Sample records for filtration technologies developing

  1. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature Materials Laboratory (HTML) User Program Dr. Amit Shyam, ORNL Sponsored by U.S. Department...

  2. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success stories at the High Temperature Materials Laboratory (HTML) User Program Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature...

  3. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

  4. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

  5. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Particulate Filters...

  6. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

  7. Development of Model Filtration Media for Investigating Size...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency A novel method for fabricating custom porous filtration media for emission control has been developed. Controlled pore sizes could be used to optimize...

  8. Evaluation of Side Stream Filtration Technology at Oak Ridge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ssfevaluation.pdf More Documents & Publications Side Stream Filtration for Cooling Towers Technical Evaluation of Side Stream Filtration for Cooling Towers Cooling Towers:...

  9. Schwarz, T. and Wells, S. (1999) "Storm Water Particle Removal using Cross-Flow Filtration and Sedimentation," in Advances in Filtration and Separation Technology, Volume 12, ed. by W. Leung, American Filtrations and Separations Society, pp.219-226.

    E-Print Network [OSTI]

    Wells, Scott A.

    and Sedimentation," in Advances in Filtration and Separation Technology, Volume 12, ed. by W. Leung, American Filtrations and Separations Society, pp.219-226. CONTINUOUS DEFLECTION SEPARATION OF STORMWATER PARTICULATES

  10. Development of Advanced Diesel Particulate Filtration (DPF) Systems

    Broader source: Energy.gov (indexed) [DOE]

    Filtration (DPF) Systems Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) February 26, 2008 DOE Merit Review PI: Kyeong Lee (Postdoc: Joe Song) Transportation...

  11. Application of CFCC technology to hot gas filtration applications

    SciTech Connect (OSTI)

    Richlen, S.

    1995-06-01T23:59:59.000Z

    Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurement of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.

  12. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Boyd, Brian K.

    2014-08-01T23:59:59.000Z

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  13. EXPERIMENTS ON CAKE DEVELOPMENT IN CROSSFLOW FILTRATION FOR HIGH LEVEL WASTE

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.

    2011-04-14T23:59:59.000Z

    Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self cleaning through the action of wall shear stress, which is created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduces permeability. Low filter flux can be a bottleneck in waste processing facilities such as the Salt Waste Processing Facility at the Savannah River Site and the Waste Treatment Plant at the Hanford Site. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date, increased rates are generally realized by either increasing the crossflow filter axial flowrate, which is limited by pump capacity, or by increasing filter surface area, which is limited by space and increases the required pump load. In the interest of accelerating waste treatment processing, DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on startup techniques and filter cake development. This paper discusses those filter studies. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, and filter cleaning. Using non-radioactive simulated wastes, which were both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions filter flow rates can be increased over rates currently realized today. This paper describes the selection of a challenging simulated waste and crossflow filter tests to demonstrate how performance can be improved over current operation.

  14. air filtration technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Infrastructure Technologies FY 2002 Progress Report IV.E Air Management Subsystems Renewable Energy Websites Summary: . Approach Use automotive and aerospace...

  15. Development of Model Filtration Media for Investigating Size-Dependent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterialsDepartmentFiltration Efficiency |

  16. Technology Forecasting Scenario Development

    E-Print Network [OSTI]

    Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

  17. Insider protection technology developments

    SciTech Connect (OSTI)

    Foesch, J.; Bortniak, P.; Waddoups, I.

    1994-08-01T23:59:59.000Z

    Sandia National Laboratories evaluates and develops new techniques and technologies to ensure the integrity of special nuclear material (SNM) against potential insider threats. We have evaluated several types of sensor technologies and subsystems to monitor and/or track materials and personnel. This past year`s effort has been directed at characterizing commercial developments that meet the Department of Energy`s (DOE) needs in some of these areas. Some of these evaluations are complete and some are still in progress. This paper discusses our work with infrared light (IR), radio frequency (RF), and RF proximity technologies. After these technologies are judged to be applicable to DOE`s needs, we incorporate them into the generic, real time, personnel tracking and material monitoring system.

  18. Demand response enabling technology development

    E-Print Network [OSTI]

    Arens, Edward; Auslander, David; Huizenga, Charlie

    2008-01-01T23:59:59.000Z

    behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

  19. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect (OSTI)

    William A. Greene; Patricia A. Kirk; Richard Hayes; Joshua Riley

    2005-10-28T23:59:59.000Z

    SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, has engineered and developed a system for use within the U.S. Department of Energy (DOE) Environmental Management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. SpinTek II High Shear Rotary Membrane Filtration System is a unique compact crossflow membrane system that has large, demonstrable advantages in performance and cost compared to currently available systems: (1) High fluid shear prevents membrane fouling even with very high solids content; hazardous and radioactive components can be concentrated to the consistency of a pasty slurry without fouling. (2) Induced turbulence and shear across the membrane increases membrane flux by a factor of ten over existing systems and allows operation on fluids not otherwise treatable. (3) Innovative ceramic membrane and mechanical sealing technology eliminates compatibility problems with aggressive DOE waste streams. (4) System design allows rapid, simple disassembly for inspection or complete decontamination. (5) Produces colloidal- and suspended-solids-free filtrate without the addition of chemicals. The first phase of this project (PRDA maturity stage 5) completed the physical scale-up of the SpinTek unit and verified successful scale-up with surrogate materials. Given successful scale-up and DOE concurrence, the second phase of this project (PRDA maturity stage 6) will provide for the installation and operation of the full-scale two-stage SpinTek unit for treatment of a DOE waste-stream at the Los Alamos National Laboratory. This technology has very broad application across the DOE system. Nineteen DOE technical needs areas (Appendix C) have been identified. Following successful full-scale demonstration for treatment of DOE wastes, this innovative technology will be rapidly deployed on a wide range of waste and process streams throughout the DOE system.

  20. Transaction Costs, Information Technology and Development

    E-Print Network [OSTI]

    Singh, Nirvikar

    2004-01-01T23:59:59.000Z

    Transaction Costs, Information Technology and Development 1.Transaction Costs, Information Technology and DevelopmentTransaction Costs, Information Technology and Development *

  1. Transaction Costs, Information Technology and Development

    E-Print Network [OSTI]

    Singh, Nirvikar

    2004-01-01T23:59:59.000Z

    Transaction Costs, Information Technology and Development 1.Transaction Costs, Information Technology and DevelopmentTransaction Costs, Information Technology and Development

  2. ECH Technology Development

    SciTech Connect (OSTI)

    Temkin, Richard [MIT

    2014-12-24T23:59:59.000Z

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  3. Graphite Technology Development Plan

    SciTech Connect (OSTI)

    W. Windes; T. Burchell; R. Bratton

    2007-09-01T23:59:59.000Z

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  4. From Emergency to Fix: Point-of-Use Water Filtration Technology in Colonias Along the United States-Mexico Border

    E-Print Network [OSTI]

    Vandewalle, Emily Lauren

    2014-04-30T23:59:59.000Z

    Small-scale decentralized facilities and technologies are rapidly becoming a dominant technological fix to deliver water to underserved populations in developing nations. This project examines the case of a university partnership with government...

  5. Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  6. Vehicle Technologies Office Merit Review 2015: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  7. Vehicle Technologies Office: Workforce Development and Professional...

    Office of Environmental Management (EM)

    Education & Workforce Development Vehicle Technologies Office: Workforce Development and Professional Education Vehicle Technologies Office: Workforce Development and...

  8. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

  9. Geothermal Electricity Technology Evaluation Model (GETEM) Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

  10. CFD Analysis of Particle Deposition During DPF Filtration Processes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deposition During DPF Filtration Processes A 3-D DPF model is developed to predict thermo-physical properties during filtration processes and to quantitatively investigate...

  11. Robotics Technology Development Program. Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  12. Liquid filtration simulation

    SciTech Connect (OSTI)

    Corey, I.; Bergman, W.

    1996-06-01T23:59:59.000Z

    We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

  13. Technetium separation from aqueous solutions using polymer filtration

    SciTech Connect (OSTI)

    Schroeder, N.C.; Ball, J.R.; Robison, T.W.; Gibson, R.R.; Smith, B.F. [Los Alamos National Lab., NM (United States)

    1997-12-31T23:59:59.000Z

    Water-soluble, metal-binding, polymers that possess functional groups with high selectivity for technetium have been developed for ground and waste waters remediation. When combined with ultrafiltration, a new homogeneous all aqueous-based technology for metals removal/recovery, called Polymer Filtration, becomes available. Technetium distribution coefficients experiments were obtained with the polymers from simple solutions, high nitrate simulants, and DSSF simulant. We have completed a preliminary proof-of-principal evaluation of Polymer Filtration technology for removal of technetium-99 from Paducah Gaseous Diffusion Plant contaminated groundwater simulant.

  14. Emerging Water Heating Technologies Research & Development Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

  15. SRNL LDRD - Developed Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u a l r e7332999Developed

  16. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on...

  17. WYSS TECHNOLOGY DEVELOPMENT FELLOWSHIP NOMINATION FORM

    E-Print Network [OSTI]

    WYSS TECHNOLOGY DEVELOPMENT FELLOWSHIP NOMINATION FORM 1. Biographical Sketch _____________________________________________ ________________________________________ Wyss Enabling Technology Platform Focus research plans relative to Wyss Enabling Technology Platform. 3. Enclose supporting letter from nominator

  18. Enforcement Letter, Parsons Technology Development & Fabrication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development & Fabrication Complex - April 13, 2010 Enforcement Letter, Parsons Technology Development & Fabrication Complex - April 13, 2010 April 13, 2010 Issued to...

  19. Sandia Researchers Develop Promising Chemical Technology for...

    Energy Savers [EERE]

    Sandia Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am...

  20. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference...

  1. Research & Development Roadmap: Emerging Water Heating Technologies...

    Energy Savers [EERE]

    Emerging Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating...

  2. Water Heating Technologies Research and Development Roadmap ...

    Energy Savers [EERE]

    Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

  3. Development of Thermoelectric Technology for Automotive Waste...

    Energy Savers [EERE]

    Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S....

  4. Technology Venture Development Community Partnerships Strategic Initiatives

    E-Print Network [OSTI]

    Technology Venture Development Community Partnerships · Strategic Initiatives · Faculty Outreach) 587-3836 Technology Commercialization Office (TCO) Intellectual Property Protection · Technology and Start the Commercialization Process www.TeCh venTUreS.UTAh.eDU Technology commercialization starts

  5. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01T23:59:59.000Z

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  6. Pyrolysis Oil Stabilization: Hot-Gas Filtration; Cooperative Research and Development Final Report, CRADA Number CRD-09-333

    SciTech Connect (OSTI)

    Baldwin, R.

    2012-07-01T23:59:59.000Z

    The hypothesis that was tested in this task was that separation of char, with its associated mineral matter from pyrolysis vapors before condensation, will lead to improved oil quality and stability with respect to storage and transportation. The metric used to evaluate stability in this case was a 10-fold reduction in the rate of increase of viscosity as determined by ASTM D445 (the accelerated aging test). The primary unit operation that was investigated for this purpose was hot-gas filtration. A custom-built heated candle filter system was fabricated by the Pall Corporation and furnished to NREL for this test campaign. This system consisted of a candle filter element in a containment vessel surrounded by heating elements on the external surface of the vessel. The filter element and housing were interfaced to NREL?s existing 0.5 MTD pyrolysis Process Development Unit (PDU). For these tests the pyrolysis reactor of the PDU was operated in the entrained-flow mode. The HGF test stand was installed on a slipstream from the PDU so that both hot-gas filtered oil and bio-oil that was not hot-gas filtered could be collected for purposes of comparison. Two filter elements from Pall were tested: (1) porous stainless steel (PSS) sintered metal powder; (2) sintered ceramic powder. An extremely sophisticated bio-oil condensation and collection system was designed and fabricated at NREL and interfaced to the filter unit.

  7. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04T23:59:59.000Z

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  8. NETL Technologies Recognized for Technology Development, Transfer |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29,guidance on

  9. Rotary filtration system

    DOE Patents [OSTI]

    Herman, David T. (Aiken, SC); Maxwell, David N. (Aiken, SC)

    2011-04-19T23:59:59.000Z

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  10. Technology Venture Development Community Partnerships Strategic Initiatives

    E-Print Network [OSTI]

    Technology Venture Development Community Partnerships · Strategic Initiatives · Faculty Outreach) 587-3836 Technology Commercialization Office (TCO) Intellectual Property Protection · Technology) 585-3844 INTRODUCTION www.TeCh venTUreS.UTAh.eDUwww.TeCh venTUreS.UTAh.eDU Technology

  11. Arctic Energy Technology Development Laboratory

    SciTech Connect (OSTI)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31T23:59:59.000Z

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  12. MICROHOLE TECHNOLOGY -PROGRESS ON BOREHOLE INSTRUMENTATION DEVELOPMENT

    E-Print Network [OSTI]

    will comprise a very low cost alternative to currently available technology for deep subsurface characterizationMICROHOLE TECHNOLOGY - PROGRESS ON BOREHOLE INSTRUMENTATION DEVELOPMENT Jim Albright j Microhole technology development is based on the premise that with advances in electronics and sensors

  13. Sandia Energy - Marine Hydrokinetics Technology: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdatesDevelopment Reference

  14. Technology Development and Field Trials of EGS Drilling Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS...

  15. FY-95 technology catalog. Technology development for buried waste remediation

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  16. Advanced Technology Development and Mitigation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Technology Development and Mitigation This sub-program includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals...

  17. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: Energy.gov (indexed) [DOE]

    materials and applied battery research into full battery systems for vehicles. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and...

  18. Sandia National Laboratories: MHK Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MHK Technology Development Biofouling Studies on Sandia's Marine Hydrokinetic (MHK) Coatings Initiated at PNNL's Sequim Bay On June 18, 2014, in Energy, News, News & Events,...

  19. Development of Pollution Prevention Technologies

    SciTech Connect (OSTI)

    Polle, Juergen [Brooklyn College; Sanchez-Delgado, Roberto [Brooklyn College

    2013-12-30T23:59:59.000Z

    This project investigated technologies that may reduce environmental pollution. This was a basic research/educational project addressing two major areas: A. In the algae research project, newly isolated strains of microalgae were investigated for feedstock production to address the production of renewable fuels. An existing collection of microalgae was screened for lipid composition to determine strains with superior composition of biofuel molecules. As many microalgae store triacylglycerides in so-called oil bodies, selected candidate strains identified from the first screen that accumulate oil bodies were selected for further biochemical analysis, because almost nothing was known about the biochemistry of these oil bodies. Understanding sequestration of triacylglycerides in intracellular storage compartments is essential to developing better strains for achieving high oil productivities by microalgae. At the onset of the project there was almost no information available on how to obtain detailed profiles of lipids from strains of microalgae. Our research developed analytical methods to determine the lipid profiles of novel microalgal strains. The project was embedded into other ongoing microalgal projects in the Polle laboratory. The project benefited the public, because students were trained in cell cultivation and in the operation of state-of-the-art analytical equipment. In addition, students at Brooklyn College were introduced into the concept of a systems biology approach to study algal biofuels production. B. A series of new nanostructured catalysts were synthesized, and characterized by a variety of physical and chemical methods. Our catalyst design leads to active nanostructures comprising small metal particles in intimate contact with strongly basic sites provided by the supports, which include poly(4-vinylpyridine), magnesium oxide, functionalized multi-walled carbon nanotubes, and graphene oxide. The new materials display a good potential as catalysts for reactions of relevance to the manufacture of cleaner fossil fuels and biodiesel, and to hydrogen storage in organic liquids. Specifically the catalysts are highly active in the hydrogenation of aromatic and heteroaromatic components of fossil fuels, the reduction of unsaturated C=C bonds in biodiesel, and the dehydrogenation of nitrogen heterocycles. In the course of our studies we identified a novel dual-site substrate-dependent hydrogenation mechanism that explains the activity and selectivity data obtained and the resistance of the new catalysts to poisoning. These results represent an important advance in basic catalytic science, regarding design and synthesis and reaction mechanisms. Additionally, this project allowed the enhancement of the laboratory facilities in the Chemistry Department of Brooklyn College for catalysis and energy research, and served as an excellent vehicle for the training of several young researchers at the undergraduate, graduate and postdoctoral level, to join the national scientific workforce.

  20. Innovative Technology Development Program. Final summary report

    SciTech Connect (OSTI)

    Beller, J.

    1995-08-01T23:59:59.000Z

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) Program. The plan is part of the DOE`s program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE`s clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process.

  1. Integrated pore blockage-cake filtration model for crossflow filtration

    SciTech Connect (OSTI)

    Daniel, Richard C.; Billing, Justin M.; Russell, Renee L.; Shimskey, Rick W.; Smith, Harry D.; Peterson, Reid A.

    2011-07-01T23:59:59.000Z

    Crossflow filtration is to be a key process in the treatment and disposal of approximately 60,000 metric tons of high-level radioactive waste stored at the Hanford Site in Richland, Washington. Pacific Northwest National Laboratory is assessing filter performance with waste simulant materials that mimic the chemical and physical properties of Hanford tank waste. Prior simulant studies indicated that waste filtration performance may be limited by pore and cake fouling. To limit the shutdown of waste treatment operations, the pre-treatment facility plans to recover filter flux losses from cake formation and filter fouling by frequently backpulsing the filter elements. The objective of the current paper is to develop a simple model of flux decline resulting from cake and pore fouling and potential flux recovery through backpulsing of the filters for Hanford waste filtration operations. To this end, a model capable of characterizing the decline in waste-simulant filter flux as a function of both irreversible pore blockage and reversible cake formation is proposed. This model is used to characterize the filtration behavior of Hanford waste simulants in both continuous and backpulsed operations. The model is then used to infer the optimal backpulse frequency under specific operating conditions.

  2. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-11-04T23:59:59.000Z

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  3. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-05-15T23:59:59.000Z

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  4. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30T23:59:59.000Z

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  5. Rover Technology Development and Mission Infusion Beyond MER

    E-Print Network [OSTI]

    Volpe, Richard

    1 Rover Technology Development and Mission Infusion Beyond MER Richard Volpe Jet Propulsion ROVER TECHNOLOGY USAGE ......3 4. ROVER TECHNOLOGY INFUSION............3 5. MTP ROVER TECHNOLOGY

  6. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6 Technology Validation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.6 Technology Validation Technology Validation technical...

  7. Understanding technology development processes theory & practice

    E-Print Network [OSTI]

    Oswald, W. Andrew (William Andrew)

    2013-01-01T23:59:59.000Z

    Technology development is hard for management to understand and hard for practitioners to explain, however it is an essential component of innovation. While there are standard and predictable processes for product development, ...

  8. Filtration Understanding: FY10 Testing Results and Filtration Model Update

    SciTech Connect (OSTI)

    Daniel, Richard C.; Billing, Justin M.; Burns, Carolyn A.; Peterson, Reid A.; Russell, Renee L.; Schonewill, Philip P.; Shimskey, Rick W.

    2011-04-04T23:59:59.000Z

    This document completes the requirements of Milestone 2-4, Final Report of FY10 Testing, discussed in the scope of work outlined in the EM31 task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to improve filtration and cleaning efficiencies, thereby increasing process throughput and reducing the Na demand (through acid neutralization). Developing the cleaning/backpulsing requirements will produce much more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby significantly increasing throughput by limiting cleaning cycles. The scope of this work is to develop the understanding of filter fouling to allow developing this cleaning/backpulsing strategy.

  9. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

  10. Technology Development | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - January 16,AdministrativeEnergyEnergyTechnology

  11. Pellet Fueling Technology Development S. K. Combs

    E-Print Network [OSTI]

    Pellet Fueling Technology Development S. K. Combs Fusion Energy Division, Oak Ridge National/10/00 Pellet Sizes Are Relevant for Fueling Applications on Any Present Experimental Fusion Device and Future pellet injector technology ÂĄ Hydrogen properties ÂĄ Ice/pellet formation techniques ÂĄ Acceleration

  12. Technological development and innovation : selected policy implications

    E-Print Network [OSTI]

    Benson, Christopher Lee

    2012-01-01T23:59:59.000Z

    Technological development is one of the main drivers in economic progress throughout the world and is strongly linked to the creation of new industries, jobs, and wealth. This thesis attempts to better understand how a ...

  13. Networking and Information Technology Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Research and Development (NITRD) Program, as required by the High-Performance Computing Act of 1991 (P.L. 102-194), the Next Generation Internet Research Act of...

  14. Geo energy research and development: technology transfer

    SciTech Connect (OSTI)

    Traeger, R.K.

    1982-03-01T23:59:59.000Z

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  15. Technology Development and Field Trials of EGS Drilling Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Project objective: Development of drilling systems...

  16. LANL announces Top 10 science & technology developments of 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 top 10 science & technology developments LANL announces Top 10 science & technology developments of 2010 Top 10 developments based on major programmatic milestones, strategic...

  17. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect (OSTI)

    David J. Hill

    2007-07-01T23:59:59.000Z

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  18. NREL: Technology Deployment - Project Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCostBuildingModels and ToolsOtherDevelopment

  19. Development of MP3 Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application toDevelopingandDevelopment of

  20. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Hugh W. Rimmer

    2004-05-12T23:59:59.000Z

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  1. annual technology development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development 14 RESEARCH IN FISHERY TECHNOLOGY Annual Report -East Boston Laboratory Environmental Sciences and Ecology Websites Summary: RESEARCH IN FISHERY TECHNOLOGY...

  2. Flexographic Newspaper Deinking: Treatment of Wash Filtrate Effluent

    E-Print Network [OSTI]

    Abubakr, Said

    Flexographic Newspaper Deinking: Treatment of Wash Filtrate Effluent by Membrane Technology B une meilleure qualité d'eau comparativementaux essaisdefloculation Jar-Test. INTRODUCTION Water of filtrate are produced by wash- JOURNAL OF PULP AND PAPER SCIENCE: VOL. 25 NO. 10OCTOBER 1999 ing which

  3. Development and Testing of a Moving Granular Bed Filter at the Taiwan Industrial Technology Research Institute

    SciTech Connect (OSTI)

    Peng, C.Y.; Hsiau, S-S.; Lee, H-T.; Smid, J.; Wu, T-C.

    2002-09-18T23:59:59.000Z

    The main purpose of developing high temperature gas cleaning technologies are to clean the gas under high temperature in order to be cost effective and to improve energy efficiency. Moving granular bed filters are technically and economically applicable for high temperature cleaning system because of low cost, possible to keep operation at a constant pressure drop, simple structure, easy in operation and maintenance, no high risk internals, and more tolerant to process thermal flow. Energy and Resource Laboratories, Taiwan Industrial Technology Research Institute (ERL/ITRI) has been developing a moving granular bed filter (MGBF) for BIGCC(Biomass Integrated Gasification Combined Cycle) high temperature gas cleanup. The filter granules move downwards directed by louver-like guide plates and the hot gases penetrate the MGBF horizontally. Filtration mechanisms include collection of the dust cake over the bed media surface and deep bed filtration. Stagnant zones of filter granules combining with the dusts always exist along the louver walls. Such stagnant zones often corrode the louver-like guide plates, increase the system pressure drop and decrease the total reaction efficiency that may endanger MGBF operation. Series louver and inert structure research that modify the granular flow pattern have been designed to eliminate the formation of these stagnant zones. By connecting to an auxiliary dust/bed media separation system, MGBF can be operated continuously at a stable pressure drop with a stable high efficiency. There are several MGBF R&D activities in progress: (1) a 3-dimensional cold flow system for testing the MGBF filtration efficiency; (2) a high temperature gas cleanup experimental system that has been designed and installed; (3) a 2-dimensional flow pattern experimental system for approving design concepts.

  4. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    Richard Tuthill

    2002-07-18T23:59:59.000Z

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

  5. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    SciTech Connect (OSTI)

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31T23:59:59.000Z

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  6. MICROHOLE TECHNOLOGY PROGRESS ON BOREHOLE INSTRUMENTATION DEVELOPMENT

    SciTech Connect (OSTI)

    J. ALBRIGHT

    2000-09-01T23:59:59.000Z

    Microhole technology development is based on the premise that with advances in electronics and sensors, large conventional-diameter wells are no longer necessary for obtaining subsurface information. Furthermore, microholes offer an environment for improved substance measurement. The combination of deep microholes having diameters of 1-3/8 in. at their terminal depth and 7/8-in. diameter logging tools will comprise a very low cost alternative to currently available technology for deep subsurface characterization and monitoring.

  7. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    SciTech Connect (OSTI)

    Brockbank, B.R.

    1995-03-01T23:59:59.000Z

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

  8. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 5.0 Systems Integration Fuel Cell Technologies Office Multi-Year Research, Development,...

  9. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The Fuel...

  10. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Energy Savers [EERE]

    Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations March 3, 2015 - 2:33pm...

  11. Energy Storage Technologies: State of Development for Stationary...

    Office of Environmental Management (EM)

    Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony...

  12. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration 2009 DOE Hydrogen Program and Vehicle...

  13. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post-Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration Presentation from the U.S. DOE Office...

  14. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and...

  15. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreword Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Foreword The Geothermal Technologies Program Multi-Year Research, Development and...

  16. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices The Geothermal Technologies Program Multi-Year Research, Development...

  17. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Energy Savers [EERE]

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water...

  18. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Cover Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Cover Cover of the Fuel Cell Technologies Office Multi-Year Research, Development,...

  20. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Seismic Technology Adapted to Analyzing and Developing...

  1. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-01-20T23:59:59.000Z

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  2. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher Hull

    2009-10-31T23:59:59.000Z

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  3. facilities to develop innovative technologies in partnership

    E-Print Network [OSTI]

    and characterizing the heat, air and moisture performance of highly energy efficient wall assemblies, as well chambers that can aid in developing improved heating, ventilation and air-conditioning (HVAC) systems Fall 2014 Jeffrey Munk, building technologies researcher, examines a heat pump water heater, which

  4. Survey and analysis of federally developed technology

    SciTech Connect (OSTI)

    Reed, J.E.; Conrad, J.L.

    1983-02-01T23:59:59.000Z

    The methodology and results of a test effort to determine whether there exist unexpected opportunities for the direct transfer of technologies from federal laboratories to industry are presented. Specifically, the latest results of six federal laboratories with potential application in the pulp and paper industry, particularly those results applicable to improving energy productivity, were evaluated, cataloged, and distributed to industry representatives to gauge their reaction. The principal methodological steps in this effort were the development of a taxonomy of the pulp and paper industry, identification of industry needs and laboratory capabilities, laboratory visits, review of technology findings with industry, and evaluation and compilation of industry responses.

  5. Continuation of Crosscutting Technology Development at Cast

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan

    2012-03-31T23:59:59.000Z

    This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

  6. Technology Development Transition Process: Decision-Making Guide and Checklist

    SciTech Connect (OSTI)

    Schaeffer, Michael L.; Ace, Mary H.; Martin, Steven W.

    2011-03-01T23:59:59.000Z

    This document supports right-sizing documentation needs with technology development and deployment projects.

  7. Developments in ITM oxygen technology for IGCC

    SciTech Connect (OSTI)

    Stein, V.E.E.; Richards, R.E.

    1999-07-01T23:59:59.000Z

    In partnership with the U.S. Department of Energy (DOE), an Air Products-led team (with Ceramatec, Eltron Research, McDermott Technology, NREC, Texaco, the Pennsylvania State University, and the University of Pennsylvania) is developing a new technology for air separation - Ion Transport Membrane Oxygen - based on the use of mixed-conducting ceramic membranes that have both electronic and oxygen ionic conductivity when operated at high temperature, typically 800 to 900 C. Under the influence of an oxygen partial-pressure driving force, the ITM Oxygen process achieves a high-purity, high-flux separation of oxygen from a compressed-air stream. By integrating the energy-rich, oxygen-depleted, non-permeate stream with a gas turbine system, the ITM Oxygen process becomes a co-producer of high-purity oxygen, power, and steam. Under a recent CRADA entitled ``Ion Transport Membranes (ITM) for Oxygen-Blown IGCC Systems and Indirect Coal Liquefaction,'' Air Products and DOE completed an initial quantification of the benefits of an ITM Oxygen-integrated IGCC facility. Compared to the cryogenic oxygen base case, the ITM Oxygen technology can potentially: reduce total installed costs by 7%; improve thermal efficiency for the integrated IGCC system by about 3%, leading to further decreases in carbon dioxide and sulfur emissions; and reduce the cost of generated electric power by more than 6%. The ITM Oxygen development project will proceed in three phases. Phase 1, which commenced under a DOE Cooperative Agreement in October 1998, is a 3-year effort focusing on construction of a technology development unit (TDU) for process concept validation tests at a capacity of 0.1 ton-per-day (TPD) oxygen. To accomplish this objective, the Air Products team will address relevant technical challenges in ITM Oxygen materials, engineering, membrane module development, and performance testing. During Phase 1 the team will also verify the economic prospects for integrating ITM Oxygen technology with IGCC and other advanced power generation systems. After at least one intermediate scaleup, Phase 2 and 3 activities will culminate with scaleup to a 25- to 50-TPD pre-commercial demonstration unit, fully integrated with a gas turbine. Meeting these challenges of developing cost-effective fabrication techniques for ITM Oxygen devices, and successfully integrating them with commercially available gas turbine engines, is key to bringing ITM Oxygen technology to the marketplace.

  8. Technology development for DOE SNF management

    SciTech Connect (OSTI)

    Hale, D.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Einziger, R.E. [Pacific Northwest National Lab., Richland, WA (United States); Murphy, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1995-12-31T23:59:59.000Z

    This paper describes the process used to identify technology development needs for the same management of spent nuclear fuel (SNF) in the US Department of Energy (DOE) inventory. Needs were assessed for each of the over 250 fuel types stores at DOE sites around the country for each stage of SNF management--existing storage, transportation, interim storage, and disposal. The needs were then placed into functional groupings to facilitate integration and collaboration among the sites.

  9. An overview: Challenges in wind technology development

    SciTech Connect (OSTI)

    Thresher, R W; Hock, S M

    1991-12-01T23:59:59.000Z

    Developing innovative wind turbine components and advanced turbine configurations is a primary focus for wind technology researchers. In their rush to bring these new components and systems to the marketplace, designers and developers should consider the lessons learned in the wind farms over the past 10 years. Experience has shown that a disciplined design approach is required that realistically accounts for the turbulence-induced loads, unsteady stall loading, and fatigue effects. This paper reviews past experiences and compares current modelling capabilities with experimental measurements in order to identify some of the knowledge gaps that challenge designers of advanced components and systems. 7 refs., 11 figs.

  10. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management The Geothermal Technologies Program Multi-Year...

  11. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research,...

  12. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from...

  13. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges The Geothermal Technologies Program Multi-Year Research,...

  14. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year...

  15. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Table of Contents Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents The Geothermal Technologies Program Multi-Year...

  16. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research,...

  17. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary The Geothermal Technologies Program Multi-Year...

  18. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan The Geothermal Technologies Program Multi-Year Research,...

  19. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research,...

  20. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    E: Acronyms Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix E: Acronyms Appendix E: Acronyms section of the Fuel Cell Technologies...

  1. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Executive Summary Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Executive Summary Executive Summary section of the Fuel Cell Technologies...

  2. Medically relevant ElectroNeedle technology development.

    SciTech Connect (OSTI)

    Schmidt, Carrie Frances; Thomas, Michael Loren; McClain, Jaime L.; Harper, Jason C.; Achyuthan, Komandoor E.; Ten Eyck, Gregory A.

    2008-11-01T23:59:59.000Z

    ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.

  3. Development of Reconstitution Technology for Surveillance Specimens

    SciTech Connect (OSTI)

    Yasushi Atago; Shunichi Hatano; Eiichiro Otsuka [Japan Power Engineering and Inspection Corporation, KDX Shibadaimon Bldg. 3FL., 10-12, 2-chome Shiba-daimon, Minato-ku, Tokyo, 105-0012 (Japan)

    2002-07-01T23:59:59.000Z

    The Japan Power Engineering and Inspection Corporation (JAPEIC) has been carrying out the project titled 'Nuclear Power Plant Integrated Management Technology (PLIM)' consigned by Japanese Ministry of Economy, Trade and Industry (METI) since 1996FY as a 10-years project. As one of the project themes, development of reconstitution technology for reactor pressure vessel (RPV/RV) surveillance specimens, which are installed in RPVs to monitor the neutron irradiation embrittlement on RPV/RV materials, is now on being carried out to deal with the long-term operation of nuclear power plants. The target of this theme is to establish the technical standard for applicability of reconstituted surveillance specimens including the reconstitution of the Charpy specimens and Compact Tension (CT) specimens. With the Charpy specimen reconstitution, application of 10 mm length inserts is used, which enables the conversion of tests from the LT-direction to the TL-direction. This paper presents the basic data from Charpy and CT specimens of RPV materials using the surveillance specimens obtained for un-irradiated materials including the following. 1) Reconstitution Technology of Charpy Specimens. a) The interaction between plastic zone and Heat Affected Zone (HAZ). b) The effects of the possible deviations from the standard specimens for the reconstituted specimens. 2) Reconstitution Technology of CT specimens. a) The correlation between fracture toughness and plastic zone width. Because the project is now in progress, this paper describes the outline of the results obtained as of the end of 2000 FY. (authors)

  4. Small Hydropower Research and Development Technology Project

    SciTech Connect (OSTI)

    Blackmore, Mo [Near Space Systems, Inc.] [Near Space Systems, Inc.

    2013-12-06T23:59:59.000Z

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  5. Development of Pellet Technologies for Plasma Fueling

    SciTech Connect (OSTI)

    Kapralov, V.G. [State Polytechnical University (Russian Federation); Kuteev, B.V. [NFI RRC 'Kurchatov institute' (Russian Federation); Baranov, G.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation)] (and others)

    2005-01-15T23:59:59.000Z

    This contribution presents recent results of pellet technologies development for plasma fuelling in magnetic confinement machines with open or closed magnetic configuration. The current status of ITV7 pellet injector for GOL3 multimirror linear machine, PGS2.2 pellet guide system of ITV4 in-situ pellet injector for TUMAN- 3M tokamak and ITV5 centrifuge pellet injector for Globus-M spherical tokamak is reported. New results on modeling of tangential pellet injection into TUMAN-3M tokamak are discussed as well.

  6. Wind Energy Workforce Development: Engineering, Science, & Technology

    SciTech Connect (OSTI)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29T23:59:59.000Z

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  7. CROSSFLOW FILTRATION: EM-31, WP-2.3.6

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-02-01T23:59:59.000Z

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing crossflow equipment. The Savannah River National Laboratory (SRNL) performed some of those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate solutions. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Integrated Salt Disposition Process and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the crossflow filter feed flow rate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to evaluate methods to improve filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today. Experiments that use non-radioactive simulants for actual waste always carry the inherent risk of not eliciting prototypic results; however, they will assist in focusing the scope needed to minimize radioactive testing and thus maximize safety. To that end this investigation has determined: (1) Waste simulant SB6 was found to be more challenging to filtration than a SRS Tank 8F simulant; (2) Higher solids concentration presents a greater challenge to filtration; (3) Filter cake is something that should be properly developed in initial filter operation; (4) Backpulsing is not necessary to maintain a good filter flux with salt wastes; (5) Scouring a filter without cleaning will lead to improved filter performance; (6) The presence of a filter cake can improve the solids separation by an order of magnitude as determined by turbidity; (7) A well developed cake with periodic scouring may allow a good filter flux to be maintained for long periods of time; and (8) Filtrate flux decline is reversible when the concentration of the filtering slurry drops and the filter is scoured.

  8. Developing optofluidic technology through the fusion of microfluidics and optics

    E-Print Network [OSTI]

    Yang, Changhuei

    Developing optofluidic technology through the fusion of microfluidics and optics Demetri Psaltis1 optical systems, whereas the implementation of optics through the microfluidic toolkit gives highly to implement optofluidic devices with recently developed microfluidic technologies that allow accurate control

  9. Energy technology progress for sustainable development

    SciTech Connect (OSTI)

    Arvizu, D.E.; Drennen, T.E.

    1997-03-01T23:59:59.000Z

    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

  10. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Hugh W. Rimmer

    2003-11-15T23:59:59.000Z

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky, three at University of Utah, three at Montana Tech, three at New Mexico Tech, and one at the University of Nevada, Reno) by May 17, 2003. These projects are listed by category, along with brief abstracts of their aims and objectives.

  11. Technology development needs summary, FY 1995

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included.

  12. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov [DOE]

    Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

  13. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications...

  14. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  15. Development of conformal respirator monitoring technology

    SciTech Connect (OSTI)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J. [and others

    1997-04-01T23:59:59.000Z

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a {open_quotes}waffle-iron{close_quotes} effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors.

  16. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14T23:59:59.000Z

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Multi-Year Research, Development, and Demonstration Plan - Appendix C: Hydrogen Quality Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan -...

  18. Vehicle Technologies Office Merit Review 2014: Development of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Computer-Aided Design Tools for Automotive Batteries Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive...

  19. Vehicle Technologies Office Merit Review 2015: Development of...

    Energy Savers [EERE]

    Merit Review 2015: Development of Industrially Viable Battery Electrode Coatings Vehicle Technologies Office Merit Review 2015: Development of Industrially Viable Battery...

  20. Vehicle Technologies Office Merit Review 2015: Development of...

    Energy Savers [EERE]

    5: Development of Novel Electrolytes and Catalysts for Li-Air Batteries Vehicle Technologies Office Merit Review 2015: Development of Novel Electrolytes and Catalysts for Li-Air...

  1. Vehicle Technologies Office Merit Review 2014: Development of...

    Broader source: Energy.gov (indexed) [DOE]

    Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles Vehicle Technologies Office Merit Review 2014: Development of Nanofluids for Cooling Power...

  2. Development Of Active Seismic Vector-Wavefield Imaging Technology...

    Open Energy Info (EERE)

    LibraryAdd to library Report: Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Abstract This report describes the development and...

  3. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    SciTech Connect (OSTI)

    Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

    2010-04-30T23:59:59.000Z

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

  4. Understanding energy technology developments from an innovation system perspective

    E-Print Network [OSTI]

    Understanding energy technology developments from an innovation system perspective Mads Borup1. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells

  5. Some implications of in situ uranium mining technology development

    SciTech Connect (OSTI)

    Cowan, C.E.; Parkhurst, M.A.; Cole, R.J.; Keller, D.; Mellinger, P.J.; Wallace, R.W.

    1980-09-01T23:59:59.000Z

    A technology assessment was initiated in March 1979 of the in-situ uranium mining technology. This report explores the impediments to development and deployment of this technology and evaluates the environmental impacts of a generic in-situ facility. The report is divided into the following sections: introduction, technology description, physical environment, institutional and socioeconomic environment, impact assessment, impediments, and conclusions. (DLC)

  6. Simulation of filtration for suspension transport in porous media

    E-Print Network [OSTI]

    Kim, Yun Sung, 1974-

    2005-01-01T23:59:59.000Z

    This thesis describes the development and application of a novel method for analyzing the filtration of particles transported through a granular porous medium. The proposed analysis considers the deposition of particles ...

  7. Technology Development and Commercialization at Argonne | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercialization at Argonne Share Topic Operations Technology transfer Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering...

  8. Evaluation of the 183-D Water Filtration Facility for Bat Roosts and Development of a Mitigation Strategy, 100-D Area, Hanford Site

    SciTech Connect (OSTI)

    Lindsey, C. T.; Gano, K. A.; Lucas, J. G.

    2011-03-07T23:59:59.000Z

    The 183-D Water Filtration Facility is located in the 100-D Area of the Hanford Site, north of Richland, Washington. It was used to provide filtered water for cooling the 105-D Reactor and supplying fire-protection and drinking water for all facilities in the 100-D Area. The facility has been inactive since the 1980s and is now scheduled for demolition. Therefore, an evaluation was conducted to determine if any part of the facility was being used as roosting habitat by bats.

  9. C-018H LERF filtration test plan. Revision 1

    SciTech Connect (OSTI)

    Moberg, T.P.; King, C.V.

    1994-08-26T23:59:59.000Z

    The following outlines the plan to test the polymeric backwash filtration system at the LERF. These tests will determine if the ETF filter design is adequate. If the tests show that the design is adequate, the task will be complete. If the tests show that the technology is inadequate, it may be necessary to perform further tests to qualify other candidate filtration technologies (e.g., polymeric tubular ultrafiltration, centrifugal ultrafiltration). The criteria to determine the success or failure of the backwash filter will be based on the system`s ability to remove the bacteria and inorganic contaminants from the evaporator process condensate. The tests are designed to qualify the design basis of the filtration technology that will be used in the ETF.

  10. Managing the integration of technology into the product development pipeline

    E-Print Network [OSTI]

    Barretto, Eduardo F., 1971-

    2005-01-01T23:59:59.000Z

    Managing the integration of technology is a complex task in any industry, but especially so in the highly competitive automotive industry. Automakers seek to develop plans to integrate technology into their products such ...

  11. Investigating successful implementation of technologies in Developing nations

    E-Print Network [OSTI]

    Hsieh, Edward F. (Edward Fang)

    2005-01-01T23:59:59.000Z

    A study was performed to determine possible factors that contribute to successful implementation of new technologies in developing nations. Engineers and other inventors have devoted great effort to Appropriate Technology ...

  12. Ontology Technology for the Development and Deployment of Learning Technology Systems -a Survey

    E-Print Network [OSTI]

    Lee, Hyowon

    Ontology Technology for the Development and Deployment of Learning Technology Systems - a Survey is an initiative to bring meaning to the Web. The Semantic Web is based on ontology technology ­ a knowledge five scenarios demonstrating different forms of applications of ontology technologies

  13. Development of Technology Readiness Level (TRL) Metrics and Risk Measures

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Anderson, K. K.; Sivaramakrishnan, Chandrika; Lansing, Carina

    2012-10-01T23:59:59.000Z

    This is an internal project milestone report to document the CCSI Element 7 team's progress on developing Technology Readiness Level (TRL) metrics and risk measures. In this report, we provide a brief overview of the current technology readiness assessment research, document the development of technology readiness levels (TRLs) specific to carbon capture technologies, describe the risk measures and uncertainty quantification approaches used in our research, and conclude by discussing the next steps that the CCSI Task 7 team aims to accomplish.

  14. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01T23:59:59.000Z

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  15. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15T23:59:59.000Z

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  16. Pennsylvania Company Develops Solar Cell Printing Technology

    Broader source: Energy.gov [DOE]

    The technology uses Plextronics’ conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

  17. 5th International Seminar in Sustainable Technology Development

    E-Print Network [OSTI]

    Politčcnica de Catalunya, Universitat

    5th International Seminar in Sustainable Technology Development UPC, Vilanova i la Geltrú, 04 Master in Sustainable Development, and aims to connect experts, future researchers and policy · To increase the understanding of a sustainable development in the long term and the role of technology therein

  18. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    1 Hydrogen Production Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production Hydrogen Production technical plan...

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    2 Hydrogen Delivery Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery Hydrogen Delivery technical plan section...

  20. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3 Hydrogen Storage Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage Hydrogen Storage technical plan section of...

  1. Development of Enabling Technologies for High Efficiency, Low...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Combustion in Improving Thermal Efficiency Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines...

  2. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  3. Vehicle Technologies Office Merit Review 2014: Development of...

    Broader source: Energy.gov (indexed) [DOE]

    Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  4. RESEARCH AND DEVELOPMENT ROADMAP FOR WATER HEATING TECHNOLOGIES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Navigant Consulting, Inc. RESEARCH AND DEVELOPMENT ROADMAP FOR WATER HEATING TECHNOLOGIES Prepared for: Oak Ridge National Laboratory Subcontract Number 4000093134...

  5. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions. deer09yang2.pdf More Documents & Publications...

  6. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    A: Budgetary Information Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix A: Budgetary Information Appendix A: Budgetary...

  7. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Appendix D: Project Evaluation Form Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix D: Project Evaluation Form Appendix D: Project...

  8. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    9 Market Transformation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation Market Transformation technical...

  9. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Preface and Document Revision History Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Preface and Document Revision History Preface and...

  10. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6.0 Program Management Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 6.0 Program Management Program Management section of the...

  11. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.8 Education and Outreach Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.8 Education and Outreach Education and Outreach...

  12. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Broader source: Energy.gov (indexed) [DOE]

    Office webinar "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations" held on March...

  13. Safeguards and Security Technology Development Directory. FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

  14. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Program 2010 Peer Review Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Principal Investigator: Bob A. Hardage...

  15. Health Benefits of Particle Filtration

    SciTech Connect (OSTI)

    Fisk, William J.

    2013-10-01T23:59:59.000Z

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percent age improvement in health outcomes is typically modest, for example, 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  16. Health Benefits of Particle Filtration

    SciTech Connect (OSTI)

    Fisk, William J.

    2013-10-01T23:59:59.000Z

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, e.g., 7percent to 25percent. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.

  17. New Technology, Human Capital and Growth for Developing Countries.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    New Technology, Human Capital and Growth for Developing Countries. Cuong Le Van, Manh-Hung Nguyen country with three sectors in economy: con- sumption goods, new technology, and education. Productivity of the con- sumption goods sector depends on new technology and skilled labor used for production of the new

  18. The development of Clean Coal Technology in China

    SciTech Connect (OSTI)

    Jie, Z.; Chu, Z.X. [North China Electrical Power Design Inst., Beijing (China)

    1996-10-01T23:59:59.000Z

    The resource conditions and energy structures of China determine that coal will continue to play a key role in the development of the electrical power industry in the coming years, thus it is necessary to develop clean coal technology in order to control the high consumption rate of energy and to control serious pollution. Clean coal technology focuses on improving the utilization rate of energy and on the control and reduction of emissions. Considering the condition of China, PC-FGD, supercritical units, CFBC, IGCC and PFBC-CC can be applied and developed under different conditions and in different periods with these technologies developing simultaneously and helping each other forward to improve clean coal technologies. China has broad development prospects and a large market for clean coal technologies. The authors hope to strengthen international exchange and cooperation in this field for the development of CCTs markets in China.

  19. Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

  20. Duct injection technology prototype development: Evaluation of engineering data

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The objective of the Duct Injection Technology Prototype Development Project is to develop a sound design basis for applying duct injection technology as a post-combustion SO{sub 2}emissions control method to existing coal-fired power plants. The necessary engineering design and scale-up criteria will be developed for the commercialization of duct injection technology for the control of SO{sub 2} emissions from coal-fired boilers in the utility industry. The primary focus of the analyses summarized in this Topical Report is the review of the known technical and economic information associated with duct injection technology. (VC)

  1. TED: Technology and Economic Development International Conference on Innovation, Technology and Knowledge Economics

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    TED: Technology and Economic Development 3rd International Conference on Innovation, Technology and Knowledge Economics Ankara, 24th -26th June An Empirical Study into the Determinants of Innovativeness for Industrial Management (TUSSIDE), 41401 Gebze, Kocaeli, Turkey 3 Gebze Institute of Technology, Department

  2. Recent Developments in BMW's Diesel Technology

    SciTech Connect (OSTI)

    Steinparzer, F

    2003-08-24T23:59:59.000Z

    The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.

  3. Technology and Engineering Development Facility | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8,,TechnologyTechnology &

  4. New Technologies in Airframe and Engine Development

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    5, 2011 #12;Current Aviation Era Highest level of technological innovation and change since advent Restrictions Emission of CO2 ­ directly proportional to fuel consumption. Carbon "taxes". Emission of NOx costs and CO2 and NOx emissions. Boeing estimate for 787 5% lower fuel consumption from composites

  5. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    SciTech Connect (OSTI)

    Hsieh, S.T. [Tulane Univ., New Orleans, LA (United States). US/China Inst.; Atwood, T. [Dept. of Energy, Washington, DC (United States); Qiu Daxiong [Tsinghua Univ., Beijing (China); Zhang Guocheng [State Science and Technology Commission, Beijing (China)

    1997-12-31T23:59:59.000Z

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

  6. Characterization and modification of particulate properties to enhance filtration performance

    SciTech Connect (OSTI)

    Snyder, T.R.; Vann Bush, P.; Robinson, M.S.

    1990-06-01T23:59:59.000Z

    The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

  7. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2011-10-01T23:59:59.000Z

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  8. Geothermal Drilling and Completion Technology Development Program Annual Progress Report

    SciTech Connect (OSTI)

    Varnado, S. G.

    1981-03-01T23:59:59.000Z

    The high cost of drilling and completing geothermal wells is an impediment to the timely development of geothermal resources in the US. The Division of Geothermal Energy (DGE) of the Department of Energy (DOE) has initiated a development program aimed at reducing well costs through improvements in the technology used to drill and complete geothermal wells. Sandia National Laboratories (SNL) has been selected to manage this program for DOE/DGE. Based on analyses of existing well costs, cost reduction goals have been set for the program. These are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987. To meet these goals, technology development in a wide range of areas is required. The near-term goal will be approached by improvements in conventional, rotary drilling technology. The long-term goal will require the development of an advanced drilling and completion system. Currently, the program is emphasizing activities directed at the near-term cost reduction goal, but increased emphasis on advanced system development is anticipated as time progresses. The program is structured into six sub-elements: Drilling Hardware, Drilling Fluids, Completion Technology, Lost Circulation Control Methods, Advanced Drilling Systems, and Supporting Technology. Technology development in each of these areas is conducted primarily through contracts with private industries and universities. Some projects are conducted internally by Sandia. This report describes the program, status, and results of ongoing R and D within the program for the 1980 fiscal year.

  9. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sector - Directed toward 1 - 10 MW systems including combined modes, e.g. solid oxide fuel cell plus turbine. Materials development and characterization Investigating...

  10. Funding Opportunity: Technology Advancement for Rapid Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    data to prepare their application. GTP's goal is to address the high exploration and drilling risks and costs for geothermal development and key technical barriers for enhanced...

  11. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. deer08gundlach.pdf More...

  12. Geothermal Electricity Technology Evaluation Model (GETEM) Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003NotEnergyProgramElectric Plant

  13. SSL Technology Development Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department of iiBiodiesel |NYDepartmentOctober 10,Technology

  14. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20T23:59:59.000Z

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  15. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  16. Development of vehicle magnetic air conditioner (VMAC) technology. Final report

    SciTech Connect (OSTI)

    Gschneidner, Karl A., Jr.; Pecharsky, V.K.; Jiles, David; Zimm, Carl B.

    2001-08-28T23:59:59.000Z

    The objective of Phase I was to explore the feasibility of the development of a new solid state refrigeration technology - magnetic refrigeration - in order to reduce power consumption of a vehicle air conditioner by 30%. The feasibility study was performed at Iowa State University (ISU) together with Astronautics Corporation of America Technology Center (ACATC), Madison, WI, through a subcontract with ISU.

  17. Magnesium Research and Technology Development: Project 48976

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advise DOE on criticalkey funding areas for Mg 3 z z Approach Approach Approach Increase automotive industry awareness in the use of Mg Develop and maintain the Magnesium R&D...

  18. Microscale combustion: Technology development and fundamental research Yiguang Ju a

    E-Print Network [OSTI]

    Ju, Yiguang

    of micro-thrusters, micro internal combustion engines, and micro chemical reactors summarized. ThirdlyReview Microscale combustion: Technology development and fundamental research Yiguang Ju a , Kaoru Maruta b,* a Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ

  19. July 15, 2014 SEAB Task Force Meeting on Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Technology Development (Download) 11:00AM-12:00PM Terry Michalske - Director, Savannah River National Lab (SRNL) Public Comment Period 12:00-12:15PM Adjournment 12:15PM Addthis...

  20. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.7 Hydrogen Safety, Codes and Standards Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards...

  1. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems David W. Raymond, PI Steven D. Knudsen, Co-PI Sandia National Laboratories ARRA Funded R&D April 22-25, 2013 This...

  2. agt technology development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Narayanan-Water and Governance, Development Theory N. Shah-Food, Agriculture and Agro-Industry Milind Sohoni-Water, Rural systems Sohoni, Milind 368 "A Catalyst for Technology Led...

  3. Portfolio evaluation of advanced coal technology : research, development, and demonstration

    E-Print Network [OSTI]

    Naga-Jones, Ayaka

    2005-01-01T23:59:59.000Z

    This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

  4. Developing strategies to capture value from emerging technologies

    E-Print Network [OSTI]

    Herren, Steven M. (Steven Matthew), 1971-

    2004-01-01T23:59:59.000Z

    The development of fundamentally new technology requires companies to carefully consider how they intend to profit from the commercialization of their ideas. Because companies pursuing disruptive innovations require new ...

  5. Developing genome-enabled sustainable lignocellulosic biofuels technologies

    E-Print Network [OSTI]

    Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

  6. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    B: InputOutput Matrix Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix B: InputOutput Matrix Appendix B: InputOutput Matrix...

  7. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    4.0 Systems Analysis Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis Systems Analysis section of the Fuel Cell...

  8. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    5 Manufacturing R&D Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.5 Manufacturing R&D Manufacturing R&D technical plan section...

  9. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    2.0 Program Benefits Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 2.0 Program Benefits Program Benefits section of the Fuel Cell...

  10. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Section 3.0 Technical Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.0 Technical Plan Technical Plan section of the Fuel...

  11. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.4 Fuel Cells Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells Fuel Cells technical plan section of the Fuel Cell...

  12. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Cost reduction is a key area of...

  13. Emulsions for interfacial filtration.

    SciTech Connect (OSTI)

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01T23:59:59.000Z

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  14. Legal and social concerns to the development of bioremediation technologies

    SciTech Connect (OSTI)

    Bilyard, G.R.; McCabe, G.H.; White, K.A.; Gajewski, S.W.; Hendrickson, P.L.; Jaksch, J.A.; Kirwan-Taylor, H.A.; McKinney, M.D.

    1996-09-01T23:59:59.000Z

    The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment.

  15. Development of painting technology using plasma surface technology for automobile parts

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    Development of painting technology using plasma surface technology for automobile parts C.-K. Jung of automobile parts is the surface treatment of polyolefin (Polypropylene (RX-2000)) bumper substrates. In order plasma treatment; Adhesion and wettability test 1. Introduction In the automobile industry a complex

  16. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  17. Technological development under global warning : roadmap of the coal generation technology

    E-Print Network [OSTI]

    Furuyama, Yasushi, 1963-

    2004-01-01T23:59:59.000Z

    This thesis explores the measures for the Japanese electric power utilities to meet the Kyoto Target, and the technological development of the coal thermal power generation to meet the further abatement of the carbon dioxide ...

  18. Cask systems development program seal technology

    SciTech Connect (OSTI)

    Madsen, M.M.; Edwards, K.R.; Humphreys, D.L.

    1991-01-01T23:59:59.000Z

    General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (10 CFR 71). Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. Experiments were performed to characterize the performance of several seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fuorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Results show that the seal materials tested, with the exception of silicone S613-60, are not leak tight at manufacturer low-temperature ratings. This paper documents the initial series of experiments developed to characterize the performance of several static seals under conditions representative of RAM transport container environments. Helium leak rates of face seals were measured at low and ambient temperatures to compare seal materials. As scaling laws have not been developed for seals, the leakage rates measured in this program are intended to be used in a qualitative rather than quantitative manner. 5 refs., 7 figs., 2 tabs.

  19. DOE SNF technology development necessary for final disposal

    SciTech Connect (OSTI)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-02-01T23:59:59.000Z

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes.

  20. asphalt technology development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    asphalt technology development First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Development and...

  1. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01T23:59:59.000Z

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  2. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  3. Progress in The Lost Circulation Technology Development Program

    SciTech Connect (OSTI)

    Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Wright, E.K.

    1991-01-01T23:59:59.000Z

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50{percent} through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1990--March, 1991. 4 refs., 15 figs., 1 tab.

  4. Geopressured geothermal drilling and completions technology development needs

    SciTech Connect (OSTI)

    Maish, A.B.

    1981-03-01T23:59:59.000Z

    Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

  5. Compact Gamma-ray Source Technology Development Study

    SciTech Connect (OSTI)

    Anderson, S G; Gibson, D J; Rusnak, B

    2009-09-25T23:59:59.000Z

    This study focuses on the applicability of current accelerator and laser technologies to the construction of compact, narrow bandwidth, gamma-ray sources for DHS missions in illicit materials detection. It also identifies research and development areas in which advancement will directly benefit these light sources. In particular, we review the physics of Compton scattering based light sources and emphasize the source properties most important to Nuclear Resonance Fluorescence (NRF) applications of interest. The influences of laser and electron beam properties on the light source are examined in order to evaluate the utility of different technologies for this application. Applicable bulk and fiber-based laser systems and laser recirculation technologies are discussed and Radio Frequency (RF) Linear Accelerator (linac) technologies are examined to determine the optimal frequency and pulse formats achievable.

  6. MHD magnet technology development program summary, September 1982

    SciTech Connect (OSTI)

    Not Available

    1983-11-01T23:59:59.000Z

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

  7. advanced technology development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced technology development First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Portfolio evaluation of...

  8. activities developing technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities developing technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Active Pixel Xray...

  9. accelerator technology developments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accelerator technology developments First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A EUROPEAN ADVANCED...

  10. Flight Projects 2 Technology and Space Program Development 13

    E-Print Network [OSTI]

    Waliser, Duane E.

    Ellerest when the picture was taken; the western Pacific Ocean, western Australia, and eastern Asia system, the practical utilization of space, and in the development of new energy technologies are steadily approaching the goal of providing solar cell arrays at a cost com- petitive with other energy

  11. Load Management - An Industrial Perspective on This Developing Technology 

    E-Print Network [OSTI]

    Delgado, R. M.

    1983-01-01T23:59:59.000Z

    Load Management is a rapidly developing technology which can have a significant impact on all electric users, especially large users. It is mandated by P.U.R.P.A. (Public Utility Regulatory Policy Act) and is akin to energy conservation but its...

  12. "Developing `smart' algorithms for medical and wireless technologies to

    E-Print Network [OSTI]

    Acton, Scott

    , including medical devices for the treatment of diabetes, resource management in wireless systems, and network traffic engineering. In conjunction with the UVa Center for Diabetes Technology, our group has contributed to the development of algorithms for closed-loop and advisory mode control of type 1 diabetes, i

  13. ORIGINAL ARTICLES Network for Development of Electroporation-Based Technologies

    E-Print Network [OSTI]

    Ljubljana, University of

    of medicine, biotechnology and environmental preservation. Keywords Electroporation Á Cancer treatment ÁORIGINAL ARTICLES Network for Development of Electroporation-Based Technologies and Treatments August 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract

  14. A Technology Overview of the PowerChip Development Program

    E-Print Network [OSTI]

    Araghchini, Mohammad

    The PowerChip research program is developing technologies to radically improve the size, integration, and performance of power electronics operating at up to grid-scale voltages (e.g., up to 200V) and low-to-moderate power ...

  15. The Office of Technology Development technical reports. A bibliography

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The US Department of Energy`s Office of Technology Development (OTD) within the Office of Environmental Management was established in 1989 to conduct an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT&E) for innovative environmental cleanup solutions that are safer and more time- and cost-effective than those currently available. In many cases, the development of new technology presents the best hope for ensuring a substantive reduction in risk to the environment and improved worker/public safety within realistic financial constraints. Five major remediation and waste management problem areas have been identified to date within the DOE weapons complex; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation; Landfill Stabilization; and Facility Transitioning, Decommissioning, and Final Disposition. New technologies to address these problem areas are demonstrated to the point that they are proven to work and that they can be transferred to the private sector end-users. This bibliography contains information on scientific and technical reports sponsored by the Office of Environmental Management from its inception in 1989 through June 1994. Future issues contain reports from Technology Development activities and will be published biannually.

  16. Law, Technology and Development Opportunities and Challenges in

    E-Print Network [OSTI]

    Strathclyde, University of

    Strathclyde Law School "The Politics of Biotechnology Regulation ­ Perceptions of morality, trade, and EU-China and Politics in RiskRegulation of GMOs: A Comparison between the EU and China" 2:45 ­ 3:15 Coffee Break 3Law, Technology and Development Opportunities and Challenges in EU-China Relations 11 November 2014

  17. AutoMotive technology College of Rural and Community Development

    E-Print Network [OSTI]

    Hartman, Chris

    to become an entry-level automotive tech- nician. The automotive service industry is constantly changingAutoMotive technology College of Rural and Community Development Community and Technical College 907-455-2932 www.ctc.uaf.edu/programs/Automotive/ certificate Minimum Requirements for Certificate: 34

  18. Progress on the Development of Reversible SOFC Stack Technology

    E-Print Network [OSTI]

    SOFC Power Module Stack Tower VPS participates in the U.S. Department of Energy's SECA program sheet interconnect · Cross-flow gas delivery · Stack can be integrated into stack towers for various Areas · US DOE Fossil Energy SECA Development and supply of SOFC technology for operation on gasified

  19. Sustainable Development: The Role of Information and Communication Technology

    E-Print Network [OSTI]

    and environmental impacts and adaptation to unavoidable changes, for instance due to climate change. This paperSustainable Development: The Role of Information and Communication Technology Alexander Schatten1 1-11/188/1, 1040 Vienna, Austria E-mail: schatten@ifs.tuwien.ac.at Abstract: Information and Communication

  20. Transformational Technologies to Expedite Space Access and Development

    SciTech Connect (OSTI)

    Rather, John D. G. [Rather Creative Innovations Group, Inc., 102 Windsong Lane, Oak Ridge, TN (United States)

    2010-01-28T23:59:59.000Z

    Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

  1. The MIT Libraries seek an innovative and enterprising leader to fill its senior technology position. The Associate Director for Information Technology and Digital Development leads the Libraries' technology

    E-Print Network [OSTI]

    technology position. The Associate Director for Information Technology and Digital Development leads the Libraries' technology strategy and manages IT development in furtherance of the Libraries' initiatives and priorities. S/he has broad responsibility for information technology across the Libraries, including

  2. Particulate Emissions Control by Advanced Filtration Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Filtration Systems for GDI Engines (ANLCorningHyundai CRADA) June 19, 2014 DOE Annual Merit Review & Peer Evaluation Meeting PI: Kyeong Lee Co-investigators: Seung Choi,...

  3. Particulate Emissions Control by Advanced Filtration Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Filtration Systems for GDI Engines (ANLCorningHyundai CRADA) May 15, 2013 DOE Annual Merit Review & Peer Evaluation Meeting PI: Kyeong Lee Postdocs: Seung Choi, Heeje...

  4. Geothermal technology development program. Annual progress report, October 1981-September 1982

    SciTech Connect (OSTI)

    Kelsey, J.R. (ed.)

    1983-08-01T23:59:59.000Z

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

  5. Geothermal drilling and completion technology development program plan

    SciTech Connect (OSTI)

    Varnado, S.G.; Kelsey, J.R.; Wesenberg, D.L.

    1981-02-01T23:59:59.000Z

    A long-range plan for the development of new technology that will reduce the cost of drilling and completing geothermal wells is presented. The role of this program in relation to the total Federal Geothermal Energy Program is defined and specific program goals are identified. Then, the current status of the program, initiated in FY 1978, is presented, and research and development activities planned through 1987 are described. Budget and milestone estimates for each task are provided. The management plan for implementing the program is also discussed. The goals of this program are to develop the technology required to reduce the cost of drilling and completing geothermal wells by 25% in the near term and by 50% in the long term. Efforts under this program to date have resulted in new roller bit designs that will reduce well costs by 2% to 4%, new drag bits that have demonstrated marked increases in penetration rate, and the field verification of the effectiveness of inert drilling fluids in reducing drill pipe corrosion. Activities planned for the next six years for achieving the program goals are described. Technical activities include work in the areas of drilling hardware, drilling fluids, lost circulation control methods, completion technology, advanced drilling systems, and supporting technology.

  6. Development of Thin Section Zinc Die Casting Technology

    SciTech Connect (OSTI)

    Goodwin, Frank [International Lead Zinc Research Org., Inc.] [International Lead Zinc Research Org., Inc.

    2013-10-31T23:59:59.000Z

    A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted for 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.

  7. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    On Program Participants - Collaborations Cummins Inc. - Cummins Fuel Systems - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Electronics - Cummins Filtration...

  8. Cummins SuperTruck Program - Technology Demonstration of Highly...

    Broader source: Energy.gov (indexed) [DOE]

    On Program Participants - Collaborations Cummins Inc. - Cummins Fuel Systems - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Electronics - Cummins Filtration...

  9. Frameworks for Sustainability of GIS and Earth Observation Technologies in Developing Countries

    E-Print Network [OSTI]

    Camara, Gilberto

    . To address the issues of achieving sustainable frameworks for geoinformation technological development

  10. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  11. Hierarchical analysis of filtration. Progress report

    SciTech Connect (OSTI)

    Quintard, M. [Ecole Nationale Superieure des Arts et Metiers, 33 - Talence (France). Lab. Energetique et Phenomenes de Transfert; Whitaker, S. [California Univ., Davis, CA (United States). Dept. of Chemical Engineering

    1993-07-01T23:59:59.000Z

    The original proposal for this work suggested two lines Of analysis that could be used to develop an hierarchical analysis of filtration. The first of these was semi-empirical and required the use of an angle-dependent rate coefficient to model the effect of particle inertia, while the second made use of a particle velocity decomposition that separated the velocity into an inertial part and a diffusive part. We have concluded that the semiempirical approach cannot lead to an efficient treatment of the filtration problem, and in this study we have dirrcted most of our effort toward the development of the velocity decomposition approach. Problems arise with the velocity decomposition method because the panicle tracking equation is hyperbolic in nature, and there are regions in the flow field where it is difficult to calculate the deterministic particle velocity. These problems can be avoided with an asymptotic analysis, and we have used this approach to determine single fiber efficiencies for small Stokes numbers. These efficiencies illustrate a minimum as a function of the particle diameter; however, the range of validity (in terms of the Stokes number) of the asymptotic method is uncertain. If the range of validity of the asymptotic expansion is suitable for the solution of practical problems, the current work on homogeneous filters should be expanded to included a broader range of values of the key parameters and then extended to include the case of heterogeneous filters. If the range of validity of the asymptotic method is not suitable for the solution of practical problems, the particle tracking problem must be resolved or we must move on to the use of Brownian dynamics. This approach is outlined, where we have indicated how Brownian dynamics may be incorporated into the method of volume averaging.

  12. Horsehead Resource Development Company, Inc. , flame reactor technology. Technology demonstration summary

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Under the Superfund Innovative Technology Evaluation (SITE) program, the Horsehead Resource Development Company, Inc., (HRD) Flame Reactor was evaluated during a series of test runs. The tests were conducted at the HRD facility in Monaca, PA, using 72 tons of secondary lead smelter soda slag (waste feed) from the National Smelting and Refining Company, Inc., site in Atlanta, GA. The waste feed contained lead, zinc, iron, and many other metals and inorganic compounds. This summary includes an overview of the demonstration, a technology description, analytical results, and conclusions.

  13. Accelerating technology development through integrated computation and experimentation

    SciTech Connect (OSTI)

    Shekhawat, Dushyant [U.S. DOE; Srivastava, Rameshwar [Key Logic

    2013-01-01T23:59:59.000Z

    This special section of Energy & Fuels comprises a selection of papers presented at the topical conference “Accelerating Technology Development through Integrated Computation and Experimentation”, sponsored and organized by the United States Department of Energy’s National Energy Technology Laboratory (NETL) as part of the 2012 American Institute of Chemical Engineers (AIChE) Annual Meeting held in Pittsburgh, PA, Oct 28?Nov 2, 2012. That topical conference focused on the latest research and development efforts in five main areas related to fossil energy, with each area focusing on the utilization of both experimental and computational approaches: (1) gas separations (membranes, sorbents, and solvents for CO{sub 2}, H{sub 2}, and O{sub 2} production), (2) CO{sub 2} utilization (enhanced oil recovery, chemical production, mineralization, etc.), (3) carbon sequestration (flow in natural systems), (4) advanced power cycles (oxy-combustion, chemical looping, gasification, etc.), and (5) fuel processing (H{sub 2} production for fuel cells).

  14. Technology development for a neutrino astrophysical observatory. Letter of intent

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J. [and others

    1996-02-01T23:59:59.000Z

    The authors propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  15. Technology Development for a Neutrino AstrophysicalObservatory

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J.; He, Y.D.; Jackson, S.; Kleinfelder, S.; Lai, K.W.; Learned, J.; Ling, J.; Liu, D.; Lowder, D.; Moorhead, M.; Morookian, J.M.; Nygren, D.R.; Price, P.B.; Richards, A.; Shapiro, G.; Shen, B.; Smoot, George F.; Stokstad, R.G.; VanDalen, G.; Wilkes, J.; Wright, F.; Young, K.

    1996-02-01T23:59:59.000Z

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  16. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  17. DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2003-04-01T23:59:59.000Z

    During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

  18. Shattered Pellet Disruption Mitigation Technology Development for ITER

    SciTech Connect (OSTI)

    Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Jernigan, T. C. [Oak Ridge National Laboratory (ORNL); Meitner, Steven J [ORNL; Edgemon, Timothy D [ORNL; Parks, P. B. [General Atomics; Commaux, Nicolas JC [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Caughman, John B [ORNL; Rasmussen, David A [ORNL

    2010-01-01T23:59:59.000Z

    The mitigation of first wall thermal and mechanical loads and damage from runaway electrons during disruptions are critical for successful long term operation of ITER. Disruption mitigation tools based on shattered pellet injection are being developed at Oak Ridge National Laboratory that can be employed on ITER to provide the necessary mitigation of thermal and mechanical loads from disruptions as well as provide collisional damping to inhibit the formation of runaway electrons . Here we present progress on the development of the technology to provide reliable disruption mitigation with large shattered cryogenic pellets. An example of how this concept can be employed on ITER is discussed.

  19. Developments to Supplant CAMAC with Industry Standard Technology at NSTX

    SciTech Connect (OSTI)

    Sichta, P.; Dong, J.; Marsala, R.; Oliaro, G.; Wertenbaker, J.

    2003-07-31T23:59:59.000Z

    NSTX, like other research programs, is facing an inevitable crisis due to end-of-life issues for its 20-year-old CAMAC instrumentation. In many cases replacement components are not available, effectively rendering a CAMAC module unusable after a failure. The proliferation of high-performance, reliable, low-cost commodity computing hardware and software based on industry standard technology can provide the basis for a new generation of instrumentation. At NSTX, there have been several advances towards developing a PCI-based model for data acquisition and control systems. New hardware developments include a High Performance Signal Conditioning board and an FPGA-based Multifunction Timing System. Extensible software interfaces have been developed to integrate these boards into the NSTX computing environment. This paper will illustrate these developments and how they could be used to benefit collaborative fusion research.

  20. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

  1. Technology Development for High Efficiency Clean Diesel Engines...

    Broader source: Energy.gov (indexed) [DOE]

    -Enhanced PCCI - Mixed Mode Combustion Variable Valve Actuation Variable Intake Swirl Turbo Technology Electrically Driven Components Aftertreatment Turbo Technology...

  2. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    SciTech Connect (OSTI)

    Roy C. Herndon

    2001-02-28T23:59:59.000Z

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  3. The Asia Pacific LNG trade: Status and technology development

    SciTech Connect (OSTI)

    Hovdestad, W.R.

    1995-10-01T23:59:59.000Z

    The Asia Pacific Region is experiencing a period of sustained economic expansion. Economic growth has led to an increasing demand for energy that has spurred a rapid expansion of baseload liquefied natural gas (LNG) facilities in this region. This is illustrated by the fact that seven of the ten baseload facilities in existence provide LNG for markets in the Asia Pacific region. With the three exceptions having been initially commissioned in 1972 and earlier, it is fair to observed that most advances in LNG technology have been developed and applied for this market. The paper presents the current status and identified future trends for the Asia Pacific LNG trade. Technology development in terms of application to onstream production, processing and transportation facilities, including LNG tankers, is presented. The potential of future advances to applied technology and operational practices to improve the cost-effectiveness of new and existing facilities is discussed. Current design data and methods as actually used are examined in terms of identifying where fundamental research and basic physical data are insufficient for optimization purposes. These findings are then summarized and presented in terms of the likely evolution of future and existing LNG projects in the Asia Pacific region.

  4. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  5. History of the Development of NERVA Nuclear Rocket Engine Technology

    SciTech Connect (OSTI)

    David L. Black

    2000-06-04T23:59:59.000Z

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably.

  6. Developments in Nanosecond Pulse Detection Methods and Technology

    E-Print Network [OSTI]

    R. A. McFadden; N. D. R. Bhat; R. D. Ekers; C. W. James; D. Jones; S. J. Tingay; P. P. Roberts; C. J. Phillips; R. J. Protheroe

    2008-01-22T23:59:59.000Z

    A promising method for the detection of UHE neutrinos is the Lunar Cherenkov technique, which utilises Earth-based radio telescopes to detect the coherent Cherenkov radiation emitted when a UHE neutrino interacts in the outer layers of the Moon. The LUNASKA project aims to overcome the technological limitations of past experiments to utilise the next generation of radio telescopes in the search for these elusive particles. To take advantage of broad-bandwidth data from potentially thousands of antennas requires advances in signal processing technology. Here we describe recent developments in this field and their application in the search for UHE neutrinos, from a preliminary experiment using the first stage of an upgrade to the Australia Telescope Compact Array, to possibilities for fully utilising the completed Square Kilometre Array. We also explore a new real time technique for characterising ionospheric pulse dispersion which specifically measures ionospheric electron content that is line of sight to the moon.

  7. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Adam Schaut

    2011-12-30T23:59:59.000Z

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough archi

  8. Coal-fueled diesel technology development Emissions Control

    SciTech Connect (OSTI)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01T23:59:59.000Z

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  9. Photovoltaic concentrator technology development project. Sixth project integration meeting

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  10. Fulong Wind Technology Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreightFulong Wind Technology Development Co

  11. Vehicle Technologies Office Merit Review 2014: Development of 3rd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicle Data | DepartmentTechnology

  12. Advanced Diesel Engine Technology Development for HECC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy Technology Development

  13. THE DEVELOPMENT AND COMMERCIALIZATION OF SOLAR PV TECHNOLOGY IN THE OIL Jonatan Pinksea,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    THE DEVELOPMENT AND COMMERCIALIZATION OF SOLAR PV TECHNOLOGY IN THE OIL INDUSTRY Jonatan Pinksea regarding solar PV technology investments, a renewable energy technology that has seen explosive growth towards the development and commercialization of solar PV technology. To investigate this, a multiple case

  14. Development and applications of clean coal fluidized bed technology

    SciTech Connect (OSTI)

    Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

    2006-09-15T23:59:59.000Z

    Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

  15. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12T23:59:59.000Z

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.

  16. Evaluation of hyperbaric filtration for fine coal dewatering. Final report

    SciTech Connect (OSTI)

    Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Hogg, R. [Pennsylvania State Univ., University Park, PA (United States); Fonseca, A. [CONSOL Inc. (United States)

    1996-08-15T23:59:59.000Z

    The main objectives of the project were to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20% moisture. The program consisted of three phases, namely Phase 1 -- Model Development, Phase 2 -- Laboratory Studies, Phase 3 -- Pilot Plant Testing. The Pennsylvania State University led efforts in Phase 1, the University of Kentucky in Phase 2, and CONSOL Inc. in Phase 3 of the program. All three organizations were involved in all the three phases of the program. The Pennsylvania State University developed a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky conducted experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase 1 and 2 were tested in two of the CONSOL Inc. coal preparation plants using an Andritz Ruthner portable hyperbaric filtration unit.

  17. Linear Thermodynamics of Rodlike DNA Filtration

    E-Print Network [OSTI]

    Li, Zirui

    Linear thermodynamics transportation theory is employed to study filtration of rodlike DNA molecules. Using the repeated nanoarray consisting of alternate deep and shallow regions, it is demonstrated that the complex ...

  18. New technologies used in development of sour Fairway gas

    SciTech Connect (OSTI)

    Gallaher, D.M. (Shell Offshore Inc., New Orleans, LA (United States)); Mahoney, M.J. (Paragon Engineering Services Inc., Houston, TX (United States))

    1993-02-22T23:59:59.000Z

    Shell Offshore Inc.'s Fairway field project offshore Alabama served as a proving ground for many developmental materials and techniques to cope with the field's hot, sour gas. This is the first of two articles on the project's first-ever field use of bimetallic corrosion-resistant alloy (CRA) pipe as well as the project's extensive use of corrosion inhibition. Among the new technologies employed by Shell Offshore to develop the Norphlet sour-gas trend were: Use of CRA-clad subsea flow lines; Development of a corrosion-inhibitor program for subsea pipeline transport of high-temperature, wet Norphlet sour gas; Cathodic protection of subsea pipelines at elevated temperature; Use of coiled tubing for subsea utility pipelines; Induction bending of high-strength, CRA-clad pipe; Welding of CRA-clad and weld overlaid materials; and Manufacture of bimetallic CRA pipe by coextrusion, thermal-hydraulic, and explosive forming processes.

  19. Back to the Basics using Developing Technologies JT Land and Cattle LLC

    E-Print Network [OSTI]

    Back to the Basics using Developing Technologies #12;JT Land and Cattle LLC #12;#12;"Unfavorable;#12;#12;#12;Negligent Management? Resilient Management? #12;Back to the Basics using Developing Technologies #12

  20. Teachers' Perceptions of Effective Science, Technology, and Mathematics Professional Development and Changes in Classroom Practices

    E-Print Network [OSTI]

    Boriack, Anna Christine

    2013-04-11T23:59:59.000Z

    was developed. Data from two programs that provided professional development to teachers in the areas of technology, mathematics, and science was used to inform the conceptual framework. These two programs were Target Technology in Texas (T3) and Mathematics...

  1. Can combining economizers with improved filtration save energy and protect equipment in data centers?

    SciTech Connect (OSTI)

    Shehabi, Arman; Ganguly, Srirupa; Gundel, Lara A.; Horvath, Arpad; Kirchstetter, Thomas W.; Lunden, Melissa M.; Tschudi, William; Gadgil, Ashok J.; Nazaroff, William W

    2009-06-05T23:59:59.000Z

    Economizer use in data centers is an energy efficiency strategy that could significantly limit electricity demand in this rapidly growing economic sector. Widespread economizer implementation, however, has been hindered by potential equipment reliability concerns associated with exposing information technology equipment to particulate matter of outdoor origin. This study explores the feasibility of using economizers in data centers to save energy while controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at an operating northern California data center equipped with an economizer under varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to levels when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh any increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration could reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design.

  2. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect (OSTI)

    None

    2011-05-15T23:59:59.000Z

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  3. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies that can provide energy for an array of applications, including...

  4. A Technology Roadmap for Strategic Development of Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. stanfordegstechnicalroadmap2013.pdf More...

  5. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Open Energy Info (EERE)

    GEDCO, RARE Technology, and Sercel, Inc. to combine multicomponent seismic technology and rock physics modeling that will lead to the ability to image and analyze geothermal...

  6. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    in the Office of Fuel Cell Technologies, SCS participates in the DOE's Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review (AMR) where all of...

  7. Energy conservation in electrostatic fabric filtration of industrial dust

    SciTech Connect (OSTI)

    Ariman, T.

    1981-12-01T23:59:59.000Z

    Conservation in energy consumption in industrial fabric filtration systems has become very important due to the substantial increase in energy costs. Recently, an external electric field was utilized in the industrial dust control by fabric filters with very promising initial results. A substantial decrease in the pressure drop and an increase in collection efficiency were observed. The detailed outcome of the experimental research program in electrostatic fabric filtration was presented. The results show that pressure drop decreases substantially with the increased electrostatic field strength for all relevant parameters. Furthermore, the data of the experimental program was utilized to develop a semi-empirical model for the determination of the pressure drop and to establish an Energy-Optimized Design Criteria.

  8. A Brief Review of Filtration Studies for Waste Treatment at the Hanford Site

    SciTech Connect (OSTI)

    Daniel, Richard C.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2010-12-01T23:59:59.000Z

    This document completes the requirements of Milestone 1-2, PNNL Draft Literature Review, discussed in the scope of work outlined in the EM-31 Support Project task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to enhance filtration and cleaning efficiencies, thereby increasing process throughput and reducing the sodium demand (through acid neutralization). Developing the processes for fulfilling the cleaning/backpulsing requirements will result in more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby increasing throughput by limiting cleaning cycles. The purpose of this document is to summarize Pacific Northwest National Laboratory’s (PNNL’s) literature review of historical filtration testing at the laboratory and of testing found in peer-reviewed journals. Eventually, the contents of this document will be merged with a literature review by SRS to produce a summary report for DOE of the results of previous filtration testing at the laboratories and the types of testing that still need to be completed to address the questions about improved filtration performance at WTP and SRS. To this end, this report presents 1) a review of the current state of crossflow filtration knowledge available in the peer-reviewed literature, 2) a detailed review of PNNL-related filtration studies specific to the Hanford site, and 3) an overview of current waste filtration models developed by PNNL and suggested avenues for future model development.

  9. Twenty-second automotive technology development contractors' coordination meeting: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-03-01T23:59:59.000Z

    Fifty-four papers and reviews are arranged under the following session headings: alcohol fuels; liquid hydrocarbon and gaseous fuels; Stirling technology (two sessions); industry perspectives; heavy duty transport technology (two sessions); gas turbine technology; and ceramic technology (two sessions). (DLC)

  10. Chamber and target technology development for inertial fusion energy

    SciTech Connect (OSTI)

    Abdou, M; Besenbruch, G; Duke, J; Forman, L; Goodin, D; Gulec, K; Hoffer, J; Khater, H; Kulcinsky, G; Latkowski, J F; Logan, B G; Margevicious, B; Meier, W R; Moir, R W; Morley, N; Nobile, A; Payne, S; Peterson, P F; Peterson, R; Petzoldt, R; Schultz, K; Steckle, W; Sviatoslavsky, L; Tillack, M; Ying, A

    1999-04-07T23:59:59.000Z

    Fusion chambers and high pulse-rate target systems for inertial fusion energy (IFE) must: regenerate chamber conditions suitable for target injection, laser propagation, and ignition at rates of 5 to 10 Hz; extract fusion energy at temperatures high enough for efficient conversion to electricity; breed tritium and fuel targets with minimum tritium inventory; manufacture targets at low cost; inject those targets with sufficient accuracy for high energy gain; assure adequate lifetime of the chamber and beam interface (final optics); minimize radioactive waste levels and annual volumes; and minimize radiation releases under normal operating and accident conditions. The primary goal of the US IFE program over the next four years (Phase I) is to develop the basis for a Proof-of-Performance-level driver and target chamber called the Integrated Research Experiment (IRE). The IRE will explore beam transport and focusing through prototypical chamber environment and will intercept surrogate targets at high pulse rep-rate. The IRE will not have enough driver energy to ignite targets, and it will be a non-nuclear facility. IRE options are being developed for both heavy ion and laser driven IFE. Fig. 1 shows that Phase I is prerequisite to an IRE, and the IRE plus NIF (Phase II) is prerequisite to a high-pulse rate. Engineering Test Facility and DEMO for IFE, leading to an attractive fusion power plant. This report deals with the Phase-I R&D needs for the chamber, driver/chamber interface (i.e., magnets for accelerators and optics for lasers), target fabrication, and target injection; it is meant to be part of a more comprehensive IFE development plan which will include driver technology and target design R&D. Because of limited R&D funds, especially in Phase I, it is not possible to address the critical issues for all possible chamber and target technology options for heavy ion or laser fusion. On the other hand, there is risk in addressing only one approach to each technology option. Therefore, in the following description of these specific feasibility issues, we try to strike a balance between narrowing the range of recommended R&D options to minimize cost, and keeping enough R&D options to minimize risk.

  11. Tanks Focus Area retrieval process development and enhancements FY96 technology development summary report

    SciTech Connect (OSTI)

    Rinker, M.W.; Bamberger, J.A.; Hatchell, B.K. [and others

    1996-09-01T23:59:59.000Z

    The Retrieval Process Development and Enhancements (RPD&E) activities are part of the Retrieval and Closure Program of the U.S. Department of Energy (DOE) EM-50 Tanks Focus Area. The purposes of RPD&E are to understand retrieval processes, including emerging and existing technologies, and to gather data on those processes, so that end users have the requisite technical basis to make retrieval decisions. Work has been initiated to support the need for multiple retrieval technologies across the DOE complex. Technologies addressed during FY96 focused on enhancements to sluicing, borehole mining, confined sluicing retrieval end effectors, the lightweight scarifier, and pulsed air mixing. Furthermore, a decision tool and database have been initiated to link retrieval processes with tank closure to assist end users in making retrieval decisions.

  12. Technology development for gene discovery and full-length sequencing

    SciTech Connect (OSTI)

    Marcelo Bento Soares

    2004-07-19T23:59:59.000Z

    In previous years, with support from the U.S. Department of Energy, we developed methods for construction of normalized and subtracted cDNA libraries, and constructed hundreds of high-quality libraries for production of Expressed Sequence Tags (ESTs). Our clones were made widely available to the scientific community through the IMAGE Consortium, and millions of ESTs were produced from our libraries either by collaborators or by our own sequencing laboratory at the University of Iowa. During this grant period, we focused on (1) the development of a method for preferential cloning of tissue-specific and/or rare transcripts, (2) its utilization to expedite EST-based gene discovery for the NIH Mouse Brain Molecular Anatomy Project, (3) further development and optimization of a method for construction of full-length-enriched cDNA libraries, and (4) modification of a plasmid vector to maximize efficiency of full-length cDNA sequencing by the transposon-mediated approach. It is noteworthy that the technology developed for preferential cloning of rare mRNAs enabled identification of over 2,000 mouse transcripts differentially expressed in the hippocampus. In addition, the method that we optimized for construction of full-length-enriched cDNA libraries was successfully utilized for the production of approximately fifty libraries from the developing mouse nervous system, from which over 2,500 full-ORF-containing cDNAs have been identified and accurately sequenced in their entirety either by our group or by the NIH-Mammalian Gene Collection Program Sequencing Team.

  13. Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980

    SciTech Connect (OSTI)

    Varnado, S.G. (ed.)

    1980-04-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  14. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Varnado, S.G. (ed.)

    1980-11-01T23:59:59.000Z

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  15. Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979

    SciTech Connect (OSTI)

    Varnado, S.G. (ed.)

    1980-01-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  16. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-07-01T23:59:59.000Z

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  17. Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979

    SciTech Connect (OSTI)

    Varnado, S.G. (ed.)

    1980-05-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  18. Vehicle Technologies Office Merit Review 2013: KIVA Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    SciTech Connect (OSTI)

    Kelsey, J.R. (ed.)

    1981-03-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

  20. Faculty Expertise Index Advanced Artificial Intelligence, Technology, & Control Systems Development for Biological &

    E-Print Network [OSTI]

    Amin, S. Massoud

    Faculty Expertise Index Advanced Artificial Intelligence, Technology, & Control Systems Development-Paul Schirle-Keller Food Additives ­ Artificial Sweeteners ­ Ted Labuza Food Analysis Chromatographic Processing (see Phytochemicals, Advanced Artificial Intelligence) Canning Technology ­ Ted Labuza Cheese

  1. SECURITY METRICS: MEASUREMENTS TO SUPPORT THE CONTINUED DEVELOPMENT OF INFORMATION SECURITY TECHNOLOGY

    E-Print Network [OSTI]

    SECURITY METRICS: MEASUREMENTS TO SUPPORT THE CONTINUED DEVELOPMENT OF INFORMATION SECURITY TECHNOLOGY Shirley Radack, Editor Computer Security Division Information Technology Laboratory National and to protect their systems and information from security threats and risks. There have been many past efforts

  2. Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies

    SciTech Connect (OSTI)

    Weijo, R.O. (Portland General Electric Co., OR (USA)); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. (Pacific Northwest Lab., Richland, WA (USA))

    1991-03-01T23:59:59.000Z

    This project developed an inventory of the Office of Building Technologies (OBT) from a survey administered in 1988 to program managers and principal investigators from OBT. Information provided on these surveys was evaluated to identify equipment and practices that are near-term opportunities for technology commercialization and to determine whether they needed some form of assistance from OBT to be successful in the marketplace. The near-term commercial potential of OBT technologies was assessed by using a technology selection screening methodology. The screening first identified those technologies that were ready to be commercialized in the next two years. The second screen identified the technologies that had a simple payback period of less than five years, and the third identified those that met a current need in the marketplace. Twenty-six OBT technologies met all the criteria. These commercially promising technologies were further screened to determine which would succeed on their own and which would require further commercialization support. Additional commercialization support was recommended for OBT technologies where serious barriers to adoption existed or where no private sector interest in a technology could be identified. Twenty-three technologies were identified as requiring commercialization support from OBT. These are categorized by each division within OBT and are shown in Table S.1. The methodology used could easily be adapted to screen other DOE-developed technologies to determine commercialization potential and to allocate resources accordingly. It provides a systematic way to analyze numerous technologies and a defensible and documented procedure for comparing them. 4 refs., 7 figs., 10 tabs.

  3. Geothermal Technology Development Program. Annual progress report, October 1983-September 1984

    SciTech Connect (OSTI)

    Kelsey, J.R. (ed.)

    1985-08-01T23:59:59.000Z

    This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

  4. Conventional armed forces in Europe: Technology scenario development

    SciTech Connect (OSTI)

    Houser, G.M.

    1990-07-01T23:59:59.000Z

    In January 1986, the Soviet Union's Mikhail Gorbachev proposed elimination of all nuclear weapons by the year 2000. In April of that year, Mr. Gorbachev proposed substantial reductions of conventional weapons in Europe, from the Atlantic Ocean to the Ural Mountains, including reductions in operational-tactical nuclear weapons. In May 1986, the North Atlantic Treaty Organization (NATO) responded with the Brussels Declaration on Conventional Arms Control,'' which indicated readiness to open East/West discussions on establishing a mandate for negotiating conventional arms control throughout Europe. The Group of 23,'' which met in Vienna beginning in February 1987, concluded the meeting in January 1989 with a mandate for the Conventional Armed Forced in Europe (CFE) negotiations. On 6 March 1989, CFE talks began, and these talks have continued through six rounds (as of April 1990). Although US President George Bush, on 30 May 1989, called for agreement within six months to a year, and the Malta meeting of December 1989 called for completion of a CFE agreement by the end of 1990, much remains to be negotiated. This report provides three types of information. First, treaty provisions brought to the table by both sides are compared. Second, on the basis of these provisions, problem areas for each of the provision elements are postulated and possible scenarios for resolving these problem areas are developed. Third, the scenarios are used as requirements for tasks assigned program elements for possible US implementation of a CFE treaty. As progress is achieved during the negotiations, this report could be updated, as necessary, in each of the areas to provide a continuing systematic basis for program implementation and technology development. 8 refs.

  5. Development of Characterization Technology for Fault Zone Hydrology

    E-Print Network [OSTI]

    Karasaki, Kenzi

    2010-01-01T23:59:59.000Z

    TECHNOLOGY FOR FAULT ZONE HYDROLOGY Kenzi Karasaki Lawrencefor characterizing the hydrology of fault zones, recognizingstructure of faults to hydrology, that it still may be

  6. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient...

  7. Vehicle Technologies Office Merit Review 2014: Development and...

    Office of Environmental Management (EM)

    Class 8 Highway Vehicle Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  8. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov (indexed) [DOE]

    technologies (i.e. percussion hammers, PDC bits, hybrid bits, mud hammers, and turbo drills) - Select Two Candidate Options - Field test (Secure industry partner with...

  9. Plasma discharge self-cleaning filtration system

    DOE Patents [OSTI]

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22T23:59:59.000Z

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  10. EM-50 Tanks Focus Area retrieval process development and enhancements. FY97 technology development summary report

    SciTech Connect (OSTI)

    Rinker, M.W.; Bamberger, J.A. [Pacific Northwest National Lab., Richland, WA (United States); Alberts, D.G. [Waterjet Technology, Inc., Kent, WA (United States)] [and others

    1997-09-01T23:59:59.000Z

    The Retrieval Process Development and Enhancements (RPD and E) activities are part of the US Department of Energy (DOE) EM-50 Tanks Focus Area, Retrieval and Closure program. The purpose of RPD and E is to understand retrieval processes, including emerging and existing technologies, and to gather data on these processes, so that end users have requisite technical bases to make retrieval decisions. Technologies addressed during FY97 include enhancements to sluicing, the use of pulsed air to assist mixing, mixer pumps, innovative mixing techniques, confined sluicing retrieval end effectors, borehole mining, light weight scarification, and testing of Russian-developed retrieval equipment. Furthermore, the Retrieval Analysis Tool was initiated to link retrieval processes with tank waste farms and tank geometric to assist end users by providing a consolidation of data and technical information that can be easily assessed. The main technical accomplishments are summarized under the following headings: Oak Ridge site-gunite and associated tanks treatability study; pulsed air mixing; Oak Ridge site-Old Hydrofracture Facility; hydraulic testbed relocation; cooling coil cleaning end effector; light weight scarifier; innovative tank mixing; advanced design mixer pump; enhanced sluicing; Russian retrieval equipment testing; retrieval data analysis and correlation; simulant development; and retrieval analysis tool (RAT).

  11. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981

    SciTech Connect (OSTI)

    Kelsey, J.R. (ed.)

    1981-06-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

  12. Industrial Technologies Program ORNL-developed cast nickel aluminide rolls

    E-Print Network [OSTI]

    strength and oxidation resistance. · · · · Metal Infusion Surface Treatment (MIST) (2006)--a process for infusing up to 51 elements into metal and alloy surfaces, MIST lengthens the life of metalworking technology and the deployment of industrial wireless technologies. #12;Nanomanufacturing Metal Infusion

  13. Vehicle Technologies Office Merit Review 2015: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about development of...

  14. Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

  15. Towards quantification of the role of materials innovation in overall technological development

    E-Print Network [OSTI]

    Magee, Christopher L.

    This article presents a method for quantitatively assessing the role of materials innovation in overall technological development. The method involves classifying the technical changes underlying the overall innovation ...

  16. Vehicle Technologies Office Merit Review 2014: Development of High Energy Density Lithium-Sulfur Cells

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  17. Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics

    E-Print Network [OSTI]

    Heiser, Gernot

    Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics in logistics and supply chain management. · We are seeking customers and financial partners to scale a stand

  18. Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

  19. Geo energy research and development: technology transfer update

    SciTech Connect (OSTI)

    Traeger, R.K.; Dugan, V.L.

    1983-01-01T23:59:59.000Z

    Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

  20. The London Accord 1 Dynamics of technological development in the energy sector

    E-Print Network [OSTI]

    The London Accord 1 Dynamics of technological development in the energy sector J. Doyne Farmer the literature on trends of technological improvement, focusing on the energy sector. We discuss the extent to which past trends can be used to predict the future improvement paths of technologies. The historical

  1. Abstract--Recent developments on mobile devices and wireless technologies enable new technical capabilities for the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abstract-- Recent developments on mobile devices and wireless technologies enable new technical technologies and the widespread use of mobile devices. In the professional environment, training employees the first time in 1994[1]. Here, location, identity, time, environment, and mobile technology have been

  2. To continue the development of WISER's globally recognized program in Clean Coal Technology at Illinois

    E-Print Network [OSTI]

    Heller, Barbara

    Vision To continue the development of WISER's globally recognized program in Clean Coal Technology renewable energy. Goal The goals of the WISER Clean Coal Technology Program are to: · Obtain the optimum stream Strengths The strengths of the WISER Clean Coal Technology program include a strong

  3. Editorial: Should We Develop a Sense of Urgency in Science and Technology Development?

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW

    2011-07-01T23:59:59.000Z

    In his book A Sense of Urgency, John P. Kotter describes how organizations must develop the right sense of urgency as an enabler for organizational changes necessary to compete in today’s global economy. A surfeit of complacency promotes institutional inertia that solely relies on past accomplishments, people *hoping* that the tomorrow will be an extrapolation of the today. However, the reality is that the marketplace around us changes drastically at an ever-increasing rate of change. Only x number of Fortune 500 companies are still on the list who were there five years ago . Transferring the sense of urgency from a business setting to the nation’s energy and energy security area is critical, Peter Ogden et al. wrote in a 2008 article in the journal Issues Online in Science and Technology. In the article, Ending the Inertia on Energy Policy. A new Strategy to Spur Energy Innovation, he writes, the United States must undergo an innovation revolution. The rate at which the United States is able to develop and deploy new energy technologies will, to a great extent, determine the ultimate speed and cost of the economic transformation

  4. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cells Program. View other sections of the MYRD&D Plan. MYRD&D Plan Section 5.0 Systems Integration, 2012 More Documents & Publications Fuel Cell Technologies Office...

  5. Combustion Technology Development for an Advanced Glass Melting System

    E-Print Network [OSTI]

    Stickler, D. B.; Westra, L.; Woodroffe, J.; Jeong, K. M.; Donaldson, L. W.

    Concept feasibility of an innovative technology for glass production has recently been demonstrated. It is based on suspension heating of the glass-forming batch minerals while entrained in a combustion flow of preheated air and natural gas...

  6. The use of satellite-based technology in developing countries

    E-Print Network [OSTI]

    Wood, Danielle Renee

    2007-01-01T23:59:59.000Z

    Satellite technology in the areas of remote sensing, communication, and navigation can provide valuable information in a number of areas from business to disaster management to agriculture. There is great potential for ...

  7. Energy Systems Technology - A Development in Experiential Learning

    E-Print Network [OSTI]

    Tumber, A. J.

    1980-01-01T23:59:59.000Z

    Energy Systems Technology is a three-year diploma program which started in September 1977 and will produce its first graduate technologists in June 1980. The program of studies is multi-disciplinary and includes mechanical and electrical subjects...

  8. Automated construction technologies : analyses and future development strategies

    E-Print Network [OSTI]

    Hoang, Han (Han Mai)

    2005-01-01T23:59:59.000Z

    Substandard productivity and the lack of skilled workers in the construction industry have led major corporations all over the world aiming to produce various types of automated construction technologies. During the process, ...

  9. proceSS technology College of Rural and Community Development

    E-Print Network [OSTI]

    Hartman, Chris

    includes oil and gas production, mining and milling, transportation and refining, chemical manufacturing technology program prepares students for employment as operations technicians in the process industry, which--Industrial Process Instrumentation I...............................3 PRT F144--Industrial Process

  10. Web Developer/Programmer Intern Employer: Transim Technology Corporation

    E-Print Network [OSTI]

    Childers, Bruce

    and dynamic technology company. We are expanding our team in search of a creative, hard-working, and self, SQL, CSS Experience with .NET and Web Services Experience/working knowledge of SQL and relational

  11. Vehicle Technologies Office Merit Review 2014: 2014 KIVA Development

    Broader source: Energy.gov [DOE]

    Presentation given by Los Alamos National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 2014 KIVA...

  12. Building technological capability within satellite programs in developing countries

    E-Print Network [OSTI]

    Wood, Danielle Renee

    2012-01-01T23:59:59.000Z

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are ...

  13. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    delivery technologies that can serve future markets. Nascent markets, such as the use of fuel cells in backup power sources and MHE, will likely continue to take advantage of the...

  14. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

  15. Creating ladders out of chains : China's technological development in a world of global production

    E-Print Network [OSTI]

    Fuller, Douglas Brian

    2005-01-01T23:59:59.000Z

    With the advent of economic globalization, the terms of debate over the political and social conditions necessary to foster development in the Global South have shifted. Examining technological development, one important ...

  16. CITE Suitability : an exploration of product evaluation methodologies for developing world technologies

    E-Print Network [OSTI]

    Pombrol, Christopher Anthony

    2014-01-01T23:59:59.000Z

    There are a multitude of technological products that have been developed to improve the lives of bottom of pyramid consumers in the developing world. Unfortunately, many of these products fail to have the desired impact ...

  17. Technologies, markets and challenges for development of the Canadian Oil Sands industry

    E-Print Network [OSTI]

    Lacombe, Romain H.

    2007-01-01T23:59:59.000Z

    This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

  18. A system dynamics approach to educational technology introduction in Developing countries

    E-Print Network [OSTI]

    Grange-Kyner, Trinidad

    2008-01-01T23:59:59.000Z

    Developing nations around the globe are focused on ways to use Information and Computing Technologies (ICTs) as springboards to advance their national development in all areas, including education. There are multiple ways ...

  19. The Impact of Trade on Wage Inequality in Developing Countries: Technology vs. Comparative Advantage

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    The Impact of Trade on Wage Inequality in Developing Countries: Technology vs. Comparative: Wages, Inequality, Trade, Technology Transfer First draft, 20.09.2014 Summary During the expansion of world trade since the 1980s, measures of inequality have risen not only in developed countries, but also

  20. .NET DEVELOPER PROGRAM A ten-week comprehensive program covering Microsoft .NET technologies

    E-Print Network [OSTI]

    Schaefer, Marcus

    .NET DEVELOPER PROGRAM A ten-week comprehensive program covering Microsoft® .NET technologies DePaul University's .NET Developer Program is designed to provide programmers with an intensive and comprehensive introduction to all essential aspects of the technologies, techniques and principles of Microsoft .NET

  1. Water filtration optimization by geometric programming

    E-Print Network [OSTI]

    Wray, Duane Jimmy

    1970-01-01T23:59:59.000Z

    important as a means of removing suspended and colloidal matter. Sand is the most commonly used filter media but is rapidly being replaced by a combination of anthracite, sand, and garnet for faster filtration rates. Due to the complexity... of the filtering process, the design of these filters has remained an art without ever progressing to a science. Filters are in general designed from experience and rules of thumb without any assurance that maximum efficiency is attained at minimum cost. A...

  2. .NET WEB DEVELOPER PROGRAM A ten-week comprehensive program covering web development using Microsoft .NET technologies

    E-Print Network [OSTI]

    Schaefer, Marcus

    .NET WEB DEVELOPER PROGRAM A ten-week comprehensive program covering web development using Microsoft® .NET technologies DePaul University's .NET Web Developer Program is designed to provide, techniques and principles of Microsoft .NET. The program stresses an understanding of the relevant

  3. Program mid-year summaries research, development, demonstration, testing and evaluation: Office of Technology Development, FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This mid-year review provides a summary of activities within the Office of Technology Development with individual presentations being made to DOE HQ and field management staff. The presentations are by EM-541, 542, 551, and 552 organizations.

  4. Development and application of a probabilistic evaluation method for advanced process technologies

    SciTech Connect (OSTI)

    Frey, H.C.; Rubin, E.S.

    1991-04-01T23:59:59.000Z

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  5. Development and application of a probabilistic evaluation method for advanced process technologies. Final report

    SciTech Connect (OSTI)

    Frey, H.C.; Rubin, E.S.

    1991-04-01T23:59:59.000Z

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  6. A EUROPEAN ADVANCED TECHNOLOGY PROGRAMME FOR ADS ACCELERATOR DEVELOPMENT*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    associated to a fast digital feedback system. A programme for the remaining R&D, focused on experimental as such a reactor. Consecutive to the initial work of the Technical Working Group on ADS technology [1], the project in 2002 [2], and studied 3 versions of an XADS: both a molten-metal (eutectic Pb-Bi) and a gas cooled ADS

  7. A stakeholder involvement approach to evaluate and enhance technology acceptance: U.S. Department of Energy Office of Technology Development`s Plume Focus Area

    SciTech Connect (OSTI)

    McCabe, G.H. [Battelle Seattle Research Center, WA (United States); Stein, S.L. [Battelle Pacific Northwest Division, Richland, WA (United States); Serie, P.J. [Environmental Issues Management, Inc., Seattle, WA (United States)

    1995-12-31T23:59:59.000Z

    The US Department of Energy (DOE) faces a major challenge in cleaning up its contaminated sites throughout the United States. One major area of concern is the plumes in soil and ground water which are contaminated with a myriad of different pollutants. DOE recently organized its plume-related problems into the Plume Focus Area. The mission of the Plume Focus Area is to enhance the deployment of innovative technologies for containing and cleaning up contaminant plumes in ground water and soil at all DOE sites. Environmental cleanup priorities for soil and ground water plumes are being defined and technology users have the challenge of matching current and innovative technologies to those priorities. By involving a range of stakeholders in the selection, demonstration, and evaluation of new technologies, the deployment of these technologies can be enhanced. If new plume cleanup technologies are to be deployable, they must improve on today`s baseline technologies. The Sites` Coordination Team (SCT) of the Plume Focus Area develops and supports the implementation of methods for stakeholder involvement throughout the multiple steps that define focus area activities. Site-specific teams are being formed to carry out the strategy at each site, and the teams will work through Site Technology Coordination Groups (STCGs) at each location. The SCT is responsible for identifying the site-specific stakeholder involvement teams, training the team members, preparing needed national-level guidance and strategies, helping the teams tailor a strategy for their particular site that meets the overall needs of the focus area, and facilitating inter-site coordination. The results will be used to develop national technology acceptance reports on the innovative technologies being funded and evaluated under the Plume Focus Area.

  8. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    PROJECT STAFF

    2001-09-01T23:59:59.000Z

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

  9. Homeland Security Science, Technology, Engineering, Mathematics Career Development Program Report

    SciTech Connect (OSTI)

    Bryson, Kathleen H.

    2009-11-06T23:59:59.000Z

    Report including the background, reserach and recommendations to expand the current DHS HS-STEM Career Development Program.

  10. Development of precision machining and inspection technology for structural ceramics

    SciTech Connect (OSTI)

    Barkman, W.E.

    1997-03-06T23:59:59.000Z

    Finish machining operations contribute the majority of the costs associated with fabricating high quality ceramic products. These components are typically used in harsh environments such as diesel engines, the defense industry, and automotive applications. The required finishing operations involve a variety of technology areas including process controls, process analysis, product certification, etc. and are not limited only to component grinding methods. The broad range of manufacturing problem solving expertise available in Oak Ridge provided resources that were far beyond what is available to the Coors manufacturing sites. Coors contributed equipment, such as the computer controls and part handling mechanisms associated with a state-of-the-art inspection machine plus operation-specific experience base. In addition, addressing these challenging tasks enabled Oak Ridge personnel to maintain familarity with rapidly advancing technologies, such as those associated with machine vision equipment, process monitoring techniques, and computer control systems.

  11. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)Demonstration Plan: Cover |

  12. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)Demonstration Plan: Cover

  13. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)Demonstration Plan:

  14. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)Demonstration

  15. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)DemonstrationDemonstration Plan:

  16. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)DemonstrationDemonstration

  17. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program

  18. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program Management

  19. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program

  20. Technology Development and Field Trials of EGS Drilling Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment of Energy Technology Demonstration

  1. Technology Development for Energy Efficiency and Low Emissions | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment of Energy Technology Demonstrationof

  2. Technology Development for High Efficiency Clean Diesel Engines and a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment of Energy Technology

  3. The latest developments and outlook for hydrogen liquefaction technology

    SciTech Connect (OSTI)

    Ohlig, K.; Decker, L. [Linde Kryotechnik AG, Pfungen, CH-8422 (Switzerland)

    2014-01-29T23:59:59.000Z

    Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.

  4. HTS Wire Development Group: Achievements, technology transfer, and plans

    SciTech Connect (OSTI)

    Riley, G.N. Jr. [American Superconductor Corp., Westborough, MA (United States)

    1994-07-29T23:59:59.000Z

    The objective of the HTS wire development group is to develop high performance HTS wire for use in electric power systems. The HTS wire development group personnel is listed. The HTS wire development group achievements are outlined. These achievements include: focusing on the development of high performance and cost effective HTS wire; HTS wires were fabricated in laboratory scale and production scale lengths; ACS has fabricated the only conductor in the world to meet or surpass the DOE FY94 goals for electric power applications development; these wire fabrication successes at ASC are a direct result of the long-term collaboration between ASC and the other HTS Wire Development Group members; and plans are in place for a successful FY95 program.

  5. Accumulation of operational history through emulation test to meet proven technology requirement for newly developed I and C technology

    SciTech Connect (OSTI)

    Yeong Cheol, Shin; Sung Kon, Kang [Nuclear Environment Technology Institute (NETEC), Korea Hydro and Nuclear Power(KHNP) P.O. Box Youseong-gu Daejeon (Korea, Republic of); Han Seong, Son [ENESYS Co., Ltd. 3F, Pianetta Bldg., 337-2, Jangdae-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    As new advanced digital I and C technology with potential benefits of higher functionality and better cost effectiveness is available in the market, NPP (Nuclear Power Plant) operators are inclined to use the new technology for the construction of new plant and the upgrade of existing plants. However, this new technology poses risks to the NPP operators at the same time. These risks are mainly due to the poor reliability of newly developed technology. KHNP's past experiences with the new equipment shows many cases of reliability problems. And their consequences include unintended plant trips, lowered acceptance of the new digital technology by the plant I and C maintenance crew, and increased licensing burden in answering for questions from the nuclear regulatory body. Considering the fact that the risk of these failures in the nuclear plant operation is far greater than those in other industry, nuclear power plant operators want proven technology for I and C systems. This paper presents an approach for the emulation of operational history through which a newly developed technology becomes a proven technology. One of the essential elements of this approach is the feedback scheme of running the new equipment in emulated environment, gathering equipment failure, and correcting the design(and test bed). The emulation of environment includes normal and abnormal events of the new equipment such as reconfiguration of control system due to power failure, plant operation including full spectrum of credible scenarios in an NPP. Emulation of I and C equipment execution mode includes normal operation, initialization and termination, abnormal operation, hardware maintenance and maintenance of algorithm/software. Plant specific simulator is used to create complete profile of plant operational conditions that I and C equipment is to experience in the real plant. Virtual operating crew technology is developed to run the simulator scenarios without involvement of actual operators at the emulated environment. Verification and validation are performed for detecting problems of the new technology. Verification of the equipment is done in two ways, one is to evaluate the features of the equipment according to the criteria derived from good practices of well proven I and C products and the second is to evaluate the features of the equipment by I and C experts. Validations are done in two ways, one is to validate the functions and performance of the equipment and the other is to validate the robustness of the equipment by accumulation operational experience. (authors)

  6. Does filtration efficiency affect measurements of particle chemical composition?

    SciTech Connect (OSTI)

    Romo-Kroeger, C.M. [Univ. of Tarapaca, Arica (Chile)

    1998-07-01T23:59:59.000Z

    Most experimentalists accept an uncertainty of 4--6% in the determination of aerosol mass concentration. However, in some combustion processes sulfur and other elements are present in significant amounts as particles of very small size. A direct method to measure filtration efficiency was developed and used for the determination of the efficiency of a Nuclepore filter. This needs two equivalent filtration systems operated in sequence. The amount of particulate matter collected on each system is measured and introduced in a simple formula. The particulate masses deposited on the filters in each system were measured as total mass, by balance gravimetry, and as individual elemental masses, by PIXE (particle induced X-ray emission). With this very general method it was possible to determine the efficiencies of a 0.4 {micro}m Nuclepore filter operated with a stacked filter unit for particles less than 2.5 {micro}m in total mass and elemental masses. The experiment showed that the efficiency of this filter is very poor for some specific elements, like sulfur, that are concentrated in very small particles.

  7. Opportunities for renewable energy technologies in water supply in developing country villages

    SciTech Connect (OSTI)

    Niewoehner, J.; Larson, R.; Azrag, E.; Hailu, T.; Horner, J.; VanArsdale, P. [Water for People, Denver, CO (United States)

    1997-03-01T23:59:59.000Z

    This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

  8. Supertruck technologies for 55% thermal efficiency and 68% freight...

    Broader source: Energy.gov (indexed) [DOE]

    On Program Partners Cummins Inc. - Cummins Fuel Systems - Cummins Electronics - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Filtration - Modine - VanDyne...

  9. NANOSCALE SCIENCE AND TECHNOLOGY FOR THE DEVELOPMENT OF ENVIRONMENTAL SENSORS

    SciTech Connect (OSTI)

    Ronald Andres, School of Chemical Engineering, Purdue University

    2007-01-03T23:59:59.000Z

    Under this funding, we proposed to: i) develop a ChemFET sensor platform, ii) develop a ChemDiode sensor platform, iii) synthesize receptor molecules suitable for chemical sensing, iv) study the electrostatic potential changes induced by receptor/target binding on surfaces and v) develop VLSI fabrication approaches for micron-scale chemical sensor devices. The accomplishments under these various thrusts are summarized in this section.

  10. Funding Opportunity: Technology Advancement for Rapid Development of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof Energydetails

  11. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)Demonstration Plan:Demonstration

  12. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of the Administrator NNSAAdministration Technology

  13. Shaanxi Baoguang Technology Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°,SchnellShaanxi Baoguang Technology

  14. Hydrogen and Fuel Cell Technologies Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrent Technology »Clean HYDROGEN

  15. Hydrogen and Fuel Cell Technologies Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrent Technology »Clean

  16. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment of Energy TechnologyDepartment of

  17. Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy Technology

  18. Opportunities for industry participation in DOE`s environmental management technology development program

    SciTech Connect (OSTI)

    Bedick, R.C. [USDOE Morgantown Energy Technology Center, WV (United States); Walker, J.S. [USDOE Assistant Secretary for Environmental Management, Washington, DC (United States). Office of Science and Technology

    1996-09-01T23:59:59.000Z

    METC has managed about 85 research, development, and demonstration projects on behalf of DOE-EM`s Office of Science and Technology that include those in each of the four major environmental remediation and waste management problem areas: subsurface contaminants (radionuclides, heavy metals, dense nonaqueous phase liquids); decontamination and decommissioning of facilities; high-level waste tank remediation; and mixed waste characterization/treament/disposal. All projects within the Industry Programs are phased or have optional tasks at specific go/no-go decision points, allowing DOE to make investment decisions at various points in the technology development cycle to ensure that we are meeting the technology development goals and the needs of the customer or end-user. This decision making process is formalized in a Technology Investment Decision Model. A brief summary is given of R&D requirements (technology needs) in each of the above-mentioned 4 problem areas.

  19. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    SciTech Connect (OSTI)

    Daniel M. Ginosar

    2009-05-01T23:59:59.000Z

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  20. Demand Controlled Filtration in an Industrial Cleanroom

    SciTech Connect (OSTI)

    Faulkner, David; DiBartolomeo, Dennis; Wang, Duo

    2007-09-01T23:59:59.000Z

    In an industrial cleanroom, significant energy savings were realized by implementing two types of demand controlled filtration (DCF) strategies, one based on particle counts and one on occupancy. With each strategy the speed of the recirculation fan filter units was reduced to save energy. When the control was based on particle counts, the energy use was 60% of the baseline configuration of continuous fan operation. With simple occupancy sensors, the energy usage was 63% of the baseline configuration. During the testing of DCF, no complaints were registered by the operator of the cleanroom concerning processes and products being affected by the DCF implementation.

  1. Combustion technology developments in power generation in response to environmental challenges

    E-Print Network [OSTI]

    Kammen, Daniel M.

    and clean coal-fired systems. The most promising of these include pulverized coal combustionCombustion technology developments in power generation in response to environmental challenges J.M. Bee´r* Department of Chemical Engineering, Room 66-548, Massachusetts Institute of Technology

  2. THE DEVELOPMENT OF LOW TEMPERATURE TECHNOLOGY AT STANFORD AND ITS RELEVANCE TO HIGH ENERGY PHYSICS"

    E-Print Network [OSTI]

    Ohta, Shigemi

    % and to indicate their relevance to several applications in high energy physics. 11. TECHNOLOGICAL INNOVATIONS 1I I I I I - . THE DEVELOPMENT OF LOW TEMPERATURE TECHNOLOGY AT STANFORD AND ITS RELEVANCE TO HIGH ENERGY PHYSICS" H. Alan Schwettmant Stanford University Stanford, California Department of Physics

  3. IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou chamber technology testing program in NIF involoving: criteria for evaluation and costs of the more complex experiments in NIF. I. Introduction One important class of issues concerning

  4. Rethinking CCS - strategies for technology development in times of uncertainty

    E-Print Network [OSTI]

    Eide, Jan

    2013-01-01T23:59:59.000Z

    Concerns over climate change and a reliance on CO?-emitting fossil fuels for a majority of the world's energy supply have motivated the development of carbon dioxide capture and storage (CCS). However, CCS is not yet ...

  5. Developing game worlds : gaming, technology, and innovation in Peru

    E-Print Network [OSTI]

    Marisca Alvarez, Eduardo

    2014-01-01T23:59:59.000Z

    In this work, I've documented the origins, growth and structure of the Peruvian video game industry. Because of its underground origins, the Peruvian game industry provides an alternative, more organic gateway to developing ...

  6. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  7. Five-Year Technology Development Strategic Plan Targets EM’s Decommissioning Challenges

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Leaders from EM headquarters and field offices and the UK’s Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

  8. Design principles for the development of space technology maturation laboratories aboard the International Space Station

    E-Print Network [OSTI]

    Saenz Otero, Alvar, 1975-

    2005-01-01T23:59:59.000Z

    This thesis formulates seven design principles for the development of laboratories which utilize the International Space Station (ISS) to demonstrate the maturation of space technologies. The principles are derived from ...

  9. Potential of Development and Application of Wave Energy Conversion Technology in the Gulf of Mexico

    E-Print Network [OSTI]

    Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

    2014-01-01T23:59:59.000Z

    This paper focuses on the potential and application of developing wave energy technology in the Gulf of Mexico (GOM). The conditions (weather, wave climate, activity of the oil industry, etc.) in the GOM are assessed and the attributes of wave...

  10. Living Technology and Development: Agricultural Biotechnology and Civil Society in Kenya 

    E-Print Network [OSTI]

    Harsh, Matthew

    2008-01-01T23:59:59.000Z

    This thesis examines relationships between science and technology and development, as dened and manifested by non-governmental organisations (NGOs) in Kenya whose work involves agricultural biotechnologies. Non-governmental ...

  11. Sustainable Energy for Development The evolution of technologies provides remote, non-grid

    E-Print Network [OSTI]

    Mottram, Nigel

    Sustainable Energy for Development GOALS: The evolution of technologies provides remote, non, energy storage, light emitting diodes, energy monitoring and management. RESEARCH ISSUES: Investigate the correlation of energy and social well being and associated energy costs. Research current methods

  12. Vehicle Technologies Office Merit Review 2014: Process Development and Scale-up of Advanced Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process development and scale...

  13. Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by CD-Adapco at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  14. Vehicle Technologies Office Merit Review 2014: Development of Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by University of Rhode Island at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development of...

  15. Vehicle Technologies Office Merit Review 2015: Development of High-Performance Cast Crankshafts

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of high-performance...

  16. Vehicle Technologies Office Merit Review 2015: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  17. Vehicle Technologies Office Merit Review 2014: Development of SiC Large Tapered Crystal Growth

    Broader source: Energy.gov [DOE]

    Presentation given by NASA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of SiC large tapered crystal...

  18. Vehicle Technologies Office Merit Review 2015: Development of a PHEV Battery

    Broader source: Energy.gov [DOE]

    Presentation given by Xerion Advanced Battery Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of...

  19. Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report

    E-Print Network [OSTI]

    Kentucky, University of

    Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report October 1 for Fischer Tropsch synthesis with a cobalt catalyst. There was an important increase in conversion due

  20. Expanding Research Horizons: USDA Forest Service Initiative for Developing Recycled Paper Technology

    E-Print Network [OSTI]

    Abubakr, Said

    Forest Service research on recycling is being led by scientists at the Forest Products Laboratory (FPLExpanding Research Horizons: USDA Forest Service Initiative for Developing Recycled Paper Technology Theodore L. Laufenberg, Program Manager Forest Products Conservation and Recycling Said Abubakr

  1. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect (OSTI)

    Bernard A. Toseland

    2002-09-30T23:59:59.000Z

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  2. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect (OSTI)

    Bernard A. Toseland, Ph.D.

    2000-06-01T23:59:59.000Z

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column 0reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  3. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology

    SciTech Connect (OSTI)

    Toseland, B.A.

    1998-10-29T23:59:59.000Z

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  4. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect (OSTI)

    Bernard A. Toseland, Ph.D.

    1999-03-01T23:59:59.000Z

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors. The past three months of research have been focused on two major areas of bubble column hydrodynamics: (1) pressure and temperature effects on gas holdup and (2) region transition using a sparger as a gas distributor.

  5. SpaceWire model development technology for satellite architecture.

    SciTech Connect (OSTI)

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01T23:59:59.000Z

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  6. Sludge Treatment and Extraction Technology Development: Results of FY 1993 studies

    SciTech Connect (OSTI)

    Lumetta, G.J.; Wagner, M.J.; Barrington, R.J.; Rapko, B.M.; Carlson, C.D.

    1994-03-01T23:59:59.000Z

    This report describes experimental results from work conducted in FY 1993 under the Sludge Treatment and Extraction Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project at Pacific Northwest Laboratory (PNL). Experiments were conducted in the following six general areas: (1) sludge washing, (2) sludge leaching, (3) sludge dissolution, (4) actinide separation by solvent extraction and extraction chromatography, (5) Sr separation by solvent extraction, and (6) extraction of Cs from acidic solution.

  7. Research and Development Roadmap for Water Heating Technologies

    SciTech Connect (OSTI)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01T23:59:59.000Z

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  8. Energy To Grow We are leveraging technology to develop the

    E-Print Network [OSTI]

    National Oceanography Centre, Southampton

    to develop next-generation biofuels processing ­ and our engagement in several projects involving current generation biofuels ­ have resulted in a steady stream of announcements over the past several months. I, a fuel made from the oils of plants such as soybeans or sunflowers and blended with diesel, and ethanol

  9. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C. [eds.

    1993-03-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  10. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  11. Evaluation of Side Stream Filtration Technology at Oak Ridge National

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt | Department ofEvaluation

  12. Diesel Particulate Filtration (DPF) Technology: Success stories at the High

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * SEnergyTemperature Materials Laboratory

  13. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect (OSTI)

    Bush, S.

    2009-11-05T23:59:59.000Z

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5) Enhanced Stabilization Technologies; (6) Spent Nuclear Fuel; and (7) Challenging Materials. This report provides updates on 35 technology development tasks conducted during calendar year 2008 in the Roadmap and MYPP program areas.

  14. Cross flow filtration of aqueous radioactive tank wastes

    SciTech Connect (OSTI)

    McCabe, D.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Reynolds, B.A. [Battelle Pacific Northwest Lab., Richland, WA (United States); Todd, T.A. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Wilson, J.H. [Oak Ridge National Lab., TN (United States)

    1997-02-01T23:59:59.000Z

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Science and Technology addresses remediation of radioactive waste currently stored in underground tanks. Baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment, and (c) volume reduction of sludge and wash water. Solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. This basic process is used for decontamination of tank waste at the Savannah River Site (SRS). Ion exchange of radioactive ions has been proposed for other tank wastes, requiring removal of insoluble solids to prevent bed fouling and downstream contamination. Additionally, volume reduction of washed sludge solids would reduce the tank space required for interim storage of High Level Wastes. The scope of this multi-site task is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. Testing has emphasized cross now filtration with metal filters to pretreat tank wastes, due to tolerance of radiation and caustic.

  15. DOE's Research Efforts in Developing CCS Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergy Oak

  16. Vortex Hydro Energy Develops Transformational Technology to Harness Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships Toolkit Voluntary Initiative:Departmentfrom Water

  17. TECHNOLOGY DEVELOPMENT FOR REACT AND WIND COMMON COIL MAGNETS.

    SciTech Connect (OSTI)

    ESCALLIER,J.; ANERELLA,M.; COZZOLINO,J.; GANETIS,G.; GHOSH,A.; GUPTA,R.; HARRISON,M.; MARONE,A.; MURATORE,J.; PARKER,B.; SAMPSON,W.; WANDERER,P.

    2001-06-18T23:59:59.000Z

    High field common coil magnets [1,2] using brittle High Temperature Superconductors (HTS) or Nb{sub 3}Sn cables provide new challenges with respect to the design and manufacturing of coils. We are developing the scaleable techniques that can be used in the production of common coil or other magnets with similar designs [3,4]. By utilizing a cost-effective rapid turnaround short coil program, it is possible to quickly develop and test the new conductors and learn the design and manufacturing concepts needed for them. The flexible nature of a rapid turnaround program required the development of a standard coil cassette for different size cable, allowing coils to be used as building blocks for testing in different magnet configurations. Careful attention is given to the design of the coil structure: The inner bobbin the wire is wound on, the coil winding process, insulation integrity, epoxy vacuum impregnation, and final assembly into a test magnet. This paper will discuss the manufacturing techniques and design rules learned from the rapid turnaround program, and test results to date.

  18. Business & technology strategies to promote the development and commercialization of alternative energy technologies like fuel cells

    E-Print Network [OSTI]

    Jayaraman, Sundar

    2008-01-01T23:59:59.000Z

    Globalization has led to the development of emerging markets and economies. With economic expansion around the globe, there is a greater energy demand to sustain this growth. Increasing energy demand has resulted in increase ...

  19. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01T23:59:59.000Z

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  20. Load Management - An Industrial Perspective on This Developing Technology

    E-Print Network [OSTI]

    Delgado, R. M.

    1983-01-01T23:59:59.000Z

    of this conceot 1& the "Peak Sha e Service" experimental tariff recently approved [Y the Texas Public Utility Commission for Houston Lighting and Power. This tariff was based on t e concept developed under the direction of the author as described above. Some... this tariff, several industrial companies were asked for their input prior to submittal to the Ut lity Commission. Some of t e primary issues Included (1) adequate guaranteed annual payment to cover cost to put in place mechanism/equipment to be able...

  1. Research and Development Roadmap for Emerging HVAC Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric,RMPipeline FirstSpent NuclearHowResearch & Development

  2. Recent Developments in BMW's Diesel Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11Department ofMeeting EnergyDevelopments in BMW's

  3. MODELING AND CONTROL OF A CONTINUOUS BIOREACTOR WITH CROSSFLOW FILTRATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MODELING AND CONTROL OF A CONTINUOUS BIOREACTOR WITH CROSS­FLOW FILTRATION Ying Zhao and Sigurd on an industrial application of a continuous bioreactor with cross­flow filtration. In this paper the general study the possibility of partial control of this bioreactor. keywords: Continuous bioreactor

  4. Water Modeling of Steel Flow, Air Entrainment and Filtration

    E-Print Network [OSTI]

    Beckermann, Christoph

    Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air

  5. Household scale slow sand filtration in the Dominican Republic

    E-Print Network [OSTI]

    Donison, Kori S. (Kori Shay), 1981-

    2004-01-01T23:59:59.000Z

    Slow sand filtration is a method of water treatment that has been used for hundreds of years. In the past two decades, there has been resurgence in interest in slow sand filtration, particularly as a low-cost, household-scale ...

  6. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Davis, B.H.

    1998-07-22T23:59:59.000Z

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  7. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    SciTech Connect (OSTI)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-06-01T23:59:59.000Z

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

  8. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02T23:59:59.000Z

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form of gibbsite, and its impact on filtration. The initial sample was diluted with a liquid simulant to simulate the receiving concentration of retrieved tank waste into the UFP2 vessel (< 10 wt% undissolved solids). Filtration testing was performed on the dilute waste sample and dewatered to a higher solids concentration. Filtration testing was then performed on the concentrated slurry. Afterwards, the slurry was caustic leached to remove aluminum present in the undissolved solid present in the waste. The leach was planned to simulate leaching conditions in the UFP2 vessel. During the leach, slurry supernate samples were collected to measure the dissolution rate of aluminum in the waste. After the slurry cooled down from the elevated leach temperature, the leach liquor was dewatered from the solids. The remaining slurry was rinsed and dewatered with caustic solutions to remove a majority of the dissolved aluminum from the leached slurry. The concentration of sodium hydroxide in the rinse solutions was high enough to maintain the solubility of the aluminum in the dewatered rinse solutions after dilution of the slurry supernate. Filtration tests were performed on the final slurry to compare to filtration performance before and after caustic leaching.

  9. Evaluation of dust cake filtration at high temperature with effluence from an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Dennis, R.A.

    1990-08-01T23:59:59.000Z

    In the spring of 1989, two separate test series were simultaneously conducted at the US Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) to examine applied and fundamental behavior of dust cake filtration under high temperature and high pressure (HTHP) conditions. The purpose was to provide information on dust-cake filtration properties to gas stream cleanup researchers associated with the Tidd 70 megawatt (MW) pressurized fluidized-bed combustor (PFBC). The two test facilities included (1) a high-pressure natural-gas combustor with injected particulate, which was fed to two full-size candle filters; and (2) an atmospheric fluidized-bed combustor (AFBC) with coal and limestone sorbent to generate a particulate-laden combustion exhaust gas, which was sent to a single full-size candle filter and a small-scale disc filter. Several major conclusions from these studies are noted below. On average reducing the mean particulate size by 33% and the associated loading carried in the filtrate will increase the dust cake specific flow resistance (K{sub 2}) by 498%. High-temperature and high-pressure filtration can be successfully performed with ceramic candle filters at moderate filtration face velocities and reasonable system pressure drops. Off-line filter cleaning can produce a filter system with a higher apparent permeability than that produced from on-line filter cleaning at the same face velocity. 19 refs., 89 figs., 13 tabs.

  10. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Final report

    SciTech Connect (OSTI)

    Weber, G.F.; Dunham, G.E.; Laudal, D.L.; Ness, S.R.; Schelkoph, G.L.

    1994-08-01T23:59:59.000Z

    The overall objective of the project proposed was to evaluate the catalyst-coated fabric filter concept for effective control of NO{sub 2} and particulate emissions simultaneously. General goals included demonstrating high removal efficiency of NO{sub x} and particulate matter, acceptable bag and catalyst life, and that process economics show a significant cost savings in comparison to a commercial SCR process and conventional particulate control. Specific goals included the following: reduce NO{sub x} emissions to 60 ppM or less; demonstrate particulate removal efficiency of >99.5%; demonstrate a bag/catalyst life of >1 year; Control ammonia slip to <25 ppM; show that catalytic fabric filtration can achieve a 50% cost savings over conventional fabric filtration and SCR control technology; determine compatibility with S0{sub 2} removal systems; and show that the concept results in a nonhazardous waste product.

  11. Development and production of two explosive components using SCB technology

    SciTech Connect (OSTI)

    Tarbell, W.W.; Sanchez, D.H. [Sandia National Labs., Albuquerque, NM (United States); Oestreich, M.L.; Prentice, J.W. [Pacific Scientific, Inc., Chandler, AZ (United States). Energy Dynamics Div.

    1995-05-01T23:59:59.000Z

    For many years, explosive components have used hotwires to convert an electrical stimulus into the thermal energy required to initiate the device. A Semi-Conductor Bridge (SCB) performs the same function, but with the advantage of requiring approximately 1/10 the input energy of a comparable hotwire, while retaining excellent no-fire characteristics. The SCB also demonstrates faster function times due to its inherently-lower thermal mass. This paper discusses the development and production of two SCB-based devices, the MC4491 Initiator and the MC4492 Actuator. The initiator is designed to shock initiate a linear shaped charge by accelerating a thin metal plate across a small gap. The actuator functions several different components, serving as either an actuator by producing a rapidly expanding gas to activate piston mechanisms or as an ignitor by providing hot particles for initiating pyrotechnic mixtures. Details are provided on the construction of both devices, methods of assembly, and performance characteristics (function time, flyer velocity, pressure in a closed bomb, heat content, and no-fire and all-fire levels).

  12. Powder Technology, 64 (1991) 3-41 Fundamental and practical developments

    E-Print Network [OSTI]

    Liu, Y. A.

    1991-01-01T23:59:59.000Z

    , solid flowability and rheological behavior of MSBs; gas-mixing behavior as well as heat and massPowder Technology, 64 (1991) 3-41 Fundamental and practical developments review of magnetofluidized presents a review of the literature on the fundamental and practical developments of magnetofluidized beds

  13. The Application of Microhole Technology to the Development of Coalbed Methane Resources at Remote Locations

    E-Print Network [OSTI]

    Gas and Oil Recovery Partnership Program with American industry, has undertaken an integrated program of development to show that the cost of obtaining subsurface information can be drastically reduced through microhole technologies specifically developed to obtain that information. Collectively termed "Microhole

  14. The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Development Paths in the Automotive and Optoelectronics Industries by Erica R.H. Fuchs Submitted in particular at the automotive and optoelectronics industries. The dissertation uses an innovative combinationThe Impact of Manufacturing Offshore on Technology Development Paths in the Automotive

  15. Experimental study of head loss and filtration for LOCA debris

    SciTech Connect (OSTI)

    Rao, D.V.; Souto, F.J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1996-02-01T23:59:59.000Z

    A series of controlled experiments were conducted to obtain head loss and filtration characteristics of debris beds formed of NUKON{trademark} fibrous fragments, and obtain data to validate the semi-theoretical head loss model developed in NUREG/CR-6224. A thermally insulated closed-loop test set-up was used to conduct experiments using beds formed of fibers only and fibers intermixed with particulate debris. A total of three particulate mixes were used to simulate the particulate debris. The head loss data were obtained for theoretical fiber bed thicknesses of 0.125 inches to 4.0 inches; approach velocities of 0.15 to 1.5 ft/s; temperatures of 75 F and 125 F; and sludge-to-fiber nominal concentration ratios of 0 to 60. Concentration measurements obtained during the first flushing cycle were used to estimate the filtration efficiencies of the debris beds. For test conditions where the beds are fairly uniform, the head loss data were predictable within an acceptable accuracy range by the semi-theoretical model. The model was equally applicable for both pure fiber beds and the mixed beds. Typically the model over-predicted the head losses for very thin beds and for thin beds at high sludge-to-fiber mass ratios. This is attributable to the non-uniformity of such debris beds. In this range the correlation can be interpreted to provide upper bound estimates of head loss. This is pertinent for loss of coolant accidents in boiling water reactors.

  16. Research and development separation technology: The DOE Industrial Energy Conservation Program

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

  17. Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research

    SciTech Connect (OSTI)

    Pennell, W.E.

    1991-01-01T23:59:59.000Z

    Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. This paper presents an overview of ongoing Heavy-Section Steel Technology (HSST) Program research aimed at refining the fracture toughness data used in the analysis of fracture margins under pressurized-thermal-shock loading conditions. 33 refs., 13 figs.

  18. Developing Knowledge States: Technology and the Enhancement of National Statistical Capacity

    E-Print Network [OSTI]

    Anderson, Derrick M

    2015-01-01T23:59:59.000Z

    National statistical systems are the enterprises tasked with collecting, validating and reporting societal attributes. These data serve many purposes - they allow governments to improve services, economic actors to traverse markets, and academics to assess social theories. National statistical systems vary in quality, especially in developing countries. This study examines determinants of national statistical capacity in developing countries, focusing on the impact of general purpose technologies (GPTs). Just as technological progress helps to explain differences in economic growth, states with markets with greater technological attainment (specifically, general purpose technologies) arguably have greater capacity for gathering and processing quality data. Analysis using panel methods shows a strong, statistically significant positive linear relationship between GPTs and national statistical capacity. There is no evidence to support a non-linear function in this relationship. Which is to say, there does not a...

  19. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect (OSTI)

    Williams, T.A. [National Renewable Energy Lab., Golden, CO (United States); Burch, G. [USDOE, Washington, DC (United States); Chavez, J.M.; Mancini, T.R.; Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-06-01T23:59:59.000Z

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  20. Advanced Gas Turbine (AGT) technology development. Eighth semiannual progress report, July-December 1983

    SciTech Connect (OSTI)

    Not Available

    1984-06-01T23:59:59.000Z

    Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System Program. This program is oriented at providing the United States automotive industry the high-risk long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. It is intended that technology resulting from this program reach the marketplace by the early 1990s. This report reviews the power section (metal and ceramic engine) effort conducted to date, followed by a review of the component/ceramic technology development. Appendices include reports of progress from Ford, AiResearch Casting Company, and the Carborundum Company.

  1. NREL Supports Development of New National Code for Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    On December 14, 2010, the National Fire Protection Association (NFPA) issued a new national code for hydrogen technologies - NFPA 2 Hydrogen Technologies Code - which covers critical applications and operations such as hydrogen dispensing, production, and storage. The new code consolidates existing hydrogen-related NFPA codes and standards requirements into a single document and also introduces new requirements. This consolidation makes it easier for users to prepare code-compliant permit applications and to review/approve these applications. The National Renewable Energy Laboratory helped support the development of NFPA 2 on behalf of the U.S. Department of Energy Fuel Cell Technologies Program.

  2. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    SciTech Connect (OSTI)

    Rinehart, B.N.

    1991-06-01T23:59:59.000Z

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs.

  3. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28T23:59:59.000Z

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  4. Relating to fossil energy resource characterization, research, technology development, and technology transfer

    SciTech Connect (OSTI)

    Poston, S.W.; Berg, R.R.; Friedman, M.M.; Gangi, A.F.; Wu, C.H.

    1993-12-01T23:59:59.000Z

    Geological, geophysical and petroleum engineering aspects of oil recovery from low-permeability reservoirs have been studied over the past three years. Significant advances were made in using Formation Microscanner Surveys (FMS) data to extrapolate fracture orientation, abundance, and spacing from the outcrop to the subsurface. Highly fractured zones within the reservoir can be detected, thus the fracture stratigraphy defined. Multi-component,vertical-seismic profile (VSP), shear wave data were used to improve the detection of fractures. A balancing scheme was developed to improve the geophysical detection of fractures based on balanced source magnitudes and geophone couplings. Resistivity logs can be used to identify the zone of immature organic material, the zone of storage where oil is generated but held in the matrix and the zone of migration whee oil is expelled from the rock to fractures. Natural fractures can be detected in many wells by the response of density logs in combination with gamma-ray, resistivity, and sonic logs. Theoretical studies and analysis of daily production data, from field case histories, have shown the utility of the Chef Type Curves to derive reservoir character from production test data. This information is ordinarily determined from transient pressure data. Laboratory displacement as well as MI and CT studies show that the carbonated water imbibition oil displacement process significantly accelerates and increases recovery from saturated, low-permeability core material. The created gas drive, combined with oil shrinkage significantly increased oil recovery. A cyclic-carbonated-water-imbibition process improves oil recovery. A semi-analytical model (MOD) and a 3-dimensional, 3-phase, dual-porosity, compositional simulator (COMAS) were developed to describe the imbibition carbonated waterflood performance. MOD model is capable of computing the oil recovery and saturation profiles for oil/water viscosity ratios other than one.

  5. African Journal of Science, Technology, Innovation and Development (AJSTID), Vol. 2, No. 3, 2010, pp. 186-206

    E-Print Network [OSTI]

    1 African Journal of Science, Technology, Innovation and Development (AJSTID), Vol. 2, No. 3, 2010 manuscript, published in "African Journal of Science, Technology, Innovation and Development (AJSTID) 2, 3 conference1 give the same impression as well: the terms "science", "technology" and "innovation

  6. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

  7. Hydrogen storage for vehicular applications: Technology status and key development areas

    SciTech Connect (OSTI)

    Robinson, S.L.; Handrock, J.L.

    1994-04-01T23:59:59.000Z

    The state-of-the-art of hydrogen storage technology is reviewed, including gaseous, liquid, hydride, surface adsorbed media, glass microsphere, chemical reaction, and liquid chemical technologies. The review of each technology includes a discussion of advantages, disadvantages, likelihood of success, and key research and development activities. A preferred technological path for the development of effective near-term hydrogen storage includes both cur-rent DOT qualified and advanced compressed storage for down-sized highly efficient but moderate range vehicles, and liquid storage for fleet vehicle applications. Adsorbate media are also suitable for fleet applications but not for intermittent uses. Volume-optimized transition metal hydride beds are also viable for short range applications. Long-term development of coated nanoparticulate or metal matrix high conductivity magnesium alloy, is recommended. In addition, a room temperature adsorbate medium should be developed to avoid cryogenic storage requirements. Chemical storage and oxidative schemes present serious obstacles which must be addressed for these technologies to have a future role.

  8. Notice of Intent to Issue FOA DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office (FCTO), a Funding Opportunity Announcement (FOA) entitled “Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations.”

  9. Pre-Decisional Sodium Bearing Waste Technology Development Roadmap FY-01 Update

    SciTech Connect (OSTI)

    Mc Dannel, Gary Eidson

    2001-09-01T23:59:59.000Z

    This report provides an update to the Sodium Bearing Waste (SBW) Technology Development Roadmap generated a year ago. It outlines progress made to date and near-term plans for the technology development work necessary to support processing SBW. In addition, it serves as a transition document to the Risk Management Plan (RMP) required by the Project per DOE Order 413.3, “Program and Project Management for the Acquisition of Capital Assets.” Technical uncertainties have been identified as design basis elements (DBEs) and captured in a technical baseline database. As the risks are discovered, assessed, and mitigated, the status of the DBEs in the database will be updated and tracked to closure.

  10. Core science and technology development plan for indirect-drive ICF ignition. Revision 1

    SciTech Connect (OSTI)

    Powell, H.T.; Kilkenny, J.D. [eds.

    1995-12-01T23:59:59.000Z

    To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program.

  11. ALTERNATE HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTRATION SYSTEM

    SciTech Connect (OSTI)

    Bruce Bishop; Robert Goldsmith; Karsten Nielsen; Phillip Paquette

    2002-08-16T23:59:59.000Z

    In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project.

  12. Task 10 -- Technology development integration. Semi-annual report, April 1--September 30, 1997

    SciTech Connect (OSTI)

    Erickson, T.A.; Daly, D.J.; Jones, M.L.

    1997-12-31T23:59:59.000Z

    Task 10 activities by the Energy and Environmental Research Center (EERC) have focused on the identification and integration of new cleanup technologies for use in the US Department of Energy (DOE) Environmental Management Program to address environmental issues within the nuclear defense complex. Under Subtask 10A, activities focused on a review of technology needs compiled by the Site Technology Coordination Groups as part of an ongoing assessment of the relevance of the EM Cooperative Agreement Program activities to EM site needs. Work under this subtask was completed August 31. Work under Task 10B had as its goal assisting in the definition and development of specific models to demonstrate several approaches to be used by DOE to encourage the commercialization of environmental technologies. This activity included identification and analysis of economic and regulatory factors affecting feasibility of commercial development of two specific projects and two general models to serve as a mechanism for the transfer of federally supported or developed environmental technologies to the private sector or for rapid utilization in the federal government`s efforts to clean up the weapons complex.

  13. Development of Black Silicon Antireflection Control and Passivation Technology for Commercial Application: Cooperative Research and Development Final Report, CRADA Number CRD-12-475

    SciTech Connect (OSTI)

    Yuan, H. C.

    2014-06-01T23:59:59.000Z

    The work involves the development of a commercial manufacturing process for both multicrystalline and monocrystalline solar cells that combines Natcore's patent pending passivation technology.

  14. SCINTILLA A European project for the development of scintillation detectors and new technologies for nuclear security

    E-Print Network [OSTI]

    A. Alemberti; M. Battaglieri; E. Botta; R. De Vita; E. Fanchini; G. Firpo

    2014-04-14T23:59:59.000Z

    Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

  15. Technologies for Developing Ambulatory Cough Monitoring Devices Justice Amoh and Kofi Odame

    E-Print Network [OSTI]

    Odam, Kofi

    Technologies for Developing Ambulatory Cough Monitoring Devices Justice Amoh and Kofi Odame Analog Cough is a prevailing symptom in most lung diseases. While cough sounds themselves can be very of the particular illness. There is an imperative need for a robust system for identifying and analyzing cough

  16. Advanced gas turbine (AGT) technology development. Seventh semiannual progress report, January 1983-June 1983

    SciTech Connect (OSTI)

    Not Available

    1983-12-01T23:59:59.000Z

    The power section (engine) effort conducted to date is reviewed, followed by a review of the component/ceramic technology development. Appendices include reports of progress from Ford, AiResearch Casting Company, and the Carborundum Company. 9 references, 70 figures, 18 tables.

  17. Development of Fusion Nuclear Technologies at Japan Atomic Energy Research Institute

    SciTech Connect (OSTI)

    Seki, Masahiro; Yamanishi, Toshihiko; Shu, Wataru; Nishi, Masataka; Hatano, Toshihisa; Akiba, Masato; Takeuchi, Hiroshi; Nakamura, Kazuyuki; Sugimoto, Masayoshi; Shiba, Kiyoyuki; Jitsukawa, Shiro; Ishitsuka, Etsuo; Tsuji, Hiroshi [Japan Atomic Energy Research Institute (Japan)

    2002-07-15T23:59:59.000Z

    An overview of the present status of development of fusion nuclear technologies at Japan Atomic Energy Research Institute is presented. A tritium handling system for the ITER was designed, and the technology for each component of this system was demonstrated successfully. An ultraviolet laser with a wavelength of 193 nm was found quite effective for removing tritium from in-vessel components of D-T fusion reactors. Blanket technologies have been developed for the test blanket module of the ITER and for advanced blankets for DEMO reactors. This blanket is composed of ceramic Li{sub 2}TiO{sub 3} breeder pebbles and neutron multiplier beryllium pebbles, whose diameter ranges from 0.2 to 2 mm, contained in a box structure made of a reduced-activation ferritic steel, F82H. Mechanical properties of F82H under a thermal neutron irradiation at up to 50 displacements per atom (dpa) were obtained in a temperature range from 200 to 500 deg. C. Design of the International Fusion Materials Irradiation Facility (IFMIF) has been developed to obtain engineering data for candidate materials for DEMO reactors under a simulated fusion neutron irradiation up to 100 to 200 dpa, and basic development of the key technologies to construct the IFMIF is now under way as an International Energy Agency international collaboration.

  18. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael F. Simpson

    2012-03-01T23:59:59.000Z

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  19. Looking to jointly develop new plug-in hybrid vehicle (PHEV) technology and

    E-Print Network [OSTI]

    Kemner, Ken

    vehicle location and charge status to the utility operator, who transmits energy mix, real-time pricing acceptance and commercialization, the U.S. Department of Energy (DOE) and Sweden signed a Memorandum and the Swedish Energy Agency. Through contacts developed over many years conducting international technology

  20. Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report

    E-Print Network [OSTI]

    Kentucky, University of

    Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report January1 composition of precipitated iron Fischer- Tropsch (FT) catalysts has been studied. Catalyst samples taken-edge and fine structure regions while increasing the carburization temperature up to 500 C. The Fischer-Tropsch

  1. Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report

    E-Print Network [OSTI]

    Kentucky, University of

    Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report October 1 Government or any agency thereof. #12;2 Abstract CAER The effects of copper on Fischer-Tropsch activity the reduction of Fe oxides in H . Fischer-Tropsch synthesis studies using a well-studied Fe-Zn catalyst gave2

  2. Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report

    E-Print Network [OSTI]

    Kentucky, University of

    Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report July 1, 2001 Fischer-Tropsch synthesis in a CSTR was investigated. A novel method was utilized to isolate samples Fischer- Tropsch synthesis. Preliminary experiments were successful in verifying the liquid displacement

  3. Sensing in the Urban Technological Deserts A Position Paper for Smart Cities in Least Developed Countries

    E-Print Network [OSTI]

    Sensing in the Urban Technological Deserts A Position Paper for Smart Cities in Least Developed to ubiquitous computing. This paradigm has made the concept of smart cities a reality that is now in synchrony or users of existential services such as hospitals, the implementation of smart cities is equally important

  4. Improved filtration membranes through self-organizing amphiphilic comb copolymers

    E-Print Network [OSTI]

    Asatekin Alexiou, Ayse

    2009-01-01T23:59:59.000Z

    The operating cost of a membrane filtration system is generally determined by two major factors: the permeability of the membrane to water, and the lifetime of the membrane. Both of these are strongly affected by the ...

  5. Size-Dependent Filtration of Non-Loaded Particulate Traps

    E-Print Network [OSTI]

    White, Jessica

    2014-12-12T23:59:59.000Z

    This work investigates the filtration efficiency of uncoated, commercial Diesel Particulate Filter (DPF) substrates of three porosities (55.8%, 61.1%, 65.0%) for particulate sizes representative of Gasoline Direct Injection (GDI) exhaust, and also...

  6. Experts in Defense: How China’s Academicians Contribute to Its Defense Science and Technology Development

    E-Print Network [OSTI]

    WILSON, Jordan

    2015-01-01T23:59:59.000Z

    leader Nuclear propulsion and basic nuclear technology Groupmember Nuclear weapons technology Group leader Precisionrockets Information technology and computing Nuclear Medical

  7. A summary report on the search for current technologies and developers to develop depth profiling/physical parameter end effectors

    SciTech Connect (OSTI)

    Nguyen, Q.H.

    1994-09-12T23:59:59.000Z

    This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.

  8. Experiments concerning the dynamic filtration of drilling mud

    E-Print Network [OSTI]

    Eller, John Gary

    1989-01-01T23:59:59.000Z

    EXPERIMENTS CONCERNING THE DYNAMIC FILTRATION OF DRILLING MUD A Thesis by JOHN GARY ELLER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1989 Major Subject: Petroleum Engineering EXPERIMENTS CONCERNING THE DYNAMIC FILTRATION OF DRILLING MUD A Thesis by JOHN GARY ELLER Approved as to style and content by: Hans C. Ju am-Wold (Chair of Committee) tephen A. Holditch (Member) Ted...

  9. Water Clarity Simulant for K East Basin Filtration Testing

    SciTech Connect (OSTI)

    Schmidt, Andrew J.

    2006-01-20T23:59:59.000Z

    This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

  10. everage manufacturers use a clever process known as crossflow filtration1

    E-Print Network [OSTI]

    Brainerd, Elizabeth

    B everage manufacturers use a clever process known as crossflow filtration1 to produce sparkling. Onpage439ofthisissue,Sandersonandcol- leagues2 reportthatsomefishspeciesalsouse crossflow filtration of precisely how cross- flow filtration in fishes works. In fact, although crossflow filtration has been

  11. Vehicle Technologies Office Merit Review 2014: Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of...

  12. Vehicle Technologies Office Merit Review 2015: Development and Update of Long-Term Energy and GHG Emission Macroeconomic Accounting Tool

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development and...

  13. Vehicle Technologies Office Merit Review 2014: Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and...

  14. Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  15. Vehicle Technologies Office Merit Review 2015: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  16. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  17. Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Development of Radically...

  18. Vehicle Technologies Office Merit Review 2014: Development and Update of Long-Term Energy and GHG Emission Macroeconomic Accounting Tool

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

  19. Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational methods and their

    E-Print Network [OSTI]

    Demazičre, Christophe

    Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational plants', Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, pp.287­298. Biographical notes Engineering Chalmers University of Technology SE-412 96 Gothenburg, Sweden E-mail: demaz

  20. In Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar panels and a styl-

    E-Print Network [OSTI]

    Goodman, Robert M.

    with a discussion about technology and nature. A field of solar panels to produce economic revenue to consider technology and energy, a Solar Garden exists among the panels. In contrast, an Asian-inspired PondIn Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar

  1. IAC-09-D3.4.7 TECHNOLOGY DEVELOPMENT IN THE NASA INNOVATION SYSTEM: CHALLENGES AND OPPORTUNITIES

    E-Print Network [OSTI]

    de Weck, Olivier L.

    IAC-09-D3.4.7 TECHNOLOGY DEVELOPMENT IN THE NASA INNOVATION SYSTEM: CHALLENGES AND OPPORTUNITIES Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are mandated" technologies, their record of infusion into the overall NASA innovation system is more ambiguous. The SBIR

  2. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    SciTech Connect (OSTI)

    Bergeron, K D; Champion, R L; Hunke, R W [eds.

    1980-04-01T23:59:59.000Z

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  3. Science and Technology Development to Integrate Energy Production and Greenhouse Gas Management

    SciTech Connect (OSTI)

    Pendergast, D.

    2004-10-03T23:59:59.000Z

    This paper reviews the carbon cycle from the point of view of past and present human influence. Potential future human input to the cycle through science and technology to manage atmospheric greenhouse gas are considered. The review suggests that humans will need to ingeniously exploit even more energy to integrate its use with control of atmospheric greenhouse gases. Continuing development and application of energy is essential if the development of human society is to be sustained through the coming centuries. The continuing development of nuclear energy seems an essential energy supply component.

  4. Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Johnson, R.N.; Hayden, H.L.

    1994-01-01T23:59:59.000Z

    Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

  5. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02T23:59:59.000Z

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

  6. Assessment of geothermal development in the Imperial Valley of California. Volume 2. Environmental control technology

    SciTech Connect (OSTI)

    Morris, W.; Hill, J. (eds.)

    1980-07-01T23:59:59.000Z

    Environmental control technologies are essential elements to be included in the overall design of Imperial Valley geothermal power systems. Environmental controls applicable to abatement of hydrogen sulfide emissions, cooling tower drift, noise, liquid and solid wastes, and induced subsidence and seismicity are assessed here. For optimum abatement of H{sub 2}S under a variety of plant operating conditions, removal of H{sub 2}S upstream of the steam turbine is recommended. The environmental impact of cooling tower drift will be closely tied to the quality of cooling water supplies. Conventional noise abatement procedures can be applied and no special research and development are needed. Injection technology constitutes the primary and most essential environmental control and liquid waste disposal technology for Imperial Velley geothermal operations. Subsurface injection of fluids is the primary control for managing induced subsidence. Careful maintenance of injection pressure is expected to control induced seismicity. (MHR)

  7. Development of pyro-processing technology for thorium-fuelled molten salt reactor

    SciTech Connect (OSTI)

    Uhlir, J.; Straka, M.; Szatmary, L. [Nuclear Research Inst. ReZ Plc, ReZ 130, Husinec - CZ-250 68 (Czech Republic)

    2012-07-01T23:59:59.000Z

    The Molten Salt Reactor (MSR) is classified as the non-classical nuclear reactor type based on the specific features coming out from the use of liquid fuel circulating in the MSR primary circuit. Other uniqueness of the reactor type is based on the fact that the primary circuit of the reactor is directly connected with the on-line reprocessing technology, necessary for keeping the reactor in operation for a long run. MSR is the only reactor system, which can be effectively operated within the {sup 232}Th- {sup 233}U fuel cycle as thorium breeder with the breeding factor significantly higher than one. The fuel cycle technologies proposed as ford the fresh thorium fuel processing as for the primary circuit fuel reprocessing are pyrochemical and mainly fluoride. Although these pyrochemical processes were never previously fully verified, the present-day development anticipates an assumption for the successful future deployment of the thorium-fuelled MSR technology. (authors)

  8. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect (OSTI)

    Geiling, D.W. (USDOE Morgantown Energy Technology Center, WV (USA)); Goldberg, P.M. (eds.) (USDOE Pittsburgh Energy Technology Center, PA (USA))

    1990-01-01T23:59:59.000Z

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  9. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Zoe Kant; Sarah Woodhouse Murdock; Neil Sampson; Gilberto Tiepolo; Tim Pearson; Sarah Walker; Miguel Calmon

    2006-01-01T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  10. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-12-31T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between October 1st and December 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  11. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2007-03-31T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2007. The specific tasks discussed include: Task 1--carbon inventory advancements; Task 2--emerging technologies for remote sensing of terrestrial carbon; Task 3--baseline method development; Task 4--third-party technical advisory panel meetings; Task 5--new project feasibility studies; and Task 6--development of new project software screening tool.

  12. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Ellen Hawes; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-09-30T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  13. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Sarah Woodhouse Murdock; Jenny Henman; Zoe Kant; Gilberto Tiepolo; Tim Pearson; Neil Sampson; Miguel Calmon

    2005-10-01T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  14. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon

    2006-04-01T23:59:59.000Z

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  15. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect (OSTI)

    None

    1995-12-01T23:59:59.000Z

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

  16. Office of Technology Development`s Research, Development, Demonstration, Testing and Evaluation Mid-Year Program Review. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This document presents brief summaries of waste management, remedial action, decommissioning/decontamination, and waste processing programs and issues currently being developed at Department of Energy Facilities.

  17. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30T23:59:59.000Z

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  18. How can environmental regulations promote clean coal technology adoption in APEC developing economies?

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target the recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.

  19. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  20. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology