Sample records for final nepa determination

  1. Microsoft Word - NEPA18_Final.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE LMI-EFRC Kick-OffMULTIPLEFor.1,886 FINAL6415

  2. NEPA Determination: LM-12-11 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-121 NEPA

  3. NEPA Determination: LM-12-12 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-121 NEPA-12

  4. NEPA Determination: LM-13-13 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-1213-13 NEPA

  5. Microsoft Word - NEPA Big Sky Final EA .doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE LMI-EFRC Kick-OffMULTIPLEFor.1,886 FINAL

  6. Final Guidance for Effective Use of Programmatic NEPA Review | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 Federalof EnergyThorium, andExpertof Energy

  7. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    Project Description 1) The Federated Indians of Graton Rancheria will complete an energy audit at the tribal offices to determine energy efficient retrofits; 2) community...

  8. Final SPD Supplemental EIS Master Reference List | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Counsel National Environmental Policy Act (NEPA) NEPA Reading Room Surplus Plutonium Disposition Supplemental Environmental Impact Statement Final SPD Supplemental EIS...

  9. DOE NEPA Compliance Officers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEPA Compliance Officers NEPA Compliance Officers are listed first for Program Offices, then Power Marketing Administrations, then Field Offices. Please send updates to...

  10. National Environmental Policy Act (NEPA) Categorically Excluded...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management System NEPA National Environmental Policy Act (NEPA) Categorically Excluded Actions National Environmental Policy Act (NEPA) Categorically Excluded...

  11. Federal Agency NEPA Procedures

    Broader source: Energy.gov [DOE]

    Each Federal agency is required to develop NEPA procedures that supplement the CEQ Regulations. Developed in consultation with CEQ, Federal agency NEPA procedures must meet the standards in the CEQ...

  12. NEPA Litigation Surveys

    Broader source: Energy.gov [DOE]

    CEQ publishes surveys on NEPA litigation on an annual basis. These surveys identify the number of cases involving a NEPA based cause of action, Federal agencies that were identified as a lead...

  13. NEPA Policy Statement

    Broader source: Energy.gov [DOE]

    The NEPA process is a valuable planning tool and provides an opportunity to improve the Department of Energy decisions and build public trust. Reviews of the Department's NEPA program have shown...

  14. NEPA Contracting Reform Guidance

    Broader source: Energy.gov (indexed) [DOE]

    on Environmental Quality), international and environmental law documents from the Indiana University Law Library, and other references (including the DOE NEPA Stakeholders...

  15. Federal NEPA Contacts

    Broader source: Energy.gov [DOE]

    CEQ and most Federal agencies identify primary points of contact for NEPA compliance. Normally a senior environmental professional, environmental law attorney, or member of agency leadership, these...

  16. National Environmental Policy Act (NEPA) | Department of Energy

    Energy Savers [EERE]

    Environmental Management System National Environmental Policy Act (NEPA) National Environmental Policy Act (NEPA) Regulations and Links DOE NEPA Website NEPA Compliance Program...

  17. Council on Environmental Quality Collaboration in NEPA A Handbook...

    Energy Savers [EERE]

    Council on Environmental Quality Collaboration in NEPA A Handbook for NEPA Practitioners Council on Environmental Quality Collaboration in NEPA A Handbook for NEPA Practitioners...

  18. NEPA Lessons Learned Questionnaire

    Broader source: Energy.gov [DOE]

    A questionnaire to help aid the Office of NEPA Policy and Compliance in meeting its responsibility to foster continuing improvement of the Department of Energy's National Environmental Policy Act process.

  19. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    rig, etc.)? The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope...

  20. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    of the State?" D D Any action that has potential impacts on Waters of the State' or wetland areas will require a separate NEPA Compliance Survey. Will the project area...

  1. Tribal Energy NEPA Fundamentals Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Tribal Energy NEPA Fundamentals Workshop is a three-day workshop for tribes to understand how to manage the National Environmental Policy Act (NEPA) process and implement the Council on...

  2. U.S. DEP_·UUMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    DEPUUMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:University of Central Florida PROJECf TITLE: PV Manufacturing Consortium Page 1 of2 STATE: Fl...

  3. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    ." ,., U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:TRAVIS COUNTY TEXAS PROJECT TITLE: County of Travis, Texas 700 Lavaca Street...

  4. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAG EMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DETERMINATION RECIPIENT:City of Virginia Beach PROJECT TITLE: Virginia Beach Wind Turbine Demonstration Project Page I of2 STATE: VA Funding Opportunity Announcement Number...

  5. u.s. DEPARTMENT OF ENERG¥ EERE rROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DETERMINATION RECIPIENT :University of Delaware STATE: DE PROJECT TITLE: Wind Turbine Infrastructure for Green Energy and Research on Wind Power in DE Funding Opportunity...

  6. DOE NEPA Compliance Officers

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste CleanupDesignationsResearch InitiativeNEPA

  7. National Environmental Policy Act (NEPA) | Department of Energy

    Energy Savers [EERE]

    Coordination and Implementation International Electricity Regulation National Environmental Policy Act (NEPA) National Environmental Policy Act (NEPA) All Electricity...

  8. Reference: RGL 81-02 Subject: NEPA-CORPS EIS

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Reference: RGL 81-02 Subject: NEPA-CORPS EIS Title: REVIEW OF ANOTHER AGENCY'S EIS Issued: 03/17/81 Expires: 12/31/83 Originator: DAEN-CWO-N Description: EIS WILL ONLY BE PREPARED WHEN CORPS PERMIT ACTION sentence of paragraph 23 of Appendix B to 33 CFR 230, a draft and final supplement to another agency's EIS

  9. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    lAIA1) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPINT:Arizona Geological Survey PROJECT TITLE: Siale Geological Survey Contributions to the...

  10. NEPA Implementation Procedures: Appendices I, II, and III

    Broader source: Energy.gov [DOE]

    These appendices are intended to improve public participation and facilitate agency compliance with the National Environmental Policy Act (NEPA) and the Council on Environmental Quality's NEPA...

  11. DOE Issues Final Rule for Alternative Efficiency Determination...

    Energy Savers [EERE]

    Rating Methods DOE Issues Final Rule for Alternative Efficiency Determination Methods and Alternative Rating Methods December 26, 2013 - 12:00am Addthis The Department of Energy...

  12. UGP Environmental Review (NEPA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transparency and openness. Some actions may have environmental impacts that require an environmental assessment and a detailed analysis to determine the extent and severity of...

  13. Microsoft Word - NEPA18_Final.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Exhibition of History, Science and Technology CRITFC Columbia River Inter-Tribal Fish Commission CWA Clean Water Act dB Decibels dBA A-weighted sound level DCG Derived...

  14. NEPA FAQs | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-1213-13NEPA

  15. ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW/ FINAL REGULATORY FLEXIBILITY ANALYSIS

    E-Print Network [OSTI]

    ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW/ FINAL REGULATORY FLEXIBILITY ANALYSIS.0 NEPA REQUIREMENTS: ENVIRONMENTAL IMPACTS OF THE ALTERNATIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Environmental Impacts of the Alternatives

  16. GO 2009 Annual NEPA Planning Summary | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFullGO 2009 Annual NEPA Planning Summary GO

  17. Benefits of Site-wide NEPA National Environmental Policy Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits of Site-wide NEPA National Environmental Policy Act Review (1994) Benefits of Site-wide NEPA National Environmental Policy Act Review (1994) The purpose of this guidance...

  18. Statement of Work-National Environmental Policy Act (NEPA) Support...

    Office of Environmental Management (EM)

    Work-National Environmental Policy Act (NEPA) Support Services Acquisition: Preparation and Review of Environmental Impact Statements, Environmental Assessments, Environmental...

  19. General Guidance on NEPA | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance on NEPA General Guidance on NEPA

  20. CX-008185: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    replacing existing high-pressure sodium lights with more energy-efficient, light-emitting diode lights. U.S. Department of Energy NEPA Categorical Exclusion Determination Form...

  1. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    SciTech Connect (OSTI)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01T23:59:59.000Z

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  2. Liquid Effluent Retention Facility (LERF) Final Hazard Category Determination

    SciTech Connect (OSTI)

    HUTH, L.L.

    2001-06-06T23:59:59.000Z

    The Liquid Effluent Retention Facility was designed to store 242-A Evaporator process condensate and other liquid waste streams for treatment at the 200 East Area Effluent Treatment Facility. The Liquid Effluent Retention Facility has been previously classified as a Category 3 Nonreactor Nuclear Facility. As defined in Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE 1992, DOE 1997), Category 3 Nuclear Facilities have the potential for significant localized (radiological) consequences. However, based on current facility design, operations, and radioactive constituent concentrations, the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences and is categorized as a Radiological Facility. This report documents the final hazard categorization process performed in accordance with DOE Order 5480.23, Nuclear Safety Analysis Reports. This report describes the current configuration and operations of the Liquid Effluent Retention Facility. Also included is a preliminary hazard categorization, which is based on current and proposed radioactive and hazardous material inventories, a preliminary hazards and accident analysis, and a final hazard category determination. The results of the hazards and accident analysis, based on the current configuration and operations of the Liquid Effluent Retention Facility and the current and proposed radioactive and hazardous material inventories, demonstrate that the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences. Based on the final hazard category analysis, the Liquid Effluent Retention Facility is a Radiological Facility. The final hazard category determination is based on a comparative evaluation of the consequence basis for the Category 3 threshold quantities to the calculated consequences for credible releases The basis for the Category 3 threshold quantities is 10 rem-equivalent man at 30 meters (98 feet) (DOE 1992, DOE 1997). The calculated 12 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, are 3.50 rem and 1.32 rem, respectively, which based upon the original hazard categorization criteria (DOE 1992) classified the Liquid Effluent Retention Facility as a Radiological Facility. Comparison of the calculated 24 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, 7.00 rem and 2.64 rem respectively, confirmed the Liquid Effluent Retention Facility classification as a Radiological Facility under the current hazard categorization criteria (DOE 1997). Both result in dose consequence values less than the allowable, 10 rem, meeting the requirements for categorizing the Liquid Effluent Retention Facility as a Radiological Facility.

  3. Template for Expedited National Environmental Policy Act (NEPA...

    Energy Savers [EERE]

    Energy Program Information Worksheet Template for Expedited NEPA Review of Certain Guidance for Energy Efficiency and Conservation Block Grant Program Recipients on Formula Grants...

  4. States with NEPA-like Environmental Planning Requirements

    Broader source: Energy.gov [DOE]

    Several states have environmental planning requirements that are similar to NEPA. These requirements are either State laws, regulations, or executive orders. Please click below for additional...

  5. Council on Environmental Quality (CEQ) NEPA Regulations: 40 CFR...

    Open Energy Info (EERE)

    to library Legal Document- Secondary Legal SourceSecondary Legal Source: Council on Environmental Quality (CEQ) NEPA Regulations: 40 CFR 1500 - 1518Legal Author CEQ Published NA...

  6. DRAFT NEPA Guidance on Consideration of the Effects of Climate...

    Broader source: Energy.gov (indexed) [DOE]

    agencies can improve their consideration of the effects of greenhouse gas (GHG) emissions and climate change in their evaluation of proposals for Federal actions under NEPA....

  7. NEPA Lessions Learned Quarterly Report - 4th Quarter FY 1998

    Broader source: Energy.gov (indexed) [DOE]

    what was required and why. For information about the Sandia National Laboratories New Mexico Site-wide EIS, contact Julianne Levings, NEPA Document Manager, at...

  8. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERM

    Broader source: Energy.gov (indexed) [DOE]

    s, DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERM INATION RECIPIENT:University of Central Florida PROJECf TITLE : Florida Hydrogen Initiative 3 letter of...

  9. NEPA Lessons Learned Quarterly Report, First Quarter FY 2005...

    Broader source: Energy.gov (indexed) [DOE]

    Office of Secure Transportation. Therefore, effective immediately, Debra Keeling, NNSA Service Center, will assume the DOE-Wide NEPA Contract Administrator duties. I will be...

  10. act nepa characterization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was amended by the Waste Isolation Pilot Plant Land Withdrawal Act. Katherine Biggs, Associate Director, NEPA Compliance Division, Office of Federal Activities. FR Doc....

  11. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERl...

    Broader source: Energy.gov (indexed) [DOE]

    KS PROJECf TITLE: EECBG EE-OOOO727 KeC: Pittsburgh State University Ground Source Heat Pump Funding Opportunity Announcement Number Procurement Instrument Numr NEPA Control...

  12. NEPA Success Stories: Celebrating 40 Years of Transparency and Open Government

    Broader source: Energy.gov [DOE]

    NEPA Success Stories: Celebrating 40 Years of Transparency and Open Government, Environmental Law Institute, 2010.

  13. NEPA/CERCLA/RCRA integration: Policy vs. practice

    SciTech Connect (OSTI)

    Hansen, R.P. (Hansen Environmental Consultants, Englewood, CO (United States)); Wolff, T.A. (Sandia National Lab., Albuquerque, NM (United States))

    1993-01-01T23:59:59.000Z

    Overwhelmed with environmental protection documentation requirements, a number of Federal agencies are grappling with the complexities of attempting to integrate'' the documentation requirements of the National Environmental Policy Act (NEPA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and the Resource Conservation and Recovery Act (RCRA). While there is some overlap between the general environmental policy objectives of NEPA, and the much more specific waste cleanup objectives of CERCLA and RCRA, there are also major differences and outright conflicts. This paper identifies both problems and opportunities associated with implementing emerging and evolving Federal agency policy regarding integration of the procedural and documentation requirements of NEPA, CERCLA, and RCRA. The emphasis is on NEPA/CERCLA/RCRA integration policy and practice at US Department of Energy (DOE) facilities. The paper provides a comparative analysis of NEPA, CERCLA, and RCRA processes and discusses special integration issues including scoping, development and analysis of alternatives, risk assessment, tiering, scheduling, and the controversy surrounding applicability of NEPA to CERCLA or RCRA cleanup activities. Several NEPA/CERCLA/RCRA integration strategy options are evaluated and an annotated outline of an integrated NEPA/CERCLA document is included.

  14. Post-NEPA environmental investigations at DOE geopressured-geothermal project sites

    SciTech Connect (OSTI)

    Reed, A.W.

    1985-01-01T23:59:59.000Z

    In 1982, the Oak Ridge National Laboratory (ORNL) conducted follow-up environmental reviews of four US Department of Energy (DOE) geopressured-geothermal design well projects: Dow Parcperdue, Sweet Lake, Gladys McCall and Pleasant Bayou. The reviews determined the implementation and effectiveness of monitoring and mitigation commitments made by DOE in National Environmental Policy Act (NEPA) documents prepared for the individual projects. This paper briefly describes post-NEPA environmental investigations at DOE's geopressured-geothermal design well sites and focuses on three environmental problems that were identified and subsequently mitigated by DOE. These were (1) a breech in the brine pit liner and (2) a torn mud pit liner at the Dow Parcperdue well site, and (3) the disposal of potentially hazardous contents of the reserve pit at the Pleasant Bayou well site. The nature of the environmental problems, recommendations for mitigation of each, and remedial actions that were taken are presented.

  15. Secure NEPA Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle| DepartmentAchievementEnergy ICCPSecure NEPA

  16. NEPA Litigation Surveys | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -DepartmentLessons LearnedNEPA

  17. DOE, NEPA, and YOU | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergyof EnergyDOE, NEPA, and

  18. Transmission/Nepa Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) JumpTradeWindPrepared asTransmissionNepa

  19. Using the NEPA Requirements and Guidance - Search Index

    Office of Environmental Management (EM)

    file, right click on it, select "Extract all", extract it to any location on your computer or USB drive. 2. Locate and Open the extracted folder "NEPA Requirements and Guidance...

  20. Guidance on NEPA Review for Corrective Actions under the Resource...

    Energy Savers [EERE]

    and Recovery Act (RCRA) Guidance on NEPA Review for Corrective Actions under the Resource Conservation and Recovery Act (RCRA) This guidance results from the work of a Task Team...

  1. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    SciTech Connect (OSTI)

    Neitzel, D.A. [ed.; Fosmire, C.J.; Fowler, R.A. [and others

    1998-09-01T23:59:59.000Z

    This document describes the US Department of Energy`s (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site.

  2. American Recovery and Reinvestment Act of 2009 & NEPA

    Broader source: Energy.gov [DOE]

    Section 1609(c) requires a report to Congress on the status and progress of NEPA reviews for Recovery Act funded projects and activities. The President has assigned reporting responsibility to CEQ

  3. Office of NEPA Policy and Compliance, Staff Directory

    Broader source: Energy.gov [DOE]

    Office of NEPA Policy and Compliance, Staff Directory including phone number and areas of responsibility for the  Energy and Waste Management Unit, Western Energy and Waste Management Unit, and the...

  4. Geothermal NEPA Database on OpenEI (Poster)

    SciTech Connect (OSTI)

    Young, K. R.; Levine, A.

    2014-09-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) developed the Geothermal National Environmental Policy Act (NEPA) Database as a platform for government agencies and industry to access and maintain information related to geothermal NEPA documents. The data were collected to inform analyses of NEPA timelines, and the collected data were made publically available via this tool in case others might find the data useful. NREL staff and contractors collected documents from agency websites, during visits to the two busiest Bureau of Land Management (BLM) field offices for geothermal development, and through email and phone call requests from other BLM field offices. They then entered the information into the database, hosted by Open Energy Information (http://en.openei.org/wiki/RAPID/NEPA). The long-term success of the project will depend on the willingness of federal agencies, industry, and others to populate the database with NEPA and related documents, and to use the data for their own analyses. As the information and capabilities of the database expand, developers and agencies can save time on new NEPA reports by accessing a single location to research related activities, their potential impacts, and previously proposed and imposed mitigation measures. NREL used a wiki platform to allow industry and agencies to maintain the content in the future so that it continues to provide relevant and accurate information to users.

  5. Examples of Benefits from the NEPA process for ARRA funded activities

    Broader source: Energy.gov [DOE]

    Efforts to implement the American Recovery and Reinvestment Act of 2009 (ARRA) include ensuring, and reporting on, timely NEPA reviews prepared in support of projects and activities funded under major provisions of ARRA. In addition to reporting on the status of the NEPA environmental reviews, agencies also report on the benefits of NEPA.

  6. NEPA and CEQA: Integrating State and Federal Environmental Reviews (Final)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -DepartmentLessons|

  7. Property:NEPA FinalEA-EISDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty Edit with form HistoryProperty Edit

  8. DOE NEPA Implementing Procedures: Final Rule (57 Fed Reg 15122) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartmentContaminated Ground Water |

  9. DOE NEPA Implementing Procedures: Final Rule (61 Fed Reg 36222) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartmentContaminated Ground Water |Department of

  10. DOE NEPA Implementing Procedures: Final Rule (61 Fed Reg 64603) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartmentContaminated Ground Water |Department

  11. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 9

    SciTech Connect (OSTI)

    Neitzel, D.A. [ed.] [ed.; Bjornstad, B.N.; Fosmire, C.J. [and others] [and others

    1997-08-01T23:59:59.000Z

    This ninth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4.0 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. Not all of the sections have been updated for this revision. The following lists the updated sections: climate and meteorology; ecology (threatened and endangered species section only); culture, archaeological, and historical resources; socioeconomics; all of Chapter 6.

  12. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect (OSTI)

    Cushing, C.E. (ed.)

    1992-12-01T23:59:59.000Z

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  13. Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5

    SciTech Connect (OSTI)

    Cushing, C.E. [ed.] [ed.

    1992-12-01T23:59:59.000Z

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  14. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.; Eschbach, Tara O.; Fowler, Richard A.; Fritz, Brad G.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2002-09-01T23:59:59.000Z

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  15. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.; Fowler, Richard A.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast, Ellen L.; Rohay, Alan C.; Thorne, Paul D.

    2001-09-01T23:59:59.000Z

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  16. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2004-09-22T23:59:59.000Z

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  17. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Scott, Michael J.; Thorne, Paul D.; Woody, Dave M.

    2003-09-01T23:59:59.000Z

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  18. Hanford Site National Environmental Policy Act (NEPA) characterization

    SciTech Connect (OSTI)

    Cushing, C.E. (ed.)

    1988-09-01T23:59:59.000Z

    This document describes the Hanford Site environment (Chapter 4) and contains data in Chapter 5 and 6 which will guide users in the preparation of National Environmental Policy Act (NEPA)-related documents. Many NEPA compliance documents have been prepared and are being prepared by site contractors for the US Department of Energy, and examination of these documents reveals inconsistencies in the amount of detail presented and the method of presentation. Thus, it seemed necessary to prepare a consistent description of the Hanford environment to be used in preparing Chapter 4 of environmental impact statements and other site-related NEPA documentation. The material in Chapter 5 is a guide to the models used, including critical assumptions incorporated in these models, in previous Hanford NEPA documents. The users will have to select those models appropriate for the proposed action. Chapter 6 is essentially a definitive NEPA Chapter 6, which describes the applicable laws, regulations, and DOE and state orders. In this document, a complete description of the environment is presented in Chapter 4 without excessive tabular data. For these data, sources are provided. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information where it is available on the 100, 200, 300, and other Areas. This division will allow a person requiring information to go immediately to those sections of particular interest. However, site-specific information on each of these separate areas is not always complete or available. In this case, the general Hanford Site description should be used. 131 refs., 19 figs., 32 tabs.

  19. Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests, Final Report

    E-Print Network [OSTI]

    Reddy, T. A.; Elleson, J.; Haberl, J. S.

    2000-01-01T23:59:59.000Z

    This is the final report for ASHRAE Research Project 1004-RP: Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests. This report presents the results of the development and application of the methodology to Case Study #2...

  20. U.S. DEPARTIVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    CENTER NEPA DETERlVIINATION RECIPIENT:County of Fairfax STATE: VA PROJECT Electric and hybrid vehicle incremental cost recovery TITLE: Funding Opportunity Announcement Number...

  1. U.S. DEPARThfENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETElUrINATION RECIPIENT: Marquette University PROJECT TITLE : Anaerobic Biotechnology for Renewable Energy Page 1 of2 STATE;...

  2. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEM ENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    MANAGEM ENT CENTER NEPA DETER.1.fiNATION Pagelof4 REC IPIENT: University of Hawaii STATE : HI PROJECT TITLE: Hawaii National Marine Renewable Energy Center Funding Opportunity...

  3. U.S. DEPARTlIIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    DETnu.fiNATION RECIPIENT:Clemson University PROJECf TITLE: BioEthanol Collaborative Page 1 of2 STATE: SC Funding Opportunity Announement Number Procurement Instrument Number NEPA...

  4. U.S. DEPARTIVEENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DE 'URA TTNATION RECIPIENT:Texas Tech University STATE: TX PROJECT TITLE : Great Plains Wind Power Test Facility Funding...

  5. u.s. DEPARThrFm OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    of Commerce STATE: WA PROJECf TITLE : State of Washington Stale Energy Program Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID...

  6. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETl1Rl...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETl1RlIINATION RECIPIENT:New Mexico Energy, Minerals & Natural Resources Department PROJECT TITLE: SEP ARRA City of...

  7. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect (OSTI)

    Rohay, A.C.; Fosmire, C.J.; Neitzel, D.A.; Hoitink, D.J.; Harvey, D.W.; Antonio, E.J.; Wright, M.K.; Thorne, P.D.; Hendrickson, P.L.; Fowler, R.A.; Goodwin, S.M.; Poston, T.M.

    1999-09-28T23:59:59.000Z

    This document describes the US Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents being prepared by DOE contractors. No conclusions or recommendations are provided. This year's report is the eleventh revision of the original document published in 1988 and is (until replaced by the 12th revision) the only version that is relevant for use in the preparation of Hanford NEPA; SEPA and CERCLA documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomic; occupational safety, and noise. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100,200,300, and other Areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) is essentially a definitive NEPA Chapter 6.0, which describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. People preparing environmental assessments and EISs should also be cognizant of the document entitled ''Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements'' published by the DOE Office of NEPA Oversight. Pacific Northwest National Laboratory (PNNL) staff prepared individual sections of this document, with input from other Site contractors. More detailed data are available from reference sources cited or from the authors. The following sections of the document were reviewed by the authors and updated with the best available information through June 1999: Climate and Meteorology; Ecology; Cultural, Archaeological, and Historical Resources; Socioeconomics; and All of Chapter 6.

  8. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    1) Complete feasibility study: Use of technical services to perform a site-specific wind resource assessment at the Bow Hill Reservation Complex, Washington. The assessment will...

  9. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    siren solar retrofits, ball field lighting, HVAC automated controls, boiler upgrades, solar panel installation, and building operating procedures); 2) public outreach and...

  10. GY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT...

    Broader source: Energy.gov (indexed) [DOE]

    A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such...

  11. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    InformatIOn gathering (including. but not limited to, literature surveys, inventories, site visits. and audits). data analysis (including, but not limited 10, oomputer...

  12. T OF ENERGY EER E PROJECT MANAGEMENT CENTER NEPA DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    A9 Information gathering (including , but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such...

  13. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    occupancy sensors, and a Visqueen curtain for Server racks; and add 33 solar photovoltaic panels to the existing City Hall system; 3) acquire technical services to set up a...

  14. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    simple weatherization activities; and 2) installing an approximate 17 kW solar photovoltaic system on the Shelter Care Building. Conditions: None Categorical Exclusion(s)...

  15. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    efficiency retrofitting, 3) installation of a small (approximately 106 kW) solar photovoltaic system on the roof of the City of Tustin Gymnasium (1994) Conditions: None...

  16. U.S. Department of Energy NEPA Categorical Exclusion Determination

    Broader source: Energy.gov (indexed) [DOE]

    and conservation strategy (completed); 2) installation of 150 kW dc solar photovoltaic system on the Main Street Parking Garage; 3) retrofit of the City HallMemorial...

  17. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    associated systemscontrols at Municipal Complex (Town Hall) and 2) install solar photovoltaic systems on rooftop of Town Hall and Public Works Building Conditions: None...

  18. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    LED fixtures, and 3) acquisition of technical services to create an emission inventory and create a "Green Plan" (comprehensive environmental strategy) for the city...

  19. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    replacements); 3) replacement of incandescent pedestrian signal heads with light-emitting diode (LED) pedestrian signals and traffic signal retrofits to LED; and 4) connection...

  20. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    city computer network, 5) retrofit city holiday lighting with energy efficient light-emitting diode lighting, 6) solar and wind feasibility study and installation at City Hall...

  1. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    solar photovoltaic and solar thermal systems, and stand-alone solar powered light-emitting diode LED parking lot lights), 9) US 36 Commuting Solutions Funding Program, 10)...

  2. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    5) green energy education and publicity program, 6) install 25 solar powered light emitting diode light systems in Summit Central Park, and 7) install a 10kW solar photovoltaic...

  3. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    Action or Project Description 1) Replacement of the metal-halide lighting with light-emitting diode energy efficient lighting in the two multi- floor buildings constituting the...

  4. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery and Reinvestment Act: Proposed Action or Project Description 1) Light-emitting diode (LED) light demonstration program at Palmdale Transportation Center; 2) roof...

  5. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    3) retrofit of city traffic signals and pedestrian crossing signals with light-emitting diode lighting, 4) retrofit of exterior security and parking lot lighting for city...

  6. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    3) retrofit outdoor lighting, traffic signals, and lighted street signs with light emitting diode bulbs and replace indoor light fixtures in the Esther Snyder Community Center...

  7. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    services), 2) sub grants and revolving loans to provide mini fluorescent and light-emitting diode (LED) lighting to low-income residents and commercial developers, 3) replace...

  8. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    replacing existing high-pressure sodium lights with more energy-efficient, light-emitting diode lights. Conditions: None Categorical Exclusion(s) Applied: B1.32, B5.1 *-For...

  9. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    at four city buildings, 3) lighting retrofits at eight city facilities, and 4) light-emitting diode streetlight retrofits Conditions: Historic preservation clause applies to this...

  10. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    and sustainability plan (ongoing), 2) retrofit city traffic signals with light-emitting diode lighting, and 3) development and implementation of a recycling demonstration...

  11. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    leaking steam traps at the Public Library; conducting lighting retrofits at the Public Museum; replacing fans and pump motors at the Safety building and Public Museum; installing...

  12. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    to this application (Downtown Transit Center 1906, 300 W LaPorte 1954, Ft. Collins Museum 1900) Categorical Exclusion(s) Applied: A1, A9, B1.32, B2.5, B3.6, B5.1 *-For the...

  13. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    fluorescent lamps or new PL- lamp fixtures, and adding occupancy sensor controls and daylight controls to interior lighting fixtures in some of the facilities; 2) replace tennis...

  14. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    energy efficiency and conservation strategy, 2) conduct an energy audit of City Hall, 3) energy efficient retrofits (heating, ventilating, and air conditioning; lighting; building...

  15. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2) fire house solar PV, 3) solar powered school beacon signs, 4) install light- emitting diode streetlights in areas located throughout city (would exclude historic...

  16. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    and economic benefits of energy efficiency. Task 2 is to replace inefficient heating systems in three of the buildings with higher efficiency furnaces and stoves...

  17. U.S. Department of Energy NEPA Categorical Exclusion Determination

    Broader source: Energy.gov (indexed) [DOE]

    energy management plan - study development only, 3) develop a "Waste to Energy (Cogeneration) Plan" - study development only, 4) develop LEED policies and practices for all new...

  18. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    consultant to manage the energy efficiency and conservation block grant process, 3) energy audit of City buildings, 4) revolving loan fund for energy efficient upgrades to...

  19. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery and Reinvestment Act: Proposed Action or Project Description 1) Conduct energy audit and development of an energy efficiency and conservation strategy (completed), 2)...

  20. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    Act: Proposed Action or Project Description 1) Development and implementation of an energy audit grant program for commercial and residential properties, 2) development of a...

  1. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    and Reinvestment Act: Proposed Action or Project Description 1) Establish a local energy and sustainability office, 2) installation of eighty BigBelly Waste and Recycling...

  2. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    MI-City-Ann Arbor Location: City Ann Arbor MI American Recovery and Reinvestment Act: Proposed Action or Project Description: 1) Financial incentive program-Property Assessed Clean...

  3. U.S. Department of Energy NEPA Categorical Exclusion Determination

    Broader source: Energy.gov (indexed) [DOE]

    in fuel use avoidance of approximately 113K gallons of fuel oil and 2,300 gallons of propane per year. Remaining funds from the engineering design would be used toward...

  4. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    of a work location Consolidation Feasibility Study focusing on reduction of the carbon footprint associated with municipal activities including buildings and...

  5. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    Reinvestment Act: Proposed Action or Project Description 1) Installation of a solar photovoltaic system with a web-based monitoring system and a capacity of approximately 117 KW on...

  6. Sandia Field Office NEPA Documents and Categorical Exclusion Determinations

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National| National Nuclear

  7. NEPA DETERMINATION: LM-01-13 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of

  8. NEPA Determination: LM-05-12 Amendment | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-12 Amendment

  9. NEPA Determination: LM-08-12 Amendment | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-12

  10. NEPA Determination: LM-12a-12 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-121

  11. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8

    SciTech Connect (OSTI)

    Neitzel, D.A. [ed.] [ed.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A. [and others] [and others

    1996-08-01T23:59:59.000Z

    This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts.

  12. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    SciTech Connect (OSTI)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1994-08-01T23:59:59.000Z

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  13. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 7

    SciTech Connect (OSTI)

    Cushing, C.E. [ed.] ed.; Baker, D.A.; Chamness, M.A. [and others] and others

    1995-09-01T23:59:59.000Z

    This seventh revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology, hydrology, environmental monitoring, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors. Chapter 5.0 was not updated from the sixth revision (1994). It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE Orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  14. FINAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal ColumbiaASCR2 FINAL ENVIRONMENTAL ASSESSMENT

  15. ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2011-05-01T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2004. The final analysis considered each of the 44 addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were reviewed by DOE, and their combined impact on a suite of 15 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s final determination. However, out of the 44 addenda, 9 were preliminarily determined to have measureable and quantifiable impact.

  16. Integrating a life-cycle assessment with NEPA: Does it make sense?

    SciTech Connect (OSTI)

    ECCLESTON, C.H.

    1998-09-03T23:59:59.000Z

    The National Environmental Policy Act (NEPA) of 1969 provides the basic national charter for protection of the environment in the US. Today NEPA has provided an environmental policy model which has been emulated by nations around the world. Recently, questions have been raised regarding the appropriateness and under what conditions it makes sense to combine the preparation of a NEPA analysis with the International Organization for Stnadardization (ISO) - 14000 Standards for Life-Cycle Assessment (LCA). This paper advantages a decision making tool consisting of six discrete criteria which can be employed by a user in reaching a decision regarding the integration of NEPA analysis and LCA. Properly applied, this tool should reduce the risk that a LCA may be inappropriately prepared and integrated with a NEPA analysis.

  17. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final

    SciTech Connect (OSTI)

    None

    1999-02-01T23:59:59.000Z

    This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield were determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.

  18. LM Annual NEPA Planning Summary 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15 LM 05-15 NEPA

  19. Golden Reading Room: NEPA Categorical Exclusions | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance onGlennNEPA Categorical Exclusions

  20. Golden Reading Room: Other NEPA Documents | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance onGlennNEPA CategoricalDepartmentOther

  1. Office of NEPA Policy and Compliance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T OEnergyOfficeEnergyNEPA

  2. NEPA Contracting Reform Guidance (December 1996) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of EnergyNEPA

  3. NEPA-Related Public Involvement | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013NEPA-Related Public Involvement

  4. Property:NEPA Decision Url | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate JumpAuth3LinkTechMinCategoricalExclusionNEPA

  5. Geothermal NEPA Workshop at GRC | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUK Place:Georgia Department of NaturalNEPA

  6. Template for Expedited NEPA Review of Certain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergyTeamDevelopmentDevelopingNEPA Review of Certain

  7. Template for Expedited National Environmental Policy Act (NEPA) Review of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergyTeamDevelopmentDevelopingNEPA Review of

  8. NEPA Contracting Reform Guidance (December 1996) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, NewThis paper09 Lessons LearnedNEPA

  9. Office of NEPA Policy and Compliance | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,Intelligence and CounterintelligenceNEPA Policy and

  10. Questions and Answers about National Environmental Policy Act (NEPA) Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified EnergyDepartment ofOrder No.about NEPA Compliance

  11. Federal Agency NEPA Procedures | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy ManagementAugustin2012)4 News5 Summary of

  12. Federal NEPA Contacts | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 Federal Energy1999; Exceeds Goal |of Understanding

  13. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    SciTech Connect (OSTI)

    Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1998-08-01T23:59:59.000Z

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

  14. NEPA Source Guide for the Hanford Site. Revision 1

    SciTech Connect (OSTI)

    Rued, W.J.

    1994-10-24T23:59:59.000Z

    This Source Guide will assist those working with the National Environmental Policy Act of 1969 (NEPA) to become more familiar with the Environmental Assessments (EA) and Environmental Impact Statements (EIS) that apply to specific activities and facilities at the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each and the decision made by the US Department of Energy (DOE) or its predecessor agencies, the US Atomic Energy Commission (AEC), and the US Energy Research and Development Administration (ERDA), concerning the proposed action and current status of the buildings and units discussed in the proposed action. If a decision was officially stated by the DOE, as in a finding of no significant impact (FONSI) or a Record of Decision (ROD), and was located, a summary is provided in the text. Not all federal decisions, such as FONSIs and RODS, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs may have been published elsewhere.

  15. Hanford Site National Evnironmental Policy Act (NEPA) characterization

    SciTech Connect (OSTI)

    Cushing, C.E. (ed.)

    1991-12-01T23:59:59.000Z

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  16. Hanford Site National Evnironmental Policy Act (NEPA) characterization. Revision 4

    SciTech Connect (OSTI)

    Cushing, C.E. [ed.

    1991-12-01T23:59:59.000Z

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  17. ANSI/ASHRAE/IES Standard 90.1-2010 Final Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Williamson, Jennifer L.; Richman, Eric E.; Liu, Bing

    2011-10-31T23:59:59.000Z

    A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE determined whether each addendum would have a positive, neutral, or negative impact on overall building efficiency.

  18. ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2011-01-01T23:59:59.000Z

    A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by the U.S. Department of Energy (DOE) for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency. Table S.1 shows the number of positive and negative changes for each section of Standard 90.1.

  19. US. DEPARTMENT OF ENERGY EE RE PROJ ECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    Number DE-FOA-OOOOO13-000002 Procurement Instrument Number DE -EEOOOO795.003 NEPA Control Number GF0-0000795-003 cm Number G0795 Based on my review of the information...

  20. u.s. DEPARTI\\IENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    CENTER NEPA DETElUIINATION RECIPIENT:State of Wisconsin SEP ARRA EE0000163-McCain Foods USA PROJECT TITLE: Waste Digester Biogas Recovery System Page 1 of2 STATE: WI Funding...

  1. NEPA/CERCLA/RCRA integration strategy for Environmental Restoration Program, Sandia National Laboratories, Albuquerque

    SciTech Connect (OSTI)

    Hansen, R.P. (International Technology Corp., Englewood, CO (United States))

    1992-10-01T23:59:59.000Z

    This report addresses an overall strategy for complying with DOE Order 5400.4 which directs that DOE offices and facilities integrate the procedural and documentation requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Environmental Policy Act (NEPA) wherever practical and appropriate. Integration of NEPA and Resource Conservation and Recovery Act (RCRA) processes is emphasized because RCRA applies to most of the potential release sites at SNL, Albuquerque. NEPA, CERCLA, and RCRA precesses are comparatively analyzed and special integration issues are discussed. Three integration strategy options are evaluated and scheduling and budgeting needs are identified. An annotated outline of an integrated project- or site-specific NEPA/RCRA RFI/CMS EIS or EA is included as an appendix.

  2. DFPARThIFN'I OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DI...

    Broader source: Energy.gov (indexed) [DOE]

    DFPARThIFN'I OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DIrnu.nNATION RECIPIENT:Kansas Corporation Commission - Renewable Energy Subgrant PROJECT T ITLE : City of Chanute GSHP...

  3. Consideration of Cumulative Impacts in EPA Review of NEPA Documents, EPA Office of Federal Activities

    Broader source: Energy.gov [DOE]

    The purpose of this guidance is to assist EPA reviewers of NEPA documents in providing accurate, realistic, and consistent comments on the assessment of cumulative impacts. The guidance focuses on...

  4. EERE PROJECT MA.NAGEMENT CENTER NEPA DFTFIU.1INATION PROJECT

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DFTFIU.1INATION PROJECT TITLE: EECBG DE-EEOOOO727 Atchison Library Ground Source Heat Pump Page 1 of2 STATE : KS Funding Opportunity Announcement Number Procurement Instrument...

  5. ANSI/ASHRAE/IES Standard 90.1-2010 Final Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Liu, Bing

    2011-10-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The final analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE's final determination. However, out of the 109 addenda, 34 were preliminarily determined to have a measureable and quantifiable impact. A suite of 240 computer energy simulations for building prototypes complying with ASHRAE 90.1-2007 was developed. These prototypes were then modified in accordance with these 34 addenda to create a second suite of corresponding building simulations reflecting the same buildings compliant with Standard 90.1-2010. The building simulations were conducted using the DOE EnergyPlus building simulation software. The resulting energy use from the complete suite of 480 simulation runs was then converted to energy use intensity (EUI, or energy use per unit floor area) metrics (Site EUI, Primary EUI, and energy cost intensity [ECI]) results for each simulation. For each edition of the standard, these EUIs were then aggregated to a national basis for each prototype using weighting factors based on construction floor area developed for each of the 15 U.S. climate zones using commercial construction data. When compared, the resulting weighted EUIs indicated that each of the 16 building prototypes used less energy under Standard 90.1-2010 than under Standard 90.1-2007 on a national basis when considering site energy, primary energy, or energy cost. The EUIs were also aggregated across building types to a national commercial building basis using the same weighting data. On a national basis, the final quantitative analysis estimated a floor-space-weighted national average reduction in new building energy consumption of 18.2 percent for source energy and 18.5 percent when considering site energy. An 18.2 percent savings in energy cost, based on national average commercial energy costs for electricity and natural gas, was also estimated.

  6. Integrating the NEPA 216 process with large-scale privatization projects under the US Department of Energy

    SciTech Connect (OSTI)

    Eccleston, C.H.

    1994-05-01T23:59:59.000Z

    The US Department of Energy (DOE) is considering the possibility of replacing the existing Hanford Site 200 Are steam system through a privatization effort. Such an action would be subject to requirements of the National Environmental Policy Act (NEPA) of 1969. Section 216 of the Doe NEPA Implementation Procedures (216 Process) provides a specific mechanism for integrating the DOE procurement process with NEPA compliance requirements.

  7. NEPA litigation in the 1970s: a deluge or a dribble

    SciTech Connect (OSTI)

    Liroff, R.A.

    1981-04-01T23:59:59.000Z

    This article examines several facets of litigation under the National Environmental Policy Act of 1969 (NEPA) during the 1970s. It briefly describes congressional expectations regarding lawsuits and then focuses on number of cases, characteristics of plaintiffs and defendants, and factors prompting aggrieved parties to seek judicial relief. NEPA cases are also compared to other civil cases as a measure of NEPA's impact on the federal courts. The future amount of litigation under NEPA may ultimately be influenced by congressional decisions regarding the availability of judicial review of agency decisions. Since the Republicans have gained control of the US Senate, and the House of Representatives is now somewhat more conservative, legislative proposals to limit judicial review under NEPA may find more positive reception. Efforts to limit citizen redress in the courts would be unfortunate. Litigation is often a product of administrative failure to recognize the legitimacy of environmental and other relevant values in decision-making. Some litigation, therefore, is unavoidable, but responsiveness to relevant values in the administrative process, and development of carefully reasoned policies based on more than political ideology, are the best ways to minimize future NEPA litigation. 3 tables.

  8. NEPA source guide for the Hanford Site. Revision 2

    SciTech Connect (OSTI)

    Tifft, S.R.

    1995-09-27T23:59:59.000Z

    This Source Guide will assist those working with the National Environmental Policy Act of 1969 (NEPA) to become more familiar with the Environmental Assessments (EA) and Environmental Impact Statements (EIS) that apply to specific activities and facilities at the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each and the decision made by the US Department of Energy (DOE) or its predecessor agencies, the US Atomic Energy Commission (AEC), and the US Energy Research and Development Administration (ERDA), concerning the proposed action and current status of the buildings and units discussed in the proposed action. If a decision was officially stated by the DOE, as in a Finding Of No Significant Impact (FONSI) or a Record of Decision (ROD), and was located, a summary is provided in the text. Not all federal decisions, such as FONSIs and RODS, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs may have been published elsewhere (i.e., local newspapers). The EA and EIS summaries are arranged in numerical order. To assist in locating a particular EA or EIS, the upper right comer of each page lists the number of the summary or summaries discussed on that page. Any draft EA or EIS is followed by a ``D.`` The EAs with nonstandard numbering schemes are located in Chapter 3.

  9. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    SciTech Connect (OSTI)

    Rawool-Sullivan, Mohini [Los Alamos National Laboratory; Bounds, John Alan [Los Alamos National Laboratory; Brumby, Steven P. [Los Alamos National Laboratory; Prasad, Lakshman [Los Alamos National Laboratory; Sullivan, John P. [Los Alamos National Laboratory

    2012-04-30T23:59:59.000Z

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

  10. ADDITION FOR CHAPTER 10 OF THE EA/RIR/IRFA RE NEPA AND ENVIRONMENTAL IMPACTS.

    E-Print Network [OSTI]

    ADDITION FOR CHAPTER 10 OF THE EA/RIR/IRFA RE NEPA AND ENVIRONMENTAL IMPACTS. During the Council.S. Environmental Protection Agency (Environmental Protection Agency 1995). Further, the amount of waste disposed) and the impacts of those disposals are unrelated to the percentages of the walleye pollock and Pacific cod

  11. ENVIRONMENTAL PLANNING / NEPA SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS

    E-Print Network [OSTI]

    ENVIRONMENTAL PLANNING / NEPA SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS CEMML@cemml.colostate.edu | http://www.cemml.colostate.edu Effective environmental planning and management of military and testing. The Center develops environmental planning documents for installations to incorporate

  12. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    Funding OpportUDity AnaouDcement NumMr OE-FOA-EEOOOO116 Procuremen11ns1nJmcn1 Number DE-EEOOO2816 NEPA Control NumMr GFO-10-162-OO1 CIDNumMr G02816 Bued on my review...

  13. Effective early planning and integration of NEPA into the decision-making process

    SciTech Connect (OSTI)

    Hannon, W.C.; Gensler, J.D. (Allen and Hamilton, Inc., Bethesda, MD (United States))

    1993-01-01T23:59:59.000Z

    This paper covers several key challenges and lessons learned in a federal agency assignment to educate the decision makers in NEPA and then to effectuate decisions early in the decision-making process based on the information derived from the NEPA process participants and documentation. Many of the key challenges faced by these federal decision makers stem, in part, from unfamiliarity with NEPA requirements and the benefits that can be derived by utilizing the process to support making an informed decision. Secondly, federal managers, at times believe that the process is a hindrance to accomplishing their mission. Lastly, there was a genuine belief that the public and other organizations within the agency should have no part in evaluating or commenting on the proposed action. Using the knowledge gained from drafting and reviewing EISs and EAs, Booz, Allen devised a systematic process that effectively: educated management on NEPA requirements; developed a management tool to guide and integrate the process; and encouraged the early and effective use of environmental and social information into all decision-making processes.

  14. Lessons Learned Quarterly Report, March 2002 | Department of...

    Energy Savers [EERE]

    NRC Seeks Comments on Draft NEPA Guidance DOE-wide NEPA Contracts Update Essential Fish Habitat Final Rule Issued Transitions CEQ Task Force to Modernize NEPA Senior NEPA...

  15. Environmental Assessment/Regulatory Impact Review/Final Regulatory Flexibility Analysis

    E-Print Network [OSTI]

    Environmental Assessment/Regulatory Impact Review/Final Regulatory Flexibility Analysis (EA . . . . . . . . . . . 11 2.0 NEPA REQUIREMENTS: ENVIRONMENTAL IMPACTS OF THE ALTERNATIVES . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Environmental Impacts of the Alternatives . . . . . 15 2.2 Whale watching activity in Alaska

  16. Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests; Literature Review, Preliminary Methodology Description, and Final Site Selection (Final Revision of Nov. 1997 Report)

    E-Print Network [OSTI]

    Reddy, T. A.; Elleson, J.; Haberl, J. S.; Claridge, D. E.

    1998-01-01T23:59:59.000Z

    This preliminary report contains the literature review, a preliminary description of the methodologies that have been chosen for the project and final site selection recommendations for ASHRAE Research Project RP 1004 ~ "Determining Long...

  17. Quantitative metallographic method for determining delta ferrite content in austenitic stainless steels. Final report

    SciTech Connect (OSTI)

    Pressly, G.A.

    1986-01-01T23:59:59.000Z

    Delta ferrite is a magnetic form of iron and has a body centered cubic crystal structure. It is often present as a nonequilibrium phase in austenitic stainless steel welds, castings, and wrought materials. The ferrite content of austenitic stainless steel can directly affect its properties, especially weldability and formability. Therefore, it is highly desirable to be able to predict and/or measure the ferrite content accurately. Current magnetic ferrite measuring methods are not applicable when test materials are geometrically small (less than 2.54 mm thick and 6.35 mm wide). Therefore, a standard metallographic test method STM 00107-A was established to determine delta ferrite content in small weldments and base metals of austenitic stainless steel. This standard test method (STM 00107-A) was then performed on several exemplary metallographic specimens to illustrate its capabilities and applications. The results from the exemplary tests were compared and contrasted to metallographic manual point count measurements, Ferritescope measurements, and predicted values calculated from chemical analyses. By utilizing the manual metallographic point count data, an accuracy of +-16% and a precision of +-0.77% were determined for the standard test method. The comparison of Ferritescope data to standard test method revealed that the results obtained by the two methods are close at low (0 to 3%) ferrite contents and Ferritscope results are substantially greater at higher (6 to 10%) ferrite contents. The standard test method data compiled from the exemplary weld specimens was noted to be very similar to the predicted values calculated from chemical analyses. It was also shown that because the standard test method utilizes optics the morphology of the delta ferrite particles can be determined. This type of determination is possible only with metallographic methods.

  18. Running loss evaporative emissions determination by the point-source method. Technical report (Final)

    SciTech Connect (OSTI)

    Not Available

    1989-10-17T23:59:59.000Z

    The work examined the potential of determining running emissions by examining the sources of evaporation of fuel from a vehicle during operation. This required the use of equipment based on constant volume sampling with multiple sources that could simultaneously monitor different locations. The hydrocarbon emissions were measured for their total content with two California certified vehicles. The operating temperature and fuel vapor pressure were control variables that were examined for their effect. Evaporative running losses were found at the charcoal canister and purge air vent. Differences in the losses were observed with the two vehicles. The fuel vapor pressure and driving cycle were major factors over the ranges examined, but temperature had statistical significance. A model used to predict vapor generation from the fuel was in general agreement with the running loss experimental data.

  19. Cost-effective method for determining the grindability of ceramics. Final report

    SciTech Connect (OSTI)

    Guo, C.; Chand, R.H. [Chand Kare Technical Ceramics, Worcester, MA (United States)

    1997-02-01T23:59:59.000Z

    The objective of this program was to develop a cost-effective method to determine the grindability of ceramics leading to cost-effective methods for machining such ceramics. In this first phase of activity, Chand Kare Technical Ceramics directed its efforts towards development of a definition for ceramic grindability, design of grindability-test experiments, and development of a ceramics-grindability test system (CGTS). The grindability study also included the establishment of the correlation between the grindability and conventional grinding practices. The above goals were achieved. A definition based on material removal rate under controlled force grinding was developed. Three prototypes CGTSs were developed and tested; suitable design was identified. Based on this, a fully automatic CGTS was developed and is ready for delivery to Oak Ridge National Laboratory. Comprehensive grindability tests for various commercially available engineering ceramics were conducted. Experimental results indicated that ceramics have significantly different grindabilities even though their mechanical properties were not significantly different. This implies that grindability of ceramics can be greatly improved. Further study is needed to establish correlations between microstructure and grindability. Therefore, grindability should be evaluated during the development of new ceramics or improvement of existing ones. In this report, the development of the ceramic-grindability definition, the development of CGTS, extensive grindability results, and the preliminary correlation between grindability and mechanical properties (such as flexural strength, hardness, elastic modulus, and fracture toughness) were summarized.

  20. Biological determinants of photobioreactor design. Final report, September 1, 1993--August 31, 1995

    SciTech Connect (OSTI)

    Palsson, B.; Brown, G.G.

    1997-04-01T23:59:59.000Z

    Microalgae is being considered for the capture and sequestration of CO{sub 2} from power-plant flue-gases. High productivity of microalgae is necessary to make this process cost effective compared to the conventional methods used for reducing CO{sub 2} levels in the atmosphere. This obviates the need for large-scale cultivation technologies and proper photobioreactor technology. The physical factors that influence the performance of a photoautotrophic microalgal culture are the quality and composition of light, inlet carbon dioxide concentration, nutrients, and secondary metabolites at high cell densities. In developing photobioreactor technology, balancing of biological processes to the physical rate process becomes important. The effect of various light compositions on the culture kinetics was studied. To determine the optimal composition, six wavelengths 470, 555, 560, 570, 580 and 605 nm, each supplemented with 680 nm of red light, were used to cultivate cultures. Based on the results obtained, it is concluded that a monochromatic red light of 680 nm is sufficient to obtain maximum capacity.

  1. Simultaneous gas-chromatographic determination of four toxic gases generally present in combustion atmospheres. Final report

    SciTech Connect (OSTI)

    Endecott, B.R.; Sanders, D.C.; Chaturvedi, A.K.

    1994-09-01T23:59:59.000Z

    Measurement of combustion gases produced by burning aircraft cabin materials poses a continuing limitation for smoke toxicity research. Since toxic effects of gases depend on both their concentrations and duration of exposures, frequent atmosphere sampling is necessary to define the concentration-time curve. A gas chromatographic method was developed for the simultaneous analyses of carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), and hydrogen cyanide (HCN). The method utilized an MTI M200 dual-column gas chromatograph (GC) equipped with 4-m molecular sieve-5A and 8-m PoraPlot-U capillary columns and two low-volume, high-sensitivity thermal conductivity detectors. Detectability (ppm)/retention times (seconds) for the gases were: CO (100/28); H2S (50/26); SO2 (125/76); HCN (60/108). The method was effective for determining these gases in mixtures and in the combustion atmospheres generated by burning wool (CO, HCN, and H2S) and modacrylic (CO and HCN) fabrics. Common atmospheric gaseous or combustion products (oxygen, carbon dioxide, nitrogen, water vapor, and other volatiles) did not interfere with the analyses. However, filtration of the combustion atmospheres was necessary to prevent restriction of the GC sampling inlet by smoke particulates. The speed, sensitivity, and selectivity of this method make it suitable for smoke toxicity research and for evaluating performance of passenger protective breathing equipment.

  2. Characterization of a fluidized-bed combustion ash to determine potential for environmental impact. Final report

    SciTech Connect (OSTI)

    Hassett, D.J.; Henderson, A.K.; Pflughoeft-Hassett, D.F.; Mann, M.D.; Eylands, K.E.

    1997-10-01T23:59:59.000Z

    A 440-megawatt, circulating fluidized-bed combustion (CFBC), lignite-fired power plant is planned for construction in Choctaw County north of Ackerman, Mississippi. This power plant will utilize Mississippi lignite from the first lignite mine in that state. Malcolm Pirnie, Inc., is working with the power plant developer in the current planning and permitting efforts for this proposed construction project. In order to accommodate Mississippi state regulatory agencies and meet appropriate permit requirements, Malcolm Pirnie needed to provide an indication of the characteristics of the by-products anticipated to be produced at the proposed plant. Since the Mississippi lignite is from a newly tapped mine and the CFBC technology is relatively new, Malcolm Pirnie contacted with the Energy and Environmental Research Center (EERC) to develop and perform a test plan for the production and characterization of ash similar to ash that will be eventually produced at the proposed power plant. The work performed at the EERC included two primary phases: production of by-products in a bench-scale CFBC unit using lignite provided by Malcolm Pirnie with test conditions delineated by Malcolm Pirnie to represent expected operating conditions for the full-scale plant; and an extensive characterization of the by-products produced, focusing on Mississippi regulatory requirements for leachability, with the understanding that return of the by-product to the mine site was an anticipated by-product management plan. The overall focus of this project was the environmental assessment of the by-product expected to be produced at the proposed power plant. Emphasis was placed on the leachability of potentially problematic trace elements in the by-products. The leaching research documented in this report was performed to determine trends of leachability of trace elements under leaching conditions appropriate for evaluating land disposal in monofills, such as returning the by-products to the mine site.

  3. EIS-0205: Joint NEPA/SEPA Final Environmental Impact Statement Washington Windplant No. 1, Goldendale, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bonneville Power Administration prepared this statement in order to fulfill its National Environmental Policy Act obligations ahead of signing an agreement with the utilities that would purchase the Windplant’s power from KENETECH. KENETECH Windpower, Inc., proposes to construct and operate Washington Windplant No. 1 in the Columbia Hills area, southeast of Goldendale, in Klickitat County, Washington.

  4. Proposed Columbia Wind Farm No. 1 : Final Environmental Impact Statement, Joint NEPA/SEPA.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Klickitat County (Wash.)

    1995-09-01T23:59:59.000Z

    CARES proposes to construct and operate the 25 megawatt Columbia Wind Farm No. 1 (Project) in the Columbia Hills area of Klickitat County, Washington known as Juniper Point. Wind is not a constant resource and based on the site wind measurement data, it is estimated that the Project would generate approximately 7 average annual MWs of electricity. BPA proposes to purchase the electricity generated by the Project. CARES would execute a contractual agreement with a wind developer, to install approximately 91 wind turbines and associated facilities to generate electricity. The Project`s construction and operation would include: install concrete pier foundations for each wind turbine; install 91 model AWT-26 wind turbines using 43 m high guyed tubular towers on the pier foundations; construct a new 115/24-kv substation; construct a 149 m{sup 2} steel operations and maintenance building; install 25 pad mount transformers along the turbine access roads; install 4.0 km of underground 24 kv power collection lines to collect power from individual turbines to the end of turbine strings; install 1.2 km of underground communication and transmission lines from each turbine to a pad mount transformer; install 5.6 km of 24 kv wood pole transmission lines to deliver electricity from the pad mount transformers to the Project substation; install 3.2 km of 115 kv wood pole transmission lines to deliver electricity from the Project substation to the Public Utility District No. 1 of Klickitat County(PUD)115 kv Goldendale line; interconnect with the BPA transmission system through the Goldendale line and Goldendale substation owned by the PUD; reconstruct, upgrade, and maintain 8.0 km of existing roads; construct and maintain 6.4 km of new graveled roads along the turbine strings and to individual turbines; and install meteorological towers guyed with rebar anchors on the Project site.

  5. CEQ Issues Final Guidance for Effective Use of Programmatic NEPA Reviews |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing atGreenhouseCDSB-1003.PDF�June

  6. Proposed Columbia Wind Farm No. 1 : Draft Environmental Impact Statement, Joint NEPA/SEPA.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Klickitat County (Wash.)

    1995-03-01T23:59:59.000Z

    This Draft Environmental Impact Statement (DEIS) addresses the Columbia Wind Farm {number_sign}1 (Project) proposal for construction and operation of a 25 megawatt (MW) wind power project in the Columbia Hills area southeast of Goldendale in Klickitat County, Washington. The Project would be constructed on private land by Conservation and Renewable Energy System (CARES) (the Applicant). An Environmental Impact Statement is required under both NEPA and SEPA guidelines and is issued under Section 102 (2) (C) of the National Environmental Policy Act (NEPA) at 42 U.S.C. 4321 et seq and under the Washington State Environmental Policy Act (SEPA) as provided by RCW 43.21C.030 (2) (c). Bonneville Power Administration is the NEPA lead agency; Klickitat County is the nominal SEPA lead agency and CARES is the SEPA co-lead agency for this DEIS. The Project site is approximately 395 hectares (975 acres) in size. The Proposed Action would include approximately 91 model AWT-26 wind turbines. Under the No Action Alternative, the Project would not be constructed and existing grazing and agricultural activities on the site would continue.

  7. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    SciTech Connect (OSTI)

    None

    1999-02-01T23:59:59.000Z

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

  8. Hanford Site National Environmental Policy Act (NEPA) Characterization Report, Revision 17

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Sackschewsky, Michael R.; Scott, Michael J.; Thorne, Paul D.

    2005-09-30T23:59:59.000Z

    This document describes the U.S. Department of Energy’s (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many environmental documents being prepared by DOE contractors concerning the National Environmental Policy Act (NEPA). No statements about significance or environmental consequences are provided. This year’s report is the seventeenth revision of the original document published in 1988 and is (until replaced by the eighteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (EISs) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology; air quality; geology; hydrology; ecology; cultural, archaeological, and historical resources; socioeconomics; noise; and occupational health and safety. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100, 200, 300, and other areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities. Information in Chapter 6 of this document can be adapted and supplemented with specific information for a chapter covering statutory and regulatory requirements in an environmental assessment or environmental impact statement. When preparing environmental assessments and EISs, authors should also be cognizant of the document titled Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements published by the DOE Office of NEPA Oversight (DOE 2004). Additional guidance on preparing DOE NEPA documents can be found at http://tis.eh.doe.gov/nepa/guidance.html. Any interested individual seeking baseline data on the Hanford Site and its past activities may also use the information contained in this document to evaluate projected activities and their impacts. For this 2005 revision, the following sections of the document were reviewed by the authors and updated with the best available information through May 2005: Climate and Meteorology Air Quality Geology – Seismicity section only Hydrology – Flow charts for the Columbia and Yakima rivers only Ecology – Threatened and Endangered Species subsection only Socioeconomics Occupational Safety All of Chapter 6.

  9. DOE Annual NEPA Planning Summary report templates 2011

    Broader source: Energy.gov (indexed) [DOE]

    Determination Date:","applicationvnd.ms-excel","Municipal solid waste biomass gasification to energy facility on a 95-acre recycling center in Orange County, New York."...

  10. File:09-FD-g - USFS NEPA Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to:09-FD-g - USFS NEPA

  11. Title 40 CFR 1501 NEPA and Agency Planning | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen EnergyR. 297water0 CFR 1501 NEPA

  12. DEPARTMENT OFENFRGY EERE PROJECT MANAGEMENT CENTER NEPA DETEIU...

    Broader source: Energy.gov (indexed) [DOE]

    this determination due to the nature of the action, which is to increase the number of Smart Meter installations compared to the number originally tasked. The no-cost aspect...

  13. Federal Register Notices for DOE NEPA Guidelines and Regulations |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 Federal Energy1999; ExceedsEnergyDepartment of

  14. National Environmental Policy Act (NEPA) Source Guide for the Hanford Site

    SciTech Connect (OSTI)

    JANSKY, M.T.

    2000-09-01T23:59:59.000Z

    This Source Guide will assist those working with the National Environmental Policy Act (NEPA) of 1969 to become more familiar with the environmental assessments (EA) and environmental impact statements (EIS) that apply to specific activities and facilities on the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each document and the decision made by the U.S. Department of Energy (DOE) or its predecessor agencies, the U.S. Atomic Energy Commission (AEC) and the U.S. Energy Research and Development Administration (ERDA). The summary includes the proposed action alternatives and current status of the proposed action. If a decision officially was stated by the DOE, as in a finding of no significant impact (FONSI) or a record of decision (ROD), and the decision was located, a summary is provided. Not all federal decisions, such as FONSIs and RODs, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs might have been published elsewhere (i.e., local newspapers).

  15. T OF ENERGY EERE PROJECT M ANAGEM ENT CENT ER NEPA DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    A9 Information gathering (including, but not limited to, literature surveys, inventories, audits). data analysis (including computer modeling), document preparation (such...

  16. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want to followSuite 600,Department of Energy 4:SUMMARY REPORT

  17. Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30T23:59:59.000Z

    In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

  18. Determination of the off-shell Higgs boson signal strength in the high-mass $ZZ$ and $WW$ final states with the ATLAS detector

    E-Print Network [OSTI]

    Aad, Georges; ATLAS Collaboration; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; ?lvarez Piqueras, Damián; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis

    2015-01-01T23:59:59.000Z

    Measurements of the $ZZ$ and $WW$ final states in the mass range above the $2m_Z$ and $2m_W$ thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents a determination of the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the $ZZ \\rightarrow 4\\ell$, $ZZ\\rightarrow 2\\ell2\

  19. Determination of the off-shell Higgs boson signal strength in the high-mass $ZZ$ and $WW$ final states with the ATLAS detector

    E-Print Network [OSTI]

    ATLAS Collaboration

    2015-03-17T23:59:59.000Z

    Measurements of the $ZZ$ and $WW$ final states in the mass range above the $2m_Z$ and $2m_W$ thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents a determination of the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the $ZZ \\rightarrow 4\\ell$, $ZZ\\rightarrow 2\\ell2\

  20. DOE Categorical Exclusion Determination Form

    Broader source: Energy.gov (indexed) [DOE]

    wind farm, including identification of power purchasers, NEPA permitting requirements, transmission and interconnection studies, and subsequent interconnection agreements...

  1. NEPA Documentation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-1213-13

  2. 2014-12-22 Issuance: Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, refrigeration, and water heating equipment , as issued by the Deputy Assistant Secretary for Energy Efficiency on December 22, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  3. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARM MeasurementsDetermination of

  4. Diagnostic development for determining the joint temperature/soot statistics in hydrocarbon-fueled pool fires : LDRD final report.

    SciTech Connect (OSTI)

    Casteneda, Jaime N.; Frederickson, Kraig; Grasser, Thomas W.; Hewson, John C.; Kearney, Sean Patrick; Luketa, Anay Josephine

    2009-09-01T23:59:59.000Z

    A joint temperature/soot laser-based optical diagnostic was developed for the determination of the joint temperature/soot probability density function (PDF) for hydrocarbon-fueled meter-scale turbulent pool fires. This Laboratory Directed Research and Development (LDRD) effort was in support of the Advanced Simulation and Computing (ASC) program which seeks to produce computational models for the simulation of fire environments for risk assessment and analysis. The development of this laser-based optical diagnostic is motivated by the need for highly-resolved spatio-temporal information for which traditional diagnostic probes, such as thermocouples, are ill-suited. The in-flame gas temperature is determined from the shape of the nitrogen Coherent Anti-Stokes Raman Scattering (CARS) signature and the soot volume fraction is extracted from the intensity of the Laser-Induced Incandescence (LII) image of the CARS probed region. The current state of the diagnostic will be discussed including the uncertainty and physical limits of the measurements as well as the future applications of this probe.

  5. SPECIAL REREVIEW FINAL DETERMINATION UNCLASSIFIED

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8B100B100WWNASCUBA80

  6. EIS-0470: Cape Wind Energy Project, Final General Conformity...

    Broader source: Energy.gov (indexed) [DOE]

    70: Cape Wind Energy Project, Final General Conformity Determination EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final...

  7. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    SciTech Connect (OSTI)

    N /A

    2005-08-05T23:59:59.000Z

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) {section} 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments and concerns to the fullest extent possible. DOE received over 1,600 comments on the draft EIS from the public, federal, state and local agencies, tribes, governors, and members of Congress. DOE has considered these comments in finalizing the EIS and has provided responses to all comments in the EIS.

  8. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  9. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  10. EIS-0238-S1: Supplemental Environmental Impact Statement to the Final Site-Wide Environmental Impact Statement for Continued Operation of the Los Alamos National Laboratory, New Mexico

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE), Albuquerque Operations Office, has prepared a Supplemental Analysis (SA) to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) adequately addresses the environmental effects of a proposal for modifying current methods utilized to receive and manage certain offsite unwanted radioactive sealed sources at Los Alamos National Laboratory or if additional documentation under the National Environmental Policy Act (NEPA) is needed.

  11. Microsoft Word - Draft Advanced Fossil Solicitation Final Draft...

    Broader source: Energy.gov (indexed) [DOE]

    Guarantee Program decision-making procedures to ensure that a project's environmental impacts are properly considered. 1. There are three possible levels of NEPA for an...

  12. Final Guidance on Improving the Process for Preparing Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    the Process for Preparing Efficient and Timely Environmental Reviews under the National Environmental Policy Act. The National Environmental Policy Act (NEPA) and CEQ Regulations...

  13. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Summary and Guide for Stakeholders

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  14. Environmental planning and categorical exclusions: Making the categorical exclusion an integral part of your NEPA tool kit

    SciTech Connect (OSTI)

    Holthoff, M.G.; Hanrahan, T.P.

    1994-06-01T23:59:59.000Z

    As contained in the Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act, 40 CFR 1500--1508, the Council on Environmental Quality (CEQ) directs federal agencies to adopt their own procedures for implementing the Act. The US Department of Energy (DOE) and the US Department of Agriculture Forest Service (USFS) are two examples of federal agencies with dissimilar but functionally equivalent CX processes. The DOE and USFS were selected as subjects for this study because of their distinctly different missions and as a results of the author`s familiarity with the policies of both agencies. The objectives of this study are to: (1) describe the CX policies and processes of the two agencies, (2) identify the similarities and differences between the two processes, and (3) suggest ways for improving these processes. In performing this evaluation, the authors will identify the components of each agency`s CX process that clearly contributes qualitative information for the purpose of making environmental planning decisions. Drawing from the best elements of each process, the authors will provide some general recommendations that should enable the agencies to fulfill their various obligations to the CX process while concurrently performing early, thorough, and expeditious environmental reviews under NEPA.

  15. BACT/LAER Clearinghouse: A compilation of control-technology determinations. Volume 2. Appendix H, source codes 1-3. Final report

    SciTech Connect (OSTI)

    Steigerwald, J.

    1990-06-01T23:59:59.000Z

    The Clean Air Act as amended in 1977 prescribes several technology-based limitations affecting new or modified air pollution sources: (1) new source performance standards (NSPS); (2) best available control technology (BACT); and (3) lowest achievable emission rate (LAER). The basic purposes of the BACT/LAER Clearinghouse are to: (1) provide State and local air pollution control agencies with current information on case-by-case control technology determinations that are made nationwide and (2) promote communication, cooperation, and sharing of control technology information among the permitting agencies. The information presented in the compilation was abstracted from preconstruction permits and submitted voluntarily by the State and local air pollution control agencies. The Clearinghouse is intended as a reference for State and local agencies in making BACT/LAER decisions. Since the 1985 BLC document was published in June of that year, annual supplements containing only those determinations inserted or revised during the previous 12 months were published. A master edition containing all new/revised determinations completed during the past 5 years was planned to be published every 5 years. The report is the 5 year compilation containing all determinations inserted or updated since June 1985. The volume contains appendice H which discusses detailed source listings for new determinations Source codes 1-3.

  16. BACT/LAERR Clearinghouse: A compilation of control-technology determinations. Volume 4. Appendix H, source codes 7 to 12. Final report

    SciTech Connect (OSTI)

    Steigerwald, J.

    1990-06-01T23:59:59.000Z

    The Clean Air Act as amended in 1977 prescribes several technology-based limitations affecting new or modified air pollution sources: (1) new source performance standards (NSPS); (2) best available control technology (BACT); and (3) lowest achievable emission rate (LAER). The basic purposes of the BACT/LAER Clearinghouse are to: (1) provide State and local air pollution control agencies with current information on case-by-case control technology determinations that are made nationwide and (2) promote communication, cooperation, and sharing of control technology information among the permitting agencies. The information presented in this compilation was abstracted from preconstruction permits and submitted voluntarily by the State and local air pollution control agencies. The Clearinghouse is intended as a reference for State and local agencies in making BACT/LAER decisions. Since the 1985 BLC document was published in June of that year, annual supplements containing only those determinations inserted or revised during the previous 12 months were published. A master edition containing all new/revised determinations completed during the past 5 years was planned to be published every 5 years. The report is the 5 year compilation containing all determinations inserted or updated since June 1985. The volume is a continuation of appendice H which discusses detailed source listings for new determinations Source codes 8-12.

  17. BACT/LAER Clearinghouse: A compilation of control-technology determinations. Volume 3. Appendix H, source codes 4 to 6. Final report

    SciTech Connect (OSTI)

    Speigerwald, J.

    1990-06-01T23:59:59.000Z

    The Clean Air Act as amended in 1977 prescribes several technology-based limitations affecting new or modified air pollution sources: (1) new source performance standards (NSPS); (2) best available control technology (BACT); and (3) lowest achievable emission rate (LAER). The basic purposes of the BACT/LAER Clearinghouse are to: (1) provide State and local air pollution control agencies with current information on case-by-case control technology determinations that are made nationwide and (2) promote communication, cooperation, and sharing of control technology information among the permitting agencies. The information presented in this compilation was abstracted from preconstruction permits and submitted voluntarily by the State and local air pollution control agencies. The Clearinghouse is intended as a reference for State and local agencies in making BACT/LAER decisions. Since the 1985 BLC document was published in June of that year, annual supplements containing only those determinations inserted or revised during the previous 12 months were published. A master edition containing all new/revised determinations completed during the past 5 years was planned to be published every 5 years. The report is the 5 year compilation containing all determinations inserted or updated since June 1985. The volume is a continuation of appendice H which discusses detailed listings for new determinations Source codes 4-7.

  18. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  19. u.s. DEPARTh1ENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    for determination: The State of North Carolina proposes to use EECBG funds to reduce carbon footprint by reducing trucking needs of hauling consumed products. Currently food...

  20. BACT/LAER Clearinghouse: A compilation of control-technology determinations. Volume 1. Report summary and appendices A-G. Final report

    SciTech Connect (OSTI)

    Steigerwald, J.

    1990-06-01T23:59:59.000Z

    The Clean Air Act as amended in 1977 prescribes several technology-based limitations affecting new or modified air pollution sources: (1) new source performance standards (NSPS); (2) best available control technology (BACT); and (3) lowest achievable emission rate (LAER). The basic purposes of the BACT/LAER Clearinghouse are to: (1) provide State and local air pollution control agencies with current information on case-by-case control technology determinations that are made nationwide and (2) promote communication, cooperation, and sharing of control technology information among the permitting agencies. The information presented in this compilation was abstracted from preconstruction permits and submitted voluntarily by the State and local air pollution control agencies. The Clearinghouse is intended as a reference for State and local agencies in making BACT/LAER decisions. Since the 1985 BLC document was published in June of that year, annual supplements containing only those determinations inserted or revised during the previous 12 months were published. A master edition containing all new/revised determinations completed during the past 5 years was planned to be published every 5 years. The report is the 5 year compilation containing all determinations inserted or updated since June 1985. The volume covers background information and improvements of the system as well as appendices A-G.

  1. Study of catalytic diffusion in coal. Final report for 1983/1984 SOMED Project. [Determination of pore (hole) size and pore shape distribution

    SciTech Connect (OSTI)

    Kispert, L.D.

    1984-09-01T23:59:59.000Z

    The purpose of our studies is to determine the pore (hole) size and pore shape distribution in standard bituminous coal samples from various Alabama coal seams such as that of the Mary Lee, Black Creek and Pratt during and after swelling of the coal with different solvents at various temperatures. These samples come from the Penn State Coal Sample Bank at Pennsylvania State University Coal Research Section and from Alabama's Mineral Industries. Methods have been developed in the laboratory whereby free radical probes of varying sizes can be diffused into the coal under various conditions. These probes can be detected and the environment surrounding the probes can be deduced by electron paramagnetic resonance (EPR) methods. To date, we have found that not only can the shape and size of the pores be determined, but that the size distribution varies from one bituminous coal seam to another, even for coal of the same rank, suggesting a different optimal catalyst should be used for each seam. The effect of oxygen on the coal samples during grinding has been studied; however, the free radical technique appears to be insensitive to the presence of oxygen effects. It is our goal to determine the structural differences between various bituminous coals. 9 references, 9 figures, 1 table.

  2. Final Report

    SciTech Connect (OSTI)

    DeTar, Carleton [P.I.

    2012-12-10T23:59:59.000Z

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  3. Final Report

    SciTech Connect (OSTI)

    Biros, George

    2014-08-18T23:59:59.000Z

    This the final report for the project "Large-Scale Optimization for Bayesian Inference in Complex Systems," for the work in the group of the co-PI George Biros.

  4. Detection of long-term trends in carbon accumulation by forests in Northeastern U. S. and determination of causal factors: Final report

    SciTech Connect (OSTI)

    J. William Munger; Steven C. Wofsy; David R. Foster

    2012-01-31T23:59:59.000Z

    The overall project goal was to quantify the trends and variability for Net ecosystem exchange of CO{sub 2}, H{sub 2}O, and energy by northeastern forests, with particular attention to the role of succession, differences in species composition, legacies of past land use, and disturbances. Measurements included flux measurements and observations of biomass accumulation using ecosystem modeling as a framework for data interpretation. Continuation of the long-term record at the Environmental Measurement Site (EMS) Tower was a priority. The final quality-assured CO{sub 2}-flux data now extend through 2010. Data through 2011 are collected but not yet finalized. Biomass observations on the plot array centered on the tower are extended to 2011. Two additional towers in a hemlock stand (HEM) and a younger deciduous stand (LPH) complement the EMS tower by focusing on stands with different species composition or age distribution and disturbance history, but comparable climate and soil type. Over the period since 1993 the forest has added 24.4 Mg-C ha{sup -1} in the living trees. Annual net carbon uptake had been increasing from about 2 Mg-C ha{sup -1}y{sup -1} in the early 1990s to nearly 6 Mg-C ha{sup -1}y{sup -1} by 2008, but declined in 2009-2010. We attribute the increasing carbon uptake to a combination of warmer temperatures, increased photosynthetic efficiency, and increased influence by subcanopy hemlocks that are active in the early spring and late autumn when temperatures are above freezing but the deciduous canopy is bare. Not all of the increased carbon accumulation was found in woody biomass. Results from a study using data to optimize parameters in an ecosystem process model indicate that significant changes in model parameters for photosynthetic capacity and shifts in allocation to slow cycling soil organic matter are necessary for the model to match the observed trends. The emerging working hypothesis is that the pattern of increasing carbon uptake over the early 2000's represents a transient pulse that will eventually end as decomposition of the accumulated carbon catches up.

  5. Determining the effect of incentive programs on the occurrence of accidents, injuries, and productivity - final report. Open File Report 20 January 1984-31 December 1987

    SciTech Connect (OSTI)

    Goodman, P.S.

    1987-12-01T23:59:59.000Z

    This report examines the effectiveness of bonus plans in the coal industry. The analysis uses theoretical, literature review, and empirical approaches to determine the impact of bonus plans on safety and productivity in underground coal mines. The basic finding is that the modal bonus plan in underground coal mining does not have a major impact on productivity and safety indicators. The design of the plan, or organizational factors, and the process of introducing the plan all contribute to its relative ineffectiveness. Strategies and options for designing effective plans are presented.

  6. GAO-14-369, NATIONAL ENVIRONMENTAL POLICY ACT: Little Information Exists on NEPA Analyses

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFull Text Management

  7. Development of a portable mass spectrometric system for determination of isotopic composition of solid uranium samples using fluorine volatilization. Final report

    SciTech Connect (OSTI)

    Loge, G.

    1994-09-30T23:59:59.000Z

    Using hardware and materials supplied by LANL, a prototype quadrupole mass spectrometer system designed for portable field analysis of isotopic composition of solid uranium samples was assembled and tested. The system contained the capability for fluorine volatilization of solid uranium samples with gas introduction, which was successfully tested and demonstrated using 100 mg samples of U{sub 3}O{sub 8}. Determination of precision and accuracy for measuring isotopic composition was performed using isotopic standards. Use with soil samples containing uranium were also attempted. Silicates in the soil forming SiF{sub 4} were found to be a kinetic bottleneck to the formation of UF{sub 6}. This could be avoided by performing some sort of chemical separation as a pre-treatment step, which was demonstrated using nitric acid.

  8. Final Reminder:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 20159,Final Reminder: Final

  9. Reactor physics project final report

    E-Print Network [OSTI]

    Driscoll, Michael J.

    1970-01-01T23:59:59.000Z

    This is the final report in an experimental and theoretical program to develop and apply single- and few-element methods for the determination of reactor lattice parameters. The period covered by the report is January 1, ...

  10. Microsoft Word - Sunflower FINAL STAND-ALONE EA 09-30-2014

    Energy Savers [EERE]

    Dakota Century Code NDDoH North Dakota Department of Health NDGFD North Dakota Game and Fish Department NDGS North Dakota Geographic Survey NEPA National Environmental Policy Act...

  11. Final Report

    SciTech Connect (OSTI)

    R Paul Drake

    2004-01-12T23:59:59.000Z

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  12. FINAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal ColumbiaASCR2 FINALRIVEROffice of FINAL

  13. Final Report

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFORTechnicalFINAL

  14. Final Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 20159, 2012Page 1Final-Proposal

  15. Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 20159,Final Reminder:

  16. Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    SciTech Connect (OSTI)

    N /A

    2000-03-09T23:59:59.000Z

    The ''National Environmental Policy Act of 1969'' (NEPA) requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the United States (U.S.) Department of Energy (DOE) follows the Council on Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an Environmental Assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact. In this case, the DOE decision to be made is whether to construct and operate a 19.5-mile (mi) (31-kilometer [km]) electric transmission line (power line) reaching from the Norton Substation, west across the Rio Grande, to locations within the Los Alamos National Laboratory (LANL) Technical Areas (TAs) 3 and 5 at Los Alamos, New Mexico. The construction of one electric substation at LANL would be included in the project as would the construction of two line segments less than 1,200 feet (ft) (366 meters [m]) long that would allow for the uncrossing of a portion of two existing power lines. Additionally, a fiber optics communications line would be included and installed concurrently as part of the required overhead ground conductor for the power line. The new power line would improve the reliability of electric service in the LANL and Los Aktrnos County areas as would the uncrossing of the crossed segments of the existing lines. Additionally, installation of the new power line would enable the LANL and the Los Alamos County electric grid, which is a shared resource, to be adapted to accommodate the future import of increased power when additional power service becomes available in the northern New Mexico area. Similarly, the fiber optics line would allow DOE to take advantage of future opportunities in enhanced communications services. The objectives of this EA are to (1) describe the baseline environmental conditions at the proposed power line location, (2) analyze the potential effects to the existing environment from construction, operation, and maintenance of a new power line, and (3) compare the effects of the Proposed Action and the four action alternatives to the No Action Alternative. In addition, the EA provides DOE with environmental information that could be used in developing mitigative actions to minimize or avoid adverse effects to the integrity of the human environment and natural ecosystems should DOE decide to proceed with construction and operation of the new power line. Ultimately, the goal of NEPA and this EA is to aid DOE officials in making decisions based on understanding the environmental consequences of their decision.

  17. RECORD OF CATEGORICAL EXCLUSION (CX) DETERMINATION I National...

    Broader source: Energy.gov (indexed) [DOE]

    NEPA action levels for planned changes as defined in the FY2011 Health Safety & Environment Management System Description and Worker Safety & Health Program document, Section...

  18. Final Site-Wide Environmental Assessment of NREL's South Table...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    W'Jr'W.loradohi05tory-oahp.org COlORADO HISTORICAL SOCIETY The Colorado History Museum 1300 Broadway Denver, Colorado 80203-2137 2 May 2003 SteveBlazek NEPA...

  19. Final Report

    SciTech Connect (OSTI)

    Leclerc, Monique Y.

    2014-11-17T23:59:59.000Z

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  20. Final Environmental assessment for the Uranium Lease Management Program

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared a programmatic environmental assessment (EA) of the proposed action to continue leasing withdrawn lands and DOE-owned patented claims for the exploration and production of uranium and vanadium ores. The Domestic Uranium Program regulation, codified at Title 10, Part 760.1, of the US Code of Federal Regulations (CFR), gives DOE the flexibility to continue leasing these lands under the Uranium Lease Management Program (ULMP) if the agency determines that it is in its best interest to do so. A key element in determining what is in DOE`s ``best interest`` is the assessment of the environmental impacts that may be attributable to lease tract operations and associated activities. On the basis of the information and analyses presented in the EA for the ULMP, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined in the National Environmental Policy Act (NEPA) of 1969 (42 United States Code 4321 et seq.), as amended.Therefore, preparation of an environmental impact statement is not required for the ULMP,and DOE is issuing this Finding, of No Significant Impact (FONSI).

  1. Final Report

    SciTech Connect (OSTI)

    Webb, Robert C. [Texas A& M University] [Texas A& M University; Kamon, Teruki [Texas A& M University] [Texas A& M University; Toback, David [Texas A& M University] [Texas A& M University; Safonov, Alexei [Texas A& M University] [Texas A& M University; Dutta, Bhaskar [Texas A& M University] [Texas A& M University; Dimitri, Nanopoulos [Texas A& M University] [Texas A& M University; Pope, Christopher [Texas A& M University] [Texas A& M University; White, James [Texas A& M University] [Texas A& M University

    2013-11-18T23:59:59.000Z

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  2. Final Report

    SciTech Connect (OSTI)

    LoSecco, John

    2013-06-28T23:59:59.000Z

    Research in high energy physics has been conducted under this research contract. The research includes the discovery of CP violation in the decays of B mesons and the determination of the CKM mechanism as the source of all CP violation in hadrons. Searches for physics beyond the standard model has resulted in limits from the B to S gamma transition and the discovery of the intermediate range oscillations of electron neutrinos. This last discovery will enable the discovery of all properties of neutrino mixing in the next round of neutrino experiments.

  3. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2004-02-13T23:59:59.000Z

    This Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) ongoing and proposed waste management practices at the Hanford Site in Washington State. The HSW EIS updates some analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS; DOE 1997c) Records of Decision (RODs). The draft HSW EIS was initially issued in April 2002 for public comment (DOE 2002b). A revised draft HSW EIS was issued in March 2003 to address new waste management alternatives that had been proposed since the initial draft HSW EIS was prepared, and to address comments received during the public review period for the first draft (DOE 2003d). The revised draft HSW EIS also incorporated alternatives for disposal of immobilized low-activity waste (ILAW) from treatment of Hanford Site tank waste in the waste treatment plant (WTP) currently under construction, an activity that was not included in the first draft (68 FR 7110). This final HSW EIS describes the DOE preferred alternative, and in response to public comments received on the March 2003 revised draft, provides additional analyses for some environmental consequences associated with the preferred alternative, with other alternatives, and with cumulative impacts. Public comments on the revised draft HSW EIS are addressed in the comment response document (Volume III of this final EIS). This HSW EIS describes the environmental consequences of alternatives for constructing, modifying, and operating facilities to store, treat, and/or dispose of low-level (radioactive) waste (LLW), transuranic (TRU) waste, ILAW, and mixed low-level waste (MLLW) including WTP melters at Hanford. In addition, the potential long-term consequences of LLW, MLLW, and ILAW disposal on groundwater and surface water are evaluated for a 10,000-year period, although the DOE performance standards only require assessment for the first 1000 years after disposal (DOE 2001f). This document does not address non-radioactive waste that contains ''hazardous'' or ''dangerous'' waste, as defined under the Resource Conservation and Recovery Act (RCRA) of 1976 (42 USC 6901) and Washington State Dangerous Waste regulations (WAC 173-303). Following a previous National Environmental Policy Act (NEPA, 42 USC 4321) review (DOE 1997d), DOE decided to dispose of TRU waste in New Mexico at the Waste Isolation Pilot Plant (WIPP), a repository that meets the requirements of 40 CFR 191 (63 FR 3623). This HSW EIS has been prepared in accordance with NEPA, the DOE implementing procedures for NEPA 10 CFR 1021, and the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR 1500-1508).

  4. INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Mamagement Programmatic Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30T23:59:59.000Z

    In April 1995, the Department of Energy (DOE) and the Department of the Navy, as a cooperating agency, issued the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (1995 EIS). The 1995 EIS analyzed alternatives for managing The Department's existing and reasonably foreseeable inventories of spent nuclear fuel through the year 2035. It also included a detailed analysis of environmental restoration and waste management activities at the Idaho National Engineering and Environmental Laboratory (INEEL). The analysis supported facility-specific decisions regarding new, continued, or planned environmental restoration and waste management operations. The Record of Decision (ROD) was signed in June 1995 and amended in February 1996. It documented a number of projects or activities that would be implemented as a result of decisions regarding INL Site operations. In addition to the decisions that were made, decisions on a number of projects were deferred or projects have been canceled. DOE National Environmental Policy Act (NEPA) implementing procedures (found in 10 CFR Part 1 021.330(d)) require that a Supplement Analysis of site-wide EISs be done every five years to determine whether the site-wide EIS remains adequate. While the 1995 EIS was not a true site-wide EIS in that several programs were not included, most notably reactor operations, this method was used to evaluate the adequacy of the 1995 EIS. The decision to perform a Supplement Analysis was supported by the multi-program aspect of the 1995 EIS in conjunction with the spirit of the requirement for periodic review. The purpose of the SA is to determine if there have been changes in the basis upon which an EIS was prepared. This provides input for an evaluation of the continued adequacy of the EIS in light of those changes (i.e., whether there are substantial changes in the proposed action, significant new circumstances, or new information relevant to environmental concerns). This is not to question the previous analysis or decisions based on that analysis, but whether the environmental impact analyses are still adequate in light of programmatic changes. In addition, the information for each of the projects for which decisions were deferred in the ROD needs to be reviewed to determine if decisions can be made or if any additional NEP A analysis needs to be completed. The Supplement Analysis is required to contain sufficient information for DOE to determine whether (1) an existing EIS should be supplemented, (2) a new EIS should be prepared, or (3) no further NEP A documentation is required.

  5. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    If the activity creates an impoundment of water, adverse effects to the aquatic system due to accelerating the passage of water, andor restricting its flow must be...

  6. Environmental Review - NEPA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impact statements. Environmental Impact Statement-EIS Southwest Intertie Project Environmental Assessment-EA Cliffrose Solar Energy Interconnection Project DOEEA-1989...

  7. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    Cementing Swivel Test Da te: 6-23-2010 DOE Code: 6730-020-71094 Contractor Code: 8067-779 Project Lead: Mark Duletsky Project Overview 1. Brief project description include The...

  8. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    268 Project lnfonnation Project Title: New Drilling Location in Section 29 Date: 12-10-2009 DOE Code: 6730.020.78002 Contractor Code: 8067-371 Project Lead: Mark Duletsky Project...

  9. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    Code: TBD Project Lead: Brian Black Project Overview This project will use the drilling rig and associated equipment to drill a well to 5400 feet that will be 1. What are...

  10. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    duration of the projed? 4 . What major equipment will be used if any (work over rig, drilling rig, etc.)? Contractor Code: The primary functions of the bio-treatment facility...

  11. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    - )Jp R tW" I Project lnfonnation Project Title: New Drilling Location in Section 29 Date: 12-10-2009 DOE Code: 6730.020.78002 Contractor Code: 8067-371 Project Lead: Mar1<...

  12. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    , fossil, and renewable energy activities. Conditions: 85.1 Actions to conserve energy, demonstrate potential energy conservation , and promote energy-efficiency that do not...

  13. SN Environmental Review (NEPA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project San Luis Transmission Project Environmental Assessment-EA San Joaquin Valley Right-of-Way Maintenance Project North Area Right-of-Way Maintenance Project Sacramento...

  14. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    rr ;J. 95 Project lnfonnation Project Title: Well Coring-Schlumberger Carbon Services Date: 31810 DOE Code: 6730.020.81016 Contractor Code: 8067-708 Project Lead: Vicki Stamp...

  15. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    67 Project lnfonnation Project Title: Restoration of 63-S-11 Date: 1212112009 DOE Code: Contractor Code: Project Lead: Jeff Jones Project Overview The environmental impacts will be...

  16. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    8 Project lnfonnation Project Title: Restoration of 62-42 SX 10 DOE Code: Project Lead: Jeff Jones Project Overview We will be restoring this location 62-42 SX-1 0. What are the...

  17. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    environment. 1. What are the environmental impacts? Dig up old electrical line from pumping unit on 61-S-34 to power pole east of well , approximately 75 feet 2. What is the...

  18. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    is for the existing ORMAT geothermal processing unit that was used for testing during CRADA impacts? No 2007-083. The Original project consisted of the installation and 1 year...

  19. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    9 Project Information Project Title: Restoration of 73 SX 1 OH DOE Code: Project Lead: Jeff Jones Project Overview We will be restoring this location 73 SX 10H. What are the...

  20. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    2 Project Information Project Title: 17 -AX-11 Restoration Date: DOE Code: Contractor Code: Project Lead: Jim Bell Project Overview The environmental impacts should be minimal ....

  1. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    1 Project Information Project Title: C-EA 2. Work on existing well location (within 125' Date: 662011 from well bore) DOE Code: Contractor Code: Project Lead: Michael J. Taylor...

  2. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    od Project Information Project Title: South Composting Facility Pit Date: 1102011 DOE Code: 6730.020.0000 Contractor Code: 8067-788 Project Lead: Tony Bowler Project Overview...

  3. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    28 Project Information Project Title: New B-1-3 Pit and Box Construction Date: 51 2612011 DOE Code: Contractor Code: Project Lead: Maintenance Department Project Overview This is a...

  4. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    2 Project Information Project T itle: Repair flowline 77 -S-1 0 Date: 31112010 DOE Code: Contractor Code: Project Lead: Wes Riesland Project Overview The flowline leak at 77 -s-1...

  5. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    6 Project Information Project Title: Repair flowline at 83-AX-4 Date: 2-17-2010 DOE Code: Contractor Code: Project Lead: Bernard Winfrey Project Overview 1. What are the...

  6. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    :;J7 Project Information Project Title: B-1-3 Heat Trace Date: 101409 DOE Code: Contractor Code: Project Lead: Mike Preston Project Overview Routine maintenance activities for...

  7. NEPA Review Routing Form

    Broader source: Energy.gov (indexed) [DOE]

    or threat of release of a hazardous substance ... including treatment (e.g., incineration), recovery, storage, or disposal of wastes at existing facilities currently...

  8. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    high-level radioactive waste and spent nuclear fuel , including treatment (e.g., incineration), recovery, storage, or disposal of wastes at existing facilities currently...

  9. NEPA Review Routing Form

    Broader source: Energy.gov (indexed) [DOE]

    release or threat of release of a hazardous substance ... induding treatment (e.g., incineration). recovery, storage, or disposal of wastes at existing facilities currently...

  10. NEPA Review Routing Form

    Broader source: Energy.gov (indexed) [DOE]

    or threat of release of a hazardous substance ... including treatment (e.g., incineration), recovery, storage, or disposal of wastes at existing facil currently handling...

  11. RM Environmental Review (NEPA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    San Juan County, NM (8-30-13) Lusk Rural Substation Control Building Construction Niobrara County, WY (1-16-13) Malta-Mt. Elbert 230-kV Danger Tree Management, Lake...

  12. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    Instruments, ......ell monitoring equ1pment. uranium shielding material. depleted uranium milita munitions, and packaged radioactive waste not exceeding 50 curies....

  13. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    removal of rig anchors or T-bars, drainage control , transport and backfilling of clean soil I fill dirt, and reseeding . The table below is to be completed by the Project Lead...

  14. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    nonnal operations and accident conditions? which do not threaten Waters of the State' or wetland areas. If Waters of the State' or wetland areas a threatened by either a spill or...

  15. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    substance other than high-level radioactive waste and spent nuclear fuel, including treatment (e.g., incineration), recovery, storage. or disposal of wastes at existing...

  16. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    affecting the the work each day. SOPs will be reviewed for generation, transportation, treatment, storage or disposal of compliance to state and local regulations. hazardous and...

  17. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    affecting the the work each day. SOPs will be reviewed for generation, transportation, treatment, storage or disposal of com pliance to state and local regulations. hazardous...

  18. OFFICE: NEPA REVIEWS:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No. EA-212-AOAHU2014) | DepartmentOE's3OFFICE:

  19. NEPA Lessons Learned Questionnaire

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -DepartmentLessons Learned

  20. DOE NEPA Compliance Officers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartmentContaminated Ground Water | Department

  1. NEPA of 1969

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29,guidance on theon theNational

  2. NEPA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames Global Emissions Datasource History

  3. NEPA Contracting Reform Guidance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3ServicesNEET FY 12 ProjectStatement Lessons

  4. Tucannon River Spring Chinook Captive Broodstock Program Final Environmental Assessment and Finding of No Significant Impact

    SciTech Connect (OSTI)

    N /A

    2000-05-24T23:59:59.000Z

    Bonneville Power Administration (BPA) is proposing to fund the Tucannon River Spring Chinook Captive Broodstock Program, a small-scale production initiative designed to increase numbers of a weak but potentially recoverable population of spring chinook salmon in the Tucannon River in the State of Washington. BPA has prepared an Environmental Assessment (EA) (DOE/EA-l326) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

  5. Mid-Columbia Coho Reintroduction Feasibility Project : Final Environmental Assessment and Finding of No Significant Impact.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Confederated Tribes and Bands of the Yakama Nation; Washington State Department of Fish and Wildlife

    1999-04-01T23:59:59.000Z

    Bonneville Power Administration (BPA) is proposing to fund research for 2 to 3 years on the feasibility of reintroducing coho salmon into mid-Columbia River basin tributaries. The research would take place in the Methow and Wenatchee river basins in Chelan and Okanogan Counties, Washington. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1282) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact.

  6. Final Report

    SciTech Connect (OSTI)

    Taylor, Philip L.

    2012-11-11T23:59:59.000Z

    Our research program was aimed at elucidating the nature of proton transport in ionomer membranes by means of a combination of analytical theory and molecular modeling. There were two broad thrusts. The first of these was directed towards understanding the equilibrium structure of Nafion and related polymers at various levels of hydration. The second thrust was concerned with the transport of protons through a membrane of this type. The research on structure proceeded by building on existing work, but with the introduction of some novel techniques, among which is a hybrid Molecular Dynamics--Monte Carlo approach. This method permits rapid computations by temporarily decoupling the motion of the polar side chains from that of the perfluorinated backbone, while still retaining the essential aspects of the constraint that phase separation can only continue to a very limited degree. Competition between an elastic energy due to this constraint and the tendency to phase separation lead to the equilibrium structure, which turns out to be qualitatively different at different levels of hydration. The use of a carefully formulated dielectric function was necessary to achieve accurate results. The work on transport of protons in Nafion-like membranes also involved a combination of theory and simulation. Atomistic molecular-dynamics simulations were employed to determine some of the characteristic parameters for the diffusion of hydronium in hydrated membranes. These results were used in a theoretical model of non-linear diffusion to predict transport coefficients. Among our results was the discovery that treatment with strong electric fields may enhance the properties of the polymer membranes. Our computer simulations showed that the vigorous application of a stretching force or an electric field can modify the structure of the ionomer that lies at the heart of a polymer-electrolyte-membrane fuel cell. If these predictions are verified experimentally, then it should be possible to produce fuel cells capable of delivering much higher currents than those currently available.

  7. Environmental analysis and data report prepared for the environmental assessment of remedial action at the Lowman uranium mill tailings site near Lowman, Idaho. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lowman, Idaho. The Lowman EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the effects of their actions on the environment. It examines the short-term and the long-term effects of the US Department of Energy`s (DOE) proposed remedial action for the Lowman site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement will be prepared. If the impacts are not judged to be significant, the DOE may issue a Finding of No Significant Impact and implement the proposed action. The information and data presented in this environmental analyses and data report are for background purposes only and are not required as part of the NEPA decision-making process.

  8. Final Environmental Assessment of remedial action at the Falls City uranium mill tailings site, Falls City, Texas

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    This environmental assessment (EA) is prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the impacts that their actions may have on the environment. This EA examines the short- and long-term effects of the DOE`s proposed remedial action for the Falls City tailings site. The no action alternative is also examined. The DOE will use the information and analyses presented here to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an EIS will be prepared. If the impacts are not judged to be significant, the DOE will issue an official ``Finding of No Significant Impact`` and implement the proposed action.

  9. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  10. Lower Columbia River Terminal Fisheries Research Project : Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-04-01T23:59:59.000Z

    This notice announces BPA`S`s decision to fund the Oregon Department of Fish and Wildlife (ODFW), the Washington Department of Fish and Wildlife (WDFW), and the Clatsop Economic Development Committee for the Lower Columbia River Terminal Fisheries Research Project (Project). The Project will continue the testing of various species/stocks, rearing regimes, and harvest options for terminal fisheries, as a means to increase lower river sport and commercial harvest of hatchery fish, while providing both greater protection of weaker wild stocks and increasing the return of upriver salmon runs to potential Zone 6 Treaty fisheries. The Project involves relocating hatchery smolts to new, additional pen locations in three bays/sloughs in the lower Columbia River along both the Oregon and Washington sides. The sites are Blind Slough and Tongue Point in Clatsop County, Oregon, and Grays Bay/Deep River, Wahkiakum County, Washington. The smolts will be acclimated for various lengths of time in the net pens and released from these sites. The Project will expand upon an existing terminal fisheries project in Youngs Bay, Oregon. The Project may be expanded to other sites in the future, depending on the results of this initial expansion. BPA`S has determined the project is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and BPA`S is issuing this FONSI.

  11. Final Exam Information

    E-Print Network [OSTI]

    OwenDavis

    2014-11-28T23:59:59.000Z

    MA 22400 FINAL EXAM INFORMATION. The Final Exam is scheduled for Tuesday, December 16, at 7:00 PM in. Lambert Fieldhouse(Indoor Track Area).

  12. Final Exam Memo

    E-Print Network [OSTI]

    math

    2014-12-02T23:59:59.000Z

    MA 15910 Final Exam Memo. Final Exam. Tuesday, December 16. 8:00 AM in Lambert Field House. (plan on arriving about 15 minutes early to find your ...

  13. (Final Draft) Superconducting

    E-Print Network [OSTI]

    ANDAND (Final Draft) Achieving Advanced Electrical Wires From Superconducting Coatings Prepared and Development Roadmap to Achieve Electrical Wire Advancements from Superconducting Coatings (Final Draft) Edited

  14. CX-009435: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Town of Poughkeepsie NEPA Statement of Work CX(s) Applied: A9, A11, B1.35, B2.2, B5.1, B5.14, B5.16, B5.17, B5.18, B5.19 Date: 10/11/2012 Location(s): New York Offices(s): Golden Field Office

  15. Final Environmental Assessment and Finding of No Significant Impact: Waste Disposition Activities at the Paducah Site Paducah, Kentucky

    SciTech Connect (OSTI)

    N /A

    2002-11-05T23:59:59.000Z

    The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment with in the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).

  16. Final Environmental Assessment for the Proposed Consolidation of Certain Dynamic Experimentation Activities at the Two-Mile Mesa Complex Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    N /A

    2003-11-03T23:59:59.000Z

    The National Environmental Policy Act of 1969 (NEPA) requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the United States (U.S.) Department of Energy (DOE), National Nuclear Security Administration (NNSA), follows the Council on Environmental Quality regulations (40 CFR 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an environmental assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an environmental impact statement (EIS) or issue a Finding of No Significant Impact. Los Alamos National Laboratory (LANL) is a national security laboratory located at Los Alamos, New Mexico, that comprises about 40 square miles (mi{sup 2}) (103.6 square kilometers [km{sup 2}]) of buildings, structures, and forested land (Figure 1). It is administered by NNSA for the Federal government and is managed and operated under contract by the University of California (UC). The NNSA must make a decision whether to consolidate and construct new facilities for the Dynamic Experimentation Division (DX) to create a central core area of facilities, including offices, laboratories, and other support structures, at LANL's Two-Mile Mesa Complex, which comprises portions of Technical Area (TA) 6, TA-22, and TA-40. This Proposed Action would involve constructing new buildings; consolidating existing operations and offices; enhancing utilities, roads, and security infrastructure; and demolishing or removing older buildings, structures, and transportables at various technical areas used by DX (Figure 2). This EA has been prepared to assess the potential environmental consequences of this proposed construction, operational consolidation, and demolition project. The objectives of this EA are to (1) describe the underlying purpose and need for NNSA action; (2) describe the Proposed Action and identify and describe any reasonable alternatives that satisfy the purpose and need for agency action; (3) describe baseline environmental conditions at LANL; (4) analyze the potential indirect, direct, and cumulative effects to the existing environment from implementation of the Proposed Action, and (5) compare the effects of the Proposed Action with the No Action Alternative and other reasonable alternatives. For the purposes of compliance with NEPA, reasonable alternatives are identified as being those that meet NNSA's purpose and need for action by virtue of timeliness, appropriate technology, and applicability to LANL. The EA process provides NNSA with environmental information that can be used in developing mitigative actions, if necessary, to minimize or avoid adverse effects to the quality of the human environment and natural ecosystems should NNSA decide to proceed with implementing the Proposed Action at LANL. Ultimately, the goal of NEPA, and this EA, is to aid NNSA officials in making decisions based on an understanding of environmental consequences and in taking actions that protect, restore, and enhance the environment.

  17. 2014-05-05 Issuance: Alternative Efficiency Determination Methods...

    Office of Environmental Management (EM)

    Final Rule This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods and test procedures for walk-in coolers and...

  18. Microsoft PowerPoint - 03a_PDCI-Upgrade_final_KAM [Compatibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O N CELILO TERMINAL UPGRADE NEPA - CX for all terminal activities completed June 2013. HVDC Supplier contract was awarded to ABB December 2012 for 260M. ABB is world leader in...

  19. Blackout Final Implementation Report

    Office of Environmental Management (EM)

    Task Force: Final Report on Implementation of Recommendations G R23. Strengthen reactive power and voltage control practices in all NERC regions. . . . . . . . . . . . . . 34 R24....

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used and End Uses in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used and End Uses in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used and End Uses in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

  3. DOE Final Report

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Long, James; Newby, Greg B.

    2014-01-08T23:59:59.000Z

    This final report contains a summary of work accomplished in the establishment of a Climate Data Center at the International Arctic Research Center, University of Alaska Fairbanks.

  4. National Science Bowl Finals

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Space Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Space Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Space Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" " ",,,"East North Central Census...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

  9. Final_Report.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy, Offi ce of Fossil Energy. Ormat: Low-Temperature Geothermal Power Generation Naval Petroleum Reserve No. 3, Teapot Dome Field, Wyoming Final Report for the...

  10. Final Exam Memo

    E-Print Network [OSTI]

    math

    2011-12-06T23:59:59.000Z

    MA 15200 FINAL EXAM Memo. Tuesday, December 13th, 2011, 10:20 AM (2 hour exam). Location: Lambert Fieldhouse. ** Bring your Purdue ID, appropriate

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Computers and Other Electronics in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Computers and Other Electronics in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Computers and Other Electronics in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Computers and Other Electronics in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

  19. National Science Bowl Finals

    SciTech Connect (OSTI)

    2010-05-03T23:59:59.000Z

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  20. FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

    2011-12-29T23:59:59.000Z

    This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m{sup 2}/d and 0.4 MT/m{sup 2}/d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m{sup 2}/d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and increased plenum temperatures due to increased thermal radiation from the melt surface (which mayor may not be desirable but the flexibility to choose may be lost). Increased volatilization is an issue both in terms of the increased challenge to the off-gas system as well as for the ability to effectively close the recycle loops for volatile species that must be immobilized in the glass product, most notably technetium and cesium. For these reasons, improved information is needed on the specific glass production rates of RPP-WTP HLW streams in DuraMelterJ systems over a range of operating conditions. Unlike the RPP-WTP LAW program, for which a pilot melter system to provide large-scale throughout information is already in operation, there is no comparable HLW activity; the results of the present study are therefore especially important. This information will reduce project risk by reducing the uncertainty associated with the amount of conservatism that mayor may not be associated with the baseline RPP-WTP HLW melter sizing decision. After the submission of the first Test Plan for this work, the RPP-WTP requested revisions to include tests to determine the processing rates that are achievable without bubbling, which was driven by the potential advantages of omitting bubblers from the HLW melter design in terms of reduced maintenance. A further objective of this effort became the determination of whether the basis of design processing rate could be achieved without bubbling. Ideally, processing rate tests would be conducted on a full-scale RPP-WTP melter system with actual HLW materials, but that is clearly unrealistic during Part B1. As a practical compromise the processing rate determinations were made with HL W simulants on a DuraMelter J system at as close to full scale as possible and the DM 1000 system at VSL was selected for that purpose. That system has a melt surface area of 1.2 m{sup 2}, which corresponds to about one-third scale based on the specific glass processing rate of 0.4 MT/m{sup 2}/d assumed in the RPP-WTP HLW conceptual design, but would correspon

  1. Memorandum for Federal NEPA Contacts: Emergency Actions and NEPA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MWMemo of IntentDepartment of

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Televisions in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Televisions in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Televisions in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuels Used and End Uses in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings...

  7. final.tex

    E-Print Network [OSTI]

    Final Exam Math 6121A (Algebra I) Dec 13, 2000. Time: 2hrs 50 min. Attempt all questions. You are advised to spend not more than one hour on Part A.

  8. Final focus test beam

    SciTech Connect (OSTI)

    Not Available

    1991-03-01T23:59:59.000Z

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  9. Aurora final report

    SciTech Connect (OSTI)

    Robert, Dross; Amedeo, Conti

    2013-12-06T23:59:59.000Z

    Final Technical report detailing the work done by Nuvera and its partners to fulfill the goals of the program "Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks" (a.k.a. AURORA)

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Space Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Space Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Space Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Space Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Space...

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Space Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Televisions in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Computers and Other Electronics in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Computers and Other Electronics in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South"...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Computers and Other Electronics in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in...

  1. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Computers and Other Electronics in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Water Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Water...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Water Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Water Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Water Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Water Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than...

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than 20,000","20,000 to 39,999","40,000 to 59,999","60,000 to...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than 20,000","20,000 to 39,999","40,000 to 59,999","60,000 to...

  11. NEPA Documents | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek JoinMission Mission

  12. NEPA Updates | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes:Energy Success Stories

  13. OpenEI Community - NEPA

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the GridHomeWrap-up courtesy5/0

  14. NEPA Documentation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008CITE:DepartmentNote

  15. NEPA History | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29,

  16. NEPA Implementation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29,guidance on the implementation

  17. NEPA Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29,guidance on theon the topic of

  18. NEPA | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames Global Emissions Datasource

  19. Considering Cumulative Effects under NEPA

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S. S p e c t i

  20. NEPA - Categorical Exclusions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum|NEES EFRC PosterOfficial

  1. NEPA - Environmental Assessments - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum|NEES EFRC

  2. November 30, 2006 Final Author's Version

    E-Print Network [OSTI]

    Truhlar, Donald G

    Electrode Potential in Methanol, Acetonitrile, and Dimethyl Sulfoxide Casey P. Kelly Christopher J. Cramer, acetonitrile, and dimethyl sulfoxide (DMSO) have been determined using a combination of experimental/mol for the absolute solvation free energy of the proton in methanol, acetonitrile, and DMSO, respectively. The final

  3. Final Report Sustainability at

    E-Print Network [OSTI]

    Escher, Christine

    1 Final Report Sustainability at Oregon State University Prepared by The Institute for Natural Resources Oregon State University June 2009 #12;2 Sustainability at Oregon State University June 2009 The Institute for Natural Resources Created by the Oregon Legislature through the 2001 Oregon Sustainability Act

  4. Final Draft ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Waliser, Duane E.

    Final Draft ENVIRONMENTAL ASSESSMENT FOR THE CONSTRUCTION, MODIFICATION, AND OPERATION OF THREE OF THE CONSTELLATION PROGRAM, JOHN F. KENNEDY SPACE CENTER, FLORIDA Abstract This Environmental Assessment addresses AERONAUTICS AND SPACE ADMINISTRATION JOHN F. KENNEDY SPACE CENTER ENVIRONMENTAL PROGRAM OFFICE KENNEDY SPACE

  5. Final Technical Report

    SciTech Connect (OSTI)

    Gilbert, Chris [Altamont Environmental, Inc.] [Altamont Environmental, Inc.

    2014-11-13T23:59:59.000Z

    The project, ?Capital Investment to Fund Equipment Purchases and Facility Modifications to Create a Sustainable Future for EnergyXchange? served to replace landfill gas energy with alternative energy resources, primarily solar and wood waste. This is the final project closeout report.

  6. Final Environmental Impact Statement for the construction and operation of Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3070)

    SciTech Connect (OSTI)

    Zeitoun, A. [Science Applications International Corp., Germantown, MD (United States)

    1994-08-01T23:59:59.000Z

    This two-volume Final Environmental Impact Statement (FEIS) was prepared by the Nuclear Regulatory Commission (NRC) in accordance with regulation 10 CFR Part 51, which implements the National Environmental Policy Act (NEPA). Volume 1 contains the assessment of the potential environmental impacts for licensing the construction and operation of a proposed gaseous centrifuge enrichment facility to be built in Claiborne Parish, Louisiana, by Louisiana Energy Services, LP. (LES). The proposed facility would have a production capacity of about 866 metric tons annually of up to 5 weight percent enriched UF{sub 6}, using a proven centrifuge technology. Included in the assessment are construction, both normal operations and potential accidents (internal and external events), and the eventual decontamination and decommissioning (D&D)- of the site. Issues addressed include the purpose and need for the facility, the alternatives to the proposed action, potential disposition of the tails, the site selection process, and environmental justice. The NRC staff concludes that the facility can be constructed and operated with small and acceptable impacts on the public and the environment. The FEIS supports issuance of a license to the applicant, Louisiana Energy Services, to authorize construction and operation of the proposed facility.

  7. DOE Issues Final Rule for Alternative Efficiency Determination Methods and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment of EnergyFederalandAlternative Rating

  8. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Troxell, W; Batchelor, A

    2012-11-28T23:59:59.000Z

    Final report for the formation of faculty and education establishing Colorado State's Smart Grid Integration Center

  9. Final Technical Report

    SciTech Connect (OSTI)

    Maxwell, Mike, J., P.E.

    2012-08-30T23:59:59.000Z

    The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

  10. Finding of No Significant Impact and Final Environmental Assessment for the Future Location of Heat Source/Radioisotope Power System Assembly and Testing and Operations Currently Located at the Mound Site

    SciTech Connect (OSTI)

    N /A

    2002-08-30T23:59:59.000Z

    The U.S. Department of Energy (the Department) has completed an Environmental Assessment for the Future Location of the Heat Source/Radioisotope Power System Assembly and Test. Operations Currently Located at the Mound Site. Based on the analysis in the environmental assessment, the Department has determined that the proposed action, the relocation of the Department's heat source and radioisotope power system operations, does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the ''National Environmental Policy Act'' of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (FONSI).

  11. Final Environmental Assessment and Finding of No Significant Impact: The Implementation of the Authorized Limits Process for Waste Acceptance at the C-746-U Landfill Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect (OSTI)

    N /A

    2002-08-06T23:59:59.000Z

    The US Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1414) for the proposed implementation of the authorized limits process for waste acceptance at the C-746-U Landfill at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. Based on the results of the impact analysis reported in the EA, which is incorporated herein by this reference, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the ''National Environmental Policy Act of 1969'' (NEPA). Therefore preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).

  12. Final Technical Report

    SciTech Connect (OSTI)

    Sobecky, Patricia A; Taillefert, Martial

    2013-03-29T23:59:59.000Z

    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.

  13. Final Notice of Violation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 Federalof EnergyThorium,8,2011 CERTIFIED MAIL

  14. Final Vitrification Melter Evaluation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 FederalofE: Bibliography of(PEIS) | Department

  15. SWERA_Final_Report

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY Solutions Jump to:SMInformationSVVCenter Final

  16. FINAL TECHNICAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal ColumbiaASCR2 FINAL ENVIRONMENTAL ASSESSMENT

  17. Final Technical Report Division

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFORTechnicalFINAL CommunityReport

  18. Final Scientific EFNUDAT Workshop

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  19. DEWPOINT. Final report

    SciTech Connect (OSTI)

    Riddle, R.A.

    1994-09-01T23:59:59.000Z

    The DEWPOINT (Directed Energy POwer INTegration) program was aimed at providing the large amounts of electric power required for a laser or accelerator based in space, or on an aircraft or satellite platform. This is our final report on our efforts as a part of this program which was cancelled before completion. This report summarizes the entire scope of effort funded by this program. It also includes some related information on cryogenically cooled microchannel heatsinks which was funded internally by LLNL. Specifically, the DEWPOINT program was to provide the electrical power for the proposed Neutral Particle Beam weapon system of the Strategic Defense Initiative. The Neutral Particle Beam called for a space-based accelerator driven by radio frequency power sources. The radio frequency solid-state power amplifiers generate waste heat which must be dissipated.

  20. FINAL/ SCIENTIFIC TECHNICAL REPORT

    SciTech Connect (OSTI)

    McDonald, Henry; Singh, Suminderpal

    2006-08-28T23:59:59.000Z

    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion America’s technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee – Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  1. Final Progress Report

    SciTech Connect (OSTI)

    Josef Michl

    2011-10-31T23:59:59.000Z

    In this project we have established guidelines for the design on organic chromophores suitable for producing high triplet yields via singlet fission. We have proven their utility by identifying a chromophore of a structural class that had never been examined for singlet fission before, 1,3-diphenylisobenzofuran, and demonstrating in two independent ways that a thin layer of this material produces a triplet yield of 200% within experimental error. We have also designed a second chromophore of a very different type, again of a structural class that had not been examined for singlet fission before, and found that in a thin layer it produces a 70% triplet yield. Finally, we have enhanced the theoretical understanding of the quantum mechanical nature of the singlet fission process.

  2. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  3. CX-011776: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-011776: Categorical Exclusion Determination Final Rule for New and Amended Energy Conservation Standards for Metal Halide Lamp Fixtures CX(s) Applied: B5.1 Date: 01292014...

  4. Final Report to DOE

    SciTech Connect (OSTI)

    Ismail Gultepe

    2012-05-15T23:59:59.000Z

    This final report summarizes the accomplished goals and provide a list of the publications and presentations made during the project. The goals of the project were accomplished through the various publications submitted to Journals and presentations done at the DOE and international meetings and conferences. The 8 journal articles related to the goals of this project were accepted or submitted. The 23 presentations related to goals of the project were presented at the meetings. There were some minor changes regarding to project goals because of issues encountered during the analysis of the data. For example, a total water probe sensor mounted on the Convair-580 that can be used for defining mixed phase conditions and parameterization, had some problems to estimate magnitude of total water mass, and this resulted in issues providing an accurate parameterization for cloud fraction. Variability related aerosol number concentrations and their composition for direct and indirect effects were studied and published. Results were given to explain aerosol and ice microphysical effects on climate change studies. It is suggested that developed parameterizations should consider the variability in aerosol and ice parameters over the Arctic regions.

  5. Final Technical Report

    SciTech Connect (OSTI)

    Velasco, Mayda [Northwestern University] [Northwestern University

    2013-11-01T23:59:59.000Z

    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  6. Final Technical Report

    SciTech Connect (OSTI)

    Alexander Pigarov

    2012-06-05T23:59:59.000Z

    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  7. Final Technical Report

    SciTech Connect (OSTI)

    Alexander Fridman

    2005-06-01T23:59:59.000Z

    This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental control business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.

  8. Secretary Chu Announces Determination of No Adverse Material...

    Energy Savers [EERE]

    of Energy has issued a final determination and market impact study for the proposed uranium transfer to fund accelerated cleanup activities at the Portsmouth Site in Piketon,...

  9. Advanced Design Studies. Final report

    SciTech Connect (OSTI)

    Steiner, Don [Rensselaer Polytechnic Institute, Troy, NY (United States)

    2012-12-01T23:59:59.000Z

    The ARIES-CS project was a multi-year multi-institutional project to assess the feasibility of a compact stellarator as a fusion power plant. The work herein describes efforts to help design one aspect of the device, the divertor, which is responsible for the removal of particle and heat flux from the system, acting as the first point of contact between the magnetically confined hot plasma and the outside world. Specifically, its location and topology are explored, extending previous work on the sub ject. An optimized design is determined for the thermal particle flux using a suite of 3D stellarator design codes which trace magnetic field lines from just inside the confined plasma edge to their strike points on divertor plates. These divertor plates are specified with a newly developed plate design code. It is found that a satisfactory thermal design exists which maintains the plate temperature and heat load distribution below tolerable engineering limits. The design is unique, including a toroidal taper on the outboard plates which was found to be important to our results. The maximum thermal heat flux for the final design was 3.61 M W/m2 and the maximum peaking factor was 10.3, below prescribed limits of 10 M W/m2 and 15.6, respectively. The median length of field lines reaching the plates is about 250 m and their average angle of inclination to the surface is 2 deg. Finally, an analysis of the fast alphas, resulting from fusion in the core, which escape the plasma was performed. A method is developed for obtaining the mapping from magnetic coordinates to real-space coordinates for the ARIES-CS. This allows the alpha exit locations to be identified in real space for the first time. These were then traced using the field line algorithm as well as a guiding center routine accounting for their mass, charge, and specific direction and energy. Results show that the current design is inadequate for accommodating the alpha heat flux, capturing at most 1/3 of lost alphas. However the distribution of the alphas on the device first wall indicates that a viable solution likely exists. It is noted that future designs must be sought which specifically address the fusion alphas through an integrated approach involving physics and engineering teams.

  10. MTX final report

    SciTech Connect (OSTI)

    Hooper, E.B. [ed.; Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Fenstermacher, M.E.; Foote, J.H.; Hoshino, K. [and others

    1994-01-01T23:59:59.000Z

    The MTX experiment was proposed in 1986 to apply high frequency microwaves generated by a free-electron laser (FEL) to electron cyclotron resonance heating (ECRH) in a high field, high density tokamak. As the absorption of microwaves at the electron cyclotron resonance requires high frequencies, the opportunity of applying a free-electron laser has appeal as the device is not limited to frequencies in the microwave or long millimeter wavelength regions, in contrast to many other sources. In addition, the FEL is inherently a high power source of microwaves, which would permit single units of 10 MW or more, optimum for reactors. Finally, it was recognized early in the study of the application of the FEL based on the induction linear accelerator, that the nonlinear effects associated with the intense pulses of microwaves naturally generated would offer several unique opportunities to apply ECRH to current drive, MHD control, and other plasma effects. It was consequently decided to adapt the induction accelerator based FEL to heating and controlling the tokamak, and to conduct experiments on the associated physics. To this end, the Alcator C tokamak was moved from the Massachusetts Institute of Technology (MIT) to the Lawrence Livermore National Laboratory where it was installed in Building 431 and operated from March, 1989, until the conclusion of the experiment in October, 1992. The FEL, based on the ETA-11 accelerator and IMP wiggler was brought into operation by the LLNL Electron Beam Group and power injected into the tokamak during an experimental run in the Fall, 1989. Following an upgrade by the MTX group, a second experimental run was made lasting from the Winter, 1992 through the end of the experiment. Significant contributions to the ECRH experiments were made by the Japan Atomic Energy Research Institute (JAERI).

  11. LIVE_NSB_final.wmv

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  12. EA-1637: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    10 CFR 431 Energy Conservation Program for Commerical and Industrial Equipment: Packaged Terminal Air Conditioner and Packaged Terminal Heat Pump Energy Conservation Standards; Final Rule

  13. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 162 Fall 2001. Date: Wednesday December 12, 2001. Time: 7:00 pm -9:00 pm. Location: Lambert Fieldhouse ...

  14. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 161 Fall 2001. Date: Friday December 14, 2001. Time: 8:00 am -10:00 am. Location: Lambert Fieldhouse ...

  15. LIVE_NSB_final.wmv

    SciTech Connect (OSTI)

    2010-05-12T23:59:59.000Z

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  16. Final Scientific Report

    SciTech Connect (OSTI)

    Suzanne Lutwick; Helen Cunning

    2011-05-25T23:59:59.000Z

    Hackensack University Medical Center's major initiative to create a cleaner healthier and safer environment for patients, employees and the community served by the medical center is built on its commitment to protect the environment and conserve precious energy resources. Since 2004 the Medical Center launched a long term campaign to temper the negative environmental impact of proposed and existing new construction at the medical center and to improve campus wide overall energy efficiency. The plan was to begin by implementing a number of innovative and eco-friendly enhancements to the Gabrellian Women's and Children's Pavilion, in construction at the time, which would lead to Certification by the US Green Building Councils Leadership & Environmental Design (LEED) program. In addition the medical center would evaluate the feasibility of implementing a photovoltaic system in the new construction (in development and planned) to provide clean pollution free electricity. The steps taken to achieve this included conducting a feasibility study complete with architectural and engineering assessments to determine the potential for implementation of a photovoltaic system on the campus and also to conduct an energy survey that would focus on determining specific opportunities and upgrades that would lead to a healthier energy efficient interior environment at the medical center. The studies conducted by the medical center to determine the viability of installing a photovoltaic system identified two key issues that factored into leaderships decision not to implement the solar powered system. These factors were related to the advanced phase of construction of the women's and children's pavilion and the financial considerations to redesign and implement in the ambulatory cancer center. The medical center, in spite of their inability to proceed with the solar aspect of the project upheld their commitment to create a healthier environment for the patients and the community. To achieve a healthier energy efficient interior environment the medical center made substantive upgrades and improvements to the HVAC, plumbing electrical and other operating systems. Measures that were implemented range from use of lighting and plumbing fixture sensors, to reduce electrical and water usage, to use of refrigerants containing hydrochlorofluorocarbons (HCFCs) which cause significantly less depletion of the ozone layer than the refrigerants more commonly used. Additional appropriate energy efficiency component upgrades include the installation of Chiller plants with variable frequency drives (VFDs) and harmonic filters, high efficiency motors, solar window glazing, and lighting/motion sensors.

  17. Final Technical Report

    SciTech Connect (OSTI)

    Helen Cunning

    2012-05-08T23:59:59.000Z

    Hackensack University Medical Center's major initiative to create a cleaner healthier and safer environment for patients, employees and the community served by the medical center is built on its commitment to protect the environment and conserve precious energy resources. Since 2004 the Medical Center launched a long term campaign to temper the negative environmental impact of proposed and existing new construction at the medical center and to improve campus wide overall energy efficiency. The plan was to begin by implementing a number of innovative and eco-friendly enhancements to the Gabrellian Women's and Children's Pavilion, in construction at the time, which would lead to Certification by the US Green Building Councils Leadership & Environmental Design (LEED) program. In addition the medical center would evaluate the feasibility of implementing a photovoltaic system in the new construction (in development and planned) to provide clean pollution free electricity. The steps taken to achieve this included conducting a feasibility study complete with architectural and engineering assessments to determine the potential for implementation of a photovoltaic system on the campus and also to conduct an energy survey that would focus on determining specific opportunities and upgrades that would lead to a healthier energy efficient interior environment at the medical center. The studies conducted by the medical center to determine the viability of installing a photovoltaic system identified two key issues that factored into leaderships decision not to implement the solar powered system. These factors were related to the advanced phase of construction of the women's and children's pavilion and the financial considerations to redesign and implement in the ambulatory cancer center. The medical center, in spite of their inability to proceed with the solar aspect of the project upheld their commitment to create a healthier environment for the patients and the community. To achieve a healthier energy efficient interior environment the medical center made substantive upgrades and improvements to the HVAC, plumbing electrical and other operating systems. Measures that were implemented range from use of lighting and plumbing fixture sensors , to reduce electrical and water usage, to use of refrigerants containing hydrochlorofluorocarbons (HCFCs) which cause significantly less depletion of the ozone layer than the refrigerants more commonly used. Additional appropriate energy efficiency component upgrades include the installation of Chiller plants with variable frequency drives (VFDs) and harmonic filters, high efficiency motors, solar window glazing, and lighting/motion sensors.

  18. Final Technical Report

    SciTech Connect (OSTI)

    Logan, Jesse, L; Witmer, Dennis, PhD

    2012-07-29T23:59:59.000Z

    The overall goal of this project was to design, evaluate, and engineer a Vanadium Red-Ox Flow Battery's integration into an existing wind site and micro-grid environment to determine if it is possible to achieve a fifteen percent reduction of diesel fuel usage during periods of peak load and otherwise stabilize the grid in potential high wind penetration systems. The bulk of the work was done by modeling the existing hybrid wind-diesel system and the proposed system with added flow battery storage. The flow battery was changed from a Vanadium Red-Ox to a Zinc Bromine flow battery by a different manufacturer during the modeling process. Several complications arose, but modeling proved to be successful and is ongoing. The development of a modeling platform for flow battery energy storage is a key element in evaluating both economic benefits and dispatch strategies for high penetration in micro-grid wind-diesel systems.

  19. Evaluation of impacts and mitigation assessments for the UMTRA Project: Gunnison and Durango pilot studies. Final report

    SciTech Connect (OSTI)

    Beranich, S.J. [Southwest Environmental, Albuquerque, NM (United States)

    1994-08-24T23:59:59.000Z

    This report evaluates the impacts assessment and proposed mitigations provided in environmental documents concerning the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The projected impacts and proposed mitigations identified in UMTRA Project environmental documents were evaluated for two UMTRA Project sites. These sites are Gunnison and Durango, which are representative of currently active and inactive UMTRA Project sites, respectively. National Environmental Policy Act (NEPA) documentation was prepared for the remedial action at Durango and Gunnison as well as for the provision of an alternate water supply system at Gunnison. Additionally, environmental analysis was completed for mill site demolition Gunnison, and for a new road related to the Durango remedial action. The results in this report pertain only to the impact assessments prepared by the Regulatory Compliance staff as a part of the NEPA compliance requirements. Similarly, the mitigative measures documented are those that were identified during the NEPA process.

  20. Hydrothermal reaction of fly ash. Final report

    SciTech Connect (OSTI)

    Brown, P.W.

    1994-12-31T23:59:59.000Z

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  1. Danish Energy Authority Final Report

    E-Print Network [OSTI]

    Danish Energy Authority Final Report Implementation of the EU directive on the energy performance of buildings: Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers Final Report Implementation of the EPB directive in Latvia: Development of the Latvian Scheme for energy

  2. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08T23:59:59.000Z

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  3. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, Carol Maryanne (Aiken, SC); Pickett, John Butler (Aiken, SC); Brown, Kevin George (Augusta, GA); Edwards, Thomas Barry (Aiken, SC)

    1998-01-01T23:59:59.000Z

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  4. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24T23:59:59.000Z

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

  5. Final Technical Report

    SciTech Connect (OSTI)

    Miller, Robert A.

    2007-04-18T23:59:59.000Z

    From September 1, 2002, to November 30, 2006, the Industrial Assessment Center (IAC) at the University of Illinois at Chicago (UIC) conducted over 120 industrial assessments across 19 different industry types in five different states. In the 1,000+ assessment recommendations written during the award, the UIC-IAC has written recommendations that, if implemented will save several millions of kilowatt-hours of electricity and several million British thermal units of natural gas annually. Additionally, the UIC-IAC has achieved an overall implementation rate in excess of 50%. During the overall span of the award period, the UIC-IAC has trained over 50 students, nearly 25% of which have remained in the energy field in some way after graduating from the IAC program. UIC-IAC students have received over $23,000 in scholarships in the last two years alone. During the course of the award, the UIC-IAC has made it a priority to incorporate ITP tools and technologies whenever possible. The ITP Best Practices tools have been used on several assessments and introduced to clients. DOE technologies are constantly compared against assessment clients to determine what technologies have reached the stage where they can effectively be introduced into industrial operations. The UIC-IAC has been involved in several projects for the Department of Energy (DOE), including energy assessments of Department of Defense bases and industrial facilities, the Plant Energy Profiler (PEP) tool assessment, and expanding the range of assessments to include large- energy users. Additionally, the UIC-IAC has forged a close relationship with the Midwest CHP Application Center, working to incorporate combined heat and power (CHP) and distributed generation (DG) technologies into industrial plants. The most recent project is the Save Energy Now (SEN) six- and 12-month follow-up surveys being conducted by UIC-IAC students. The SEN surveys are an effort for the DOE to determine the implementation rate of energy efficiency measures identified by Qualified System (QS) specialists throughout the nation. The UIC-IAC has also written several papers highlighting its work in the arena of energy efficiency. Currently, several UIC-IAC students have submitted a paper to the American Council for an Energy-Efficient Economy (ACEEE). This paper has been accepted by ACEEE and will be presented later in 2007.

  6. Final Technical Report

    SciTech Connect (OSTI)

    Stoessel, Chris

    2013-11-13T23:59:59.000Z

    This project developed a new high-performance R-10/high SHGC window design, reviewed market positioning and evaluated manufacturing solutions required for broad market adoption. The project objectives were accomplished by: identifying viable technical solutions based on modeling of modern and potential coating stacks and IGU designs; development of new coating material sets for HM thin film stacks, as well as improved HM IGU designs to accept multiple layers of HM films; matching promising new coating designs with new HM IGU designs to demonstrate performance gains; and, in cooperation with a window manufacturer, assess the potential for high-volume manufacturing and cost efficiency of a HM-based R-10 window with improved solar heat gain characteristics. A broad view of available materials and design options was applied to achieve the desired improvements. Gated engineering methodologies were employed to guide the development process from concept generation to a window demonstration. The project determined that a slightly de-rated window performance allows formulation of a path to achieve the desired cost reductions to support end consumer adoption.

  7. Final Technical Report

    SciTech Connect (OSTI)

    R. L. Champion

    2005-11-29T23:59:59.000Z

    During the contract period, our experimental activities concentrated on ion-surface collision studies, gas phase collisions, the effects of adsorbates on field emission, and the origin of H3O+ in mass spectroscopy. In the area of ion-surface collisions we have measured sputtering yields for negative ions and electrons arising from collisions of ions and photons with a variety of metallic substrates upon which is known amount of adsorbate, which drastically alters the emission characteristics. Kinetic energy distributions of the ejected anions and electrons have also been determined. We have developed a theoretical model which, to a large degree, describes the process and elucidates the role of the adsorbate in the emission processes. In the category of gas-phase collisions, we reported work on proton transfer and ion-molecule reactions for reactants involving H3+ and D3+, measured absolute cross sections for a variety inelastic channels for reactants involving CH4+ and CF4, and measured electron detachment and decomposition cross sections for collisions of SF6- with N2. Additionally, we reported absolute cross sections for various reactive collisions involving collisional decomposition of SF6- and the reactants CF3+ and CHF3. The idea here was to use these measured cross sections to model and understand the salient features of the popular gaseous dielectric, SF6 , and the etching discharge which utilizes CHF3. A somewhat different set of experiments explored the role of adsorbates on the process of electron field emission and the nature and origin of the anomalous cation signal often seen at mass 19 amu in mass spectroscopy. The laboratory collision energies for these experiments ranged from a few electron volts up to 500 eV. The goal of all the studies was to develop an understanding of the collisional dynamics and pathways for systems which are both intellectually interesting and of some potential importance to various areas of applied physics.

  8. Final Technical Report

    SciTech Connect (OSTI)

    Jacquelyn Yanch

    2006-05-22T23:59:59.000Z

    This project involved the development of a method for in vivo prompt gamma neutron activation analysis for the investigation of Boron-10 distribution in a rabbit knee. The overall objective of this work was a robust approach for rapid screening of new {sup 10}B-labelled compounds to determine their suitability for use in the treatment of rheumatoid arthritis via Boron Neutron Capture Synovectomy (BNCS). For BNCS it is essential to obtain a compound showing high uptake levels in the synovium and long residence time in the joints. Previously the in vivo uptake behavior of potential compounds was evaluated in the arthritic knee joints of rabbits via extensive dissection studies. These studies are very labor-intensive and involve sacrificing large numbers of animals. An in vivo {sup 10}B screening approach was developed to provide initial evaluation of potential compounds. Only those compounds showing positive uptake and retention characteristics will be evaluated further via dissection studies. No further studies will be performed with compounds showing rapid clearance and/or low synovial uptake. Two approaches to in vivo screening were investigated using both simulation methods and experimentation. Both make use of neutron beams generated at the MIT Research Reactor. The first, Transmission Computed Tomography (TCT) was developed and tested but was eventually rejected due to very limited spatial resolution using existing reactor beams. The second, in vivo prompt gamma neutron activation analysis (IVPGNAA) was much more promising. IVPGNAA was developed using computer simulation and physical measurement coupled with image reconstruction techniques. The method was tested in arthritic New Zealand rabbits previously injected intra-articularly with three boron labeled compounds and shown to be effective in providing information regarding uptake level and residence time of {sup 10}B in the joint.

  9. MA 224 FINAL EXAM INFORMATION The final exam is scheduled ...

    E-Print Network [OSTI]

    Devilyna L Nichols

    2007-11-14T23:59:59.000Z

    The final exam is scheduled for Monday, December 10, at 8:00 a.m. in Lambert. Fieldhouse. Seats are assigned and you should receive your assigned seat from

  10. Final Technical Report

    SciTech Connect (OSTI)

    Efthimios Kaxiras

    2009-02-02T23:59:59.000Z

    This research consisted of a theoretical investigation of the properties of surface-based nanostructures, having as a main goal the deeper understanding of the atomic-scale mechanisms responsible for the formation and stability of such structures. This understanding will lead to the design of improved systems for applications in diverse areas such as novel electronic devices, sensors, field-effect transistors, substrates with enhanced hydro-phobic (water repelling) or hydro-philic (water absorbing) behavior for coatings of various surfaces used in bioengineering, flexible displays, organic photovoltaics, etc. The research consisted of developing new theoretical methodologies and applying them to a wide range of interesting physical systems. Highlights of the new methodologies include techniques for bridging different scales, from the quantum-mechanical electronic level to the meso-scopic level of large molecular structures such as DNA, carbon nanotubes and two-dimensional assemblies of organic molecules. These methodologies were successfully applied to investigate interactions between systems that are large on the atomic scale (reaching the scale of microns in length or milliseconds in time), but still incorporating all the essential elements of the atomic-scale structure. While the research performed here did not address applications directly, the implications of its finding are important in guiding experimental searches and in coming up with novel solutions to important problems. In this sense, the results of this work can be incorporated in the design of many useful applications. Specifically, in addition to elucidating important physical principles on how nano-structures are stabilized on surfaces, we have used our theoretical investigations to make predictions for useful applications in the following fields: a) we proposed new types of nanotubes that can overcome the limitations of the carbon nanotubes whose properties depend sensitively on the structure which cannot be controlled experimentally; b) we showed how carbon nanotubes can be employed in optical determination of the DNA base sequence, an exciting application for ultra-fast DNA sequencing; c) we proposed a nano-structure (titanium dioxide nano-wire) based design for organic photovoltaics using natural dyes, and showed that it will be an efficient system for the absorption of light and the charge transfer from the dye to the wire.

  11. HARE: Final Report

    SciTech Connect (OSTI)

    Mckie, Jim

    2012-01-09T23:59:59.000Z

    This report documents the results of work done over a 6 year period under the FAST-OS programs. The first effort was called Right-Weight Kernels, (RWK) and was concerned with improving measurements of OS noise so it could be treated quantitatively; and evaluating the use of two operating systems, Linux and Plan 9, on HPC systems and determining how these operating systems needed to be extended or changed for HPC, while still retaining their general-purpose nature. The second program, HARE, explored the creation of alternative runtime models, building on RWK. All of the HARE work was done on Plan 9. The HARE researchers were mindful of the very good Linux and LWK work being done at other labs and saw no need to recreate it. Even given this limited funding, the two efforts had outsized impact: _ Helped Cray decide to use Linux, instead of a custom kernel, and provided the tools needed to make Linux perform well _ Created a successor operating system to Plan 9, NIX, which has been taken in by Bell Labs for further development _ Created a standard system measurement tool, Fixed Time Quantum or FTQ, which is widely used for measuring operating systems impact on applications _ Spurred the use of the 9p protocol in several organizations, including IBM _ Built software in use at many companies, including IBM, Cray, and Google _ Spurred the creation of alternative runtimes for use on HPC systems _ Demonstrated that, with proper modifications, a general purpose operating systems can provide communications up to 3 times as effective as user-level libraries Open source was a key part of this work. The code developed for this project is in wide use and available at many places. The core Blue Gene code is available at https://bitbucket.org/ericvh/hare. We describe details of these impacts in the following sections. The rest of this report is organized as follows: First, we describe commercial impact; next, we describe the FTQ benchmark and its impact in more detail; operating systems and runtime research follows; we discuss infrastructure software; and close with a description of the new NIX operating system, future work, and conclusions.

  12. Review Sheet for Final Exam

    E-Print Network [OSTI]

    2015-01-05T23:59:59.000Z

    REVIEW FOR FINAL EXAM MA 139000. 36. 5 people can paint 3 rooms in 6 hours. How many rooms can 15 people paint in half a day? 37. Which of the ...

  13. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

  14. Final Report: Axion "Roadmap" Workshop

    SciTech Connect (OSTI)

    Rosenberg, Leslie J

    2013-03-19T23:59:59.000Z

    Final report for "Vistas in Axion Physics: A Roadmap for Theoretical and Experimental Axion Physics through 2025", which was held at the University of Washington, INT, from April 23 - 26, 2012.

  15. Final Exam for MA 265

    E-Print Network [OSTI]

    The Final Exam For MA 265: Fall 2002. Date: Thursday, December 12, 2002. Time: 3:20 - 5:20 pm. Room: Lambert Fieldhouse, or check the Online Catalog of

  16. Danish Energy Authority Final report

    E-Print Network [OSTI]

    1 Danish Energy Authority Final report Kaliningrad Regional District Heating Network 2004 - 2006 2006 #12;Kaliningrad District Heating Network Project 2004 - 2006 2 Table of content The report........................................................................................................... 7 1.4.1 District heating in the Region

  17. Final Technical Report

    SciTech Connect (OSTI)

    Sara Bergan, Executive Director; Brendan Jordan, Program Manager; Subcontractors as listed on the report.

    2007-06-06T23:59:59.000Z

    The following report contributes to our knowledge of how to economically produce wildlife-friendly grass mixtures for future fuel feedstocks in the northern plains. It investigates northern-adapted cultivars; management and harvest regimes that are good for yields, soils and wildlife; comparative analysis of monocultures and simple mixtures of native grasses; economic implications of growing grasses for fuel feedstocks in specific locations in the northern plains; and conversion options for turning the grasses into useful chemicals and fuels. The core results of this study suggest the following: ? Native grasses, even simple grass mixtures, can be produced profitably in the northern plains as far west as the 100th meridian with yields ranging from 2 to 6 tons per acre. ? Northern adapted cultivars may yield less in good years, but have much greater long-term sustainable yield potential than higher-yielding southern varieties. ? Grasses require very little inputs and stop economically responding to N applications above 56kg/hectare. ? Harvesting after a killing frost may reduce the yield available in that given year but will increase overall yields averaged throughout multiple years. ? Harvesting after a killing frost or even in early spring reduces the level of ash and undesirable molecules like K which cause adverse reactions in pyrolysis processing. Grasses can be managed for biomass harvest and maintain or improve overall soil-health and carbon sequestration benefits of idled grassland ? The carbon sequestration activity of the grasses seems to follow the above ground health of the biomass. In other words plots where the above ground biomass is regularly removed can continue to sequester carbon at the rate of 2 tons/acre/year if the stand health is strong and yielding significant amounts of biomass. ? Managing grasses for feedstock quality in a biomass system requires some of the same management strategies as managing for wildlife benefit. We believe that biomass development can be done in such a way that also maximizes or improves upon conservation and other environmental goals (in some cases even when compared to idled land). ? Switchgrass and big bluestem work well together in simple mixture plots where big bluestem fills in around the switchgrass which alone grows in bunches and leaves patches of bare soil open and susceptible to erosion. ? Longer-term studies in the northern plains may also find that every other year harvest schemes produce as much biomass averaged over the years as annual harvests ? Grasses can be grown for between $23 and $54/ton in the northern plains at production rates between 3 and 5 tons/acre. ? Land costs, yields, and harvest frequency are the largest determining factors in the farm scale economics. Without any land rent offset or incentive for production, and with annual harvesting, grass production is likely to be around $35/ton in the northern plains (farm gate). ? Average transportation costs range from $3 to $10/ton delivered to the plant gate. Average distance from the plant is the biggest factor - $3/ton at 10 miles, $10/ton at 50 miles. ? There is a substantial penalty paid on a per unit of energy produced basis when one converts grasses to bio-oil, but the bio-oil can then compete in higher priced fuel markets whereas grasses alone compete directly with relatively cheap coal. ? Bio oil or modified bio-oil (without the HA or other chemical fraction) is a suitable fuel for boiler and combustion turbines that would otherwise use residual fuel oil or number 2 diesel. ? Ensyn has already commercialized the use of HA in smokey flavorants for the food industry but that market is rather small. HA, however, is also found to be a suitable replacement for the much larger US market for ethanolamines and ethalyne oxides that are used as dispersants. ? Unless crude oil prices rise, the highest and best use of grass based bio-oil is primarily as a direct fuel. As prices rise, HA, phenol and other chemical fractions may become more attractive ? Although we were

  18. Final Technical Report

    SciTech Connect (OSTI)

    Dr. Asok K. Ray

    2012-05-22T23:59:59.000Z

    During the past decades, considerable theoretical efforts have been devoted to studying the electronic and geometric structures and related properties of surfaces. Such efforts are particularly important for systems like the actinides for which experimental work is relatively difficult to perform due to material problems and toxicity. The actinides are characterized by a gradual filling of the 5f-electron shell with the degree of localization increasing with the atomic number Z along the last series of the periodic table. The open shell of the 5f electrons determines the atomic, molecular, and solid state properties of the actinide elements and their compounds and understanding the quantum mechanics of the 5f electrons is the defining issue in the chemistry and physics of actinide elements. These elements are also characterized by the increasing prominence of relativistic effects and their studies can, in fact, help us understand the role of relativity throughout the periodic table. However, the electronic and geometric structures of the actinides, specifically the trans-uranium actinides and the roles of the 5f electrons in chemical bonding are still not well understood. This is crucial not only for our understanding of the actinides but also for the fact that the actinides constitute 'the missing link' between the d transition elements and the lanthanides. The 5f orbitals have properties intermediate between those of localized 4f and delocalized 3d orbitals. Thus, a proper understanding of the actinides will help us understand the behavior of the lanthanides and transition metals as well. In fact, there is an urgent need for continued extensive and detailed theoretical research in this area to provide significant and deep understandings of the electronic and geometric structures of the actinides. In this work, we have performed electronic structure studies for plutonium (Pu), americium (Am), and curium (Cm) surfaces, and molecular adsorptions on Pu and Am surfaces. In particular, the region at the boundary of Pu and Am, is widely believed to be the crossover region between d-like itinerant and f-like localized behavior The eventual goal is a complete understanding of the surface chemistry and physics processes of all actinide surfaces, defining the chemistry and physics of such heavy elements. Among the actinides, plutonium, with five 5f electrons in the solid state, is arguably the most complex, fascinating, and enigmatic element known to mankind and has attracted extraordinary scientific and technological interests because of its unique properties, generating a significant body of research in diverse areas, including superconductivity. Pu has, at least, six stable allotropes between room temperature and melting at atmospheric pressure, indicating that the valence electrons can hybridize into a number of complex bonding arrangements. Central and critical questions relate to the electronic structure, localization of the 5f electrons and the magnetism of Pu. For the light-actinides, from Th to Pu, the 5f electrons are believed to be delocalized, hybridizing with the 6d and 7s electrons. For the heavier actinides, Am and beyond, the 5f electrons are localized with the 5f orbitals progressively lower in energy relative to the 6d configuration. Hence, Pu is in a position where the 5f electronic behavior changes from itinerant to localized. As far as magnetism is concerned, a majority of the theoretical calculations continues to claim the existence of magnetism while almost all the experimental results do not find any support for such claims. The second element of interest to us, namely americium, occupies a central position in the actinide series with respect to the involvement of 5f electrons in metallic bonding. It is widely believed that the 5f electrons in Am are localized and that Am undergoes a series of crystallographic phase changes with pressure. Fully-relativistic all electron surface studies of the different phases of Am, initially for the dhcp and the fcc surfaces, can and have provided us with valuable informa

  19. WP-07 Final Studies & Documentation (wp07/final)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE Awards Contract for19,WIPPPanelFinalFinal

  20. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PILOT PHASE OF A FIELD STUDY TO DETERMINE WASTE OF WATER AND ENERGY IN RESIDENTIAL HOT WATER DISTRIBUTION SYSTEMS JULY 2009 CEC-500-2013-135 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National Laboratory #12;PREPARED

  1. MPO B593110 - Final Report

    SciTech Connect (OSTI)

    Brooksby, C

    2011-07-25T23:59:59.000Z

    National Security Technologies, LLC (NSTec) shall provide one (1) Mechanical Engineer to support the Linear Collider Subsystem Development Program at Lawrence Livermore National Security, LLC (LLNS). The NSTec Mechanical Engineer's efforts will include engineering, design, and drawing support for the Vacuum Seal Test. NSTec will also provide a final report of the setup and input to LLNL's project management on project status. The NSTec Mechanical Engineer's efforts will also include engineering, design, and drawing support to the conceptual design for manufacturing of the Flux Concentrator Magnet. NSTec will also contribute to LLNS's final report on the Flux Concentrator Magnet. The deliverables are drawings, sketches, engineering documents, and final reports delivered to the LLNS Technical Representative.

  2. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 20159, 2012 FINAL9, 2013 FINAL

  3. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  4. MINIMARS conceptual design: Final report

    SciTech Connect (OSTI)

    Lee, J.D. (ed.)

    1986-09-01T23:59:59.000Z

    This volume contains the following sections: (1) fueling systems; (2) blanket; (3) alternative blanket concepts; (4) halo scraper/direct converter system study and final conceptual design; (5) heat-transport and power-conversion systems; (6) tritium systems; (7) minimars air detritiation system; (8) appropriate radiological safety design criteria; and (9) cost estimate. (MOW)

  5. Final Exam Memo/Preparation

    E-Print Network [OSTI]

    odavis

    2010-11-21T23:59:59.000Z

    The homework problems listed on the Assignment Sheet for the entire semester is your best guide to ... On the web page you will find a set of practice questions for the final exam. ... The old exams on the webpage are also good to practice.

  6. PRS Final Paper Jeff Diebold

    E-Print Network [OSTI]

    Lewis, Robert Michael

    of regulation. Finally, the team manipulated the model in various ways to assess how certain variables affect on GDP predicted by regulatory and other economic and social control 1 JLARC. Impact of Regulations the regression results of the international regulation model. TABLE ONE Regression Replication Independent

  7. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of Petroleum ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

  8. FINAL Announcement International Brainstorming Work-

    E-Print Network [OSTI]

    FINAL Announcement 1st International Brainstorming Work- shop on Waste to Energy in India Organized, though in an energy in-efficient way. Organic MSW is identified as one of the potential sources on food versus fuel intensifies, biomass can provide added income to farmers with- out compromising

  9. Texas Transportation Poll Final report

    E-Print Network [OSTI]

    Texas Transportation Poll Final report PRC 14-16-F #12;2 Texas Transportation Poll Texas A&M Transportation Institute PRC 14-16-F September 2014 Authors Chris Simek Tina Geiselbrecht #12;3 Table of Contents .......................................................................................................................... 8 Transportation Funding

  10. Small farm drier. Final report

    SciTech Connect (OSTI)

    Fisher, C.S.

    1985-01-01T23:59:59.000Z

    The dried produce processed by the machine were outstanding in quality - the devise works and gives all indications that it will work on a larger scale. Materials were tested and a best shelving material found. The process, without counting labor costs, seems to be economically viable. Finally there are clear indications of how to improve the drier and the production scheme.

  11. Decommissioning Benchmarking Study Final Report

    Broader source: Energy.gov [DOE]

    DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine...

  12. Integrating Pollution Prevention with NEPA Planning Activities

    Broader source: Energy.gov [DOE]

    The purpose of this memorandum is to advise you of the direction that the Environmental Protection Agency (EPA) and Council on Environmental Quality (CEQ) appear to be taking regarding pollution...

  13. NEPA?a grand new idea

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new idea As nuclear energy became more widely known after its initial use to end World War II, Oak Ridge was the source of expansion into unknown fields of study in hopes of...

  14. National Environmental Policy Act (NEPA) Categorically Excluded...

    Broader source: Energy.gov (indexed) [DOE]

    Monitoring Wells South of the Tuba City, Arizona, Uranium Mill Tailing Remedial Action (UMTRA) Title I Ste 05282013 B1.3 LM 01-13 Current and Future Actions Related to...

  15. Microsoft Word - PR-10085844 NEPA.docx

    Broader source: Energy.gov (indexed) [DOE]

    PR-10085844 Title: Replace BC 500 KVA Power Transformer Description: Subcontractor shall provide all labor, supervision, tools, equipment, and transportation required to procure,...

  16. NEPA COMPLIANCE SURVEY Project Information Project Title:

    Broader source: Energy.gov (indexed) [DOE]

    Boxes Date: Nov. 11 , 2010 DOE Code: 6740.010.00000 Contractor Code: 8067-451 Project Lead: Anthony Bowler Project Overview 1. Brief project description include anything that...

  17. GC NEPA Listserv | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNG |ofFuelOnSubscribe to

  18. Template for Expedited NEPA Review of Certain

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    o Solar Thermal Hot Water - such as appropriately sized for small buildings. o Ground Source Heat Pump - 5.5-ton capacity or smaller, horizontalvertical, ground, closed-loop...

  19. DOE NEPA Compliance Officers | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergy All Departmental

  20. DOE NEPA Rulemaking | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergy All

  1. LM Annual NEPA Summary 2014.xls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15 LM 05-15 NEPATitle,

  2. Category:NEPA Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page?Loggingthat

  3. Category:NEPA Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page?LoggingthatJump

  4. PMA_WAPA_NEPA-APS-2013.pdf

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyofHSSPIA - I-Manage STARS PIA - I-Manage STARSofDep

  5. Guidance Regarding NEPA Regulations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber2008 |of3011-2002This

  6. NEPA Terminology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintaining theSan Jose-San|

  7. The National Environmental Policy Act (NEPA)

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2

  8. All NEPA Guidance | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudgeAlice OrrellGuidance &

  9. Appendix N Cover - NEPA Disclosure Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 TableimpurityAppeals8I CulturalMMgO-2014N

  10. Property:NEPA Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon Twitter icon »ApplDsc JumpMinority Business

  11. Property:NEPA Decision | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon Twitter icon »ApplDsc JumpMinority

  12. NEPA Contracting Reform Guidance (December 1996)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of Energy

  13. Property:NEPA Consultant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate JumpAuth3LinkTechMinCategoricalExclusion

  14. Property:NEPA FONSI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty Edit with form History

  15. Property:NEPA Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty Edit with formProposed Action

  16. Property:NEPA Url | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty Edit withTieredDoc Jump to:URLs to any

  17. DOE NEPA Compliance Officers | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste CleanupDesignationsResearch InitiativeNEPADOE

  18. NEPA ID# WIP:95:0002

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322 2013 ANNUAL MITIGATION REPORT FOR THE WASTE

  19. GO 2009 Annual NEPA Planning Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergyGE-Prolec CCEATVDepartment of

  20. WIPP Documents - National Environmental Policy Act (NEPA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge fileHazardous

  1. Report - Considering Cumulative Effects Under NEPA

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department ofSouthern CompanyAsConsidering

  2. NEPA Contracting Reform Guidance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008CITE:Department

  3. NEPA and Other Laws | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29,guidance on theon the

  4. NEPA Database | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames Global Emissions Data

  5. Secure NEPA Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9,AwardGrads &Alternative Fuel| Department ofSecretary

  6. Microsoft Word - NEPA Fact Sheet 082814.doc

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB - H, Page i PART I2MAY 2006National

  7. National Environmental Policy Act (NEPA) Process

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| Nationalry '1'/r/;L15-16

  8. Category:NEPA Doc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back toFL" The followingALNEPA

  9. Category:NEPA Properties | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back toFL" TheThese are

  10. Template for Expedited NEPA Review of Certain

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTank 48HThis formAddress of

  11. BLM NEPA Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:Management | Open

  12. BOR NEPA Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:ManagementBOC GroupChinaBOR

  13. Property:NEPA Document | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc JumpDocument Jump to:

  14. Property:NEPA Extraordinary | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc JumpDocument Jump

  15. RAPID/NEPA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <New MexicoOpen

  16. RAPID/NEPA/About | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <New

  17. Form:NEPA Doc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd a Marine and

  18. NNSA_SROO_NEPA-APS-2013.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock,Department of EnergyTechnologies,DEF135

  19. USCG NEPA Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypefor AfricaToolkit

  20. NEPA - Environmental Impact Statements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum|NEES EFRCStatements

  1. NEPA Reading Room | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum|NEESReading Room |

  2. Significant Radionuclides Determination

    SciTech Connect (OSTI)

    Jo A. Ziegler

    2001-07-31T23:59:59.000Z

    The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

  3. Final Environmental Impact Statement for the construction and operation of Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3-70). Volume 2, Public comments and NRC response

    SciTech Connect (OSTI)

    Zeitoun, A. [Science Applications International Corp., Germantown, MD (United States)

    1994-08-01T23:59:59.000Z

    The Final Environmental Impact Statement (FEIS) (Volume 1), was prepared by the Nuclear Regulatory Commission (NRC) in accordance with regulation 10 CFR Part 51, which implements the National Environmental Policy Act (NEPA), to assess the potential environmental impacts for licensing the construction and operation of a proposed gaseous centrifuge enrichment facility to be built in Claiborne Parish, Louisiana by Louisiana Energy Services, L.P. (LES). The proposed facility would have a production capacity of about 866 metric tons annually of up to 5 weight percent enriched UF{sub 6}, using a proven centrifuge technology. Included in the assessment are co on, both normal operations and potential accidents (internal and external events), and the eventual decontamination and decommissioning of the site. In order to help assure that releases from the operation of the facility and potential impacts on the public are as low as reasonably achievable, an environmental monitoring program was developed by LES to detect significant changes in the background levels of uranium around the site. Other issues addressed include the purpose and need for the facility, the alternatives to the proposed action, potential disposition of the tails, the site selection process, and environmental justice. The NRC staff concludes that the facility can be constructed and operated with small and acceptable impacts on the public and the environment, and proposes to issue a license to the applicant, Louisiana Energy Services, to authorize construction and operation of the proposed facility. The letters in this Appendix have been divided into three sections. Section One contains letters to which the NRC responded by addressing specific comments. Section Two contains the letters that concerned the communities of Forest Grove and Center Springs. Section Three is composed of letters that required no response. These letters were generally in support of the facility.

  4. Virtualized Network Control: Final Report

    SciTech Connect (OSTI)

    Ghani, Nasir [University of New Mexico

    2013-02-01T23:59:59.000Z

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  5. Field practice internship final report

    SciTech Connect (OSTI)

    Foster, T.

    1994-05-01T23:59:59.000Z

    This field practice internship final report gives an overview of the field practice, which was completed at the Oak Ridge Y-12 Plant, Martin Marietta Energy Systems, Inc., Environmental Management Department, Oak Ridge, Tennessee. The field practice focused on the completion of the Superfund Amendments and Reauthorization Act (SARA) Title III, Emergency Planning and Community Right-to-Know Act Section 312, Tier II Report. The field practice internship was conducted on a full-time basis between December 13, 1993 through February 18, 1994. Sheila Poligone, Emergency Planning and Community Right-to-Know Act (EPCRA) Coordinator served as the field practice preceptor.

  6. New Approaches to Final Cooling

    E-Print Network [OSTI]

    Neuffer, David

    2015-01-01T23:59:59.000Z

    A high-energy muon collider scenario requires a "final cooling" system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of the alternative approach. A more explicit understanding of solenoidal cooling beam dynamics is introduced.

  7. [Experimental nuclear physics]. Final report

    SciTech Connect (OSTI)

    NONE

    1991-04-01T23:59:59.000Z

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs.

  8. Final_Testimony(2).pdf

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy6 FederalofE: Bibliography of(PEIS) |Department

  9. Final Green Zia Award Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 9 DefaultEnergy FinalGreen Zia

  10. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 9 DefaultEnergy FinalGreen

  11. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 9 DefaultEnergy FinalGreenRiver

  12. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 2015 FINAL MEETING SUMMARY

  13. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 2015 FINAL MEETING SUMMARYMarch

  14. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 2015 FINAL MEETING

  15. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 2015 FINAL MEETINGSafety, and

  16. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 2015 FINAL MEETINGSafety,

  17. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 2015 FINAL MEETINGSafety,August

  18. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 2015 FINAL

  19. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 2015 FINALMarch 5, 2014 FINAL

  20. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 20159, 2012 FINAL MEETING