Powered by Deep Web Technologies
Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report  

SciTech Connect (OSTI)

The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

1994-08-01T23:59:59.000Z

2

Remediation alternatives for low-level herbicide contaminated groundwater  

SciTech Connect (OSTI)

In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

Conger, R.M. [BASF Corp., Geismar, LA (United States)

1995-10-01T23:59:59.000Z

3

Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1  

SciTech Connect (OSTI)

This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC).

NONE

1997-01-01T23:59:59.000Z

4

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: ? Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. ? DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. ? DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators.

Clayton, Christopher [U.S Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S Department of Energy Office of Legacy Management, Westminster, Colorado; Widdop, Michael; Gillespie, Joey [SM Stoller Corporation, Grand Junction, Colorado

2012-02-26T23:59:59.000Z

5

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect (OSTI)

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

6

Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites  

SciTech Connect (OSTI)

The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

NONE

1995-10-01T23:59:59.000Z

7

Remedial action selection report Maybell, Colorado, site. Final report  

SciTech Connect (OSTI)

The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The site is 2.5 mi (4 km) northeast of the Yampa River on relatively flat terrain broken by low, flat-topped mesas. U.S. Highway 40 runs east-west 2 mi (3.2 km) south of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. The site is situated between Johnson Wash to the east and Rob Pit Mine to the west. Numerous reclaimed and unreclaimed mines are in the immediate vicinity. Aerial photographs (included at the end of this executive summary) show evidence of mining activity around the Maybell site. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [ml]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3}(420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}).

NONE

1996-12-01T23:59:59.000Z

8

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report provides the final hazard categorization for the remediation of six 300-FF-2 Operable Unit Burial Grounds, the 618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 sites.

J. D. Ludowise; K. L. Vialetti

2008-05-12T23:59:59.000Z

9

Final audit report of remedial action construction at the UMTRA Project Falls City, Texas, site  

SciTech Connect (OSTI)

This final audit report for the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site summarizes the radiological audits and the quality assurance (QA) in-process surveillances, audits, and final close-out inspection performed by the U.S. Department of Energy (DOE) and Technical Assistance Contractor (TAC). It also summarizes U.S. Nuclear Regulatory Commission (NRC) surveillances. One radiological audit and three radiological surveillances were performed at the Falls City site. These surveillances and audit, which resulted in 31 observations, focused primarily on processing site activities and were performed on the following dates: 3-6 August 1992, 29-30 October 1992, 22-26 March 1993, and 1-3 November 1993. All outstanding radiological issues were closed out at the completion of the construction activities. Six QA in-process surveillances, which resulted in 71 observations, were performed at the Falls City site on the following dates: 22-24 July 1992, 23-25 November 1992, 17-19 May 1993, 16-18 August 1993, 13-15 October 1993, and 2-4 February 1994. All outstanding issues were closed out with the February surveillance on 3 March 1994. The DOE/TAC remedial action close-out inspections of the Falls City site, which resulted in 56 observations, were conducted 9-10 June 1994 and 26 July 1994. The inspections were closed out on 26 January 1995. The NRC performed three on-site construction reviews (OSCR), resulting in seven observations of remedial action construction activities that occurred during site visits. The OSCRs were performed 9 December 1992, 12 May 1993, and 25 October 1993. Since all audit and surveillance observations and recommendations have been closed out, this final audit report segment of the site certification process is complete.

NONE

1995-05-01T23:59:59.000Z

10

Blood lead levels and remediation of an abandoned smelter site  

SciTech Connect (OSTI)

Elevated soil lead levels were documented in a New Mexico community, with levels up to 24,800 ppm in a smelter slag pile, 20 or more feet from residences. The New Mexico Department of Health offered blood lead screening to residents of three geographic areas before and after an emergency cleanup by the US Environmental Protection Agency. Blood lead levels prior to the cleanup ranged from undetectable (< 5 {mu}g/dl) to 29 {mu}g/dl; after the cleanup, they ranged from undetectable to 10 {mu}g/dl. Significant reductions in mean blood lead levels after the cleanup were found for all three geographic areas: from 6.67 {mu}g/dl to 4 {mu}dl (smelter area), from 4.12 {mu}g/dl to 2.5 {mu}g/dl (town area), and from 5.5 {mu}g/dl to 2.5 {mu}g/dl (northeast area). In both years, the mean blood lead levels of individuals who lived near the smelter area were significantly higher than the levels for those living in town for those participating in both years of the study. Mean blood lead levels were significantly higher for smelter area participants who had a household member working at a lead battery plant (19.4 {mu}g/dl) compared to those residents who did not (5.83 {mu}g/dl).

Eidson, M. [New Mexico Dept. of Health, Santa Fe, NM (United States). Div. of Epidemiology, Evaluation, and Planning; Tollestrup, K. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States). Family and Community Medicine Dept.

1995-05-01T23:59:59.000Z

11

Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives  

SciTech Connect (OSTI)

The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal.

Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

1995-03-01T23:59:59.000Z

12

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix D. Final report  

SciTech Connect (OSTI)

This appendix is an assessment of the present conditions of the inactive uranium mill site near Mexican Hat, Utah. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan. Plan is to characterize the conditions at the mill and tailings site so that the Remedial Action Contractor may complete final designs of the remedial action.

NONE

1988-07-01T23:59:59.000Z

13

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report  

SciTech Connect (OSTI)

This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

Not Available

1992-02-01T23:59:59.000Z

14

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

15

Superfund state-lead remedial project-management handbook. Final report  

SciTech Connect (OSTI)

The handbook defines the roles and responsibilities of the Remedial Project Officer (RPM) with regard to State-lead remedial projects at uncontrolled hazardous-waste sites. It also discusses project-management techniques and the resources available to the RPM for accomplishing his mission.

Winter, B.

1986-12-01T23:59:59.000Z

16

Superfund federal-lead remedial project-management handbook. Final report  

SciTech Connect (OSTI)

The handbook defines the roles and responsibilities of the Remedial Project Officer (RPM) with regard to Federal-lead remedial projects at uncontrolled hazardous-waste sites. It also discusses project management techniques and the resources available to the RPM for accomplishing his mission.

Hooper, S.

1986-12-01T23:59:59.000Z

17

Comment and response document for the final remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Revision 2  

SciTech Connect (OSTI)

This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado.

NONE

1996-05-01T23:59:59.000Z

18

Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I  

SciTech Connect (OSTI)

This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in accordance with the final standards. The EPA reserves the right to modify the ground water standards, if necessary, based on changes in EPA drinking water standards. Appendix A contains a copy of the 1983 EPA ground water compliance standards, the 1987 proposed changes to the standards, and the 1995 final rule. Under UMTRA, DOE is responsible for bringing the designated processing sites into compliance with the EPA ground water standards and complying with all other applicable standards and requirements. The U.S. Nuclear Regulatory Commission (NRC) must concur with DOE's actions. States are full participants in the process. The DOE also must consult with any affected Indian tribes and the Bureau of Indian Affairs. Uranium processing activities at most of the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as but not limited to uranium and nitrates. The purpose of the UMTRA Ground Water Project is to eliminate or reduce to acceptable levels the potential health and environmental consequences of milling activities by meeting the EPA ground water standards.

None

1996-10-01T23:59:59.000Z

19

SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report  

SciTech Connect (OSTI)

This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

2009-09-30T23:59:59.000Z

20

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final  

SciTech Connect (OSTI)

The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

Not Available

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

STUDIES TO SUPPORT DEPLOYMENT OF EDIBLE OILS AS THE FINAL CVOC REMEDIATION IN T AREA SUMMARY REPORT  

SciTech Connect (OSTI)

The purpose of these studies was to determine the feasibility of using edible oils for remediation of the low but persistent chlorinated solvent (cVOC) groundwater contamination at the SRS T-Area. The following studies were completed: (1) Review of cVOC degradation processes and edible oil delivery for enhanced bioremediation. (2) Column studies to investigate placing neat oil on top of the water table to increase oil saturation and sequestration. (3) Analysis of T-Area groundwater geochemistry to determine the applicability of edible oils for remediation at this site. (4) Microcosm studies to evaluate biotic and abiotic processes for the T-Area groundwater system and evaluation of the existing microbial community with and with out soybean oil amendments. (5) Monitoring of a surrogate vadose zone site undergoing edible oil remediation at the SRS to understand partitioning and biotransformation products of the soybean oil. (6) Design of a delivery system for neat and emulsified edible oil deployment for the T-Area groundwater plume. A corresponding white paper is available for each of the studies listed. This paper provides a summary and overview of the studies completed for the remediation of the T-Area groundwater plume using edible oils. This report begins with a summary of the results and a brief description of the preliminary oil deployment design followed by brief descriptions of T-Area and current groundwater conditions as related to edible oil deployment. This is followed by a review of the remediation processes using edible oils and specific results from modeling, field and laboratory studies. Finally, a description of the preliminary design for full scale oil deployment is presented.

Riha, B; Brian02 Looney, B; Miles Denham, M; Christopher Bagwell, C; Richard Hall, R; Carol Eddy-Dilek, C

2006-10-31T23:59:59.000Z

22

Superfund Record of Decision (EPA Region 4): Medley Farms, Cherokee County, Gaffney, SC. (First remedial action), May 1991. Final report  

SciTech Connect (OSTI)

The 7-acre Medley Farms site is a former waste disposal area located on a private farm used as pasture 6 miles south of Gaffney, Cherokee County, South Carolina. Land use in the area is predominantly agricultural and light residential, and six private wells are within a 1-mile radius of the site. The site overlies a shallow saprolitic and a deeper bedrock aquifer. All residents in the near vicinity of the site are connected to the public water distribution system. EPA conducted a geological study to determine the potential for ground water contamination. Subsequent EPA studies identified VOCs in both soil and ground water. The Record of Decision (ROD) addresses soil and ground water contamination as a final remedy. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, PCE, and TCE; and other organics including pesticides and PCBs. The selected remedial action for the site is included.

Not Available

1991-05-29T23:59:59.000Z

23

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

J. D. Ludowise

2006-12-12T23:59:59.000Z

24

Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program  

SciTech Connect (OSTI)

The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

1993-03-01T23:59:59.000Z

25

The Effects of Behaviorist and Constructivist Instruction on Student Performance in College-level Remedial Mathematics  

E-Print Network [OSTI]

for quality remedial mathematics classes is also growing. Institutions that place learners into remedial classes must also fund these same programs and are increasingly faced with disgruntled students, the appearance of having lower standards, and a...

Cox, Murray William

2011-10-21T23:59:59.000Z

26

Linking deposit morphology and clogging in subsurface remediation: Final Technical Report  

SciTech Connect (OSTI)

Groundwater is a crucial resource for water supply, especially in arid and semiarid areas of the United States west of the 100th meridian. Accordingly, remediation of contaminated groundwater is an important application of science and technology, particularly for the U.S. Department of Energy (DOE), which oversees a number of groundwater remediation sites from Cold War era mining. Groundwater remediation is complex, because it depends on identifying, locating, and treating contaminants in the subsurface, where remediation reactions depend on interacting geological, hydrological, geochemical, and microbiological factors. Within this context, permeability is a fundamental concept, because it controls the rates and pathways of groundwater flow. Colloid science is intimately related to permeability, because when colloids are present (particles with equivalent diameters between 1 nanometer and 10 micrometers), changes in hydrological or geochemical conditions can trigger a detrimental reduction in permeability called clogging. Accordingly, clogging is a major concern in groundwater remediation. Several lines of evidence suggest that clogging by colloids depends on (1) colloid deposition, and (2) deposit morphology, that is, the structure of colloid deposits, which can be quantified as a fractal dimension. This report describes research, performed under a 2-year, exploratory grant from the DOE’s Subsurface Biogeochemical Research (SBR) program. This research employed a novel laboratory technique to simultaneously measure flow, colloid deposition, deposit morphology, and permeability in a flow cell, and also collected field samples from wells at the DOE’s Old Rifle remediation site. Field results indicate that suspended solids at the Old Rifle site have fractal structures. Laboratory results indicate that clogging is associated with colloid deposits with smaller fractal dimensions, in accordance with previous studies on initially clean granular media. Preliminary modeling has identified the deposit radius of gyration as a candidate variable to account for clogging as a function of (1) colloid accumulation and (2) deposit morphology.

Mays, David C. [University of Colorado Denver

2013-12-11T23:59:59.000Z

27

Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report  

SciTech Connect (OSTI)

This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

NONE

1992-02-01T23:59:59.000Z

28

Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report  

SciTech Connect (OSTI)

The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

Bertsch, Paul

2013-11-07T23:59:59.000Z

29

US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan  

SciTech Connect (OSTI)

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

Not Available

1993-12-21T23:59:59.000Z

30

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report. Revised final report  

SciTech Connect (OSTI)

The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

Not Available

1991-12-01T23:59:59.000Z

31

Completion report for the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report documents the results of the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory (ORNL). The work performed is compared with that proposed in the statement of work and the service contract specification for the maintenance action to remediate tanks 3013, 3004-B, T-30, and 3001-B. The Federal Facility Agreement (FFA) among the U.S. Environmental Protection Agency (EPA), the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE) requires that all tanks, which have been removed from service and are designated in the FFA as Category D, must be remediated in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. The Environmental Restoration Program`s inactive tank removal program strategy and plans for remediating the inactive LLLW tanks were documented in a report issued in January 1995 (Inactive Tanks Remediation Program Strategy and Plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER-297). The inactive (Category D) tanks were initially screened for remediation according to risk, remediation technology required, level of instrumentation available, interferences with other piping and equipment, location, and available sludge removal techniques and storage requirements. On the basis of this preliminary screening, the tanks were assigned to one of five batches (I through V) for consideration of remedial action alternatives, and these batches were tentatively scheduled for remedial actions. The eight links tentatively assigned to Batch I were divided into two groups (Series I and Series II).

NONE

1996-02-01T23:59:59.000Z

32

Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report  

SciTech Connect (OSTI)

Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.

Morris, R.

1996-05-01T23:59:59.000Z

33

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial action selection report, Attachment 2, Geology report: Preliminary final  

SciTech Connect (OSTI)

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this document and the rest of the RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the State of Colorado.

Not Available

1993-08-01T23:59:59.000Z

34

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report  

SciTech Connect (OSTI)

This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

Not Available

1992-02-01T23:59:59.000Z

35

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final  

SciTech Connect (OSTI)

This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

Not Available

1994-03-01T23:59:59.000Z

36

Superfund Record of Decision (EPA Region 3): Lansdowne Radiation Site, Lansdowne, Pennsylvania (second remedial action), September 1986. Final report  

SciTech Connect (OSTI)

The Lansdowne Radiation site consists of two attached residences located at 105/107 East Stratford Avenue, Lansdowne, PA. The building is located in a residential area, approximately two miles from Philadelphia. The dwellings were contaminated with radium and other radionuclides between 1924 and 1944 as a result of refining radium and producing medical devices. A decontamination effort in 1964 consisted of removing as much radium as practical by sending, scraping, vacuuming, and washing the house walls, floors and ceilings. Some concrete floor and wooden floor boards were also removed. It is postulated that the acid fumes from the radium purification procedure used, as well as spills, carried the radium contamination deep into the wood and plaster of the home. The remedial action includes dismantling of the house. All radioactive materials above established permissible levels will be packed and sealed in approved containers, and disposed of at an approved offsite disposal facility; contaminated soil located in and around the house will be excavated and removed to established permissible levels. The sewer lateral leading from the contaminated house to Stratford Avenue will be removed and replaced. The capital cost has been estimated at $4,000,000-$4,500,000.

Not Available

1986-09-22T23:59:59.000Z

37

Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report  

SciTech Connect (OSTI)

The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

1994-02-01T23:59:59.000Z

38

DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites. Final report and users` guide  

SciTech Connect (OSTI)

The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

Not Available

1989-03-01T23:59:59.000Z

39

The final Record of Decision for the St. Louis North County Sites (ROD) presents the final remedy for cleanup of sites in North St. Louis County that  

E-Print Network [OSTI]

Properties (VPs), and Hazelwood Interim Storage Site (HISS)/Latty Avenue VPs. Contamination is being in St. Louis, Missouri and the FUSRAP Project Office at 8945 Latty Avenue in Berkeley, Missouri. The ROD addressed under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The ROD was signed

US Army Corps of Engineers

40

Justification for Selecting Level A vs. Level B Personal Protective Equipment to Remediate a Room Containing Concentrated Acids, Bases and Radiological Constituents  

SciTech Connect (OSTI)

Selecting the appropriate personal protective equipment (PPE) is based on providing an adequate level of employee protection relative to the task-specific conditions and hazards. PPE is categorized into four ensembles, based on the degree of protection afforded; e.g., Levels A (most restrictive), B, C, and D (least restrictive). What is often overlooked in preparing an ensemble is that the PPE itself can create significant worker hazards; i.e., the greater the level of PPE, the greater the associated risks. Furthermore, there is confusion as to whether a more ''conservative approach'' should always be taken since Level B provides the same level of respiratory protection as Level A but less skin protection. This paper summarizes the Occupational Safety and Health Administration regulations addressing Level A versus Level B, and provides justification for selecting Level B over Level A without under-protecting the employee during a particular remediation scenario. The scenario consisted of an entry team performing (1) an initial entry into a room containing concentrated acids (e.g., hydrofluoric acid), bases, and radiological constituents; (2) sampling and characterizing container contents; and (3) retrieving characterized containers. The invasive nature of the hydrofluoric acid sampling and characterization scenario created a high potential for splash, immersion, and exposure to hazardous vapors, requiring additional skin protection. The hazards associated with this scenario and the chemical nature of hydrofluoric acid provided qualitative evidence to justify Level A. Once the hydrofluoric acid was removed from the room, PPE performance was evaluated against the remaining chemical inventory. If chemical breakthrough from direct contact was not expected to occur and instrument readings confirmed the absence of any hazardous vapors, additional skin protection afforded by wearing a vapor-tight, totally-encapsulated suit was not required. Therefore, PPE performance and instrument data provided quantitative evidence to justify Level B.

Hylko, J. M.; Thompson, A. L.; Walter, J. F.; Deecke, T. A.

2002-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Office of Environmental Management (EM)

: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition...

42

Tank waste remediation system phase I high-level waste feed processability assessment report  

SciTech Connect (OSTI)

This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

1996-08-01T23:59:59.000Z

43

Rrecord of Decision (EPA Region 5): Chem-Central Site, Wyoming, MI. (First remedial action), September 1991. Final report  

SciTech Connect (OSTI)

The 2-acre Chem-Central site is a bulk chemical storage facility in Wyoming, Kent County, Michigan. Land use in the area is a mixture of residential and commercial. An estimated 10,000 people live within 1 mile of the site and receive their water supply via the municipal distribution system. Two creeks, Cole Drain and Plaster Creek, lie in proximity to the site. Between 1957 and 1962, hazardous substances entered the ground as a result of faulty construction of a .T-arm pipe used to transfer liquid products from bulk storage tanks to small delivery trucks. Additional hazardous substances may have entered the ground through accidental spills. In 1977, a routine State biological survey of Plaster Creek identified a contaminated ditch containing oils with organic compounds including PCBs and metals that was discharging into Cole Drain. Between 1978 and 1986, the State and EPA focused their efforts on finding and eliminating the source of the ditch contamination through extensive investigations of area soil, ground water, and surface water. Results indicated that ground water and soil surrounding and north of the Chem-Central plant were contaminated with volatile and semi-volatile organic compounds. The Record of Decision (ROD) addresses a remedy for contaminated onsite soil, contaminated offsite soil surrounding and north of the plant, and then addresses a remedy for contaminated onsite soil, contaminated offsite soil surrounding and north of the plant, and the ground water contamination plume emanating from the plant and spreading 1,800 feet northward. The primary contaminants of concern affecting the soil and ground water are VOCs including PCE, TCE, and toluene; and other organics including PAHs and PCBs. The selected remedial action for this site is included.

Not Available

1991-09-30T23:59:59.000Z

44

DOE-EMSP Final Report: Characterization of Changes in Colloid and DNAPL Affecting Surface Chemistry and Remediation  

SciTech Connect (OSTI)

The waste disposal to the M-area basin and A-14 outfall at the Savannah River Department of Energy facility in Aiken SC (USA) included a wide variety of inorganic aqueous flows and organic solvents in the form of dense non-aqueous phase liquids (DNAPL). The DNAPL has migrated through the subsurface resulting in widespread groundwater contamination. The goal of this research was to identify and quantify processes that could have affected the migration and remediation of the DNAPL in the subsurface. It was hypothesized that the variety of waste disposed at this site could have altered the mineral, microbial and DNAPL properties at this site relative to other DNAPL sites. The DNAPL was determined to have a very low interfacial tension and is suspected to be distributed in fine grained media, thereby reducing the effectiveness of soil vapor extraction remediation efforts. Although the DNAPL is primarily comprised of tetrachloroethene and trichloroethane, it also contains organic acids and several heavy metals. Experimental results suggest that iron from the aqueous and DNAPL phases undergoes precipitation and dechlorination reactions at the DNAPL-water interface, contributing to the low interfacial tension and acidity of the DNAPL. Biological activity in the contaminated region can also contribute to the low interfacial tension. PCE degrading bacteria produce biosurfactants and adhere to the DNAPL-water interface when stressed by high tetrachloroethene or low dissolved oxygen concentrations. The presence of iron can reduce the interfacial tension by nearly an order of magnitude, while the PCE degraders reduced the interfacial tension by nearly 50%. Abiotic changes in the mineral characteristics were not found to be substantially different between contaminated and background samples. The research completed here begins to shed some insight into the complexities of DNAPL fate and migration at sites where co-disposal of many different waste products occurred. Quantifying the low interfacial tension of the SRS DNAPL helps to formulate a new conceptual picture of the subsurface DNAPL migration and provides an explanation of the limited effectiveness of remediation efforts. Alternative designs for remediation that are more effective for sites with DNAPL in fine grained media are required.

Susan E. Powers; Stefan J. Grimberg; Miles Denham

2007-02-07T23:59:59.000Z

45

Draft Level 1 Remedial Investigation Work Plan: 316-3 waste disposal trenches  

SciTech Connect (OSTI)

This work plan describes the work to be performed for the initial level of site characterization for the 316.3 Trenches at the Hanford Site. This initial site characterization effort will include a review of existing environmental contamination data for the 300 Area as well as collection and analysis of environmental samples to better characterize subsurface contamination at the site. 7 refs., 10 figs., 7 tabs.

Not Available

1987-09-01T23:59:59.000Z

46

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect (OSTI)

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

47

Tank waste remediation system high-level waste feed processability assessment report  

SciTech Connect (OSTI)

This study evaluates the effect of feed composition on the performance of the high-level vitrification process. It is assumed in this study that the tank wastes are retrieved and blended by tank farms, producing 12 different blends from the single-shell tank farms, two blends of double-shell tank waste, and a separately defined all-tank blend. This blending scenario was chosen only for evaluating the impact of composition on the volume of high- level waste glass produced. Special glass compositions were formulated for each waste blend based on glass property models and the properties of similar glasses. These glasses were formulated to meet the applicable viscosity, electrical conductivity, and liquidus temperature constraints for the identified candidate melters. Candidate melters in this study include the low-temperature stirred melter, which operates at 1050{degrees}C; the reference Hanford Waste Vitrification Plant liquid-fed ceramic melter, which operates at 1150{degrees}C; and the high-temperature, joule-heated melter and the cold-crucible melter, which operate over a temperature range of 1150{degrees}C to 1400{degrees}C. In the most conservative case, it is estimated that 61,000 MT of glass will be produced if the Site`s high-level wastes are retrieved by tank farms and processed in the reference joule-heated melter. If an all-tank blend was processed under the same conditions, the reference melter would produce 21,250 MT of glass. If cross-tank blending were used, it is anticipated that $2.0 billion could be saved in repository disposal costs (based on an average disposal cost of $217,000 per canister) by blending the S, SX, B, and T Tank Farm wastes with other wastes prior to vitrification. General blending among all the tank farms is expected to produce great potential benefit.

Lambert, S.L. [Westinghouse Hanford Co., Richland, WA (United States); Kim, D.S. [Pacific Northwest Lab., Richland, WA (United States)

1994-12-01T23:59:59.000Z

48

Microbial degradation of low-level radioactive waste. Final report  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

1996-06-01T23:59:59.000Z

49

Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches  

SciTech Connect (OSTI)

As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

1989-01-01T23:59:59.000Z

50

Final Environmental Assessment of remedial action at the Falls City uranium mill tailings site, Falls City, Texas  

SciTech Connect (OSTI)

This environmental assessment (EA) is prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the impacts that their actions may have on the environment. This EA examines the short- and long-term effects of the DOE`s proposed remedial action for the Falls City tailings site. The no action alternative is also examined. The DOE will use the information and analyses presented here to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an EIS will be prepared. If the impacts are not judged to be significant, the DOE will issue an official ``Finding of No Significant Impact`` and implement the proposed action.

Not Available

1991-12-01T23:59:59.000Z

51

1992 North Dakota Economic Impact Study for the Uranium Mill Tailings Remedial Action Project, Belfield and Bowman, North Dakota. Preliminary final report  

SciTech Connect (OSTI)

The goal of the Uranium Mill Tailings Remedial Action (UMTRA) Project in North Dakota is to improve the environment and reduce the negative health effects associated with residual radioactive material (RRM) from the inactive processing sites at Belfield and Bowman, North Dakota. A secondary benefit of the UMTRA Project is economic gain. The 1992 North Dakota Economic Impact Study (NDEIS) analyzes the impact of the remedial actions at the inactive Belfield and Bowman processing sites and their associated vicinity properties. This analysis is based on the assumption that the state of North Dakota will provide 10 percent of the funding required for remediation. For every dollar the state of North Dakota invests in the Belfield and Bowman onsite portion of the UMTRA Project, it will realize $5.04 in gross labor income (i.e., gross labor income divided by the state`s total funding requirement). For every dollar the state of North Dakota invests, it will realize a net return of $3.04 (i.e., net benefit divided by the state`s total funding requirement). This reflects only labor expenditure and employment impact. ff state and local non-labor tax benefits were considered in the net economic benefit, North Dakota could receive significantly more than $3.04 for each dollar it invests. The UMTRA Project work at Belfield and Bowman will benefit the state of North Dakota. Benefits include a reduction in the negative health effects caused by low-level RRM, an improvement in the environment, and increased economic growth.

Not Available

1993-01-01T23:59:59.000Z

52

Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal  

E-Print Network [OSTI]

i Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes Refuge in northern San Francisco Bay, California. #12;iii Final Report for Sea-level Rise Response)................................................................... 7 Sea-level rise scenario model inputs

Fleskes, Joe

53

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

K. L. Vialetti

2008-05-20T23:59:59.000Z

54

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2007-04-12T23:59:59.000Z

55

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2006-12-06T23:59:59.000Z

56

US Department of Energy final response to standards for remedial actions at inactive uranium processing sites; Proposed rule  

SciTech Connect (OSTI)

This document revisits and supplements information and recommendations presented in the January 1988 US Department of Energy (DOE) submission to the US Environmental Protection Agency (EPA) regarding the proposed standards for Title I uranium processing sites (DOE, 1988). The clarifications and comments in this report are based on further DOE investigation, contemplation, and interpretation of the proposed standards. Since the January response, the DOE has undertaken a number of special studies to -investigate, evaluate, focus, and clarify issues relating to the standards. In addition, the Nuclear Regulatory Commission (NRC) has issued a draft technical position outlining its interpretation of the proposed standards and clarifying how the standards will be implemented (NRC, 1988). Some issues presented are based on previous positions, and the original DOE position is restated for reference. Other issues or recommendations are more recent than the January DOE response; therefore, no former position was advanced. The order of presentation reflects the general order of significance to the DOE, specifically in regards to the Uranium Mill Tailings Remedial Action (UMTRA) Project.

Not Available

1988-11-14T23:59:59.000Z

57

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) {section} 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments and concerns to the fullest extent possible. DOE received over 1,600 comments on the draft EIS from the public, federal, state and local agencies, tribes, governors, and members of Congress. DOE has considered these comments in finalizing the EIS and has provided responses to all comments in the EIS.

N /A

2005-08-05T23:59:59.000Z

58

Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I  

SciTech Connect (OSTI)

The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

Not Available

1983-07-01T23:59:59.000Z

59

Modification No. 2 to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah: Final  

SciTech Connect (OSTI)

Portions of the final Remedial Action Plan (RAP) for the Green River site, Volumes 1 and 2, Appendix B of the Cooperative Agreement No. DE-FC04-81AL16257, March 1991 (DOE, 1991) have been modified. The changes to the RAP are designated as RAP Modification No. 2. These changes have been placed in a three-ring binder that will supplement the original RAP (DOE, 1991), and include the following: addendum to the Executive Summary; Section 3.5 (Ground Water part of the Site Characterization Summary); Section 4.0 (Site Design); Section5.0 (Water Resources Protection Strategy Summary); Appendix D.5 (Ground Water Hydrology); and Appendix E (Ground Water Protection Strategy). In addition to these revisions, there have been editorial changes that clarify the text, but do not change the meaning. Also, certain sections of the document, which are included in the submittal for ease of review and continuity, have been updated to reflect the final ground water protection standards and the current UMTRA Project format and content of RAPs.

NONE

1996-11-01T23:59:59.000Z

60

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix A of Attachment 3, Calculations: Preliminary final  

SciTech Connect (OSTI)

This report consists primarily of calculations for ground water flow and hydraulic conductivity as part of the Remedial Action Plan and Site Design for Stabilization program.

Not Available

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE high-level waste tank safety program. Final report  

SciTech Connect (OSTI)

The overall objective of the work was to provide LANL with support to the DOE High-Level Waste Tank Safety Program. This effort included direct support to the DOE High-Level Waste Tank Working Groups, development of a database to track all identified safety issues, development of requirements for waste tank modernization, evaluation of external comments regarding safety-related guidance/instruction developed previously, examination of current federal and state regulations associated with DOE Tank farm operations, and performance of a conduct of operations review. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective is provided.

NONE

1998-11-01T23:59:59.000Z

62

Network-level fallout radiation effects assessment. Final report  

SciTech Connect (OSTI)

National Security calls for the ability to maintain communication capabilities in times of national disaster, which could include a nuclear attack. Nuclear detonation has two basic by-products for which telecommunication equipments are susceptible to damage. These are electromagnetic pulse (EMP) and fallout radiation. The purposes of the EMP Mitigation Program are to analyze and to lessen the effects of EMP and fallout radiation on national telecommunications resources. Fallout radiation occurs after the initial intense high-frequency EMP, and is the subject of this analysis. Fallout radiation is the residual radiation that remains in the atmosphere after a nuclear blast, and which can be carried by weather conditions to locations far from the detonation point. This analysis focuses on the effects of fallout radiation on the telecommunications network of the American Telephone and Telegraph Co. (AT and T). This assessment of AT and T-network's communications-capabilities uses a network-level approach to assess fallout-radiation effects on the network's performance. The approach used was developed for assessing network-level EMP effects on Public Switched Network communication capabilities. Details are given on how EMP assessments utilize this method. Equipment-level fallout-radiation survivability data is also required.

Not Available

1991-05-01T23:59:59.000Z

63

Equipment level fallout radiation-effects approach. Final report  

SciTech Connect (OSTI)

National Security Decision Directive (NSDD) 97 and Executive Order (EO) 12472 call for the ability to maintain National Security Emergency Preparedness (NSEP) communication capabilities in times of national disaster, which includes a nuclear attack. The Office of the Manager, National Communications System (OMNCS) sponsors the Electromagnetic Pulse (EMP) Mitigation Program to evaluate and, where possible, mitigate the effects of the nuclear attack. Fallout radiation has been identified as an environment that may effect the performance of the regional and national telecommunication system. This report presents the investigations in the network-level fallout radiation methodology used to determine the effects of this environment. Alternative techniques are presented to improve the methodology.

Not Available

1989-02-10T23:59:59.000Z

64

CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY  

SciTech Connect (OSTI)

THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

BERGMAN TB; STEFANSKI LD; SEELEY PN; ZINSLI LC; CUSACK LJ

2012-09-19T23:59:59.000Z

65

Final Report on HOLODEC 2 Technology Readiness Level  

SciTech Connect (OSTI)

During the period of this project, the Holographic Detector for Clouds 2 (HOLODEC 2) instrument has advanced from a laboratory-proven instrument with some initial field testing to a fully flight-tested instrument capable of providing useful cloud microphysics measurements. This can be summarized as 'Technology Readiness Level 8: Technology is proven to work - Actual technology completed and qualified through test and demonstration.' As part of this project, improvements and upgrades have been made to the optical system, the instrument power control system, the data acquisition computer, the instrument control software, the data reconstruction and analysis software, and some of the basic algorithms for estimating basic microphysical variables like droplet diameter. Near the end of the project, the instrument flew on several research flights as part of the IDEAS 2011 project, and a small sample of data from the project is included as an example. There is one caveat in the technology readiness level stated above: the upgrades to the instrument power system were made after the flight testing, so they are not fully field proven. We anticipate that there will be an opportunity to fly the instrument as part of the IDEAS project in fall 2012.

Shaw, RA; Spuler, SM; Beals, M; Black, N; Fugal, JP; Lu, L

2012-06-18T23:59:59.000Z

66

Steam reforming of low-level mixed waste. Final report  

SciTech Connect (OSTI)

ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

NONE

1998-06-01T23:59:59.000Z

67

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology report, Final  

SciTech Connect (OSTI)

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.

Not Available

1994-03-01T23:59:59.000Z

68

Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report  

SciTech Connect (OSTI)

This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy.

NONE

1993-02-01T23:59:59.000Z

69

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Rifle, Colorado. Volume 1, Text: Appendices A, B, and C: Final report  

SciTech Connect (OSTI)

This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Rifle sites. That remedial action consists of removing approximately 4,185,000 cubic yards (cy) of tailings and contaminated materials from their current locations, transporting, and stabilizing the tailings material at the Estes Gulch disposal site, approximately six miles north of Rifle. The tailings and contaminated materials are comprised of approximately 597,000 cy from Old Rifle, 3,232,000 cy from New Rifle, and 322,000 cy from vicinity properties and about 34,000 cy from demolition. The remedial action plan includes specific design requirements for the detailed design and construction of the remedial action. An extensive amount of data and supporting information have been generated for this remedial action and cannot all be incorporated into this document. Pertinent information and data are included with reference given to the supporting documents.

Not Available

1990-02-01T23:59:59.000Z

70

Radioactive tank waste remediation focus area  

SciTech Connect (OSTI)

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

NONE

1996-08-01T23:59:59.000Z

71

Defense High-Level Waste Leaching Mechanisms Program. Final report  

SciTech Connect (OSTI)

The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

Mendel, J.E. (compiler)

1984-08-01T23:59:59.000Z

72

Tank waste remediation system (TWRS) mission analysis  

SciTech Connect (OSTI)

The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

Rieck, R.H.

1996-10-03T23:59:59.000Z

73

Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2006-03-01T23:59:59.000Z

74

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect (OSTI)

This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

J.D. Ludowise

2009-06-17T23:59:59.000Z

75

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report: Attachment 2, Geology report; Attachment 3, Groundwater hydrology report; Attachment 4, Water resources protection strategy: Final report  

SciTech Connect (OSTI)

The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

Chernoff, A.R. [USDOE Albuquerque Field Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Lacker, D.K. [Texas State Dept. of Health, Austin, TX (United States). Bureau of Radiation Control

1992-09-01T23:59:59.000Z

76

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report. Volume 3, Appendix F, Final design, specifications, and drawings  

SciTech Connect (OSTI)

This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

Not Available

1992-02-01T23:59:59.000Z

77

Remedial action plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Final report, Appendixes to attachment 3  

SciTech Connect (OSTI)

This document contains supporting appendices to attachment 3 for the remedial action and site stabilization plan for Maybell, Colorado UMTRA site. Appendix A includes the Hydrological Services Calculations and Appendix B contains Ground Water Quality by Location data.

Not Available

1994-06-01T23:59:59.000Z

78

Comment and response document for the final remedial action plan site design for stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado  

SciTech Connect (OSTI)

This document consists of comments and responses; the reviewers are the U.S. Nuclear Regulatory Commission (NRC), Colorado Dept. of Public Health and Environment, and the remedial action contractor (RAC).

NONE

1995-09-01T23:59:59.000Z

79

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix E. Final report  

SciTech Connect (OSTI)

This document provides Appendix E of the Remedial Action Plan (RAP) presented in 1988 for the stabilization of the inactive uranium mill tailings at the Mexican Hat, Utah site. The RAP was developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. The RAP has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action.

NONE

1988-07-01T23:59:59.000Z

80

Proceedings of the 1993 international conference on nuclear waste management and environmental remediation. Volume 2: High level radioactive waste and spent fuel management  

SciTech Connect (OSTI)

This conference was held in 1993 in Prague, Czech Republic to provide a forum for exchange of state-of-the-art information on radioactive waste management. Volume 2 contains 109 papers divided into the following sections: recent developments in environmental remediation technologies; decommissioning of nuclear power reactors; environmental restoration site characterization and monitoring; decontamination and decommissioning of other nuclear facilities; prediction of contaminant migration and related doses; treatment of wastes from decontamination and decommissioning operations; management of complex environmental cleanup projects; experiences in actual cleanup actions; decontamination and decommissioning demolition technologies; remediation of obsolete sites from uranium mining and milling; ecological impacts from radioactive environmental contamination; national environmental management regulations--issues and assessments; significant issues and strategies in environmental management; acceptance criteria for very low-level radioactive wastes; processes for public involvement in environmental activities and decisions; recent experiences in public participation activities; established and emerging environmental management organizations; and economic considerations in environmental management. Individual papers have been processed separately for inclusion in the appropriate data bases.

Ahlstroem, P.E.; Chapman, C.C.; Kohout, R.; Marek, J. [eds.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Brownfield landfill remediation under the Illinois EPA site remediation program  

SciTech Connect (OSTI)

Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

Beck, J.; Bruce, B.; Miller, J.; Wey, T.

1999-07-01T23:59:59.000Z

82

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado. Attachment 4, Water resources protection strategy: Final report  

SciTech Connect (OSTI)

To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards the US Department of Energy (DOE) proposes to meet background concentrations or the EPA maximum concentration limits (MCLS) for hazardous constituents in groundwater in the uppermost aquifer at the point of compliance (POC) at the Gunnison Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site near Gunnison, Colorado. The proposed remedial action will ensure protection of human health and the environment. A summary of the principal features of the water resources protection strategy for the Gunnison disposal site is included in this report.

Not Available

1992-10-01T23:59:59.000Z

83

Summary - Mitigation and Remediation of Mercury Contamination...  

Office of Environmental Management (EM)

and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

84

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Text, Appendices A--C. Final report  

SciTech Connect (OSTI)

This Remedial Action Plan (RAP) has been developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Appendices A,B, and C are provided as part of this document. Appendix A presents regulatory compliance issues, Appendix B provides details of the engineering design, and Appendix C presents the radiological support plan.

NONE

1988-07-01T23:59:59.000Z

85

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan  

SciTech Connect (OSTI)

This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

D. E. Shanklin

2006-06-01T23:59:59.000Z

86

Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement  

SciTech Connect (OSTI)

In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

N /A

2005-06-30T23:59:59.000Z

87

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Final report  

SciTech Connect (OSTI)

This document contains the page changes for Attachment 3, Ground Water Hydrology Report dated August, 1996 for the Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings at Slick Rock, Colorado. This portion of Attachment 3 contains the Table of Contents pages i and ii, and pages numbered 3-3 through 3-56 of the Ground Water Hydrology Report. Also included are the cover sheets for Appendix A, B, and C to Attachment 3.

NONE

1996-08-01T23:59:59.000Z

88

Environmental analysis and data report prepared for the environmental assessment of remedial action at the Lowman uranium mill tailings site near Lowman, Idaho. Final report  

SciTech Connect (OSTI)

This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lowman, Idaho. The Lowman EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the effects of their actions on the environment. It examines the short-term and the long-term effects of the US Department of Energy`s (DOE) proposed remedial action for the Lowman site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement will be prepared. If the impacts are not judged to be significant, the DOE may issue a Finding of No Significant Impact and implement the proposed action. The information and data presented in this environmental analyses and data report are for background purposes only and are not required as part of the NEPA decision-making process.

Not Available

1991-01-01T23:59:59.000Z

89

Selecting Mold Remediation Contractors  

E-Print Network [OSTI]

Texas has strict regulations that govern mold remediation companies. Before contracting for mold remediation work, consumers should know what the law requires of remediation companies and what such contracts should contain....

Renchie, Don L.

2005-10-05T23:59:59.000Z

90

Screening of Potential Remediation Methods for the 200-BP-5 Operable Unit at the Hanford Site  

SciTech Connect (OSTI)

A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-BP-5 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final (EPA 1988). The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers) identified in the groundwater sampling and analysis plan for the operable unit (DOE/RL-2001-49, Rev. 1) with additions.

Truex, Michael J.; Dresel, P. EVAN; Nimmons, Michael J.; Johnson, Christian D.

2006-09-21T23:59:59.000Z

91

Selection of liquid-level monitoring method for the Oak Ridge National Laboratory inactive liquid low-level waste tanks, remedial investigation/feasibility study  

SciTech Connect (OSTI)

Several of the inactive liquid low-level waste (LLLW) tanks at Oak Ridge National Laboratory contain residual wastes in liquid or solid (sludge) form or both. A plan of action has been developed to ensure that potential environmental impacts from the waste remaining in the inactive LLLW tank systems are minimized. This document describes the evaluation and selection of a methodology for monitoring the level of the liquid in inactive LLLW tanks. Criteria are established for comparison of existing level monitoring and leak testing methods; a preferred method is selected and a decision methodology for monitoring the level of the liquid in the tanks is presented for implementation. The methodology selected can be used to continuously monitor the tanks pending disposition of the wastes for treatment and disposal. Tanks that are empty, are scheduled to be emptied in the near future, or have liquid contents that are very low risk to the environment were not considered to be candidates for installing level monitoring. Tanks requiring new monitoring equipment were provided with conductivity probes; tanks with existing level monitoring instrumentation were not modified. The resulting data will be analyzed to determine inactive LLLW tank liquid level trends as a function of time.

Not Available

1994-11-01T23:59:59.000Z

92

Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report  

SciTech Connect (OSTI)

As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

1989-01-01T23:59:59.000Z

93

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Attachment 4, water resources protection strategy; Preliminary final  

SciTech Connect (OSTI)

This attachment contains a summary of the proposed water resources protection strategy developed to achieve compliance with US EPA ground water protection standards for the remedial action plan at the Slick Rock, CO uranium mill tailings sites. Included are the conceptual design considerations such as climate and infiltration, surface and subsurface drainage, and features for water resources protection such as disposal cell cover components, transient drainage and control of construction water, subsidence and disposal cell longevity. The disposal and control of radioactive materials and nonradioactive contaminants as it relates to ground water protection standards is discussed, and the plan for cleanup and control of existing contamination is outlined.

NONE

1994-03-01T23:59:59.000Z

94

EIS-0355: DOE Notice of Availability of the Final Environmental...  

Broader source: Energy.gov (indexed) [DOE]

of the Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill...

95

EIS-0355: EPA Notice of Availability of the Final Environmental...  

Broader source: Energy.gov (indexed) [DOE]

of the Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill...

96

Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final  

SciTech Connect (OSTI)

The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

NONE

1995-09-01T23:59:59.000Z

97

1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project. Preliminary final  

SciTech Connect (OSTI)

The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado`s Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community`s infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

Not Available

1991-10-22T23:59:59.000Z

98

Technical area status report for low-level mixed waste final waste forms. Volume 2, Appendices  

SciTech Connect (OSTI)

This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

Mayberry, J.L.; Huebner, T.L. [Science Applications International Corp., Idaho Falls, ID (United States); Ross, W. [Pacific Northwest Lab., Richland, WA (United States); Nakaoka, R. [Los Alamos National Lab., NM (United States); Schumacher, R. [Westinghouse Savannah River Co., Aiken, SC (United States); Cunnane, J.; Singh, D. [Argonne National Lab., IL (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Greenhalgh, W. [Westinghouse Hanford Co., Richland, WA (United States)

1993-08-01T23:59:59.000Z

99

FINAL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of VisitorsASCRReal-time2 FINAL

100

Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site  

SciTech Connect (OSTI)

A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

2006-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Uranium Mill Tailings Remedial Action Project Environmental Line Management Audit Action Plan. Final report. Audit, October 26, 1992--November 6, 1992  

SciTech Connect (OSTI)

This Action Plan contains responses, planned actions, and estimated costs for addressing the findings discovered in the Environmental Management Audit conducted for the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRA), October 26 through November 6, 1992. This document should be read in conjunction with the Audit Report to ensure the findings addressed in this document are fully understood. The scope of the UMTRA Environmental Management Audit was comprehensive and encompassed all areas of environmental management except environmental programs pertaining to the National Environmental Policy Act (NEPA) compliance. The Audit Report listed 18 findings: 11 were identified as compliance findings, and the remaining 7 were best management practice findings. Root cause analysis was performed on all the findings. The results of the analysis as well as planned corrective actions are summarized in Section 5.0. All planned actions were prioritized using the Tiger Team Assessment Corrective Action Plan system. Based on assigned priorities, all planned actions were costed by fiscal year. This Action Plan contains a description of the organizational and management structures to be used to implement the Action Plan, a brief discussion of root cause analysis and funding, followed by the responses and planned actions for each finding. A member of the UMTRA Project Office (PO) has been assigned responsibility for tracking the progress on each of the findings. The UMTRA PO staff wrote and/or approved all of the corrective actions recorded in this Action Plan.

NONE

1993-07-01T23:59:59.000Z

102

Limiting Political Corruption: Some Effective Remedies? Political corruption has a long history and deep roots in all levels of our government.  

E-Print Network [OSTI]

Limiting Political Corruption: Some Effective Remedies? Political corruption has a long history with less political corruption. Moreover, the effect of campaign finance disclosure exerts a bigger effect officials are much more honest than average, or our state's enforcement of political corruption statutes

Ahmad, Sajjad

103

GTS Duratek, phase I Hanford low-level waste melter tests: Final report  

SciTech Connect (OSTI)

A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense waste stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the final report on testing performed by GTS Duratek Inc. in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The report contains description of the tests, observations, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. The document also contains summaries of the melter offgas reports issued as separate documents for the 100 kg melter (WHC-SD-WM-VI-028) and for the 1000 kg melter (WHC-SD-WM-VI-029).

Eaton, W.C.

1995-10-26T23:59:59.000Z

104

In-Situ Radiation Detection Demonstration Final Report  

SciTech Connect (OSTI)

The Department of Defense (DoD) has hundreds of facilities where radioactive materials have been used or are being used, including firing ranges, low-level radioactive waste disposal areas, and areas where past activities have resulted in environmental contamination. Affected sites range in size from a few acres to square miles. Impact to the DoD comes through military base closure and release to the public. It is important that radioactive contaminants are remediated to levels that result in acceptable risk to the public. Remediation requires characterization studies, e.g., sampling and surveys, to define the affected areas, removal actions, and final confirmatory sampling and surveys. Characterization of surface contamination concentrations has historically been performed using extensive soil sampling programs in conjunction with surface radiation surveys conducted with hand-held radiation monitoring equipment. Sampling is required within the suspect affected area and a large buffer area. Surface soil contaminant characterization using soil sampling and hand held monitoring are costly, time consuming, and result in long delays between submission of samples for analysis and obtaining of final results. This project took an existing, proven radiation survey technology that has had limited exposure and improved its capabilities by documenting correlation factors for various detector/radionuclide geometries that commonly occur in field surveys. With this tool, one can perform characterization and final release surveys much more quickly than is currently possible, and have detection limits that are as good as or better than current technology. This paper will discuss the capabilities of a large area plastic scintillation detector used in conjunction with a global positioning system (GPS) to improve site characterization, remediation, and final clearance surveys of the radioactively contaminated site. Survey results can rapidly identify areas that require remediation as well as guide surgical removal of contaminated soil that is above remediation guidelines. Post-remediation surveys can document that final radiological site conditions are within the remedial action limits.

MOHAGHEGHI,AMIR H.; REESE,ROBERT; MILLER,DAVID R.; MILLER,MARK LAVERNE; DUCE,STEPHEN

2000-06-01T23:59:59.000Z

105

Improving Remedial Planning Performance: The Rattlesnake Creek Experience  

SciTech Connect (OSTI)

The U.S. Army Corps of Engineers (USACE), Buffalo District, has responsibility for characterizing and remediating radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Most of these FUSRAP sites include radionuclide contamination in soils where excavation and offsite disposal is the selected remedial action. For many FUSRAP soil remediation projects completed to date, the excavated contaminated soil volumes have significantly exceeded the pre-excavation volume estimates that were developed for project planning purposes. The exceedances are often attributed to limited and sparse datasets that are used to calculate the initial volume estimates. These volume exceedances complicate project budgeting and planning. Building on these experiences, the USACE took a different approach in the remediation of Rattlesnake Creek, located adjacent to the Ashland 2 site, in Tonawanda, New York. This approach included a more extensive pre-design data collection effort to improve and reduce the uncertainty in the pre-excavation volume estimates, in addition to formalizing final status survey data collection strategies prior to excavation. The final status survey sampling was fully integrated with the pre-design data collection, allowing dual use of the pre-design data that was collected (i.e., using the data to close out areas where contamination was not found, and feeding the data into volume estimates when contamination was encountered). The use of real-time measurement techniques (e.g., X-ray fluorescence [XRF] and gamma walkover surveys) during pre-excavation data collection allowed the USACE to identify and respond to unexpected contamination by allocating additional data collection to characterizing new areas of concern. The final result was an estimated soil volume and excavation footprint with a firm technical foundation and a reduction in uncertainty. However, even with extensive pre-design data collection, additional contamination was found during the excavation that led to an increase in the soil volume requiring offsite disposal. This paper describes the lessons learned regarding improving remedial planning performance from the Rattlesnake Creek experience and evaluates the level of project uncertainty reduction achieved through pre-design data collection. (authors)

Rieman, C.R.; Spector, H.L.; Andrews, S.M. [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Durham, L. A.; Johnson, R. L. [Argonne National Laboratory, 9700 S. Cass Ave., EVS 900, Argonne, IL 60439 (United States); Racino, R. R. [Cabrera Services, Inc., 29 Railroad Avenue, Middletown, NY 10940 (United States)

2006-07-01T23:59:59.000Z

106

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

SciTech Connect (OSTI)

This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods.

N /A

2002-10-11T23:59:59.000Z

107

Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

Not Available

1987-05-01T23:59:59.000Z

108

Mitigation and Remediation of Mercury Contamination at the Y...  

Office of Environmental Management (EM)

and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

109

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect (OSTI)

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

110

How to accelerate the Fernald remediation  

SciTech Connect (OSTI)

The Fernald Environmental Management Project is unique among Department of Energy (DOE) sites by virtue of successful efforts by the Fernald Environmental Restoration Management Corporation (FERMCO) and DOE-Fernald Area Office (FN) in securing a stak-eholder-assisted final site closure vision and all Record of Decisions (ROD) or Interim RODs required to set the stage for final remediation. DOE and FERMCO have agreed in principle on a Ten Year Plan which accelerates all activities to remediate the site in approximately half the target schedule. This paper presents the path that led to the current Ten Year Plan, the key elements of the plan and the implementation strategies.

Yates, M.K. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States). Fernald Environmental Management Project; Reising, J. [USDOE Cincinnati, OH (United States)

1996-01-10T23:59:59.000Z

111

Superfund Record of Decision (EPA Region 5): Tri County/Elgin Landfill Site, Elgin, IL. (First remedial action), September 1992. Final report  

SciTech Connect (OSTI)

The 66-acre Tri County Landfill (TCL) site comprises two former landfills the Tri County Landfill and the Elgin Landfill, located near the junction of Kane, Cook and DuPage Counties, Illinois. The two disposal operations overlapped to the point where the two landfills were indistinguishable. Land use in the area is predominantly agricultural. The local residents and businesses use private wells as their drinking water supply. Prior to the 1940's, both landfills were used for gravel mining operations. From 1968 to 1976, the TCL received liquid and industrial waste. State and county inspection reports revealed that open dumping, area filling, and dumping into the abandonded gravel quarry had occurred at the site. In addition, confined dumping, inadequate daily cover, blowing litter, fires, lack of access restrictions, and leachate flows were typical problems reported. In 1981, the landfill was closed with a final cover.

Not Available

1992-09-30T23:59:59.000Z

112

Environmental, Safety, and Health Plan for the remedial investigation of the liquid low-level waste tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

The Environmental, Safety, and Health (ES&H) Plan presents the concepts and methodologies to be used during the Oak Ridge National Laboratory (ORNL) RI/FS project to protect the health and safety of employees, the public, and the environment. The ES&H Plan acts as a management extension for ORNL and Energy Systems to direct and control implementation of the project ES&H program. This report describes the program philosophy, requirements, quality assurance measures, and methods for applying the ES&H program to individual task remedial investigations, project facilities, and other major tasks assigned to the project.

Not Available

1991-09-01T23:59:59.000Z

113

Environmental, Safety, and Health Plan for the remedial investigation of the liquid low-level waste tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Environmental, Safety, and Health (ES H) Plan presents the concepts and methodologies to be used during the Oak Ridge National Laboratory (ORNL) RI/FS project to protect the health and safety of employees, the public, and the environment. The ES H Plan acts as a management extension for ORNL and Energy Systems to direct and control implementation of the project ES H program. This report describes the program philosophy, requirements, quality assurance measures, and methods for applying the ES H program to individual task remedial investigations, project facilities, and other major tasks assigned to the project.

Not Available

1991-09-01T23:59:59.000Z

114

Voluntary Protection Program Onsite Review, Soil and Groundwater Remediation Project- March 2007  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Soil and Groundwater Remediation Project is performing at a level deserving DOE-VPP recognition.

115

Formerly utilized MED/AEC sites remedial action program: radiological survey of the former Virginia-Carolina Chemical Corporation Uranium Recovery Pilot Plant, Nichols, Florida. Final report  

SciTech Connect (OSTI)

The results of a radiological survey conducted at the site of a former uranium recovery pilot plant operated by the Virginia-Carolina Chemical Corporation is presented. All that remains of this operation is a concrete pad situated within the boundary of a phosphate products plant now operated by Conserv, Inc., at the Nichols, Florida site. The survey included measurements designed to characterize the residual radioactivity in the vicinity of this pilot plant and to compare the quantities with federal guidelines for the release of decontaminated property for unrestricted use. The results of this survey indicate that only small quantities of radioactivity exist above normal background levels for that area. Some soil contamination was found in the vicinity of a concrete pad on which the pilot plant stood. Much of this contamination was due to /sup 226/Ra and /sup 238/U. Some beta-gamma dose rates in excess of applicable guidelines were observed in this same area. External gamma-ray exposure rates at 1 m above the ground range from 20 to 100 ..mu..R/hr. None of the direct measurements of alpha contamination were above guideline levels.

Haywood, F F; Doane, R W; Goldsmith, W A; Shinpaugh, W H; Crawford, D J; Fox, W F; Leggett, R W; Stone, D R

1980-01-01T23:59:59.000Z

116

A process for containment removal and waste volume reduction to remediate groundwater containing certain radionuclides, toxic metals and organics. Final report  

SciTech Connect (OSTI)

A project to remove groundwater contaminants by an improved treatment process was performed during 1990 October--1992 March by Atomic Energy of Canada Limited for the United States Department of Energy, managed by Argonne National Laboratory. The goal was to generate high-quality effluent while minimizing secondary waste volume. Two effluent target levels, within an order of magnitude, or less than the US Drinking Water Limit, were set to judge the process effectiveness. The program employed mixed waste feeds containing cadmium, uranium, lead, iron, calcium, strontium-85-90, cesium-137, benzene and trichlorethylene in simulated and actual groundwater and soil leachate solutions. A combination of process steps consisting of sequential chemical conditioning, cross-flow microfiltration and dewatering by low temperature-evaporation, or filter pressing were effective for the treatment of mixed waste having diverse physico-chemical properties. A simplified single-stage version of the process was implemented to treat ground and surface waters contaminated with strontium-90 at the Chalk River Laboratories site. Effluent targets and project goals were met successfully.

Buckley, L.P.; Killey, D.R.W.; Vijayan, S.; Wong, P.C.F. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

1992-09-01T23:59:59.000Z

117

Ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final, Revision 2, Version 5: Appendix E to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah  

SciTech Connect (OSTI)

The purpose of this appendix is to provide a ground water protection strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Green River, Utah. Compliance with the US Environmental Protection Agency (EPA) ground water protection standards will be achieved by applying supplemental standards (40 CFR {section} 192.22(a); 60 FR 2854) based on the limited use ground water present in the uppermost aquifer that is associated with widespread natural ambient contamination (40 CFR {section} 192.11(e); 60 FR 2854). The strategy is based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The strategy will result in compliance with Subparts A and C of the EPA final ground water protection standards (60 FR 2854). The document contains sufficient information to support the proposed ground water protection strategy, with monitor well information and ground water quality data included as a supplement. Additional information is available in the final remedial action plan (RAP) (DOE, 1991a), the final completion report (DOE, 1991b), and the long-term surveillance plan (LTSP) (DOE, 1994a).

NONE

1995-09-01T23:59:59.000Z

118

Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.  

SciTech Connect (OSTI)

This report summarizes the result of LDRD project 12-0395, titled %22Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations.%22 During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers and advanced processor ar- chitectures. Finally, we briefly describe the MSM method for efficient calculation of electrostatic interactions on massively parallel computers.

Thompson, Aidan P.; Schultz, Peter A.; Crozier, Paul; Moore, Stan Gerald; Swiler, Laura Painton; Stephens, John Adam; Trott, Christian Robert; Foiles, Stephen M.; Tucker, Garritt J. (Drexel University)

2014-09-01T23:59:59.000Z

119

BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION  

E-Print Network [OSTI]

OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION FINAL Prepared by: Brookhaven FOR U.S. Department of Energy March 2009 #12;i OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA..................................................................................................................4 4.0 Building 96 ­ Operational Background

120

ICDF Complex Remedial Action Work Plan  

SciTech Connect (OSTI)

This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

W. M. Heileson

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Formerly Used Sites Remedial Action Program (FUSRAP) W. R. Grace Building 23 Remedial Action-Challenges and Successes - 12247  

SciTech Connect (OSTI)

Monazite sand processing was conducted at the W. R. Grace Curtis Bay Facility (Baltimore, Maryland) from mid-May 1956 through the spring of 1957 under license to the Atomic Energy Commission (AEC), for the extraction of source material in the form of thorium, as well as rare earth elements. The processing was conducted in the southwest quadrant of a ca. 100 year old, five-story, building (Building 23) in the active manufacturing portion of the facility. Building components and equipment in the southwest quadrant of Building 23 exhibited residual radiological activity remaining from the monazite sand processing. U.S. Army Corps of Engineers (USACE) conducted a remedial investigation (RI) and feasibility study (FS) and prepared a Record of Decision (ROD) to address residual radioactivity on building components and equipment in the southwest quadrant of Building 23. The remedy selected for the southwest quadrant of Building 23, which was documented in the ROD (dated May 2005), was identified as 'Alternative 2: Decontamination With Removal to Industrial Use Levels'. The selected remedy provided for either decontaminating or removing areas of radioactivity to meet the RGs. Demonstration of compliance with the selected ARAR was performed using the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) and other appropriate guidance, as well as appropriate dose modeling codes where necessary. USACE-Baltimore District along with its private industry partner worked together under the terms of a 2008 Settlement Agreement to implement the remedial action (RA) for the southwest quadrant of Building 23. The RA was conducted in two phases: Phase 1 was completed to improve the building condition for support of subsequent remedial action and decrease scope uncertainty of the remedial action, and Phase 2 included decontamination and removal activities to meet the RGs and demonstration of compliance with the selected ARAR. Challenges encountered during the RA include: coordination with stakeholders, coordination between multiple RA contractors, addressing unique structural challenges for Building 23, nonradiological hazards associated with the RA, weather issues, and complex final status survey (FSS) coordination. The challenges during the Phase 1 RA were handled successfully. The challenges for the Phase 2 RA, which is anticipated to be complete by late-summer of 2012, have been handled successfully so far. By fall of 2012, USACE is expecting to finalize a robust RA Closure Report, including the Final Status Survey Report, which summarizes the RA activities and documents compliance with the ROD. During the ongoing RA at Building 23, there have been and still are many challenges both technically and from a project management perspective, due in part to the nature and extent of impact at the site (residual radioactivity within an active processing building), dual oversight by the property owner and USACE, and site-specific challenges associated with a complex RA and multiple contractors. Currently, USACE and its industry partner are overseeing the completion of RA field activities. RA closure documentation for the remediation of Building 23 to address residual contamination in building materials will be reviewed/approved by USACE and its industry partner upon completion of the field activities. USACE and its industry partner are working well together, through the Settlement Agreement, to conduct a cost-efficient and effective remedial action to address the legacy issues at Building 23. This cooperative effort has set a firm foundation for achieving a successful RA at the RWDA using a 'forward think' approach, and it is a case study for other sites where an industry partner is involved. The collaborative effort led to implementation of an RA which is acceptable to the site owner, the regulators, and the public, thus allowing USACE to move this project forward successfully in the FUSRAP program. (authors)

Barber, Brenda; Honerlah, Hans [U.S. Army Corps of Engineers - Baltimore District, 10 S. Howard St., Baltimore, Maryland, 21201 (United States); O'Neill, Mike [EA Engineering, Science, and Technology, 15 Loveton Circle, Baltimore, Maryland, 21152 (United States); Young, Carl [Cabrera Services, Inc., 1106 N. Charles St., Suite 300, Baltimore, MD 21201 (United States)

2012-07-01T23:59:59.000Z

122

CPR_RemedialAction_flowchart_final.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N Goods PO6, 3/11/13)

123

Technical area status report for low-level mixed waste final waste forms. Volume 1  

SciTech Connect (OSTI)

The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

1993-08-01T23:59:59.000Z

124

Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report  

SciTech Connect (OSTI)

The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

NONE

1992-09-01T23:59:59.000Z

125

Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report  

SciTech Connect (OSTI)

SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

SK Sundaram; ML Elliott; D Bickford

1999-11-19T23:59:59.000Z

126

Modification to the Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Volume 1, Text, Attachments 1--6. Final report  

SciTech Connect (OSTI)

This document provides the modifications to the 1988 Remedial Action Plan (RAP) of the contaminated materials at the Monument Valley, Arizona, and Mexican Hat, Utah. The text detailing the modifications and attachments 1 through 6 are provided with this document. The RAP was developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents.

NONE

1989-01-01T23:59:59.000Z

127

Health effects of low-level radiation in shipyard workers. Final report: [Draft  

SciTech Connect (OSTI)

The Nuclear Shipyard Workers Study (NSWS) was designed to determine whether there is an excess risk of leukemia or other cancers associated with exposure to low levels of gamma radiation. The study compares the mortality experience of shipyard workers who qualified to work in radiation areas to the mortality of similar workers who hold the same types of jobs but who are not authorized to work in radiation areas. The population consists of workers from six government and two private shipyards.

Matanoski, G.M.

1991-06-01T23:59:59.000Z

128

TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300  

SciTech Connect (OSTI)

The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

Eddy-Dilek, C.; Miles, D.; Abitz, R.

2009-08-14T23:59:59.000Z

129

Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report  

SciTech Connect (OSTI)

This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.

CLARK,NANCY H.; EIDLER,PHILLIP

1999-10-01T23:59:59.000Z

130

DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION  

SciTech Connect (OSTI)

The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

Barry L. Burks

2002-12-01T23:59:59.000Z

131

Effects of Water Levels on Productivity of Canada Geese in the Northern Flathead Valley, Final Report.  

SciTech Connect (OSTI)

The Fish and Wildlife Program of the Northwest Power Planning Council calls for wildlife mitigation at hydroelectric projects in the Columbia River System. Beginning April, 1984, the Bonneville Power Administration funded a study of the effects of the operation of Hungry Horse and Kerr Dams on the western Canada goose (Branta canadensis moffittii) inhabitating the Flathead Valley of northwest Montana. The study was conducted by personnel of the Montana Department of Fish, Wildlife and Parks (MDFWP), to: (1) identify the size and productivity of this population, (2) identify current habitat conditions and losses of nesting and brood-rearing areas, (3) describe the effects of water level fluctuations on nesting and brood-rearing, and (4) identify mitigation alternatives to offset these effects. Annual pair and nest surveys were used to document the location and fate of goose nests. The number of known nesting attempts varied from 44 in 1984 to 108 in 1985, to 136 in 1986 and 134 in 1987. Fifty-four percent of the annual meeting nesting effort took place on elevated sites which were secure from the flooding and dewatering effects of fluctuating water levels. An average of 15 nests were found on stumps in the remnant Flathead River delta, however, an area strongly influenced by the operation of Kerr Dam. Annual nest losses to flooding and predation attributable to fluctuations caused by the dam were recorded. 53 refs., 24 figs., 35 tabs.

Casey, Daniel

1987-08-01T23:59:59.000Z

132

Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report  

SciTech Connect (OSTI)

The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The task of sealing the battery stack using vibration welding has undergone significant improvement resulting in a viable production process. Through several design iterations, a solid technology base for larger battery stack designs was established. Internal stack stresses can now be modeled, in addition to fluid velocity and fluid pressure distribution, through the use of a finite element analysis computer program. Additionally, the Johnson Controls Battery Group, Inc. (JCBGI) proprietary FORTRAN model has been improved significantly, enabling accurate performance predictions. This modeling was used to improve the integrity and performance of the battery stacks, and should be instrumental in reducing the turnaround time from concept to assembly.

Eidler, Phillip

1999-07-01T23:59:59.000Z

133

Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Spook, Wyoming. Volume 1, Text, Appendices A, B, C, D, and E: Final report  

SciTech Connect (OSTI)

This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at an inactive uranium processing site northeast of Casper, Wyoming, and referred to as the Spook site. It provides a characterization of the present conditions at the site and also serves to document the concurrence of the State of Wyoming and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the State of Wyoming, and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement.

Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Sullivan, M. [Wyoming State Government, Cheyenne, WY (United States)

1990-04-01T23:59:59.000Z

134

Savannah River Site High-Level Waste Tank Closure Final Environmental Impact Statement  

SciTech Connect (OSTI)

The U.S. Atomic Energy Commission, a U.S. Department of Energy (DOE) predecessor agency, established the Savannah River Site (SRS) near Aiken, South Carolina, in the early 1950s. The primary mission of SRS was to produce nuclear materials for national defense. With the end of the Cold War and the reduction in the size of the United States stockpile of nuclear weapons, the SRS mission has changed. While national defense is still an important facet of the mission, SRS no longer produces nuclear materials and the mission is focused on material stabilization, environmental restoration, waste management, and decontamination and decommissioning of facilities that are no longer needed. As a result of its nuclear materials production mission, SRS generated large quantities of high-level radioactive waste (HLW). The HLW resulted from dissolving spent reactor fuel and nuclear targets to recover the valuable radioactive isotopes. DOE had stored the HLW in 51 large underground storage tanks located in the F- and H-Area Tank Farms at SRS. DOE has emptied and closed two of those tanks. DOE is treating the HLW, using a process called vitrification. The highly radioactive portion of the waste is mixed with a glass like material and stored in stainless steel canisters at SRS, pending shipment to a geologic repository for disposal. This process is currently underway at SRS in the Defense Waste Processing Facility (DWPF). The HLW tanks at SRS are of four different types, which provide varying degrees of protection to the environment due to different degrees of containment. The tanks are operated under the authority of the Atomic Energy Act of 1954 (AEA) and DOE Orders issued under the AEA. The tanks are permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) under South Carolina wastewater regulations, which require permitted facilities to be closed after they are removed from service. DOE has entered into an agreement with the U.S. Environmental Protection Agency (EPA) and SCDHEC to close the HLW tanks after they have been removed from service. Closure of the HLW tanks would comply with DOE's responsibilities under the AEA and the South Carolina closure requirements and be carried out under a schedule agreed to by DOE, EPA, and SCDHEC. There are several ways to close the HLW tanks. DOE has prepared this Environmental Impact Statement (EIS) to ensure that the public and DOE's decision makers have a thorough understanding of the potential environmental impacts of alternative means of closing the tanks. This Summary: (1) describes the HLW tanks and the closure process, (2) describes the National Environmental Policy Act (NEPA) process that DOE is using to aid in decision making, (3) summarizes the alternatives for closing the HLW tanks and identifies DOE.s preferred alternative, and (4) identifies the major conclusions regarding environmental impacts, areas of controversy, and issues that remain to be resolved as DOE proceeds with the HLW tank closure process.

N /A

2002-05-31T23:59:59.000Z

135

Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation  

SciTech Connect (OSTI)

Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

Goranson, C.

1992-09-01T23:59:59.000Z

136

Voluntary Protection Program Onsite Review, CHPlateau Remediation Contract Hanford Site- March 2011  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Plateau Remediation Contract Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

137

Voluntary Protection Program Onsite Review, CH2M HILL Plateau Remediation Co., Inc., Hanford – Jan 2014  

Broader source: Energy.gov [DOE]

Evaluation to determine whether CH2M HILL Plateau Remediation Co., Inc., Hanford is performing at a level deserving DOE-VPP Star recognition.

138

CENTRAL PLATEAU REMEDIATION  

SciTech Connect (OSTI)

A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

ROMINE, L.D.

2006-02-01T23:59:59.000Z

139

Remediating MGP brownfields  

SciTech Connect (OSTI)

Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example.

Larsen, B.R.

1997-05-01T23:59:59.000Z

140

SRS Burial Ground Complex: Remediation in Progress  

SciTech Connect (OSTI)

Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

Griffin, M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Crapse, B.; Cowan, S.

1998-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Saxton soil remediation project  

SciTech Connect (OSTI)

The Saxton Nuclear Experimental Facility (SNEF) consists of a 23-MW(thermal) pressurized light water thermal reactor located in south central Pennsylvania. The Saxton Nuclear Experimental Corporation (SNEC), a wholly owned subsidiary of the General Public Utilities (GPU) Corporation, is the licensee for the SNEF. Maintenance and decommissioning activities at the site are conducted by GPU Nuclear, also a GPU subsidiary and operator of the Three Mile Island and Oyster Creek nuclear facilities. The remediation and radioactive waste management of contaminated soils is described.

Holmes, R.D. [GPU Nuclear Corporation, Middletown, PA (United States)

1995-12-31T23:59:59.000Z

142

Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. Apendix D, Site characteriztion  

SciTech Connect (OSTI)

This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

Not Available

1987-05-01T23:59:59.000Z

143

REMEDIAL ACTION PLAN  

E-Print Network [OSTI]

designated site consists of the 111-acre tailings pile, the mill yard, and piles of demolition rubble awaiting burial. The site contains 2.659 million cubic yards of tailings including 277,000 cubic yards of contaminated material in the mill yard, ore storage area, and Ann Lee Mine area; 151,000 cubic yards in the protore storage and leach pad areas; and 664,000 cubic yards of windblown contaminated soil, including excess soil that would result from excavation. Remedial action The remedial action will start with the excavation of windblown contaminated material and placement around the west, south, and east sides of the pile to buttress the slopes for increased stability. Most of the demolition rubble will be placed in the southern part of the pile and be covered with tailings. The northern part of the tailings pile (one million cubic yards) will then be excavated and placed on the south part of the pile to reduce the size of the disposal cell footprint. Demolition rubble that

Inactive Uranium; Mill Tailings Site; Uranium Mill Tremedial

1990-01-01T23:59:59.000Z

144

Soil Remediation Test  

SciTech Connect (OSTI)

Soils contaminated with petroleum by-products can now be effectively remediated using a variety of technologies. Among these are in-situ bioremediation, land farming, and landfill/replacing of soil. The range of efficiencies and cost effectiveness of these technologies has been well documented. Exsorbet Plus is showing promise as an in-situ bioremediation agent. It is made of naturally grown Spaghnum Peat Moss which has been activated for encapsulation and blended with nitrogen-rich fertilizer. In its initial field test in Caracas, Venezuela, it was able to remediate crude oil-contaminated soil in 90 days at less than half of the cost of competing technologies. Waste Solutions, Corp and the US Department of Energy signed a Cooperative Research and Development Agreement to test Exsorbet Plus at the Rocky Mountain Oilfield Testing Center near Casper, Wyoming. As part of the test, soil contaminated with crude oil was treated with Exsorbet Plus to aid the in-situ bioremediation process. Quantitative total petroleum hydrocarbon (TPH) measurements were acquired comparing the performance of Exsorbet Plus with an adjacent plot undergoing unaided in-situ bioremediation.

Manlapig, D. M.; Williamsws

2002-04-01T23:59:59.000Z

145

Remediation and Recycling of Linde FUSRAP Materials  

SciTech Connect (OSTI)

During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

2002-02-27T23:59:59.000Z

146

Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet  

SciTech Connect (OSTI)

The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

Abotsi, G.M.K. [Clark Atlanta Univ., GA (United States); Bostick, D.T.; Beck, D.E. [Oak Ridge National Lab., TN (United States)] [and others

1996-05-01T23:59:59.000Z

147

In situ remediation of uranium contaminated groundwater  

SciTech Connect (OSTI)

In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

148

In situ remediation of uranium contaminated groundwater  

SciTech Connect (OSTI)

In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

Dwyer, B.P.; Marozas, D.C.

1997-02-01T23:59:59.000Z

149

Remediation of Uranium Impacted Sediments in a Watercourse - 12486  

SciTech Connect (OSTI)

In 2009, remediation was initiated for a non-operational fuel cycle facility previously used for government contract work. Between 2009 and the spring of 2011, remediation efforts were focused on demolition of contaminated buildings and removal of contaminated soil. In the late spring of 2011, the last phase of remediation commenced involving the removal of contaminated sediments from portions of a 1,200 meter long gaining stream. Planning and preparation for remediation of the stream began in 2009 with submittal of permit applications to undertake construction activities in a wetland area. The permitting process was lengthy and involved securing permits from multiple agencies. However, early and frequent communication with stakeholders played an integral role in efficiently obtaining the permit approvals. Frequent communication with stakeholders throughout the planning and remediation process also proved to be a key factor in timely completion of the project. The remediation of the stream involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation and disposal. Many safeguards were employed to protect several species of concern in the work area, water management during project activities, challenges encountered during the project, methods of Final Status Survey, and stream restoration. The planning and permitting effort for the Site Brook remediation began in May 2009 and permits were approved and in place by February 2011. The remediation and restoration of the Site Brook began in April 2011 and was completed in November 2011. The remediation of the Site Brook involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation, disposal, FSS, and restoration. Early and frequent communications with stakeholders proved to be a key factor in timely completion of the project. Challenges encountered during the remediation effort were overcome by proper planning and having preparedness procedures in place prior to executing the work. With the remediation and restoration successfully completed, the only remaining task is to monitor/maintain the restoration for 10 years. (authors)

Shephard, E.; Walter, N.; Downey, H.; Collopy, P. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Conant, J. [ABB, Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2012-07-01T23:59:59.000Z

150

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

J. Hnat; L.M. Bartone; M. Pineda

2001-10-31T23:59:59.000Z

151

National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

Peggy Hinman

2010-10-01T23:59:59.000Z

152

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado  

SciTech Connect (OSTI)

This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

Not Available

1992-02-01T23:59:59.000Z

153

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

J. Hnat; L.M. Bartone; M. Pineda

2001-07-13T23:59:59.000Z

154

ICDF Complex Remedial Action Report  

SciTech Connect (OSTI)

This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

W. M. Heileson

2007-09-26T23:59:59.000Z

155

MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1  

SciTech Connect (OSTI)

This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in wasteloading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

2010-01-04T23:59:59.000Z

156

Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506  

SciTech Connect (OSTI)

The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States)] [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)] [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

2013-07-01T23:59:59.000Z

157

Final Report for DUSEL R&D: BetaCage: A Screener of Ultra-Low-Level Radioactive Surface Contamination  

SciTech Connect (OSTI)

The eventual full-size, radiopure BetaCage will be a low-background, atmospheric-pressure neon drift chamber with unprecedented sensitivity to emitters of low-energy electrons and alpha particles. We expect that the prototype BetaCage already developed will be an excellent screener of alpha particles. Both the prototype and final BetaCage will provide new infrastructure for rare-event science.

Golwala, Sunil R. [California Institute of Technology] [California Institute of Technology

2013-12-20T23:59:59.000Z

158

CO chemisorption effect on cerium initial and final states in the core level photoelectron spectrum of CeIr  

SciTech Connect (OSTI)

Carbon monoxide (CO) adsorption on the mixed-valence compound CeIr/sub 2/ has been studied by X-ray photoelectron spectroscopy. CO adsorption on this surface is predominantly molecular. They show that changes in the cerium 3d spectrum upon CO chemisorption may be separated into initial- and final-state effects. In the initial state, stabilization of the (Xe)(5d6s)/sup 3/4f/sup 1/ configuration occurs due to an increase in effective nuclear charge on the cerium atom. This leads to a decrease in f/sup 0/ intensity in the recorded spectrum. Increased f-electron repulsion in the final state raises the energy of the f/sup 2/ final-state configuration and causes a 2.2-eV shift to higher binding energy of the 3d/sub 5/2/f/sup 2/ peak. The 0.5-eV binding energy shifts of the 3d/sub 5/2/f/sup 1/ and 3d/sub 3/2/f/sup 1/ peaks along with the 2.2-eV shift of the 3d/sub 5/2/f/sup 2/ peak indicate that the f orbitals are quite sensitive indicators of the surface oxidation state in this compound.

Lindquist, J.M.; Hemminger, J.C.

1987-10-22T23:59:59.000Z

159

The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260  

SciTech Connect (OSTI)

The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

Post, Thomas C. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States)] [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); Strom, Dean [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States)] [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States); Beulow, Laura [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)] [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)

2013-07-01T23:59:59.000Z

160

In situ Remediation Technologies Associated with Sanitation Improvement  

E-Print Network [OSTI]

by poor levels of sanitation and inadequate water and wastewater management. Pressure from urban areas12 In situ Remediation Technologies Associated with Sanitation Improvement: An Opportunity, the implementation of sanitation infrastructure is also necessary. With the increase of the negative environmental

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tank SY-102 remediation project summary report: ASPEN modeling  

SciTech Connect (OSTI)

The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. As a part of this program, personnel at Los Alamos National Laboratory (LANL) have developed and demonstrated a flow sheet to remediate tank SY-102, which is located in the 200 West Area and contains high-level radioactive waste. In the conceptual design report issued earlier, an ASPEN plus{trademark} computer model of the flow sheet was presented. This report documents improvements in the flow sheet model after additional thermodynamic data for the actinide species were incorporated.

Punjak, W.A.; Schreiber, S.B.; Yarbro, S.L.

1995-05-01T23:59:59.000Z

162

Groundwater Nitrogen Source Identification and Remediation in the Texas High Plains and Rolling Plains Regions  

E-Print Network [OSTI]

Groundwater nitroGen source identification and remediation in the texas hiGh plains and rollinG plains reGions Paul Delaune, Bridget R. Scanlon, Robert C. Reedy, Robert C. Schwartz, Louis Baumhardt, Lucas F. Gregory Texas Water Resources... Institute TR-451 September 2013 GROUNDWATER NITROGEN SOURCE IDENTIFICATION AND REMEDIATION IN THE TEXAS HIGH PLAINS AND ROLLING PLAINS REGIONS FINAL REPORT FUNDING PROVIDED BY THE TEXAS STATE SOIL AND WATER CONSERVATION BOARD THROUGH A CLEAN...

Delaune, P.; Scanlon, B.; Reedy, R.; Schwartz, R.; Baumhardt, L.; Gregory, L.

2013-01-01T23:59:59.000Z

163

Radioactive Tank Waste Remediation Focus Area. Technology summary  

SciTech Connect (OSTI)

In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

NONE

1995-06-01T23:59:59.000Z

164

Application of a World Wide Web technology to environmental remediation  

SciTech Connect (OSTI)

As part of the Formerly Utilized Site Remedial Action Program (FUSRAP), the United States Army Corps of Engineers (USACE), Buffalo District, is responsible for overseeing the remediation of several sites within its jurisdiction. FUSRAP sites are largely privately held facilities that were contaminated by activities associated with the nuclear weapons program in the 1940s, 50s, and 60s. The presence of soils and structures contaminated with low levels of radionuclides is a common problem at these sites. Typically, contaminated materials must be disposed of off-site at considerable expense (up to several hundred dollars per cubic yard of waste material). FUSRAP is on an aggressive schedule, with most sites scheduled for close-out in the next couple of years. Among the multitude of tasks involved in a typical remediation project is the need to inform and coordinate with active stakeholder communities, including local, state, and federal regulators.

Johnson, R.; Durham, L. A.

2000-03-09T23:59:59.000Z

165

Streamline simulation of Surfactant Enhanced Aquifer Remediation  

E-Print Network [OSTI]

Nonaqueous Phase Liquids (NAPLS) are a recognized source of groundwater contamination. Surfactant Enhanced Aquifer Remediation (SEAR) shows promise in increasing the efficiency and effectiveness over traditional "pump and treat" NAPL remediation...

Tunison, Douglas Irvin

1996-01-01T23:59:59.000Z

166

Screening level model for ecological risk assessment at EF-Site Los Alamos National Laboratory, New Mexico. Final report  

SciTech Connect (OSTI)

In response to a paucity of data on the chemical toxicity of uranium to plants, a factorial experiment employing five uranium concentrations (0, 50, 500, 5000, 25000 ppm) and three moisture regimes (low, medium, high) was performed using three native grasses. Buchloe dactyloides (buffalograss-mid/late seral), Schizachyrium scoparium (little bluestem-late seral), and Aristida longiseta (purple threeawn-early/mid seral) were grown in monocultures and every mixture of two species under all combinations of uranium and moisture levels. This design allows for the analysis of uranium effects, as well as possible compound effects due to moisture stress. Several measures of plant health and viability were made, including: percent emergence, survivability of seedlings and mature plants, root and shoot biomass, and the number and mass of inflorescences. No significant differences between uranium levels were observed in terms of emergence and seedling survival. Effects are evident for plant biomass, fecundity, and long-term survivability.

Alldredge, A.W.; Kirchner, T.B.; McLendon, T. [and others

1995-12-01T23:59:59.000Z

167

Remediation application strategies for depleted uranium contaminated soils at the US Army Yuma Proving Ground  

SciTech Connect (OSTI)

The US Army Yuma Proving Ground (YPG), located in the southwest portion of Arizona conducts firing of projectiles into the Gunpoint (GP-20) firing range. The penetrators are composed of titanium and DU. The purpose of this project was to determine feasible cleanup technologies and disposal alternatives for the cleanup of the depleted uranium (DU) contaminated soils at YPG. The project was split up into several tasks that include (a) collecting and analyzing samples representative of the GP-20 soils, (b) evaluating the data results, (c) conducting a literature search of existing proven technologies for soil remediation, and (0) making final recommendations for implementation of this technology to the site. As a result of this study, several alternatives for the separation, treatment, and disposal procedures are identified that would result in meeting the cleanup levels defined by the Nuclear Regulatory Commission for unrestricted use of soils and would result in a significant cost savings over the life of the firing range.

Vandel, D.S.; Medina, S.M.; Weidner, J.R.

1994-03-01T23:59:59.000Z

168

The CAMU Rule: A tool for implementing a protective, cost-effective remedy at the Fernald Environmental Management Project  

SciTech Connect (OSTI)

The Fernald Environmental Management Project (FEMP) is a former uranium processing facility currently under remediation pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act as amended (CERCLA). Contamination at the FEMP consists of low-level radioactivity, hazardous substances, hazardous wastes and/or mixed wastes. Regulations promulgated under the Resource Conservation and Recovery Act as amended (RCRA) are evaluated as applicable or relevant and appropriate requirements (ARARs) for remediation of the FEMP. Historically, joint CERCLA-RCRA guidance dictated that hazardous waste could not be treated, or moved out of the designated area of contiguous contamination (AOC), without triggering land disposal restrictions (LDRs) or minimum technology requirements (MTRs). To avoid invoking these stringent requirements, in situ capping was chosen as the lower cost remedy at many sites, although on-site disposal and/or treatment of hazardous wastes would have been more protective. The Corrective Action Management Units (CAMUs) and Temporary Units (TUs) Final Rule [58 FR 8658, Vol. 58, No. 29, hereinafter the {open_quotes}CAMU Rule{close_quotes}], promulgated on February 16, 1993, provides facilities regulated under RCRA corrective action authority with greater flexibility to move, treat, and dispose of wastes on site without triggering LDRs or MTRs, thereby encouraging application of innovative technologies and more protective remedies. The waste acceptance criteria for the on-site disposal facility is based on site-specific considerations including the mobility of the contaminants through the underlying site geology and the protectiveness of the engineered liners. Application of the {open_quotes}CAMU Rule{close_quotes} allows for disposition in the on-site facility based on these technical considerations rather than on regulatory classifications.

Dupuis-Nouille, E.M. [Fernald Environmental Management Project, Cincinnati, OH (United States); Goidell, L.C.; Strimbu, M.J. [Jacobs Engineering Group of Ohio, Inc., Cincinnati, OH (United States)

1995-10-01T23:59:59.000Z

169

U.S. Bureau of Mines, Phase 1 Hanford low-level waste melter tests. Final report  

SciTech Connect (OSTI)

A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC Subcontract number MMI-SVV-384216. The report contains description of the tests, observation, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. Testing consisted of melter feed preparation and three melter tests, the first of which was to fulfill the requirements of the statement of work (WHC-SD-EM-RD-044), and the second and third were to address issues identified during the first test. The document also contains summaries of the melter offgas report issued as a separate document U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Melter Offgas Report (WHC-SD-WM-VI-032).

Eaton, W.C. [Westinghouse Hanford Co., Richland, WA (United States); Oden, L.L.; O`Connor, W.K. [Bureau of Mines, Albany, OR (United States). Albany Research Center

1995-11-01T23:59:59.000Z

170

Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Site, Richmond, California  

SciTech Connect (OSTI)

Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Biomonitoring results indicated that pesticides were still bioavailable in the water column, and have not been reduced from pre-remediation levels. Annual biomonitoring will continue to assess the effectiveness of remedial actions at the United Heckathorn Site.

Antrim, Liam D.; Kohn, Nancy P.

2000-09-05T23:59:59.000Z

171

Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238  

SciTech Connect (OSTI)

Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E. [Oak Ridge National Lab., TN (United States); Dearth, M.A. [Ford Motor Co., Dearborn, MI (United States). Environmental Research Consortium

1997-09-01T23:59:59.000Z

172

Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation  

SciTech Connect (OSTI)

The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

NONE

1994-09-01T23:59:59.000Z

173

Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3  

SciTech Connect (OSTI)

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

Not Available

1994-02-01T23:59:59.000Z

174

Remediation of oil field wastes  

SciTech Connect (OSTI)

Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

Peters, R.W.; Wentz, C.A.

1990-01-01T23:59:59.000Z

175

Innovative technology for expedited site remediation of extensive surface and subsurface contamination  

SciTech Connect (OSTI)

Large scale surface and subsurface contamination resulted from numerous releases of feed stock, process streams, waste streams, and final product at a major chemical plant. Soil and groundwater was contaminated by numerous compounds including lead, tetraethyl lead, ethylene dibromide, ethylene dichloride, and toluene. The state administrative order dictated that the site be investigated fully, that remedial alternative be evaluated, and that the site be remediated within a year period. Because of the acute toxicity and extreme volatility of tetraethyl lead and other organic compounds present at the site and the short time frame ordered by the regulators, innovative approaches were needed to carry out the remediation while protecting plant workers, remediation workers, and the public.

Audibert, J.M.E.; Lew, L.R.

1994-12-31T23:59:59.000Z

176

Final Environmental Impact Statement for the Tank Waste Remediation...  

Broader source: Energy.gov (indexed) [DOE]

hazardous, and mixed waste. This waste is stored in 177 large underground storage tanks and in approximately 60 smaller active and inactive miscellaneous underground storage...

177

Final Report Northeast Site Area B NAPL Remediation Project  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATION REPORTFairfield,

178

Northeast Site Area A NAPL Remediation Final Report.doc  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - :NEW; I.-'

179

Description of the Formerly Utilized Sites Remedial Action Program  

SciTech Connect (OSTI)

The background and the results to date of the Department of Energy program to identify and evaluate the radiological conditions at sites formerly utilized by the Corps of Engineers' Manhattan Engineer District (MED) and the US Atomic Energy Commission (AEC) are summarized. The sites of concern were federally, privately, and institutionally owned and were used primarily for research, processing, and storage of uranium and thorium ores, concentrates, or residues. Some sites were subsequently released for other purposes without radiological restriction. Surveys have been conducted since 1974 to document radiological conditions at such sites. Based on radiological surveys, sites are identified in this document that require, or are projected to require, remedial action to remove potential restrictions on the use of the property due to the presence of residual low-level radioactive contamination. Specific recommendations for each site will result from more detailed environmental and engineering surveys to be conducted at those sites and, if necessary, an environmental impact assessment or environmental impact statement will be prepared. Section 3.0 describes the current standards and guidelines now being used to conduct remedial actions. Current authority of the US Department of Energy (DOE) to proceed with remedial actions and the new authority required are summarized. A plan to implement the Formerly Utilized Sites Remedial Action Program (FUSRAP) in accordance with the new authority is presented, including the objectives, scope, general approach, and a summary schedule. Key issues affecting schedule and cost are discussed.

Not Available

1980-09-01T23:59:59.000Z

180

Recommendation 192: Comments on Remediation Effectiveness Report  

Broader source: Energy.gov [DOE]

The ORSSAB Recommendations and Comments on the Draft 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation.

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Savannah River Remediation (SRR) Expanded Staff Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River Remediation Delivering the Mission Dave Olson President and Project Manager January 27, 2012 SRS Executive Management Community Discussion 2 * Liquid Waste Funding...

182

Nuclear facility decommissioning and site remedial actions  

SciTech Connect (OSTI)

The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

1990-09-01T23:59:59.000Z

183

Final_Report.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office Final Tank Closure andREMEDIATE ANDEnergy

184

Final_Report.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office Final Tank Closure andREMEDIATE

185

Final_Report.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office Final Tank Closure andREMEDIATE Department

186

Tank Waste Remediation System Guide  

SciTech Connect (OSTI)

The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties.

Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

1995-06-01T23:59:59.000Z

187

Decommissioning of the remediation systems at Waverly, Nebraska, in 2011-2012.  

SciTech Connect (OSTI)

The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility in Waverly, Nebraska, from 1952 to 1974. During this time, the grain fumigant '80/20' (carbon tetrachloride/carbon disulfide) was used to preserve stored grain. In 1982, sampling by the U.S. Environmental Protection Agency (EPA) found carbon tetrachloride contamination in the town's groundwater. After an investigation of the contaminant distribution, the site was placed on the National Priority List (NPL) in 1986, and the CCC/USDA accepted responsibility for the contamination. An Interagency Compliance Agreement between the EPA and the CCC/USDA was finalized in May 1988 (EPA 1990). The EPA (Woodward-Clyde Consultants, contractor) started immediate cleanup efforts in 1987 with the installation of an air stripper, a soil vapor extraction system, a groundwater extraction well, and groundwater and soil gas monitoring wells (Woodward-Clyde 1986, 1988a,b). After the EPA issued its Record of Decision (ROD; EPA 1990), the CCC/USDA (Argonne National Laboratory, contractor) took over operation of the treatment systems. The CCC/USDA conducted a site investigation (Argonne 1991, 1992a,b), during which a carbon tetrachloride plume in groundwater was discovered northeast of the former facility. This plume was not being captured by the existing groundwater extraction system. The remediation system was modified in 1994 (Argonne 1993) with the installation of a second groundwater extraction well to contain the contamination further. Subsequently, a detailed evaluation of the system resulted in a recommendation to pump only the second well to conserve water in the aquifer (Argonne 1995). Sampling and analysis after implementation of this recommendation showed continued decreases in the extent and concentrations of the contamination with only one well pumping (Argonne 1999). The CCC/USDA issued quarterly monitoring reports from 1988 to 2009. Complete documentation of the CCC/USDA characterization and remediation efforts, including the quarterly monitoring reports, is on the compact disc inside the back cover of this report. The EPA reported on the progress of the remediation systems in a series of five-year reviews (EPA 1993, 1999, 2004, 2009). These reports and other EPA documentation are also on the compact disc inside the back cover of this report, along with the Woodward-Clyde (1986, 1988a,b) documentation cited. Starting in 2006, the analytical results for groundwater (the only medium still being monitored) showed no carbon tetrachloride concentrations above the maximum contaminant level (MCL) of 5.0 g/L. Because the cleanup goals specified in the ROD (EPA 1990) had been met, the EPA removed the site from the NPL in November 2006 (Appendix A). In 2008 the National Pollutant Discharge Elimination System (NPDES) permit for the remediation system was deactivated, and a year later the EPA released its fourth and final five-year report (EPA 2009), indicating that no further action was required for the site and that the site was ready for unlimited use. In 2011-2012, the CCC/USDA decommissioned the remediation systems at Waverly. This report documents the decommission process and closure of the site.

LaFreniere, L. M. (Environmental Science Division)

2012-06-29T23:59:59.000Z

188

Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

Not Available

1994-05-01T23:59:59.000Z

189

Mercury contaminated sediment sites—An evaluation of remedial options  

SciTech Connect (OSTI)

Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. -- Highlights: ? Managing mercury-contaminated sediment sites are challenging to remediate. ? Remediation technologies are making a difference in managing these sites. ? Partitioning plays a dominant role in the distribution of mercury species. ? Mathematical models can be used to help us understand the chemistry and processes.

Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Chattopadhyay, Sandip, E-mail: Sandip.Chattopadhyay@tetratech.com [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)] [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)

2013-08-15T23:59:59.000Z

190

Savannah River Remediation Donates $10,000 to South Carolina...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

191

Preliminary Notice of Violation, Rocky Mountain Remediation Services...  

Broader source: Energy.gov (indexed) [DOE]

June 6, 1997 Issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site,...

192

SBA Increases Size Standards for Waste Remediation Services ...  

Energy Savers [EERE]

Increases Size Standards for Waste Remediation Services & InformationAdmin Support SBA Increases Size Standards for Waste Remediation Services & InformationAdmin Support December...

193

Savannah River Remediation Intern Sees Nuclear Industry as Job...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis...

194

Remediation of Mercury and Industrial Contaminants Applied Field...  

Office of Environmental Management (EM)

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

195

Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

NONE

1992-06-18T23:59:59.000Z

196

Current activities handbook: formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

none,

1981-02-27T23:59:59.000Z

197

Innovative vitrification for soil remediation  

SciTech Connect (OSTI)

The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

Jetta, N.W.; Patten, J.S.; Hart, J.G.

1995-12-01T23:59:59.000Z

198

Remediation of inactive mining and milling sites  

SciTech Connect (OSTI)

The presentation introduces relevant environment remediation standards and describes some measures of engineering remedied for inactive mines and mills. Since 1990, the remediation of decommissioned nuclear facilities has obtained fixed financial aid from state government, part of which is offered to inactive mines and mills. Considering the environmental characteristics of Chinese uranium mines and mills, the major task of decommissioning is to prevent radon release, and keep surface water and underground water from contamination. In order to control the rate of radon release effectively, the authors` research institutes conducted a series of experiments on the covers of tailings with two kinds of different material, clay and concrete.

Mao, H.; Pan, Y.; Li, R.

1993-12-31T23:59:59.000Z

199

Preliminary parametric performance assessment of potential final waste forms for alpha low-level waste at the Idaho National Engineering Laboratory. Revision 1  

SciTech Connect (OSTI)

This report presents a preliminary parametric performance assessment (PA) of potential waste disposal systems for alpha-contaminated, mixed, low-level waste (ALLW) currently stored at the Transuranic Storage Area of INEL. The ALLW, which contains from 10 to 100 nCi/g of transuranic (TRU) radionuclides, is awaiting treatment and disposal. The purpose of this study was to examine the effects of several parameters on the radiological-confinement performance of potential disposal systems for the ALLW. The principal emphasis was on the performance of final waste forms (FWFs). Three categories of FWF (cement, glass, and ceramic) were addressed by evaluating the performance of two limiting FWFs for each category. Performance at five conceptual disposal sites was evaluated to illustrate the effects of site characteristics on the performance of the total disposal system. Other parameters investigated for effects on receptor dose included inventory assumptions, TRU radionuclide concentration, FWF fracture, disposal depth, water infiltration rates, subsurface-transport modeling assumptions, receptor well location, intrusion scenario assumptions, and the absence of waste immobilization. These and other factors were varied singly and in some combinations. The results indicate that compliance of the treated and disposed ALLW with the performance objectives depends on the assumptions made, as well as on the FWF and the disposal site. Some combinations result in compliance, while others do not. The implications of these results for decision making relative to treatment and disposal of the INEL ALLW are discussed. The report compares the degree of conservatism in this preliminary parametric PA against that in four other PAs and one risk assessment. All of the assessments addressed the same disposal site, but different wastes. The report also presents a qualitative evaluation of the uncertainties in the PA and makes recommendations for further study.

Smith, T.H.; Sussman, M.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Myers, J.; Djordjevic, S.M.; DeBiase, T.A.; Goodrich, M.T.; DeWitt, D. [IT Corp., Albuquerque, NM (United States)

1995-08-01T23:59:59.000Z

200

Confirmatory radiological survey of the Grand Junction Projects Office Remedial Action Project exterior portions, 1989-1995  

SciTech Connect (OSTI)

The purpose of this independent assessment was to provide the U.S. Department of Energy (DOE) with an independent verification (IV) that the soil at the Grand Junction Projects Office (GJPO) complies with applicable DOE guidelines. Oak Ridge National Laboratory/ Environmental Technology Section (ORNL/ETS) which is also located at the GJPO, was assigned by DOE as the Independent Verification Contractor (IVC). The assessment included reviews of the decontamination and decommissioning plan, annual environmental monitoring reports, data in the pre- and post-remedial action reports, reassessment reports and IV surveys. Procedures and field methods used during the remediation were reviewed, commented on, and amended as needed. The IV surveys included beta-gamma and gamma radiation scans, soil sampling and analyses. Based on the data presented in the post-remedial action report and the results of the IV surveys, the remediation of the outdoor portions of the GJPO has achieved the objectives. Residual deposits of uranium contamination may exist under asphalt because the original characterization was not designed to identify uranium and subsequent investigations were limited. The IVC recommends that this be addressed with the additional remediation. The IVC is working with the remedial action contractor (RAC) to assure that final documentation WM be sufficient for certification. The IVC will address additional remediation of buildings, associated utilities, and groundwater in separate reports. Therefore, this is considered a partial verification.

Forbes, G.H.; Egidi, P.V.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

UMTRA -- The US Uranium Mill Tailings Remedial Action Project  

SciTech Connect (OSTI)

In the late 1970s, the United States (US) established the first comprehensive regulatory structure for the management, disposal, and long-term care of wastes produced from its domestic uranium processing industry. This regulatory framework was established through the passage of the Uranium Mill Tailings Radiation Control Act of 1978, often referred to as UMTRCA. This legislation created the Uranium Mill Tailings Remedial Action (UMTRA) Project and assigned the US Department of Energy (DOE) the lead in conducting the required remedial action at 24 designated inactive uranium ore processing sites. With the majority of these 22 sites complete, the DOE`s UMTRA Project has established a distinguished reputation for safely and effectively remediating these low-level waste sites in a complex regulatory and socioeconomic environment. This paper describes the past accomplishments and current status of the UMTRA Project and discusses the DOE`s plans for addressing ground water contamination associated with these sites and its commitment to continuing the long-term care and management of these disposal cells.

Lightner, R. [Dept. of Energy, Washington, DC (United States); Cormier, C. [Department of Energy, Albuquerque, NM (United States); Bierley, D. [Roy F. Weston, Inc., Albuquerque, NM (United States)

1995-12-31T23:59:59.000Z

202

IMPROVED NATURAL GAS STORAGE WELL REMEDIATION  

SciTech Connect (OSTI)

This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field

James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

2001-12-01T23:59:59.000Z

203

Glass melter system technologies for vitrification of high-sodium-content low-level, radioactive, liquid wastes: Phase 1, SBS demonstration with simulated low-level waste. Final test report  

SciTech Connect (OSTI)

The attached vendor report was prepared for Westinghouse Hanford Company by Babcock & Wilcox as documentation of the Phase I Final Test Report, Cyclone Combustion Melter Demonstration.

Holmes, M.J.; Scotto, M.V.; Shiao, S.Y. [Babcock & Wilcox, Alliance, OH (United States) Research Center

1995-12-31T23:59:59.000Z

204

REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505  

SciTech Connect (OSTI)

Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

BROCK CT

2011-01-13T23:59:59.000Z

205

Electrolytic remediation of chromated copper arsenate wastes  

E-Print Network [OSTI]

While chromated copper arsenate (CCA) has proven to be exceptionally effective in protecting wood from rot and infestation, its toxic nature has led to the problem of disposal of CCA-treated lumber and remediation of waters ...

Stern, Heather A. G. (Heather Ann Ganung)

2006-01-01T23:59:59.000Z

206

SAMPLING AND ANALYSIS PLAN CSMRI SITE REMEDIATION  

E-Print Network [OSTI]

Littleton, CO 80127 #12;CSMRI Site Remediation Quality Assurance Project Plan March 30, 2004 SAMPLING Environmental Consultants, Inc. Approved By: Date: Sally Cuffin Project Quality Assurance Manager New Horizons...................................................................................................................................3 2.5 Decision Rules

207

Water as a Reagent for Soil Remediation  

SciTech Connect (OSTI)

SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

2003-03-06T23:59:59.000Z

208

Nuclear facility decommissioning and site remedial actions  

SciTech Connect (OSTI)

The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

1989-09-01T23:59:59.000Z

209

Technical and Policy Challenges in Deep Vadose Zone Remediation of Metals and Radionuclides - 12025  

SciTech Connect (OSTI)

Deep vadose zone contamination is a significant issue facing the U.S. Department of Energy's (DOE) Office of Environmental Management (EM). Contamination in the deep vadose zone is isolated from exposure such that direct contact is not a factor in risk to human health and the environment. Transport of deep vadose zone contamination and discharge to the groundwater creates the potential for exposure and risk to receptors, so limiting flux to groundwater is key for protection of groundwater resources. Remediation approaches for the deep vadose zone need to be considered within the regulatory context, targeted at mitigating the source of contamination and reducing contaminant flux to groundwater. Processes for deep vadose zone metal and radionuclide remediation are discussed, as well as challenges and opportunities for implementation. It may be useful to consider the risk and challenges with leaving contaminants in place as part of a flux-control remedy in comparison with risks associated with contaminant removal and final disposition elsewhere. Understanding and quantifying the ramifications of contaminant removal and disposition options are therefore warranted. While this review suggests that some additional development work is needed for deep vadose zone remediation techniques, the benefits of applying vadose zone remediation for groundwater protection are compelling and worthy of continued development. (authors)

Wellman, Dawn M.; Truex, Michael J.; Freshley, Mark; Cantrell, Kirk J. [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States); Dresel, P. Evan [Future Farming Systems Research Division, Department of Primary Industries, PO Box 3100, Bendigo Delivery Centre VIC 3554 (Australia)

2012-07-01T23:59:59.000Z

210

Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545  

SciTech Connect (OSTI)

Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this process also provides new opportunities to think differently and look at the bigger picture of the overall benefit we are providing with our remediation projects. The opportunities from the move towards GSR are very real. They will help us make remedial actions truly more beneficial to the environment and to society. They will also allow (or force) remediation practitioners to think outside of the usual realm of approaches to find newer and more beneficial technologies. (authors)

Simpkin, Thomas J. [CH2M HILL, Denver, Colorado (United States); Favara, Paul [CH2M HILL, Gainesville, Florida (United States)

2012-07-01T23:59:59.000Z

211

Project Overview: Successful Field-Scale in SITU Thermal NAPL Remediation  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) successfully completed a field-scale remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at the Northeast Site on the Young-Rainey Science, Technology, and Research (STAR) Center, Largo, Florida. The Young-Rainey STAR Center is a former DOE facility that was previously known as the Pinellas Plant and the Pinellas STAR Center. The remediation project encompassed an area of 10,000 ft2 and depths extending to 35 ft below ground surface. Prior to the remediation, DOE evaluated technologies that had the potential to remove NAPLs from the subsurface at the site. Because of site conditions (clay lenses and an underlying clay layer that were thought to be contaminated), steam injection and electrical heating were considered to be the only technologies that had the potential to remove these NAPLs. In July 2001, DOE’s contractor awarded a subcontract for removal of NAPLs from a portion of the Northeast Site. The technologies used for remediation were a combination of steam-enhanced extraction and Electro-Thermal Dynamic Stripping Process, an electrical resistive heating technology. Construction of the remediation system was completed in September 2002. Remedial operations began immediately after construction, and active heating ended in February 2003. After operations were completed, confirmatory sampling was conducted during a 6-month period to verify the level of cleanup achieved. Additional confirmatory sampling was conducted 18 months after operations ended. Analytical results of the confirmatory sampling showed that NAPL concentrations were reduced significantly below the required cleanup goals and, in most cases, below the regulatory maximum contaminant levels. Lessons learned relative to the design, construction, operation, confirmatory sampling approach, and subcontracting could benefit managers of similar remediation projects.

Butherus, Michael [S.M. Stoller Corporation; Ingle, David S. [S.M. Stoller Corporation; Juhlin, Randall [S.M. Stoller Corporation; Daniel, Joseph [S.M. Stoller Corporation; none,

2004-10-24T23:59:59.000Z

212

Successful Field-Scale In Situ Thermal NAPL Remediation at the Young-Rainey Star Center  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) successfully completed a fieldscale remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at a site on the Young-Rainey Science, Technology, and Research (STAR) Center, Largo, Florida. The STAR Center is a former DOE facility. The remediation project covered an area of 930 m2 (10,000 ft2) and depths extending to 10.5 m (35 ft) below ground surface. In July 2001, DOE’s contractor awarded a subcontract to SteamTech Environmental Services for removal of NAPLs from a portion of the Northeast Site. The technologies used for remediation were steam-enhanced extraction and Electro-Thermal Dynamic Stripping Process, an electrical resistive heating technology. McMillan-McGee Corporation implemented the process. Construction of the remediation system was completed in September 2002. Operations began immediately after construction, and active heating ended in February 2003. After operations were completed, confirmatory sampling was conducted over a 6-month period to verify the level of cleanup achieved. Results of the sampling showed that NAPL concentrations were reduced significantly below the required cleanup goals and, in most cases, below the regulatory maximum contaminant levels. Lessons learned relative to the design, construction, operation, confirmatory sampling approach, and subcontracting could benefit managers of similar remediation projects

Gavaskar, A.R. [ed.; Chen, A.S.C. [ed.; none,

2004-05-04T23:59:59.000Z

213

Multiscale modeling of surfactant phase behavior in the remediation of DNAPL contamination.  

E-Print Network [OSTI]

??The brine barrier remediation technique (BBRT) has been proposed as a novel Brine barrier remediation techniques (BBRT) that use surfactants have been proposed for remediating… (more)

Fan, Xiangyu.

2008-01-01T23:59:59.000Z

214

Tank SY-102 remediation project: Flowsheet and conceptual design report  

SciTech Connect (OSTI)

The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. A major program in TWRS is pretreatment which was established to process the waste prior to disposal. Pretreatment is needed to resolve tank safety issues and to separate wastes into high-level and low-level fractions for subsequent immobilization and disposal. There is a fixed inventory of actinides and fission products in the tank which must be prepared for disposal. By segregating the actinides and fission products from the bulk of the waste, the tank`s contents can be effectively managed. Due to the high public visibility and environmental sensitivity of this problem, real progress and demonstrated efforts toward addressing it must begin as soon as possible. As a part of this program, personnel at the Los Alamos National Laboratory (LANL) have developed and demonstrated a flowsheet to remediate tank SY-102 which is located in the 200 West Area and contains high-level radioactive waste. This report documents the results of the flowsheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. The tank waste was characterized using both a tank history approach and an exhaustive evaluation of the available core sample analyses. This report also presents a conceptual design complete with a working material flow model, a major equipment list, and cost estimates.

Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Dunn, S.L.; Jarvinen, G.D.; Marsh, S.F.; Pope, N.G.; Agnew, S.; Birnbaum, E.R.; Thomas, K.W.; Ortic, E.A.

1994-01-01T23:59:59.000Z

215

SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION  

SciTech Connect (OSTI)

The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

Kohn, J.; Nichols, R.; Looney, B.

2011-05-12T23:59:59.000Z

216

ENVIRONMENTAL REMEDIAL ACTION – ARE WE DOING MORE HARM THAN GOOD?  

E-Print Network [OSTI]

The International Commission on Radiological Protection (ICRP) (1) has stated that interventions i.e., remedial actions should do more good than harm. This paper examines completed cleanup projects to answer the question posed in the title. Various researchers have published that toxins in the environment only cause a small percentage of cancers i.e., 1-3 percent (2,3). Estimates of hypothetical fatal cancers are inflated because primarily it is assumed that people will change their living habits and move onto or near uncontrolled waste sites. An occupancy factor of 100 % is used and by using large populations exposed to miniscule levels of radiation (4) unreal levels of fatal cancers are predicted. What we observe are technically indefensible numbers of cancers being calculated for these hypothetical people. This and other maximizing assumptions inflate the risk. The inflated risk, along with very conservative criteria, drives the removal of large volumes of soil and debris. An unintended consequence of these costly well-intentioned (5) remedial actions is the real fatalities and injuries that occur to workers doing the construction and to members of the public through transportation activities. Even though some analysis include the estimates of worker risk, there is little or no discussion which highlights the fact that real risk is being traded for hypothetical risk. This paper is an attempt to review this situation and through cited literature and case studies, come to a better understanding of what if any good is really being done. Maybe it is time to consider this transfer of risk from hypothetical victims to the real victims in remedial action decision-making.

Bruce W. Church

217

Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106  

SciTech Connect (OSTI)

This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

Esch, R.A.

1997-04-14T23:59:59.000Z

218

Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project - status of project to date January 1997  

SciTech Connect (OSTI)

This document describes the progress made by the Missouri Department of Natural Resources (MDNR) during the fourth year (1996) of the Agreement in Support (AIS) in its oversight role of the Weldon Springs Site Remedial Action Project (WSSRAP). The fourth year at the Weldon Springs Site shows sustained progress as the project moves through the final design and into the remedial action phases of the Chemical Plant Operable Unit. The remedial action phase includes the Foundations Removal work package, Chemical Solidification and Stabilization, and disposal cell.

NONE

1998-04-01T23:59:59.000Z

219

CO chemisorption effects on cerium initial and final states in the core-level photoelectron spectrum of CeIr/sub 2/  

SciTech Connect (OSTI)

Carbon monoxide (CO) adsorption on the mixed-valence compound CeIr/sub 2/ has been studied by X-ray photoelectron spectroscopy. CO adsorption on this surface is predominantly molecular. We show that changes in the cerium 3d spectrum upon CO chemisorption may be separated into initial- and final-state effects. In the initial state, stabilization of the (Ce)(5d6s)34f1 configuration occurs due to an increase in effective nuclear charge on the cerium atom. This leads to a decrease in f0 intensity in the recorded spectrum. Increased f-electron repulsion in the final state raises the energy of the f2 final-state configuration and causes a 2.2-eV shift to higher binding energy of the 3d5/2f2 peak. The 0.5-eV binding energy shifts of the 3d5/2f1 and 3d3/2f1 peaks along with the 2.2-eV shift of the 3d5/2f2 peak indicate that the f orbitals are quite-sensitive indicators of the surface oxidation state in this compound.

Lindquist, J.M.; Hemminger, J.C.

1987-01-01T23:59:59.000Z

220

Approved CAMU equals faster, better, cheaper remediation at the Fernald Environmental Management Project  

SciTech Connect (OSTI)

A 1,050 acre Corrective Action Management Unit (CAMU) was approved for the Fernald Protection Agency Environmental Management Project (FEMP) by the US Environmental Protection Agency (USEPA) to manage environmental media remediation waste in the Operable Unit 5 Record of Decision, 1995. Debris is also proposed for management as remediation waste under the CAMU Rule in the Operable Unit 3 Remedial Investigation/Feasibility Study (RI/FS) Report, as of December 1995. Application of the CAMU Rule at the FEMP will allow consolidation of low-level mixed waste and hazardous waste that presents minimal threat from these two operable units in an on-property engineered disposal facility without triggering land disposal restrictions (LDRs). The waste acceptance criteria for the on property disposal facility are based on a combination of site-specific risk-based concentration standards, as opposed to non-site-specific requirements imposed by regulatory classifications.

Dupuis-Nouille, E.M. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States)] [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Goidell, L.C.; Strimbu, M.J. [Jacobs Engineering Co., Cincinnati, OH (United States)] [Jacobs Engineering Co., Cincinnati, OH (United States); Nickel, K.A. [US Dept. of Energy-Fernald, CIncinnati, OH (United States)] [US Dept. of Energy-Fernald, CIncinnati, OH (United States)

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION  

E-Print Network [OSTI]

MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION April 13, 2004 Prepared for. Wright Street Littleton, CO 80127 #12;MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI Site Remediation By: Date: Robert Krumberger Project Manager New Horizons Environmental Consultants, Inc. Approved By

222

Groundwater remediation at a former oil service site  

E-Print Network [OSTI]

for computer modeling and remediation strategy evaluation. Computer models were used to simulate site conditions and assist in remedy design for the site. Current pump-and-treat systems were evaluated by the model under various scenarios. Recommendations were...

Han, Liping

2005-08-29T23:59:59.000Z

223

Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks  

SciTech Connect (OSTI)

This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

Johnson, G.D. (comp.)

1991-08-01T23:59:59.000Z

224

Procurement under Superfund remedial cooperative agreements  

SciTech Connect (OSTI)

This document provides guidance on procuring services during remedial-response activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), or Superfund, as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA). The topics covered in the guidance include procurement requirements; procurement of engineering services, including types of services provided; procurement of construction contractors; and subagreement administration.

Not Available

1988-06-01T23:59:59.000Z

225

groundwater nitrogen source identification and remediation  

E-Print Network [OSTI]

producer profits. This will, in turn, benefit water bodies in the area that receive stream baseflow fromgroundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer water withdraws are used for irrigation while the cities of Vernon, Burk- burnett and Electra and many

226

Remediation and Recovery of Uranium from Contaminated  

E-Print Network [OSTI]

Remediation and Recovery of Uranium from Contaminated Subsurface Environments with Electrodes K E L that Geobacter species can effectively remove uranium from contaminated groundwater by reducing soluble U was stably precipitated until reoxidized in the presence of oxygen. When an electrode was placed in uranium

Lovley, Derek

227

Gamma Ray Imaging for Environmental Remediation  

SciTech Connect (OSTI)

This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

2004-11-12T23:59:59.000Z

228

Observational Approach to Chromium Site Remediation - 13266  

SciTech Connect (OSTI)

Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational approach. The WCH project team is working closely with stakeholders and taking a number of steps to meet these challenges in a continuing effort to remediate chromium contaminated soil in an efficient and cost-effective manner. (authors)

Scott Myers, R. [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)

2013-07-01T23:59:59.000Z

229

Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2010-10-01T23:59:59.000Z

230

Precipitation and lake-level changes in the West and Midwest over the past 10,000 to 24,000 years. Final report  

SciTech Connect (OSTI)

The goal of the research described in this report is to document the climatic variability over the past 10,000 to 20,000 years in areas in which sites may be designated for the burial of nuclear wastes. Three separate data sets were studied, and the results are presented in three chapters. The first data set consisted of radiocarbon dates documenting past changes in lake levels in lakes and playas in the western United States. The sites were mapped where water levels were higher than the levels today and were presented in a table telling what evidence is available at each site. The lake-level fluctuations for the past 24,000 years at sites in the West were also mapped and time series for these fluctuations at four sites were presented. The second data set was a selection of the published radiocarbon-dated pollen diagrams from the western United States. These data are a valuable source of climatic information and complement the geological evidence of lake-level fluctuations in the West. A table is presented that gives the location, elevation, and number of radiocarbon dates for each site. The third data set was a set of fossil pollen data from 20 sites in the upper Midwest. These data were calibrated in terms of precipitation changes over the past 10,000 years, and maps are presented of the estimated precipitation changes between 10,000 and 7000 years ago and between 7000 years ago and today.

Webb, T. III; Street, F.A.; Howe, S.

1980-02-04T23:59:59.000Z

231

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan  

SciTech Connect (OSTI)

This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

G. L. Schwendiman

2006-07-01T23:59:59.000Z

232

Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

N /A

2000-06-30T23:59:59.000Z

233

Missouri State information handbook: formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Missouri. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature chairmen, and a summary of recent relevant legislative action; a description of the organization and structure of local governments affected by remedial action at the St. Louis area sites; a summary of relevant local ordinances and regulations; an identification of relevant public interest groups; a list of radio stations, television stations, and newspapers that provide public information to the St. Louis area or to Jefferson City; and the full text of relevant statutes and regulations.

none,

1980-12-31T23:59:59.000Z

234

Review of the Vortec soil remediation demonstration program  

SciTech Connect (OSTI)

The principal objective of the METC/Vortec program is to develop and demonstrate the effectiveness of the Vortec CMS in remediating soils contaminated with hazardous materials and/or low levels of radionuclides. To convincingly demonstrate the CMS`s capability, a Demonstration Plant will be constructed and operated at a DOE site that has a need for the remediation of contamination soil. The following objectives will be met during the program: (1) establish the glass chemistry requirements to achieve vitrification of contaminated soils found at the selected DOE site; (2) complete the design of a fully integrated soil vitrification demonstration plant with a capacity to process 25 TPD of soil; (3) establish the cost of a fully integrated soil demonstration plant with a capacity to process 25 TPD of soil; (4) construct and operate a fully integrated demonstration plant; (5) analyze all influent and effluent streams to establish the partitioning of contaminants and to demonstrate compliance with all applicable health, safety, and environmental requirements; (6) demonstrate that the CMS technology has the capability to produce a vitrified product that will immobilize the hazardous and radionuclide materials consistent with the needs of the specific DOE waste repositories.

Patten, J.S.

1994-12-31T23:59:59.000Z

235

Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography  

SciTech Connect (OSTI)

This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

Faust, R.A.; Fore, C.S.; Knox, N.P.

1980-09-01T23:59:59.000Z

236

Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

Not Available

1993-05-01T23:59:59.000Z

237

Tank waste remediation system operation and utilization plan,vol. I {ampersand} II  

SciTech Connect (OSTI)

The U.S. Department of Energy Richland Operations Office (RL) is in the first stages of contracting with private companies for the treatment and immobilization of tank wastes. The components of tank waste retrieval, treatment, and immobilization have been conceived in two phases (Figure 1.0-1). To meet RL's anticipated contractual requirements, the Project Hanford Management Contractor (PHMC) companies will be required to provide waste feeds to the private companies consistent with waste envelopes that define the feeds in terms of quantity, and concentration of both chemicals and radionuclides. The planning that supports delivery of the feed must be well thought out in four basic areas: (1) Low-activity waste (LAW)/high-level waste (HLW) feed staging plans. How is waste moved within the existing tanks to deliver waste that corresponds to the defined feed envelopes to support the Private Contractor's processing schedule and processing rate? (2) Single-shell tank (SST) retrieval sequence. How are Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) milestones for SST retrieval integrated into the Phase I processing to set the stage for Phase II processing to complete the mission? (3) Tank Waste Remediation System (TWRS) process flowsheet. How do materials flow from existing tank inventories through: (1) blending and pretreatment functions in the double-shell tanks (DSTs), (2) contractor processing facilities, and (3) stored waste forms (Figure 1.0-2); (4) Storage and disposal of the immobilized low-activity waste (ILAW) and immobilized high-level waste (IHLW) product. How is the ILAW and IHLW product received from the private companies, the ILAW disposed onsite, and the IHLW stored onsite until final disposal?

Kirkbride, R.A.

1997-09-01T23:59:59.000Z

238

WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.

N.D. Sudan

2000-06-22T23:59:59.000Z

239

Climate change and wetland processes in the Southwest United States: Response of riparian communities to rising CO{sub 2} levels. Final report  

SciTech Connect (OSTI)

The current impact of Salt Cedar on the riparian areas of the southwestern US are recognized as being negative. If atmospheric levels of CO{sub 2} continue to rise--as seems likely--the results of this study indicate that the Salt Cedar--Cottonwood competitive interaction maybe moved further in the direction of favoring Salt Cedar. Further study confirming these results and elucidating the basis for competitive resource use by Salt Cedar and other riparian species would be prudent.

Anne M. Hoylman; Andrew Peterson; John V.H. Constable; John B. Picone; J. Timothy Ball

1998-07-01T23:59:59.000Z

240

Rethinking remediation technologies for desertified landscapes  

SciTech Connect (OSTI)

Shrub-dominated communities have replaced native grasslands throughout much of the arid Southwest during the past 120 years. Most currently available remediation technologies are uneconomical due to large inputs of energy, fertilizers, herbicides and labor, or are ecologically ineffective due to harsh environments and the highly competitive nature of these native shrubs. Our analysis of these historical remediation technologies together with new information on ecosystem processes has led us to pursue an ecologically-based approach in which more limited inputs are targeted to promote natural processes of regeneration. Advantages to this approach include lower costs, reduced reliance on agronomic practices, and maintenance of natural landscape features. Disadvantages include longer time required for desired changes to occur, and a need for increased understanding of arid land processes.

Herrick, J.E.; Havstad, K.M. [New Mexico State Univ., Las Cruces, NM (United States); Coffin, D.P. [Colorado State Univ., Fort Collins, CO (United States)

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EA-1331: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site

242

Tank waste remediation system mission analysis report  

SciTech Connect (OSTI)

This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

Acree, C.D.

1998-01-09T23:59:59.000Z

243

Thixotropic gel for vadose zone remediation  

DOE Patents [OSTI]

A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

Rhia, Brian D. (Augusta, GA)

2011-03-01T23:59:59.000Z

244

Thixotropic gel for vadose zone remediation  

DOE Patents [OSTI]

A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

Riha, Brian D.

2012-07-03T23:59:59.000Z

245

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this environmental impact statement (EIS) is to provide information on potential environmental impacts that could result from a Proposed Action to construct, operate and monitor, and eventually close a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste at the Yucca Mountain site in Nye County, Nevada. The EIS also provides information on potential environmental impacts from an alternative referred to as the No-Action Alternative, under which there would be no development of a geologic repository at Yucca Mountain.

N /A

2002-10-25T23:59:59.000Z

246

Remedial design through effective electronic associations  

SciTech Connect (OSTI)

Black and Veatch Special Projects Corp. (BVSPC) used an environmental data management system (EDMS) to consolidate x-ray fluorescence (XRF), global positioning system (GPS), and laboratory analytical data into a unique and flexible electronic database. Cost savings were acknowledged in all phases of the remedial design due to the development and use of the EDMS and its distinct associations with various electronic software packages. The EDMS allowed effective and efficient completion of the remedial design investigation of the Oronogo-Duenweg Mining Belt Site. The Site is a 125-year old mining community in Jasper County, Missouri. Approximately 6,500 residences are now located within the 60 square-mile Superfund Site where lead and zinc were mined. Smelting and mining activities were conducted in several areas throughout the community. These operations left approximately 9 million tons of mine wastes at the Site upon completion of the mining activities. The purpose of the remedial design investigation was to quantify and identify the residential yards that were adversely affected by these activities.

Deis, J.L.; Wankum, R.D.

1999-07-01T23:59:59.000Z

247

BP-5 Remedial Investigation Slug-Test Characterization Results for Well 699-52-55A  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory conducted slug-test characterization at the final, completed BP-5 Remedial Investigation well 699-52-55A near the 200-East Area at the Hanford Site on April 22, 2008. The slug-test characterization was in support of the BP-5 Remedial Investigation. The portion of the unconfined aquifer tested is composed of sediments of the lower Ringold Formation and the underlying Elephant Mountain basalt flowtop. The basalt flowtop unit was included as part of the effective test-interval length for the slug-test analysis because the flowtop unit is hydraulically communicative with the unconfined aquifer. Estimates of hydraulic conductivity for the effective test-interval length represent composite values for the lower Ringold Formation and the underlying Elephant Mountain basalt flow top.

Newcomer, Darrell R.

2008-07-21T23:59:59.000Z

248

Massachusetts state information handbook: formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of Massachusetts. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; the full text of relevant statutes and regulations.

None

1981-02-09T23:59:59.000Z

249

A systematic look at Tank Waste Remediation System privatization  

SciTech Connect (OSTI)

The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, immobilize, and dispose, or prepare for disposal, the Hanford radioactive tank waste in an environmentally sound, safe, and cost effective manner. Highly radioactive Hanford waste includes current and future tank waste plus the cesium and strontium capsules. In the TWRS program, as in other Department of Energy (DOE) clean-up activities, there is an increasing gap between the estimated funding required to enable DOE to meet all of its clean-up commitments and level of funding that is perceived to be available. Privatization is one contracting/management approach being explored by DOE as a means to achieve cost reductions and as a means to achieve a more outcome-oriented program. Privatization introduces the element of competition, a proven means of establishing true cost as well as achieving significant cost reduction.

Holbrook, J.H.; Duffy, M.A.; Vieth, D.L.; Sohn, C.L.

1996-01-01T23:59:59.000Z

250

Tank waste remediation system functions and requirements document  

SciTech Connect (OSTI)

This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.

Carpenter, K.E

1996-10-03T23:59:59.000Z

251

California state information handbook: formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of California. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; the full text of relevant statutes and regulations.

none,

1981-02-09T23:59:59.000Z

252

Technology needs for remediation: Hanford and other DOE sites  

SciTech Connect (OSTI)

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy's (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL's Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

253

Pennsylvania state information handbook: formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and State levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Pennsylvania. It contains a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.

none,

1980-12-31T23:59:59.000Z

254

Maryland State information handbook: formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Handbook Series Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Maryland. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.

none,

1980-12-31T23:59:59.000Z

255

Florida state information handbook: formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with DOE, Office of Nuclear Waste Management, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the federal and state levels, the pertinent programs they administer, each affected state legislature, and current federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Florida. It contains a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.

None

1981-02-27T23:59:59.000Z

256

Oregon state information handbook: formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Oregon. It contains a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.

none,

1980-12-31T23:59:59.000Z

257

Oregon state information handbook formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administater, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Oregon. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.

none,

1980-12-31T23:59:59.000Z

258

Iowa state information handbook: formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with the DOE, By Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of Iowa. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; the full test of relevant statutes and regulations.

None

1981-02-09T23:59:59.000Z

259

Testing, data analysis and engineering services on lead-acid load leveling batteries. Phase II. Final contract report, January 1, 1984-June 30, 1985  

SciTech Connect (OSTI)

Preprototype 3100 Ah load-leveling cells, developed on ANL Contract 31-109-38-4951, have been cycled at 40 +- 5/sup 0/C on an 80% DoD, 2 cycles per day regime for 2340 cycles. Three of four competing designs continue to cycle, meeting all capacity and voltage requirements. This data at 40 +- 5/sup 0/C are compared to emerging cycle data from similar cells on test at ANL National Battery Test Laboratory at 50 and 60/sup 0/C. Cycle life goals at 40 and 50/sup 0/C have been met. Tests are continuing in an effort to demonstrate their equivalency to 4000 cycles at 25/sup 0/C on the same regime.

Chreitzberg, A.M.

1985-06-30T23:59:59.000Z

260

Final Report - High Level Waste Vitrification System Improvements, VSL-07R1010-1, Rev 0, dated 04/16/07  

SciTech Connect (OSTI)

This report describes work conducted to support the development and testing of new glass formulations that extend beyond those that have been previously investigated for the Hanford Waste Treatment and Immobilization Plant (WTP). The principal objective was to investigate maximization of the incorporation of several waste components that are expected to limit waste loading and, consequently, high level waste (HLW) processing rates and canister count. The work was performed with four waste compositions specified by the Office of River Protection (ORP); these wastes contain high concentrations of bismuth, chromium, aluminum, and aluminum plus sodium. The tests were designed to identify glass formulations that maximize waste loading while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass formulations, increased glass processing temperature, increased crystallinity, and feed solids content on waste processing rate and product quality.

Kruger, Albert A.; Gan, H.; Pegg, I. L.; Gong, W.; Champman, C. C.; Joseph, I.; Matlack, K. S.

2013-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Salmon Site Remedial Investigation Report, Main Body  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

US DOE /NV

1999-09-01T23:59:59.000Z

262

Salmon Site Remedial Investigation Report, Appendix C  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

US DOE /NV

1999-09-01T23:59:59.000Z

263

Salmon Site Remediation Investigation Report, Appendix A  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

US DOE /Nevada Operations Office

1999-09-01T23:59:59.000Z

264

Salmon Site Remedial Investigation Report, Appendix D  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

US DOE /NV

1999-09-01T23:59:59.000Z

265

Salmon Site Remedial Investigation Report, Exhibit 5  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

266

Salmon Site Remedial Investigation Report, Exhibit 4  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

267

Salmon Site Remedial Investigation Report, Exhibit 3  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

268

Salmon Site Remedial Investigation Report, Exhibit 2  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE NV

1999-09-01T23:59:59.000Z

269

Salmon Site Remedial Investigation Report, Exhibit 1  

SciTech Connect (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

270

Clean Slate Environmental Remediation DSA for 10 CFR 830 Compliance  

SciTech Connect (OSTI)

Clean Slate Sites II and III are scheduled for environmental remediation (ER) to remove elevated levels of radionuclides in soil. These sites are contaminated with legacy remains of non-nuclear yield nuclear weapons experiments at the Nevada Test Site, that involved high explosive, fissile, and related materials. The sites may also hold unexploded ordnance (UXO) from military training activities in the area over the intervening years. Regulation 10 CFR 830 (Ref. 1) identifies DOE-STD-1120-98 (Ref. 2) and 29 CFR 1910.120 (Ref. 3) as the safe harbor methodologies for performing these remediation operations. Of these methodologies, DOE-STD-1120-98 has been superseded by DOE-STD-1120-2005 (Ref. 4). The project adopted DOE-STD-1120-2005, which includes an approach for ER projects, in combination with 29 CFR 1910.120, as the basis documents for preparing the documented safety analysis (DSA). To securely implement the safe harbor methodologies, we applied DOE-STD-1027-92 (Ref. 5) and DOE-STD-3009-94 (Ref. 6), as needed, to develop a robust hazard classification and hazards analysis that addresses non-standard hazards such as radionuclides and UXO. The hazard analyses provided the basis for identifying Technical Safety Requirements (TSR) level controls. The DOE-STD-1186-2004 (Ref. 7) methodology showed that some controls warranted elevation to Specific Administrative Control (SAC) status. In addition to the Evaluation Guideline (EG) of DOE-STD-3009-94, we also applied the DOE G 420.1 (Ref. 8) annual, radiological dose, siting criterion to define a controlled area around the operation to protect the maximally exposed offsite individual (MOI).

James L. Traynor, Stephen L. Nicolosi, Michael L. Space, Louis F. Restrepo

2006-08-01T23:59:59.000Z

271

Impacts of Water Levels on Breeding Canada Geese and Methods for Mitigation and Management in the Southern Flathead Valley, Montana, 1983-1987 Final Report.  

SciTech Connect (OSTI)

Kerr Hydroelectric Dam is located at the south end of Flathead Lake, controls water levels on the lake and the Flathead River below the dam, and is currently operated as a load control facility. Current operation of Kerr Dam creates the greatest yearly water level fluctuations on both the lake and river during the Canada goose (Branta canadensis moffitti) brood and nesting period. Data collected from 1980-1982 indicated that goose nest numbers on the river were lower than during the 1950's, and that brood habitat on the lake may be limiting the goose population there. Our study was conducted from 1983-1987 to determine the effects of Kerr Dam operation on Canada goose populations and habitat on the south half of Flathead Lake and the Flathead River, and to formulate management and mitigation recommendations. Nesting geese on the river appeared to be negatively affected by a lack of nest sites free from predators, and responded to available artificial nest structures with an increase in nest numbers and nesting success. Under current dam operation, river channel depths and widths do not discourage access to nesting islands by mammalian predators during some years and high predation on ground nests occurs. Intensively used brood areas on the lake and river were identified and described. Brood habitat on the lake was lower in quality and quantity than on the river due to dam operations. Gosling mortality on the lake was high, almost 2 times higher than on the river. Lake broods expended more energy obtaining food than river broods. Losses of brood habitat in the form of wet meadow marshes were documented and mitigation options developed. Management/mitigation alternatives and monitoring methods for nesting and brooding geese were identified.

Mackey, Dennis L.; Gregory, Shari K.; Matthews, William C. Jr.; Claar, James J.; Ball, I. Joseph

1987-11-01T23:59:59.000Z

272

Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)  

SciTech Connect (OSTI)

The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project.

Tucker, M.D. [Sandia National Labs., Albuquerque, NM (United States). Site Restoration Technology Program Office; Valdez, J.M.; Khan, M.A. [IT Corp., Albuquerque, NM (United States)

1995-06-01T23:59:59.000Z

273

Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Superfund Site, Richmond, California  

SciTech Connect (OSTI)

This report, PNNL-11911 Rev. 1, was published in July 2000 and replaces PNNL-11911, which was published in September 1998. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Chlorinated pesticide concentrations in water samples were similar to pre-remediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.65 ng/L to 18.1 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 0.65 ng/L to 103 ng/L and exceeded the remediation goal of 0.59 ng/L. The highest concentrations of both pesticides were found in Lauritzen Canal, and the lowest levels were from the Richmond Inner Harbor Channel water. Unusual amounts of detritus in the water column at the time of sampling, particularly in Lauritzen Canal, could have contributed to the elevated pesticide concentrations and poor analytical precision.

LD Antrim; NP Kohn

2000-09-05T23:59:59.000Z

274

Case Study of Urban Residential Remediation and Restoration in Port Hope, Canada - 13250  

SciTech Connect (OSTI)

The Canadian Municipality of Port Hope, Ontario, is located some 100 km east of Toronto and has been the location of radium and/or uranium refining since the 1930's. Historically, these activities involved materials containing radium-226, uranium, arsenic and other contaminants generated by the refining process. In years past, properties and sites in Port Hope became contaminated from spillage during transportation, unrecorded, un-monitored or unauthorized diversion of contaminated fill and materials, wind and water erosion and spread from residue storage areas. Residential properties in Port Hope impacted by radioactive materials are being addressed by the Canadian federal government under programs administered by the Low-Level Radioactive Waste Management Office (LLRWMO) and the Port Hope Area Initiative Management Office (PHAIMO). Issues that currently arise at these properties are addressed by the LLRWMO's Interim Waste Management Program (IWM). In the future, these sites will be included in the PHAIMO's Small Scale Sites (SSS) remedial program. The LLRWMO has recently completed a remediation and restoration program at a residential property in Port Hope that has provided learnings that will be applicable to the PHAIMO's upcoming SSS remedial effort. The work scope at this property involved remediating contaminated refinery materials that had been re-used in the original construction of the residence. Following removal of the contaminated materials, the property was restored for continued residential use. This kind of property represents a relatively small, but potentially challenging subset of the portfolio of sites that will eventually be addressed by the SSS program. (authors)

Geddes, Brian [AMEC Environment and Infrastructure, 140 Quarry Park Blvd., Calgary, AB, T2C 3G3 (Canada)] [AMEC Environment and Infrastructure, 140 Quarry Park Blvd., Calgary, AB, T2C 3G3 (Canada); DeJong, John [AMEC Environment and Infrastructure, Port Hope, ON (Canada)] [AMEC Environment and Infrastructure, Port Hope, ON (Canada); Owen, Michael [Low-Level Radioactive Waste Management Office, 196 Toronto Road, Port Hope, ON, L1A 3V5 (Canada)] [Low-Level Radioactive Waste Management Office, 196 Toronto Road, Port Hope, ON, L1A 3V5 (Canada)

2013-07-01T23:59:59.000Z

275

Uranium Mill Tailings Remedial Action Project 1993 Environmental Report  

SciTech Connect (OSTI)

This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

Not Available

1994-10-01T23:59:59.000Z

276

Gas: A Neglected Phase in Remediation of Metals and Radionuclides  

SciTech Connect (OSTI)

The gas phase is generally ignored in remediation of metals and radionuclides because it is assumed that there is no efficient way to exploit it. In the literal sense, all remediations involve the gas phase because this phase is linked to the liquid and solid phases by vapor pressure and thermodynamic relationships. Remediation methods that specifically use the gas phase as a central feature have primarily targeted volatile organic contaminants, not metals and radionuclides. Unlike many organic contaminants, the vapor pressure and Henry's Law constants of metals and radionuclides are not generally conducive to direct air stripping of dissolved contaminants. Nevertheless, the gas phase can play an important role in remediation of inorganic contaminants and provide opportunities for efficient, cost effective remediation. The objective here is to explore ways in which manipulation of the gas phase can be used to facilitate remediation of metals and radionuclides.

Denham, Miles E.; Looney, Brian B

2005-09-28T23:59:59.000Z

277

Final Report  

SciTech Connect (OSTI)

This the final report for the project "Large-Scale Optimization for Bayesian Inference in Complex Systems," for the work in the group of the co-PI George Biros.

Biros, George

2014-08-18T23:59:59.000Z

278

Final Report  

SciTech Connect (OSTI)

This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

DeTar, Carleton [P.I.

2012-12-10T23:59:59.000Z

279

Final Systems Development Report for the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, NV  

SciTech Connect (OSTI)

The Systems Development Report represents the third major step in the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mound Nevada. The first of these steps was to forge a Research Design that would serve as a guide for the overall research process. The second step was the construction of the Base Case, the purpose of which was to describe existing conditions in Clark County in the specified analytic areas of Economic-Demographic/Fiscal, Emergency Planning and Management, Transportation and Sociocultural analysis. The base case description will serve as a basis for assessing changes in these topic areas that might result from the Yucca Mountain project. These changes will be assessed by analyzing conditions with and without repository development in the county. Prior to performing such assessments, however, the snapshot type of data found in the base case must be operationalized or systematized to allow for more dynamic data utilization. In other words, a data system that can be used to analyze the consequences of the introduction of different variables (or variable values) in the Clark County context must be constructed. Such a system must be capable of being updated through subsequent data collection and monitoring efforts to both provide a rolling base case and supply information necessary to construct trend analyses. For example, during the Impact Assessment phase of the study process, the without repository analysis is accomplished by analyzing growth for the county given existing conditions and likely trends. These data are then compared to the with Yucca Mountain project conditions anticipated for the county. Similarly, once the emergency planning management and response needs associated with the repository are described, these needs will be juxtaposed against existing (and various future) capacity(ies) in order to determine the nature and magnitude of impacts in this analytic area. Analogous tasks will be performed for the other analytic areas detailed in the Base Case and outlined below.

NONE

1992-06-18T23:59:59.000Z

280

DOE Awards Contract for Environmental Remediation Services at...  

Broader source: Energy.gov (indexed) [DOE]

to CDM, A Joint Venture, of Fairfax, Virginia, to provide environmental remediation services for the Energy Technology Engineering Center at the Santa Susana Field...

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

area remedial investigation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to PD MacMillan, Andrew 104 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

282

act cercla remedial: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to PD MacMillan, Andrew 86 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

283

antimalarial herbal remedies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to PD MacMillan, Andrew 105 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

284

active chemical remediation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to PD MacMillan, Andrew 142 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

285

area including remediation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to PD MacMillan, Andrew 117 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

286

assess remediation performance: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation...

287

advanced remediation technologies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to PD MacMillan, Andrew 374 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

288

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa)  

Broader source: Energy.gov [DOE]

This chapter establishes remediation standards for land, other than standards for water quality, hazardous conditions, underground storage tanks, and groundwater protection, which are discussed in...

289

Economical Remediation of Plastic Waste into Advanced Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economical Remediation of Plastic Waste into Advanced Materials with Coatings Technology available for licensing: An autogenic pyrolysis process to convert plastic waste into...

290

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSE'ITS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

291

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

292

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK VW. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

293

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

294

Utah Division of Environmental Response and Remediation Underground...  

Open Energy Info (EERE)

Division of Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah...

295

Attenuation-Based Remedies in the Subsurface Applied Field Research...  

Broader source: Energy.gov (indexed) [DOE]

setting for researchers in both applied and basic science fields. A wealth of subsurface data is available to support research activities and remedial decision making. Led by the...

296

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

297

Historical hydronuclear testing: Characterization and remediation technologies  

SciTech Connect (OSTI)

This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

Shaulis, L.; Wilson, G.; Jacobson, R.

1997-09-01T23:59:59.000Z

298

Innovative mathematical modeling in environmental remediation  

SciTech Connect (OSTI)

There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models for environmental remediation.The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium.

Yeh, Gour T. [Taiwan Typhoon and Flood Research Institute (Taiwan); National Central Univ. (Taiwan); Univ. of Central Florida (United States); Gwo, Jin Ping (Jack) [Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Siegel, Malcolm D. [Sandia National Laboratories, Albuquerque, NM (United States); Li, Ming-Hsu [National Central Univ. (Taiwan); ; Fang, Yilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhang, Fan [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Luo, Wensui [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Yabusaki, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

2013-05-12T23:59:59.000Z

299

Portsmouth Remedial Actions Documents | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRockyServicesFindings andRemedial Actions

300

Remediation of former uranium mining and milling activities in Central Asia  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: Several of the Central Asian countries of the former Soviet Union were involved in the uranium mining and milling industry from about 1945 for varying periods until the break up of the Soviet Union in 1991 and beyond. Some facilities are still producing in Uzbekistan and Kazakhstan. However, before the break up, many facilities had been abandoned and in only a few cases had any remediation been undertaken. Since 1991 the newly independent states of the region have been seeking assistance for the remediation of the multitude of tailings piles, waste rock stockpiles and abandoned, and often semi dismantled, production facilities that may be found throughout the region. Many of these sites are close to settlements that were established as service towns for the mines. Most towns still have populations, although the mining industry has departed. In some instances there are cases of pollution and contamination and in many locations there is a significant level of public concern. The IAEA has been undertaking a number of Technical Cooperation (TC) projects throughout the region for some time to strengthen the institutions in the relevant states and assist them to establish monitoring and surveillance programs as an integral part of the long term remediation process. The IAEA is liaising with other agencies and donors who are also working on these problems to optimise the remediation effort. The paper describes the objectives and operation of the main TC regional program, liaison efforts with other agencies, the achievements so far and the long term issues for remediation of these legacies of the 'cold war' era. (authors)

Waggitt, Peter [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

RCRA Information Brief, June 1996: Conditional remedies under RCRA correction action  

SciTech Connect (OSTI)

This document describes conditional remedies under RCRA corrective action. The definition of conditional remedies, criteria that must be met, applications to DOE facilities, applicable clean-up standards, and implementation of conditional remedies are discussed in the document.

NONE

1996-06-01T23:59:59.000Z

302

Access to Courts and Preemption of State Remedies in Collective Action Perspective  

E-Print Network [OSTI]

application of preemption doctrine to state judicial remedies. This article applies a “collective action” framework for preemption analysis to the issue of remedial preemption. Our analysis suggests that while remedial preemption may be justified in some...

Glicksman, Robert L.; Levy, Richard E.

2009-01-01T23:59:59.000Z

303

Remedial Investigation/Feasibility Study (RI/FS) process, elements and techniques guidance  

SciTech Connect (OSTI)

This manual provides detailed guidance on Remedial Investigation/Feasibility Studies (RI/FSs) conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Department of Energy (DOE) facilities. The purpose of the RI/FS, to assess the risk posed by a hazardous waste site and to determine the best way to reduce that risk, and its structure (site characterization, risk assessment, screening and detailed analysis of alternatives, etc.) is defined in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) and further explained in the Environmental Protection Agency`s (EPA`s) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (Interim Final) 540/G-89/004, OSWER Directive 9355.3-01, October 1988. Though issued in 1988, the EPA guidance remains an excellent source of information on the conduct and structure of an RI/FS. This document makes use of supplemental RI/FS-related guidance that EPA has developed since its initial document was issued in 1988, incorporates practical lessons learned in more than 12 years of experience in CERCLA hazardous site remediation, and drawing on those lessons, introduces the Streamlined Approach For Environmental Restoration (SAFER), developed by DOE as a way to proceed quickly and efficiently through the RI/FS process at DOE facilities. Thus as its title implies, this guidance is intended to describe in detail the process and component elements of an RI/FS, as well as techniques to manage the RI/FS effectively.

Not Available

1993-12-01T23:59:59.000Z

304

Final Proposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office ProgramsFinal7, 2014NovemberFinal-Proposal

305

Final Reminder:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office ProgramsFinal7,Administrator's RecordFinal

306

Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text  

SciTech Connect (OSTI)

The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

Not Available

1993-09-01T23:59:59.000Z

307

Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426  

SciTech Connect (OSTI)

The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies that illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, time frame, and potential remedial effectiveness. This presentation is intended to inform DOE program managers, state regulators, practitioners and other stakeholders who are evaluating technical cleanup challenges within their own programs, and establishing programmatic approaches to evaluating and implementing long-term management approaches. Case studies provide examples of long-term management designations and strategies to manage and remediate groundwater at complex sites. At least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. Long-term management designations are not a way to 'do nothing' or walk away from a site. Instead, soil and groundwater within the zone is managed to be protective of human health and the environment. Understanding when and how to adopt a long-term management approach can lead to cost savings and the more efficient use of resources across DOE and at numerous other industrial and military sites across the U.S. This presentation provides context for assessing the use and appropriate role of alternative endpoints and supporting long-term management designations in final remedies. (authors)

Deeb, Rula A.; Hawley, Elisabeth L. [ARCADIS, U.S., 2000 Powell St., 7th Floor, Emeryville, California 94608 (United States)] [ARCADIS, U.S., 2000 Powell St., 7th Floor, Emeryville, California 94608 (United States)

2013-07-01T23:59:59.000Z

308

Independent Technical Review of the X-740 Groundwater Remedy, Portsmouth, Ohio: Technical Evaluation and Recommendations  

SciTech Connect (OSTI)

Two major remedial campaigns have been applied to a plume of trichloroethene (TCE) contaminated groundwater near the former X-740 facility at the Portsmouth Gaseous Diffusion Plant in Piketon Ohio. The two selected technologies, phytoremediation using a stand of hybrid poplar trees from 1999-2007 and in situ chemical oxidation using modified Fenton's Reagent from 2008-2009, have proven ineffective in achieving remedial action objectives (RAOs). The 'poor' performance of these technologies is a direct result of site specific conditions and the local contaminant hydrogeology. Key among these challenges is the highly heterogeneous subsurface geology with a thin contaminated aquifer zone (the Gallia) - the behavior of the contamination in the Gallia is currently dominated by slow release of TCE from the clay of the overlying Minford formation, from the sandstone of the underlying Berea formation, and from clayey layers within the Gallia itself. In response to the remediation challenges for the X-740 plume, the Portsmouth team (including the US Department of Energy (DOE), the site contractor (CDM), and the Ohio Environmental Protection Agency (OEPA)) is evaluating the feasibility of remediation at this site and identifying specific alternatives that are well matched to site conditions and that would maximize the potential for achieving RAOs. To support this evaluation, the DOE Office of Groundwater and Soil Remediation (EM-32) assembled a team of experts to serve as a resource and provide input and recommendations to Portsmouth. Despite the challenging site conditions and the failure of the previous two remediation campaigns to adequately move the site toward RAOs, the review team was unanimous in the conclusion that an effective combination of cost effective technologies can be identified. Further, the team expressed optimism that RAOs can be achieved if realistic timeframes are accepted by all parties. The initial efforts of the review team focused on reviewing the site history and data and organizing the information into a conceptual model and findings to assist in evaluating the potential of alternative remediation technologies. Examples of the key conceptual findings of the EM-32 review team were: (1) The Gallia represents the most practical target for deployment of in situ remediation treatment reagents - injection/extraction focused in this zone would provide maximum lateral impacts with minimal potential risk of failure or adverse collateral impacts. (2) The slow release of TCE from clay and sandstone into the Gallia represent a long term source of TCE that can re-contaminate the Gallia in the future - technologies that effectively treat the permeable portions of the Gallia, but do not leave residual treatment capacity in the system are unlikely to achieve long term remedial action objectives. CDM, the site contractor, provided important and useful information documenting the status and preliminary results of the on-site technology alternative evaluation. In the CDM evaluation, potential technologies were either retained (or screened out) in two preliminary evaluation phases and a detailed evaluation was performed on the five alternatives that were retained into the final 'detailed analysis' phase. The five alternatives that were included in the detailed analysis were: (1) hydraulic fracturing with EHC (a solid bioremediation amendment), (2) enhanced anaerobic bioremediation, (3) in situ chemical oxidation, (4) electrical resistance heating, and (5) reactive barriers. In several cases, two or three variants were separately evaluated. The review team found the CDM effort to be generally credible and reasonable. Thus, the review team focused on providing additional considerations and inputs to Portsmouth and on amending and refining the alternatives in ways that might improve performance and/or reduce costs. The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-32) to provide an independent technical panel to review previous and o

Looney, B.; Rhia, B.; Jackson, D.; Eddy-Dilek, C.

2010-04-30T23:59:59.000Z

309

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network [OSTI]

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water

310

Activated Peroxygens for Remediation of Contaminated Soil and Groundwater  

E-Print Network [OSTI]

i Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis Submitted of Doctor of Philosophy Department of Chemistry, Biotechnology and Environmental Engineering Section May 2011 #12;ii Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis

Hansen, René Rydhof

311

Uranium Mill Tailings Remedial Action Project 1994 environmental report  

SciTech Connect (OSTI)

This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

NONE

1995-08-01T23:59:59.000Z

312

Results of the radiological verification survey of the partial remediation at 90 Avenue C, Lodi, New Jersey (LJ079V)  

SciTech Connect (OSTI)

The property at 90 Avenue C, Lodi, New Jersey is one of the vicinity properties of the former Maywood Chemical Works, Maywood, New Jersey designated for remedial action by the US Department of Energy (DOE). In July 1991, Bechtel National, Inc. performed a partial remedial action on this property. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey in July, 1991 at this site. The purpose of the verification survey was to ensure the effectiveness of remedial actions performed within FUSRAP and to confirm the site`s compliance with DOE guidelines. The radiological survey included surface gamma scans indoors and outdoors, ground-level beta-gamma measurements, and systematic and biased soil and material sampling. Results of the verification survey demonstrated that all radiological measurements on the portions of the property that had been remediated were within DOE guidelines. However, there still remains a portion of the property to be remediated that is not covered by this verification survey.

Foley, R.D.; Johnson, C.A.

1994-02-01T23:59:59.000Z

313

Use of a permeable biological reaction barrier for groundwater remediation at a uranium mill tailings remedial action (UMTRA) site  

SciTech Connect (OSTI)

Previous work at the University of New Mexico and elsewhere has shown that sulfate reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed groundwater remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected and the precipitated U(IV) was determined to be crystalline UO{sub 2}(s) by X-ray Diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials.

Thombre, M.S.; Thomson, B.M.; Barton, L.L. [Univ. of New Mexico, Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

314

120 Ground Water Monitoring & Remediation 32, no. 1/ Winter 2012/pages 120130 NGWA.org Ground Water Monitoring & Remediation  

E-Print Network [OSTI]

120 Ground Water Monitoring & Remediation 32, no. 1/ Winter 2012/pages 120­130 NGWA.org Ground Water Monitoring & Remediation © 2011, National Ground Water Association. Published 2011. This article known as emerging contaminants (ECs) to surrounding groundwater and surface water. ECs consist

315

Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300  

SciTech Connect (OSTI)

This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

Crow, N.B.; Lamarre, A.L.

1990-08-01T23:59:59.000Z

316

Tank waste remediation system integrated technology plan. Revision 2  

SciTech Connect (OSTI)

The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

1995-02-28T23:59:59.000Z

317

Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action  

SciTech Connect (OSTI)

The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

NONE

1994-09-01T23:59:59.000Z

318

DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION  

SciTech Connect (OSTI)

On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

Bannochie, C.; Crawford, C.

2013-06-18T23:59:59.000Z

319

Uranium Mill Tailings Remedial Action 1993 Roadmap  

SciTech Connect (OSTI)

The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ``Lack of sufficient human resources,`` remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0.

Not Available

1993-10-18T23:59:59.000Z

320

Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results  

SciTech Connect (OSTI)

This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

2000-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Effects of remediation amendments on vadose zone microorganisms  

SciTech Connect (OSTI)

Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

Miller, Hannah M.; Tilton, Fred A.

2012-08-10T23:59:59.000Z

322

Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A  

SciTech Connect (OSTI)

This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure.

NONE

1995-09-01T23:59:59.000Z

323

Final Report  

SciTech Connect (OSTI)

OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

R Paul Drake

2004-01-12T23:59:59.000Z

324

FINAL REPORT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of9, 2011 FINALOffice of FINAL REPORT

325

Final Proposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office ProgramsFinal7,

326

Final-3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office Final Tank Closure and Wastedecisions

327

Final Optics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified ForcesFile Systems FileVault1Final

328

Environmental remediation of contamination sites at the Hanford Site  

SciTech Connect (OSTI)

Efforts currently are under way to remediate the 200 Areas of the US Department of Energy`s (DOE) Hanford Site in Washington State. Because of the complexity and extent of environmental contamination that has resulted from decades of hazardous and radioactive waste disposal practices, an innovative approach to remediating the site was required. A comprehensive study of waste disposal and environmental monitoring data with field investigations, referred to as the 200 Aggregate Area Management Study (AAMS) program, was conducted in 1992 to assess the scope of the remediation effort and to develop a plan to expedite the cleanup progress.

Wittreich, C.D.; Johnson, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-31T23:59:59.000Z

329

Final_Groundwater_flowchart_June07.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office Final Tank Closure andREMEDIATE AND

330

Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site: Final. Revision 2  

SciTech Connect (OSTI)

Thorium 230 (Th-230) at the Gunnison, Colorado processing site will require remediation, however, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Therefore, to effectively remediate the site with respect to Radium 226 (Ra-226) and Th-230, the following supplemental standard is proposed: In situ Ra-26 will be remediated to the EPA soil cleanup standards independent of groundwater considerations. In situ Th-230 concentrations will be remediated in the region above the encountered water table so the 1000-year projected Ra-226 concentration complies with the EPA soil cleanup concentration limits. If elevated Th-230 persists to the water table, an additional foot of excavation will be performed and the grid will be backfilled. Excavated grids will be backfilled to the final remedial action grade with clean cobbly soil. Final grid verification that is required below the water table will be performed by extracting and analyzing a single bulk soil sample with the bucket of a backhoe. Modeled surface radon flux values will be estimated and documented. A recommendation will be made that land records should be annotated to identify the presence of residual Th-230.

Not Available

1994-01-01T23:59:59.000Z

331

REMEDIATION OF HIGH WATER CONTENT GEOMATERIALS: A REVIEW OF GEOTEXTILE FILTER PERFORMANCE  

E-Print Network [OSTI]

costly remediation alternatives is capping of surface impoundments such as lagoons, ponds or old quarries

Aydilek, Ahmet

332

Isotope Specific Remediation Media and Systems - 13614  

SciTech Connect (OSTI)

On March 11, 2011, now two years ago, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. While, of course, most of the outcome of this unprecedented natural and manmade disaster was a negative, both in Japan and worldwide, there have been some extremely invaluable lessons learned and new emergency recovery technologies and systems developed. As always, the mother of invention is necessity. Among these developments has been the development and full-scale implementation of proven isotope specific media (ISMs) with the intent of surgically removing specific hazardous isotopes for the purpose of minimizing dose to workers and the environment. The first such ISMs to be deployed at the Fukushima site were those removing cesium (Cs-137) and iodine (I-129). Since deployment on June 17, 2011, along with treated cooling water recycle, some 70% of the curies in the building liquid wastes have been removed by the Kurion system alone. The current levels of cesium are now only 2% of the original levels. Such an unprecedented, 'external cooling system' not only allowed the eventual cold shut down of the reactors in mid-December, 2011, but has allowed workers to concentrate on the cleanup of other areas of the site. Water treatment will continue for quite some time due to continued leakage into the buildings and the eventual goal of cleaning up the reactors and fuel pools themselves. With the cesium removal now in routine operation, other isotopes of concern are likely to become priorities. One such isotope is that of strontium, and yttrium (Sr-90 and Y-90), which is still at original levels causing further dose issues as well as impediments to discharge of the treated waste waters. For over a year now, a new synthetic strontium specific media has been under development and testing both in our licensed facility in Oak Ridge, Tennessee, but also in confirmatory tests by the Japan Atomic Energy Agency (JAEA) in Japan for Tokyo Electric Power Company (TEPCO). The tests have proven quite successful, even in high salt conditions, and, with loading and dose calculations being completed, will be proposed to add to the existing cesium system. There is no doubt, as high gamma isotopes are removed, other recalcitrant isotopes such as this will require innovative removal media, systems and techniques. Also coming out of this international effort are other ISM media and systems that can be applied more broadly to both Commercial Nuclear Power Plants (NPPs) as well as in Department of Energy (DOE) applications. This cesium and strontium specific media has further been successfully tested in 2012 at a Magnox station in the UK. The resulting proposed mitigation systems for pond and vault cleanup look quite promising. An extremely unusual ISM for carbon 14 (C-14), nickel (Ni-63) and cesium (Cs-137) has been developed for Diablo Canyon NPP for dose reduction testing in their fuel pool. These media will be deployed in Submersible Media Filter (SMF) and Submersible Columns (SC) systems adapted to standard Tri-Nuclear{sup R} housings common in the U.S. and UK. External Vessel Systems (mini-Fukushima) have also been developed as a second mitigation system for D and D and outages. Finally, technetium (Tc- 99) specific media developed for the Waste Treatment Plant (WTP) recycle or condensate (secondary) waste streams (WM 2011) are being further perfected and tested for At-Tank Tc-99 removal, as well as At Tank Cs media. In addition to the on-going media development, systems for deploying such media have developed over the last year and are in laboratory- and full-scale testing. These systems include the fore mentioned Submersible Media Filters (SMF), Submersible Columns (SC) and external pilot- and full-scale, lead-lag, canister systems. This paper will include the media development and testing, as well as that of the deployment systems themselves. (authors)

Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc. Oak Ridge, Tennessee 37831 (United States)] [Kurion, Inc. Oak Ridge, Tennessee 37831 (United States); Morita, Keisuke [Japan Atomic Energy Agency, Tokai Research and Development Center, Fukushima Project Team, Tokai-mura, Ibaraki-ken, 319-1195 (Japan)] [Japan Atomic Energy Agency, Tokai Research and Development Center, Fukushima Project Team, Tokai-mura, Ibaraki-ken, 319-1195 (Japan)

2013-07-01T23:59:59.000Z

333

Mobile water treatment plant special study. Uranium Mill Tailings Remedial Action Project  

SciTech Connect (OSTI)

Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. To begin implementation of Phase 11 groundwater remediation, the US Department of Energy (DOE) requested that (1) the Technical Assistance Contractor (TAC) conduct a study to provide for the design of a mobile water treatment plant to treat groundwater extracted during site characterization studies at completed Phase I UMTRA sites, and (2) the results of the TAC investigations be documented in a special study report. This special study develops the design criteria for a water treatment plant that can be readily transported from one UMTRA site to another and operated as a complete treatment system. The 1991 study provides the basis for selecting a mobile water treatment system to meet the operating requirements recommended in this special study. The scope of work includes the following: Determining contaminants, flows, and loadings. Setting effluent quality criteria. Sizing water treatment unit(s). Evaluating non-monetary aspects of alternate treatment processes. Comparing costs of alternate treatment processes. Recommending the mobile water treatment plant design criteria.

Not Available

1992-12-01T23:59:59.000Z

334

Risk based optimization procedures applied to the remediation of uranium mining and milling sites in Germany  

SciTech Connect (OSTI)

The remediation of former uranium mining and milling sites in the Eastern part of Germany represents a major environmental challenge. Due to the size and complexity of the sites and the significance of current and potential long term environmental impacts, effective approaches are required for the planning, implementation and regulatory control of reclamation measures. These have to ensure adequate protection for the people and the environment taking into account the long term nature of the hazards and the technical and economical constraints. The German regulatory framework is based upon ICRP principles of dose limitation, justification and optimization (ALARA). Application of these criteria requires as a first step the assessment of prevailing exposures and their potential long term evolution for each site. These risk assessments are based upon site characterization studies and the modelling of contaminant transfer to the environment and to man. Evaluation of the prevailing and potential future risks leads to the identification of remediation necessities. The subsequent planning of remediation measures is highly site specific and relies on the identification of possible reclamation options and their capability to reduce real risks to acceptable levels. The selection of the reclamation measures which will actually be implemented is performed within an optimization process involving assessments of possible risk reduction, technological feasibility, costs, long term stability, continuing requirements for long term active or passive institutional control and public acceptance.

Goldammer, W.; Barthel, R. [Brenk Systemplanung, Aachen (Germany)

1994-12-31T23:59:59.000Z

335

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

David Duncan

2011-05-01T23:59:59.000Z

336

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

337

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2011-03-01T23:59:59.000Z

338

Federal government information handbook: formerly utilized sites remedial action program  

SciTech Connect (OSTI)

This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the Federal Government. It contains a summary of the organization and responsibilities of agencies within the executive branch of the Federal government which may be relevant to FUSRAP activities; a brief summary of relevant Federal statutes and regulations; a description of the structure of the US Congress, identification of the officers, relevant committees and committee chairmen; a description of the Federal legislative process; a summary of legislation enacted and considered in the recently-adjourned 96th Congress; a description of the Federal budgetary process; a summary of the Carter Administration's comprehensive radioactive waste management program; and excerpts from the text of relevant federal statutes and regulations.

Not Available

1980-12-31T23:59:59.000Z

339

Lower Three Runs Remediation Safety Preparation Strategy - 13318  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site. It is a large blackwater stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 20 mile stretch of Lower Three Runs Stream that narrows and provides a limited buffer of US DOE property along the stream and flood-plain. Based on data collected during the years 2009 and 2010 under American Recovery and Re-investment Act funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. In agreement with the Environmental Protection Agency and the South Carolina Department of Health and Environmental Control, three areas were identified for remediation [1] (SRNS April 2012). A comprehensive safety preparation strategy was developed for safe execution of the LTR remediation project. Contract incentives for safety encouraged the contractor to perform a complete evaluation of the work and develop an implementation plan to perform the work. The safety coverage was controlled to ensure all work was observed and assessed by one person per work area within the project. This was necessary due to the distances between the fence work and three transects being worked, approximately 20 miles. Contractor Management field observations were performed along with DOE assessments to ensure contractor focus on safe performance of the work. Dedicated ambulance coverage for remote worker work activities was provided. This effort was augmented with access to medical evacuation services. The areas where the work was performed were remote and difficult to get emergency vehicles to in a timely manner in case of an accident. Satellite phones were utilized due to intermittent phone coverage. High visibility vests were utilized to enable any hunters in the area to see the workers; due to the limited buffer areas along the stream route. An innovative approach to providing the necessary protection for workers during periods of extreme heat and humidity was also employed, which included the use of 'heat islands' with fans and crew trailers and ice vests for workers. (authors)

Mackay, Alexander; Fryar, Scotty; Doane, Alan [United States Department of Energy, Building 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Building 730-B, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

340

Tank waste remediation system multi-year work plan  

SciTech Connect (OSTI)

The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.

Not Available

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Containment remedies: Minimizing hazard, not just exposure, cuts liabilities  

SciTech Connect (OSTI)

An important consequence of the trend to reduce Superfund cleanup costs has been a definite shift away from treatment to pure containment remedies. The issue that merits more attention, however, is whether reductions in short term costs may be offset by longer term liabilities. Containment remedies that focus entirely on reducing exposures and hence risk are vulnerable to various failures of key components that may not necessarily be prevented by operation and maintenance programs. A sensible alternative is to also include some hazard reduction, especially by in situ technology. By doing so, longer term liabilities associated with various failure modes of containment remedies can be greatly reduced. Corporate accounting systems ignore such liabilities. The insurance industry, large companies, brownfield developers, and the government are currently ignoring liabilities that inevitably will become all too real, because pure containment remedies are not permanently effective.

Hirschhorn, J.S. [Hirschhorn and Associates, Wheaton, MD (United States)

1996-12-31T23:59:59.000Z

342

Integrated Systems-Based Approach to Monitoring Environmental Remediation - 13211  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is responsible for risk reduction and cleanup of its nuclear weapons complex. Remediation strategies for some of the existing contamination use techniques that mitigate risk, but leave contaminants in place. Monitoring to verify remedy performance and long-term mitigation of risk is a key element for implementing these strategies and can be a large portion of the total cost of remedy implementation. Especially in these situations, there is a need for innovative monitoring approaches that move away from the cost and labor intensive point-source monitoring. A systems-based approach to monitoring design focuses monitoring on controlling features and processes to enable effective interpretation of remedy performance. (authors)

Truex, Mike; Oostrom, Mart; Carroll, K.C.; Bunn, Amoret; Wellman, Dawn [Pacific Northwest National Laboratory (PNNL), Richland, Washington (United States)] [Pacific Northwest National Laboratory (PNNL), Richland, Washington (United States)

2013-07-01T23:59:59.000Z

343

Environmental Remediation Strategic Planning of Fukushima Nuclear Accident  

SciTech Connect (OSTI)

Environmntal Remediation Assessment and other respons decision making on Environmental monitoring, experiments and assessment. Preliminary assessment to grasp the overall picture and determine critical locations, phenomena, people, etc. Using simple methods and models.

Onishi, Yasuo

2011-12-01T23:59:59.000Z

344

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect (OSTI)

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

345

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1  

SciTech Connect (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

Not Available

1994-12-01T23:59:59.000Z

346

WATER AS A REAGENT FOR SOIL REMEDIATION  

SciTech Connect (OSTI)

SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

2001-11-12T23:59:59.000Z

347

Final Report  

SciTech Connect (OSTI)

Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

Webb, Robert C. [Texas A& M University] [Texas A& M University; Kamon, Teruki [Texas A& M University] [Texas A& M University; Toback, David [Texas A& M University] [Texas A& M University; Safonov, Alexei [Texas A& M University] [Texas A& M University; Dutta, Bhaskar [Texas A& M University] [Texas A& M University; Dimitri, Nanopoulos [Texas A& M University] [Texas A& M University; Pope, Christopher [Texas A& M University] [Texas A& M University; White, James [Texas A& M University] [Texas A& M University

2013-11-18T23:59:59.000Z

348

Remediation of a Former USAF Radioactive Material Disposal Site  

SciTech Connect (OSTI)

This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had been identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while minimizing disposal costs. In addition, worker exposures were maintained ALARA as a result of the removal and characterization methods employed.

Hoffman, D. E.; Cushman, M; Tupyi, B.; Lambert, J.

2003-02-25T23:59:59.000Z

349

Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484  

SciTech Connect (OSTI)

Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to resource scarcity; limited cross-training capability; and reduced capability to respond to changes in DOE priorities. Finally, there are many challenges to achieving these cost savings. With a workforce nearing retirement effective succession planning becomes critical to success and requires establishing a balance between the cost of hiring and training and cost-saving activities. With six active waste management facilities spread across nearly 15 square miles, scheduling and deploying cross-trained surveillance and maintenance teams is a logistical challenge, particularly as the loss of funding has not diminished emphasis by regulatory agencies placed on the safe and compliant performance of DOE and its contractors. As reflected in Table I, efficiencies are currently being implemented on the Hanford Plateau Remediation Contract (PRC) that deliver cost savings that align with the current site budget while maintaining critical capabilities. It is currently estimated that these efficiencies will result in a cost savings of approximately $9 million for FY13 in base and minimum safe operations on the PRC - a cost reduction of more than 13 percent over FY12 and nearly 30 percent over FY09 levels. (authors)

Simiele, Connie J.; Blackford, L. Ty [CH2M HILL Plateau Remediation Contract - CHPRC (United States)] [CH2M HILL Plateau Remediation Contract - CHPRC (United States); West, Lori D. [East Tennessee Materials and Energy Corporation - M and EC (United States)] [East Tennessee Materials and Energy Corporation - M and EC (United States)

2013-07-01T23:59:59.000Z

350

Final Report  

SciTech Connect (OSTI)

The overall objective is to create robust artificial protein modules as scaffolds to control both (a) the conformation of novel cofactors incorporated into the modules thereby making the modules possess a desired functionality and (b) the organization of these functional modules into ordered macroscopic ensembles, whose macroscopic materials properties derive from the designed microscopic function of the modules. We focus on two specific types of cofactors for imparting functionality in this project; primarily nonlinear optical (NLO) chromophores designed to exhibit extraordinary molecular hyperpolarizabilities, as well as donor-bridge-acceptor cofactors designed to exhibit highly efficient, 'through-bonds' light-induced electron transfer (LIET) over nano-scale distances. The ensembles range from 2-D to 3-D, designed to possess the degree of orientational and positional order necessary to optimize their macroscopic response, the latter ranging from liquid-crystalline or glass-like to long-range periodic. Computational techniques, firmly based in statistical thermodynamics, are utilized for the design the artificial protein modules, based on robust {alpha}-helical bundle motifs, necessarily incorporating the desired conformation, location, and environment of the cofactor. Importantly, this design approach also includes optimization of the interactions between the modules to promote their organization into ordered macroscopic ensembles in 2-D and 3-D via either directed-assembly or self-assembly. When long-range periodic order is required, the design can be optimized to result a specified lattice symmetry. The structure and functionality of the individual modules are fully characterized at the microscopic level, as well as that of the ensembles at the macroscopic level, employing modern experimental physical-chemical and computational techniques. These include, for example, multi-dimensional NMR, various pump-probe transient spectroscopies to ultrafast time-scales, and hyper-Rayleigh scattering at the microscopic level, and synchrotron radiation-based x-ray scattering and x-ray spectroscopy, cold neutron scattering, molecular dynamics simulation, and optical harmonic generation at the macroscopic level. This overall approach has some distinct advantages, compared to more traditional approaches, for example, those based on organic polymers, biopolymers or undressed cofactors. The resulting functional ensembles thereby have potential for important device applications in the areas of optical communications and photovoltaics. The approach also has an absolute requirement for a tightly coupled collaborative effort necessary to span the rigorous demands for the design, synthesis and characterization of such novel photonic and electronic biomolecular materials.

J. K. Blasie; W.F. DeGrado; J.G. Saven; M.J. Therien

2012-05-24T23:59:59.000Z

351

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

Not Available

1993-09-01T23:59:59.000Z

352

The Remediation of Abandoned Iron Ore Mine Subsidence in Rockaway Township, New Jersey  

SciTech Connect (OSTI)

This report represents the twenty-seventh and Final Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this last reporting period ending June 30, 2010 and a summary of the work accomplished since the agreement inception in 1997. This report is issued as part of the project reporting provisions set forth in the Cooperatorâ??s Agreement between the United States Government - Department of Energy, and Rockaway Township. The purpose of the Cooperatorâ??s Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800â??s, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Townshipâ??s Jacobs Road Compost Storage Facility, surface monitoring continued after completion of construction in September 2003. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort. In March 2007, a seventh collapse occurred over a portion of the White Meadow Mine in a public roadway at the intersection of Iowa and Erie Avenues in Rockaway Township. After test drilling, this portion of the mine was remediated by drilling and grouting the stopes.

Gartenberg, Gary; Poff, Gregory

2010-06-30T23:59:59.000Z

353

Remediation of contaminated soils and sediments using Daramend bioremediation  

SciTech Connect (OSTI)

Soils and sediments containing polyaromatic hydrocarbons (PAH), petroleum hydrocarbons, heavy oils, chlorinated phenols, pesticides, herbicides and phthalates, either individually or in combination, have been difficult to remediate in the past. Not only the species of contaminant, but contaminant concentrations were roadblocks to successful use of bioremediation. Daramend{sup Tm} remediation has removed many of these obstacles through extensive research. Bench-scale, pilot-scale and full-scale demonstrations have been conducted at a variety of industrial sites. At a manufactured gas site, 295 days of Daramend remediation reduced concentrations of chrysene and fluoranthene from 38.9 mg/kg to 5.9 mg/kg and 84.6 mg/kg to 7.8 mg/kg respectively. Elsewhere, the total PAH concentration in a silty soil was reduced from 1,442 mg/kg to 36 mg/kg. Concentrations of even the most refractory PAHs (e.g. pyrene, benzo(a)pyrene) were reduced to below the established clean-up guidelines. Total petroleum hydrocarbons (diesel fuel) have also been reduced from 8,700 mg/kg to 34 mg/kg after 182 days of treatment. Similarly, in a clay soil contaminated by crude oil processing, the concentrations of high molecular weight aliphatic hydrocarbons were rapidly reduced (138 days) to below the remediation criteria. Demonstrations with wood treatment site soils have proven Daramend remediation effective in enhancing the target compound degradation rates. Soils containing 2170 mg PCP/kg were shown to contain only 11 mg PCP/kg after 280 days of Darmend remediation. The issue of toxicity of soil containing increased amounts of pentachlorophenols was solved. Performance data collected during these projects indicate that Daramend remediation provides a cost effective method for clean-up of soils and sediments containing a variety of organic compounds.

Burwell, S.W.; Bucens, P.G.; Seech, A.G.

1996-05-01T23:59:59.000Z

354

Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration  

E-Print Network [OSTI]

Remediation, and Carbon Sequestration References Anderson,Remediation, and Carbon Sequestration rhizosphere byRemediation, and Carbon Sequestration Figure 1. Examples of

Bernard, S.

2009-01-01T23:59:59.000Z

355

Final Technical Report  

SciTech Connect (OSTI)

The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

Maxwell, Mike, J., P.E.

2012-08-30T23:59:59.000Z

356

EIS-0096: Final Environmental Impact Statement  

Broader source: Energy.gov [DOE]

Remedial Actions at the Former Vitro Rare Metals Plant Site, Canonsburg, Washington County, Pennsylvania

357

Final Report  

SciTech Connect (OSTI)

Our research program was aimed at elucidating the nature of proton transport in ionomer membranes by means of a combination of analytical theory and molecular modeling. There were two broad thrusts. The first of these was directed towards understanding the equilibrium structure of Nafion and related polymers at various levels of hydration. The second thrust was concerned with the transport of protons through a membrane of this type. The research on structure proceeded by building on existing work, but with the introduction of some novel techniques, among which is a hybrid Molecular Dynamics--Monte Carlo approach. This method permits rapid computations by temporarily decoupling the motion of the polar side chains from that of the perfluorinated backbone, while still retaining the essential aspects of the constraint that phase separation can only continue to a very limited degree. Competition between an elastic energy due to this constraint and the tendency to phase separation lead to the equilibrium structure, which turns out to be qualitatively different at different levels of hydration. The use of a carefully formulated dielectric function was necessary to achieve accurate results. The work on transport of protons in Nafion-like membranes also involved a combination of theory and simulation. Atomistic molecular-dynamics simulations were employed to determine some of the characteristic parameters for the diffusion of hydronium in hydrated membranes. These results were used in a theoretical model of non-linear diffusion to predict transport coefficients. Among our results was the discovery that treatment with strong electric fields may enhance the properties of the polymer membranes. Our computer simulations showed that the vigorous application of a stretching force or an electric field can modify the structure of the ionomer that lies at the heart of a polymer-electrolyte-membrane fuel cell. If these predictions are verified experimentally, then it should be possible to produce fuel cells capable of delivering much higher currents than those currently available.

Taylor, Philip L.

2012-11-11T23:59:59.000Z

358

POST-REMEDIATION BIOMONITORING OF PESTICIDES AND OTHER CONTAMINANTS IN MARINE WATERS AND SEDIMENT NEAR THE UNITED HECKATHORN SUPERFUND SITE, RICHMOND, CALIFORNIA  

SciTech Connect (OSTI)

Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and dieldrin concentrations in mussel tissues were lower than measured levels from preremediation surveys and also lower than Year 1 levels from post-remediation biomonitoring. Sediment analyses showed the presence of elevated DDT, dieldrin, PCB aroclor 1254, and very high levels of polynuclear aromatic hydrocarbons (PAH) in Lauritzen Channel.

Antrim, Liam D.; Kohn, Nancy P.

2000-09-06T23:59:59.000Z

359

Groundwater protection management program plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1.

Not Available

1992-06-01T23:59:59.000Z

360

Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation  

SciTech Connect (OSTI)

Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate-scale tests will be used to bridge the gap between the small-scale foam transport studies and the field-scale demonstration. Numerical simulation studies on foam delivery under vadose conditions will be performed to simulate observed foam transport behavior under vadose zone conditions and predict the foam delivery performance at field-scale.

Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

2009-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

FINAL REPORT  

SciTech Connect (OSTI)

Hydrogen storage systems based on the readily reversible adsorption of H{sub 2} in porous materials have a number of very attractive properties with the potential to provide superior performance among candidate materials currently being investigated were it not for the fact that the interaction of H{sub 2} with the host material is too weak to permit viable operation at room temperature. Our study has delineated in quantitative detail the structural elements which we believe to be the essential ingredients for the future synthesis of porous materials, where guest-host interactions are intermediate between those found in the carbons and the metal hydrides, i.e. between physisorption and chemisorption, which will result in H{sub 2} binding energies required for room temperature operation. The ability to produce porous materials with much improved hydrogen binding energies depends critically on detailed molecular level analysis of hydrogen binding in such materials. However, characterization of H{sub 2} sorption is almost exclusively carried by thermodynamic measurements, which give average properties for all the sites occupied by H{sub 2} molecules at a particular loading. We have therefore extensively utilized the most powerful of the few molecular level experimental probes available to probe the interactions of hydrogen with porous materials, namely inelastic neutron scattering (INS) spectroscopy of the hindered rotations of the hydrogen molecules adsorbed at various sites, which in turn can be interpreted in a very direct way in by computational studies. This technique can relate spectral signatures of various H{sub 2} molecules adsorbed at binding sites with different degrees of interaction. In the course of this project we have synthesized a rather large number of entirely new hybrid materials, which include structural modifications for improved interactions with adsorbed hydrogen. The results of our systematic studies on many porous materials provide detailed information on the effects on hydrogen binding from framework modifications, including charged frameworks and extraframework cations, from reduction in pore sizes, functionalization of the organic linking group, and most importantly, that of the various types of metal sites. We provided a clear demonstration that metal sites are most effective if the metal is highly undercoordinated, open and completely accessible to the H{sub 2} molecule, a condition which is not currently met in MOFs with intra-framework metals. The results obtained from this project therefore will give detailed direction to efforts in the synthesis of new materials that can reach the goal of a practical sorption based hydrogen storage material.

Juergen Eckert; Anthony K. Cheetham (Principal Investigator)

2011-03-11T23:59:59.000Z

362

Nuclear facility decommissioning and site remedial actions: a selected bibliography  

SciTech Connect (OSTI)

This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

1982-09-01T23:59:59.000Z

363

Remediation of a large contaminated reactor cooling reservoir: Resolving and environmental/regulatory paradox  

SciTech Connect (OSTI)

This paper presents a case study of a former reactor cooling water reservoir, PAR Pond, located Savannah River Site. PAR Pond, a 2640 acre, man-made reservoir was built in 1958 and until 1988, received cooling water from two DOE nuclear production reactors, P and R. The lake sediments were contaminated with low levels of radiocesium (CS-137) and transuranics in the late 1950s and early 1960s because of leaking fuel elements. Elevated levels of mercury accumulated in the sediments from pumping water from the Savannah River to maintain a full pool. PAR Ponds` stability, size, and nutrient content made a significant, unique, and highly studied ecological resource for fish and wildlife populations until it was partially drained in 1991 due to a depression in the downslope of the earthen dam. The drawdown, created 1340 acres of exposed, radioactively contaminated sediments along 33 miles of shoreline. This led US EPA to declare PAR Pond as a CERCLA operable unit subject to remediation. The drawdown also raised concerns for the populations of aquatic plants, fish, alligators, and endangered species and increased the potential for off-site migration of contaminated wildlife from contact with the exposed sediments. Applicable regulations, such as NEPA and CERCLA, require wetland loss evaluations, human health and ecological risk assessments, and remediation feasibility studies. DOE is committed to spending several million dollars to repair the dam for safety reasons, even though the lake will probably not be used for cooling purposes. At the same time, DOE must make decisions whether to refill and expend additional public funds to maintain a full pool to reduce the risks defined under CERCLA or spend hundreds of millions in remediation costs to reduce the risks of the exposed sediments.

Bowers, J.A.: Gladden, J.B.; Hickey, H.M.; Jones, M.P.; Mackey, H.E.; Mayer, J.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Doswell, A. [USDOE, Washington, DC (United States)

1994-05-01T23:59:59.000Z

364

Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998  

SciTech Connect (OSTI)

The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

NONE

1998-04-01T23:59:59.000Z

365

Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer  

SciTech Connect (OSTI)

A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

Bamberger, J.A.; Boris, G.F.

1999-10-07T23:59:59.000Z

366

Post-Remediation Biomonitoring of Pesticides and Other Contaminants in Marine Waters and Sediment Near the United Heckathorn Superfund Site, Richmond, California  

SciTech Connect (OSTI)

This report, PNNL-1 3059 Rev. 1, was published in July 2000 and replaces PNNL-1 3059 which is dated October 1999. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathom Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissue s) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.62 ng/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both DDT and dieldrin were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. PCBS were not detected in water samples in 1999.

LD Antrim; NP Kohn

2000-09-06T23:59:59.000Z

367

Electrochemical arsenic remediation for rural Bangladesh  

SciTech Connect (OSTI)

Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

Addy, Susan Amrose

2009-01-01T23:59:59.000Z

368

Final Report  

SciTech Connect (OSTI)

The project addressed the need for improved multijunction solar cells as identified within the Solar America Initiative program. The basic Ge/InGaAs/InGaP triple-junction structure that has led to record commercial efficiencies remains unoptimized due to excess current in the germanium component. Furthermore, its deployment cannot be scaled up to terawatt-level applications due to bottlenecks related to germanium�s cost and abundance. The purpose of the program was to explore new strategies developed at Arizona State University to deposit germanium films on much cheaper silicon substrates, largely eliminating the germanium bottleneck, and at the same time to develop new materials that should lead to an improvement in multijunction efficiencies. This included the ternary alloy SiGeSn, which can be inserted as a fourth junction in a Ge/SiGeSn/InGaAs/InGaP structure to compensate for the excess current in the bottom cell. Moreover, the possibility of depositing materials containing Sn on Si substrates created an opportunity for replacing the bottom Ge cell with a GeSn alloy, which, combined with new III-V alloys for the top cells, should enable 4-junction structures with perfectly optimized band gaps. The successes of the program, to be described below, has led to the developments of new strategies for the growth of high-quality germanium films on Si substrates and to a widespread recognition that SiGeSn is likely to play a significant role in future generations of high-efficiency devices, as demonstrated by new research and intellectual property efforts by major US industrial players.

Kouvetakis, John

2013-01-03T23:59:59.000Z

369

In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268  

SciTech Connect (OSTI)

Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

2012-07-01T23:59:59.000Z

370

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2014-06-01T23:59:59.000Z

371

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-04-01T23:59:59.000Z

372

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-01-01T23:59:59.000Z

373

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-04-01T23:59:59.000Z

374

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-06-01T23:59:59.000Z

375

Post-remediation biomonitoring of pesticides and other contaminants in marine waters and sediment near the United Heckathorn Superfund Site, Richmond, California  

SciTech Connect (OSTI)

Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieidrin concentrations in water ranged from 0.62 rig/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both pesticides were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. Tissue samples from biomonitoring organisms (mussels) provide an indication of the longer-term integrated exposure to contaminants in the water column, which overcomes the limitations of grab samples of water. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and dieldrin concentrations in mussel tissues were dramatically lower than measured levels from preremediation surveys and also lower than Year 1 levels from post-remediation biomonitoring. The lowest levels were found at the Richmond Inner Harbor Channel station (4.1 {micro}g/kg total DDT and 0.59 {micro}g/kg dieldrin, wet weight; mean of resident and transplant mussels). Mean chlorinated pesticide concentrations were highest at Lauritzen Canal/End (82 {micro}g/kg total DDT and 7.1 {micro}g/kg dieldrin, wet weight), followed by Lauritzen Canal/Mouth (22 {micro}/kg total DDT and 1.7 {micro}g/kg dieldrin, wet weight) and Santa Fe Channel/End (7.5 {micro}g/kg total DOT and 0.61 {micro}g/kg dieldrin, wet weight). These levels are 95% to 99% lower than those recorded by the California State Mussel Watch program prior to EPA's response actions. The levels of PCBs in mussel tissue were also reduced by 93% to 97% from preremediation levels. Surface sediment concentrations of dieldrin and DDT in November 1998 were highest in samples from the head or north end of Lauritzen Canal and progressively lower toward the mouth, or south end. Total DDT ranged from 130 ppm (dry weight) at the north end to 3 ppm at the south end. Dieldrin concentrations decreased from 3,270 ppb (dry weight) at the north end to 52 ppb at the south end. These results confirmed elevated pesticide concentrations in sediments collected from Lauritzen Channel by Anderson et al. (1999). The pesticide concentrations were lower than maximum concentrations found in the 1993 Remedial Investigation but comparable to the median levels measured before remediation was completed. Sediment analyses also showed the presence of elevated PCB aroclor 1254, and very high levels of polynuclear aromatic hydrocarbons (PAH) in Lauritzen Channel.

LD Antrim; NP Kohn

2000-05-26T23:59:59.000Z

376

Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park  

Broader source: Energy.gov [DOE]

The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

377

Shiprock case study 1986 annual DOE Remedial Action Programs meeting, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document contains primarily reproductions of slides presented at the 1986 Annual Doe Remedial Action Programs Meeting, Oak Ridge, Tennessee.

Themelis, J.; Baker, K.; Meyer, R.; Thiers, J.

1986-12-31T23:59:59.000Z

378

Uranium Mill Tailings Remedial Action Program. Partial radiological survey of Shiprock vicinity property SH14 Shiprock, New Mexico, October-November 1982  

SciTech Connect (OSTI)

As part of a detailed radiological assessment of the vicinity properties at Shiprock, a comprehensive survey of the vicinity property designated as SH14 was initiated during October and November 1982. At the time of the survey, vicinity property SH14 consisted of about 20 acres of open lands to the northeast of, and directly across the San Juan River from, the upper tailings pile at Shiprock. The lands consisted of a sandy soil, sparsley covered with trees and other vegetation. The partial assessment activities included determination of surface radiation levels on about a 2-meter grid spacing through direct instrument surveys and analysis of a soil sample collected from the area. The partial radiological assessment indicated elevated levels of radioactivity at several general areas within the open lands. Radiochemical analyses of the soil sample collected from one of these areas indicated a radium concentration of 18 +- 2 pCi/g, which is in excess of the limit of 5 pCi/g above background, averaged over the first 15 cm of soil below the surface, as specified in the EPA Standard (40 CFR 192). Subsurface soil sampling was not conducted, and thus the vertical extent of the radiological contamination is not known. Further measurements required to completely determine and accurately report the radiological status of this vicinity property, including additional direct instrument surveys, collection and analyses of soil samples, and the establishment of a 200-ft grid system, were planned for the final phase of this assessment. However, that phase of the program was cancelled before these measurements were accomplished. The total extent of the radiological contamination of vicinity property SH14 is presently unknown. Nonetheless, since the surface soil contamination levels exceeded the limits specified in the EPA Standard, remedial action for this vicinity site should be considered.

Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

1984-06-01T23:59:59.000Z

379

Abandoned deep mine subsidence investigation and remedial design, Interstate 70, Guernsey County, Ohio  

SciTech Connect (OSTI)

A two thousand linear foot, undermined section of Interstate 70 in Guernsey County, Ohio experienced settlements due to pothole type subsidence events within the travel lanes, shoulders and adjacent right-of-way areas. Potholes measured approximately ten feet in depth and width. The subsidence occurred after the dewatering of the abandoned deep mine during auger mining operations west of the site. A two-phase emergency investigation was undertaken by the Ohio Department of Transportation (ODOT) and Gannett Fleming Cord dry and Carpenter (GF). The purpose of the investigation was to assess the immediate danger of potholes occurring in the traveled lanes and paved shoulders, to identify the subsidence mechanisms, and to design a remediation program. Phase one investigations involved the review of existing subsurface data, the advancement of shallow borings and the performance of multiple geophysical surveys including ground penetrating radar, seismic refraction and electromagnetic terrain conductivity. The Phase one investigations did not reveal the presence of subsidence voids. Phase two investigations included borings to the mine level and videotaping of mine conditions. The mine was found to be completely flooded. Based upon the collected data, two mechanisms of failure, localized roof fall and piping of overburden soils into the mine void, were identified. Two remedial alternatives, (1) the filling of the mine void, and (2) the reinforcement of the highway using geotextiles, were evaluated, Filling of the mined interval and grouting of overburden bedrock fractures and voids, within a limited area, were selected. Construction plans, specifications and cost estimates were prepared for bidding and award. During the bidding process, a catastrophic, pothole type failure of the I-70 travel lanes occurred. The interstate was closed and the planned remediation activities were performed as an emergency project. The mine interval was grouted and portions of the highway pavement were replaced. The highway was reopened within 180 calendar days of the failure.

Hoffmann, A.G.; Clark, D.M.; Bechtel, T.D.

1999-07-01T23:59:59.000Z

380

Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont  

E-Print Network [OSTI]

Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County.....................................................................................................................................................link Figures Figure 1. Location of 19 soil samples collected from the Riverton Uranium Mill Tailings Remedial

Fleskes, Joe

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Managing site remediation using pathway analysis, application to a semi-arid site  

SciTech Connect (OSTI)

This paper discusses the application of pathway analysis methodology to evaluate alternatives associated with remediation of a semi-arid site. Significant aspects of remediation include potential land uses, soil cleaning techniques and restoration alternatives. Important environmental transport pathways and dominant radionuclides are identified using pathway analysis. The remediation strategy is optimized based on results of the analysis.

Rutz, E.E.; Ijaz, T.; Wood, R.P.; Eckart, R.E. [Univ. of Cincinnati, OH (United States). Dept. of Mechanical, Industrial and Nuclear Engineering

1993-12-31T23:59:59.000Z

382

Remediation of Petroleum-Contaminated Groundwater Using High Carbon Content Fly Ash  

E-Print Network [OSTI]

1 Remediation of Petroleum-Contaminated Groundwater Using High Carbon Content Fly Ash M. Melih for retardation of petroleum contaminants in barrier applications. Sorbed amounts measured in batch scale tests on remediation efficiency. INTRODUCTION Remediation of groundwater contaminated with petroleum-based products has

Aydilek, Ahmet

383

White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text  

SciTech Connect (OSTI)

The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

NONE

1996-11-01T23:59:59.000Z

384

FY-95 technology catalog. Technology development for buried waste remediation  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

NONE

1995-10-01T23:59:59.000Z

385

In-Situ Thermal Remediation of Contaminated Soil1  

E-Print Network [OSTI]

as follows. Over a period of several weeks, electrical energy is introduced to the contaminated soil usingChapter 1 In-Situ Thermal Remediation of Contaminated Soil1 Written by Huaxiong Huang,2 Serguei Lapin and Rex Westbrook 1.1 Background Recently, a method for removing contaminants from soil (several

Lapin, Sergey

386

Remediation of arsenic-contaminated soils and groundwaters  

DOE Patents [OSTI]

An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

Peters, Robert W. (Naperville, IL); Frank, James R. (Glen Ellyn, IL); Feng, Xiandong (West Richland, WA)

1998-01-01T23:59:59.000Z

387

Uranium Mill Tailings Remedial Action Project surface project management plan  

SciTech Connect (OSTI)

This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

Not Available

1994-09-01T23:59:59.000Z

388

In-situ remediation system for groundwater and soils  

DOE Patents [OSTI]

The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Corey, J.C.; Kaback, D.S.; Looney, B.B.

1991-01-01T23:59:59.000Z

389

Biogeochemical Considerations Related To The Remediation Of I-129 Plumes  

SciTech Connect (OSTI)

The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Yeager, C. [Los Alamos National Laboratory , Los Alamos, NM (United States); Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States); Zhang, S. [Texas A& amp; M University, Galveston, TX (United States); Xu, C. [Texas A& amp; M University, Galveston, TX (United States); Schwehr, K. A. [Texas A& amp; M University, Galveston, TX (United States); Li, H. P. [Texas A& amp; M University, Galveston, TX (United States); Brinkmeyer, R. [Texas A& amp; M University, Galveston, TX (United States); Santschi, P. H. [Texas A& amp; M University, Galveston, TX (United States)

2012-09-24T23:59:59.000Z

390

Adapting Advances in Remediation Science to Long-Term Surveillance  

SciTech Connect (OSTI)

Several facets of groundwater remediation stand to gain from the advances made during recent years in disciplines that contribute to remediation science. Engineered remedies designed to aggressively remove subsurface contamination should benefit from this progress, and more passive cleanup methods and the long-term monitoring of such passive approaches may benefit equally well if not more. The U.S. Department of Energy Office of Legacy Management (LM) has adopted a strategic plan that is designed to take advantage of technological improvements in the monitoring and assessment of both active and passive groundwater remedies. Flexible adaptation of new technologies, as they become available, to long-term surveillance at LM sites is expected to reduce site stewardship costs while ensuring the future protection of human health and the environment. Some of the technologies are expected to come from government initiatives that focus on the needs of subsurface monitoring. Additional progress in monitoring science will likely result from continual improvements in our understanding of contaminant fate-and-transport processes in the groundwater and the vadose zone.

Peterson, Dave [S.M. Stoller Corporation

2006-03-01T23:59:59.000Z

391

National conference on environmental remediation science and technology: Abstracts  

SciTech Connect (OSTI)

This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

NONE

1998-12-31T23:59:59.000Z

392

Remedial action work plan for the Colonie site. Revision 1  

SciTech Connect (OSTI)

The Colonie site is a DOE Formerly Utilized Sites Remedial Action Program (FUSRAP) site located in the Town of Colonie, New York, and consisting of an interim storage site and several vicinity properties. The Colonie Interim Storage Site (CISS) is the former National Lead (NL) Industries plant located at 1130 Central Avenue. There are 11 vicinity properties that received remedial action in 1984: 7 located south of the site on Yardboro and Palmer Avenues just across the Colonie-Albany town limits in Albany, and 4 located northwest of the site along Central Avenue in Colonie. Of these properties, nine are residences and two are commercial properties. This document describes the engineering design, construction, and associated plans for remedial action on the vicinity properties and the interim storage site. These plans include both radiological and chemical work. Radiological work includes: excavating the above-guideline radioactive wastes on the vicinity properties; designing required facilities for the interim storage site; preparing the interim storage site to receive these contaminated materials; transporting the contaminated materials to the interim waste storage stockpile; and preparing necessary schedules for accomplishing the remedial actions. Chemical work involves: developing the Resource Conservation and Recovery Act (RCRA) closure plans; neutralizing chemical hazards associated with plating solutions; inventorying on-site chemicals; and disposal of chemicals and/or residues. 17 refs., 5 figs., 1 tab.

Not Available

1985-08-01T23:59:59.000Z

393

COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY  

E-Print Network [OSTI]

COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 · The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation 400 cubic yards of the dredged material had been buried in the "Clay Pits" area south of the Colorado

394

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

395

Technology needs for environmental restoration remedial action  

SciTech Connect (OSTI)

This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

Watson, J.S.

1992-11-01T23:59:59.000Z

396

(Final Draft) Superconducting  

E-Print Network [OSTI]

ANDAND (Final Draft) Achieving Advanced Electrical Wires From Superconducting Coatings Prepared and Development Roadmap to Achieve Electrical Wire Advancements from Superconducting Coatings (Final Draft) Edited

397

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV  

SciTech Connect (OSTI)

This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

R. P. Wells

2006-11-14T23:59:59.000Z

398

Apparatus and method for extraction of chemicals from aquifer remediation effluent water  

DOE Patents [OSTI]

An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Moses, John M. (Dedham, MA); Barker, Donna L. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

399

Method and system for extraction of chemicals from aquifer remediation effluent water  

DOE Patents [OSTI]

A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Barker, Donna L. (Idaho Falls, ID)

2003-01-01T23:59:59.000Z

400

Selection of water treatment processes special study. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. The restoration of contaminated aquifers is to be undertaken in Phase II of the UMTRA Project. To begin implementation of Phase II, DOE requested that groundwater restoration methods and technologies be investigated by the Technical Assistance Contractor (TAC). and that the results of the TAC investigations be documented in special study reports. Many active and passive methods are available to clean up contaminated groundwater. Passive groundwater treatment includes natural flushing, geochemical barriers, and gradient manipulation by stream diversion or slurry walls. Active groundwater.cleanup techniques include gradient manipulation by well extraction or injection. in-situ biological or chemical reclamation, and extraction and treatment. Although some or all of the methods listed above may play a role in the groundwater cleanup phase of the UMTRA Project, the extraction and treatment (pump and treat) option is the only restoration alternative discussed in this report. Hence, all sections of this report relate either directly or indirectly to the technical discipline of process engineering.

Not Available

1991-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "final remediation level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Surface Radiation Survey at the Shepley’s Hill Remediation Site, Devens, Massachusettes  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) provided technical support for ongoing environmental remediation activities at the Shepley’s Hill remediation site, near Devens, MA. The technical support included the completion of a radiation survey of naturally occurring radioactive materials (NORM) at Shepley’s Hill, Shepley’s Hill landfill cover, and Red Cove areas. The objective of the radiation survey was to assess the ability of the INL backpack sodium iodide spectroscopy (BaSIS) system to detect elevated levels of NORM that may be associated with radon-222 emanation from near surface and subsurface fractures in the area. It is postulated that these fracture zones provide subsurface conduits for the transport of environmental contaminants. As such, location of these fracture sets will proved EPA Region 1 with the means for completing the development of an accurate site conceptual model. The results of the radiological survey show that some of the radiological anomalies correlate with currently mapped rock outcrops; however, not all of the rock outcrops in the surveyed area have been mapped. As such, it is not conclusive that all of the radiological anomalies correspond with surface rock outcrops. EPA Region 1 intends to perform a more comprehensive correlation of the radiation data collected with the BaSIS system with additional data sets such as detailed bedrock structural mapping, 2-dimensional resistivity profiling, and high-resolution topographic mapping. The results of this effort will be used in consideration of designing a potential follow-on effort for mapping of radon.

J. R. Giles; C. P. Oertel; L. G. Roybal

2009-09-01T23:59:59.000Z

402

ANALYSIS OF SOIL REMEDIATION REQUIREMENTS OF ABANDONED CENTRALIZED AND COMMERCIAL DRILLING  

SciTech Connect (OSTI)

During this reporting period our project focused on (1) review of case studies of remediation of centralized and commercial drilling fluid disposal (CCDD) sites in Texas, and (2) information transfer with preparation of a proceedings paper and a workshop/short course. Texas remediation of certain drilling-fluid disposal sites includes examples at CCDD sites as well as commercial oil reclamation sites and saltwater disposal sites that also disposed of drilling fluids in pits. Site investigations range from qualitative visual inspection and assessment to comprehensive hydrodynamic, chemical, and geophysical analyses of wastes and groundwater. A range of techniques has been used to evaluate waste material, soil, groundwater, and surface water for potential contamination with hydrocarbons, chemicals, saltwater, and naturally occurring radioactive materials (NORM). Most constituents of concern measured in these studies are below regulatory action levels and established guidelines. A proceedings paper summarizes results presented in this and previous semi-annual progress reports will be part of the Transactions of the Gulf Coast Association of Geological Societies (GCAGS). A technology transfer workshop also was prepared as part of that Annual Meeting of the GCAGS to be held in November 2002.

H. Seay Nance; Alan R. Dutton; Jerry Mullican

2002-08-24T23:59:59.000Z

403

Soil washing as a potential remediation technology for contaminated DOE sites  

SciTech Connect (OSTI)

Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

Devgun, J.S.; Beskid, N.J. (Argonne National Lab., IL (United States)); Natsis, M.E. (Princeton Univ., NJ (United States)); Walker, J.S. (USDOE, Washington, DC (United States))

1993-01-01T23:59:59.000Z

404

Soil washing as a potential remediation technology for contaminated DOE sites  

SciTech Connect (OSTI)

Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

Devgun, J.S.; Beskid, N.J. [Argonne National Lab., IL (United States); Natsis, M.E. [Princeton Univ., NJ (United States); Walker, J.S. [USDOE, Washington, DC (United States)

1993-03-01T23:59:59.000Z

405

Interim measure conceptual design for remediation of source area contamination at Agra, Kansas.  

SciTech Connect (OSTI)

This document presents a conceptual design for the implementation of a non-emergency interim measure (IM) at the site of the grain storage facility formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Agra, Kansas. The IM is recommended to mitigate localized carbon tetrachloride contamination in the vadose zone soils at the former CCC/USDA facility and eliminate ongoing soil-to-groundwater contamination. The objectives of this IM conceptual design report include the following: 1. Obtain written acknowledgement from the Kansas Department of Health and the Environment (KDHE) that remediation on the former CCC/USDA property is required. 2. Provide information (IM description, justification for the IM, and project schedule) that the KDHE can include in a pending fact sheet. 3. Obtain KDHE approval for the IM conceptual design, so that the CCC/USDA can initiate a formal request for access to the privately owned property and proceed with preparation of a remedial design plan (RDP). Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory (Argonne 2006) have demonstrated that soil and groundwater at the Agra site are contaminated with carbon tetrachloride. The levels in groundwater exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 5.0 {micro}g/L for this compound. The soil and groundwater contamination identified at the former CCC/USDA facility currently poses no unacceptable health risks.

LaFreniere, L. M.; Environmental Science Division

2007-07-31T23:59:59.000Z

406

1992 North Dakota Economic Impact Study for the Uranium Mill Tailings Remedial Action Project, Belfield and Bowman, North Dakota  

SciTech Connect (OSTI)

The goal of the Uranium Mill Tailings Remedial Action (UMTRA) Project in North Dakota is to improve the environment and reduce the negative health effects associated with residual radioactive material (RRM) from the inactive processing sites at Belfield and Bowman, North Dakota. A secondary benefit of the UMTRA Project is economic gain. The 1992 North Dakota Economic Impact Study (NDEIS) analyzes the impact of the remedial actions at the inactive Belfield and Bowman processing sites and their associated vicinity properties. This analysis is based on the assumption that the state of North Dakota will provide 10 percent of the funding required for remediation. For every dollar the state of North Dakota invests in the Belfield and Bowman onsite portion of the UMTRA Project, it will realize $5.04 in gross labor income (i.e., gross labor income divided by the state's total funding requirement). For every dollar the state of North Dakota invests, it will realize a net return of $3.04 (i.e., net benefit divided by the state's total funding requirement). This reflects only labor expenditure and employment impact. ff state and local non-labor tax benefits were considered in the net economic benefit, North Dakota could receive significantly more than $3.04 for each dollar it invests. The UMTRA Project work at Belfield and Bowman will benefit the state of North Dakota. Benefits include a reduction in the negative health effects caused by low-level RRM, an improvement in the environment, and increased economic growth.

Not Available

1993-01-01T23:59:59.000Z

407

Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

SAIC

2011-04-01T23:59:59.000Z

408

Remediating pesticide contaminated soils using solvent extraction  

SciTech Connect (OSTI)

Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the system reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.

Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L. [National Management Research Lab., Cincinnati, OH (United States)

1996-12-31T23:59:59.000Z

409

Year 5 Post-Remediation Biomonitoring of Pesticides and other Contaminants in Marine Waters near the United Heckathorn Superfund Site, Richmond, California  

SciTech Connect (OSTI)

Marine sediment remediation at the United Heckathorn Superfund Site in Richmond, California, was completed in April 1997. The Record of Decision included a requirement for five years of post-remediation monitoring be conducted in the waterways near the site. The present monitoring year, 2001? 2002, is the fifth and possibly final year of post-remediation monitoring. In March 2002, water and mussel tissues were collected from the four stations in and near Lauritzen Channel that have been routinely monitored since 1997-98. A fifth station in Parr Canal was sampled in Year 5 to document post-remediation water and tissue concentrations there. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples and in tissue samples from resident (i.e., naturally occurring) mussels. As in Years 3 and 4, mussels were not transplanted to the study area in Year 5. Year 5 concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with those from Years 1 through 4 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch Program and the Ecological Risk Assessment for the United Heckathorn Superfund Site. Year 5 water samples and mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples during Year 2 monitoring and were added to the water and mussel tissue analyses in 1999. Contaminants of concern in Year 5 water samples were analyzed in both bulk (total) phase and dissolved phase, as were total suspended solids, to evaluate the contribution of particulates to the total contaminant concentration.

Kohn, Nancy P.; Kropp, Roy K.

2002-08-01T23:59:59.000Z

410