Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Morphological Characterization of Superfine Pulverized Coal Particles. 1. Fractal Characteristics and Economic Fineness  

Science Journals Connector (OSTI)

Finally, a new method for identifying the economic granule size of pulverized coal particles, that is, economic fineness based on the power consumption of coal mills, E2, was proposed by a utilizing neural network method. ... Therefore, we can draw the conclusion that the economic fineness of pulverized coal particles which is related to the coal quantity varies with different coals. ... Furthermore, a conclusion can be drawn that the economic fineness of pulverized coal particles related to the coal quantity varies with different coals. ...

Jiaxun Liu; Xiumin Jiang; Xiangyong Huang; Shaohua Wu

2009-11-10T23:59:59.000Z

2

Fine Particle and Mercury Formation and Control during Coal Combustion.  

E-Print Network (OSTI)

??Pulverized coal combustion is widely used worldwide for the production of electricity. However, it is one of the primary emission sources of air pollutants, including… (more)

Wang, Xiaofei

2014-01-01T23:59:59.000Z

3

NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT  

SciTech Connect

This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

Jost O.L. Wendt

2003-01-31T23:59:59.000Z

4

Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station  

Science Journals Connector (OSTI)

Fine particles formed from combustion of a bituminous coal and co-combustion of coal with 7 th% (thermal percentage) solid recovered fuel (SRF) in a pulverized coal-fired power plant were sampled and characterized in this study. The particles from dedicated coal combustion and co-combustion both showed an ultrafine mode centered at approximately 0.1 ?m. Compared with coal combustion, co-combustion of coal and SRF increased the formation of submicron particles, especially ultrafine particles below 0.2 ?m. The morphology of the particles indicated that supermicron particles were primarily formed by the melting of minerals. The ultrafine particles were generated through nucleation and coagulation of vaporized inorganic species, while for the particles in between supermicron and ultrafine particles, condensation of vaporized species or aggregation of nucleates on the existing spherical submicron particles appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were depleted in ultrafine particles. The observed high volatility of Ca was likely related with the high combustion temperature and relative low oxygen condition in the boiler which may promote vaporization of Ca during char oxidation. The discrepancies on the observed volatilities of Ca and alkalis between some laboratory experiments and full-scale measurements were discussed. The composition of the fine particles from co-combustion was generally similar to those from coal combustion. The ultrafine particles from co-combustion were of slightly higher Ca, P, and K contents, and lower S content.

H. Wu; A.J. Pedersen; P. Glarborg; F.J. Frandsen; K. Dam-Johansen; B. Sander

2011-01-01T23:59:59.000Z

5

Innovative process for concentration of fine particle coal slurries. Technical report, March 1- May 31, 1996  

SciTech Connect

Williams Technologies, Inc. And Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be, concentrated to greater than 60 weight percent and re-mixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project was to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology can enable Illinois coal producers and users to realize significant cost and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. Testing was also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back-filled, eliminating the need for tailings ponds. During the grant period, a laboratory-scale test apparatus (up to 3 GPM feed rate) was assembled and operated to demonstrate process performance over a range of feed temperatures and pressures. A dilute coal/water slurry from Consol, Inc.`s Rend Lake Preparation Plant was concentrated using the process to a maximum recorded solids loading of 61.9% solids by weight. Analytical results from the concentrate were evaluated by Destec Energy for suitability as an IGCC fuel.

Rajchel, M.; Ehrlinger, H.P.; Fonseca, A.; Mauer, R.

1996-12-31T23:59:59.000Z

6

Innovative process for concentration of fine particle coal slurries. Technical report, September 1--November 30, 1995  

SciTech Connect

Williams Technologies, Inc. and Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be concentrated to greater than 60 weight percent and re-mixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project is to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology will enable Illinois coal producers and users to realize significant coast and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. In addition, testing is also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back-, filled and thus eliminate the need for tailings ponds. This reporting period, September 1, 1995 through November 30, 1995, marked the inception of this project. During this period Task No. 1, Procurement and Set-Up, was completed. The pilot plant apparatus was constructed at the SIU Coal Research Center in Carterville, Illinois. All equipment and feedstock were received at the site.

Rajchel, M. [Williams Technologies, Inc. (United States)]|[Clarke Rajchel Engineering, Arvada, CO (United States); Harnett, D. [Williams Technologies, Inc. (United States); Fonseca, A. [CONSOL, Pittsburgh, PA (United States); Maurer, R. [Destec (United States); Ehrlinger, H.P.

1995-12-31T23:59:59.000Z

7

NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT  

SciTech Connect

This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end work is progress using an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Progress in the Sixth Quarter (January 1, 2002 through March 31, 2002) was slow because of slagging problems in the combustor. These required the combustor to be rebuilt, a job that is not yet complete. A paper describing our results heretofore has been accepted by the Journal Environmental Science and Technology.

Jost O.L. Wendt

2002-02-05T23:59:59.000Z

8

Coal surface control for advanced physical fine coal cleaning technologies  

SciTech Connect

This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

1992-01-01T23:59:59.000Z

9

Innovative process for concentration of fine particle coal slurries. Final technical report, September 1, 1995--August 31, 1996  

SciTech Connect

Williams Technologies, Inc. And Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be concentrated to greater than 60 weight percent and remixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project was to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology can enable Illinois coal producers and users to realize significant cost and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. Testing was also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back- filled, eliminating the need for tailings ponds. During the grant period, a laboratory-scale test apparatus (up to 3 GPM feed rate) was assembled and operated to demonstrate process performance over a range of feed temperatures and pressures. A dilute coal/water slurry from Consol, Inc.`s Rend Lake Preparation Plant was concentrated with the process to a maximum recorded solids loading of 61.9% solids by weight. Analytical results from the concentrate were evaluated by Destec Energy for suitability as an IGCC fuel.

Rajchel, M.; Ehrlinger, H.P.; Harnett, D.; Fonseca, A.; Maurer, R.

1997-05-01T23:59:59.000Z

10

Fine Particles in Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

Fine Particles in Soils Fine Particles in Soils Nature Bulletin No. 582 November 28, 1959 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist FINE PARTICLES IN SOILS If a farmer, while plowing, is visited in the field by another farmer, invariably the visitor will pick up a handful of turned over earth and knead it with his fingers while they talk. The "feel" of it tells him a lot about the texture and structure of that soil. He knows that both are important factors in the growth of plants and determine the crops that may be obtained from the land. Soil is a combination of three different things About half of it is solid matter; the other half consists of air and water The solid portion is composed of organic and inorganic materials.

11

Experimental studies on hydrophobic flocculation of coal fines in aqueous solutions and flotation of flocculated coal  

Science Journals Connector (OSTI)

Hydrophobic flocculation of fine bituminous coal particles in aqueous solutions under mechanical conditioning and without any surfactants has been experimentally studied through the measurements of aggregative efficiency, zeta potential and contact angle in this work. The results have shown that the hydrophobic coal fines strongly aggregated in a wide pH range (3.5â??9.5), even though the particle surfaces were highly charged. This hydrophobic flocculation closely correlated with particle hydrophobicity, having a stronger aggregation for more hydrophobic coal fines. It reaches the maximum degree only if a sufficient kinetic energy is applied to the coal slurry. Also, it has been found that the hydrophobic flocculation could be greatly enhanced by adding a little amount of nonpolar oil. In addition, the flotation of flocculated coal fines was tested on the fine Prince coal for the deep elimination of ash and pyrite from coals in this work. An ultraclean coal with 1.3% ash remaining was produced with 87% combustible recovery. The ash rejection and pyritic sulfur rejection were about 93% and 66%, respectively.

Shaoxian Song

2008-01-01T23:59:59.000Z

12

Development of an Advanced Fine Coal Suspension Dewatering Process  

SciTech Connect

With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake is subjected to pressure for a short time, the free water present is released from the filter cake. Laboratory studies have shown that depending on the coal type a filter cake containing about 15% moisture could be obtained using the two-stage filtration technique. It was also noted that applying intermittent breaks in vacuum force during cake formation, which disturbed the cake structure, helped in removing moisture from the filter cakes. In this project a novel approach of cleaning coal using column flotation was also developed. With this approach the feed capacity of the column is increased significantly, and the column was also able to recover coarser size coal which usually gets lost in the process. The outcome of the research benefits the coal industry, utility industry, and indirectly the general public. The benefits can be counted in terms of clean energy, cleaner environment, and lower cost power.

B. K. Parekh; D. P. Patil

2008-04-30T23:59:59.000Z

13

Development of an Ultra-fine Coal Dewatering Technology and an Integrated Flotation-Dewatering System for Coal Preparation Plants  

SciTech Connect

The project proposal was approved for only the phase I period. The goal for this Phase I project was to develop an industrial model that can perform continuous and efficient dewatering of fine coal slurries of the previous flotation process to fine coal cake of {approx}15% water content from 50-70%. The feasibility of this model should be demonstrated experimentally using a lab scale setup. The Phase I project was originally for one year, from May 2005 to May 2006. With DOE approval, the project was extended to Dec. 2006 without additional cost from DOE to accomplish the work. Water has been used in mining for a number of purposes such as a carrier, washing liquid, dust-catching media, fire-retardation media, temperature-control media, and solvent. When coal is cleaned in wet-processing circuits, waste streams containing water, fine coal, and noncombustible particles (ash-forming minerals) are produced. In many coal preparation plants, the fine waste stream is fed into a series of selection processes where fine coal particles are recovered from the mixture to form diluted coal fine slurries. A dewatering process is then needed to reduce the water content to about 15%-20% so that the product is marketable. However, in the dewatering process currently used in coal preparation plants, coal fines smaller than 45 micrometers are lost, and in many other plants, coal fines up to 100 micrometers are also wasted. These not-recovered coal fines are mixed with water and mineral particles of the similar particle size range and discharged to impoundment. The wasted water from coal preparation plants containing unrecoverable coal fine and mineral particles are called tailings. With time the amount of wastewater accumulates occupying vast land space while it appears as threat to the environment. This project developed a special extruder and demonstrated its application in solid-liquid separation of coal slurry, tailings containing coal fines mostly less than 50 micron. The extruder is special because all of its auger surface and the internal barrier surface are covered with the membranes allowing water to drain and solid particles retained. It is believed that there are four mechanisms working together in the dewatering process. They are hydrophilic diffusion flow, pressure flow, agitation and air purging. Hydrophilic diffusion flow is effective with hydrophilic membrane. Pressure flow is due to the difference of hydraulic pressure between the two sides of the membrane. Agitation is provided by the rotation of the auger. Purging is achieved with the air blow from the near bottom of the extruder, which is in vertical direction.

Wu Zhang; David Yang; Amar Amarnath; Iftikhar Huq; Scott O'Brien; Jim Williams

2006-12-22T23:59:59.000Z

14

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-01-26T23:59:59.000Z

15

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

Carlson, Larry W. (Oswego, IL)

1988-01-01T23:59:59.000Z

16

Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1991--February 8, 1992  

SciTech Connect

The investigation of methods for the production and testing of iron-pillared clay catalysts was continued in this quarter. The surface area of the mixed alumina/iron pillared clay catalyst decreased to 51 m{sup 2}/g on sulfidation. Thus the stability of the alumina pillars during the sulfidation and thermal treatments prevented the total collapse that occurred in the case of the iron-pillared clays. Previously the mixed alumina/iron pillared clays were tested for hydrocracking activities with bibenzyl. This testing was extended to a determination of activity with a second model compound substrate (pyrene), representative of the polynuclear aromatic systems present in coal. Testing of the mixed alumina/iron-pillared catalysts with 1-methylnaphthalene gave interesting results that demonstrate shape selectivity. The clay-supported iron hydroxyoxide catalysts prepared by impregnation of iron species on acidic clays were further investigated. Sulfidation of these catalysts using the carbon disulfide in situ method gave hydrocracking activities with bibenzyl that were somewhat less than those obtained by presulfidation with H{sub 2}/H{sub 2}S mixtures. Liquefaction of Wyodak subbituminous coal was very successful with the iron impregnated clay catalyst, giving a highly soluble product. High conversions were also obtained with the mixed alumina/iron-pillared clay catalyst, but the yield of oil-solubles was considerably lower. Several new catalysts were synthesized with the idea of decreasing the pillar density and thereby increasing the micropore volume. These catalysts were prepared by first pillaring with an organic ammonium pillaring agent, then introducing a lower number of silica or alumina pillars. Finally the iron component was added either before or after thermal removal of organic pillars.

Olson, E.S.

1995-10-01T23:59:59.000Z

17

Filtratin and dewatering of fine coal  

SciTech Connect

A fundamental study on filtration and dewatering of fine coal is described. Experiments are being conducted in three areas: (1) the microscopic analysis of filter cakes; (2) the measurement of equilibrium desaturation; and (3) the determination of filtration and dewatering rates. Preliminary experimental results are presented together with some observations on the microstructure of filter cakes. A three dimensional network model has also been developed and is being used to analyze experimental data. 10 figures, 2 tables.

Gala, H.B.; Kakwani, R.; Chiang, S.H.; Tierney, J.W.; Klinzing, G.E.

1981-01-01T23:59:59.000Z

18

Coal surface control for advanced fine coal flotation  

SciTech Connect

The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

1990-08-15T23:59:59.000Z

19

Modified approaches for high pressure filtration of fine clean coal  

SciTech Connect

Removal of moisture from fine (minus 28 mesh) clean coal to 20% or lower level is difficult using the conventional vacuum dewatering technique. High pressure filtration technique provides an avenue for obtaining low moisture in fine clean coal. This paper describes a couple of novel approaches for dewatering of fine clean coal using pressure filtration which provides much lower moisture in fine clean coal than that obtained using conventional pressure filter. The approaches involve (a) split stream dewatering and (b) addition of paper pulp to the coal slurry. For Pittsburgh No. 8 coal slurry, split stream dewatering at 400 mesh provided filter cake containing 12.9% moisture compared to 24.9% obtained on the feed material. The addition of paper pulp to the slurry provided filter cake containing about 17% moisture.

Yang, J.; Groppo, J.G.; Parekh, B.K. [Center for Applied Energy Research, Lexington, KY (United States)

1995-12-31T23:59:59.000Z

20

Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992  

SciTech Connect

This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Analysis and scaling of a two-stage fluidized bed for drying of fine coal particles using Shannon entropy, thermodynamic exergy and statistical methods.  

E-Print Network (OSTI)

??Liquid water (moisture) in coal causes a number of economic and environmental issues for the mining and electrical power generation industries. Coal preparation plants utilize… (more)

Rowan, Steven Lee.

2010-01-01T23:59:59.000Z

22

Fine Particle Emissions from Combustion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Fine Particle Emissions from Combustion Systems Fine Particle Emissions from Combustion Systems Speaker(s): Allen Robinson Date: November 11, 2005 - 12:00pm Location: 90-3122 Combustion systems such as motor vehicles and power plants are major sources of fine particulate matter. This talk describes some of the changes in fine particle emissions that occur as exhaust from combustion systems mix with background air. This mixing cools and dilutes the exhaust which influences gas-particle partitioning of semi-volatile species, the aerosol size distribution, and the fine particle mass. Dilution sampling is used to characterize fine particle emissions from combustion systems because it simulates the rapid cooling and dilution that occur as exhaust mixes with the atmosphere. Results from dilution sampler

23

Centrifugal float-sink testing of fine coal: An interlaboratory test program  

SciTech Connect

The Pittsburgh Energy Technology Center (PETC) recently completed an interlaboratory test program (ITP) involving eight laboratories that are currently performing washability analyses of coals finer than 500-microns top size using a centrifugal float-sink technique. With the current and future development of fine coal cleaning technology, there is a growing need to determine the washability of coals in extremely fine sizes, in some cases as fine as several microns by zero. However, much uncertainty exists about limitations relative to particle size and the viability of centrifugal float-sink procedures in achieving ``ideal`` specific gravity separations (i.e, the perfect separation of particles according to their density). The objective of this work was to develop an understanding regarding the variables affecting the procedure and initiate a process for obtaining a standard procedure. (VC)

Killmeyer, R.P.; Hucko, R.E. [USDOE Pittsburgh Energy Technology Center, PA (United States). Coal Preparation Div.; Jacobsen, P.S. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1991-10-01T23:59:59.000Z

24

Centrifugal float-sink testing of fine coal: An interlaboratory test program  

SciTech Connect

The Pittsburgh Energy Technology Center (PETC) recently completed an interlaboratory test program (ITP) involving eight laboratories that are currently performing washability analyses of coals finer than 500-microns top size using a centrifugal float-sink technique. With the current and future development of fine coal cleaning technology, there is a growing need to determine the washability of coals in extremely fine sizes, in some cases as fine as several microns by zero. However, much uncertainty exists about limitations relative to particle size and the viability of centrifugal float-sink procedures in achieving ideal'' specific gravity separations (i.e, the perfect separation of particles according to their density). The objective of this work was to develop an understanding regarding the variables affecting the procedure and initiate a process for obtaining a standard procedure. (VC)

Killmeyer, R.P.; Hucko, R.E. (USDOE Pittsburgh Energy Technology Center, PA (United States). Coal Preparation Div.); Jacobsen, P.S. (Burns and Roe Services Corp., Pittsburgh, PA (United States))

1991-10-01T23:59:59.000Z

25

ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS  

SciTech Connect

The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

E. James Davis

1999-12-18T23:59:59.000Z

26

Hot Gas Filtration of Fine and Ultra fine Particles with Liquid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC Ceramic DPF Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC...

27

Rapid Coal Analysis. Part I: Particle Size Effects in Slurry Methods Based on Flame AA and Swing-Mill Grinding  

Science Journals Connector (OSTI)

Laser diffraction particle size measurements are used to study aerodynamic mass transport losses of a finely ground aqueous coal slurry aerosol in the spray chamber of a conventional...

Mohamed, N; McCurdy, D L; Wichman, M D; Fry, R C; O'Reilly, James E

1985-01-01T23:59:59.000Z

28

Coal surface control for advanced fine coal flotation  

SciTech Connect

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

29

Fine Anthracite Coal Washing Using Spirals  

SciTech Connect

The spiral performed well in cleaning the coarse 8 x 16 mesh size fraction, as demonstrated by the Ep ranging from 0.091 to 0.177. This is in line with typical spiral performance. In addition, the presence of the coarser size fraction did not significantly affect spiral performance on the typical 16 x 100 mesh fraction, in which the Ep ranged from 0.144 to 0.250. Changes in solids concentration and flow rate did not show a clear correlation with spiral performance. However, for difficult-to-clean coals with high near-gravity material, such as this anthracite, a single-stage spiral cleaning such a wide size fraction may not be able to achieve the clean coal ash and yield specifications required. In the first place, while the performance of the spiral on the coarse 8 x 16 mesh fraction is good with regard to Ep, the cutpoints (SG50s) are high (1.87 to 1.92), which may result in a clean coal with a higher-than-desired ash content. And second, the combination of the spiral's higher overall cutpoint (1.80) with the high near-gravity anthracite results in significant misplaced material that increases the clean coal ash error. In a case such as this, one solution may be to reclean the clean coal and middlings from the first-stage spiral in a second stage spiral.

R.P. Killmeyer; P.H. Zandhuis; M.V. Ciocco; W. Weldon; T. West; D. Petrunak

2001-05-31T23:59:59.000Z

30

Movement of Indoor Fine Particle  

Science Journals Connector (OSTI)

For the pollution control of cleanroom, the airflow force is the most important ... important for the movement of indoor particles in cleanroom comparatively. As for the movement of particles...

Zhonglin Xu

2014-01-01T23:59:59.000Z

31

An efficient process for recovery of fine coal from tailings of coal washing plants  

SciTech Connect

Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H. [Dokuz Eylul University, Izmir (Turkey). Dept. for Mining Engineering

2008-07-01T23:59:59.000Z

32

Simulation of Coal Ash Particle Deposition Experiments  

Science Journals Connector (OSTI)

Simulation of Coal Ash Particle Deposition Experiments† ... Ichikawa et al.(7) measured deposition behavior for ash particles from ashing tests for a series of five coals, using a nominally 1 m tall × 60 mm diameter ash-heating tube that was fitted with a cooled, temperature-controlled particle impact probe oriented at a 30° angle to the atmospheric pressure air flow. ...

Weiguo Ai; John M. Kuhlman

2011-01-20T23:59:59.000Z

33

Interlaboratory comparison of advanced fine-coal beneficiation processes  

SciTech Connect

The Pittsburgh Energy Technology Center (PETC) recently completed three interlaboratory test programs involving 21 developers of advanced fine-coal-cleaning processes. The processes consisted of specific gravity separation (aqueous or heavy-liquid), electrostatic separation (dry), advanced froth flotation, selective agglomeration, and surface modification (gas). The participating organizations received representative samples of Illinois No. 6, Pittsburgh, and Upper Freeport bed coals. They ground them to a size appropriate for their particular process and then treated each coal. Their goal was to produce a clean coal with 2--3{percent} ash while recovering maximum energy. The products were returned to the PETC for analysis and performance evaluation. This paper will discuss the processes involved in the three test programs and present the results of the beneficiation tests. 4 refs., 4 figs., 3 tabs.

Jacobsen, P.S. (Burns and Roe Services Corp., Pittsburgh, PA (USA)); Killmeyer, R.P.; Hucko, R.E. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1989-12-01T23:59:59.000Z

34

Study of microscopic structure of porous media - fine coal filter cakes  

SciTech Connect

The macroscopic properties of the porous media, e.g., permeability, capillary pressure, relative permeability, depend upon the microscopic structure of the porous medium. In the coal preparation plants, the filtration and dewatering rates of the fine coal filter cakes are important in determining the final moisture content. The microscopic structure of the porous coal filter cakes plays an important role in these operations. Moreover, the two phase flow through the porous medium can be explained in detail by considering its pore structure. Hence, the development of a technique for the micro-structural analysis of unconsolidated coal filter cakes is investigated. The technique developed is also applicable to many consolidated porous media like sandstones, rocks, etc. Optical methods were utilized to study the micro-structure of fine coal cakes. The investigation of -32 mesh Pittsburgh seam coal cakes reveals a non-uniform structure at low solid concentration of 0.33 kg coal/kg water. An increase in the solid concentration in the slurry produces a more uniform structure with an increase in the filtration and dewatering rates. It was found that coal filter cakes are incompressible over the range of 28 to 67 kPa applied vacuum. An important aspect of this work was to provide quantitative information about the presence of air bubbles in the coal filter cakes. These air bubbles are evolved from the aerated slurry and they reduce the filtration rates. A linear correlation between the particle and pore size distribution of -32 mesh Pittsburgh coal was found.

Kakwani, R.M.

1983-01-01T23:59:59.000Z

35

ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS  

SciTech Connect

The objective of this research is to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. In this experimental and analytical study the authors elucidate the transport processes that control the rate of concentrated colloidal particle removal, demonstrate the process on a laboratory scale, and develop the scale-up laws needed to design commercial-scale processes. The authors are also addressing the fundamental problems associated with particle-particle interactions (electrical and hydrodynamic), the effects of particle concentration on the applied electric field, the electrochemical reactions that occur at the electrodes, and the prediction of power requirements.

E. James Davis

1998-05-01T23:59:59.000Z

36

POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING  

SciTech Connect

This report covers the technical progress achieved from July 01, 1997 to September 30, 1997 on the POC-Scale Testing Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental procedures and test data for recovery of fine coal from coal fines streams generated at a commercial coal preparation plant are described. Two coal fines streams, namely Sieve Bend Effluent and Cyclone Overflow were investigated. The test results showed that ash was reduced by more than 50% at combustible matter recovery levels exceeding 95%.

NONE

1998-01-01T23:59:59.000Z

37

DEVELOPMENT OF A NOVEL FINE COAL CLEANING SYSTEM  

SciTech Connect

The goal of the proposed project was to develop a novel fine coal separator having the ability to clean 1 mm x 0 size coal in a single processing unit. The novel fine coal separator, named as EG(Enhanced Gravity) Float Cell, utilizes a centrifugal field to clean 1 mm x 250 micron size coal, whereas a flotation environment to clean minus 250 micron coal size fraction. Unlike a conventional enhanced gravity concentrator, which rotates to produce a centrifugal field requiring more energy, the EG Float Cell is fed with a tangential feed slurry to generate an enhanced gravity field without any rotating part. A prototype EG Float Cell unit having a maximum diameter of 60 cm (24 inch) was fabricated during the first-half of the project period followed by a series of exploratory tests to make suitable design modification. Test data indicated that there was a significant concentration of coarse heavy materials in the coarse tailings discharge of the EG Float Cell. The increase in weight (%) of 1 mm x 250 micron (16 x 60 mesh) size fraction from 48.9% in the feed to 72.2% in the coarse tailings discharge and the corresponding increase in the ash content from 56.9% to 87.0% is indicative of the effectiveness of the enhanced gravity section of the EG Float Cell. However, the performance of the flotation section needs to be improved. Some of the possible design modifications may include more effective air sparging system for the flotation section to produce finer bubbles and a better wash water distributor.

Manoj K. Mohanty

2005-06-01T23:59:59.000Z

38

Mechanisms governing fine particulate emissions from coal flames  

SciTech Connect

The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

1990-04-01T23:59:59.000Z

39

Mechanisms governing fine particulate emissions from coal flames. Final report  

SciTech Connect

The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

1990-04-01T23:59:59.000Z

40

Fundamental study for improvement of dewatering of fine coal/refuse. Annual report, July 1980-June 1981  

SciTech Connect

A major area of concern in modern coal preparation plants is the dewatering (and filtration) of fine coal/refuse. Fine coal in slurry form must be dewatered to minimize handling and transportation problems and to maximize its calorific value. The current practice is to use a vacuum filter for initial dewatering followed by thermal drying to meet the final moisture requirement. Experience shows that the thermal drying of fine coal is a costly operation. In addition, it poses air pollution problems and safety hazards due to sulfur emission and dust formation. Therefore, it is most desirous to develop improved mechanical methods for reducing the moisture content of fine coal so that the need for thermal drying will be reduced or eliminated. In light of this, a fundamental study of the dewatering of fine coal/refuse was initiated in June 1979 under the DOE Contract No. DE-AC01-79ET14291 and renewed in June 1980 (Contract No. DE-AC22-79ET14291). The overall objective of the study is to seek improved methods of dewatering through a better understanding of the filtration and post-filtration processes. As a first step, efforts have been focused on the mechanism of dewatering in terms of basic properties of coal (and refuse) particles and filter cakes and their relations to filtration rate and final cake moisture contents. This report presents the highlights and accomplishments of the second year. The report is divided into four parts: Summary and Deliverables, Work Forecast for the Third Year, Detailed Description of Technical Progress, and Appendices for Computer Programs and Experimental Data. 11 refs., 58 figs., 16 tabs.

Chiang, S.H.; Fulton, P.F.; Klinzing, G.E.; Tierney, J.W.; Gala, H.; Kakwani, R.; Meenan, G.; Pien, H.L.

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

POC-scale testing of an advanced fine coal dewatering equipment/technique  

SciTech Connect

Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

1995-11-01T23:59:59.000Z

42

Suppression of fine ash formation in pulverized coal flames. Final technical report, September 30, 1992--January 31, 1996  

SciTech Connect

Coal ash, and particularly fine fly ash, remain one of the principal practical and environmental problems in coal-based power generation. In particular, submicron aerosols are identified with direct inhalation risk. Submicron ash is thought to arise from mineral vaporization during char combustion, followed by nucleation, condensation and coagulation to yield an aerosol. While aerosols are predominantly made out of volatile alkali minerals, they also can include refractory oxides that are chemically reduced to more volatile forms within the char particle and vaporized. Most of the ash of size greater than 1 {mu}m is generated by agglomeration of mineral as the char particle bums out. These two principal mechanisms are thought to account for most of the ash generated in coal combustion. Previous research has shown that various forms of coal treatment can influence the yields of fine ash from combustion. The research reported here investigates various forms of treatment, including physical coal cleaning, aerodynamic sizing, degree of grinding, and combinations of these on both aerosol yields and on yields of fine residual ash (1-4 {mu}m). The work also includes results from the combustion of artificial chars that include individual mineral elements. This research shows that these various forms of coal treatment can significantly change ash characteristics. While none of the treatments affected the bulk of the residual ash size distribution significantly, the yield of the ash aerosol mode (d<0.5 {mu}m) and fine residual ash mode (1-4 {mu}m) are changed by the treatments.

Kramlich, J.C.; Chenevert, B.; Park, Jungsung; Hoffman, D.A.; Butcher, E.K.

1996-07-19T23:59:59.000Z

43

Dewatering of fine coal slurries by selective heating with microwaves.  

E-Print Network (OSTI)

??Since water is used extensively in coal preparation and cleaning, dewatering of coals is required prior to shipment to power plants. However, finer fractions of… (more)

Kalra, Aashish.

2006-01-01T23:59:59.000Z

44

POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE  

SciTech Connect

The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

B.K. PAREKH; D. TAO; J.G. GROPPO

1998-02-03T23:59:59.000Z

45

Fundamental study for improvement of dewatering of fine coal/refuse. Semi-annual report, November 1981-April 1982  

SciTech Connect

The objectives of this research program are to formulate models for predicting the efficiency of mechanical dewatering, the rate of dewatering and the residual moisture content of dewatered coal/refuse and to suggest improved mechanical dewatering methods. To achieve these objectives, the following tasks are being carried out: (1) characterization of fine coal particles and filter cakes; (2) theoretical models for fine coal dewatering, (3) experimental measurement of dewatering; and (4) enhanced dewatering methods. Some highlights for this reporting period are: (1) important improvements in the micrographic analysis of coal filter cakes were achieved, (2) refinement of the model to predict the one-phase flow rate and permeability for the coal cake was initiated; (3) controlled filtration and dewatering experiments were carried out with different size fractions of the -32 mesh Pittsburgh seam-Bruceton mine coal; (4) filtration and dewatering experiments with five surfactants were completed; and (5) data analysis shows a strong correlation for the adsorption isotherm of all five surfactants with the reduction in moisture content. 6 references, 31 figures, 7 tables.

Chiang, S.H.; Klinzing, G.E.; Tierney, J.W.; Bayles, G.; Gala, H.; Kakwani, R.; Pien, H.L.; Rega, R.; Yetis, U.

1982-05-01T23:59:59.000Z

46

AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL  

SciTech Connect

Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behavior of fly ash in the PEG-2000 Na{sub 2}SO{sub 4}/H{sub 2}O system was studied and the solid in each fraction was characterized by CHN analysis (carbon content), X-ray diffraction (XRD; crystal component), and inductively coupled plasma spectrophotometry (ICP; elemental composition in the ash). In the pH range from 2 to 5, the particles separated into two different layers, i.e., the polymer-rich (top) and salt-rich (bottom) layers. However, above pH 5, the particles in the polymer-rich phase split into two zones. The percent carbon content of the solids in the upper zone ({approximately}80 wt%) was higher than that in the parent sample (63.2 wt%), while the lower zone in the polymer-rich phase had the same percent ash content as the original sample. The particles in the salt-rich phase were mainly composed of ash (with < 4 wt% carbon content). However, when the solid concentration in the whole system increased from 1 wt% to 2 wt%, this 3-fraction phenomenon only occurred above pH 10. XRD results showed that the main crystal components in the ash included quartz, hematite, and mullite. The ICP results showed that Si, Al, and Fe were the major elements in the fly ash, with minor elements of Na, K, Ca, Mg, and Ba. The composition of the ash in the lower zone of the polymer-rich phase remained almost the same as that in the parent fly ash. The largest amount of product ({approximately}60% yield) with the highest carbon content ({approximately}80 wt% C) was obtained in the range pH 6-9. Based on the experimental results obtained, a flowsheet is proposed for the beneficiation of high-carbon fly ash with the aqueous biphase extraction process.

K. Osseo-Asare

2000-06-02T23:59:59.000Z

47

DOE Receives First Repayment from Successful DryFining™ Clean Coal Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receives First Repayment from Successful DryFining™ Clean Coal Receives First Repayment from Successful DryFining™ Clean Coal Power Initiative Project DOE Receives First Repayment from Successful DryFining™ Clean Coal Power Initiative Project July 6, 2011 - 1:00pm Addthis Washington, DC - The success of a U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project has led to a repayment of $580,000 to U.S. taxpayers, with much more - potentially exceeding $13 million - possible in the future. Great River Energy (GRE) of Maple Grove, Minn., made the payment to the Office of Fossil Energy's National Energy Technology Laboratory (NETL) recently as part of an agreement associated with the DryFining™ CCPI project. Implemented by NETL, CCPI is a cost-shared collaboration between the Federal government and private industry aimed at stimulating investment

48

Comparative study of the performance of conventional and column flotation when treating coking coal fines  

Science Journals Connector (OSTI)

Investigations were carried out on coking coal fines by conventional cell and column flotation techniques. The effects of different operating parameters were evaluated for both conventional and column flotation. The coal fines were collected from Bhojudih washery, India. These coal fines averaged 24.4% ash, 19.8% volatile matter and 53.8% fixed carbon on a dry basis. A commercial grade sodium silicate, light diesel oil and pine oil were used as depressant, collector and frother respectively. The flotation performance was compared with release analysis. The conventional flotation results indicated that a clean coal with 14.4% ash could be obtained at 78.0% yield with 88.4% combustible recovery. The ash of the clean coal could be further reduced to 10.1% at 72.0% yield with 85.6% combustible recovery by using column flotation. The column flotation results were close to those obtained by release analysis.

M.S. Jena; S.K. Biswal; S.P. Das; P.S.R. Reddy

2008-01-01T23:59:59.000Z

49

Inclined fluidized bed system for drying fine coal  

DOE Patents (OSTI)

Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

1992-02-11T23:59:59.000Z

50

Coal Particle Measurement in a Pulverized Coal Flame with Digital Inline Holography  

Science Journals Connector (OSTI)

Digital inline holography with pulse illumination was applied to measure the 3D position and size of the burning coal particles in a laboratory-scale pulverized coal flame under strong...

Wu, Yingchun; Wu, Xuecheng; Zhou, Binwu; Yang, Jing; Chen, Linghong; Peng, Yueyu; Qiu, Kunzan; Grehan, Gerard; Cen, Kefa

51

POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique  

SciTech Connect

Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 ? March 31, 1998.

B. K. Karekh; D. Tao; J. G. Groppo

1998-08-28T23:59:59.000Z

52

DEVELOPMENT OF DEWATERING AIDS FOR MINERALS AND COAL FINES  

SciTech Connect

MCT has developed a suite of novel dewatering chemicals (or aids) that are designed to cause a decrease in the capillary pressures of the water trapped in a filter cake by (1) decreasing the surface tension of water, (2) increasing the contact angles of the particles to be dewatered, and (3) causing the particles to coagulate, all at the same time. The decrease in capillary pressure in turn causes an increase in the rate filtration, an increase in throughput, and a decrease in pressure drop requirement for filtration. The reagents are used frequently as blends of different chemicals in order to bring about the changes in all of the process variables noted above. The minerals and coal samples tested in the present work included copper sulfide, lead sulfide, zinc sulfide, kaolin clay, talc, and silica. The laboratory-scale test work included studies of reagent types, drying cycle times, cake thickness, slurry temperature, conditioning intensity and time, solid content, and reagent dosages. To better understand the mechanisms involved, fundamental studies were also conducted. These included the measurements of the contact angles of the particles to be dewatered (which are the measures of particle hydrophobicity) and the surface tensions of the filtrates produced from dewatering tests. The results of the laboratory-scale filtration experiments showed that the use of the novel dewatering aids can reduce the moistures of the filter cake by 30 to 50% over what can be achieved using no dewatering aids. In many cases, such high levels of moisture reductions are sufficient to obviate the needs for thermal drying, which is costly and energy intensive. Furthermore, the use of the novel dewatering aids cause a substantial increase in the kinetics of dewatering, which in turn results in increased throughput. As a result of these technological advantages, the novel dewatering aids have been licensed to Nalco, which is one of the largest mining chemicals companies of the world. At least one mineral company is currently using the technology in full-scale plant operation, which has resulted in the shutdown of a thermal dryer.

Roe-Hoam Yoon; Ramazan Asmatulu; Ismail Yildirim; William Jansen; Jinmig Zhang; Brad Atkinson; Jeff Havens

2004-07-01T23:59:59.000Z

53

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

54

Multi-gravity separator: an alternate gravity concentrator to process coal fines  

SciTech Connect

The multi-gravity separator (MGS) is a novel piece of equipment for the separation of fine and ultra-fine minerals. However, the published literature does not demonstrate its use in the separation of coal fines. Therefore, an attempt was made to study the effects of different process variables on the performance of an MGS for the beneficiation of coal fines. The results obtained from this study revealed that among the parameters studied, drum rotation and feed solids concentration play dominating roles in controlling the yield and ash content of the clean coal. Mathematical modeling equations that correlate the variables studied and the yield and ash contents of the clean coal were developed to predict the performance of an MGS under different operating and design conditions. The entire exercise revealed that the MGS could produce a clean coal with an ash content of 14.67% and a yield of 71.23% from a feed coal having an ash content of 24.61 %.

Majumder, A.K.; Bhoi, K.S.; Barnwal, J.P. [Regional Research Laboratories, Bhopal (India)

2007-08-15T23:59:59.000Z

55

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-08-28T23:59:59.000Z

56

Syngas Production from Coal through Microwave Plasma Gasification: Influence of Oxygen, Steam, and Coal Particle Size  

Science Journals Connector (OSTI)

Syngas Production from Coal through Microwave Plasma Gasification: Influence of Oxygen, Steam, and Coal Particle Size ... Plasma gasification is widely applied because of its clean syngas production performance and high chemical reactivity accelerated by the free radicals produced by plasma. ... The syngas composition produced from plasma gasification at same conditions is affected by the physicochemical properties of coals. ...

Sang Jun Yoon; Jae Goo Lee

2011-11-23T23:59:59.000Z

57

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26T23:59:59.000Z

58

The effect of oxygen-to-fuel stoichiometry on coal ash fine-fragmentation mode formation mechanisms.  

SciTech Connect

Ash particles smaller than 2.5 {micro}m in diameter generated during pulverized coal combustion are difficult to capture and may pose greater harm to the environment and human health than the discharge of larger particles. Recent research efforts on coal ash formation have revealed a middle fine-fragment mode centered around 2 {micro}m. Formation of this middle or fine-fragment mode (FFM) is less well understood compared to larger coarse and smaller ultrafine ash. This study is part of an overall effort aimed at determining the key factors that impact the formation of FFM. This work examined the effects of oxygen-to-fuel stoichiometry (OFS). Pulverized Illinois No.6 bituminous coal was combusted and the ash generated was size segregated in a Dekati low pressure inertial impactor. The mass of each fraction was measured and the ash was analyzed using scanning electron microscopy (SEM) and X-ray microanalysis. The FFM ash types were classified based on the SEM images to evaluate the significant fine-fragment ash formation mechanisms and determine any possible link between stoichiometry and formation mechanism. From the particle size distributions (PSDs), the coarse mode appears unaffected by the change in OFS, however, the OFS 1.05 lowered the fraction of ultrafine ash in relation to the higher OFS settings, and appears to increase the portion of the FFM. An intermediate minimum was found in the FFM at 1.3 {micro}m for the 1.20 and 1.35 OFS tests but was not observed in the 1.05 OFS. SEM analysis also suggests that OFS may contribute to changing formation mechanisms.

Fix, G.; Seames, W. S.; Mann, M. D.; Benson, S. A.; Miller, D. J. (Materials Science Division); (Univ. of North Dakota)

2011-04-01T23:59:59.000Z

59

A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation  

SciTech Connect

Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

Jiang, C.

1993-12-31T23:59:59.000Z

60

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 15, April--June 1996  

SciTech Connect

Goal is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Scope includes laboratory research and bench-scale testing on 6 coals to optimize these processes, followed by design/construction/operation of a 2-t/hr PDU. During this quarter, parametric testing of the 30-in. Microcel{trademark} flotation column at the Lady Dunn plant was completed and clean coal samples submitted for briquetting. A study of a novel hydrophobic dewatering process continued at Virginia Tech. Benefits of slurry PSD (particle size distribution) modification and pH adjustment were evaluated for the Taggart and Hiawatha coals; they were found to be small. Agglomeration bench-scale test results were positive, meeting product ash specifications. PDU Flotation Module operations continued; work was performed with Taggart coal to determine scaleup similitude between the 12-in. and 6-ft Microcel{trademark} columns. Construction of the PDU selective agglomeration module continued.

Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

1996-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992  

SciTech Connect

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-03-01T23:59:59.000Z

62

Characteristics of fine particle growth events observed above a forested  

NLE Websites -- All DOE Office Websites (Extended Search)

Characteristics of fine particle growth events observed above a forested Characteristics of fine particle growth events observed above a forested ecosystem in the Sierra Nevada Mountains of California Title Characteristics of fine particle growth events observed above a forested ecosystem in the Sierra Nevada Mountains of California Publication Type Journal Article Year of Publication 2006 Authors Lunden, Melissa M., Douglas R. Black, Megan McKay, Kenneth L. Revzan, Allen H. Goldstein, and Nancy J. Brown Journal Aerosol Science and Technology Volume 40 Start Page 373 Issue 5 Pagination 373-388 Date Published 02/2006 ISSN 0278-6826 (Print), 1521-7388 (Online) Abstract Atmospheric aerosols from natural and anthropogenic processes have both primary and secondary origins, and can influence human health, visibility, and climate. One key process affecting atmospheric concentrations of aerosols is the formation of new particles and their subsequent growth to larger particle sizes. A field study was conducted at the Blodgett Forest Research Station in the Sierra Nevada Mountains of California from May through September of 2002 to examine the effect of biogenic volatile organic compounds on aerosol formation and processing. The study included in-situ measurements of concentration and biosphere-atmosphere flux of VOCs, ozone, aerosol size distribution, aerosol physical and optical properties, and meteorological variables. Fine particle growth events were observed on approximately 30 percent of the 107 days with complete size distribution data. Average particle growth rates measured during these events were 3.8 ± 1.9 nm hr-1. Correlations between aerosol properties, trace gas concentrations, and meteorological measurements were analyzed to determine conditions conducive to fine particle growth events. Growth events were typically observed on days with a lesser degree of anthropogenic influence, as indicated by lower concentrations of black carbon, carbon monoxide, and total aerosol volume. Days with growth events also had lower temperatures, increased wind speeds, and larger momentum flux. Measurements of ozone concentrations and ozone flux indicate that gas phase oxidation of biogenic volatile organic compounds occur in the canopy, strongly suggesting that a significant portion of the material responsible for the observed particle growth are oxidation products of naturally emitted very reactive organic compounds.

63

Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique  

Science Journals Connector (OSTI)

The significance of coking coal in the metallurgical sector as well as the meager coking coal reserves across the globe increase the necessity to recover coking coal fines from the fine coking coal slurries generated from coal preparation and utilization activities. Oil agglomeration studies were carried out by varying the experimental conditions for maximum recovery of coking coal fines i.e., yield of the agglomerates. The various operational parameters studied were oil dosage, agitation speed, agglomeration time and pulp density. By using Taguchi experimental design, oil dosage (20%), agitation speed (1100 rpm), agglomeration time (3 min) and pulp density (4.5%) were identified as the optimized conditions. A confirmation experiment has also been carried out at the optimized conditions. The percentage contribution of each parameter on agglomerate yield was analyzed by adopting analysis of variance (ANOVA) statistical method as well as multiple linear regression analysis. The order of influence of the parameters on the agglomerate yield is of the following order: pulp density > oil dosage > agitation speed > agglomeration time. A mathematical model was developed to fit the set of experimental conditions with the yield obtained at each test run and also at the optimized conditions. The experimentally obtained yield was compared with the predicted yield of the model and the results indicate a maximum error of 5% between the two. A maximum yield of 90.42% predicted at the optimized conditions appeared to be in close agreement with the experimental yield thus indicating the accuracy of the model in predicting the results.

G.H.V.C. Chary; M.G. Dastidar

2010-01-01T23:59:59.000Z

64

Effect of Adsorption Contact Time on Coking Coal Particle Desorption Characteristics  

Science Journals Connector (OSTI)

Effect of Adsorption Contact Time on Coking Coal Particle Desorption Characteristics ... Esp. in the last decade a large amt. of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. ...

Wei Zhao; Yuanping Cheng; Meng Yuan; Fenghua An

2014-03-20T23:59:59.000Z

65

Fundamental study for improvement of dewatering of fine coal/refuse. Annual report, June 1979-June 1980. Part I  

SciTech Connect

The particle size distribution of constituent coal samples was determined by the microscopic technique using the Omnicon Alpha Image Analyzer. Shape factors of non-spherical and irregular shaped particles were determined by stereology. Consolidated filter cake samples were prepared using vacuum impregnation techniques. After polishing these samples, the pore size analysis was carried out using the Omnicon Alpha Image Analyzer. These processes of preparing a consolidated cake and analyzing it with the image analyzer are standardized. The basic structure of a computer oriented network model for studying dewatering of fine coal has been specified. The model uses an idealized three dimensional representation of the pore space which consists of a set of nodes with interconnecting bonds. The model consist of four separate modules at present: (i) the network module determines the state of the network at a given fraction of bonds which can be opened; (ii) the breakthrough condition module determines the minimum fraction of open bonds which gives a continuous path across the network; (iii) the equilibrium desaturation module determines the equilibrium moisture content as a function of increasing pressure; and (iv) the dewatering rate module determines the rate of dewatering as a function of filtration parameters. 20 refs.

Chiang, S.H.; Fulton, P.F.; Klinzing, G.E.; Tierney, J.W.; Chao, J.; Gala, H.; Kakwani, R.; Riquelme, G.; Roy, R.

1980-07-01T23:59:59.000Z

66

The effect of coal particle size on the heat of combustion  

SciTech Connect

The relations between integral heat and differential heat of combustion for pulverized coal, respectively, and the size of coal particle were derived in this paper. The results show that coal particle size has some effect on its heats of combustion; the smaller coal particle size, the greater the specific surface area and the specific surface energy, and the greater the heat value, also; and that the differential heat of combustion for pulverized coal differs from the integral one.

Xue Yongqiang; Yan Ruiping; Gao Yang [Dept. of Coal Processing and Utilization, Shanxi (China)

1997-12-31T23:59:59.000Z

67

Pneumatic conveying of coal and coal-limestone mixtures as applied to atmospheric fluidized-bed combustion. [Effects of moisture, velocity, particle size  

SciTech Connect

Pneumatic conveying experiments with coal and coal-limestone mixtures were performed on a conveying system designed to represent the feed lines in the Tennessee Valley Authority 20 MW atmospheric fluidized bed combustor. The experimental conditions were chosen to cover the anticipated combustor operating ranges. The results have led to a fundamental understanding of the operating limits associated with coal surface moisture, air velocity, coal and limestone fines, solids to air ratio, and limestone to coal ratio. Coal surface moisture was found to be the most important parameter affecting handling and transport. Specific upper limits for surface moisture were established. It was demonstrated that addition of dry limestone can reduce the conveying problems associated with wet coal. The air velocities causing saltation and surge flow were determined for a variety of conveying conditions. These velocities were related qualitatively to solids to air ratio, particle size, and surface moisture. Conveying pressure drop was also measured for a variety of conditions. In the absence of saltation, the horizontal, frictional pressure drop was only a function of the solids to air ratio and the air flow conditions. Comparison of the ORNL pressure drop data with the results of other investigators had led to the conclusion that there are two basic modes of flow in dilute-phase conveying; a primarily viscous mode and a primarily inertial mode. A general pressure drop model has been developed for the inertial mode.

Daw, C S; Thomas, J F

1982-01-01T23:59:59.000Z

68

Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal. Final report  

SciTech Connect

Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P. [Battelle, Columbus, OH (United States); Johnson, H.R.; Eason, R. [Ashbrook-Simon-Hartley Corp., Houston, TX (United States); Chiang, S.M.; Cheng, Y.S. [Pittsburgh Univ., PA (United States); Kehoe, D. [CQ, Inc., Homer City, PA (United States)

1991-10-31T23:59:59.000Z

69

Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal  

SciTech Connect

Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P. (Battelle, Columbus, OH (United States)); Johnson, H.R.; Eason, R. (Ashbrook-Simon-Hartley Corp., Houston, TX (United States)); Chiang, S.M.; Cheng, Y.S. (Pittsburgh Univ., PA (United States)); Kehoe, D. (CQ, Inc., Homer City, PA (United States))

1991-10-31T23:59:59.000Z

70

Size Distribution of Fine Particles from Coal Combustion  

Science Journals Connector (OSTI)

...produce steam at a high temperature and pressure. This steam...Cleaned flue gas (2500 t/h...the high flue gas temperatures...lig-nites to high-quality bituminous...25). Flue gas samples were...atmospheric pressure. The relation...

M. W. McElroy; R. C. Carr; D. S. Ensor; G. R. Markowski

1982-01-01T23:59:59.000Z

71

Split and collectorless flotation to medium coking coal fines for multi-product zero waste concept  

Science Journals Connector (OSTI)

The medium coking coal fines of ? 0.5 mm from Jharia coal field were taken for this investigation. The release analysis of the composite coal reveals that yield is very low at 10.0% ash, about 25% at 14% ash and 50% at 17% ash level. The low yield is caused by the presence of high ash finer fraction. The size-wise ash analysis of ? 0.5 mm coal indicated that ? 0.5 + 0.15 mm fraction contains less ash than ? 0.15 mm fraction. Thus, the composite feed was split into ? 0.5 + 0.15 mm and ? 0.15 mm fractions and subjected to flotation separately. The low ash bearing fraction (? 0.5 + 0.15 mm) was subjected to two stages collectorless flotation to achieve the concentrate with 10% ash. The cleaner concentrate (18.9%) with 10% ash was recovered which has an application in metallurgical industries. The concentrate of 30.2% yield with 12.5% ash could be achieved in one stage collectorless flotation which is suitable for use in coke making as sweetener. As the ? 0.15 mm fraction contains relatively high ash, collector aided flotation using sodium silicate was performed to get a concentrate of 23.6% yield with about 17% ash. The blending of this product with cleaner tail obtained from ? 0.5 + 0.15 mm produces about 35.0% yield with 17% ash and that can be utilized for coke making. The reject from the two fractions can be used for conventional thermal power plant or cement industries using a 23.5% ash after one stage collector aided flotation and the final tailings produced content ash of 61.6% can be used for fluidization combustion bed (FBC). This eventually leads to complete utilization of coal.

Shobhana Dey; K.K. Bhattacharyya

2007-01-01T23:59:59.000Z

72

Rapid Coal Analysis. Part II: Slurry Atomization DCP Emission Analysis of NBS Coal  

Science Journals Connector (OSTI)

A McCrone Micronising Mill is used to wet grind NBS bituminous coal to a median particle diameter of 5.7 ?m within 10 min. The finely divided coal slurry is immediately nebulized...

McCurdy, D L; Wichman, M D; Fry, R C

1985-01-01T23:59:59.000Z

73

ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES  

SciTech Connect

This is the third semi-annual, technical progress report for this project. The following items are covered in the report: (1) Progress on the development of an instrument to perform ultraviolet photoelectron spectroscopy, UPS, on surfaces in air. (2) Further development plans for the video particle image analyzer. (3) Calculations on the effect of space charge on the electric field inside a separator. (4) Outreach education involving two Arkansas high school students in the project. (5) Additional data on the effects of processing atmosphere on beneficiation. Included in the last section is a description of planned experiments using charged, fluorescent, polystyrene micro-particles to map the charge distribution on the larger coal particles and on polished coal surfaces.

NONE

1998-04-01T23:59:59.000Z

74

A comparison of various models in predicting ignition delay in single-particle coal combustion  

E-Print Network (OSTI)

A comparison of various models in predicting ignition delay in single-particle coal combustion November 2013 Accepted 7 January 2014 Available online xxxx Keywords: Coal Devolatilization Ignition delay a b s t r a c t In this paper, individual coal particle combustion under laminar conditions

75

Loss of Fine Particle Ammonium from Denuded Nylon Filters  

SciTech Connect

Ammonium is an important constituent of fine particulate mass in the atmosphere, but can be difficult to quantify due to possible sampling artifacts. Losses of semivolatile species such as NH4NO3 can be particularly problematic. In order to evaluate ammonium losses from aerosol particles collected on filters, a series of field experiments was conducted using denuded nylon and Teflon filters at Bondville, Illinois (February 2003), San Gorgonio, California (April 2003 and July 2004), Grand Canyon National Park, Arizona (May, 2003), Brigantine, New Jersey (November 2003), and Great Smoky Mountains National Park (NP), Tennessee (July–August 2004). Samples were collected over 24-hr periods. Losses from denuded nylon filters ranged from 10% (monthly average) in Bondville, Illinois to 28% in San Gorgonio, California in summer. Losses on individual sample days ranged from 1% to 65%. Losses tended to increase with increasing diurnal temperature and relative humidity changes and with the fraction of ambient total N(--III) (particulate NH4+ plus gaseous NH3) present as gaseous NH3. The amount of ammonium lost at most sites could be explained by the amount of NH4NO3 present in the sampled aerosol. Ammonium losses at Great Smoky Mountains NP, however, significantly exceeded the amount of NH4NO3 collected. Ammoniated organic salts are suggested as additional important contributors to observed ammonium loss at this location.

Yu, Xiao-Ying; Lee, Taehyoung; Ayres, Benjamin; Kreidenweis, Sonia M.; Malm, William C.; Collett, Jeffrey L.

2006-08-01T23:59:59.000Z

76

An advanced control system for fine coal flotation. Fourth quarterly technical progress report, July 1, 1996--September 30, 1996  

SciTech Connect

A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as reagent dosage, pulp density and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the fourth quarter of this project, a final attempt was made to calibrate a video-based ash analyzer for use in this application. It was concluded that the low ash content and the coarse particle size of the flotation tailings slurry at the Maple Meadow plant site made the video-based system unsuitable for this application. Plans are now underway to lease a nuclear-based analyzer as the primary sensor for this project.

Adel, G.T.; Luttrell, G.H.

1997-03-04T23:59:59.000Z

77

Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation  

SciTech Connect

Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have been mixed results in the field using variable orifices in coal pipes. Development of other coal flow control devices has been limited. An underlying difficulty that, to date, has hindered the development of an accurate instrument for coal flow measurements is the fact that coal flow is characterized by irregular temporal and spatial variation. However, despite the inherent complexity of the dynamic system, the system is in fact deterministic. Therefore, in principle, the coal flow can be deduced from the dynamics it exhibits. Nonetheless, the interactions are highly nonlinear, rendering standard signal processing approaches, which rely on techniques such as frequency decomposition, to be of little value. Foster-Miller, Inc. has developed a methodology that relates the complex variation in such systems to the information of interest. This technology will be described in detail in Section 2. A second concern regarding the current measurement systems is installation, which can be labor-intensive and cost-prohibitive. A process that does not require the pulverizer to be taken off line would be highly desirable. Most microwave and electrostatic methods require drilling up to 20 holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the probes. At least one electrostatic method requires a special spool piece to be fitted into each existing coal pipe. Overall, these procedures are both difficult and very expensive. An alternative approach is pursued here, namely the development of an instrument that relies on an acoustic signal captured by way of a commercial accelerometer. The installation of this type of sensor is both simpler and less invasive than other techniques. An accelerometer installed in a pipe wall need not penetrate through the wall, which means that the system may be able to remain on line during the installation. Further, due to the fact that the Dynamical Instruments technology, unlike other systems, does not rely on uniformity of the air or coal profile, the installation location need not be on a long, straight run

R. Demler

2006-04-01T23:59:59.000Z

78

Fine and Ultrafine Particle Decay Rates in Multiple Homes  

Science Journals Connector (OSTI)

All homes exchange indoor air with outdoor air at a certain base rate dependent on the construction quality of the home and on indoor–outdoor temperature and pressure differences. ... A number of multiple-home studies have measured indoor particle concentrations, but few have been able to determine the rates of particle removal for individual homes under normal living conditions. ... Therefore continuous measurements from this study of FP and UFP in 74 homes in Edmonton Canada were analyzed to determine these rates of removal in each home during week-long measurement periods in summer and winter. ...

Lance Wallace; Warren Kindzierski; Jill Kearney; Morgan MacNeill; Marie-Ève Héroux; Amanda J. Wheeler

2013-10-21T23:59:59.000Z

79

Fundamental study for improvement of dewatering of fine coal/refuse. Annual report, August 1982-August 1983  

SciTech Connect

The overall objective of the study is to seek improved methods of dewatering through a better understanding of the filtration and post-filtration processes. As a first step, efforts have been focused on the mechanism of dewatering in terms of basic properties of coal (and refuse) particles and microstructures of filter cakes, and their relations to filtration rate and final moisture content. Pittsburgh seam-Bruceton Mine coal was used as a base coal with experiments also being conducted with Upper Freeport and Illinois No. 6 coals. During the past year, filter cakes from the above coals with widely varied size ranges were micrographically characterized. The effects of a number of surface active agents and of entrapped air bubbles on the filter cake properties were also studied. A module of the network model for calculating single phase permeabilities was completed and tested. The report is divided into four parts: summary and deliverables; work forecast for the 1983-84; detailed descriptions of technical progress for particle/filter cake characterization; theoretical modeling, and enhanced dewatering methods; and appendices. 11 references, 35 figures, 11 tables.

Chiang, S.H.; Klinzing, G.E.; Morsi, B.J.; Tierney, J.W.; Adams, J.; Bhat, N.; Binkley, T.; Chi, S.M.; Kakwani, R.; Qamar, I.

1983-09-01T23:59:59.000Z

80

Measurement and Evaluation of Ultra-fine Particle Emissions from Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement and Evaluation of Ultra-fine Particle Emissions from Laser Measurement and Evaluation of Ultra-fine Particle Emissions from Laser Printers Speaker(s): Tunga Salthammer Date: October 9, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Hugo Destaillats Several publications have recently appeared which describe the release of ultra-fine particles (UFPs) from hardcopy devices not only in chamber tests but also under real room conditions. Due to assumed health impacts attributed to UFPs this subject currently receives substantial public attention. For the characterization of emitted UFPs from laser printers, different test methods (box chamber tests, flow chamber tests, furnace tests) and analytical techniques (SMPS, FMPS, VHTDMA, GC/MS, Headspace/MS, thermography, etc...) were applied. It could be shown that the release of

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Integrating flotation to improve the performance of an HMC circuit treating a low-rank fine coal  

SciTech Connect

One reason that heavy media cyclone (HMC) circuits suffer from the inadvertent loss of magnetite and fine coal is the presence of nonmagnetic material in the magnetic separator feed. In this study, flotation was applied to the undersize fractions of the HMC drain-and-rinse screens to minimize these problems. These fractions, which contain 17.9% nonmagnetic material, are currently sent to magnetic separators and the nonmagnetic portion from the separators contains 39.1% ash. Applying flotation resulted in a clean coal product with an ash content of 8.7% and a calorific value of 6,300 kcal/kg. The refuse from flotation, which will be sent to the magnetic separators, contains 7.7% nonmagnetics.

Celik, H.; Polat, M. [Celar Bayar University, Manisa (Turkey)

2005-11-01T23:59:59.000Z

82

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 6, January--March 1994  

SciTech Connect

This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effectve replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States as well as for advanced combustars currently under development. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals fbr clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 51-month program which started on September 30, 1992. This report discusses the technical progress, made during the 6th quarter of the project from January 1 to March 31, 1994. The project has three major objectives: (1) The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. (3) A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

Smit, F.J.; Rowe, R.M.; Anast, K.R.; Jha, M.C.

1994-05-06T23:59:59.000Z

83

Determining the radiative properties of pulverized-coal particles from experiments. Final report  

SciTech Connect

A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

Menguec, M.P.

1992-02-01T23:59:59.000Z

84

Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit  

Science Journals Connector (OSTI)

Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit ... Chinese anthracite and bituminous coals produce different amounts of emissions when burned in a fire pit that simulates common rural household use of these fuels. ... Here we present emissions from burning 15 different fuels in a laboratory system designed to mimic the fire pits used in Xuan Wei County, China. ...

Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

2008-02-21T23:59:59.000Z

85

POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995  

SciTech Connect

Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

Groppo, J.G.; Parekh, B.K.

1996-02-01T23:59:59.000Z

86

Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same  

DOE Patents (OSTI)

A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

Burnet, George (Ames, IA); Gokhale, Ashok J. (College Station, TX)

1990-07-10T23:59:59.000Z

87

Numerical study of the partial oxidation of a coal particle in steam and dry air atmospheres  

Science Journals Connector (OSTI)

......and oxygen on particle combustion rate are approximately...modelling of particle combustion, studies on the in...coupled with a simple chemistry) on the influences...and velocity of the coal char particle, and...establishment of the combustion or gasification regimes......

M. Kestel; P. Nikrityuk; O. Hennig; C. Hasse

2012-02-01T23:59:59.000Z

88

Transport and Resuspension of Fine Particles in a Tidal Boundary Layer near a Small Peninsula  

Science Journals Connector (OSTI)

The authors present a theory on the transport and resuspension of fine particles in a tidal boundary layer when the ambient tidal flow is nonuniform due to a peninsula along the coastline. As a first step toward better physical understanding the ...

Chiang C. Mei; Chimin Chian; Feng Ye

1998-11-01T23:59:59.000Z

89

Properties of Fine Superconducting YBCO Particles Prepared by Dry- and Wet-Type Jet-Mill  

Science Journals Connector (OSTI)

Small YBCO particles which has an average size of 1–2 µm were prepered from high quality YBCO pellets by dry-type jet-mill system. The resulting small YBCO...3COCH2CH3) or toluene(C6H5CH3).As a result, the fine Y...

Hiroshi Kezuka

1996-01-01T23:59:59.000Z

90

A cycle simulation of coal particle fueled reciprocating internal-combustion engines  

E-Print Network (OSTI)

- Summary of Experimental Diesel Engine Operation on Solid Coal Fuels Page Table 2 - Property Data for Coal (Char) Particles . . 23 Table 3 - Summary of the Combustion Model and Reaction Constants 40 Table 4 ? Specifications of the Base Case Engine... Efforts The first attempt to operate a solid particle fueled piston engine was performed nearly a century ago by Rudolf Diesel, inventor of the compression-ignition engine. Since then, at least a dozen separate attempts to oper- ate diesel engines...

Rosegay, Kenneth Harold

2012-06-07T23:59:59.000Z

91

Group pyrolysis, ignition, and combustion of a spherical cloud of coal particles  

E-Print Network (OSTI)

GROUP PYROLYSIS, IGNITION, AND COMBUSTION OF A SPHERICAL CLOUD OF COAL PARTICLES A Thesis by WILLIAM RICHARD RYAN, JR. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree MASTER OF SCIENCE December 1988 Major Subject: Mechanical Engineering GROUP PYROLYSIS, IGNITION, AND COMBUSTION OF A SPHERICAL CLOUD OF COAL PARTICLES A Thesis by WIL LI AM RI C HA RD RYA N ~ JR Approved ss to style and content by...

Ryan, William Richard

1988-01-01T23:59:59.000Z

92

Factors Related to the Residence Time of Fine Particle Concerning the Burnout of Fujian Anthracite During Combustion in CFB Boiler  

Science Journals Connector (OSTI)

Factors related to the residence time of fine Fujian anthracite coke particle during combustion in CFB boiler which would affect its burnout were ... burnout of Fujian anthracite particle during combustion in CFB

Jieqing Zheng; Hongzhou He

2007-01-01T23:59:59.000Z

93

Variations in permeability and fine particle migrations in unconsolidated sandstones submitted to saline circulations  

SciTech Connect

Samples of unconsolidated clayey sandstone were submitted to percolations with NaCl and CaCl{sub 2} solutions with ionic strengths I = 0.01 and I = 2 at 20, 60 and 90{degrees}C. The permeability decreased as a function of time for all the samples examined. When the temperature rose from 20 to 90{degrees}C, permeability decreased for the I = 0.01 solutions, but it increased for the I = 2 solutions. The fluid circulations were accompanied by an entrainment of fine particles that was all the greater as the solutions became more diluted and fluid. This behavior, explained by the phenomenon of clay flocculation-deflocculation, is governed by the values of the attraction and repulsion potentials between particles. The calculation of the forces present shows that the electrokinetic phenomena govern flocculation and migration of fine particles in sandstone.

Baudracco, J. (Univ. Paul Sabatier, Lab. de Mineralogie, U.A. 67, 39 Allees Jules Guesde, F-31400 Toulouse (FR))

1990-01-01T23:59:59.000Z

94

Engineering design and analysis of advanced physical fine coal cleaning technologies  

SciTech Connect

The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. The work plan for the froth quarter called for completion of the washability interpolation routine, gravity separation models, and dewatering models. As these items were completed, work in the areas of size reduction, classification and froth flotation were scheduled to begin. As each model was completed, testing and validation procedures were scheduled to begin. Costing models were also planned to be implemented and tested as each of the gravity separation models were completed. 1 tab.

Gallier, P.W.

1990-10-20T23:59:59.000Z

95

Experimental studies on the group ignition of a cloud of coal particles  

SciTech Connect

The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere. The present work is reported in the following order. An introduction to group combustion is given followed by a review of earlier works. Next, the relevance of the present work to practical application and spray combustion modeling is discussed. A group combustion model is then presented for a spherical cloud of coal particles along with a set of dimensional and nondimensional equations. Finally, nonsteady results are generated for pyrolysis, ignition, and combustion of a cloud of coal particles. (VC)

Annamalai, K.; Ruiz, M.; Vadakkath, A.; Gopalakrishnan, C.

1992-01-01T23:59:59.000Z

96

Abrasive wear by diesel engine coal-fuel and related particles  

SciTech Connect

The purpose of the work summarized in this report was to obtain a basic understanding of the factors which are responsible for wear of the piston ring and cylinder wall surfaces in diesel engines utilizing coal-fuel. The approach included analytical studies using scanning electron microscopy and energy dispersive x-ray analyses to characterize coal-fuel and various combustion particles, and two different wear tests. The wear tests were a modified pin-on-disk test and a block-on-ring test capable of either unidirectional or reciprocating-rotational sliding. The wear tests in general were conducted with mixtures of the particles and lubricating oil. The particles studied included coal-fuel, particles resulting from the combustion of coal fuel, mineral matter extracted during the processing of coal, and several other common abrasive particle types among which quartz was the most extensively examined. The variables studied included those associated with the particles, such as particle type, size, and hardness; variables related to contact conditions and the surrounding environment; and variables related to the type and properties of the test specimen materials.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-09-01T23:59:59.000Z

97

Abrasive wear by coal-fueled diesel engine and related particles  

SciTech Connect

The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1992-09-01T23:59:59.000Z

98

Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 4, October 1, 1994--December 31, 1994  

SciTech Connect

The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this fourth quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the bench-scale testing and pilot-plant testing results enabled the design and procurement activities to move forward. On that basis, activities in the areas of design and procurement that had been initiated during the previous quarter were conducted and completed.

NONE

1996-08-20T23:59:59.000Z

99

High-Resolution Simulations of Coal Injection in A Gasifier  

Science Journals Connector (OSTI)

High-Resolution Simulations of Coal Injection in A Gasifier ... The shrinkage of the coal particles because of devolatilization and drying was ignored, and a single mean particle size was used. ... Simulations with three different grid resolutions were conducted (denoted by coarse, medium, and fine). ...

Tingwen Li; Aytekin Gel; Madhava Syamlal; Chris Guenther; Sreekanth Pannala

2010-07-15T23:59:59.000Z

100

PAHs and organic matter partitioning and mass transfer from coal tar particles to water  

SciTech Connect

The coal tar found in contaminated soils of former manufactured gas plants and coking plants acts as a long-term source of PAHs. Organic carbon and PAH transfer from coal tar particles to water was investigated with closed-looped laboratory column experiments run at various particle sizes and temperatures. Two models were derived. The first one represented the extraction process at equilibrium and was based on a linear partitioning of TOC and PAHs between coal tar and water. The partition coefficient was derived as well as the mass of extractable organic matter in the particles. The second model dealt with mass transfer. Particle diffusion was the limiting step; organic matter diffusivity in the coal tar was then computed in the different conditions. A good consistency was obtained between experimental and computed results. Hence, the modeling of PAH migration in contaminated soils at the field scale requires taking into account coal tar as the source-term for PAH release. 28 refs., 5 figs., 3 tabs.

Karim Benhabib; Marie-Odile Simonnot; Michel Sardin [LSGC - Laboratory of Chemical Engineering Science, Nancy (France)

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Simulation of Coal Ash Particle Deposition Experiments (Copyright 2011, American Chemical Society)  

SciTech Connect

Existing experimental ash particle deposition measurements from the literature have been simulated using the computational fluid dynamics (CFD) discrete phase model (DPM) Lagrangian particle tracking method and an existing ash particle deposition model based on the Johnson?Kendall?Roberts (JKR) theory, in the Fluent commercial CFD code. The experimental heating tube was developed to simulate ash temperature histories in a gasifier; ash-heating temperatures ranged from 1873 to 1573 K, spanning the ash-melting temperature. The present simulations used the realizable k?? turbulence model to compute the gas flow field and the heat transfer to a cooled steel particle impact probe and DPM particle tracking for the particle trajectories and temperatures. A user-defined function (UDF) was developed to describe particle sticking/rebounding and particle detachment on the impinged wall surface. Expressions for the ash particle Young’s modulus in the model, E, versus the particle temperature and diameter were developed by fitting to the E values that were required to match the experimental ash sticking efficiencies from several particle size cuts and ash-heating temperatures for a Japanese bituminous coal. A UDF that implemented the developed stiffness parameter equations was then used to predict the particle sticking efficiency, impact efficiency, and capture efficiency for the entire ash-heating temperature range. Frequency histogram comparisons of adhesion and rebound behavior by particle size between model and experiments showed good agreement for each of the four ash-heating temperatures. However, to apply the present particle deposition model to other coals, a similar validation process would be necessary to develop the effective Young’s modulus versus the particle diameter and temperature correlation for each new coal.

Ai, Weiguo; Kuhlman, John M

2011-01-20T23:59:59.000Z

102

Fundamental study for improvement of dewatering of fine coal/refuse. Annual report, July 1981-July 1982. Volume I  

SciTech Connect

The overall objective of the study is to seek improved methods of dewatering through a better understanding of the filtration and post-filtration processes. As a first step, efforts have been focused on the mechanism of dewatering in terms of basic properties of coal (and refuse) particles and filter cakes and their relations to filtration rate and final cake moisture content. This annual report presents the highlights and accomplishments of the third year of the project. The report is divided into four parts: summary and deliverables; work forecast for the fourth year; detailed description of technical progress; and appendices. Volume I contains the first 3 parts. Progress reports are presented for the following tasks: (1) particle/filter cake characterization; (2) theoretical modelling; (3) experimental measurements of filtration and dewatering; and (4) enhanced dewatering method. 17 references.

Chiang, S.H.; Klinzing, G.E.; Tierney, J.W.; Bayles, G.; Gala, H.; Kakwani, R.; Pien, H.L.; Rega, R.; Yetis, U.

1982-08-01T23:59:59.000Z

103

Alteration of permeability by fine particle movement -- A water injectivity problem  

SciTech Connect

Siri field is located off shore of Iran in the Persian Gulf and is producing from the Mishrif Formation, which is common between Iran and United Arab Emirates. Existence of an active aquifer and other appropriate conditions led to the decision of a water injection program. Sea water from the Persian Gulf was found to be compatible with the formation water and was directly injected into the formation after passing through 10 micron filters. Water injectivity was drastically decreased from an initial injection rate of 9,100 bbl/day to 2,200 bbl/day within six years. Because of the severe injectivity loss, the water injection was stopped. An experimental investigation was undertaken to look into the possible causes of the injectivity loss. Two sets of experimental investigations were undertaken with different objectives in mind. In the first part glass bead packs were used to test the experimental set up and to observe the general behavior of fine particle movement in porous media. In the second part a core plug from the field and sea water were used to determine the possible cause of injectivity loss in the field. The experiments were conducted with injection rates of 0.9 cm{sup 3}/s to 3.1 cm{sup 3}/s. Particles of bentonite were suspended in the injected water to simulate fine particles migration in porous media. The particles were injected at concentrations ranged from 20 g/l to 40 g/l. It was observed that the build up in flow resistance was mostly due to the frontal face plugging. Particles of bentonite and alumina were added to the glass beads to study the effect of particles initially present in the glass beads pack medium. Field and laboratory data clearly indicate the importance of the water quality in a waterflood project. Experimental data suggest that a smaller size filter should have been implemented to avoid the injectivity loss.

Asghari, K.; Kharrat, R.; Vossoughi, S.

1995-11-01T23:59:59.000Z

104

Generation of Hydroxyl Radicals from Ambient Fine Particles in a Surrogate Lung Fluid Solution  

Science Journals Connector (OSTI)

Here we report the amounts of •OH produced from ambient fine particles (PM2.5) collected in northern California and extracted in a cell-free surrogate lung fluid (SLF). ... Transition metals played the dominant role in •OH production: on average (±?), the addition of desferoxamine (a chelator that prevents metals from forming •OH) to the SLF removed (90 ± 5) % of •OH generation. ... Furthermore, based on the concentrations of Fe in the PM2.5 SLF extracts, and the measured yield of •OH as a function of Fe concentration, dissolved iron can account for the majority of •OH produced in most of our PM2.5 extracts. ...

Edgar Vidrio; Chin H. Phuah; Ann M. Dillner; Cort Anastasio

2009-01-07T23:59:59.000Z

105

Evaluation of the Emission, Transport, and Deposition of Mercury, Arsenic, and Fine Particulate Matter From Coal-Based Power Plants in the Ohio River Valley  

NLE Websites -- All DOE Office Websites (Extended Search)

Kevin crist Kevin crist Principal Investigator Ohio University Research and Technology Center Athens, OH 45701 740-593-4751 cristk@ohiou.edu Environmental and Water Resources Evaluation of thE Emission, transport, and dEposition of mErcury, arsEnic, and finE particulatE mattEr from coal-BasEd powEr plants in thE ohio rivEr vallEy rEgion Background The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has established an aggressive research initiative to address the technical and scientific issues surrounding the impact of coal-based power systems on ambient levels of fine particulate matter (PM 2.5 ), nitrogen oxides (NO X ), mercury/air toxics, and acid gases. Regulatory drivers such as the 1990 Clean Air Act Amendments, the 1997 revised National Ambient Air Quality Standards, and the 2005 Clean Air

106

Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM2.5) Fraction of Coal Combustion Ash  

SciTech Connect

The overall objective of this research was to determine the feasibility of recovering a very fine fraction of fly ash, that is 5 microns in diameter or less and examining the characteristics of these materials in new or at least less traditional applications. These applications included as a polymer filler or as a 'super' pozzolanic concrete additive. As part of the effort the ash from 6 power plants was investigated and characterized. This work included collection from ESP Hoppers and ponds. The ash was thoroughly characterized chemically and physically. Froth flotation was used to reduce the carbon and testing showed that flotation could effectively reduce carbon to acceptable levels (i.e. 0.5% LOI) for most of the substrates tested. in order to enable eventual use as fillers. Hydraulic classification was used in the separation of the fine ash from the coarse ash. Hydraulic classification requires the ash to be dispersed to be effective and a range of dispersants were tested for adsorption as well as sedimentation rate. A wide range of dosages were required (0.3 to 10 g/kg). In general the ponded ash required less dispersant. A model was developed for hydraulic classification. A pilot-scale hydraulic classifier was also designed and operated for the project. Product yields of up to 21% of feed solids were achieved with recoveries of <5 {micro}m particles as high as 64%. Mean particle sizes (D{sub 50}) of the ultra fine ash (UFA) products varied from 3.7 to 10 {micro}m. A patent was filed on the classifier design. A conceptual design of a Process Demonstration Unit (PDU) with a feed rate of 2 tons of raw ash feed per hour was also completed. Pozzolanic activity was determined for the UFA ashes in mortars. In general the overall strength index was excellent with values of 90% achieved in 3 days and {approx}100% in 7 days. Three types of thermoplastic polymers were evaluated with the UFA as a filler: high density polyethylene, thermoplastic elastomer and polyethylene terphthalate filled polymers were prepared and subjected to SEM analysis to verify that the UFA was well dispersed. The addition of fillers increased the modulus of the HDPE composite, but decreased both the offset yield stress and offset yield strain, showing that the fillers essentially made the composite stiffer but the transition to plastic deformation occurred earlier in filled HDPE as stress was applied. Similar results were obtained with TPE, however, the decrease in either stress or strain at offset yield were not as significant. Dynamic mechanical analyses (DMA) were also completed and showed that although there were some alterations in the properties of the HDPE and TPE, the alterations are small, and more importantly, transition temperatures are not altered. The UFA materials were also tested in expanded urethanes, were improvements were made in the composites strength and stiffness, particularly for lighter weight materials. The results of limited flammability and fire safety testing were encouraging. A flowsheet was developed to produce an Ultra-Fine Ash (UFA) product from reclaimed coal-fired utility pond ash. The flowsheet is for an entry level product development scenario and additional production can be accommodated by increasing operating hours and/or installing replicate circuits. Unit process design was based on experimental results obtained throughout the project and cost estimates were derived from single vendor quotes. The installation cost of this plant is estimated to be $2.1M.

T. L. Robl; J. G. Groppo; R. Rathbone; B. Marrs; R. Jewell

2008-07-18T23:59:59.000Z

107

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents (OSTI)

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

108

Attrition of coal ash particles in a fluidized-bed reactor  

SciTech Connect

Experimental data of ash-particles attrition in a fluidized bed is presented, and also the results of modeling. Five sizes of ash particles (1.02-1.25; 1.25-1.6; 1.6-2.0; 2.0-5.0; 5.0-10.0 mm) produced in an industrial CFB boiler were examined. A new model of mechanical attrition has been proposed which incorporates new parameters: the shape factor of particles and the ratio of the bed height to bed diameter, strongly influencing the rate of bed mass loss. The model describes very well experimental data for coal-ash particles attrition. The attrition-rate coefficient for ash particles was evaluated.

Tomeczek, J.; Mocek, P. [Silesian Technical University, Katowice (Poland)

2007-05-15T23:59:59.000Z

109

Experimental studies on the group combustion of coal char particles  

E-Print Network (OSTI)

Avg. Dia. Particles 6. 4 Unfired Char Ash Percentages Page 47 70 72 76 88 LIST OF FIGURES Figure 1. 1 Group Combustion Modes and Terminology 2. 1 Correlation of Group Combustion with Field's Results 2. 2 Experimental Data by Combustion Mode... and Spherical Results for M/Mrpc 84 84 6, 9 Average Reactor Temperature for All Runs 6. 10 Ash Contents vs. Char Flow Rate 6. 11 Burned Char Fractions vs. Char Flow Rates 6. 12 Burned Fractions vs. G ? numbers 87 89 90 91 6. 13 Temperature k Char...

Dahdah, Tarek Farid

1988-01-01T23:59:59.000Z

110

Hydrocarbon-oil encapsulated bubble flotation of fine coal using 3-in. ID flotation column. Technical progress report for the eleventh quarter, April 1--June 30, 1993  

SciTech Connect

There are four modes of the collector dispersion techniques. They are (1) direct liquid additions and stirring, (2) ultrasonic energy collector dispersion, (3) atomized collector dispersion, and (4) gasified collector transported in air stream. Among those collector dispersion techniques, the technique using the gasified collector transported in air phase can be used to enhance the flotation performance with substantial reduction in collector usage and selectivity, compared to the flotation using direct liquid addition (and mechanical agitation) technique. In this phase of study, two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. The 1-in. ID flotation column was used to scale-up to 3-in. ID flotation column. The initial starting point to operate the 3-in ID flotation column were determined using both 1-in. and 3-in. flotation columns based on the three phases of work plans and experiment design. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal.

Peng, F.F.

1996-05-01T23:59:59.000Z

111

Experimental Investigation of the Combustion of Bituminous Coal in Air and O2/CO2 Mixtures: 1. Particle Imaging of the Combustion of Coal and Char  

Science Journals Connector (OSTI)

Experimental Investigation of the Combustion of Bituminous Coal in Air and O2/CO2 Mixtures: 1. Particle Imaging of the Combustion of Coal and Char ... (1, 2) Extensive studies in both pilot-plant and lab scales have pointed out the pronounced influence of gas composition (air versus O2/CO2) on coal combustion performance. ... By augmenting a companion paper on ash formation in air versus O2/CO2,(17) this study aims to provide further evidence to promote the understanding on the role of CO2 on the combustion of bituminous coal and hence shed new lights into the retrofitting of existing power generation plants with oxy-firing technology. ...

Lian Zhang; Eleanor Binner; Luguang Chen; Yu Qiao; Chun-Zhu Li; Sankar Bhattacharya; Yoshihiko Ninomiya

2010-08-31T23:59:59.000Z

112

Inorganic composition of fine particles in mixed mineral dustpollution plumes observed from airborne measurements during ACE-Asia  

E-Print Network (OSTI)

of the atmosphere (2419, 2427); 0345 Atmospheric Composition and Structure: Pollution--urban and regional (0305Inorganic composition of fine particles in mixed mineral dust­pollution plumes observed from of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia, USA G. R. Carmichael

Weber, Rodney

113

POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning. First quarterly technical progress report, September 27, 1995--December 31, 1995  

SciTech Connect

The Pittsburgh Energy Technology Center (PETC) developed a triboelectrostatic separation (TES) process which is capable of removing mineral matter from coal without using water. A distinct advantage of this dry coal cleaning process is that it does not entail costly steps of dewatering which is a common problem associated with conventional fine coal cleaning processes. It is the objective of this project to conduct a series of proof-of-concept (POC) scale tests at a throughput of 200--250 kg/hr and obtain scale- up information. Prior to the POC testing, bench-scale test work will be conducted with the objective of increasing the separation efficiency and throughput, for which changes in the basic designs for the charger and the separator may be necessary. The bench- and POC- scale test work will be carried out to evaluate various operating parameters and establish a reliable scale-up procedure. The scale-up data will be used to analyze the economic merits of the TES process. During the past quarter, a number of project tasks have been initiated. All documents required for project startup (i.e., work plans, management plans, etc.) have been submitted to DOE for approval. A bench-scale TES unit and an apparatus for studying tribocharging mechanisms have been designed and are currently being fabricated. One of the three coal samples to be used for bench-scale testing has been acquired.

Yoon, R.H.; Luttrell, G.H.; Adel, G.T.

1995-12-31T23:59:59.000Z

114

Coal pulverizing systems for power generation  

SciTech Connect

The pulverized coal-fired boiler for power generation is a mature technology which requires the production of fine coal for combustion. The product material particle size is smaller than 250 microns and about 70 percent smaller than 75 microns. It is no coincidence that most of the new coal technologies for combustion or gasification require a product with a similar particle size distribution for complete reaction. This particle size distribution provides coal particles which can react with oxygen in the air at local velocities and resident times in the boiler furnace to result in almost complete combustion or gasification with 1 or 2 percent carbon loss in the resulting ash. Size reduction, while being one of the most common unit operations on material is also one of the least understood, requiring a high energy input. When pulverizing coal of the particle size required there is an added complication that the product may spontaneously ignite, particularly if the process passes through a stage when an explosive or at least highly combustible mixture of fine coal and air is present. The pulverized coal system covers that portion of the power station from coal bunkers to feeders, pulverizers and delivery system to the boiler burner or gasifier injection point. The transport medium has traditionally been air and in some cases inert gases. The system has usually been lean phase with air to coal ratios in excess of 1:4:1. More recently, a few systems have been dense phase with air to coal ratios of 1:30 up to 1:100. This has the distinct advantage of reduced transport pipe diameter. The key element in the system, the coal pulverizer, will be considered first.

Sligar, J.

1993-12-31T23:59:59.000Z

115

Image analysis measurements of particle coefficient of restitution for coal gasification applications  

SciTech Connect

New robust Lagrangian computational fluid dynamic (CFD) models are powerful tools that can be used to study the behavior of a diverse population of coal particle sizes, densities, and mineral compositions in entrained gasifiers. By using this approach, the responses of the particles impacting the wall were characterized over a range of velocities (1 to 8 m/s) and incident angles (90 to 20°). Within CFD models, the kinematic coefficient of restitution is the boundary condition defining the particle wall behavior. Four surfaces were studied to simulate the physical conditions of different entrained-flow gasification particle–surface collision scenarios: 1) a flat metal plate 2) a low viscosity silicon adhesive, 3) a high viscosity silicon adhesive, and 4) adhered particles on a flat metal plate with Young's modulus of elasticity ranging from 0.9 to 190 GPa. Entrained flow and drop experiments were conducted with granular coke particles, polyethylene beads and polystyrene pellets. The particle normal and tangential coefficients of restitution were measured using high speed imaging and particle tracking. The measured coefficients of restitution were observed to have a strong dependence on the rebound angles for most of the data. Suitable algebraic expressions for the normal and the tangential component of the coefficient of restitution were developed based upon ANOVA analysis. These expressions quantify the effect of normalized Young's modulus, particle equancy, and relative velocity on the coefficient of restitution. The coefficient of restitution did not have a strong dependence on the particle velocity over the range considered as long as the velocity was above the critical velocity. However, strong correlations were found between the degree of equancy of the particles and the mean coefficient of restitution such that the coefficient of restitution decreased for smaller particle equancies. It was concluded that the degree of equancy and the normalized Young's modulus should be considered in applications such as gasification and other cases involving the impact of non-spherical particles and complex surfaces. Sliding was observed when particles impacted on oblique surfaces; however, the resulting effects were within the range of measurement uncertainties.

Gibson, LaTosha M.; Gopalan, Balaji; Pisupati, Sarma V.; Shadle, Lawrence J.

2013-10-01T23:59:59.000Z

116

Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers  

Science Journals Connector (OSTI)

Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers ... The authors thank the High-Tech Research and Development Program of China (No. 2008AA05Z306), the Natural Science Foundation of Jiangsu Province (No. BK2008283), and the Scientific Research Foundation of Graduate School of Southeast University for their financial support. ... with high performance by cascading packed columns. ...

Jingjing Bao; Linjun Yang; Shijuan Song; Guilong Xiong

2012-02-15T23:59:59.000Z

117

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 9, October 1, 1994--December 31, 1994  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by March, 1997. During Quarter 9 (October--December, 1995), parametric and optimization testing was completed for the Taggart, Sunnyside, and Indiana VII coal using a 12-inch Microcel{trademark} flotation column. The detailed design of the 2-t/hr PDU grinding, flotation, and dewatering circuits neared completion with the specification of the major pieces of capital equipment to be purchased for these areas. Selective agglomeration test work investigated the properties of various industrial grades of heptane for use during bench- and PDU-scale testing. It was decided to use a hydrotreated grade of commercial heptane due to its low cost and low concentration of aromatic compounds. The final Subtask 6.4 CWF Formulation Studies Test Plan was issued. A draft version of the Subtask 6.5 Preliminary Design and Test Plan Report was also issued, discussing the progress made in the design of the bench-scale selective agglomeration unit. PDU construction work moved forward through the issuing of 26 request for quotations and 21 award packages for capital equipment.

Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C. [AMAX Research and Development Center, Golden, CO (United States)

1995-01-25T23:59:59.000Z

118

FE Clean Coal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal News Clean Coal News FE Clean Coal News RSS February 9, 2009 DOE Award Results in Several Patents, Potential Increased Coal Recovery A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. February 5, 2009 SECA Fuel Cell Program Moves Two Key Projects Into Next Phase The U.S. Department of Energy has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio. February 3, 2009

119

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 4  

SciTech Connect

This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the 4th quarter of the project from July 1 to September 30, 1993.

Smit, F.J.; Hogsett, R.F.; Jha, M.C.

1993-11-04T23:59:59.000Z

120

Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal  

SciTech Connect

The fate of carbon particles during entrained-flow gasification of coal in the slagging regime is analyzed. More specifically, the study addresses the relevance of segregation of carbon particles in a near-wall region of the gasifier to coal conversion. Segregation of carbon particles is analyzed considering the effects of turbulence- and swirl-promoted particle migration toward the wall, interaction of the impinging particles with the wall ash layer, coverage of the slag layer by refractory carbon particles, accumulation of carbon particles in a dense-dispersed phase near the wall of the gasifier. Operating conditions of the gasifier and slag properties may be combined so as to give rise to a variety of conversion regimes characterized by distinctively different patterns of carbon particles segregation. A simple 1D model of an entrained-flow gasifier has been developed based on the conceptual framework of carbon particle segregation. The model aims at providing a general assessment of the impact of the different patterns of carbon particle segregation on the course and extent of carbon gasification. A sensitivity analysis with reference to selected model parameters is performed to identify key processes controlling carbon segregation and their impact on the gasifier performance. (author)

Montagnaro, Fabio [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant'Angelo, 80126 Napoli (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II and Istituto di Ricerche sulla Combustione, CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

2010-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

SciTech Connect

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-04-02T23:59:59.000Z

122

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

SciTech Connect

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley Region.

Kevin Crist

2003-10-02T23:59:59.000Z

123

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

SciTech Connect

As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2006-04-02T23:59:59.000Z

124

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

SciTech Connect

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-10-02T23:59:59.000Z

125

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

SciTech Connect

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-10-02T23:59:59.000Z

126

EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION  

SciTech Connect

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technology Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2004-04-02T23:59:59.000Z

127

Chemical effect of entrained particles in coal conversion streams. Sixth quarterly technical progress report, November 1, 1982-January 31, 1983  

SciTech Connect

A major objective of the US Department of Energy is to increase coal utilization through the development of combustion stream cleanup technologies. Many of the existing cleanup devices as well as advanced concepts rely on heterogeneous processes (i.e., gas-solid interactions) to achieve efficient stream removal. Examples of such devices include particle injection and granular bed filters for alkali removal, limestone injection for SO/sub x/ removal in fluid bed combustors, dry injection for SO/sub x/removal in entrained combustion, and trace metal adsorption and removal on fly ash. Recent studies indicate that the successful use of turbines in combined cycle processes may depend on understanding the interaction between the gas phase alkali and particles in the combustion stream to substantially reduce turbine corrosion. This report documents progress in efforts to model the heterogeneous chemistry of coal combustion streams as well as laboratory studies to obtain critical input data for the report. 5 references, 15 figures.

Stinespring, C.; Yousefian, V.; Gruninger, J.; Annen, K.; Frankel, D.; Stewart, G.

1983-01-01T23:59:59.000Z

128

Chemical effect of entrained particles in coal conversion streams. Third quarterly technical progress, February 1, 1981-April 30, 1982  

SciTech Connect

A major objective of the US Department of Energy is to increase coal utilization through the development of combustion-stream-cleanup technologies. Many of the existing cleanup devices as well as advanced concepts rely on heterogeneous processes (i.e., gas-solid interactions) to achieve efficient stream removal. Examples of such devices include particle injection and granular-bed filters for alkali removal, limestone injection for SO/sub x/ removal in fluid-bed combustors, dry injection for SO/sub x/ removal in entrained combustion, and trace metal adsorption and removal on fly ash. Recent studies indicate that the successful use of turbines in combined-cycle processes may depend on understanding the interaction between the gas-phase alkali and particles in the combustion stream to substantially reduce turbine corrosion. This report documents progress in efforts to model the heterogeneous chemistry of coal combustion streams as well as laboratory studies to obtain critical input data for the model.

Stewart, G.; Yousefian, V.; Gruninger, J.; Silver, J.; Stinespring, C.

1982-01-01T23:59:59.000Z

129

Capture Efficiency of Cooking-Related Fine and Ultrafine Particles by Residential Exhaust Hoods  

SciTech Connect

Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80percent. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38percent for low (51?68 L s-1) and 54?72percent for high (109?138 L s-1) settings. CEs for 0.3?2.0 ?m particles during front burner stir-frying were 3?11percent on low and 16?70percent on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80percent both for burner combustion products and for cooking-related particles.

Lunden, Melissa M.; Delp, William W.

2014-06-05T23:59:59.000Z

130

Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of...

Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

2013-01-01T23:59:59.000Z

131

Estimates of HVAC filtration efficiency for fine and ultrafine particles of outdoor origin  

Science Journals Connector (OSTI)

Abstract This work uses 194 outdoor particle size distributions (PSDs) from the literature to estimate single-pass heating, ventilating, and air-conditioning (HVAC) filter removal efficiencies for PM2.5 and ultrafine particles (UFPs: HVAC filters identified in the literature. Filters included those with a minimum efficiency reporting value (MERV) of 5, 6, 7, 8, 10, 12, 14, and 16, as well as HEPA filters. We demonstrate that although the MERV metric defined in ASHRAE Standard 52.2 does not explicitly account for UFP or PM2.5 removal efficiency, estimates of filtration efficiency for both size fractions increased with increasing MERV. Our results also indicate that outdoor PSD characteristics and assumptions for particle density and typical size-resolved infiltration factors (in the absence of HVAC filtration) do not drastically impact estimates of HVAC filter removal efficiencies for PM2.5. The impact of these factors is greater for UFPs; however, they are also somewhat predictable. Despite these findings, our results also suggest that MERV alone cannot always be used to predict UFP or PM2.5 removal efficiency given the various size-resolved removal efficiencies of different makes and models, particularly for MERV 7 and MERV 12 filters. This information improves knowledge of how the MERV designation relates to PM2.5 and UFP removal efficiency for indoor particles of outdoor origin. Results can be used to simplify indoor air quality modeling efforts and inform standards and guidelines.

Parham Azimi; Dan Zhao; Brent Stephens

2014-01-01T23:59:59.000Z

132

Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments  

E-Print Network (OSTI)

August) that make atmospheric conditions highly vulnerable, preventing polluting particles in the airCommentary Respiratory disease and particulate air pollution in Santiago Chile: Contribution pollution Santiago Erosion Sedimentation a b s t r a c t Air pollution in Santiago is a serious problem

133

Surface preparation of substances for continuous convective assembly of fine particles  

DOE Patents (OSTI)

A method for producing periodic nanometer-scale arrays of metal or semiconductor junctions on a clean semiconductor substrate surface is provided comprising the steps of: etching the substrate surface to make it hydrophilic, forming, under an inert atmosphere, a crystalline colloid layer on the substrate surface, depositing a metal or semiconductor material through the colloid layer onto the surface of the substrate, and removing the colloid from the substrate surface. The colloid layer is grown on the clean semiconductor surface by withdrawing the semiconductor substrate from a sol of colloid particles.

Rossi, Robert (Rochester, MN)

2003-01-01T23:59:59.000Z

134

A Semi-Empirical Model Relating Flow Properties to Particle Contacts in Fine Binary Powder Mixtures  

E-Print Network (OSTI)

zone to 7 the onset of incipient flow is of wide benefit to a range of granular systems beyond EP 8 printing devices such as the processes of powder materials in pharmaceutical and food 9 industrials. 10 However, despite its importance, the number... additives have only a small effect on the internal friction [20]. In this study, 12 nm 17 hydrophobic silica nanoparticles, Aerosil® R805 (Evonik Industries, Germany), were chosen 18 as the surface additives for the PS-DVB powder particles. The BET surface...

Kojima, Takehiro; Elliott, James A.

2014-08-20T23:59:59.000Z

135

Experimental studies on the group ignition of a cloud of coal particles. Volume 1, Experimental results: Final report, August 15, 1988--October 15, 1991  

SciTech Connect

The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere. The present work is reported in the following order. An introduction to group combustion is given followed by a review of earlier works. Next, the relevance of the present work to practical application and spray combustion modeling is discussed. A group combustion model is then presented for a spherical cloud of coal particles along with a set of dimensional and nondimensional equations. Finally, nonsteady results are generated for pyrolysis, ignition, and combustion of a cloud of coal particles. (VC)

Annamalai, K.; Ruiz, M.; Vadakkath, A.; Gopalakrishnan, C.

1992-01-01T23:59:59.000Z

136

Non-intrusive measurement of particle charge: Electrostatic dry coal cleaning. Technical progress report No. 11, January 1, 1994--March 31, 1994  

SciTech Connect

As has been previously reported, the charge measurement portion of this project has been broadened to include direct measurement techniques which yield an average particle charge per unit mass. These methods, which now include current measurements from the charging loop, an electrolytic collection solution and a Faraday cage have been employed to expand the charge measurement capabilities over those that were originally developed using the PDPA. The effects of gas velocity, humidity and temperature as well as particle size on charge was evaluated for different coals and silica. The charge accumulated on silica particles was linearly dependent on their velocity in the tribocharger for the velocities and mass loadings which were investigated. For coals, a linear increase in charge occurred over a more limited velocity range. Transport gas humidity had a much stronger effect on the charge established on silica particles than on coal particles.

Not Available

1994-06-01T23:59:59.000Z

137

Modeling of particle trajectories of coal size and density fractions in a gasifier.  

E-Print Network (OSTI)

??A computational model of a generic commercial two-stage entrained-flow up-flow coal gasifier has been used in the present work to aid the researchers of the… (more)

Slezak, Andrew A.

2008-01-01T23:59:59.000Z

138

Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antin...

Ledenyov, Oleg P

2013-01-01T23:59:59.000Z

139

Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities  

E-Print Network (OSTI)

exhaust, road dust, coal combustion, and biomass combustion. Important trends in the seasonal and spatial�36% in Mumbai, 37�57% in Kolkata, and 28% in Chandigarh. These figures can be compared to the biomass combustion combustion (coal, diesel, and gasoline) are responsible for about 25�33% of PM2.5 mass in Delhi, 21

Zheng, Mei

140

DOE Award Results in Several Patents, Potential Increased Coal Recovery |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Award Results in Several Patents, Potential Increased Coal Award Results in Several Patents, Potential Increased Coal Recovery DOE Award Results in Several Patents, Potential Increased Coal Recovery February 9, 2009 - 12:00pm Addthis Washington, D.C. -- A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. Researchers at the Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Va., have developed and patented an advanced technology called a hyperbaric centrifuge that can successfully remove

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE Award Results in Several Patents, Potential Increased Coal Recovery |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Award Results in Several Patents, Potential Increased Coal DOE Award Results in Several Patents, Potential Increased Coal Recovery DOE Award Results in Several Patents, Potential Increased Coal Recovery February 9, 2009 - 12:00pm Addthis Washington, D.C. -- A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. Researchers at the Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Va., have developed and patented an advanced technology called a hyperbaric centrifuge that can successfully remove

142

Chemical effect of entrained particles in coal conversion streams. 7th quarterly technical progress report, February 1-April 30, 1983  

SciTech Connect

A major objective of the US Department of Energy is to increase coal utilization through the development of combustion stream cleanup technologies. Many of the existing cleanup devices as well as advanced concepts rely on heterogeneous processes (i.e., gas-solid interactions) to achieve efficient stream removal. Examples of such devices include particle injection and granular bed filters for alkali removal, limestone injection for SO/sub x/ removal in fluid bed combustors, dry injection for SO/sub x/ removal in entrained combustion, and trace metal adsorption and removal on fly ash. Recent studies indicate that the successful use of turbines in combined cycle processes may depend on understanding the interaction between the gas phase alkali and particles in the combustion stream to substantially reduce turbine corrosion. This report documents progress in efforts to model the heterogeneous chemistry of coal combustion streams as well as laboratory studies to obtain critical input data for the model. Appendix I has been entered separately into EDB and ERA.

Stinespring, C.; Annen, K.; Frankel, D.; Stewart, G.

1983-01-01T23:59:59.000Z

143

Trace elements found in the fuel and in-furnace fine particles collected from 80MW BFB combusting solid recovered fuel  

Science Journals Connector (OSTI)

The main fine particle (dp SRF) combustion the main elements were found to be: Ba, Br, Cr, Cu, Fe, Pb, Sb, Sn and Zn. Fine particle composition is presented for 6 different furnace heights of a bubbling fluidized bed (BFB) boiler. As the fine particles are formed of vaporized ash species the experimental results are discussed with the support of thermodynamic equilibrium modeling for estimating the forms of the gaseous elements in the furnace. The occurrence of bromine was found to be similar to chlorine as the main forms of bromine in the furnace were estimated to be KBr(g) and NaBr(g) complemented with CuBr3(g). It is proposed that the trace elements mentioned originate mainly from plastics and rubber where they are used as production additives, stabilisers, dyes, colorants and flame retardants. Cr, Cu and Zn may originate to a large extent from alloys and other metallic impurities. SEM-EDS analyses carried out for the SRF supports the postulated origin of the elements.

P. Vainikka; D. Lindberg; A. Moilanen; H. Ollila; M. Tiainen; J. Silvennoinen; M. Hupa

2013-01-01T23:59:59.000Z

144

Moon Dust and Coal Ash  

Science Journals Connector (OSTI)

... SIR,-The similarity of the description of moon dust particles and that of pulverized coal ...coalash ...

D. J. THORNE; J. D. WATT

1969-09-27T23:59:59.000Z

145

New developments in coal briquetting technology  

SciTech Connect

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

146

Generation of concentration density maxima of small dispersive coal dust particles in horizontal iodine air filter at air-dust aerosol blow  

E-Print Network (OSTI)

The spatial distributions of the small dispersive coal dust particles with the nano and micro sizes in the granular filtering medium with the cylindrical coal granules in the absorber in the horizontal iodine air filter during its long term operation at the nuclear power plant are researched. It is shown that the concentration density maxima of the small dispersive coal dust particles appear in the granular filtering medium with the cylindrical coal absorbent granules in the horizontal iodine air filter at an action by the air dust aerosol blow. The comparison of the measured aerodynamic resistances of the horizontal and vertical iodine air filters is conducted. The main conclusion is that the magnitude of the aerodynamic resistance of the horizontal iodine air filters is much smaller in comparison with the magnitude of the aerodynamic resistance of the vertical iodine air filters at the same loads of the air dust aerosol volumes. It is explained that the direction of the air dust aerosol blow and the direction of the gravitation force in the horizontal iodine air filter are orthogonal, hence the effective accumulation of the small dispersive coal dust particles takes place at the bottom of absorber in the horizontal iodine air filter. It is found that the air dust aerosol stream flow in the horizontal iodine air filter is not limited by the appearing structures, made of the precipitated small dispersive coal dust particles, in distinction from the vertical iodine air filter, in the process of long term operation of the iodine air filters at the nuclear power plant.

I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

2013-06-11T23:59:59.000Z

147

Continuous fine ash depressurization system  

DOE Patents (OSTI)

A system for depressurizing and cooling a high pressure, high temperature fine solid particles stream having entrained gas therein. In one aspect, the system has an apparatus for cooling the high pressure, high temperature fine solid particles stream having entrained gas therein and a pressure letdown device for depressurization by separating the cooled fine solid particles from a portion of the fine solid particles stream having entrained gas therein, resulting in a lower temperature, lower pressure outlet of solid particles for disposal or handling by downstream equipment.

Liu, Guohai (Birmingham, AL); Peng, Wan Wang (Birmingham, AL); Vimalchand, Pannalal (Birmingham, AL)

2011-11-29T23:59:59.000Z

148

Influence by small dispersive coal dust particles of different fractional consistence on characteristics of iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The main purpose of research is to determine the influence by the small dispersive coal dust particles of the different fractional consistence on the technical characteristics of the vertical iodine air filter at nuclear power plant. The research on the transport properties of the small dispersive coal dust particles in the granular filtering medium of absorber in the vertical iodine air filter is completed in the case, when the modeled aerodynamic conditions are similar to the real aerodynamic conditions. It is shown that the appearance of the different fractional consistence of small dispersive coal dust particles with the decreasing dimensions down to the micro and nano sizes at the action of the air dust aerosol stream normally results in a significant change of distribution of the small dispersive coal dust particles masses in the granular filtering medium of an absorber in the vertical iodine air filter, changing the vertical iodine air filter aerodynamic characteristics. The precise characterization of the aerodynamic resistance of a model of the vertical iodine air filter is completed. The comparative analysis of the technical characteristics of the vertical and horizontal iodine air filters is also made.

I. M. Neklyudov; O. P. Ledenyov; L. I. Fedorova; P. Ya. Poltinin

2013-02-18T23:59:59.000Z

149

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

150

Development of a stack plume opacity index for subbituminous coal-fired utility boilers  

SciTech Connect

Powder River Basin subbituminous coals were burned using conventional and low-NO{sub x} combustion conditions in a drop-tube furnace equipped with a multicyclone ash collection device. Fine ash fractions (< 2 {micro}m in diameter) collected during the tests were analyzed using computer-controlled scanning electron microscopy (CCSEM). Advances in particulate sample preparation methods enabled the CCSEM analysis of individual ash particles with submicron diameters as small as 0.1 {micro}m. The fine ash samples produced from the conventional combustion of coal consisted of discrete spherical particles, whereas particle agglomerates were characteristic of the low-NO{sub x} ash samples. Particle-size distributions of the low-NO{sub x} fine ash fractions were coarser because of the agglomeration. Theoretical light-scattering calculations indicate that for a given coal, the ash produced in low-NO{sub x} conditions causes less opacity as compared to conventional combustion conditions. The following phases were abundant in the ashes: Ca aluminosilicate, Ca aluminate, aluminosilicate, silica, (Ca, Mg)O, CaSO{sub 4}, Na{sub 2} SO{sub 4}, and (Na, K)Cl. Primary mechanisms that produced the fine ash include the thermal metamorphism of small (0.1 to 5 {micro}m) mineral grains and the vaporization and subsequent condensation of organically bound Na, Mg, and Ca, Empirical equations for estimating the concentration of fine ash produced from burning subbituminous coals were formulated into an opacity index based on CCSEM coal mineral and fine ash analyses and on drop-tube furnace testing results. The effects of ash electrical resistivity on electrostatic precipitator collection efficiency are also considered in the index.

Galbreath, K.C.; Zygarlicke, C.J.; McCollor, D.P.; Toman, D.L. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center

1995-12-31T23:59:59.000Z

151

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

152

Deashing of coal liquids by sonically assisted filtration  

SciTech Connect

This project seeks to improve the effectiveness and reduce the cost of coal liquefaction by novel applications of sonic and ultrasonic energy. The specific purpose of this project is to develop and improve means for the economical removal of dispersed solid particles of ash, unreacted coal, and spent catalyst from direct and indirect coal liquefaction resids by using sonic or ultrasonic waves. Product streams containing solids are generated in both direct and indirect coal liquefaction processes. Direct coal liquefaction processes generate liquid products which contain solids including coal-originated mineral matter, unreacted coal, and spent dispersed catalyst. The removal of these solids from a product stream is one of the most difficult problems in direct coal liquefaction processes. Crossflow filtration is suitable for continuous flow operation and, when coupled with a sonic or ultrasonic field, may constitute a solution to operational problems of solids separation in coal liquefaction. However, for the efficient and trouble-free operation of crossflow filters the problems arising from dealing with highly viscous coal liquefaction resids need to be avoided. Either crossflow filters suitable for work at elevated temperatures at reduced resid viscosity should be used or the coal liquefaction process network should be modified to allow for dilution of resids using a distillate fraction, e.g., naphtha, diesel oil, etc., to reduce the viscosity of resids. As perhaps even a more practical alternative, field-assisted crossflow filtration of the reactor`s effluent stream prior to the distillation step should be considered. Such an approach will circumvent the more difficult separation of fine and ultrafine solids from highly viscous coal liquefaction resids.

Slomka, B.J. [Ames Laboratory, IA (United States)

1994-12-31T23:59:59.000Z

153

Low-Rank Coal Grinding Performance Versus Power Plant Performance  

SciTech Connect

The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

Rajive Ganguli; Sukumar Bandopadhyay

2008-12-31T23:59:59.000Z

154

Improved Combustion of Asphaltite Coals in a Rotating Head Combustor with Various Air Supply Arrangements  

Science Journals Connector (OSTI)

A small amount of ash is drifted via combustion gas in fine particles while great deal of it flow into the ash pit in the form of clinker from the open side of combustion head. ... In this study, it was shown that the swelling coals that were difficult to burn in conventional stokers could be burned using a rotating head combustor in high efficiencies without any ash problem. ... In this work, a rotating head combustor, which has been designed for burning the coking coals effectively, was deployed to burn a range of coals available in Turkey under agitation conditions with secondary air delivery. ...

Cengiz Öner; ?ehmus Altun

2014-04-16T23:59:59.000Z

155

Combustion of dense streams of coal particles. Quarterly progress report No. 12, May 29, 1993--August 28, 1993  

SciTech Connect

Research continued on coal stream combustion. This report presents the results obtained from the gasification efficiency experiments by varying the (i) air fuel ratio of the coal cloud (ii) reaction zone height (residence time) and (iii) oxygen concentration. A brief discussion on the divergence of coal stream is presented.

Annamalai, K.

1993-09-20T23:59:59.000Z

156

Site clean up of coal gasification residues  

SciTech Connect

The coal gasification plant residues tested in this research consists of various particle sizes of rock, gravel, tar-sand agglomerates, fine sand and soil. Most of the soils particles were tar free. One of the fractions examined contained over 3000 ppM polyaromatic hydrocarbons (PAHs). The residues were subjected to high pressure water jet washing, float and sink tests, and soil washing. Subsequent PAH analyses found less than 1 ppM PAHs in the water jet washing water. Soils washed with pure water lowered PAH concentrations to 276 ppM; the use of surfactants decreased PAHs to 47, 200, and 240 ppM for different test conditions. In the 47 ppM test, the surfactant temperature had been increased to 80 C, suggesting that surfactant washing efficiency can be greatly improved by increasing the solution temperature. The coal tar particles were not extracted by the surfactants used. Coke and tar-sand agglomerates collected from the float and sink gravimetric separation were tested for heating value. The tar exhibited a very high heating value, while the coke had a heating value close to that of bituminous coal. These processes are believed to have the potential to clean up coal gasification plant residues at a fairly low cost, pending pilot-scale testing and a feasibility study.

Wilson, J.W.; Ding, Y. [Univ. of Missouri, Rolla, MO (United States)

1995-12-31T23:59:59.000Z

157

Transport and Other Effects in Coal Gasification  

Science Journals Connector (OSTI)

The paper summarizes the kinetics of coal char gasification excepted surface reactions (mechanisms). The following subjects controlling coal char gasification are treated: Coal as the raw material ... of particle...

K. J. Hüttinger

1988-01-01T23:59:59.000Z

158

Generation of concentration density maxima of small dispersive coal dust particles in horizontal iodine air filter at air-dust aerosol blow  

E-Print Network (OSTI)

The spatial distributions of the small dispersive coal dust particles with the nano and micro sizes in the granular filtering medium with the cylindrical coal granules in the absorber in the horizontal iodine air filter during its long term operation at the nuclear power plant are researched. It is shown that the concentration density maxima of the small dispersive coal dust particles appear in the granular filtering medium with the cylindrical coal absorbent granules in the horizontal iodine air filter at an action by the air dust aerosol blow. The comparison of the measured aerodynamic resistances of the horizontal and vertical iodine air filters is conducted. The main conclusion is that the magnitude of the aerodynamic resistance of the horizontal iodine air filters is much smaller in comparison with the magnitude of the aerodynamic resistance of the vertical iodine air filters at the same loads of the air dust aerosol volumes. It is explained that the direction of the air dust aerosol blow and the directi...

Neklyudov, I M; Fedorova, L I; Poltinin, P Ya

2013-01-01T23:59:59.000Z

159

Coal dust explosibility  

Science Journals Connector (OSTI)

This paper reports US Bureau of Mines (USBM) research on the explosibility of coal dusts. The purpose of this work is to improve safety in mining and other industries that process or use coal. Most of the tests were conducted in the USBM 20 litre laboratory explosibility chamber. The laboratory data show relatively good agreement with those from full-scale experimental mine tests. The parameters measured included minimum explosible concentrations, maximum explosion pressures, maximum rates of pressure rise, minimum oxygen concentrations, and amounts of limestone rock dust required to inert the coals. The effects of coal volatility and particle size were evaluated, and particle size was determined to be at least as important as volatility in determining the explosion hazard. For all coals tested, the finest sizes were the most hazardous. The coal dust explosibility data are compared to those of other hydrocarbons, such as polyethylene dust and methane gas, in an attempt to understand better the basics of coal combustion.

Kenneth L. Cashdollar

1996-01-01T23:59:59.000Z

160

Chemical effect of entrained particles in coal conversion streams. 8th and 9th quarterly technical progress report, 1 May-31 October 1983  

SciTech Connect

A major objective of the US Department of Energy is to increase coal utilization through the development of combustion stream cleanup technologies. Many of the existing cleanup devices as well as advanced concepts rely on heterogeneous processes (i.e. gas-solid interactions) to achieve efficient stream removal. Examples of such devices include particle injection and granular bed filters for alkali removal, limestone injection for SO/sub x/ removal in fluid bed combustors, dry injection for SO/sub x/ removal in entrained combustion, and trace metal adsorption and removal on fly ash. Recent studies indicate that the successful use of turbines in combined cycle processes may depend on understanding the interaction between the gas phase alkali and particles in the combustion stream to substantially reduce turbine corrosion. This report documents progress in efforts to model the heterogeneous chemistry of coal combustion streams as well as laboratory studies to obtain critical input data for the model. 3 refs., 1 fig.

Stinespring, C.; Annen, K.; Frankel, D.; Stewart, G.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Characterization of air toxics from a laboratory coal-fired combustor  

SciTech Connect

Emissions of hazardous air pollutants from coal combustion were studied in a laboratory-scale combustion facility, with emphasis on fine particles in three size ranges of less than 7.5 {mu}m diameter. Vapors were also measured. Substances under study included organic compounds, anions, elements, and radionuclides. Fly ash was generated by firing a bituminous coal in a combuster for 40 h at each of two coal feed rates. Flue gas was sampled under two conditions. Results for organic compounds, anions, and elements show a dependence on particle size consistent with published power plant data. Accumulation of material onto surface layers was inferred from differences in chemical composition between the plume simulating dilution sampler and hot flue samples. Extracts of organic particulate material were fractionated into different polarity fractions and analyzed by GC/MS. In Phase II, these laboratory results will be compared to emissions from a full-scale power plant burning the same coal.

NONE

1995-04-03T23:59:59.000Z

162

PROCEEDINGS. CARBONACEOUS PARTICLES IN THE ATMOSPHERE  

E-Print Network (OSTI)

number distribution of coal fly ash particles. HutagenicityCARBONACEOUS PARTICLES IN COAL FLY ASH G. L. Fisher, C. E.of carbonaceous particles in coal fly ash is described. The

Novakov, T.

2014-01-01T23:59:59.000Z

163

Low-rank coal research  

SciTech Connect

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-01-01T23:59:59.000Z

164

Coal Gasification  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

165

Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant  

E-Print Network (OSTI)

The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antinodes of the acoustic waves are positioned. Finally, we completed the comparative analysis of the theoretical calculations with the experimental results, obtained for the cases of: 1) the experimental aerodynamic modeling of physical processes of the absorbed radioactive chemical elements and their isotopes distribution in the IAF; and 2) the gamma-activation spectroscopy analysis of the absorbed radioactive chemical elements and their isotopes distribution in the IAF. We made the innovative propositions on the necessary technical modifications with the purpose to improve the IAF technical characteristics and increase its operational time at the nuclear power plant (NPP), going from the completed precise characterization of the IAF parameters at the long term operation.

Oleg P. Ledenyov; Ivan M. Neklyudov

2013-06-14T23:59:59.000Z

166

Process for preparing a stabilized coal-water slurry  

DOE Patents (OSTI)

A process for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases.

Givens, Edwin N. (Bethlehem, PA); Kang, Doohee (Macungie, PA)

1987-01-01T23:59:59.000Z

167

Bio-coal briquette  

SciTech Connect

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

168

Integrated coal preparation and CWF processing plant: Conceptual design and costing  

SciTech Connect

At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m[mu] for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

McHale, E.T.; Paul, A.D.; Bartis, J.T. (Science Applications International Corp., McLean, VA (United States)); Korkmaz, M. (Roberts and Schaefer Co., Salt Lake City, UT (United States))

1992-12-01T23:59:59.000Z

169

Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report  

SciTech Connect

At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

McHale, E.T.; Paul, A.D.; Bartis, J.T. [Science Applications International Corp., McLean, VA (United States); Korkmaz, M. [Roberts and Schaefer Co., Salt Lake City, UT (United States)

1992-12-01T23:59:59.000Z

170

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

171

Ash Transformations in the Real-Scale Pulverized Coal Combustion of South African and Colombian Coals  

Science Journals Connector (OSTI)

In this work, the formation of ash particles in the combustion of South African Klein Kopie coal and a Colombian coal was studied by measuring the ash particle characteristics upstream of the electrostatic precip...

Terttaliisa Lind; Esko I. Kauppinen…

1996-01-01T23:59:59.000Z

172

Optimization of multigravity separation for recovery of ultrafine coal  

SciTech Connect

Enhanced gravity separation appears to be one of the most promising methods for processing all types of < 200-{mu}m coal feeds and tailings. Systems based on this technology are reviewed, and the results of investigations based on C900 Multi-Gravity Separator tests conducted to assess the treatment of < 200-{mu}m, extremely difficult-to-wash coal settling pond tailings are presented. Multi-Gravity Separator processing tests of ultra-fine tailings with a high clay particle size content (22.6% < 10 {mu}m and 60.1 % < 40 {mu}m) and a 69.56% ash content show that this material can be effectively treated after desliming (< 10 {mu}m) of clay-size particles to produce a coal with a 20.6% ash at a separator combustible material recovery of 69.3 %. Desliming is shown to be critical in reducing coal ash content and combustible material recovery. Similar improvements are anticipated in the recovery and separation processes for other enhanced gravity separation systems from the desliming of feeds. Although not a conventional form of treating Multi-Gravity Separator data, the existence of well-defined polynomial relationships based on the product of drum shake amplitude and shake frequency relative to product coal recovery, product ash content and yields at varying wash water flows is demonstrated. Low-amplitude and intermediate-to high-frequency bed agitation are shown to produce optimum ash reduction results.

Menendez, M.; Gent, M.; Torano, J.; Diego, I. [University of Oviedo, Oviedo (Spain)

2007-11-15T23:59:59.000Z

173

Evaluation of the Performance of Air Dense Medium Fluidized Bed (ADMFB) for Low-Ash Coal Beneficiation. Part 2: Characteristics of the Beneficiated Coal  

Science Journals Connector (OSTI)

Evaluation of the Performance of Air Dense Medium Fluidized Bed (ADMFB) for Low-Ash Coal Beneficiation. ... The slagging and fouling decrease the efficiency of heat-exchange surfaces in conventional coal-firing furnaces, while in slagging gasifiers, where ash is intentionally converted into liquid slag (better operation, control particulate matter emission, and trap trace elements and heavy metals in a unleachable glass phase), to achieve free flux toward the bottom of the gasifier (tapping system), the higher slagging propensity and lower viscosity at the operating temperature are required. ... These samples include two clean coal products, which exhibited minimum ash content (B and C), two tests that offered maximum organic material recovery (D and E) from the middle particle size fraction, and two tests with fine and coarse particle sizes (A and F, respectively). ...

Ebrahim Azimi; Shayan Karimipour; Moshfiqur Rahman; Jozef Szymanski; Rajender Gupta

2013-08-13T23:59:59.000Z

174

Coal Beneficiation by Gas Agglomeration  

SciTech Connect

Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

Thomas D. Wheelock; Meiyu Shen

2000-03-15T23:59:59.000Z

175

Process for selective grinding of coal  

DOE Patents (OSTI)

A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.

Venkatachari, Mukund K. (San Francisco, CA); Benz, August D. (Hillsborough, CA); Huettenhain, Horst (Benicia, CA)

1991-01-01T23:59:59.000Z

176

Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash  

SciTech Connect

Work on the project focused on the determination of the hydraulic classification characteristics of the Coleman and Mill Creek ashes. The work utilized the hydraulic classifier developed earlier in the project. Testing included total yield, recovery of <5 {micro}m ash diameter particles and LOI partitioning as functions of dispersant dosage and type, retention time and superficial velocity. Yields as high as 21% with recoveries of up to 2/3 of the <5 {micro}m ash fractions were achieved. Mean particle size (D{sub 50}) of varied from 3.7 to 10 {micro}m. The ashes were tested for there pozzolanic activity in mortars as measured by strength activity index using ASTM criteria. Additional testing included air entrainment reagent demand and water requirements. The classified products all performed well, demonstrating excellent early strength development in the mortars. Some increased air entrainment demand was noted. The conceptual design of a process demonstration unit PDU was also completed. A flexible, trailer-mounted field unit is envisioned.

T.L. Robl; J.G. Groppo; Robert Rathebone

2005-12-14T23:59:59.000Z

177

Assessment of the flowability of a crushed coal by triaxial testing  

SciTech Connect

The objective of the research is to study the effects of variations in moisture content, fine particle concentration, and initial density on the handleability of a Cherokee seam coal. Cherokee seam coal is mined in Marion County, Iowa. A theoretical analysis of the stresses acting within a stable arch will be presented. The arch analysis will take into consideration such factors as: hopper geometry, frictional characteristics of the hopper material, material unit weight, and the strength of the material. Recommendations for future research to determine the handleability of a coal will be presented along with possible approaches to obtain a practical handleability index'' for a variety of coals. 47 refs., 28 figs., 4 tabs.

Bradfield, B.E.

1990-02-01T23:59:59.000Z

178

New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique  

E-Print Network (OSTI)

composition of fly ash from a coal-fired thermal powersignature for coal combustion or fly ash particles. Singleresembles fly ash particles formed by coal combustion (

Spencer, Matthew Todd

2007-01-01T23:59:59.000Z

179

New coal dewatering technology turns sludge to powder  

SciTech Connect

Virginian Tech's College of Engineering's Roe-Hoan Yoon and his group have developed a hyperbaric centrifuge that can dewater coal as fine as talcum powder. Such coal fines presently must be discarded by even the most advanced coal cleaning plants because of their high moisture content. The new technology can be used with the Microcel technology to remove ash, to re-mine the fine coal discarded to impoundments and to help minimize waste generation. Virginia Tech has received $1 million in funding from the US Department of State to also help the Indian coal industry produce a cleaner product. 1 photo.

NONE

2009-03-15T23:59:59.000Z

180

PILOT DEMONSTRATION OF TECHNOLOGY FOR THE PRODUCTION OF HIGH VALUE MATERIALSFROM THE ULTRA-FINE (PM2.5)FRACTION OF COAL COMBUSTION ASH  

SciTech Connect

Dry fly ash samples were collected from 6 of the7 largest power plants operated by Louisville Gas and Electric Company (LG&E). Samples were taken from individual ESP hoppers in a continuous flow through stages of particulate collection. A total of 41 samples were taken from 16 operating units. The samples were thoroughly characterized for pertinent physical and chemical composition. The fly ash samples contained 10 to 50% -10{micro}m material, with higher concentrations of finer particles located in the latter stages of particulate collection. Flotation evaluation was conducted on a continuous flow though a single unit at each power station to assess the viability of using froth flotation to reduce the LOI in the fly ash to very low levels (i.e. 0.5% LOI) in order to enable eventual use as fillers. Ash from all of the units tested responded favorably with the exception of the ash from Henderson Station, which is attributed to a significant proportion of un-combusted or partially-combusted petroleum coke in the ash at this station, Bulk samples of dry ash and pond ash were also collected from Mill Creek, Trimble County, E.W. Brown and Coleman power plants and evaluated for carbon removal by froth flotation. Release analyses showed that flotation could effectively reduce carbon to acceptable levels for most of the substrates tested. The exception was the Mill Creek ashes. The cause of this exception will be further investigated.

T.L. Robl; J.G. Groppo

2004-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

COAL LIQUEFACTION ALLOY TEST PROGRAM ANNUAL REPORT FY 1978  

E-Print Network (OSTI)

lBl-8754 UC-90d · COAL LIQUEFACTION ALLOY TEST PROGRAMViscosity vs. Tempeature of Coal Slurries in Creosote OiLthe experiments are: Particles (coal. SiC, SiO )' Z liquid (

Levy, A.

2014-01-01T23:59:59.000Z

182

Chemical effect of entrained particles in coal conversion streams. 5th quarterly technical progress report, August 1, 1982-October 31, 1982  

SciTech Connect

A major objective of the US Department of Energy is to increase coal utilization through the development of combustion stream cleanup technologies. Many of the existing cleanup devices as well as advanced concepts rely on heterogeneous processes (i.e. gas-solid interactions) to achieve efficient stream removal. Examples of such devices include particle injection and granular bed filters for alkali removal, limestone injection for SO/sub x/ removal in fluid bed combustors, dry injection for SO/sub x/ removal in entrained combustion, and trace metal adsorption and removal on fly ash. Recent studies indicate that the successful use of turbines in combined cycle processes may depend on understanding the interaction between the gas phase alkali and particles in the combustion stream to substantially reduce turbine corrosion. This report documents progress in efforts to model the heterogeneous chemistry of coal combustion streams as well as laboratory studies to obtain critical input data for the model. Task 1. Exercise PACKAGE Code was completed. Task 2. Model Development. During this quarter, the model which now treats semi-infinite solids has been extended to treat small particles with a finite number of layers. Task 3. Measure Alkali Vaporization Rates. in the last quarter, experiments were performed which demonstrate the feasibility of using LIF to measure alkali vaporization rates. As a result of these studies the LIF spectra were obtained for sodium vaporized from the surface of sodium silicate. During this quarter, these experiments have been continued, and the temperature dependence of the vaporization rate has been determined. 5 references, 9 figures.

Stewart, G.; Yousefian, V.; Gruninger, J.; Annen, K.; Stinespring, C.

1982-01-01T23:59:59.000Z

183

NETL: Coal and Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Technologies Coal and Power Systems Advancing our Nation's Portfolio of Coal RD&D Technologies - Rotating Images Advancing our Nation's Portfolio of Coal RD&D Technologies - Read More! Focus of NETL RD&D RD&D efforts in coal and power systems fall into three categories: Technologies that enable existing coal power plants to cost-effectively meet environmental requirements. NETL and its research partners are developing environmental control technologies for retrofitting existing power plants, with application to new plants as well. Key areas of research include cost-effective control of mercury, nitrogen oxides, sulfur dioxide, and fine particulate emissions; beneficial uses for coal utilization byproducts; and innovations to minimize the impact of

184

Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment  

SciTech Connect

During this third quarter of Grant DE-FG22-86 PC 90756, we have obtained preliminary experimental results on the deposition behavior of submicron and supermicron solid particles (MgO, Al[sub 2]O[sub 3]) on a two-dimensional surface exposed to a high temperature/velocity particle laden'' atmospheric pressure jet. The uniform velocity ( plug flow'') jet, with temperatures up to about 1520 K, derives from a pressurized gaseous fuel microcombustion chamber (110 cc) equipped with a platinum guiding (exit) channel. Particles were generated by several methods (Berglund-Liu type aerosol generator, ultrasonic nebulizer, or syringe feeder with aerodynamic particle off-take) and were introduced into the combustion chamber with a carrier stream of nitrogen or air. Laser light scattering and reflectivity techniques were used for the study of particle deposition, supplemented by post-mortem microscopy on the exposed surface. We observed a linear deposition rate of submicron particles due to the thermophoretic mechanism (until the first layer was developed) under both high and low velocity conditions. On the contrary, supermicron particle deposits reach a steady-state, evidently due to a dynamic equilibrium between particle deposition and dislodging caused by the impacting particles. At several temperatures particle-free subsonic gas jets (up to 120 m/sec) were unable to remove the submicron particle layer.

Rosner, D.E.

1987-06-01T23:59:59.000Z

185

NETL: News Release - Projects Selected to Study Coal Plant Particulate  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2004 5, 2004 Projects Selected to Study Coal Plant Particulate Matter, Human Health PITTSBURGH, PA - The Department of Energy has selected three projects to help determine whether fine particulates emitted from coal-fired power plants affect human health, and which components of the particulates may be most problematic. Past studies have established that particulate matter smaller than 2.5 microns in diameter from all sources does affect human health, but there is scant information to provide a link between PM2.5 emitted specifically from coal plants and cardiac or respiratory health problems in humans. PM2.5 refers to particles-invisible to the eye-no more than 1/30th of the width of a human hair Coal plants emit only small quantities of "primary" PM2.5 (e.g., fly ash) because all plants have high-efficiency particulate-collection devices. However, coal plants are responsible for a great deal of "secondary" PM2.5, which forms in the atmosphere from emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx). Data collected in the new studies will be used to help design standards reviews and to devise strategies for controlling power plant emissions of PM2.5, SO2, and NOx.

186

NETL: Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

187

Chemical effect of entrained particles in coal conversion streams. 4th quarterly technical progress report, May 1-July 31, 1982. [Laser induced fluorescence spectra  

SciTech Connect

A major objective of the US Department of Energy is to increase coal utilization through the development of combustion stream cleanup technologies. Many of the existing cleanup devices as well as advanced concepts rely on heterogeneous processes (i.e. gas-solid interactions) to achieve efficient stream removal. Examples of such devices include particle injection and granular bed filters for alkali removal, limestone injection for SO/sub x/ removal in fluid bed combustors, dry injection for SO/sub x/ removal in entrained combustion, and trace metal adsorption and removal on fly ash. Recent studies indicate that the successful use of turbines in combined cycle processes may depend on understanding the interaction between the gas phase alkali and particles in the combustion stream to substantially reduce turbine corrosion. This report documents progress in efforts to model the heterogeneous chemistry of coal combustion streams as well as laboratory studies to obtain critical input data for the model. Task 1. Exercise PACKAGE Code. During this reporting period, the PACKAGE Code solution model has been used to investigate the combined effects of sulfur dioxide and chlorine on alkali gettering using kaolinite. Task 2. Model Development. Work on this task has focused on implementing the combined segregation, evaporation, and adsorption code. In this report the evaporation terms in the code are characterized and the interaction between segregation and evaporation processes is described. Task 3. Measure Alkali Vaporization Rates. During this quarter, experiments were performed which demonstrate the feasibility of using LIF to measure alkali vaporization rates. As a result of these studies the LIF spectrum has been obtained for sodium vaporized from the surface of sodium silicate to our knowledge, these are the first such spectra to be obtained in this manner. 3 references, 11 figures.

Stewart, G.; Yousefian, V.; Gruninger, J.; Annen, K.; Stinespring, C.

1982-01-01T23:59:59.000Z

188

Elk Valley coal implements smartcell flotation technology  

SciTech Connect

In anticipation of future raw coal containing higher fines content, Elk Valley Coal Corp.'s Greenhills Operations upgraded their fines circuit to include Wemco SmartCells in March 2007. Positive results were immediately achieved increasing the average flotation tailings ash by 16%. With this increase in yield the SmartCells project paid for itself in less than eight months. 2 figs., 1 tab., 1 photo.

Stirling, J.C. [Elk Valley Coal Corporation, Elkford, BC (Canada)

2008-06-15T23:59:59.000Z

189

Hydrogen production with coal using a pulverization device  

DOE Patents (OSTI)

A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.

Paulson, Leland E. (Morgantown, WV)

1989-01-01T23:59:59.000Z

190

Study of ash deposition during coal combustion under oxyfuel conditions  

Science Journals Connector (OSTI)

This paper presents a comparative study on ash deposition of two selected coals, Russian coal and lignite, under oxyfuel (O2/CO2) and air combustion conditions. The comparison is based on experimental results and subsequent evaluation of the data and observed trends. Deposited as well as remaining filter ash (fine ash) samples were subjected to XRD and ICP analyses in order to study the chemical composition and mineral transformations undergone in the ash under the combustion conditions. The experimental results show higher deposition propensities under oxyfuel conditions; the possible reasons for this are investigated by analyzing the parameters affecting the ash deposition phenomena. Particle size seems to be larger for the Russian coal oxy-fired ash, leading to increased impaction on the deposition surfaces. The chemical and mineralogical compositions do not seem to differ significantly between air and oxyfuel conditions. The differences in the physical properties of the flue gas between air combustion and oxyfuel combustion, e.g. density, viscosity, molar heat capacity, lead to changes in the flow field (velocities, particle trajectory and temperature) that together with the ash particle size shift seem to play a role in the observed ash deposition phenomena.

L. Fryda; C. Sobrino; M. Glazer; C. Bertrand; M. Cieplik

2012-01-01T23:59:59.000Z

191

Detailed analysis of the CO oxidation chemistry around a coal char particle under conventional and oxy-fuel combustion conditions  

Science Journals Connector (OSTI)

Abstract The purpose of this article is to analyze in detail the homogeneous chemistry involving the CO oxidation in the gas around a burning char particle. Namely, the model presented in a previous work (Gonzalo-Tirado et al., 2014) [1] has been applied to the case of a 120 ?m and a 600 ?m subbituminous char particle in a 24% O2, 1673 K atmosphere under both conventional and oxy-fuel combustion conditions. The CO + OH ? CO2 + H reaction is shown to be the prevailing reaction in the conversion of the CO in the boundary layer; the high CO2 concentrations typical of oxy-combustion affect the equilibrium in this reaction and reduce its overall rate, which explains the lower ‘intensity’ of the flame in those conditions. As for the release/absorption of heat in the gas, the reactions in which the OH radicals participate as reactants or products are predominant; the OH chemistry is somehow more intense in N2 and higher flame temperatures and OH concentrations are thus attained in conventional combustion conditions. Relatively low moisture concentrations in the bulk gas are sufficient to activate this boundary layer chemistry; with [H2O] larger than ?3% no substantial changes are observed in the CO conversion. The combustion history of the particles has been also studied. A logical sequence oxidation–gasification is observed; whereas the CO-to-CO2 oxidation occurs first contiguous to the particle, the onset of char-CO2 gasification results in a detachment of the flame from the surface and a decrease in the oxidation rate, especially for large particles.

Cristina Gonzalo-Tirado; Santiago Jiménez

2014-01-01T23:59:59.000Z

192

Capacity mapping for optimum utilization of pulverizers for coal fired boilers - article no. 032201  

SciTech Connect

Capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of a pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending on the volatile matter (VM) content of the coal and the input coal size. The quantity and the inlet will change depending on the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal (PC). Drying capacity is also limited by utmost PA fan power to supply air. The PA temperature is limited by air preheater (APH) inlet flue gas temperature; an increase in this will result in efficiency loss of the boiler. The higher PA inlet temperature can be attained through the economizer gas bypass, the steam coiled APH, and the partial flue gas recirculation. The PS/coal ratioincreases with a decrease in grindability or pulverizer output and decreases with a decrease in VM. The flammability of mixture has to be monitored on explosion limit. Through calibration, the PA flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the PC particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Variations of dynamic loading and wearing of grinding elements affect the available milling capacity and percentage rejects. Therefore, capacity mapping in necessary to ensure the available pulverizer capacity to avoid overcapacity or undercapacity running of the pulverizing system, optimizing auxiliary power consumption. This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize system efficiency and control, resulting in a more cost effective heat rate.

Bhattacharya, C. [National Power Training Institute, Durgapur (India)

2008-09-15T23:59:59.000Z

193

Characterization of available coals from Illinois mines. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

The goal of this project was to characterize available product coals from Illinois mines. The characterization parameters that were determined include the concentration of all trace and minor elements that are of environmental concern, the pyrite size distribution and maceral association, preliminary froth flotation cleanability, slagging and fouling characteristics, chlorine forms and distribution, and certain gasification and rheology parameters. The available trace element data on Illinois coals, mainly on channel samples, was edited and updated with new records. The determinations of the trace and minor elements in 34 collected cleaned coal samples, as well as the proximate and ultimate compositions of 34 samples, were completed. In comparison with the previous channel sample data, the results indicated that the cleaning at existing preparation plants reduced the average concentrations of most of the trace elements in the coals. The data also indicated that the trace element concentrations in the product coals could be reduced further by advanced physical cleaning techniques. A sequential (hot water, dilute ammonia, and dilute sodium hydroxide) extraction procedure on three samples indicated variable chloride reductions. The pyrite cleanability index was determined microscopically for each sample. This index is a relative measure of the ease of pyrite removal from the tested sample. The froth flotation test data on 15 of the samples provided a measure of further cleanability of the product coals by physical fine coal cleaning. Viscosities of the 50% solid and <60 mesh particle size slurries of the same 15 samples revealed that these coals can be pumped in slurry form through a pipeline. Slagging and fouling indices, calculated for all 34 samples, indicated that most of the samples are of low to medium slagging and fouling types. Calculation of the gasification parameters indicated that the Illinois coals are in general amenable to gasification.

Demir, I.; Harvey, R.D.; Ruch, R.R.; Chaven, C.; Damberger, H.H.; Steele, J.D.; Frankie, W.T. [Illinois State Geological Survey, Champaign, IL (United States)

1993-12-31T23:59:59.000Z

194

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

195

Chemical effect of entrained particles in coal conversion streams. Final report, August 1, 1981-July 31, 1984  

SciTech Connect

This study provides the theoretical and experimental basis required to predict the levels and distribution of alkali species in Pressurized Fluidized Bed Combustion (PFBC) systems and analyzes the effects of prototype cleanup devices. To this end, a physical model describing the partitioning of alkali species between the interior, the surface, and the gas phase surrounding particles has been developed. This model includes the processes of surface segregation, evaporation, and adsorption and may be used to calculate particle surface composition, depth profiles, average particle composition, and vaporization rates as a function of time and temperature. In addition, vaporization and segregation studies for sodium and potassium in aluminosilicate ash and ash-like materials have been performed to provide the necessary input data for the model. These experimental and theoretical results, along with input data from the Curtiss-Wright test facility, have been used to predict the levels of gas phase alkali species released from aluminosilicate ash in PFBC systems. These calculations indicate that gas phase alkali levels resulting from the aluminosilicate ash are well below those predicted by equilibrium techniques for typical PFBC operating conditions. That is, most of the alkalis associated with the ash are retained by the ash. Moreover, because of segregation processes, the surfaces of these ash particles will be enriched in alkalis (relative to the average bulk concentration). Thus, gas-surface reactions rather than gas phase reactions may be responsible for the formation of corrosive alkali-sulfur compounds. These studies attempt to predict the kinetic (as opposed to thermodynamic or equilibrium) limitations on alkali levels and distribution in PFBC systems. 24 refs., 21 figs.

Stinespring, C.D.; Annen, K.D.; Stewart, G.W.

1984-10-01T23:59:59.000Z

196

ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS  

SciTech Connect

This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

2004-12-01T23:59:59.000Z

197

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network (OSTI)

using Iron-oxide Coated Coal Ash. In Arsenic Contaminationarea to volume ratio of coal ash is 200 times greater than1 mm diameters and spherical coal ash particles with 5 ?m

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

198

Rheological Study of Comingled Biomass and Coal Slurries with HydrothermalPretreatment  

E-Print Network (OSTI)

Sirkeci, A. A. ; Dincer, H. The effect of coal properties onthe viscosity of coal-water slurries. Fuel 2002, 81, 1855– (H. ; Atesok, G. Effect of coal particle size distribution,

He, W; Park, C S; Norbeck, J N

2009-01-01T23:59:59.000Z

199

Ash vaporization in circulating fluidized bed coal combustion  

SciTech Connect

In this work, the vaporization of the ash-forming constituents in circulating fluidized bed combustion (CFBC) in a full-scale 80 MW{sub th} unit was studied. Ash vaporization in CFBC was studied by measuring the fly ash aerosols in a full-scale boiler upstream of the electrostatic precipitator (ESP) at the flue gas temperature of 125{degree}C. The fly ash number size distributions showed two distinct modes in the submicrometer size range, at particle diameters 0.02 and 0.3 {mu}m. The concentration of the ultrafine 0.02-{mu}m mode showed a large variation with time and it decreased as the measurements advanced. The concentration of the 0.02-{mu}m mode was two orders of magnitude lower than in the submicrometer mode observed earlier in the bubbling FBC and up to three orders of magnitude lower than in the pulverized coal combustion. Scanning electron micrographs showed few ultrafine particles. The intermediate mode at 0.3 {mu}m consisted of particles irregular in shape, and hence in this mode the particles had not been formed via a gas to particle route. We propose that the 0.3-{mu}m mode had been formed from the partial melting of the very fine mineral particles in the coal. The mass size distribution in the size range 0.01-70 {mu}m was unimodal with maximum at 20 {mu}m. Less than 1% of the fly ash particles was found in the submicrometer size range. 35 refs., 8 figs., 3 tabs.

Lind, T.; Kauppinen, E.I.; Maenhaut, W. [Univ. of Gent (Belgium); Shah, A.; Huggins, F. [Univ. of Kentucky, Lexington, KY (United States)

1996-04-01T23:59:59.000Z

200

Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report  

SciTech Connect

This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

1989-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coal extraction  

SciTech Connect

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

202

It is well known that a rigid body impacting on a bed of fine particles or dust may resuspend some of this dust into  

E-Print Network (OSTI)

again at a different location. The traditional view is that the resuspension is the result an impacts on the bed. The interaction of the wake with the particles on the bed may lead to resuspension. 1. INTRODUCTION Resuspension of dust and sediments is important in a wide variety of contexts

Dalziel, Stuart

203

Surface properties of coal and their role in coal beneficiation: Technical progress report, March 15, 1989--June 14, 1989  

SciTech Connect

The main goal of this research is to delineate the wetting behavior of coal and its subsequent effects on fine coal processing. As both bulk and surface properties of coal are interrelated and have a controlling role in the performance of these processes, a detailed study has been undertaken to correlate their influence on both wetting behavior and the response of coal to flotation. During this current reporting period, the major effort was directed towards investigation of the effect of pH and oxidation on the induction time of coal.

Fuerstenau, D.W.

1989-07-01T23:59:59.000Z

204

Conventional coal preparation in the United States  

SciTech Connect

Processing of bituminous and anthracite coal is widely practiced in the United States and, as mentioned earlier, about 80 percent of the production of these coals is processed as clean coal in preparation plants. Subbituminous coal is not widely processed, primarily because these low rank raw coals are low in sulfur (0.5 to 1.0 percent) and relatively low in ash (8 to 15 percent). They are also relatively low in heat content due to their high inherent moisture. Lignite coals, to the best of the authors{close_quote} knowledge, are not presently being processed in Conventional Coal Preparation plants. This is due to their unstable nature and putting them in water in a coal preparation plant is likely to cause severe degradation in particle size and add to their already high inherent moisture content. The following are the benefits of clean coal processing: produces a uniform product which can be utilized more efficiently; produces a higher quality product which results in higher efficiency at the power station or the steel mill; reduces sulfur dioxide and other adverse stack emissions during coal firing which is a very important environmental consideration; reduces ash or slag handling costs by the user; reduces shipping costs; and reduces handling and storage costs. Processing any stable raw coal in a coal preparation plant will always produce a higher grade product which is a more efficient and a more environmentally acceptable fuel for use at power stations, steel mills, home heating or industrial boilers.

Beck, M.K.; Taylor, B.

1993-12-31T23:59:59.000Z

205

Primary coal crushers grow to meet demand  

SciTech Connect

Mine operators look for more throughput with less fines generation in primary crushers (defined here as single role crushers and two stage crushers). The article gives advice on crusher selection and application. Some factors dictating selection include the desired product size, capacity, Hard Grove grindability index, percentage of rock to be freed and hardness of that rock. The hardness of coal probably has greatest impact on product fineness. 2 refs., 1 fig., 1 tab.

Fiscor, S.

2009-09-15T23:59:59.000Z

206

Influence of combustion conditions and coal properties on physical properties of fly ash generated from pulverized coal combustion  

SciTech Connect

To develop combustion technology for upgrading the quality of fly ash, the influences of the coal properties, such as the size of pulverized coal particles and the two-stage combustion ratio during the combustion, on the fly ash properties were investigated using our test furnace. The particle size, density, specific surface area (obtained by the Blaine method), and shape of fly ash particles of seven types of coal were measured. It was confirmed that the size of pulverized coal particles affects the size of the ash particles. Regarding the coal properties, the fuel ratio affected the ash particle size distribution. The density and shape of the ash particles strongly depended on their ash size. Our results indicated that the shape of the ash particles and the concentration of unburned carbon affected the specific surface area. The influence of the two-stage combustion ratio was limited. 8 refs., 13 figs., 3 tabs.

Hiromi Shirai; Hirofumi Tsuji; Michitaka Ikeda; Toshinobu Kotsuji [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

2009-07-15T23:59:59.000Z

207

Combustion characteristics of coal fuels in adiabatic diesel engines  

SciTech Connect

An experimental investigation was conducted to determine the combustion characteristics of coal fuels in adiabatic diesel engines. For this purpose engine testing was carried out by the fumigation of fine coal powder to the intake of an insulated and uncooled single cylinder diesel engine. The engine tests conducted include three types of fuels - Diesel fuel No. 2 (DF-2), Dual fuel (DF-2 + Coal), and Coal fuel. Excellent combustion characteristics of coal fuels were obtained in the present work in an adiabatic engine operating at high temperatures. The ''thermal ignition'' concept uncovered in this investigation led to a hot ''ignition chamber'' which provided ignition of the coal fuel. The high temperature engine with the ''ignition chamber'' permitted engine operation on 100% coal fuel without any external ignition aids or compression ignition. With the addition of a glow plug, the coal fueled engine was successfully cold started. For the coal fueled engine tests, analysis of cylinder pressure data showed rapid heat release rates, shorter combustion duration and very fast burning of coal powder fuel. Preliminary results of the apparent indicated cycle efficiency calculated from the heat release data, indicate that 100% coal powder fueled engine has higher cycle efficiency than DF-2 fueled engine in an adiabatic configuration. The problems encountered during the engine tests include: variation in the engine speed and load due to non-uniform coal flow rate by the coal feed system, contamination of the lubricating oil with fine coal powder, and wear of conventional piston rings. However, these problems can be solved with an improved coal feed system and wear resistant ceramic materials for the piston rings. 33 refs.

Kamo, R.; Kakwani, R.M.; Woods, M.E.; Valdmanis, E.

1986-06-01T23:59:59.000Z

208

Oxy-coal Combustion Studies  

SciTech Connect

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

209

Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee  

SciTech Connect

An investigation of the potential environmental and health impacts in the immediate aftermath of one of the largest coal ash spills in U.S. history at the Tennessee Valley Authority (TVA) Kingston coal-burning power plant has revealed three major findings. First, the surface release of coal ash with high levels of toxic elements (As = 75 mg/kg; Hg = 150 {mu}g/kg) and radioactivity ({sup 226}Ra + {sup 228}Ra = 8 pCi/g) to the environment has the potential to generate resuspended ambient fine particles (<10 {mu}m) containing these toxics into the atmosphere that may pose a health risk to local communities. Second, leaching of contaminants from the coal ash caused contamination of surface waters in areas of restricted water exchange, but only trace levels were found in the downstream Emory and Clinch Rivers due to river dilution. Third, the accumulation of Hg- and As-rich coal ash in river sediments has the potential to have an impact on the ecological system in the downstream rivers by fish poisoning and methylmercury formation in anaerobic river sediments. 61 refs., 2 figs., 3 tabs.

Laura Ruhl; Avner Vengosh; Gary S. Dwyer; Heileen Hsu-Kim; Amrika Deonarine; Mike Bergin; Julia Kravchenko [Duke University, Durham, NC (United States). Division of Earth and Ocean Sciences

2009-08-15T23:59:59.000Z

210

Coal and Coal-Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

211

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

212

Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking  

SciTech Connect

This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

Sinha, A.S.K. [SLIET, Longowal (India). Dept. of Chemical Technology

2008-09-15T23:59:59.000Z

213

Characteristics of airborne coal mine dust and its implication to coal workers' pneumoconiosis  

SciTech Connect

Size selective airborne dust samples were collected using 4-stage cassette impactors at nine different locations in continuous mining sections in each of five coal seams located in the Appalachian bituminous coal field. These coal seams were the Upper Freeport, Pittsburgh, Kittanning, Coalburg, and Pocahontas. Mineralogical analyses were performed by an x-ray powder diffraction photographic technique. The distributions of total and respirable dust concentrations were fit best by a log-normal distribution. The effects of the coal seam and the sampling location on dust levels were significant. The results of the particle size distribution analyses suggest that coal mine dust has a multi-modal distribution. The effects of the coal seam and the sampling locations were significant. The distributions obtained were often affected by such mine-related variables as ventilation rate, relative humidity, and the section dimensions. Nine minerals commonly found in the coal mine dust samples collected from the coal seams studied were illite, calcite, kaolinite, quartz, dolomite, siderite, gypsum, anhydrite, and pyrite in descending order of magnitude. Relative abundance of all mineral species except siderite and gypsum was coal seam specific and suggests that existence of coal seam variability of mineral content. Although mineral content was affected by sampling locations and the sections within a mine, the magnitude was small when compared with that of cal seams. Mineral content also appears to be affected by particle size, although no particular pattern was observed.

Kim, H.

1989-01-01T23:59:59.000Z

214

Coal preparation: The essential clean coal technology  

SciTech Connect

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

215

Extraction of Lignite Coal Fly Ash for Polynuclear Aromatic Hydrocarbons: Modified and Unmodified Supercritical Fluid Extraction, Enhanced-Fluidity Solvents, and Accelerated Solvent Extraction  

Science Journals Connector (OSTI)

......7440-44-0 Carbon | Carbon analysis chemistry Coal analysis Coal Ash Gas Chromatography-Mass...Hydrocarbons, Aromatic analysis chemistry Industrial Waste analysis Particulate...particles on the interaction of coal combustion stack ash with organic matter......

Donald V. Kenny; Susan V. Olesik

1998-02-01T23:59:59.000Z

216

Measurement and simulation of swirling coal combustion  

Science Journals Connector (OSTI)

Particle image velocimetry (PIV), thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios. Eulerian–Lagrangian large-eddy simulation (LES) using the Smagorinsky–Lilly sub-grid scale stress model, presumed-PDF fast chemistry and eddy-break-up (EBU) gas combustion models, particle devolatilization and particle combustion models, are simultaneously used to simulate swirling coal combustion. Statistical LES results are validated by measurement results. Instantaneous LES results show that the coherent structures for swirling coal combustion are stronger than those for swirling gas combustion. Particles are shown to concentrate along the periphery of the coherent structures. Combustion flame is located in the high vorticity and high particle concentration zones. Measurement shows that secondary-air ratios have little effect on final NO formation at the exit of the combustor.

Liyuan Hu; Lixing Zhou; Yonghao Luo; Caisong Xu

2013-01-01T23:59:59.000Z

217

Coal Ash and Clean Coal  

Science Journals Connector (OSTI)

... IT is the normal view that the incombustible part of coal is not only a useless but even objectionable diluent. At times in the past, ... , familiar with the theory of contact catalysis of gas reactions, have speculated that the ash constituents might well play an active role in the processes of carbonisation and combustion. ...

H. J. HODSMAN

1926-09-04T23:59:59.000Z

218

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

219

Ash aerosol formation from oxy-coal combustion and its relation to ash deposit chemistry  

Science Journals Connector (OSTI)

Abstract Ash aerosol and ash deposit formation during oxy-coal combustion were explored through experiments in a self-sustained 100 kW rated down-fired oxy-fuel combustor. Inlet oxidant conditions consisted of 50% inlet oxygen with CO2 (hereafter denoted as OXY50 conditions). A Berner low pressure impactor (BLPI), a scanning mobility particle sizer (SMPS), and an aerodynamic particle sizer (APS) were used to obtain size segregated ash aerosol samples and to determine the particle size distributions (PSD). A novel surface temperature controlled ash deposition probe system that allowed inside and outside deposits to be separated was used to collect the ash deposits. The ash aerosol \\{PSDs\\} given by the BLPI and those produced by SMPS/APS were consistent with each other. Data suggested that oxy-coal combustion under these conditions did not change the formation mechanisms controlling the bulk ash aerosol composition, but it did increase the formation of ultra-fine particles initially formed through metal vaporization, due to increased vaporization of silicon at the higher combustion temperature. The smaller particles contained within the deposits had higher Si and lower Na and S concentrations under OXY50 conditions than for air combustion. Moreover, the ash aerosol composition for particle sizes less than 2.4 ?m was related to the composition of the inside deposits. A higher Na in the ash aerosol resulted in higher Na in inside deposits with comparable absolute Na concentrations in both those aerosol particles and those inside deposits particles. The contribution of S and Si to the inside deposits showed that S in the vaporization modes together with Si in the ultrafine vaporization mode, contributed significantly to the composition of the inside deposits. These results provided direct evidence that prediction of the chemistry of the initial deposit layer (but not of the bulk deposits) required knowledge of the size segregated chemistry of the ash aerosol.

Zhonghua Zhan; Andrew Fry; Yanwei Zhang; Jost O.L. Wendt

2014-01-01T23:59:59.000Z

220

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: News Release - DOE-Supported Coal Cleaning Technology Succeeds in  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2011 4, 2011 DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration Novel Centrifuge Paves Way to Recover Tons of Waste Coal for Energy Use Washington, DC -- A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama resulted in the successful reduction of moisture from ultrafine coal waste. The test builds on an eight-year cooperative effort between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and the Virginia Polytechnic Institute and State University (Virginia Tech) to use the patented process to effectively remove water from very fine coal "slurries," or mixture of waste coal "fines" and water.

222

Black Bear Prep plant replaces high-frequency screens with fine wire sieves  

SciTech Connect

At the Black Bear prep plant (near Wharncliffe, WV, USA) the clean coal from the spirals traditionally reported to high-frequency screens, which removed high-ash clay fines. Screens have inherent inefficiencies that allow clean coal to report to the screen underflow. The goal of this project was to capture the maximum amount of spiral clean coal while still removing the high-ash clay material found in the spiral product. The reduction of the circulating load and plant downtime for unscheduled maintenance were projected as additional benefits. After the plant upgrade, the maintenance related to the high frequency screens was eliminated and an additional 2.27 tons per hour (tph) of fine coal was recovered, which resulted in a payback period of less than one year. The article was adapted from a paper presented at Coal Prep 2007 in April 2007, Lexington, KY, USA. 1 ref., 1 fig., 1 tab.

Barbee, C.J.; Nottingham, J.

2007-12-15T23:59:59.000Z

223

Clean coal  

SciTech Connect

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

224

Deashing of coal liquids by sonically assisted filtration  

SciTech Connect

This project seeks to improve the effectiveness and reduce the cost of coal liquefaction by novel applications of sonic and ultrasonic energy. The specific purpose of this project is to develop and improve means for the economical removal of dispersed solid particles of ash, unreacted coal, and spent catalyst from direct and indirect coal liquefaction resids by using sonic or ultrasonic waves. Product streams containing solids are generated in both direct and indirect coal liquefaction processes. Direct coal liquefaction processes generate liquid products which contain solids including coal-originated mineral matter, unreacted coal, and spent dispersed catalyst. The removal of these solids from a product stream is one of the most difficult problems in direct coal liquefaction processes. On this report, results are discussed for sonically assisted crossflow filtration of V-1067 resid, diluted with No. 2 fuel oil, and sonically assisted batch filtrations of solids concentrates from continuous cross-flow filtration experiments.

Slomka, B.J.

1994-10-01T23:59:59.000Z

225

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

226

Coal industry annual 1993  

SciTech Connect

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

227

Appalachian coal awareness conference: promoting Eastern coal  

SciTech Connect

Promoting the development and use of coal, especially coal from the Appalachian region, was the focus of introductory and keynote speeches and a discussion by representatives of the Virginia Coal Council, mining engineers, industry, and the Edison Electric Institute. Governor Dalton's keynote address noted that both producers and consumers attending the conference should work together to promote coal as a solution to the US energy future, and reported the impact that a commitment to coal has had on Virginia's economic growth. Participants in the coal consumers panel discussion raised various economic and regulatory issues.

Not Available

1984-01-01T23:59:59.000Z

228

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal  

E-Print Network (OSTI)

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal Gordon R. Holcomb · Joseph Tylczak the nature of coal ash deposits. Wigley and Goh [1] reported that particles in oxy-fired deposits, compared

Laughlin, David E.

229

Method for reducing NOx during combustion of coal in a burner  

DOE Patents (OSTI)

An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

2008-04-15T23:59:59.000Z

230

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

231

Clean Coal Power Initiative  

Energy.gov (U.S. Department of Energy (DOE))

"Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants.

232

Coal Mining (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

233

Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream  

DOE Patents (OSTI)

A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

Comolli, Alfred G. (Yardley, PA); McLean, Joseph B. (S. Somerville, NJ)

1989-01-01T23:59:59.000Z

234

Hydrothermal Treatment of a Sub-bituminous Coal and Its Use in Coking Blends  

Science Journals Connector (OSTI)

Crucible coking determinations suggest that hydrothermal treatment can greatly increase the coke strength and the particle coke strength after reaction toward CO2 and decrease the coke reactivity when the hydrothermally treated coals were used in the coal blends instead of the raw coal. ... While the cokes from the crucible coking experiments were subjected to 800 rotations at a speed of 25 rpm, the weight percent of coke particles (>0.2 ... The coal charges were coked in the lab. ...

Hengfu Shui; Ye Wu; Zhicai Wang; Zhiping Lei; Changhui Lin; Shibiao Ren; Chunxiu Pan; Shigang Kang

2012-11-26T23:59:59.000Z

235

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

236

Coal Characterization in Relation to Coal Combustion  

Science Journals Connector (OSTI)

Most coals are used worldwide for combustion today. Generally all kinds of coals are applicable for combustion. The major methods of burning are fixed bed firing, fluidized bed firing and suspension firing. Th...

Harald Jüntgen

1987-01-01T23:59:59.000Z

237

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

238

Fuel supply system and method for coal-fired prime mover  

DOE Patents (OSTI)

A coal-fired gas turbine engine is provided with an on-site coal preparation and engine feeding arrangement. With this arrangement, relatively large dry particles of coal from an on-site coal supply are micro-pulverized and the resulting dry, micron-sized, coal particulates are conveyed by steam or air into the combustion chamber of the engine. Thermal energy introduced into the coal particulates during the micro-pulverizing step is substantially recovered since the so-heated coal particulates are fed directly from the micro-pulverizer into the combustion chamber.

Smith, William C. (Morgantown, WV); Paulson, Leland E. (Morgantown, WV)

1995-01-01T23:59:59.000Z

239

Experiments on chemical looping combustion of coal with a NiO based oxygen carrier  

SciTech Connect

A chemical looping combustion process for coal using interconnected fluidized beds with inherent separation of CO{sub 2} is proposed in this paper. The configuration comprises a high velocity fluidized bed as an air reactor, a cyclone, and a spout-fluid bed as a fuel reactor. The high velocity fluidized bed is directly connected to the spout-fluid bed through the cyclone. Gas composition of both fuel reactor and air reactor, carbon content of fly ash in the fuel reactor, carbon conversion efficiency and CO{sub 2} capture efficiency were investigated experimentally. The results showed that coal gasification was the main factor which controlled the contents of CO and CH{sub 4} concentrations in the flue gas of the fuel reactor, carbon conversion efficiency in the process of chemical looping combustion of coal with NiO-based oxygen carrier in the interconnected fluidized beds. Carbon conversion efficiency reached only 92.8% even when the fuel reactor temperature was high up to 970 C. There was an inherent carbon loss in the process of chemical looping combustion of coal in the interconnected fluidized beds. The inherent carbon loss was due to an easy elutriation of fine char particles from the freeboard of the spout-fluid bed, which was inevitable in this kind of fluidized bed reactor. Further improvement of carbon conversion efficiency could be achieved by means of a circulation of fine particles elutriation into the spout-fluid bed or the high velocity fluidized bed. CO{sub 2} capture efficiency reached to its equilibrium of 80% at the fuel reactor temperature of 960 C. The inherent loss of CO{sub 2} capture efficiency was due to bypassing of gases from the fuel reactor to the air reactor, and the product of residual char burnt with air in the air reactor. Further experiments should be performed for a relatively long-time period to investigate the effects of ash and sulfur in coal on the reactivity of nickel-based oxygen carrier in the continuous CLC reactor. (author)

Shen, Laihong; Wu, Jiahua; Xiao, Jun [Thermoenergy Engineering Research Institute, Southeast University, 2 Sipailou, Nanjing 210096 (China)

2009-03-15T23:59:59.000Z

240

Coal liquefaction  

DOE Patents (OSTI)

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Investigation of the effect of coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels. Quarterly report No. 1 (FY 96), July 1, 1995--September 30, 1995  

SciTech Connect

Preliminary experiment has been made for cross injecting water sprays into a convective air stream to test the air-blast atomization system which has been constructed for CWS atomization in the future. A laser diffraction particle analyzing technique (the Malvern system) nonintrusively measured the drop size SMDs for various injection parameters including the convective air flow rate, flow rate of the injected liquid (distilled water), orifice diameter, and measurement locations along the two-dimensional spray plane. Buckingham-PI analysis finds the correlation of dimensionless parameters. A correlation of drop Sauter mean diameter (SMD) normalized to the orifice diameter is obtained from all the experimental data for the case of distilled water sprays.

Kihm, K.D.

1996-02-01T23:59:59.000Z

242

Gas distributor for fluidized bed coal gasifier  

DOE Patents (OSTI)

A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

1980-01-01T23:59:59.000Z

243

Influence of coal thermoplastic properties on coking pressure generation: Part 2 – A study of binary coal blends and specific additives  

Science Journals Connector (OSTI)

A number of coal blends and pitch/coal blends were evaluated using rheometry, thermogravimetric analysis and microscopy to confirm and further elucidate the coking pressure mechanism previously proposed by Duffy et al. (2007) [1]. We confirm that blending a low rank, high fluidity, low coking pressure coal, with a high rank, low fluidity, high coking pressure coal can significantly reduce the coking pressure associated with the latter. Interestingly, blending does not necessarily result in a fluidity that is midway between that of the two coals; sometimes the fluidity of the blend is less than that of the low fluidity coal, especially when the coals are significantly different in rank. This occurs because the increase in complex viscosity (?*) through resolidification of the low rank, high fluidity coal counteracts the reduction in ?* resulting from softening of the high rank, low fluidity coal. It has also been confirmed that the ?* of the resultant blend can be estimated from the ?* of each component coal using a logarithmic additivity rule commonly employed for polymer blends. Polarised light microscopy has indicated that the degree of mixing between coals of different rank is minimal, with fusion restricted to the particle surface. It is therefore inappropriate to think of such a coal blend in the same way as a single coal, since each component coal behaves relatively independently. This limited fusion is important for understanding the coking pressure mechanism for blends. It is proposed here that the lower rank coal, which softens at lower temperature, is able to expand into the interparticle voids between the high rank coal that is yet to soften, and these voids can create channels for volatiles to traverse. Then, and importantly, when the high rank coal begins to expand, the pore structure developed in the resolidified structures of the low rank coal can facilitate removal of volatiles, while the resolidified material may also act as a suitable sorbent for volatile matter. This is considered to be the primary mechanism by which coal blending is able to alleviate coking pressure, and applies to addition of inert material also. Addition of a coal tar pitch was found to increase fluidity but also to extend the thermoplastic range to lower temperatures. This caused an increase in the swelling range, which was accompanied by a long plateau in ?*, a feature which has previously been observed for certain high fluidity, high pressure coals. Elasticity and ?* at the onset of expansion were also higher for both the pitch impregnated coals and the high pressure blends, which supports previous findings for singly charged high pressure coals, and confirms the potential use of such criteria for identifying potentially dangerous coals/blends.

John J. Duffy; Merrick R. Mahoney; Karen M. Steel

2010-01-01T23:59:59.000Z

244

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

245

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

246

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

247

Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes  

SciTech Connect

With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

Glenn A. Shirey; David J. Akers

2005-12-31T23:59:59.000Z

248

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

249

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

250

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

251

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

252

Low-rank coal research: Volume 2, Advanced research and technology development: Final report  

SciTech Connect

Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

1987-04-01T23:59:59.000Z

253

Process for removal of hazardous air pollutants from coal  

DOE Patents (OSTI)

An improved process for removing mercury and other trace elements from coal containing pyrite by forming a slurry of finely divided coal in a liquid solvent capable of forming ions or radicals having a tendency to react with constituents of pyrite or to attack the bond between pyrite and coal and/or to react with mercury to form mercury vapors, and heating the slurry in a closed container to a temperature of at least about 50.degree. C. to produce vapors of the solvent and withdrawing vapors including solvent and mercury-containing vapors from the closed container, then separating mercury from the vapors withdrawn.

Akers, David J. (Indiana, PA); Ekechukwu, Kenneth N. (Silver Spring, MD); Aluko, Mobolaji E. (Burtonsville, MD); Lebowitz, Howard E. (Mountain View, CA)

2000-01-01T23:59:59.000Z

254

A combustion/deposition entrained reactor for high?temperature/pressure studies of coal and coal minerals  

Science Journals Connector (OSTI)

The combustion of coal and coal?derived fuels in heat engines poses significant technical challenges in terms of establishing high combustion rates and efficiencies controlling emissions and minimizing the impact of fuel contaminants on engine components. An entrained reactor has been designed and constructed to study coal particle combustion the tendency of coal ash to form deposits on heat engine components and the effects of fuel additives on residual ash composition. The reactor is designed for high temperature/pressure conditions similar to those of a coal?fired gas turbine. Optical access ports and advanced instrumentation allow the i n s i t u measurement of gas and particle temperatures and vapor phase alkali concentrations. The reactor has been used to study the deposition potential of several coals as a function of process conditions and to determine the effects of selected additives on the deposition rate.

Rodney J. Anderson; Ronald G. Logan; Charles T. Meyer; Richard A. Dennis

1990-01-01T23:59:59.000Z

255

Coal combustion science. Quarterly progress report, April 1993--June 1993  

SciTech Connect

This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Hardesty, D.R. [ed.

1994-05-01T23:59:59.000Z

256

Trends in the Carbonyl Core (C 1S, O 1S) f *C)O Transition in the Near-Edge X-ray Absorption Fine Structure Spectra of Organic Molecules  

E-Print Network (OSTI)

,2 meteorites3 and interplanetary dust particles,4 eocene and recent wood,5,6 coal, coke, and other organic

257

Innovative Drying Technology Extracts More Energy from High Moisture Coal |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Drying Technology Extracts More Energy from High Innovative Drying Technology Extracts More Energy from High Moisture Coal Innovative Drying Technology Extracts More Energy from High Moisture Coal March 11, 2010 - 12:00pm Addthis Washington, DC - An innovative coal-drying technology that will extract more energy from high moisture coal at less cost and simultaneously reduce potentially harmful emissions is ready for commercial use after successful testing at a Minnesota electric utility. The DryFining(TM) technology was developed with funding from the first round of the U.S. Department of Energy's Clean Coal Power Initiative (CCPI). Great River Energy of Maple Grove, Minn., has selected the WorleyParsons Group to exclusively distribute licenses for the technology, which essentially uses waste heat from a power plant to reduce moisture content

258

Surface modified coals for enhanced catalyst dispersion and liquefaction  

SciTech Connect

The aim of the study is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on to the coal. During this reporting period, zeta potential measurements were conducted to assess the surface charge on the raw, pretreated and catalyzed coal samples. The surface area, transmission spectroscopy and luminescence intensity of the raw coal and pretreated coal samples were also determined to assess the quality of the coal surface. Across a broad range of pH values, the raw coal had an overall negative charge. Coal treated with anionic surfactant SDS maintained an overall net negative surface negative charge. The interaction between the coal and cationic surfactant DDAB caused the opposite effect resulting in a more positive coal surface charge. Although one would have expected little or no effect of the neutral surfactant Triton X-100, there appears to be some difference in the results of the raw coal and the coal treated with Triton X-100. The authors believe that the Triton not only binds to the nonpolar sites but also has a strong affinity for the polar sites through electrostatic bonding and interaction between the hydrophobic tails. The addition of molybdenum to coal pretreated with DDAB caused a reduction in the positive charge of the coal surface probably due to possible ionic interaction between the coal surface, the surfactant and the catalyst. The adsorption isotherm of the coal was characteristic of isotherms for porous samples and the surface area of the coal increased from 30 m{sup 2}/g to 77 m{sup 2}/g when washed with deionized water. This suggests coal washing may be one method of increasing the surface area for surfactant adsorption. Although the transmission measurements provided valuable information about the coal it resulted in little information on the amount of adsorbed Triton. However, the maximum solid-liquid ratio for optimum surfactant loading of Triton X-100 was determined via the UV-Vis spectrophotometer. The luminescence intensity measurements showed that the coal and surfactants luminescence weakly. No statistically significant influence was observed from the actions of the surfactants or surfactant-molybdenum catalyst. Qualitative inspection however, showed that SDS might effectively coat coal surfaces and influence catalyst dispersion. Also, catalysts appeared to be better distributed among coal particles and in finer clusters when DDAB and Triton surfactants were used.

Dr. Yaw D. Yeboah

1998-10-29T23:59:59.000Z

259

Investigations into coal coprocessing and coal liquefaction  

SciTech Connect

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

260

Lead contents of coal, coal ash and fly ash  

Science Journals Connector (OSTI)

Flameless atomic absorption spectrometry is applied for the determination of Pb in coal, coal ash and fly ash. Lead concentrations in coal and coal ash ranging from respectively 7 to 110 µg...?1 and 120 to 450 µg...

C. Block; R. Dams

1975-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

262

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

263

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

264

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

265

E-Print Network 3.0 - acute coal dust Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection: Engineering 27 Proceedings of NAWTEC18 18th Annual North American Waste-to-Energy Conference Summary: -to-particle conversions. In coal and waste combustion systems,...

266

Coal Severance Tax (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

267

Upgraded Coal Interest Group  

SciTech Connect

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

268

Synthesis of fine-grained TATB  

DOE Patents (OSTI)

A method for producing fine-grained triamino-trinitrobenzene (TATB) powders having improved detonation-spreading performance and hence increased shock sensitivity when compared with that for ultrafine TATB is described. A single-step, sonochemical amination of trichloro-trinitrobenzene using ammonium hydroxide solution in a sealed vessel yields TATB having approximately 6 .mu.m median particle diameter and increased shock sensitivity.

Lee, Kien-Yin (Santa Fe, NM); Kennedy, James E. (Santa Fe, NM)

2003-04-15T23:59:59.000Z

269

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents (OSTI)

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

270

Influence of coal nature and structure on ash size formation characteristic and related pollutant emissions during CFB combustion  

Science Journals Connector (OSTI)

The size distribution of coal particles in a Circulating Fluidized Bed (CFB) boiler plays a crucial role in the ... the variation of coal ash distributions and other CFB performance data due to the cyclone and...

Min Qian; Arnaud Boelle; Philippe Jaud; Yongjie Na…

2000-09-01T23:59:59.000Z

271

Gasification Characteristics of Coal/Biomass Mixed Fuels  

SciTech Connect

A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures. A key result of this work is the finding that the reactivities of the mixed chars were not always in between the reactivities of the pure component chars at comparable gasification conditions. Mixed char reactivity to CO2 was lower than the reactivities of both the pure Wyodak coal and pure corn stover chars to CO2. In contrast, mixed char reactivity to H2O was higher than the reactivities of both the pure Wyodak coal and pure corn stover chars to H2O. This was found to be in part, a consequence of the reduced mass specific surface areas of the coal char particles formed during devolatilization when the coal and biomass particles are co-fired. The biomass particles devolatilize prior to the coal particles, impacting the temperature and the composition of the environment in which the coal particles devolatilize. This situation results in coal char particles within the mixed char that differ in specific surface area and reactivity from the coal char particles produced in the absence of the devolatilizing biomass particles. Due to presence of this “affected” coal char, it was not possible to develop a mixed char reactivity model that uses linear mixing rules to determine the reactivity of a mixed char from only the reactivities of the pure mixture components. However, it was possible to predict both mixed char specific surface area and reactivity for a wide range of fuel mixture rat os provided the specific surface area and reactivity of the affected coal char particles are known. Using the kinetic parameters determined for the Wyodak coal and corn stover chars, the model was found to adequately predict the observed conversion times and off-gas compositions

Mitchell, Reginald

2013-09-30T23:59:59.000Z

272

Modification of sub-bituminous coal by steam treatment: Caking and coking properties  

Science Journals Connector (OSTI)

A Chinese sub-bituminous Shenfu (SF) coal was steam treated under atmospheric pressure and the caking and coking properties of the treated coals were evaluated by caking indexes (GRI) and crucible coking characterizations. The results show that steam treatment can obviously increase the GRI of SF coal. When the steam treated coals were used in the coal blends instead of SF raw coal, the micro-strength index (MSI) and particle coke strength after reaction (PSR) of the coke increased, and particle coke reactivity index (PRI) decreased, which are beneficial for metallurgical coke to increase the gas permeability in blast furnace. The quality of the coke obtained from 8% of 200 °C steam treated SF coal in coal blends gets to that of the coke obtained from the standard coal blends, in which there was no SF coal addition in the coal blends. The removal of oxygen groups, especially hydroxyl group thus favoring the breakage of the coal macromolecules and allowing the treated coal formation of much more amount of hydrocarbons, may be responsible for the modified results. The mechanism of the steam treatment was proposed based on the elemental analysis, thermo gravimetric (TG) and FTIR spectrometer characterizations of the steam treated coal.

Hengfu Shui; Haiping Li; Hongtao Chang; Zhicai Wang; Zhi Gao; Zhiping Lei; Shibiao Ren

2011-01-01T23:59:59.000Z

273

Coal plasticity at high heating rates and temperatures. Final technical progress report  

SciTech Connect

Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

Gerjarusak, S.; Peters, W.A.; Howard, J.B.

1995-05-01T23:59:59.000Z

274

Ash transformations in the real-scale pulverized coal combustion of South African and Colombian coals  

SciTech Connect

In this work, the formation of ash particles in the combustion of South African Klein Kropie coal and a Colombian coal was studied by measuring the ash particle characteristics upstream of the electrostatic precipitator (ESP) at a 510 MW{sub e} pulverized coal fired power plant. The authors measured the ash particle mass size distributions in the size range 0.01--50 {micro}m using low-pressure impactors and precutter cyclones. Also, samples were collected for computer controlled scanning electron microscopy (CCSEM) with a cyclone with an aerodynamic cut-diameter of about 1 {micro}m. The cyclone-collected samples were analyzed with standard CCSEM procedure by depositing the particles on a filter, and by embedding the particles in epoxy hence acquiring the cross-section analysis of the sample. All major mineral classes in both coals were found to undergo extensive coalescence during combustion. Iron, calcium and magnesium rich particles resulting from the decomposition of pyrite, calcite and dolomite were found to coalesce with quartz and aluminosilicate particles. The size distributions of the fly ash determined with CCSEM and low-pressure impactor-cyclone sampler were found to be similar.

Lind, T.; Kauppinen, E.I.; Valmari, T. [VTT (Finland); Klippel, N. [ABB Corporate Research, Baden (Switzerland); Mauritzson, C. [ABB Flaekt Industri AB, Vaexjoe (Sweden)

1996-12-31T23:59:59.000Z

275

Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants  

Science Journals Connector (OSTI)

To assess how elements leach from several types of coal combustion products (CCPs) and to better understand possible risks from CCP use or disposal, coal ashes were sampled from two bituminous-coal-fired power plants. One plant located in Ohio burns high-sulfur (about 3.9%) Upper Pennsylvanian Pittsburgh coal from the Monongahela Group of the Central Appalachian Basin; the other in New Mexico burns low-sulfur (about 0.76%) Upper Cretaceous Fruitland Formation coal from the San Juan Basin, Colorado Plateau. The sampled \\{CCPs\\} from the Ohio plant were bottom ash (BA), economizer fly ash (EFA), and fly ash (FA); the sampled \\{CCPs\\} from the New Mexico plant were BA, mixed FA/EFA, FA, and cyclone-separated coarse and fine fractions of a FA/EFA and FA blend. Subsamples of each ash were leached using the long-term leaching (60-day duration) component of the synthetic groundwater leaching procedure (SGLP) or the toxicity characteristic leaching procedure (TCLP, 18-hour duration). These ashes were all alkaline. Leachate concentrations and leachabilities of the elements from the \\{CCPs\\} were similar between corresponding CCP types (BA, EFA, and FA) from each plant. The leachabilities of most elements were lowest in BA (least leachable) and increased from EFA to FA (most leachable). Ca and Sr were leached more from EFA than from either BA or FA. Leachability of most elements also increased as FA particle size decreased, possibly due in part to increasing specific surface areas. Several oxyanion-forming elements (As, Mo, Se, U, and V) leached more under SGLP than under TCLP; the opposite was true for most other elements analyzed.

Kevin B. Jones; Leslie F. Ruppert; Sharon M. Swanson

2012-01-01T23:59:59.000Z

276

U.S. zero emission coal alliance techology  

SciTech Connect

For coal to maintain its major role in supplying the world's energy, eventually all emissions to the atmosphere must be eliminated. Not only must conventional pollutants, like sulfur compounds and dust particles be kept out of the air, but also the far larger quantities of carbon dioxide that result from the combustion of carbon. We present a new technology for coal-based power that generates hydrogen from carbon and water, avoids emissions to the atmosphere, and disposes of the carbon dioxide as inert, solid mineral carbonates. Based on the available resources, coal power is sustainable for centuries. Our zero emission technology makes coal energy as clean as renewable energy.

Lackner, K. S. (Klaus S.); Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

277

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

278

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

279

Microbial solubilization of coal  

DOE Patents (OSTI)

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

280

“From Coal to Coke”  

Science Journals Connector (OSTI)

... IN the Sixth Coal Science Lecture, organized by the British ... Science Lecture, organized by the British Coal Utilization Research Association, and given at the Institution of Civil Engineers on October 16, ...

1957-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z

282

Chemicals from coal  

SciTech Connect

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

283

Coal Distribution Database, 2008  

Annual Energy Outlook 2012 (EIA)

4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

284

Indonesian coal mining  

SciTech Connect

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

285

Prestigious Coal-Fired Project of the Year Award Goes to Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prestigious Coal-Fired Project of the Year Award Goes to Plant Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology December 16, 2010 - 12:00pm Addthis Washington, DC - An innovative project demonstrating DryFining™ technology, a more cost-effective way to control coal-based power plant emissions while improving fuel quality, has been named the 2010 Coal-Fired Project of the Year by the editors of Power Engineering magazine. The project, managed by the Office of Fossil Energy's National Energy Technology Laboratory, was developed with funding from the Department of Energy's Clean Coal Power Initiative and was originally implemented at Great River Energy's Coal Creek Station in Underwood, ND, in 2009. The

286

Coal gasification apparatus  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

287

NETL: Coal Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

288

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

289

Ore components in coal  

SciTech Connect

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

290

A novel concept for high conversion of coal to liquids. Final report, 1 September 1988--31 August 1992  

SciTech Connect

A batch microreactor was designed and fabricated as a means of investigating maximum yields of liquids obtainable in very short reaction times of the order of a few seconds, and the maximum ratios of liquids/hydrocarbon (HC) gases obtainable under those conditions. A Wyodak sub-bituminous coal, crushed and sieved to {minus}200 mesh particle size, was used in the experiments, with a temperature of 500{degrees}C and a pressure of 1500 psi. The fine coal particles were fed dry to the reactor and heated to reaction temperature in times of one to two seconds. At a time of 3 seconds at reaction temperature, in a single pass a liquid yield of 60% by weight of the coal was obtained, accompanied by a ratio of liquids/(HC) gases of 30/1. When the unreacted solids were recycled to the reactor, and the results combined with those of the first pass, a liquid yield of 82% by weight of the coal was achieved, accompanied by a ratio of liquids/HC gases of 30/1. This ratio represents only about 3 wt percent HC gases, much lower that is produced in current advanced technologies, and represents a large saving in hydrogen consumption. A simulated distillation technique was applied to the liquids. The liquid product contained 86% by weight (of the liquids) total distillables (boiling point below 538{degrees}C), including 70% by weight of low-boiling fractions in the gasoline, kerosene and gas oil range (boiling point up to 325{degrees}C). The liquid product exhibited a H/C ratio of 1.5, which is considerably higher than observed in current advanced technologies for the primary liquids. Several catalysts were investigated. Iron catalysts, specifically ferric chloride hexahydrate and ferric sulfate pentahydrate, each produced these high conversions and high ratios of liquids/HC gases.

Wiser, W.H.; Shabtai, J.

1994-04-01T23:59:59.000Z

291

E-Print Network 3.0 - ambient particle exposure Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

quality... ). Drift and mortality did not increase after exposure to clay particles. Coal particles covered net bers... introduction (Table 1). Drift and mortality did not...

292

Application of surface and bulk characterization techniques for coal preparation  

SciTech Connect

With the recent acceleration of development of surface-property-based processes for the beneficiation of ultrafine coal, it is essential to establish their underlying scientific principles and to develop mathematical models able to predict how the process will perform on an unknown coal. Various surface properties of importance, surface characterization techniques, and application of these techniques to coal are reviewed. Instrumental techniques used for analyzing bulk composition of organic and/or inorganic matter are also reviewed. The differences in coal and mineral matter properties are highlighted. The effect of particle history, including grinding and oxidation, on the surface properties of coal is discussed. The mechanisms of advanced physical beneficiation processes are reviewed, and the influence of surface properties on the effectiveness of separation between coal and the liberated mineral matter is discussed. Finally, recommendations for future areas of research are made. 121 refs., 19 figs., 17 tabs.

Gala, H.B. (Burns and Roe Services Corp., Pittsburgh, PA (USA)); Hucko, R.E. (USDOE Pittsburgh Energy Technology Center, PA (USA). Coal Preparation and Solids Transportation Div.)

1990-01-01T23:59:59.000Z

293

Coal Study Guide for Elementary School  

Energy.gov (U.S. Department of Energy (DOE))

Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

294

Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers  

SciTech Connect

Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

2013-09-30T23:59:59.000Z

295

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

296

System for utilizing oil shale fines  

DOE Patents (OSTI)

A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

Harak, Arnold E. (Laramie, WY)

1982-01-01T23:59:59.000Z

297

Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983  

SciTech Connect

Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

Wiltsee, Jr., G. A.

1983-01-01T23:59:59.000Z

298

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

299

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

300

Chemical comminution of coal  

SciTech Connect

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Coal: the new black  

SciTech Connect

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

302

NETL: News Release - Converting Coal Wastes to Clean Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

November 28, 2000 November 28, 2000 Converting Coal Wastes to Clean Energy DOE to Scale Up 3 Projects That Upgrade Coal Fines, Wastes PITTSBURGH, PA - Three new technologies that can help the nation's coal industry turn waste into energy are now ready for scale up, the U.S. Department of Energy said today. MORE INFO Solid Fuels & Feedstocks Program Each of the three recover carbon-rich materials that in the past have been discarded during coal mining and cleaning operations. Using innovative approaches, the technologies remove unwanted water and other impurities and upgrade the waste materials into clean-burning fuels for power plants. The three were first selected for smaller-scale research in August 1998 as part of the Energy Department's Fossil Energy "solid fuels and feedstocks"

303

Wind and saltation driven particle resuspension in a wind tunnel  

SciTech Connect

To determine parameters of primary importance in wind and saltation driven resuspension of fine particles from surfaces, wind tunnel experiments were conducted to study the resuspension of small polydisperse particles (diameter <10 ..mu..m) by monodisperse saltation particles (diameter >80 ..mu..m). The experiments were designed to simulate the atmospheric boundary layer resuspension of fine particles. 3 refs., 1 tab.

Fairchild, C.I.; Tillery, M.I.; Wheat, L.D.; Redmond, D.J.

1985-01-01T23:59:59.000Z

304

Enzymantic Conversion of Coal to Liquid Fuels  

SciTech Connect

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31T23:59:59.000Z

305

Coal Storage and Transportation  

Science Journals Connector (OSTI)

Abstract Coal preparation, storage, and transportation are essential to coal use. Preparation plants, located near to the mine, remove some inorganic minerals associated with raw coal. Coal is transported from the mines to the point of consumption, often an electric generating plant, by rail, barge and trucks. Railroads are the predominant form of coal transportation within a country. Global coal trade, movement by large ocean-going vessels, continues to increase. At the end use site, the coal is crushed, ground, and the moisture content reduced to the proper specifications for end use. Coal is stored at various points in the supply chain. Processed coal will weather and oxidize, changing its properties; it can self-ignite, unless precautions are taken. Technology in use today is similar to that used in previous decades. Performance improvements have come from improved software and instruments that deliver real-time data. These improve management of sub-processes in the coal supply chain and reduce costs along the supply chain.

J.M. Ekmann; P.H. Le

2014-01-01T23:59:59.000Z

306

Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer  

SciTech Connect

In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

Chindaprasirt, Prinya [Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131 (Thailand)

2010-04-15T23:59:59.000Z

307

Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations  

SciTech Connect

The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the surface moisture of the feed coal exceeds the maximum limit. However, the content of -6mm in the feed to the FGX separator should be maintained between 10% and 20% to ensure an adequate fluidized bed. A parametric evaluation was conducted using a 3-level experimental design at each test site to identify the optimum separation performance and parameter values. The test data was used to develop empirical expressions that describe the response variables (i.e., mass yield and product ash content) as a function of the operating parameter values. From this process, it was established that table frequency and longitudinal slope are the most critical factors in controlling both mass yield and clean coal ash while the cross table slope was the least significant. Fan blower frequency is a critical parameter that controls mass yield. Although the splitter positions between product and middling streams and the middling and tailing streams were held constant during the tests, a separate evaluation indicated that performance is sensitive to splitter position within certain lengths of the table and insensitive in others. For a Utah bituminous coal, the FGX separator provided clean coal ash contents that ranged from a low of 8.57% to a high of 12.48% from a feed coal containing around 17% ash. From the 29 tests involved in the statistically designed test program, the average clean coal ash content was 10.76% while the tailings ash content averaged around 72%. One of the best separation performances achieved an ash reduction from 17.36% to 10.67% while recovering 85.9% of the total feed mass, which equated to an ash rejection value of around 47%. The total sulfur content was typically decreased from 1.61% to 1.49%. These performances were quantified by blending the middlings stream with the clean coal product. At a second Utah site, coal sources from three different bituminous coal seams were treated by the FGX deshaling unit. Three parameter values were varied based on the results obtained from Site No. 1 to obtain the optimum results shown in Table E-1. Approximately 9 tests w

Rick Honaker; Gerald Luttrell

2007-09-30T23:59:59.000Z

308

Process for separating anthracite coal from impurities  

SciTech Connect

A process is described for separating a first mixture including previously mined anthracite coal, klinker-type cinder ash and other refuse consisting of: a. separating the first mixture to produce a refuse portion and a second mixture consisting of anthracite and klinker-type cinder ash, b. reducing the average particle size in the second mixture to a uniform size, c. subjecting the second mixture to a separating magnetic field to produce a klinker-type cinder ash portion and an anthracite coal portion.

Stiller, D.W.; Stiller, A.H.

1985-05-06T23:59:59.000Z

309

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

fixation in slag or bottom ash, coal gasification, or coallimestone and coal that form little fly ash and trap sulfurSulfate Organic Ash (%) "Organic Sulfur", in Wheelock, Coal

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

310

Industrial coking of coal batch without bituminous coal  

Science Journals Connector (OSTI)

For many years, Kuznetsk-coal batch has always included bituminous coal. Depending on the content of such coal, the batch may be characterized as lean ... classification was adopted by specialists of the Eastern

P. V. Shtark; Yu. V. Stepanov; N. K. Popova; D. A. Koshkarov…

2008-03-01T23:59:59.000Z

311

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

312

Detonation of Gas-Particle Flow  

Science Journals Connector (OSTI)

Fine organic or metallic particles suspended in an oxidizing or combustible gas form a reactive particle–gas mixture. Explosion pressures in such mixtures are remarkably higher than those of gaseous fuel–air m...

Fan Zhang

2009-01-01T23:59:59.000Z

313

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

314

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

315

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

316

Coal Cleaning Using Resonance Disintegration for Mercury and Sulfur Reduction Prior to Combustion  

SciTech Connect

Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

Andrew Lucero

2005-04-01T23:59:59.000Z

317

Gasifier feed: Tailor-made from Illinois coals. Final technical report, September 1, 1991--December 31, 1992  

SciTech Connect

The main purpose of this project was to produce a feedstock from preparation plant fines from an Illinois (IL) coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high-sulfur content and high-Btu value of IL coals are Particularly advantageous in such a gasifier; preliminary-calculations indicate that the increased cost of removing sulfur from the gas from a high-sulfur coal is more than offset b the increased revenue from the sale of the elemental sulfur; additionally the high-Btu IL coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is--higher not only because of the hither Btu value of the coal but also because IL coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for IL coal as compared to approximately 45% for most western coals. During the contract extension, additional coal testing was completed confirming the fact that coal concentrates can be made from plant waste under a variety of flotation conditions 33 tests were conducted, yielding an average of 13326 Btu with 9.6% ash while recovering 86.0%-Of the energy value.

Ehrlinger, H.P. III [Illinois State Geological Survey, Champaign, IL (United States); Lytle, J.M.; Frost, R.R.; Lizzio, A.A.; Kohlenberger, L.B.; Brewer, K.K. [Illinois State Geological Survey, Champaign, IL (United States)]|[DESTEC Energy (United States)]|[Williams Technologies, Inc. (United States)]|[Illinois Coal Association (United States)

1992-12-31T23:59:59.000Z

318

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

319

Clinkering properties of rammed coking coal and coal batches  

Science Journals Connector (OSTI)

The clinkering properties of rammed coking coal and coal batches are investigated. There is a close relation between the clinkering properties and coke quality.

V. M. Shmal’ko; M. A. Solov’ev

2009-03-01T23:59:59.000Z

320

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

322

Coal Mining Tax Credit (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

323

Illinois Coal Revival Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

324

Weekly Coal Production Estimation Methodology  

NLE Websites -- All DOE Office Websites (Extended Search)

Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio...

325

Sandia National Laboratories: Clean Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

326

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network (OSTI)

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

327

Coal extraction process  

SciTech Connect

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

328

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

329

Coal Development (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

330

Clean coal technology applications  

SciTech Connect

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

331

Spitsbergen Tertiary Coal Fossils  

Science Journals Connector (OSTI)

... grains and spores to be observed in coal deposits of Tertiary age in west Spitsbergen (Norsk Polarinstitutt, Med. 79, pp. 1-9; 1954; English summary).

1955-08-06T23:59:59.000Z

332

Coal Gasification Systems Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

333

Coal liquefaction quenching process  

DOE Patents (OSTI)

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

334

Handbook of coal analysis  

SciTech Connect

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

335

US coal market softens  

SciTech Connect

The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

Fiscor, S.

2007-01-15T23:59:59.000Z

336

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Distribution Report Release Date: December 19, 2013 | Next Release Date: December 12, 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report...

337

Cooperative research program in coal liquefaction  

SciTech Connect

This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1991-01-01T23:59:59.000Z

338

Cooperative research program in coal liquefaction  

SciTech Connect

Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1992-01-01T23:59:59.000Z

339

HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT  

SciTech Connect

As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.

Stefano Orsino

2005-03-30T23:59:59.000Z

340

Illinois Coal Development Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Clean coal technologies market potential  

SciTech Connect

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

342

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

343

Iron Minerals in Coal, Weathered Coal and Coal Ash – SEM and Mössbauer Results  

Science Journals Connector (OSTI)

The aim of the present investigation was to identify and quantify the iron mineral phases present in South African coal from various coal fields and in coal ash, after industrial and laboratory combustion process...

F. B. Waanders; E. Vinken; A. Mans; A. F. Mulaba-Bafubiandi

344

Ultrasonic study of concentrated coal?water slurries  

Science Journals Connector (OSTI)

The use of ultrasonicabsorptionmeasurements as a diagnostic tool for monitoring the particle size of coal?water slurries has been suggested by M. C. Davis [J. Acoust. Soc. Am. 65 387 (1979)]. The present paper reports some experimental data obtained from ultrasonicabsorption and velocity measurements on electrostatically and sterically stabilized coal?water slurries of average particle diameters of 5 and 50 ?. Ultrasonicabsorptionmeasurements were made in the frequency range of 1 to 25 MHz for 1 °C to 80 °C. The results are compared with various explicit expressions for heat conduction viscous drag losses and scattering of sound by particles. The experimental absorption was consistently higher than that predicted even when allowing for the averaging effect era wide particle size distribution. The experimental results also indicate that velocity measurements in a coal?water slurry have the potential of becoming another possible diagnostic tool along with attenuation measurements. [Work partially supported by ONR.

M. A. Barrett Gultepe; M. E. Gultepe; E. Yeager

1986-01-01T23:59:59.000Z

345

Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers  

SciTech Connect

This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: • University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. • Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. • REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utah’s pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. • REI has completed a literature survey of slagging and fouling mechanisms in coal-fired power plants to understand key issues influencing these deposition regimes and infer their behavior under oxy-fired conditions. Based on the results of this survey, an algorithm for integrating slagging predictions into CFD models was outlined. This method accounts for ash formation, particle impaction and sticking, deposit growth and physical properties and impact of the deposit on system flow and heat transfer. A model for fouling in the back pass has also been identified which includes vaporization of sodium, deposition of sodium sulfate on fly ash particles and tube surfaces, and deposit growth rate on tubes. In Year 1, REI has also performed a review of the literature describing corrosion in order to understand the behavior of oxidation, sulfidation, chloridation, and carburization mechanisms in air-fired and oxy-combustion systems. REI and Vattenfall have met and exchanged information concerning oxy-coal combustion mechanisms for CFD simulations currently used by Vattenfall. In preparation for Year 2 of this program, two coals (North Antelope PRB, Western bituminous) have been ordered, pulverized and delivered to the University of Utah and Sandia National Labs. Materials for the corrosion experiments have been identified, suppliers located, and a schedule for equipment fabrication and shakedown has been established. Finally, a flue gas recycle system has been designed and is being constructed for the OFC.

Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

2009-06-30T23:59:59.000Z

346

Coal Gasification in Australia  

Science Journals Connector (OSTI)

... P. S. Andrews gave a full account of the Federal project for the pressure gasification of non-coking coals for the combined purpose of town's gas ' and the ... of town's gas ' and the production of synthetic liquid fuel. Work on the gasification of brown coal in. Victoria was commenced in 1931 by the technical staff of ...

1955-06-11T23:59:59.000Z

347

Chemicals from Coal  

Science Journals Connector (OSTI)

...Mas-sachusetts Institute of Technology, 1974; J. B. Howard...Petras, in Coal Pro-cessing Technology (American Institute of Chem-ical...with the solidifcation of a fluid bituminous coal as it undergoes...Policy Analyst, Science and Technology Policy Office (Staff to the...

Arthur M. Squires

1976-02-20T23:59:59.000Z

348

Incentives boost coal gasification  

SciTech Connect

Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

Hess, G.

2006-01-16T23:59:59.000Z

349

HS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

350

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

351

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

352

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed to Paulette Young at (202) 426-1150, email

353

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

354

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed

355

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

356

Coal in China  

SciTech Connect

The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

2005-07-01T23:59:59.000Z

357

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

358

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal  

Science Journals Connector (OSTI)

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal ... Ash with a low melting point causes slagging and fouling problems in pulverized coal combustion boilers. ... The ash composition in coal and operational conditions in boilers such as heat load greatly affect the ash deposition behavior. ...

Katsuya Akiyama; Haeyang Pak; Toshiya Tada; Yasuaki Ueki; Ryo Yoshiie; Ichiro Naruse

2010-07-22T23:59:59.000Z

359

Cross flow cyclonic flotation column for coal and minerals beneficiation  

DOE Patents (OSTI)

An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

Lai, Ralph W. (Upper St. Clair, PA); Patton, Robert A. (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

360

Adsorption Behavior of CO2 in Coal and Coal Char  

Science Journals Connector (OSTI)

Coals of diverse characteristics have been chosen to provide a better understanding on the influence of various coal properties, such as maceral, volatile matter, and ash contents. ... In addition, char samples from two of these coals (a non-coking coal A and a coking coal B) were prepared by pyrolysis at 800 and 1000 °C in a nitrogen atmosphere and were tested for CO2 adsorption capacity. ... As stated earlier, virgin coal samples considered for the adsorption measurements include coals A, C, and D, which are of low-, high-, and medium-volatile sub-bituminous rank, respectively. ...

Shanmuganathan Ramasamy; Pavan Pramod Sripada; Md Moniruzzaman Khan; Su Tian; Japan Trivedi; Rajender Gupta

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Uncovering Coal's Secrets Through the University Coal Research Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uncovering Coal's Secrets Through the University Coal Research Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program December 18, 2013 - 10:38am Addthis Uncovering Coal’s Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant

362

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect

This three-year research project at Combustion Engineering, Inc. (CE) will assess the potential economic and environmental benefits derived from coal beneficiation by various advanced cleaning processes. The objectives of this program include the development of a detailed generic engineering database, comprised of fuel combustion and ash performance data on beneficiated coal-based fuels (BCFs), which is needed to permit broad application. This technical database will provide detailed information on fundamental fuel properties influencing combustion and mineral matter behavior as well as quantitative performance data on combustion, ash deposition, ash erosion, particulate collection, and gaseous and particulate emissions. Program objectives also address the application of this technical database to predict performance impacts associated with firing BCFs in various commercial boiler designs as well as assessment of the economic implications of BCF utilization. Additionally, demonstration of this technology, with respect to large-scale fuel preparation, firing equipment operation, fuel performance, environmental impacts, and verification of prediction methodology, will be provided during field testing. Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the field test. Approximately nine BCFs will be in dry ultra fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Up to 25 additional BCFs would be characterized during optional project supplements. 9 figs., 1 tab.

Not Available

1989-12-01T23:59:59.000Z

363

Conditioner for flotation of coal  

SciTech Connect

A method for recovering coal is described which comprises the steps of floating coal in an aqueous frothing medium containing an amount of a condensation product of an alkanolamine and naphthenic acid sufficient to increase the recovery of coal as compared to the recovery of coal in an identical process using none of the condensation product.

Nimerick, K.H.

1988-03-22T23:59:59.000Z

364

Coal market momentum converts skeptics  

SciTech Connect

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

365

Coal Science: Basic Research Opportunities  

Science Journals Connector (OSTI)

...carbon is arranged in coal becomes real. What...NMR experiments at high temperatures. This...of characterizing high-boiling coal "liquids" which...reactions. Coal mineral matter. Most U.S. coals...burned is called ash. Techniques are...

Martin L. Gorbaty; Franklin J. Wright; Richard K. Lyon; Robert B. Long; Richard H. Schlosberg; Zeinab Baset; Ronald Liotta; Bernard G. Silbernagel; Dan R. Neskora

1979-11-30T23:59:59.000Z

366

Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989  

SciTech Connect

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-12-31T23:59:59.000Z

367

Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report  

SciTech Connect

This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

Kakwani, R.M.; Kamo, R.

1989-01-01T23:59:59.000Z

368

Structure and thermoplasticity of coal  

SciTech Connect

Chapters cover: molecular structure and thermoplastic properties of coal; {sup 1}H-nmr study of relaxation mechanisms of coal aggregate; structural changes of coal macromolecules during softening; quantitative estimation of metaplsat in heat-treated coal by solvent extraction; effects of surface oxidation on thermoplastic properties of coal; analysis of dilatation and contraction of coal during carbonization; formation mechanisms of coke texture during resolidification; modified CPD model for coal devolatilization; mathematical modelling of coke mechanical structure; and simulating particulate dynamics in the carbonization process based on discrete element treatment.

Komaki, I.; Itagaki, S.; Miura, T. (eds.)

2004-07-01T23:59:59.000Z

369

PressurePressure Indiana Coal Characteristics  

E-Print Network (OSTI)

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

Fernández-Juricic, Esteban

370

MS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

371

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

372

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

373

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

374

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

June 2010 DOE/EIA-0121 (2010/01Q) June 2010 DOE/EIA-0121 (2010/01Q) Revised: July 2012 Quarterly Coal Report January - March 2010 June 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.gov/coal/production/quarterly/ _____________________________________________ This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

375

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

376

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

377

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

378

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Quarterly Coal Report January - March 2008 July 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

379

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2009 September 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

380

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

7/01Q) 7/01Q) Quarterly Coal Report January - March 2007 June 2007 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Georgia Railroad 23 - - - 23 Georgia Truck s - - - s Georgia Total 23 - - - 23 Indiana Railroad - 115 - - 115 Indiana Truck - 71 - - 71 Indiana Total - 186 - - 186 Tennessee Railroad - - 1 - 1 Tennessee Truck

382

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Quarterly Coal Report July - September 2008 December 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

383

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2008 September 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

384

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

8/04Q) 8/04Q) Quarterly Coal Report October - December 2008 March 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

385

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

386

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

387

Modelling coal gasification  

Science Journals Connector (OSTI)

Coal gasification processes in a slurry-feed-type entrained-flow gasifier are studied. Novel simulation methods as well as numerical results are presented. We use the vorticity-stream function method to study the characteristics of gas flow and a scalar potential function is introduced to model the mass source terms. The random trajectory model is employed to describe the behaviour of slurry-coal droplets. Very detailed results regarding the impact of the O2/coal ratio on the distribution of velocity, temperature and concentration are obtained. Simulation results show that the methods are feasible and can be used to study a two-phase reacting flow efficiently.

Xiang Jun Liu; Wu Rong Zhang; Tae Jun Park

2001-01-01T23:59:59.000Z

388

Coal liquefaction process  

DOE Patents (OSTI)

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

389

Coal liquefaction process  

DOE Patents (OSTI)

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

390

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

391

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Georgia Total s - s - s Georgia Truck s - s - s Indiana Total - 98 - - 98 Indiana Railroad - 98 - - 98 Kentucky Total - - 12 - 12 Kentucky Truck - - 12 - 12 Ohio Total - 30 - - 30 Ohio

392

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

393

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

394

Discharge produces hydrocarbons from coal  

Science Journals Connector (OSTI)

Discharge produces hydrocarbons from coal ... Studies of the reactions of coal in electric discharges by two chemists at the U.S. Bureau of Mines' Pittsburgh Coal Research Center may lead to improved ways of producing acetylene and other useful chemicals from coal. ... Other workers have produced high yields of acetylene from coal by extremely rapid pyrolysis using energy sources such as plasma jets, laser beams, arc-image reactors, and flash heaters. ...

1968-01-22T23:59:59.000Z

395

NETL: Ambient Monitoring - Southern Fine Particulate Monitoring Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Southern Fine Particulate Monitoring Project (SRI) Southern Fine Particulate Monitoring Project (SRI) Southern Research Institute (SRI), Birmingham, AL, is operating a research station in North Birmingham for monitoring fine particulate matter (PM2.5) that exists in that part of the Deep South. The station will be a core PM2.5 mass monitoring and chemical speciation station in the nationwide EPA PM2.5 network. As such, it will be a complement and supplement to DOE-NETL's other ongoing projects for monitoring fine particulate matter in the upper Ohio River valley. Locating additional monitoring equipment in the Deep South will fill an important gap in the national particulate monitoring effort. The region's topography, weather patterns, and variety of emission sources may affect the chemical make-up and airborne transport of fine particles in ways that are different than in other parts of the country. The project's results will support DOE's comprehensive program to evaluate ambient fine particulate matter through better understanding of the chemical and physical properties of these materials.

396

Hydraulic fracturing experiments in the Great Northern Coal seam  

SciTech Connect

Two field-scale hydraulic fracturing experiments were performed in vertical boreholes on the lease of Munmorah Colliery located south of Newcastle, NSW. The treatments fractured the 3-meter thick, 220-meter deep Great Northern coal seam and were designed to provide a direct comparison between a borate-crosslinked gel and a water treatment. The fracture geometries were mapped during mining of the coal seam. Geologic mapping disclosed a well-defined coal face cleat and systematic full-seam joints perpendicular to bedding and trending NW. The vertical hydraulic fractures extended along the joint and face cleat direction. Evidence that an early slurry stage of fine mesh proppant acted to block off one of two competing parallel fractures was found at one of the mineback sites.

Jeffrey, R.G.; Weber, C.R.; Vlahovic, W.; Enever, J.R.

1994-12-31T23:59:59.000Z

397

Ash reduction in clean coal spiral product circuits  

SciTech Connect

The article describes the Derrick Corporation's Stack Sizer{trademark} technology for high capacity fine wet cleaning with long-lasting high open-area urethane screen panels. After field trials, a Stack Sizer fitted with a 100-micron urethane panel is currently processing approximately 40 stph of clean coal spiral product having about 20% ash at McCoy-Elkhorn's Bevin Branch coal preparation plant in Kentucky, USA. Product yield is about 32.5 short tons per hour with 10% ash. The material is then fed to screen bowl centrifuges for further processing. At Blue Diamond Coal's Leatherwood preparation plant similar Stacker Sizers are achieving the same results. 2 figs., 3 tabs., 2 photo.

Brodzik, P.

2007-04-15T23:59:59.000Z

398

Integration of stripping of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

DeGeorge, Charles W. (Chester, NJ)

1980-01-01T23:59:59.000Z

399

Year Average Transportation Cost of Coal  

Gasoline and Diesel Fuel Update (EIA)

delivered costs of coal, by year and primary transport mode Year Average Transportation Cost of Coal (Dollars per Ton) Average Delivered Cost of Coal (Dollars per Ton)...

400

A Stoichiometric Analysis of Coal Gasification  

Science Journals Connector (OSTI)

A Stoichiometric Analysis of Coal Gasification ... Gasification of New Zealand Coals: A Comparative Simulation Study ... Gasification of New Zealand Coals: A Comparative Simulation Study ...

James Wei

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pore Structure of the Argonne Premium Coals  

Science Journals Connector (OSTI)

Pore Structure of the Argonne Premium Coals ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ...

John W. Larsen; Peter Hall; Patrick C. Wernett

1995-03-01T23:59:59.000Z

402

Density Measurements of Argonne Premium Coal Samples  

Science Journals Connector (OSTI)

Density Measurements of Argonne Premium Coal Samples ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ...

He Huang; Keyu Wang; David M. Bodily; V. J. Hucka

1995-01-01T23:59:59.000Z

403

Clean Coal Power Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

404

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

12 2.6. International coal prices and18 International coal prices and trade In parallel with the2001, domestic Chinese coal prices moved from stable levels

Aden, Nathaniel

2010-01-01T23:59:59.000Z

405

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

Aden, Nathaniel

2010-01-01T23:59:59.000Z

406

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

407

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network (OSTI)

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

408

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

409

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

to have indicated economic coal reserves of at least 15tonnes of indicated economic coal reserves. Map 1: Chinaand economic assessment of deploying advanced coal power in

Aden, Nathaniel

2010-01-01T23:59:59.000Z

410

Conditions of utilization of coal mining and processing sludges as slurry fuel  

SciTech Connect

The results of this study have shown that coal sludge can be used as slurry fuel (like coal-water fuel (CWF)) providing that its ash content does not exceed 30% and the amount in the fuel is at least 55%. The conventional CWF preparation technologies are inapplicable to the fabrication of water-sludge fuel; therefore, special technologies with allowance for the ash content, the particle size, and the water content of coal sludge are demanded.

E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-12-15T23:59:59.000Z

411

COAL CLEANING VIA LIQUID-FLUIDIZED CLASSIFICAITON (LFBC) WITH SELECTIVE SOLVENT SWELLING  

SciTech Connect

The concept of coal beneficiation due to particle segregation in water-fluidized beds, and its improvement via selective solvent-swelling of organic material-rich coal particles, was investigated in this study. Particle size distributions and their behavior were determined using image analysis techniques, and beneficiation effects were explored via measurements of the ash content of segregated particle samples collected from different height locations in a 5 cm diameter liquid-fluidized bed column (LFBC). Both acetone and phenol were found to be effective swelling agents for both Kentucky No.9 and Illinois No.6 coals, considerably increasing mean particle diameters, and shifting particle size distributions to larger sizes. Acetone was a somewhat more effective swelling solvent than phenol. The use of phenol was investigated, however, to demonstrate that low cost, waste solvents can be effective as well. For unswollen coal particles, the trend of increasing particle size from top to bottom in the LFBC was observed in all cases. Since the organic matter in the coal tends to concentrate in the smaller particles, the larger particles are typically denser. Consequently, the LFBC naturally tends to separate coal particles according to mineral matter content, both due to density and size. The data for small (40-100 {micro}m), solvent-swollen particles clearly showed improved beneficiation with respect to segregation in the water-fluidized bed than was achieved with the corresponding unswollen particles. This size range is quite similar to that used in pulverized coal combustion. The original process concept was amply demonstrated in this project. Additional work remains to be done, however, in order to develop this concept into a full-scale process.

J. M. Calo

2000-12-01T23:59:59.000Z

412

Coal-fueled diesel locomotive test  

SciTech Connect

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

1993-01-01T23:59:59.000Z

413

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

414

Coal Utilization Science Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

415

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology EIA uses the confidential version of the STB Waybill data, which includes actual revenue for shipments that originate and terminate at specific locations. The STB Waybill data are a sample of all rail shipments. EIA's 2011 report describes the sampling procedure. EIA aggregates the confidential STB data to three different levels: national, coal-producing basin to state, and state to state. EIA applies STB withholding rules to the aggregated data to identify records that must be suppressed to protect business-sensitive data. Also, EIA adds additional location fields to the STB data, identifying the mine from which the coal originates, the power plant that receives the coal, and, in some cases, an intermediate delivery location where coal is terminated by the initial carrier but then

416

Entrainment Coal Gasification Modeling  

Science Journals Connector (OSTI)

Entrainment Coal Gasification Modeling ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ...

C. Y. Wen; T. Z. Chaung

1979-10-01T23:59:59.000Z

417

On Coal-Gas  

Science Journals Connector (OSTI)

1860-1862 research-article On Coal-Gas W. R. Bowditch The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1860-01-01T23:59:59.000Z

418

Aqueous coal slurry  

DOE Patents (OSTI)

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

419

Clean Coal Technology (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

420

Quarterly coal report  

SciTech Connect

The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

Young, P.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fine coal particles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Rail Coal Transportation Rates  

Annual Energy Outlook 2012 (EIA)

Survey data. Each plant receiving CAPP or PRB coal in 2007 and 2010 were mapped and their data used to estimate costs for other cells by interpolating values based on inverse...

422

Clean Coal Research  

Energy.gov (U.S. Department of Energy (DOE))

DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

423

Proximate analysis of coal  

SciTech Connect

This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

Donahue, C.J.; Rais, E.A. [University of Michigan, Dearborn, MI (USA)

2009-02-15T23:59:59.000Z

424

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

with the steam cycle of coal-fired power plants offers the potential to convert 40% of solar energy into electricity. This compares to 13% for large-scale photovoltaic systems,...

425

Coal Supply Region  

Gasoline and Diesel Fuel Update (EIA)

Implicit Price Deflators for Gross Domestic Product, as published by the U.S. Bureau of Economic Analysis. For the composition of coal basins, refer to the definition of...

426

Coal to Liquids Technologies  

Science Journals Connector (OSTI)

By the mid-1940s, natural gas and oil production had become more developed and cost-competitive with coal, and technology for production of synthetic transportation fuels was not considered economic after the Sec...

Marianna Asaro; Ronald M. Smith

2013-01-01T23:59:59.000Z

427

Coal to Liquids Technologies  

Science Journals Connector (OSTI)

By the mid-1940s, natural gas and oil production had become more developed and cost-competitive with coal, and technology for production of synthetic transportation fuels was not considered economic after the Sec...

Marianna Asaro; Ronald M. Smith

2012-01-01T23:59:59.000Z

428

Coal liquefaction process  

DOE Patents (OSTI)

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

429

Section 5 - Coal  

Science Journals Connector (OSTI)

Coal has the longest history of use among the fossil fuels, with use as a fuel dating to 3000 BC in China and Wales. Marco Polo’s “Description of the World” (1298) comments on many novel customs and practices of China, including the use of “stones that burn like logs” (coal). By the thirteenth century the mining of coal was widespread in England in regions such as Durham, Nottinghamshire, Derbyshire, Staffordshire, and North and South Wales. By the early seventeenth century nearly half of England’s maritime trade consisted of coal exports. Coal was the fuel that launched the Industrial Revolution in Europe and then the United States. By the late 1890s, the U.S. assumed the lead in world coal production. Britain now ranked second, after having been the world leader since the beginnings of the formal industry in the 1500s. Germany was third, an indication of its growing industrial power relative to continental rival France. Coal’s leading role in energy use peaked in the early twentieth century, after which it was supplanted by oil and natural gas. By the late twentieth century China’s rapid economic expansion, surging demand for electricity, and prodigious coal resources combined to propel it to become the world leader in production. Continuous improvements in coal mining technology have produced lower costs, improved safety, and greater labor productivity. John Buddle introduced the first air pump to ventilate coal mines (1803), followed shortly by the miner’s safety lamps that were developed independently by Sir Humphry Davy, William Clanny, and George Stephenson (1813-1816). Coal mining underwent a rapid transition in the 1880s to mechanical coal cutting in mines in the United Kingdom, the United States, and Russia. The St. Joseph Lead Company of Missouri (1900) invented the first underground mine roof bolts that became a key safety feature in underground coal mines. The first commercially successful bucket wheel excavator was used at the Luise Mine in Braunkohlemwerke, Germany (1925), followed by the first successful continuous miners in U.S. underground coal mining (1948). The first mechanized U.S. longwall mining system appeared in 1951, and was followed by the self-advancing hydraulic longwall support system that provided greater support for the roof of the mine. LeTourneau Technologies, Inc. of Texas manufactured the largest rubber tired front-end wheel loader in the world, the L-2350, which would play an important role in loading coal in Wyoming’s large surface mines (2005). Coal mining has always been a very hazardous occupation, and has produced some of history’s worst industrial disasters. The Courrières mine disaster, Europe's worst mining accident, caused the death of 1,099 miners in Northern France (1906). An explosion in a coal mine in Liaoning province in northeastern China killed more than 1,500 Chinese miners (1942), as did other major accidents in Ky?sh?, Japan (1914), Wankie, Rhodesia (1972), Wales (1913), Bihar, India (1965), and West Virginia, U.S. (1907), to name just a few. Legislation such as the Federal Coal Mine Health and Safety Act in the U.S. (1969) improved working conditions in many nations. The Great Smog of London (1952) occurred after an exceptionally cold winter forced homes and factories to burn large quantities of coal. A temperature inversion formed, trapping pollutants above the ground. More than 4,000 people died from respiratory ailments within the following week. The use of coal has been impacted by legislation to control the environmental impacts associated with its mining and combustion. The first known environmental regulation of coal dates to 1306 when King Edward II of England prohibited burning sea coal while Parliament was in session because of its offensive smoke. Sulfur dioxide from coal combustion was tied to acid rain in the 1960s, and carbon dioxide emissions became a concern beginning in the 1980s when climate change emerged as a critical environmental issue.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

430

Coal science for the clean use of coal  

SciTech Connect

Coal will need to be retained as a major source of energy in the next century. It will need to be used more effectively and more cleanly. In order to achieve this, it is necessary to introduce new technology supported by a local community of science and technology. Only in this way can the full benefits of international advances in coal utilization be fully achieved. It is important that full advantage be taken of the advances that have been achieved in laboratory techniques and in the better understanding of fundamental coal science. This paper reviews available technologies in power generation, industrial process heat, coal combustion, coal gasification, and coal analytical procedures.

Harrison, J.S. [Univ. of Leeds (United Kingdom)

1994-12-31T23:59:59.000Z

431

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

432

Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment. Quarterly technical report No. 3, March 1, 1987--May 31, 1987  

SciTech Connect

During this third quarter of Grant DE-FG22-86 PC 90756, we have obtained preliminary experimental results on the deposition behavior of submicron and supermicron solid particles (MgO, Al{sub 2}O{sub 3}) on a two-dimensional surface exposed to a high temperature/velocity particle ``laden`` atmospheric pressure jet. The uniform velocity (``plug flow``) jet, with temperatures up to about 1520 K, derives from a pressurized gaseous fuel microcombustion chamber (110 cc) equipped with a platinum guiding (exit) channel. Particles were generated by several methods (Berglund-Liu type aerosol generator, ultrasonic nebulizer, or syringe feeder with aerodynamic particle off-take) and were introduced into the combustion chamber with a carrier stream of nitrogen or air. Laser light scattering and reflectivity techniques were used for the study of particle deposition, supplemented by post-mortem microscopy on the exposed surface. We observed a linear deposition rate of submicron particles due to the thermophoretic mechanism (until the first layer was developed) under both high and low velocity conditions. On the contrary, supermicron particle deposits reach a steady-state, evidently due to a dynamic equilibrium between particle deposition and dislodging caused by the impacting particles. At several temperatures particle-free subsonic gas jets (up to 120 m/sec) were unable to remove the submicron particle layer.

Rosner, D.E.

1987-06-01T23:59:59.000Z

433

GIS data models for coal geology  

SciTech Connect

A variety of spatial data models can be applied to different aspects of coal geology. The simple vector data models found in various Computer Aided Drafting (CAD) programs are sometimes used for routine mapping and some simple analyses. However, more sophisticated applications that maintain the topological relationships between cartographic elements enhance analytical potential. Also, vector data models are best for producing various types of high quality, conventional maps. The raster data model is generally considered best for representing data that varies continuously over a geographic area, such as the thickness of a coal bed. Information is lost when contour lines are threaded through raster grids for display, so volumes and tonnages are more accurately determined by working directly with raster data. Raster models are especially well suited to computationally simple surface-to-surface analysis, or overlay functions. Another data model, triangulated irregular networks (TINs) are superior at portraying visible surfaces because many TIN programs support break fines. Break lines locate sharp breaks in slope such as those generated by bodies of water or ridge crests. TINs also {open_quotes}honor{close_quotes} data points so that a surface generated from a set of points will be forced to pass through those points. TINs or grids generated from TINs, are particularly good at determining the intersections of surfaces such as coal seam outcrops and geologic unit boundaries. No single technique works best for all coal-related applications. The ability to use a variety of data models, and transform from one model to another is essential for obtaining optimum results in a timely manner.

McColloch, G.H. Jr.; Timberlake, K.J.; Oldham, A.V. [West Virginia Geological and Economic Survey, Morgantown, WV (United States)

1996-12-31T23:59:59.000Z

434

Energy and environmental research emphasizing low-rank coal. Semi-annual report, January--June 1994  

SciTech Connect

Summaries of progress on the following tasks are presented: Mixed waste treatment; Hot water extraction of nonpolar organic pollutant from soils; Aqueous phase thermal oxidation wastewater treatment; Review of results from comprehensive characterization of air toxic emissions from coal-fired power plants; Air toxic fine particulate control; Effectiveness of sorbents for trace elements; Catalyst for utilization of methane in selective catalytic reduction of NOx; Fuel utilization properties; Hot gas cleaning; PFBC; catalytic tar cracking; sulfur forms in coal; resid and bitumen desulfurization; biodesulfurization; diesel fuel desulfurization; stability issues; Sorbent carbon development; Evaluation of carbon products; Stable and supercritical chars; Briquette binders; Carbon molecular sieves; Coal char fuel evaporation canister sorbent; Development of a coal by-product classification protocol for utilization; Use of coal ash in recycled plastics and composite materials; Corrosion of advanced structural materials; Joining of advanced structural materials; Resource data evaluation; and the Usti and Labem (Czech Republic) coal-upgrading program.

NONE

1994-09-01T23:59:59.000Z

435

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options,