclear aromatic hydrocarbons (PAH) and scattered concentrations of polychlorinated biphenyls (PCB). Approximately 500,000 cubic yards of material exhibit elevated chemical contamination compared to Puget Sound background levels. The contaminated sediments in this waterway require biological testing before decisions can be made regarding the acceptability of unconfined disposal.

  7. Model assessment of protective barrier designs

    SciTech Connect (OSTI)

    Fayer, M.J.; Conbere, W.; Heller, P.R.; Gee, G.W.

    1985-11-01

    A protective barrier is being considered for use at the Hanford site to enhance the isolation of previously disposed radioactive wastes from infiltrating water, and plant and animal intrusion. This study is part of a research and development effort to design barriers and evaluate their performance in preventing drainage. A fine-textured soil (the Composite) was located on the Hanford site in sufficient quantity for use as the top layer of the protective barrier. A number of simulations were performed by Pacific Northwest Laboratory to analyze different designs of the barrier using the Composite soil as well as the finer-textured Ritzville silt loam and a slightly coarser soil (Coarse). Design variations included two rainfall rates (16.0 and 30.1 cm/y), the presence of plants, gravel mixed into the surface of the topsoil, an impermeable boundary under the topsoil, and moving the waste form from 10 to 20 m from the barrier edge. The final decision to use barriers for enhanced isolation of previously disposed wastes will be subject to decisions resulting from the completion of the Hanford Defense Waste Environmental Impact Statement, which addresses disposal of Hanford defense high-level and transuranic wastes. The one-dimensional simulation results indicate that each of the three soils, when used as the top layer of the protective barrier, can prevent drainage provided plants are present. Gravel amendments to the upper 30 cm of soil (without plants) reduced evaporation and allowed more water to drain.

  8. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect (OSTI)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  9. Leaching of BTEX from Aged Crude Oil Contaminated Model Soils: Experimental and Modeling Results

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2005-01-01

    It is generally assumed that soil properties such as organic matter content, porosity, and mineral surface area have a significant effect on the bioavailability and leachability of aged petroleum hydrocarbons. In order to test this hypothesis, nine model soils or sorbents (i.e., fine and coarse quartz sand, montmorillonite and kaolinite clay, peat, 60? and 150? silica gel, a loam soil, and non-porous glass beads) were spiked with a crude oil, aged for 27 months in the laboratory, and transferred to glass columns for the performance of continuous flow leaching experiments. The column effluents were periodically sampled for 43 days and analyzed for BTEX. A one-dimensional flow model for predicting the dissolution and dispersion of individual hydrocarbons from a multi-component NAPL such as crude oil was used to fit the leaching data (i.e., the BTEX concentration versus time curves) by adjusting the equilibrium oil-leachate partitioning coefficient (Kol) for each respective hydrocarbon. The Peclet number, which is a measure of dispersion and a required modeling parameter, was measured in separate chloride tracer experiments for each soil column. Results demonstrate that soil properties did not significantly affect the leaching kinetics of BTEX from the columns. Instead, BTEX leaching curves could be successfully fitted with the one-dimensional NAPL dissolution flow model for all sorbents with the exception of montmorillonite clay. The fitting parameter Kol for each hydrocarbon was found to be similar to the Kol values that were independently measured for the same crude oil by Rixey et al. (Journal of Hazardous Materials B, 65: 137-156, 1999). In addition, the fitted Kol values were very similar for BTEX leaching from aged compared to freshly spiked loam soil. These findings indicate that leaching of BTEX in the aged soils that are contaminated with crude oil at the high concentrations commonly found in the environment (i.e., >20,000 mg/kg) was not affected by soil

  10. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    SciTech Connect (OSTI)

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-18

    time periods evaluated. The most important feature, the surface cover, is expected to be the modified RCRA Subtitle C design. This design uses a 1-m-thick silt loam layer above sand and gravel filter layers to create a capillary break. A 0.15-m-thick asphalt layer underlies the filter layers to function as a backup barrier and to promote lateral drainage. Cover sideslopes are expected to be constructed with 1V:10H slopes using sandy gravel. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the ILAW PA and other projects and from modeling analyses.

  11. Distribution of Clokey's Eggvetch

    SciTech Connect (OSTI)

    David C. Anderson

    1998-12-01

    The Environment, Safety and Health Division of the U.S. Department of Energy, Nevada Operations Office implements the Ecological Monitoring and Compliance Program on the Nevada Test Site (NTS). This program ensures compliance with applicable environmental laws and regulations, delineates and describes NTS ecosystems, and provides ecological information for predicting and evaluating potential impacts of proposed projects on those ecosystems. Over the last several decades, has taken an active role in providing information on the tatus of plant species proposed for protection under the Endangered Species Act(ESA). One such species is Clokey's eggvetch (Astragalus oophorus var. clokeyanus), which is a candidate species under the listing guidelines of the ESA. Surveys for this species were conducted on the NTS in 1996, 1997, and 1998. Field surveys focused on potential habitat for this species in the southern Belted range and expanded to other areas with similar habitat. Over 30 survey day s were completed; five survey days in 1996, 25 survey days in 1997, and three survey days in 1998. Clokey's eggvetch was located at several sites in the southern Belted Range. It was found through much of the northern section of Kawich Canyon, one site at the head of Gritty Gulch, and a rather extensive location in Lambs Canyon. It was also located further south at Captain Jack Springs in the Eleana Range, in much of Falcon Canyon and around Echo Peak on Pahute Mesa, and was also found in the Timber and Shoshone Mountains. Overall, the locations of Clokey's eggvetch on the NTS appears to form a distinct bridge between populations of the species located further north in the Belted and Kawich Ranges and the population located in the Spring Mountains. Clokey's eggvetch was commonly found along washes and small draws, and typically in sandy loam soils with a covering of light tuffaceous rock. It occurs primarily above 1830 meters (6000 feet) in association with single-leaf pinyon (Pinus

  12. storm | OpenEI Community

    Open Energy Info (EERE)

    storm Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy East Coast Hurricane Sandy...

  13. BlueGene/Q Optimization Bob Walkup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is very low performance per-core > must scale. Rough Comparison : BGQ vs. Intel Sandy-Bridge 1 Node BGQ 4 Nodes BGQ 1 Node Sandy-Bridge power consumption 80 W 320 W 320 W...

  14. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part II: Fine precipitation scenarios in AlZnMg(Cu) alloys

    SciTech Connect (OSTI)

    Liu, J.Z.; Chen, J.H.; Liu, Z.R.; Wu, C.L.

    2015-01-15

    Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in the alloys are unknown, and partly due to the complexity that the precipitation behaviors of the alloys may be closely related to the alloy's composition. In Part I of the present study, we have determined all the unknown precipitate structures in the alloys. Here in Part II, using atomic-resolution electron microscopy in association with the first principles energy calculations, we further studied and correlated the phase/structure transformation/evolution among these hardening precipitates in relation with the alloy's composition. It is shown that there are actually two coexisting classes of hardening precipitates in these alloys: the first class includes the η′-precipitates and their early-stage Guinier–Preston (GP-η′) zones; the second class includes the precursors of the equilibrium η-phase (referred to η{sub p}, or η-precursor) and their early-stage Guinier–Preston (GP-η{sub p}) zones. The two coexisting classes of precipitates correspond to two precipitation scenarios. - Highlights: • We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys. • We employ aberration-corrected scanning transmission electron microscopy (STEM). • We use aberration-corrected high-resolution TEM (HRTEM) for the investigations. • We obtain atomic-resolution images of the precipitates and model their structures. • We refine all precipitate structures with quantitative image simulation analysis. • The hardening precipitates in AlZnMg alloys shall be classified into two groups. • Two precipitation scenarios coexist in the alloys. • The precipitation behavior of such an alloy depends on the alloy's composition. • Very detailed phase/structure transformations among the precipitates are revealed.

  15. Centre County, Pennsylvania: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Pine Glen, Pennsylvania Pine Grove Mills, Pennsylvania Pleasant Gap, Pennsylvania Port Matilda, Pennsylvania Ramblewood, Pennsylvania Rebersburg, Pennsylvania Sandy Ridge,...

  16. Scales in the fine structure of the magnetic dipole resonance: A wavelet approach to the shell model

    SciTech Connect (OSTI)

    Petermann, I.; Langanke, K.; Martinez-Pinedo, G.; Neumann-Cosel, P. von; Nowacki, F.; Richter, A.

    2010-01-15

    Wavelet analysis is applied as a tool for the examination of magnetic dipole (M1) strength distributions in pf-shell nuclei by the extraction of wavelet scales. Results from the analysis of theoretical M1 strength distributions calculated with the KB3G interaction are compared to experimental data from (e,e{sup '}) experiments and good agreement of the deduced wavelet scales is observed. This provides further insight into the nature of the scales from the model results. The influence of the number of Lanczos iterations on the development and stability of scales and the role of the model space in terms of the truncation level are studied. Moreover, differences in the scales of spin and orbital parts of the M1 strength are investigated, as is the use of different effective interactions (KB3G, GXPF1, and FPD6).

  17. Final report for "Characterization of Fine Particulate Matter (PM) and secondary PM Precursor Gases in the Mexico City Metropolitan Area"

    SciTech Connect (OSTI)

    Prof. Jose-Luis Jimenez

    2009-05-18

    The objectives of this funded project were (a) to further analyze the data collected by our group and collaborators in Mexico City during the MCMA-2003 field campaign, with the goal of further our understanding of aerosol sources and processes; and (b) to deploy several advanced instruments, including the newly developed high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and thermal-denuder (TD), during the MILAGRO/MAX-Mex/MCMA-2006 field campaign, and to analyze those data (together with the 2003 data) to provide additional insights on the formation and transformation of aerosols in the Mexico City area. These goals were addressed in collaboration with our project partners, MIT/Molina Center, and Aerodyne Research. Overall this project was very successful, resulting on 22+ journal papers including six highly cited papers and three papers that are the most cited in their respective journals (out of several thousand papers) since the year in which they were published. Multiple discoveries, such as the the underestimation of SOA in urban areas even for short photochemical ages, the demonstration that urban POA is of similar or higher volatility than urban SOA, and the first analysis of organic aerosol elemental composition in real-time have been recently published. Several dozen presentations at major US and international conferences and seminars also acknowledged this grant.

  18. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  19. Assessment of reduction behavior of hematite iron ore pellets in coal fines for application in sponge ironmaking

    SciTech Connect (OSTI)

    Kumar, M.; Patel, S.K.

    2009-07-01

    Studies on isothermal reduction kinetics (with F grade coal) in fired pellets of hematite iron ores, procured from four different mines of Orissa, were carried out in the temperature range of 850-1000C to provide information for the Indian sponge iron plants. The rate of reduction in all the fired iron ore pellets increased markedly with a rise of temperature up to 950C, and thereafter it decreased at 1000C. The rate was more intense in the first 30 minutes. All iron ores exhibited almost complete reduction in their pellets at temperatures of 900 and 950C in 2 hours' heating time duration, and the final product morphologies consisted of prominent cracks. The kinetic model equation 1-(1-a){sup 1/3}=kt was found to fit best to the experimental data, and the values of apparent activation energy were evaluated. Reductions of D. R. Pattnaik and M. G. Mohanty iron ore pellets were characterized by higher activation energies (183 and 150 kJ mol{sup -1}), indicating carbon gasification reaction to be the rate-controlling step. The results established lower values of activation energy (83 and 84 kJ mol{sup -1}) for the reduction of G. M. OMC Ltd. and Sakaruddin iron ore pellets, proposing their overall rates to be controlled by indirect reduction reactions.

  20. In-situ extended X-ray absorption fine structure study of electrostriction in Gd doped ceria

    SciTech Connect (OSTI)

    Korobko, Roman; Wachtel, Ellen; Lubomirsky, Igor; Lerner, Alyssa; Li, Yuanyuan; Frenkel, Anatoly I.

    2015-01-26

    Studying electric field-induced structural changes in ceramics is challenging due to the very small magnitude of the atomic displacements. We used differential X-ray absorption spectroscopy, an elementally specific and spatially sensitive method, to detect such changes in Gd-doped ceria, recently shown to exhibit giant electrostriction. We found that the large electrostrictive stress generation can be associated with a few percent of unusually short Ce-O chemical bonds that change their length and degree of order under an external electric field. The remainder of the lattice is reduced to the role of passive spectator. This mechanism is fundamentally different from that in electromechanically active materials currently in use.

  1. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    SciTech Connect (OSTI)

    Stamate, Eugen; Yamaguchi, Masahito

    2015-08-31

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulations are found to be in very good agreement with experiments.

  2. Proof of concept and performance optimization of high gravity batch-type centrifugal dryer for dewatering fine coal

    SciTech Connect (OSTI)

    Smith, L.B.; Durney, T.

    1991-01-01

    The primary objective of the project was to assemble, analyze and make use of those data that could help to clearly identify, optimize and confirm the technical and economic advantages that the new high gravity centrifugal dryer technology can provide to the coal industry and to end users. Other objectives were: to confirm the feasibility of the dryer for drying coals from a number of different seams; to use the data base for optimizing the dryer's systems, and: to produce projected technical and economic comparisons with thermal dryers as applied to an existing coal processing plant flow sheet. (JL)

  3. Test report for fine calibration grooming and alignment of the LDUA optical alignment scope (LDUA system 6250)

    SciTech Connect (OSTI)

    Potter, J.D., Westinghouse Hanford

    1996-07-15

    The Light Duty Utility Arm (LDUA) is a remotely operated manipulator used to enter into underground waste tanks through one of the tank risers. The LDUA must be carefully aligned with the tank riser during the installation process. The Optical Alignment Scope (OAS) is used to determine when optimum alignment has been achieved between the LDUA and the riser. Calibration,grooming and alignment (CG{ampersand}A) is performed on the OAS to assure that the instrumentation and equipment comprising the OAS is properly adjusted in order to achieve its intended functions successfully. This document contains the results, conclusions and recommendations arrived at by the CG{ampersand}A tests performed on the OAS in accordance with WHC-SD-WM- TC-070.

  4. Mechanisms governing fine particulate emissions from coal flames. Quarterly technical progress report No. 8, July 1, 1989--September 30, 1989

    SciTech Connect (OSTI)

    Newton, G.H.; Schieber, C.; Socha, R.G.; Clark, W.D.; Kramlich, J.C.

    1989-10-01

    During this reporting period the global experiments were concluded. The final activities under these experiments involved measuring mineral content of coals as a function of coal particle size. The principal activities during this quarter involved the mechanistic experiments. Three baseline coals were cleaned and two of these sized. The ash from these various cuts were sampled from a bench scale reactor. The ash size distributions were compared to distributions predicted by the breakup model.

  5. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. First annual report, September 1, 1990--August 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  6. On the importance of nuclear quantum motions in near edge x-ray absorption fine structure (NEXAFS) spectroscopy of molecules

    SciTech Connect (OSTI)

    Schwartz, Craig P.; Uejio, Janel S.; Saykally, Richard J.; Prendergast, David

    2009-02-26

    We report the effects of sampling nuclear quantum motion with path integral molecular dynamics (PIMD) on calculations of the nitrogen K-edge spectra of two isolated organic molecules. S-triazine, a prototypical aromatic molecule occupying primarily its vibrational ground state at room temperature, exhibits substantially improved spectral agreement when nuclear quantum effects are included via PIMD, as compared to the spectra obtained from either a single fixed-nuclei based calculation or from a series of configurations extracted from a classical molecular dynamics trajectory. Nuclear quantum dynamics can accurately explain the intrinsic broadening of certain features. Glycine, the simplest amino acid, is problematic due to large spectral variations associated with multiple energetically accessible conformations at the experimental temperature. This work highlights the sensitivity of NEXAFS to quantum nuclear motions in molecules, and the necessity of accurately sampling such quantum motion when simulating their NEXAFS spectra.

  7. Arthropod monitoring for fine-scale habitat analysis: A case study of the El Segundo sand dunes

    SciTech Connect (OSTI)

    Mattoni, R.; Longcore, T.; Novotny, V.

    2000-04-01

    Arthropod communities from several habitats on and adjacent to the El Segundo dunes (Los Angeles County, CA) were sampled using pitfall and yellow pan traps to evaluate their possible use as indicators of restoration success. Communities were ordinated and clustered using correspondence analysis, detrended correspondence analysis, two-way indicator species analysis, and Ward's method of agglomerative clustering. The results showed high repeatability among replicates within any sampling arena that permits discrimination of (1) degraded and relatively undisturbed habitat, (2) different dune habitat types, and (3) annual change. Canonical correspondence analysis showed a significant effect of disturbance history on community composition that explained 5--20% of the variation. Replicates of pitfall and yellow pan traps on single sites clustered together reliably when species abundance was considered, whereas clusters using only species incidence did not group replicates as consistently. The broad taxonomic approach seems appropriate for habitat evaluation and monitoring of restoration projects as an alternative to assessments geared to single species or even single families.

  8. Surface barrier research at the Hanford Site

    SciTech Connect (OSTI)

    Gee, G.W.; Ward, A.L.; Fayer, M.J.

    1997-12-31

    At the DOE Hanford Site, a field-scale prototype surface barrier was constructed in 1994 over an existing waste site as a part of a CERCLA treatability test. The above-grade barrier consists of a fine-soil layer overlying coarse layers of sands, gravels, basalt rock (riprap), and a low permeability asphalt layer. Two sideslope configurations, clean-fill gravel on a 10:1 slope and basalt riprap on a 2:1 slope, were built and are being tested. Design considerations included: constructability; drainage and water balance monitoring, wind and water erosion control and monitoring; surface revegetation and biotic intrusion; subsidence and sideslope stability, and durability of the asphalt layer. The barrier is currently in the final year of a three-year test designed to answer specific questions related to stability and long-term performance. One half of the barrier is irrigated such that the total water applied, including precipitation, is 480 mm/yr (three times the long-term annual average). Each year for the past two years, an extreme precipitation event (71 mm in 8 hr) representing a 1,000-yr return storm was applied in late March, when soil water storage was at a maximum. While the protective sideslopes have drained significant amounts of water, the soil cover (2-m of silt-loam soil overlying coarse sand and rock) has never drained. During the past year there was no measurable surface runoff or wind erosion. This is attributed to extensive revegetation of the surface. In addition, the barrier elevation has shown a small increase of 2 to 3 cm that is attributed to a combination of root proliferation and freeze/thaw activity. Testing will continue through September 1997. Performance data from the prototype barrier will be used by DOE in site-closure decisions at Hanford.

  9. Fluvial and deltaic facies and environments of the late permian back-reef shelves of the Permian Basin of Texas and New Mexico

    SciTech Connect (OSTI)

    Mazzullo, J. )

    1993-02-01

    The Artesia Group is a sequence of carbonates, evaporites, and clastics that was deposited across the back-reef shelves of the Permian Basin during late Permian time. There has been some controversy over the depositional environments of the clastic members of the Artesia Group and the role of sea level fluctuations in their accumulation. However, the results of a regional core study of the Queen Formation of the Artesia Group indicate that they were largely deposited in desert fluvial and deltaic environments during low-stands of sea level. Three fluvial-deltaic facies are recognized within the clastic members of the Queen. The first consists of medium to very find sandstones and silty sandstones with cross-beds, ripple cross-laminae, and planar and wavy laminae. This facies forms wavy sheets that thicken and thin along linear trends, and was deposited in sandy braided streams. The second facies consists of very find to fine sandstones, silty sandstones, and siltstones with ripple cross-laminae, planar and wavy laminae, cross-beds, clay drapes and pedogenetic cutans, as well as siltstones and silty mudstones with haloturbation structures and evaporite nodules. This facies forms thick planar sheets, and was deposited in fluvial sandflats and adjacent fluvial-dominated continental sabkhas. The third facies consists of cyclic deposits of haloturbated silty mudstones that grade into siltstones and very fine sandstones with crossbeds, planar and wavy laminae, haloturbation structures and evaporite nodules. Each cycle forms a lobate body that is bounded by carbonates or evaporites and which was deposited in sheet deltas that formed along the landward margins of a back-reef lagoon.

  10. Deep-water density current deposits of Delaware Mountain Group (Permian), Delaware basin, Texas and New Mexico

    SciTech Connect (OSTI)

    Harms, J.C.; Williamson, C.R.

    1988-03-01

    The Guadalupian Delaware Mountain Group is a 1000-1600-m (3281-5250-ft) thick section of siltstone and sandstone deposited in a deep-water density-stratified basin surrounded by carbonate banks or reefs and broad shallow evaporite-clastic shelves. The most prevalent style of basinal deposition was suspension settling of silt. Laminated siltstone beds are laterally extensive and cover basin-floor topographic irregularities and flat-floored channels as much as 30 m (99 ft) deep and 1 km or more wide. Channels can be observed in outcrop at the basin margin and can be inferred from closely spaced wells in the basin. The channels are straight to slightly sinuous, trend at high angles to the basin margin, and extend at least 70 km (43 mi) into the basin. Sandstone beds, confined to channels, form numerous stratigraphic traps. Hydrocarbon sealing beds are provided by laminated organic siltstone, which laterally can form the erosional margin where channels are cut into siltstone beds. Thick beds of very fine-grained sandstones fill the channels. These sandstones contain abundant large and small-scale traction-current-produced stratification. These sandy channel deposits generally lack texturally graded sedimentation units and show no regular vertical sequence of stratification types or bed thickness. Exploration predictions based on submarine fan models formed by turbidity currents would anticipate very different proximal-distal changes in sandstone geometry and facies. 16 figures.

  11. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    SciTech Connect (OSTI)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  12. Energy Department Partners with State, City and Industry Stakeholders to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Hoboken Region Improve Its Electric Grid in the Aftermath of Hurricane Sandy | Department of Energy State, City and Industry Stakeholders to Help Hoboken Region Improve Its Electric Grid in the Aftermath of Hurricane Sandy Energy Department Partners with State, City and Industry Stakeholders to Help Hoboken Region Improve Its Electric Grid in the Aftermath of Hurricane Sandy June 13, 2013 - 1:29pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama

  13. Asst. Secy. Hoffman, Reps. Payne & Pallone, & PSEG CEO Ralph LaRossa

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commemorate 1 Year Anniversary of Hurricane Sandy | Department of Energy Asst. Secy. Hoffman, Reps. Payne & Pallone, & PSEG CEO Ralph LaRossa Commemorate 1 Year Anniversary of Hurricane Sandy Asst. Secy. Hoffman, Reps. Payne & Pallone, & PSEG CEO Ralph LaRossa Commemorate 1 Year Anniversary of Hurricane Sandy October 21, 2013 - 11:42am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Assistant Secretary Patricia Hoffman will join Congressmen Donald M. Payne, Jr. (NJ-10)

  14. Assurances - Non-Construction Programs

    Office of Environmental Management (EM)

    Commemorate 1 Year Anniversary of Hurricane Sandy | Department of Energy Asst. Secy. Hoffman, Reps. Payne & Pallone, & PSEG CEO Ralph LaRossa Commemorate 1 Year Anniversary of Hurricane Sandy Asst. Secy. Hoffman, Reps. Payne & Pallone, & PSEG CEO Ralph LaRossa Commemorate 1 Year Anniversary of Hurricane Sandy October 21, 2013 - 11:42am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Assistant Secretary Patricia Hoffman will join Congressmen Donald M. Payne, Jr. (NJ-10)

  15. Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (April 2013) | Department of Energy Northeast Hurricanes on Energy Infrastructure (April 2013) Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure (April 2013) Two major hurricanes, Irene in 2011 and Sandy in 2012, have impacted the Northeastern United States over the past 2 years, devastating coastal communities and causing widespread impacts to the region's energy infrastructure, supply, and markets. Although Sandy was weaker than Irene at landfall, Sandy brought

  16. OE News Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transit System in Aftermath of Superstorm Sandy Partnership to Focus on Advanced Microgrid System for New Jersey Transit Corporation August 23, 2013 ORNL Publishes Study on...

  17. SREL Reprint #3006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beverly Collins, Rebecca Sharitz, Kathryn Madden, and John Dilustro Savannah River Ecology ... on dry, sandy ridgetops and supports a suite of rare or uncommon plant species (TES). ...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in Eastern Kentucky (Big Sandy RECC, Fleming-Mason RECC, Grayson RECC, and Jackson Energy) work with MACED to provide energy retrofits as part of utility service......

  19. Mountain Association for Community Economic Development - How...

    Broader source: Energy.gov (indexed) [DOE]

    in Eastern Kentucky (Big Sandy RECC, Fleming-Mason RECC, Grayson RECC, and Jackson Energy) work with MACED to provide energy retrofits as part of utility service under...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Financing Energy Efficiency Program Four rural utility cooperatives in Eastern Kentucky (Big Sandy RECC, Fleming-Mason RECC, Grayson RECC, and Jackson Energy) work with MACED to...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building, Other EE, Wind (Small) WARMAdvantage Program NOTE: Residents affected by Hurricane Sandy are eligible for an additional incentive of 200 for qualifying furnaces,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    approval, Other EE, Wind (Small) WARMAdvantage Program NOTE: Residents affected by Hurricane Sandy are eligible for an additional incentive of 200 for qualifying furnaces,...

  3. This Week In Petroleum Summary Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sandy, markets continue to require products from outside the region to meet demand. Consumption of gasoline and distillates (diesel and heating oil) in the entire Northeast...

  4. New Jersey: Atlantic City Jitneys Running on Natural Gas | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ... and diesel elsewhere. | Photo courtesy of Clean Energy In the Face of Hurricane Sandy, CNG Vehicles Shuttle People to Safety New Jersey: Atlantic City Jitneys Running on Natural ...

  5. EA-2003: Final Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    EA-2003: Final Environmental Assessment Sandy River Delta Section 536 Ecosystem Restoration Project, Multnomah County, Oregon The U.S. Army Corps of Engineers prepared an EA that ...

  6. President Obama presents new Climate Action Plan | OpenEI Community

    Open Energy Info (EERE)

    to accelerate clean energy permitting to expand clean energy technologies such as nuclear, natural gas, renewables, and clean coal. 3. Smart Grid Citing Superstorm Sandy's...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mountain Association for Community Economic Development- HowmartKY On-Bill Financing Energy Efficiency Program Four rural utility cooperatives in Eastern Kentucky (Big Sandy RECC,...

  8. Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings

    SciTech Connect (OSTI)

    Hampson, Anne; Rackley, Jessica

    2013-09-01

    To assist State and local officials and others involved in the Hurricane Sandy rebuilding process, DOE, HUD, and the EPA developed this guide.

  9. Energy Department Provides Additional Emergency Fuel Loan to Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense as Part of Hurricane Sandy and Nor'easter Recovery | Department of Energy Additional Emergency Fuel Loan to Department of Defense as Part of Hurricane Sandy and Nor'easter Recovery Energy Department Provides Additional Emergency Fuel Loan to Department of Defense as Part of Hurricane Sandy and Nor'easter Recovery November 9, 2012 - 7:15pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the government-wide response and recovery effort for Hurricane Sandy and the

  10. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  11. EA-2003: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an EA that assessed the potential environmental impacts of the proposed removal of a dam from the east channel of the Sandy River. DOE's Bonneville Power Administration, a...

  12. CHP Enabling Resilient Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... CI definition) o Cascading problems affecting transport (unavailability of gas in NJ post Sandy) Emergency Preparedness & Planning o Developers reporting inquiries from ...

  13. Electricity Advisory Committee Meeting Presentations March 2014...

    Broader source: Energy.gov (indexed) [DOE]

    Thursday, March 13, 2014 Panel - Post-Sandy: Lessons for Grid Resilience - Bob Curry, moderator David Owens, EEI Ralph LaRossa, PSEG Stephen Whitley, NYISO EAC Transmission ...

  14. March 12 & 13, 2014 Meeting of the Electricity Advisory Committee...

    Office of Environmental Management (EM)

    Comments by the Energy Storage Association to the Department of Energy Electricity ... Thursday, March 13, 2014 Panel - Post-Sandy: Lessons for Grid Resilience - Bob Curry, ...

  15. Saluting Daniel Poneman's Service to the Department of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and response capabilities, leading the Department's efforts in the wake of the Fukushima Daiichi disaster in 2011, as well as during and after Hurricane Sandy in 2012. In ...

  16. President Obama Visits DOE to Discuss Preparations for Hurricane...

    Office of Environmental Management (EM)

    The President discussed that in the wake of major disasters like Hurricane Sandy extended power outages can have major impacts on communities and recovery efforts, and that beyond ...

  17. PROJECT PROFILE: City University of New York (Solar Market Pathways...

    Energy Savers [EERE]

    Developed in response to the widespread power outages caused by Hurricane Sandy in 2012, this project is creating a roadmap for the integration and tracking of resilient solar ...

  18. Energy Department Partners with State of New Jersey to Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superstorm Sandy, Hurricane Irene and other natural disasters have exposed the vulnerability of the transit system to power outages. Through this agreement, the Energy Department ...

  19. Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure...

    Office of Environmental Management (EM)

    More Documents & Publications Energy Emergency Preparedness Quarterly Vol 2, Issue 1 - January 2013 Hurricane Sandy Situation Report 3 A Review of Power Outages and Restoration ...

  20. Policy Flash 2013-08 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Flash 2013-08 Major Disaster and Emergency Declarations for Specific States from Hurricane Sandy Questions concerning this policy flash should be directed to Barbara Binney of...

  1. Policy Flash 2013-10 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Attached is Policy Flash 2013-10 Hurricane Sandy Contingency Operation --Increase in Micro-Purchase and Simplified Acquisition Thresholds for Specific States and Counties Questions...

  2. Software Tools RFI and SEE Action: AMO Technical Assistance Overview

    Broader source: Energy.gov (indexed) [DOE]

    Software Tools RFI and SEE Action: AMO Technical Assistance Overview Sandy Glatt This presentation does not contain any proprietary, confidential, or otherwise restricted ...

  3. SREL Reprint #3007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to determine if combinations of fire and military training maintain or shift groundlayer ... (infantry only) or heavier (mechanized) military training; sandy or clayey soil; and a ...

  4. Wind Park Solutions Arcadia | Open Energy Information

    Open Energy Info (EERE)

    Park Solutions Arcadia Jump to: navigation, search Name: Wind Park Solutions Arcadia Place: Big Sandy, Montana Sector: Wind energy Product: JV between Wind Park Solutions America...

  5. Summary of April 22, 2014 Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participants: Mallinckrodt Pharmaceuticals, Inc: Dan Brague, Sandy Borgschulte, Roy Brown, Bill Franco, Joe Westner, Dave Gerber Department of Energy (DOE): Marc Garland, ...

  6. Fine mapping of the human bone morphogenetic protein-4 gene (BMP4) to chromosome 14q22-q23 by in situ hybridization

    SciTech Connect (OSTI)

    Wijngaard, A. van den; Boersma, C.J.C.; Olijve, W.

    1995-06-10

    Bone morphogenetic protein-4 (BMP-4) is a member of the transforming growth factor-{beta} (TGF-{beta}) superfamily and is involved in morphogenesis and bone cell differentiation. Recombinant BMP-4 can induce ectopic cartilage and bone formation when implanted subcutaneously or intramuscularly in rodents. This ectopic bone formation process resembles the process of bone formation during embryogenesis and fracture healing. A cosmid clone containing the complete human bone morphogenetic protein-4 gene (BMP4) was isolated (details to be published elsewhere) and used as a probe to determine the precise chromosomal localization of the human BMP4 gene. This cosmid clone was labeled with biotin-14-dATP and hybridized in situ to chromosomal preparations of metaphase cells as described previously. In 20 metaphase preparations, an intense and specific fluorescence signal (FITC) was detected on the q arm of chromosome 14. The DAPI-counterstained chromosomes were computer-converted into GTG-like banding patterns, allowing the regional localization of BMP4 within 14q22-q23. 10 refs., 1 fig.

  7. DATABASE AND ANALYTICAL TOOL DEVELOPMENT FOR THE MANAGEMENT OF DATA DERIVED FROM US DOE (NETL) FUNDED FINE PARTICULATE (PM 2.5) RESEARCH

    SciTech Connect (OSTI)

    Robinson P. Khosah; Charles G. Crawford

    2006-02-11

    Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase One includes the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. Phase Two, which is currently underway, involves the development of a platform for on-line data analysis. Phase Two includes the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its forty-second month of development activities.

  8. Database and Analytical Tool Development for the Management of Data Derived from US DOE (NETL) Funded Fine Particulate (PM2.5) Research

    SciTech Connect (OSTI)

    Robinson P. Khosah; Frank T. Alex

    2007-02-11

    Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase One includes the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. Phase Two, which is currently underway, involves the development of a platform for on-line data analysis. Phase Two includes the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its forty-eighth month of development activities.

  9. Database and Analytical Tool Development for the Management of Data Derived from US DOE (NETL) Funded Fine Particulate (PM2.5) Research

    SciTech Connect (OSTI)

    Robinson Khosah

    2007-07-31

    Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project was conducted in two phases. Phase One included the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. Phase Two involved the development of a platform for on-line data analysis. Phase Two included the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now technically completed.

  10. SPLAT II: An Aircraft Compatible, Ultra-Sensitive, High Precision Instrument for In-Situ Characterization of the Size and Composition of Fine and Ultrafine Particles

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Yang, Juan; Choi, Eric Y.; Imre, Dan G.

    2009-05-01

    The properties of aerosols depend on the size and internal compositions of the individual particles. The vast majority of atmospheric aerosols are smaller than 200 nm, yet the single particle mass spectrometers, the only instruments that can characterize the size and internal compositions of individual particles, typically detect these small particles with extremely low efficiencies. In this paper we describe a new instrument called SPLAT II that provides unparalleled sensitivity to small particles, detecting 100% of particles that are larger than 125 nm and 40% of 100 nm particles. This instrument also brings an increase by a factor of 10 in temporal resolution, sizing up to 500 particles per second and characterizing the composition of up to 100 of them. SPLAT II uses a two-laser, two-step process to evaporate the particles and generate ions, producing high quality, reproducible mass spectra of the refractive and non-refractive aerosol fractions to yield the complete compositions of individual particles. The instrument control board provides for size dependent delays for lasers triggers to eliminate a size dependent hit rate. The mass spectra are recorded with 14-bit vertical resolution and analyzed using custom software packages. The instruments high sizing resolution and sensitivity makes it possible to combine it with the differential mobility analyzer(s) and measure particle size, composition, density, dynamic shape factor, hygroscopicity, and fractal dimension.

  11. Proof of concept and performance optimization of high gravity batch-type centrifugal dryer for dewatering fine coal. Final report, September 20, 1989--September 21, 1991

    SciTech Connect (OSTI)

    Smith, L.B.; Durney, T.

    1991-12-31

    The primary objective of the project was to assemble, analyze and make use of those data that could help to clearly identify, optimize and confirm the technical and economic advantages that the new high gravity centrifugal dryer technology can provide to the coal industry and to end users. Other objectives were: to confirm the feasibility of the dryer for drying coals from a number of different seams; to use the data base for optimizing the dryer`s systems, and: to produce projected technical and economic comparisons with thermal dryers as applied to an existing coal processing plant flow sheet. (JL)

  12. Relationship between the fine structure of native cellulose and cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellum

    SciTech Connect (OSTI)

    Weimer, P.J.; Weston, W.M.

    1985-11-01

    The initial rate of hydrolysis of six commercially available native (type 1) celluloses was determined for the crude cellulase complexes of the thermophilic anaerobic bacterium C. thermocellum and the mesophilic fungus T. reesei. These rates were then compared with certain physical features of the substrates in an attempt to determine the role of cellulose structure in its degradability. Within the substrate series tested, the Clostridium system showed a greater relative range in rate of enzymatic hydrolysis than did the Trichoderma system. Average correlation coefficients for the kinetic rates from bacterial and fungal cellulases, respectively, and the following physical parameters were obtained: relative crystallinity index (RCI) from acid hydrolysis, -0.61 and -0.85; RCI from x-ray diffraction, -0.75 and -0.89; accessibility to formylation at 4 degrees C, +0.49 and +0.60; nonaccessibility to formylation at 65 degrees, -0.40 and - 0.73; fiber saturation point, +0.83 and +0.85. Kinetic and pore volume distribution data suggest that the rate-limiting components of both the bacterial and fungal cellulase systems are of similar size, approximately 43 Angstroms along one axis. 32 references.

  13. DATABASE AND ANALYTICAL TOOL DEVELOPMENT FOR THE MANAGEMENT OF DATA DERIVED FROM US DOE (NETL) FUNDED FINE PARTICULATE (PM2.5) RESEARCH

    SciTech Connect (OSTI)

    Robinson P. Khosah; Charles G. Crawford

    2003-09-01

    Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase 1, which is currently in progress and will take twelve months to complete, will include the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. In Phase 2, which will be completed in the second year of the project, a platform for on-line data analysis will be developed. Phase 2 will include the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its eleventh month of Phase 1 development activities.

  14. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Fourth quarterly technical progress report, June 1, 1991--August 31, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  15. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Third quarterly technical progress report, March 1, 1991--May 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  16. Synthesis of 1 nm Pd Nanoparticles in a Microfluidic Reactor: Insights from in Situ X ray Absorption Fine Structure Spectroscopy and Small-Angle X ray Scattering

    SciTech Connect (OSTI)

    Karim, Ayman M.; Al Hasan, Naila M.; Ivanov, Sergei A.; Siefert, Soenke; Kelly, Ryan T.; Hallfors, Nicholas G.; Benavidez, Angelica D.; Kovarik, Libor; Jenkins, Aaron; Winans, R. E.; Datye, Abhaya K.

    2015-06-11

    In this paper we show that the temporal separation of nucleation and growth is not a necessary condition for the colloidal synthesis of monodisperse nanoparticles. The synthesis mechanism of Pd nanoparticles was determined by in situ XAFS and SAXS in a microfluidic reactor capable of millisecond up to an hour time resolution. The SAXS results showed two autocatalytic growth phases, a fast growth phase followed by a very slow growth phase. The steady increase in the number of particles throughout the two growth phases indicates the synthesis is limited by slow continuous nucleation. The transition from fast to slow growth was caused by rapid increase in bonding with the capping agent as shown by XAFS. Based on this fundamental understanding of the synthesis mechanism, we show that 1 nm monodisperse Pd nanoparticles can be synthesized at low temperature using a strong binding capping agent such as trioctylphosphine (TOP).

  17. DATABASE AND ANALYTICAL TOOL DEVELOPMENT FOR THE MANAGEMENT OF DATA DERIVED FROM US DOE (NETL) FUNDED FINE PARTICULATE (PM2.5) RESEARCH

    SciTech Connect (OSTI)

    Robinson P. Khosah; Charles G. Crawford

    2003-03-13

    Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase 1, which is currently in progress and will take twelve months to complete, will include the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. In Phase 2, which will be completed in the second year of the project, a platform for on-line data analysis will be developed. Phase 2 will include the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its sixth month of Phase 1 development activities.

  18. Influence of viscous deformation at the contact point of primary particles on compaction of alkoxide-derived fine SiO{sub 2} granules under ultrahigh isostatic pressure

    SciTech Connect (OSTI)

    Kamiya, Hidehiro; Suzuki, Hisao; Kato, Daisuke; Jimbo, Genji

    1996-09-01

    Viscous deformation and the adhesion force at the contact point between amorphous silica particles under ultrahigh isostatic pressure (up to 1 GPa) are important in the densification of powder compacts. The amount of viscous deformation and the strength of adhesion force have been changed in the present study by altering the calcination temperature and particle diameter, and the new values have been determined successfully using a diametral compression test. The diameter of spherical and monosized alkoxide-derived silica powders has been controlled within the range of 10--400 nm. Close-packed granules of these powders have been produced by spray drying. Because of viscous deformation, as-spray-died ultrafine silica powders without calcination could be consolidated into highly dense compacts (>74% of theoretical density) by applying ultra-high isostatic pressure (1 GPa). Relatively high temperature in the calcined particles (>400 C) causes viscous deformation at the contact point to disappear almost completely and clearly increases the adhesion force, because of neck growth that has resulted from viscous sintering. At temperatures >200 C, the green density of the calcined powders decreases to 65% of theoretical density, even under 1 GPa pressure. The relationship between green density and viscous deformation in silica particles at the point of contact has been analyzed quantitatively by the Hertz and Rumpf model. The relationship between granule strength and neck growth at the contact point with calcination has been estimated Quantitatively.

  19. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    SciTech Connect (OSTI)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  20. Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings

    Broader source: Energy.gov [DOE]

    During and after Hurricane Sandy, combined heat and power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went down. This guidance document on CHP supports the August 2013 Hurricane Sandy Rebuilding Strategy by providing an overview of CHP and examples of how this technology can help improve the resiliency and reliability of key infrastructure.

  1. Sequence stratigraphic analysis of individual depositional successions: Effects of marine/nonmarine sediment partitioning and longitudinal sediment transport, Mannville Group, Alberta Foreland Basin, Canada

    SciTech Connect (OSTI)

    Cant, D.J.

    1995-05-01

    In the Falher Member of the Mannville Group (Aptian-Albian) of western Canada, two shoreline successions contain the reservoir conglomerates for the giant Elmworth gas field. The Falher B succession has basal sheetlike shoreface unit of hummocky cross-stratified sandstone that thins seaward and terminates about 30km north (seaward) of the landward limit of the transgression. Another 25 km farther basinward, the succession shows a 20-30-m-thick sandstone, unattached to the prograding shoreface, and an overlying coarsening-upward shoreface succession with thin muds and coals, interpreted as back-barrier deposits. In the upper (Falher A) succession, immediately landward (south) of the barriers, fluvial valleys were incised into nonmarine mudstones and coals during the base-level fall. As relative sea level subsequently rose, in nonmarine areas the valleys were filled by estuarine and fluvial sands, then a widespread sheet of fine-grained nonmarine sediment was deposited. At the same time, the shoreline migrated back across the shelf. As it reached the original shorezone (structurally controlled), reworking of underlying deposits successively generated three gravelly barrier islands superimposed on the sandy shoreface succession. The conglomeratic reservoirs all rest above the unconformities, in the transgressive depositional system. Westward (alongshore) toward the thrust belt, no falling or lowstand sea level succession developed. Instead, a wide regressive shoreface sandstone with a transgressive cap occurs. Subsidence rates were higher in this area, and relative sea level appears always to have risen, but at varying rates. Any two-dimensional sequence stratigraphic model, therefore, is inadequate to describe the lateral variation of the sequence and distribution of shoreface sandstones, because the subsidence gradient was not parallel to the direction of shoreface progradation.

  2. Petrographic and reservoir features of Hauterivian (Lower Cretaceous) Shatlyk horizon in the Malay gas field, Amu-Darya basin, east Turkmenia

    SciTech Connect (OSTI)

    Naz, H.; Ersan, A.

    1996-08-01

    Malay gas field in Amu-Darya basin, eastern Turkmenia, is located on the structural high that is on the Malay-Bagadzha arch north of the Repetek-Kelif structure zone. With 500 km{sup 2} areal coverage, 16 producing wells and 200 billion m{sup 3} estimated reserves, the field was discovered in 1978 and production began in 1987 from 2400-m-deep Hauterivian-age (Early Cretaceous) Shatlyk horizon. The Shatlyk elastic sequence shows various thickness up to 100 m in the Malay structural closure and is studied through E-log, core, petrographic data and reservoir characteristics. The Shatlyk consists of poorly indurated, reddish-brown and gray sandstones, and sandy gray shales. The overall sand-shale ratio increases up and the shales interleave between the sand packages. The reservoir sandstones are very fine to medium grained, moderately sorted, compositionally immature, subarkosic arenites. The framework grains include quartz, feldspar and volcanic lithic fragments. Quartz grains are monocrystalline in type and most are volcanic in origin. Feldspars consist of K- Feldspar and plagioclase. The orthoclases are affected by preferential alteration. The sandstones show high primary intergranular porosity and variations in permeability. Patch-like evaporate cement and the iron-rich grain coatings are reducing effects in permeability. The coats are pervasive in reddish-brown sandstones but are not observed in the gray sandstones. The evaporate cement is present in all the sandstone samples examined and, in places, follows the oxidation coats. The petrographic evidences and the regional facies studies suggest the deposition in intersection area from continental to marine nearshore deltaic environment.

  3. Promoting Uranium Immobilization by the Activities of Microbial...

    Office of Scientific and Technical Information (OSTI)

    be further analyzed via capillary electrophoresis and extended x-ray absorption fine ... ANIONS; BACILLUS; CADMIUM; ELECTROPHORESIS; FINE STRUCTURE; GENES; ...

  4. Promoting Uranium Immobilization by the Activities of Microbial...

    Office of Scientific and Technical Information (OSTI)

    ... be further analyzed via capillary electrophoresis and extended x-ray absorption fine ... ANIONS; BACILLUS; CADMIUM; ELECTROPHORESIS; FINE STRUCTURE; GENES; ...

  5. Energy Department Partners with State of New Jersey to Study Ways to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve the Reliability of New Jersey's Transit System in Aftermath of Superstorm Sandy | Department of Energy State of New Jersey to Study Ways to Improve the Reliability of New Jersey's Transit System in Aftermath of Superstorm Sandy Energy Department Partners with State of New Jersey to Study Ways to Improve the Reliability of New Jersey's Transit System in Aftermath of Superstorm Sandy August 26, 2013 - 11:23am Addthis NEWS MEDIA CONTACT (202) 586-4940 SECUACUS, N.J. - As part of the

  6. outages | OpenEI Community

    Open Energy Info (EERE)

    outages Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy East Coast Hurricane...

  7. East Coast | OpenEI Community

    Open Energy Info (EERE)

    East Coast Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy East Coast Hurricane...

  8. CREATING THE NORTHEAST GASOLINE SUPPLY RESERVE | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diesel, which was used for the first time by first-responders and to fill emergency generators in the wake of Superstorm Sandy. Beyond the Northeast, the Energy Department is not...

  9. CX-002867: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California-Tribe-Big Sandy Rancheria Band of Western Mono IndiansCX(s) Applied: B2.5, B5.1Date: 07/01/2010Location(s): CaliforniaOffice(s): Energy Efficiency and Renewable Energy

  10. COOLAdvantage Program

    Broader source: Energy.gov [DOE]

    '''''Note: Residents affected by Hurricane Sandy are eligible for an additional rebate of $200 for qualifying heat pumps, geothermal heat pumps, and air conditioners purchased on or after October...

  11. CASE STUDY WEBINAR: SUSTAINED ENERGY SAVINGS ACHIEVED THROUGH...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 December 10, 2015 12:00PM to 1:00PM EST Sandy Glatt with the U.S. Department of ... When: Thursday, December 10, 12-1 PM EST Please register for the webinar by clicking here.

  12. CX-008190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Georgia City-Sandy Springs CX(s) Applied: A1, B1.32, B3.6, B5.1 Date: 05/03/2012 Location(s): Georgia Offices(s): Energy Efficiency and Renewable Energy

  13. PATENTS-US--A7516399

    Office of Scientific and Technical Information (OSTI)

    ... Using a thermal conductivity estimate of .00063 cgs, (Carslaw et al, Conduction of Heat in Solids, 2nd ed., 1959, Oxford Univ. Press, Oxford), which is appropriate for dry, sandy ...

  14. BPA-2011-01243-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DATE: DUE DATE: i q l t l LOG B International Union of Painters & Allied Trades, AFL-CIO, CLC DISTRICT COUNCIL 5 Or Washingto 11105 N.E. Sandy Blvd. * Portland, OR 97220 *...

  15. BPA-2011-01032-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ; ,, LOG M %;'-&z0- OL 3 ,c: International Union of Painters & Allied Trades, AFL-CIO, CLC Washington DISTRICT COUNCIL 5 Or gon&Idaho 11105 N.E. Sandy Blvd. * Portland,...

  16. A Statement from U.S. Secretary of Energy Ernest Moniz Regarding President Obama’s Executive Order on Climate Preparedness

    Broader source: Energy.gov [DOE]

    The recent anniversary of Superstorm Sandy serves as a stark reminder of how disruptions to our nation’s critical infrastructure have far-reaching economic, health, safety and security impacts.

  17. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Don Hillebrand Division Director Phone. 630.252.6502 Jim Miller Deputy Division Director Phone. 630.252.3425 Sandy Davis Assistant Division Director Phone. 630.252.8259 Ann...

  18. Wave Energy Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Technologies Inc Jump to: navigation, search Name: Wave Energy Technologies Inc Address: 270 Sandy Cove Rd Place: Ketch Harbour Zip: B3V 1K9 Region: Canada Sector: Marine and...

  19. AmeriFlux CA-TP3 Ontario - Turkey Point 1974 Plantation White Pine

    SciTech Connect (OSTI)

    Arain, M. Altaf

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TP3 Ontario - Turkey Point 1974 Plantation White Pine. Site Description - White pine plantation established in 1974 over sandy abandoned land

  20. AmeriFlux CA-TP4 Ontario - Turkey Point 1939 Plantation White Pine

    SciTech Connect (OSTI)

    Arain, M. Altaf

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TP4 Ontario - Turkey Point 1939 Plantation White Pine. Site Description - White pine plantation established in 1939 over sandy abandoned land

  1. AmeriFlux CA-TP2 Ontario - Turkey Point 1989 Plantation White Pine

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Arain, M. Altaf [McMaster University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TP2 Ontario - Turkey Point 1989 Plantation White Pine. Site Description - Plantation established in 1989 over sandy agriculture land

  2. Microsoft Word - mountain building lesson-new.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running water is a major cause of erosion. Stones carried with a river's current scour and abrade the banks and beds. Ocean waves and currents erode rocky cliffs and sandy beaches, ...

  3. SREL Reprint #3266

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mineral colloids in sandy sediments Dien Li1, Hyun-Shik Chang2, John C. Seaman2, and Daniel I. Kaplan1 1Savannah River National Laboratory, Aiken, SC 29808, USA 2Savannah River...

  4. Policy Flash 2014-01 Acquisition Guide 15.4-3 Negotiation Documentation: Pre-negotiation Plan & the Price Negotiation Memorandum

    Broader source: Energy.gov [DOE]

    Questions concerning this policy flash should be directed to Sandy Shin of the Field Assistance and Oversight Division, Office Acquisition and Project Management at (202) 287-1474 or at Sangok.Shin...

  5. Tri-Lab Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moonlight - 294 compute nodes, 4,704 cores, 488 TF system. Dual 8-core Intel Xeon (Sandy Bridge) processors with two NVIDIA Tesla GPUs per node, w InfiniBand. Mustang - 1,600 ...

  6. OE Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Valley How flow batteries can support renewables and resiliency on the grid. May 12, 2014 Hurricane Sandy -- shown here via satellite on the night of November 2, 2012 -- was the...

  7. Divisional Mentoring Program Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ES Sandy Davis sdavis@anl.gov EVS John Krummel** jkrummel@anl.gov HEP Maury Goodman maury.goodman@anl.gov LCF Scott Parker sparker@alcf.anl.gov MCS Tom Peterka...

  8. Demonstration of Energy Efficient Retrofits for Lighting and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 160 MW of peak electric demand reductions and 340 GWh of electricity savings for greater grid reliability and resilience in aftermath of Hurricane Sandy in 2012 * Local Law 84 on ...

  9. NJ Clean Energy- WARMAdvantage Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: Residents affected by Hurricane Sandy are eligible for an additional incentive of $200 for qualifying furnaces, boilers, and water heaters purchased after October 29, 2012.  It should also be...

  10. Northeast Gasoline Supply Reserve

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Northeast region of the U.S. is particularly vulnerable to gasoline disruptions as a result of hurricanes and other natural events. Hurricane Sandy in 2012 caused widespread issues related to...

  11. Monitoring, Reporting, & Analysis | Department of Energy

    Office of Environmental Management (EM)

    Sandy-Nor'Easter and Recommendations for Improvement (February 2013) A Review of Power Outages and Restoration Following the June 2012 Derecho (August 2012) Impacts of Long-term ...

  12. Microsoft PowerPoint - Pillon Climate Change and the Need for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 10 11 12 13 14 15 Customer Without Power Days After Landfall Super Storm Sandy Power Outages PA CT West Virginia Ohio Massachusetts All Others 8.2 million New York New Jersey ...

  13. Mountain Association for Community Economic Development- How$martKY On-Bill Financing Energy Efficiency Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Four rural utility cooperatives in Eastern Kentucky (Big Sandy RECC, Fleming-Mason RECC, Grayson RECC, and Jackson Energy) work with MACED to provide energy retrofits as part of utility service...

  14. 2012 3rd Qtr Package

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hurricane Sandy Response February 5, 2013 1 FEBRUARY 2013 QUARTERLY BUSINESS REVIEW FOLLOW UP This information has been made publicly available by BPA on February 15, 2013 and does...

  15. TeamWorks.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Carter, Sandy Jowers (SWB receptionist) and John Haschets. Front row (L to R) Bob Weeks, Julie Desai and Tom Klein. Team ... Johnna was born at 5:10 a.m. on November 17. She weighed 8 ...

  16. SREL Reprint #3014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GA, reflects military use or fire frequency over the last 20 years. The 32 stands, half on sandy and half on clayey soil, were assigned to two military use categories ...

  17. Residence Times of Juvenile Salmon and Steelhead in Off-Channel Tidal Freshwater Habitats, Columbia River, USA

    SciTech Connect (OSTI)

    Johnson, Gary E.; Ploskey, Gene R.; Sather, Nichole K.; Teel, D. J.

    2015-05-01

    We estimated seasonal residence times of acoustic-tagged juvenile salmonids in off-channel, tidal freshwater habitats of the Columbia River near the Sandy River delta (rkm 198; 2007, 2008, 2010, and 2011) and Cottonwood Island (rkm 112; 2012).

  18. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Sandy","Coal","Kentucky Power Co",1060 9,"Riverside Generating LLC","Natural gas","Riverside Generating Co LLC",825 10,"J K Smith","Natural gas","East Kentucky Power Coop, Inc",784

  19. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    SciTech Connect (OSTI)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in inconsistent proportions of metal and glassy phase particles present during the subsequent firing process. The consequences were subtle, intermittent changes to the thick film microstructure that gave rise to the reaction layer and, thus, the low pull strength phenomenon. A mitigation strategy would be the use of physical vapor deposition (PVD) techniques to create thin film bond pads; this is multi-chip module, deposited (MCM-D) technology.

  20. Method for synthesizing fine-grained phosphor powders of the type (RE.sub.1- Ln.sub.x)(P.sub.1-y V.sub.y)O.sub.4

    DOE Patents [OSTI]

    Phillips, Mark L. F.

    1998-01-01

    A method for generating well-crystallized photo- and cathodoluminescent oxide phosphor powders. The method of this invention uses hydrothermal synthesis and annealing to produce nearly monosized (RE.sub.1-x Ln.sub.x)(P.sub.1-y V.sub.y)O.sub.4 (Ln.dbd.Ce.fwdarw.Lu) phosphor grains with crystallite sizes from 0.04 to 5 .mu.m. Such phosphors find application in cathode-ray tube, flat-panel, and projection displays.